Skip to content
Snippets Groups Projects
Commit ea1637b0 authored by Nicolas Marsic's avatar Nicolas Marsic
Browse files

Doc...

parent b9508b8f
No related branches found
No related tags found
No related merge requests found
Showing
with 195 additions and 263 deletions
......@@ -172,19 +172,19 @@ class Basis{
**
@fn Basis::getNVertexBased
@return Returns the number of Vertex Based functions of this Basis
@return Returns the number of Vertex based functions of this Basis
**
@fn Basis::getNEdgeBased
@return Returns the number of Edge Based functions of this Basis
@return Returns the number of Edge based functions of this Basis
**
@fn Basis::getNFaceBased
@return Returns the number of Face Based functions of this Basis
@return Returns the number of Face based functions of this Basis
**
@fn Basis::getNCellBased
@return Returns the number of Cell Based functions of this Basis
@return Returns the number of Cell based functions of this Basis
**
@fn Basis::getNFunction
......@@ -198,9 +198,9 @@ class Basis{
@param u A u coordinate in the reference space of this Basis
@param v A v coordinate in the reference space of this Basis
@param w A w coordinate in the reference space of this Basis
@return The given matrix is populated with the evaluation
of every basis function at the given coordinates,
and for the orientation of the given element
The given matrix is populated with the evaluation of every basis function
at the given coordinates, and for the orientation of the given element
**
@fn Basis::getFunctions(fullMatrix<double>&, size_t, double, double, double) const
......@@ -209,9 +209,9 @@ class Basis{
@param u A u coordinate in the reference space of this Basis
@param v A v coordinate in the reference space of this Basis
@param w A w coordinate in the reference space of this Basis
@return The given matrix is populated with the evaluation
of every basis function at the given coordinates,
and for the given orientation
The given matrix is populated with the evaluation of every basis function
at the given coordinates, and for the given orientation
**
@fn Basis::getDerivative(fullMatrix<double>&, const MElement&, double, double, double) const
......@@ -220,21 +220,24 @@ class Basis{
@param u A u coordinate in the reference space of this Basis
@param v A v coordinate in the reference space of this Basis
@param w A w coordinate in the reference space of this Basis
@return The given matrix is populated with the evaluation
of the derivative of every basis function at the given coordinates,
The given matrix is populated with the evaluation of the derivative
of every basis function at the given coordinates,
and for the orientation of the given element
**
@fn Basis::preEvaluateFunctions
@param point A Matrix with points coordinate
(each line is a point and got 3 coordinates, i.e. 3 rows)
@return Pre Evaluates every basis function at the given points
Pre Evaluates every basis function at the given points
**
@fn Basis::preEvaluateDerivatives
@param point A Matrix with points coordinate
(each line is a point and got 3 coordinates, i.e. 3 rows)
@return Pre Evaluates every basis function derivative at the given points
Pre Evaluates every basis function derivative at the given points
@li For 0-Form it computes the gradient
@li For 1-Form it computes the curl
......@@ -269,6 +272,10 @@ class Basis{
@param element A MElement
@return Same as Basis::getPreEvaluatedFunctions,
but the orientation is computed with the given element
**
@fn Basis::toString
@return Returns a string describing this Basis
*/
//////////////////////
......
......@@ -8,12 +8,7 @@
@class BasisGenerator
@brief A bunch of class method to generate a Local Basis
A BasisGenerator is a bunch of @em class
methods to generate a Local Basis (BasisLocal).
@note
A BasisGenerator got @em only @em class @em methods,
so it is not required to instanciate it.
A BasisGenerator is a bunch of class methods to generate a local Basis.
*/
class BasisGenerator{
......@@ -51,9 +46,7 @@ class BasisGenerator{
@fn BasisGenerator::BasisGenerator
Instantiates a new BasisGenerator
@note
A BasisGenerator got @em only @em class @em methods,
so it is not required to instanciate it.
This class got only class methods, so it is not required to instanciate it.
**
@fn BasisGenerator::~BasisGenerator
......@@ -61,145 +54,89 @@ class BasisGenerator{
**
@fn BasisGenerator::generate(size_t, size_t, size_t, std::string)
@param elementType The type of the element,
on which the requested Basis will be created
@param elementType The element type of the requested Basis
@param basisType The Basis type
@param order The order or the requested Basis
@param family A string
This method will @em instanciate the requested Basis,
of the requested family
This method will instanciate the requested Basis of the requested family
@return Returns a @em pointer to a newly
@em instantiated Basis
@return Returns a pointer to a newly instantiated Basis
@note Element types are:
Element types are:
@li @c TYPE_LIN for Lines
@li @c TYPE_TRI for Triangles
@li @c TYPE_QUA for Quadrangles
@li @c TYPE_TET for Tetrahedrons
@li @c TYPE_HEX for Hexahedrons
@note Basis types are:
@li @c 0 for 0-Form
@li @c 1 for 1-Form
@li @c 2 for 2-Form
@li @c 3 for 3-Form
Basis types are:
@li 0 for 0-Form
@li 1 for 1-Form
@li 2 for 2-Form
@li 3 for 3-Form
@note Families are:
@li @c hierarchical for
Families are:
@li hierarchical for
<a href="http://www.hpfem.jku.at/publications/szthesis.pdf">Zaglmayr's</a>
Basis Functions
@li @c lagrange for Lagrange's Basis Functions
Basis functions
@li lagrange for Lagrange's Basis functions
**
@fn BasisGenerator::generate(size_t, size_t, size_t)
@param elementType The type of the element,
on which the requested Basis will be created
@param elementType The element type of the requested Basis
@param basisType The Basis type
@param order The order or the requested Basis
Same as
BasisGenerator::generate(@c elementType, @c basisType, @c order, @c hierarchical)
BasisGenerator::generate(elementType, basisType, order, @em hierarchical)
@return Returns a @em pointer to a newly
@em instantiated Basis
@return Returns a pointer to a newly instantiated Basis
**
@fn BasisGenerator::linHierarchicalGen
@param basisType The Basis type
@param order The order or the requested Basis
This method will @em instanciate the requested Basis,
with a @em Line for support
This method will instanciate the requested Basis with a Line support
@return Returns a @em pointer to a newly
@em instantiated Basis
@return Returns a pointer to a newly instantiated Basis
@note Basis types are:
@li @c 0 for 0-Form
@li @c 1 for 1-Form
@li @c 2 for 2-Form
@li @c 3 for 3-Form
Basis types are:
@li 0 for 0-Form
@li 1 for 1-Form
@li 2 for 2-Form
@li 3 for 3-Form
@note The Basis family will be @c hierarchical
The Basis family will be hierarchical
**
@fn BasisGenerator::triHierarchicalGen
@param basisType The Basis type
@param order The order or the requested Basis
This method will @em instanciate the requested Basis,
with a @em Triangle for support
@return Returns a @em pointer to a newly
@em instantiated Basis
@note Basis types are:
@li @c 0 for 0-Form
@li @c 1 for 1-Form
@li @c 2 for 2-Form
@li @c 3 for 3-Form
@note The Basis family will be @c hierarchical
Same as BasisGenerator::linHierarchicalGen() but for Triangles
**
@fn BasisGenerator::quaHierarchicalGen
@param basisType The Basis type
@param order The order or the requested Basis
This method will @em instanciate the requested Basis,
with a @em Quadrangle for support
@return Returns a @em pointer to a newly
@em instantiated Basis
@note Basis types are:
@li @c 0 for 0-Form
@li @c 1 for 1-Form
@li @c 2 for 2-Form
@li @c 3 for 3-Form
@note The Basis family will be @c hierarchical
Same as BasisGenerator::linHierarchicalGen() but for Quadrangles
**
@fn BasisGenerator::tetHierarchicalGen
@param basisType The Basis type
@param order The order or the requested Basis
This method will @em instanciate the requested Basis,
with a @em Tetrahedron for support
@return Returns a @em pointer to a newly
@em instantiated Basis
@note Basis types are:
@li @c 0 for 0-Form
@li @c 1 for 1-Form
@li @c 2 for 2-Form
@li @c 3 for 3-Form
@note The Basis family will be @c hierarchical
Same as BasisGenerator::linHierarchicalGen() but for Tetrahedra
**
@fn BasisGenerator::hexHierarchicalGen
@param basisType The Basis type
@param order The order or the requested Basis
This method will @em instanciate the requested Basis,
with a @em Hexahedron for support
@return Returns a @em pointer to a newly
@em instantiated Basis
@note Basis types are:
@li @c 0 for 0-Form
@li @c 1 for 1-Form
@li @c 2 for 2-Form
@li @c 3 for 3-Form
@note The Basis family will be @c hierarchical
**
Same as BasisGenerator::linHierarchicalGen() but for Hexahedra
*/
//////////////////////
......
......@@ -6,9 +6,9 @@
/**
@interface BasisHierarchical0Form
@brief Interface for Hierarchical 0-Form Local Basis
@brief Interface for hierarchical 0-form local Basis
This is an interface for Hierarchical 0-Form Local Basis.@n
This is an interface for hierarchical 0-form local Basis.@n
*/
class BasisHierarchical0Form: public BasisLocal{
......@@ -57,7 +57,7 @@ class BasisHierarchical0Form: public BasisLocal{
virtual const fullMatrix<double>&
getPreEvaluatedDerivatives(size_t orientation) const;
std::string toString(void) const;
virtual std::string toString(void) const;
protected:
BasisHierarchical0Form(void);
......@@ -69,19 +69,12 @@ class BasisHierarchical0Form: public BasisLocal{
/**
@internal
@fn BasisHierarchical0Form::BasisHierarchical0Form
Instanciates an new BasisHierarchical0Form
@endinternal
**
@fn BasisHierarchical0Form::~BasisHierarchical0Form
Deletes this BasisHierarchical0Form
**
@fn BasisHierarchical0Form::toString
@return Returns a string describing this
BasisHierarchical0Form
*/
#endif
......@@ -6,9 +6,9 @@
/**
@interface BasisHierarchical1Form
@brief Interface for Hierarchical 1-Form Local Basis
@brief Interface for hierarchical 1-form local Basis
This is an interface for Hierarchical 1-Form Local Basis.@n
This is an interface for hierarchical 1-form local Basis.@n
*/
class BasisHierarchical1Form: public BasisLocal{
......@@ -57,7 +57,7 @@ class BasisHierarchical1Form: public BasisLocal{
virtual const fullMatrix<double>&
getPreEvaluatedDerivatives(size_t orientation) const;
std::string toString(void) const;
virtual std::string toString(void) const;
protected:
BasisHierarchical1Form(void);
......@@ -69,19 +69,12 @@ class BasisHierarchical1Form: public BasisLocal{
/**
@internal
@fn BasisHierarchical1Form::BasisHierarchical1Form
Instanciates an new BasisHierarchical1Form
@endinternal
**
@fn BasisHierarchical1Form::~BasisHierarchical1Form
Deletes this BasisHierarchical1Form
**
@fn BasisHierarchical1Form::toString
@return Returns a string describing this
BasisHierarchical1Form
*/
#endif
......@@ -13,11 +13,10 @@
This is an interface for Lagrange Basis.
These Local Scalar Basis allow a Coefficient Matrix,
and a Monomial Matrix, to be consulted.
These local scalar Basis allow a coefficient matrix and a monomial matrix
to be consulted.
A vector from an Other Basis (set of Functions)
can also be projected into a Lagrange Basis.
Coefficients from an other Basis can be projected into a Lagrange Basis.
*/
class BasisLagrange: public BasisLocal{
......@@ -89,13 +88,11 @@ class BasisLagrange: public BasisLocal{
/**
@internal
@fn BasisLagrange::BasisLagrange
Instanciates an new BasisLagrange
@endinternal
**
@fn BasisLagrange::~BasisLagrange
Deletes this BasisLagrange
**
......@@ -109,18 +106,18 @@ class BasisLagrange: public BasisLocal{
@fn BasisLagrange::project(const MElement&, const std::vector<double>&, const FunctionSpaceScalar&)
@param element A MElement
@param coef A vector of coefficient associated
to the given Element
@param fSpace The (scalar) Function Space
of the given Coefficients
@return Projects the given Coefficients in this BasisLagrange
@param coef A vector of coefficient associated to the given element
@param fSpace The (scalar) FunctionSpace of the given coefficients
@return Returns a vector with the projection of the given coefficients
in this BasisLagrange
**
@fn BasisLagrange::project(const MElement&, const std::vector<double>&, const FunctionSpaceVector&)
@param element A MElement
@param coef A vector of coefficient associated to the given Element
@param fSpace The (vectorial) Function Space of the given Coefficients
@return Projects the given Coefficients in this BasisLagrange
@param coef A vector of coefficient associated to the given element
@param fSpace The (vectorial) FunctionSpace of the given coefficients
@return Returns a vector with the projection of the given coefficients
in this BasisLagrange
The returned vector has a size three times bigger than coef,
since we need three coefficients with a Lagrange basis,
......
......@@ -5,9 +5,9 @@
/**
@interface BasisLocal
@brief Common Interface of all Local Basis
@brief Common interface of all local Basis
This class is the @em common @em interface for all Local Basis.
This class is the common interface for all local Basis.
*/
class BasisLocal: public Basis{
......
......@@ -6,11 +6,11 @@
/**
@class FunctionSpaceScalar
@brief A Scalar FunctionSpaces
@brief A scalar FunctionSpace
This class is a @em Scalar FunctionSpaces.@n
This class is a scalar FunctionSpaces.
A FunctionSpaceScalar can be @em interpolated.
A FunctionSpaceScalar can be interpolated.
*/
......@@ -49,12 +49,27 @@ class FunctionSpaceScalar : public FunctionSpace{
/**
@fn FunctionSpaceScalar::FunctionSpaceScalar
@fn FunctionSpaceScalar::FunctionSpaceScalar(const GroupOfElement&,size_t)
@param goe A GroupOfElement
@em of @em the @em same @em geomtrical @em type
@param basis A Basis (with a meaning on @c goe)
Instanciates a new FunctionSpaceScalar with the
given Basis on the given GroupOfElement
@param order A natural number
Instanciates a new FunctionSpaceScalar
on the given GroupOfElement and with the given order
The instanciated FunctionSpace will use a hierarchical Basis
**
@fn FunctionSpaceScalar::FunctionSpaceScalar(const GroupOfElement&,size_t,std::string)
@param goe A GroupOfElement
@param order A natural number
@param family A stringr
Instanciates a new FunctionSpaceScalar
on the given GroupOfElement and with the given order
The instanciated FunctionSpace will use the requested Basis family:
@li If family is equal to 'lagrange' a Lagrange Basis will be used
@li If family is equal to 'hierarchical' a hierarchical Basis will be used
@see See BasisGenerator::generate()
**
@fn FunctionSpaceScalar::~FunctionSpaceScalar
......@@ -64,39 +79,34 @@ class FunctionSpaceScalar : public FunctionSpace{
@fn FunctionSpaceScalar::interpolate
@param element The MElement to interpolate on
@param coef The coefficients of the interpolation
@param xyz The coordinate
(of point @em inside the given @c element)
of the interpolation in the @em Physical Space
@param xyz The coordinate (of a point inside the given element)
of the interpolation in the @em physical space
@return Returns the (scalar) interpolated value
@warning
If the given coordinate are not in the given
@c element @em Bad @em Things may happend
@todo
If the given coordinate are not in the given
@c element @em Bad @em Things may happend
---> check
element @em Bad @em Things may happend
**
@fn FunctionSpaceScalar::interpolateInRefSpace
@param element The MElement to interpolate on
@param coef The coefficients of the interpolation
@param uvw The coordinate
(of point @em inside the given @c element)
of the interpolation in the @em Reference Space
@param uvw The coordinate (of a point inside the given element)
of the interpolation in the @em reference space
@return Returns the (scalar) interpolated value
@warning
If the given coordinate are not in the given
@c element @em Bad @em Things may happend
element @em Bad @em Things may happend
@todo
If the given coordinate are not in the given
@c element @em Bad @em Things may happend
---> check
@fn FunctionSpaceScalar::interpolateDerivative
@param element The MElement to interpolate on
@param coef The coefficients of the interpolation
@param xyz The coordinate (of a point inside the given element)
of the interpolation in the @em physical space
Same as FunctionSpaceScalar::interpolate(element, coef, xyz),
but this method iterpolates the derivative.
*/
......
......@@ -7,11 +7,11 @@
/**
@class FunctionSpaceVector
@brief A Vectorial FunctionSpaces
@brief A vectorial FunctionSpaces
This class is a @em Vectorial FunctionSpaces.@n
This class is a vectorial FunctionSpaces.
A FunctionSpaceVector can be @em interpolated.
A FunctionSpaceVector can be interpolated.
*/
......@@ -42,12 +42,27 @@ class FunctionSpaceVector : public FunctionSpace{
/**
@fn FunctionSpaceVector::FunctionSpaceVector
@fn FunctionSpaceVector::FunctionSpaceVector(const GroupOfElement&,size_t)
@param goe A GroupOfElement
@em of @em the @em same @em geomtrical @em type
@param basis A Basis (with a meaning on @c goe)
Instanciates a new FunctionSpaceVector with the
given Basis on the given GroupOfElement
@param order A natural number
Instanciates a new FunctionSpaceVector
on the given GroupOfElement and with the given order
The instanciated FunctionSpace will use a hierarchical Basis
**
@fn FunctionSpaceVector::FunctionSpaceVector(const GroupOfElement&,size_t,std::string)
@param goe A GroupOfElement
@param order A natural number
@param family A stringr
Instanciates a new FunctionSpaceVector
on the given GroupOfElement and with the given order
The instanciated FunctionSpace will use the requested Basis family:
@li If family is equal to 'lagrange' a Lagrange Basis will be used
@li If family is equal to 'hierarchical' a hierarchical Basis will be used
@see See BasisGenerator::generate()
**
@fn FunctionSpaceVector::~FunctionSpaceVector
......@@ -57,39 +72,25 @@ class FunctionSpaceVector : public FunctionSpace{
@fn FunctionSpaceVector::interpolate
@param element The MElement to interpolate on
@param coef The coefficients of the interpolation
@param xyz The coordinate
(of point @em inside the given @c element)
of the interpolation in the @em Physical Space
@param xyz The coordinate (of a point inside the given element)
of the interpolation in the @em physical space
@return Returns the (vectorial) interpolated value
@warning
If the given coordinate are not in the given
@c element @em Bad @em Things may happend
@todo
If the given coordinate are not in the given
@c element @em Bad @em Things may happend
---> check
element @em Bad @em Things may happend
**
@fn FunctionSpaceVector::interpolateInRefSpace
@param element The MElement to interpolate on
@param coef The coefficients of the interpolation
@param uvw The coordinate
(of point @em inside the given @c element)
of the interpolation in the @em Reference Space
@param uvw The coordinate (of a point inside the given element)
of the interpolation in the @em reference space
@return Returns the (vectorial) interpolated value
@warning
If the given coordinate are not in the given
@c element @em Bad @em Things may happend
@todo
If the given coordinate are not in the given
@c element @em Bad @em Things may happend
---> check
element @em Bad @em Things may happend
*/
......
......@@ -8,11 +8,11 @@
@brief An Edge Basis for Hexahedra
This class can instantiate an Edge-Based Basis
(high or low order) for Hexahedra.@n
(high or low order) for Hexahedra.
It uses
<a href="http://www.hpfem.jku.at/publications/szthesis.pdf">Zaglmayr's</a>
Basis for @em high @em order Polynomial%s generation.@n
Basis for high order Polynomial%s generation.
*/
class HexEdgeBasis: public BasisHierarchical1Form{
......
......@@ -7,8 +7,8 @@
@class HexLagrangeBasis
@brief Lagrange Basis for Hexahedra
This class can instantiate a @em Lagrange @em Basis
for a Hexahedron and for a given Order.@n
This class can instantiate a Lagrange Basis
for a Hexahedron and for a given order.
It uses
<a href="http://geuz.org/gmsh/">gmsh</a> Basis.
......@@ -18,8 +18,7 @@ class HexLagrangeBasis: public BasisLagrange{
public:
//! @param order A natural number
//!
//! Returns a new HexLagrangeBasis
//! of the given Order
//! Returns a new HexLagrangeBasis of the given order
HexLagrangeBasis(size_t order);
//! Deletes this Basis
......
......@@ -8,11 +8,11 @@
@brief A Node Basis for Hexahedra
This class can instantiate a Node-Based Basis
(high or low order) for Hexahedra.@n
(high or low order) for Hexahedra.
It uses
<a href="http://www.hpfem.jku.at/publications/szthesis.pdf">Zaglmayr's</a>
Basis for @em high @em order Polynomial%s generation.@n
Basis for high order Polynomial%s generation.
*/
class HexNodeBasis: public BasisHierarchical0Form{
......
......@@ -5,19 +5,16 @@
/**
@class Legendre
@brief Generators for legendre Polynomial%s
This class handles the generation of legendre
Polynomial%s of many types:
@li Classical legendre (Legendre::legendre)
@li Integrated legendre (Legendre::integrated)
@li Scaled legendre (Legendre::scaled)
@li Integrated Scaled legendre (Legendre::intScaled)
@note
It is @em not @em requiered to instantiate a Legendre class.@n
Indeed, all its methods are @em static.@n
Each method is actualy a @em specific Polynomial @em generator.
@brief Generators for Legendre Polynomial%s
This class handles the generation of Legendre Polynomial%s of many types:
@li Classical Legendre (Legendre::legendre)
@li Integrated Legendre (Legendre::integrated)
@li Scaled Legendre (Legendre::scaled)
@li Integrated Scaled Legendre (Legendre::intScaled)
It is not requiered to instantiate a Legendre class.
Indeed, all its methods are static.
*/
class Legendre{
......@@ -47,32 +44,39 @@ class Legendre{
/**
@fn void Legendre::legendre(Polynomial*, int)
@param polynomial An @em allocated array (of size @c 'order' @c + @c 1)
@param polynomial An allocated array (of size 'order' + 1)
for storing the requested legendre Polynomial%s
@param order The @em maximal order of the requested Polynomial%s
@return Stores in @c 'polynomial' all the @em classical legendre Polynomial%s
of order [@c 0, @c 'order']
@param order The maximal order of the requested Polynomial%s
Stores in 'polynomial' all the classical legendre Polynomial%s
of order [0, 'order']
**
@fn void Legendre::integrated(Polynomial*, int)
@param polynomial An @em allocated array (of size @c 'order')
@param polynomial An allocated array (of size 'order')
for storing the requested legendre Polynomial%s
@param order The @em maximal order of the requested Polynomial%s
@return Stores in @c 'polynomial' all the @em integrated legendre Polynomial%s
of order [@c 1, @c 'order']
@param order The maximal order of the requested Polynomial%s
Stores in 'polynomial' all the integrated legendre Polynomial%s
of order [1, 'order']
**
@fn void Legendre::scaled(Polynomial*, int)
@param polynomial An @em allocated array (of size @c 'order' @c + @c 1)
@param polynomial An allocated array (of size 'order' + 1)
for storing the requested legendre Polynomial%s
@param order The @em maximal order of the requested Polynomial%s
@return Stores in @c 'polynomial' all the @em scaled legendre Polynomial%s
of order [@c 0, @c 'order']
@param order The maximal order of the requested Polynomial%s
Stores in 'polynomial' all the scaled legendre Polynomial%s
of order [0, 'order']
**
@fn void Legendre::intScaled(Polynomial*, int)
@param polynomial An @em allocated array (of size @c 'order')
@param polynomial An allocated array (of size 'order')
for storing the requested legendre Polynomial%s
@param order The @em maximal order of the requested Polynomial%s
@return Stores in @c 'polynomial' all the @em scaled @em integrated
legendre Polynomial%s of order [@c 1, @c 'order']
@param order The maximal order of the requested Polynomial%s
Stores in 'polynomial' all the scaled integrated legendre Polynomial%s
of order [1, 'order']
*/
#endif
......@@ -7,14 +7,13 @@
@class LineEdgeBasis
@brief An Edge Basis for Lines
This class can instantiate an Edge-Based Basis
(high or low order) for Lines.@n
This class can instantiate an Edge-Based Basis (high or low order) for Lines.
It uses an @em adaptation of
It uses an adaptation of
<a href="http://www.hpfem.jku.at/publications/szthesis.pdf">Zaglmayr's</a>
Basis for @em high @em order Polynomial%s generation.@n
Basis for high order Polynomial%s generation.@n
This Basis is a restriction of a Quad Basis to @f$y = 0@f$.@n
This Basis is a restriction of a Quad Basis to @f$y = 0@f$.
It also uses the following mapping: @f$x = \frac{u + 1}{2}@f$.
*/
......
......@@ -7,8 +7,8 @@
@class LineLagrangeBasis
@brief Lagrange Basis for Lines
This class can instantiate a @em Lagrange @em Basis
for a Line and for a given Order.@n
This class can instantiate a Lagrange Basis
for a Line and for a given order.
It uses
<a href="http://geuz.org/gmsh/">gmsh</a> Basis.
......@@ -18,8 +18,7 @@ class LineLagrangeBasis: public BasisLagrange{
public:
//! @param order A natural number
//!
//! Returns a new LineLagrangeBasis
//! of the given Order
//! Returns a new LineLagrangeBasis of the given order
LineLagrangeBasis(size_t order);
//! Deletes this Basis
......
......@@ -7,8 +7,7 @@
@class LineNedelecBasis
@brief Nedelec Basis for Lines
This class can instantiate a Nedelec Basis
for Lines.@n
This class can instantiate a Nedelec Basis for Lines
*/
class LineNedelecBasis: public BasisHierarchical1Form{
......
......@@ -7,14 +7,13 @@
@class LineNodeBasis
@brief A Node Basis for Lines
This class can instantiate a Node-Based Basis
(high or low order) for Lines.@n
This class can instantiate a Node-Based Basis (high or low order) for Lines.
It uses an @em adaptation of
It uses an adaptation of
<a href="http://www.hpfem.jku.at/publications/szthesis.pdf">Zaglmayr's</a>
Basis for @em high @em order Polynomial%s generation.@n
Basis for high order Polynomial%s generation.
This Basis is a restriction of a Quad Basis to @f$y = 0@f$.@n
This Basis is a restriction of a Quad Basis to @f$y = 0@f$.
It also uses the following mapping: @f$x = \frac{u + 1}{2}@f$.
*/
......
......@@ -155,8 +155,7 @@ class PermutationTree{
@param vectorToFill An allocated vector of size
PermutationTree::getSequenceSize()
Populates the given vector with the permuted sequence of
the given ID
Populates the given vector with the permuted sequence of the given ID
**
@fn PermutationTree::addTagToPermutation
......@@ -208,7 +207,6 @@ class PermutationTree{
@param path A file path
Serialize this PermutationTree into the given file path
**
*/
//////////////////////
......
......@@ -7,12 +7,11 @@
@class QuadEdgeBasis
@brief An Edge Basis for Quads
This class can instantiate an Edge-Based Basis
(high or low order) for Quads.@n
This class can instantiate an Edge-Based Basis (high or low order) for Quads.
It uses a variation of
<a href="http://www.hpfem.jku.at/publications/szthesis.pdf">Zaglmayr's</a>
Basis for @em high @em order Polynomial%s generation.@n
Basis for high order Polynomial%s generation.@n
The following mapping has been applied to Zaglmayr's Basis for Quads:
@li @f$x = \frac{u + 1}{2}@f$
......
......@@ -7,8 +7,8 @@
@class QuadLagrangeBasis
@brief Lagrange Basis for Quadrangles
This class can instantiate a @em Lagrange @em Basis
for a Quadrangle and for a given Order.@n
This class can instantiate a Lagrange Basis
for a Quadrangle and for a given order.
It uses
<a href="http://geuz.org/gmsh/">gmsh</a> Basis.
......@@ -18,8 +18,7 @@ class QuadLagrangeBasis: public BasisLagrange{
public:
//! @param order A natural number
//!
//! Returns a new QuadLagrangeBasis
//! of the given Order
//! Returns a new QuadLagrangeBasis of the given order
QuadLagrangeBasis(size_t order);
//! Deletes this Basis
......
......@@ -7,8 +7,7 @@
@class QuadNedelecBasis
@brief Nedelec Basis for Quads
This class can instantiate a Nedelec Basis
for Quadrangles.@n
This class can instantiate a Nedelec Basis for Quadrangles.
*/
class QuadNedelecBasis: public BasisHierarchical1Form{
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment