Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
gmsh
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Larry Price
gmsh
Commits
ffedc87d
Commit
ffedc87d
authored
20 years ago
by
Christophe Geuzaine
Browse files
Options
Downloads
Patches
Plain Diff
compute Euler angles from rotation matrix
parent
542667e0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Common/Context.cpp
+41
-89
41 additions, 89 deletions
Common/Context.cpp
with
41 additions
and
89 deletions
Common/Context.cpp
+
41
−
89
View file @
ffedc87d
// $Id: Context.cpp,v 1.5
0
2004-
02-07 01:40
:1
7
geuzaine Exp $
// $Id: Context.cpp,v 1.5
1
2004-
10-11 17:21
:1
6
geuzaine Exp $
//
// Copyright (C) 1997-2004 C. Geuzaine, J.-F. Remacle
//
...
...
@@ -29,102 +29,54 @@
#include
"DefaultOptions.h"
#include
"Trackball.h"
/*
3 successive rotations along x, y and z:
c(y)c(z) s(x)s(y)c(z)+c(x)s(z) -c(x)s(y)c(z)+s(x)s(z)
t[][] = -c(y)s(z) -s(x)s(y)s(z)+c(x)c(z) c(x)s(y)s(z)+s(x)c(z)
s(y) -s(x)c(y) c(x)c(y)
get the position angles:
y = asin(t31)
Pi - asin(t31)
si y != +- Pi/2 :
x = atan(-t32/t33) si t33 cos y > 0
atan(-t32/t33)+Pi si t33 cos y < 0
z = atan(-t21/t11) si t11 cos y > 0
atan(-t21/t11)+Pi si t11 cos y < 0
*/
void
Context_T
::
buildRotmatrix
(
void
)
{
double
x
,
y
,
z
;
if
(
useTrackball
)
{
build_rotmatrix
(
rot
,
quaternion
);
#if defined(HAVE_FLTK)
// We should reconstruct the Euler angles from the rotation
// matrix. I'm too lazy to do it :-(
extern
void
set_r
(
int
i
,
double
val
);
set_r
(
0
,
0.
);
set_r
(
1
,
0.
);
set_r
(
2
,
0.
);
/*
double x=0., y=0., z=0.
y = asin(rot[2][0]) ; y = Pi - asin(rot[2][0]) ; // choix ???
if(fabs(y) != Pi/2.){
if(rot[2][2]*cos(y) > 0.) x = atan2(-rot[2][1],rot[2][2]);
else x = atan2(-rot[2][1],rot[2][2]) + Pi;
if(rot[0][0]*cos(y) > 0.) z = atan2(-rot[1][0],rot[0][0]);
else z = atan2(-rot[1][0],rot[0][0]) + Pi;
}
set_r(0, x * 180./Pi);
set_r(1, y * 180./Pi);
set_r(2, z * 180./Pi);
*/
/*
double r0, r1, r2;
r1 = atan2(-rot[0][2],sqrt(rot[1][2]*rot[1][2] + rot[2][2]*rot[2][2]));
double c = cos(r1);
if(c != 0.0){
r0 = atan2(rot[1][2]/c,rot[2][2]/c) ;
r2 = atan2(-rot[1][0]/c,rot[0][0]/c) ;
r0 *= 180./(Pi);
r2 *= 180./(Pi);
}
set_r(0, r0);
set_r(1, r1 * 180./(Pi)); // lazyyyyyy
set_r(2, r2);
*/
#endif
// get Euler angles from rotation matrix
r
[
1
]
=
asin
(
rot
[
2
][
0
]);
// Calculate Y-axis angle
double
C
=
cos
(
r
[
1
]);
r
[
1
]
*=
180.
/
Pi
;
if
(
fabs
(
C
)
>
0.005
){
// Gimball lock?
double
tmpx
=
rot
[
2
][
2
]
/
C
;
// No, so get X-axis angle
double
tmpy
=
-
rot
[
2
][
1
]
/
C
;
r
[
0
]
=
atan2
(
tmpy
,
tmpx
)
*
180.
/
Pi
;
tmpx
=
rot
[
0
][
0
]
/
C
;
// Get Z-axis angle
tmpy
=
-
rot
[
1
][
0
]
/
C
;
r
[
2
]
=
atan2
(
tmpy
,
tmpx
)
*
180.
/
Pi
;
}
else
{
// Gimball lock has occurred
r
[
0
]
=
0.
;
// Set X-axis angle to zero
double
tmpx
=
rot
[
1
][
1
];
// And calculate Z-axis angle
double
tmpy
=
rot
[
0
][
1
];
r
[
2
]
=
atan2
(
tmpy
,
tmpx
)
*
180.
/
Pi
;
}
// return only positive angles in [0,360]
if
(
r
[
0
]
<
0.
)
r
[
0
]
+=
360.
;
if
(
r
[
1
]
<
0.
)
r
[
1
]
+=
360.
;
if
(
r
[
2
]
<
0.
)
r
[
2
]
+=
360.
;
}
else
{
x
=
r
[
0
]
*
Pi
/
180.
;
y
=
r
[
1
]
*
Pi
/
180.
;
z
=
r
[
2
]
*
Pi
/
180.
;
rot
[
0
][
0
]
=
cos
(
y
)
*
cos
(
z
);
rot
[
0
][
1
]
=
sin
(
x
)
*
sin
(
y
)
*
cos
(
z
)
+
cos
(
x
)
*
sin
(
z
);
rot
[
0
][
2
]
=
-
cos
(
x
)
*
sin
(
y
)
*
cos
(
z
)
+
sin
(
x
)
*
sin
(
z
);
rot
[
0
][
3
]
=
0.0
;
rot
[
1
][
0
]
=
-
cos
(
y
)
*
sin
(
z
);
rot
[
1
][
1
]
=
-
sin
(
x
)
*
sin
(
y
)
*
sin
(
z
)
+
cos
(
x
)
*
cos
(
z
);
rot
[
1
][
2
]
=
cos
(
x
)
*
sin
(
y
)
*
sin
(
z
)
+
sin
(
x
)
*
cos
(
z
);
rot
[
1
][
3
]
=
0.0
;
rot
[
2
][
0
]
=
sin
(
y
);
rot
[
2
][
1
]
=
-
sin
(
x
)
*
cos
(
y
);
rot
[
2
][
2
]
=
cos
(
x
)
*
cos
(
y
);
rot
[
2
][
3
]
=
0.0
;
rot
[
3
][
0
]
=
0.0
;
rot
[
3
][
1
]
=
0.0
;
rot
[
3
][
2
]
=
0.0
;
rot
[
3
][
3
]
=
1.0
;
double
x
=
r
[
0
]
*
Pi
/
180.
;
double
y
=
r
[
1
]
*
Pi
/
180.
;
double
z
=
r
[
2
]
*
Pi
/
180.
;
double
A
=
cos
(
x
);
double
B
=
sin
(
x
);
double
C
=
cos
(
y
);
double
D
=
sin
(
y
);
double
E
=
cos
(
z
);
double
F
=
sin
(
z
);
double
AD
=
A
*
D
;
double
BD
=
B
*
D
;
rot
[
0
][
0
]
=
C
*
E
;
rot
[
0
][
1
]
=
BD
*
E
+
A
*
F
;
rot
[
0
][
2
]
=-
AD
*
E
+
B
*
F
;
rot
[
0
][
3
]
=
0.
;
rot
[
1
][
0
]
=-
C
*
F
;
rot
[
1
][
1
]
=-
BD
*
F
+
A
*
E
;
rot
[
1
][
2
]
=
AD
*
F
+
B
*
E
;
rot
[
1
][
3
]
=
0.
;
rot
[
2
][
0
]
=
D
;
rot
[
2
][
1
]
=-
B
*
C
;
rot
[
2
][
2
]
=
A
*
C
;
rot
[
2
][
3
]
=
0.
;
rot
[
3
][
0
]
=
0.
;
rot
[
3
][
1
]
=
0.
;
rot
[
3
][
2
]
=
0.
;
rot
[
3
][
3
]
=
1.
;
// get the quaternion from the Euler angles
// todo
}
}
void
Context_T
::
addQuaternion
(
float
p1x
,
float
p1y
,
float
p2x
,
float
p2y
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment