Skip to content
Snippets Groups Projects
Commit aa71fc9b authored by Paul-Emile Bernard's avatar Paul-Emile Bernard
Browse files

New algo for packingOfParallelograms: the new points insertion depends on the...

New algo for packingOfParallelograms: the new points insertion depends on the local cross field smoothness

parent b2e74034
Branches
Tags
No related merge requests found
...@@ -27,10 +27,19 @@ ...@@ -27,10 +27,19 @@
#include "BackgroundMesh.h" #include "BackgroundMesh.h"
#include "intersectCurveSurface.h" #include "intersectCurveSurface.h"
using namespace std;
static const double FACTOR = .71; static const double FACTOR = .71;
static const int NUMDIR = 3; static const int NUMDIR = 3;
//static const double DIRS [NUMDIR] = {0.0};
static const double DIRS [NUMDIR] = {0.0, M_PI/20.,-M_PI/20.}; static const double DIRS [NUMDIR] = {0.0, M_PI/20.,-M_PI/20.};
//PE MODIF
//static const int NUMDIR = 1;
//static const double DIRS [NUMDIR] = {0.0};
// END PE MODIF
/// a rectangle in the tangent plane is transformed /// a rectangle in the tangent plane is transformed
/// into a parallelogram. We define an exclusion zone /// into a parallelogram. We define an exclusion zone
...@@ -119,6 +128,27 @@ struct my_wrapper { ...@@ -119,6 +128,27 @@ struct my_wrapper {
my_wrapper (SPoint2 sp) : _tooclose (false), _p(sp) {} my_wrapper (SPoint2 sp) : _tooclose (false), _p(sp) {}
}; };
struct smoothness_point_pair{
double rank;
surfacePointWithExclusionRegion* ptr;
};
class compareSurfacePointWithExclusionRegionPtr_Smoothness
{
public:
inline bool operator () (const smoothness_point_pair &a, const smoothness_point_pair &b) const
{
if (a.rank == b.rank){
if(a.ptr->_distanceSummed > b.ptr->_distanceSummed) return false;
if(a.ptr->_distanceSummed < b.ptr->_distanceSummed) return true;
return a.ptr<b.ptr;
}
// else
return (a.rank < b.rank);
}
};
class compareSurfacePointWithExclusionRegionPtr class compareSurfacePointWithExclusionRegionPtr
{ {
public: public:
...@@ -390,9 +420,509 @@ bool compute4neighbors (GFace *gf, // the surface ...@@ -390,9 +420,509 @@ bool compute4neighbors (GFace *gf, // the surface
} }
#endif #endif
// ---------------------------------------------------------------------------------------------
// recover element around vertex v and interpolate smoothness on this element...
double get_smoothness(MVertex *v, GFace *gf, const map<MVertex*,double> &vertices2smoothness){
// recover element around MVertex v
//cout << "Looking for element around point (" << v->x() << "," << v->y() << "," << v->z() << ")" << endl;
SPoint3 sp3(v->x(), v->y(), v->z());
SPoint2 param_point;
reparamMeshVertexOnFace(v, gf, param_point);
MElement *elem = backgroundMesh::current()->getMeshElementByCoord(param_point[0], param_point[1], 0.);
if (!elem){
elem = backgroundMesh::current()->getMeshElementByCoord(param_point[0], param_point[1], 0., false);
if (!elem)
cout << " ------ WARNING !!! surfaceFiller : get_smoothness : No element found for coordinate (" << sp3.x() << "," << sp3.y() << "," << sp3.z() << ")" << endl;
}
// recover element's vertices:
vector<MVertex*> localvertices;
for (int ivert=0;ivert<elem->getNumVertices();ivert++){
MVertex *temp = elem->getVertex(ivert);
localvertices.push_back(temp);
// cout << " made of vertex " << temp->x() << "," << temp->y() << "," << temp->z() << endl;
}
// recover parametrisation uvw
double uvw[3],xyz[3];
xyz[0] = param_point[0];
xyz[1] = param_point[1];
xyz[2] = 0.;
elem->xyz2uvw(xyz, uvw);
// cout << "xyz is " << xyz[0] << "," << xyz[1] << "," << xyz[2] << endl;
// cout << "uvw is " << uvw[0] << "," << uvw[1] << "," << uvw[2] << endl;
// interpolate :
double val[3];
int i=0;
for (vector<MVertex*>::iterator it = localvertices.begin();it!=localvertices.end();it++){
MVertex *localv = *it;
map<MVertex*,double>::const_iterator itfind = vertices2smoothness.find(localv);
if (itfind==vertices2smoothness.end()){
cerr << "WARNING: surfaceFiller : get_smoothness : BACKGROUNDMESH VERTEX NOT FOUND IN SMOOTHNESS COMPUTATION !!! ABORTING..." << endl;
throw;
}
// cout << "nodal value: " << itfind->second << endl;
val[i++] = itfind->second;
}
// cout << "uvw is " << uvw[0] << " " << uvw[1] << " " << uvw[2] << endl;
double res = elem->interpolate(val, uvw[0], uvw[1], uvw[2]);
// cout << " THE VALUE = " << res << endl;
return res;
}
// ---------------------------------------------------------------------------------------------
void print_nodal_info_int(string filename, map<MVertex*, int> &mapp){
ofstream out(filename.c_str());
out << "View \"\"{" << endl;
for (map<MVertex*, int>::iterator it = mapp.begin();it!=mapp.end();it++){
MVertex *v = it->first;
out << "SP( " << v->x() << "," << v->y() << "," << v->z() << "){" << it->second << "};" << endl;;
}
out << "};" << endl;
out.close();
}
// ---------------------------------------------------------------------------------------------
void print_nodal_info_double(string filename, map<MVertex*, double> &mapp){
ofstream out(filename.c_str());
out << "View \"\"{" << endl;
for (map<MVertex*, double>::iterator it = mapp.begin();it!=mapp.end();it++){
MVertex *v = it->first;
out << "SP( " << v->x() << "," << v->y() << "," << v->z() << "){" << it->second << "};" << endl;;
}
out << "};" << endl;
out.close();
}
// ---------------------------------------------------------------------------------------------
void export_point(surfacePointWithExclusionRegion *sp, int DIR, FILE *crossf, GFace *gf){
// get the unit normal at that point
Pair<SVector3, SVector3> der = gf->firstDer(sp->_center);
SVector3 s1 = der.first();
SVector3 s2 = der.second();
SVector3 n = crossprod(s1,s2);
n.normalize();
SVector3 basis_u = s1; basis_u.normalize();
SVector3 basis_v = crossprod(n,basis_u);
double quadAngle = backgroundMesh::current()->getAngle (sp->_center[0],sp->_center[1],0) + DIRS[DIR];
// normalize vector t1 that is tangent to gf at midpoint
SVector3 t1 = basis_u * cos (quadAngle) + basis_v * sin (quadAngle) ;
t1.normalize();
// compute the second direction t2 and normalize (t1,t2,n) is the tangent frame
SVector3 t2 = crossprod(n,t1);
t2.normalize();
// double scale = DIR+1.;
SMetric3 metricField;
double L = backgroundMesh::current()->operator()(sp->_center[0],sp->_center[1],0.0);
metricField = SMetric3(1./(L*L));
FieldManager *fields = gf->model()->getFields();
if(fields->getBackgroundField() > 0){
Field *f = fields->get(fields->getBackgroundField());
if (!f->isotropic()){
(*f)(sp->_v->x(),sp->_v->y(),sp->_v->z(), metricField,gf);
}
else {
L = (*f)(sp->_v->x(),sp->_v->y(),sp->_v->z(), gf);
metricField = SMetric3(1./(L*L));
}
}
double size_1 = sqrt(1. / dot(t1,metricField,t1));
double size_2 = sqrt(1. / dot(t2,metricField,t2));
// fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",sp->_v->x(),sp->_v->y(),sp->_v->z(),t1.x()*scale,t1.y()*scale,t1.z()*scale);
// fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",sp->_v->x(),sp->_v->y(),sp->_v->z(),t2.x()*scale,t2.y()*scale,t2.z()*scale);
// fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",sp->_v->x(),sp->_v->y(),sp->_v->z(),-t1.x()*scale,-t1.y()*scale,-t1.z()*scale);
// fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",sp->_v->x(),sp->_v->y(),sp->_v->z(),-t2.x()*scale,-t2.y()*scale,-t2.z()*scale);
fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",sp->_v->x(),sp->_v->y(),sp->_v->z(),t1.x()*size_1,t1.y()*size_1,t1.z()*size_1);
fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",sp->_v->x(),sp->_v->y(),sp->_v->z(),t2.x()*size_2,t2.y()*size_2,t2.z()*size_2);
fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",sp->_v->x(),sp->_v->y(),sp->_v->z(),-t1.x()*size_1,-t1.y()*size_1,-t1.z()*size_1);
fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",sp->_v->x(),sp->_v->y(),sp->_v->z(),-t2.x()*size_2,-t2.y()*size_2,-t2.z()*size_2);
}
// ---------------------------------------------------------------------------------------------
bool get_local_sizes_and_directions(const MVertex *v_center, const SPoint2 &midpoint, const int DIR, GFace* gf, double (&covar1)[2], double (&covar2)[2], double &size_param_1, double &size_param_2, double &L, SVector3 &t1, SVector3 &t2, SVector3 &n, FILE *crossf=NULL){
//bool get_RK_stuff(const MVertex *v_center, const SPoint2 &midpoint, const int DIR, GFace* gf, double (&covar1)[2], double (&covar2)[2], double &size_param_1, double &size_param_2, double &L, SVector3 &t1, SVector3 &t2, SVector3 &n, FILE *crossf, const SVector3 &previous_t1, const SVector3 &previous_t2, bool use_previous_basis=false, bool export_cross=true){
// !!!!!!!!!!!! check if point is in domain (for RK !!!)
if (!backgroundMesh::current()->inDomain(midpoint.x(),midpoint.y(),0)) return false;
SMetric3 metricField;
L = backgroundMesh::current()->operator()(midpoint[0],midpoint[1],0.0);
// printf("L = %12.5E\n",L);
metricField = SMetric3(1./(L*L));
FieldManager *fields = gf->model()->getFields();
if(fields->getBackgroundField() > 0){
Field *f = fields->get(fields->getBackgroundField());
if (!f->isotropic()){
(*f)(v_center->x(),v_center->y(),v_center->z(), metricField,gf);
}
else {
L = (*f)(v_center->x(),v_center->y(),v_center->z(), gf);
metricField = SMetric3(1./(L*L));
}
}
// get the unit normal at that point
Pair<SVector3, SVector3> der = gf->firstDer(SPoint2(midpoint[0],midpoint[1]));
SVector3 s1 = der.first();
SVector3 s2 = der.second();
n = crossprod(s1,s2);
n.normalize();
double M = dot(s1,s1);
double N = dot(s2,s2);
double E = dot(s1,s2);
// compute the first fundamental form i.e. the metric tensor at the point
// M_{ij} = s_i \cdot s_j
double metric[2][2] = {{M,E},{E,N}};
// printf("%d %g %g %g\n",gf->tag(),s1.x(),s1.y(),s1.z());
SVector3 basis_u = s1; basis_u.normalize();
SVector3 basis_v = crossprod(n,basis_u);
double quadAngle = backgroundMesh::current()->getAngle (midpoint[0],midpoint[1],0) + DIRS[DIR];
//double quadAngle = atan2(midpoint[0],midpoint[1]);
// normalize vector t1 that is tangent to gf at midpoint
t1 = basis_u * cos (quadAngle) + basis_v * sin (quadAngle) ;
t1.normalize();
// compute the second direction t2 and normalize (t1,t2,n) is the tangent frame
t2 = crossprod(n,t1);
t2.normalize();
// std::cout << std::endl;
// std::cout << "basis uv : (" << basis_u(0) << "," << basis_u(1) << ") (" << basis_v(0) << "," << basis_v(1) << std::endl;
// std::cout << "t : (" << t1(0) << "," << t1(1) << ") (" << t2(0) << "," << t2(1) << std::endl;
// if (use_previous_basis){
// std::map<double, double> angles;
// SVector3 temp = crossprod(previous_t1, t1);
// double a = atan2(dot(t1, previous_t1), sign(dot(temp,n))*temp.norm() );
// angles.insert(std::make_pair(abs(a),a));
// temp = crossprod(previous_t2, t1);
// a = atan2(dot(t1, previous_t2), sign(dot(temp,n))*temp.norm());
// angles.insert(std::make_pair(abs(a),a));
// temp = crossprod(-1.*previous_t1, t1);
// a = atan2(dot(t1, -1.*previous_t1), sign(dot(temp,n))*temp.norm());
// angles.insert(std::make_pair(abs(a),a));
// temp = crossprod(-1.*previous_t2, t1);
// a = atan2(dot(t1, -1.*previous_t2), sign(dot(temp,n))*temp.norm());
// angles.insert(std::make_pair(abs(a),a));
// // std::cout << "angles: " << std::endl;
// // for (int i=0;i<4;i++) std::cout << angles[i] << " " << std::endl;
// double min_angle = -(angles.begin()->second);
// // std::cout << "min angle = " << min_angle << std::endl;
// t1 = cos(min_angle)*previous_t1 + sin(min_angle)*previous_t2;
// t2 = -sin(min_angle)*previous_t1 + cos(min_angle)*previous_t2;
// // std::cout << "new corrected t : (" << t1(0) << "," << t1(1) << ") (" << t2(0) << "," << t2(1) << std::endl;
// }
double size_1 = sqrt(1. / dot(t1,metricField,t1));
double size_2 = sqrt(1. / dot(t2,metricField,t2));
if (crossf){
if (DIR == 0 && crossf)fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",v_center->x(),v_center->y(),v_center->z(),t1.x()*size_1,t1.y()*size_1,t1.z()*size_1);
if (DIR == 0 && crossf)fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",v_center->x(),v_center->y(),v_center->z(),t2.x()*size_2,t2.y()*size_2,t2.z()*size_2);
if (DIR == 0 && crossf)fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",v_center->x(),v_center->y(),v_center->z(),-t1.x()*size_1,-t1.y()*size_1,-t1.z()*size_1);
if (DIR == 0 && crossf)fprintf(crossf,"VP(%g,%g,%g) {%g,%g,%g};\n",v_center->x(),v_center->y(),v_center->z(),-t2.x()*size_2,-t2.y()*size_2,-t2.z()*size_2);
}
// compute covariant coordinates of t1 and t2
// t1 = a s1 + b s2 -->
// t1 . s1 = a M + b E
// t1 . s2 = a E + b N --> solve the 2 x 2 system
// and get covariant coordinates a and b
double rhs1[2] = {dot(t1,s1),dot(t1,s2)};
bool singular = false;
if (!sys2x2(metric,rhs1,covar1)){
Msg::Info("Argh surface %d %g %g %g -- %g %g %g -- %g %g",gf->tag(),s1.x(),s1.y(),s1.z(),s2.x(),s2.y(),s2.z(),size_1,size_2);
covar1[1] = 1.0; covar1[0] = 0.0;
singular = true;
}
double rhs2[2] = {dot(t2,s1),dot(t2,s2)};
if (!sys2x2(metric,rhs2,covar2)){
Msg::Info("Argh surface %d %g %g %g -- %g %g %g",gf->tag(),s1.x(),s1.y(),s1.z(),s2.x(),s2.y(),s2.z());
covar2[0] = 1.0; covar2[1] = 0.0;
singular = true;
}
// transform the sizes with respect to the metric
// consider a vector v of size 1 in the parameter plane
// its length is sqrt (v^T M v) --> if I want a real size
// of size1 in direction v, it should be sqrt(v^T M v) * size1
double l1 = sqrt(covar1[0]*covar1[0]+covar1[1]*covar1[1]);
double l2 = sqrt(covar2[0]*covar2[0]+covar2[1]*covar2[1]);
covar1[0] /= l1;covar1[1] /= l1;
covar2[0] /= l2;covar2[1] /= l2;
size_param_1 = size_1 / sqrt ( M*covar1[0]*covar1[0]+
2*E*covar1[1]*covar1[0]+
N*covar1[1]*covar1[1]);
size_param_2 = size_2 / sqrt ( M*covar2[0]*covar2[0]+
2*E*covar2[1]*covar2[0]+
N*covar2[1]*covar2[1]);
if (singular){
size_param_1 = size_param_2 = std::min (size_param_1,size_param_2);
}
return true;
}
// ---------------------------------------------------------------------------------------------
// using fifo based on smoothness criteria
void packingOfParallelogramsSmoothness(GFace* gf, std::vector<MVertex*> &packed, std::vector<SMetric3> &metrics){
cout << endl << "------------------------------------------" << endl << " PACKINGOFPARALLELOGRAMS: NEW ALGO BASED ON SMOOTHNESS" << endl << "------------------------------------------" << endl;
#if defined(HAVE_RTREE)
const bool goNonLinear = true;
const bool debug = false;
// build vertex -> neighbors table
multimap<MVertex*,MVertex*> vertex2vertex;
for (std::vector<MElement*>::iterator it = backgroundMesh::current()->begin_triangles();it!=backgroundMesh::current()->end_triangles();it++){
MElement *e = *it;
for (int i=0;i<e->getNumVertices();i++){
MVertex *current = e->getVertex(i);
for (int j=0;j<e->getNumVertices();j++){
if (i==j) continue;
MVertex *neighbor = e->getVertex(j);
vertex2vertex.insert(make_pair(current,neighbor));
}
}
}
// build table vertex->smoothness
map<MVertex*,double> vertices2smoothness;
map<MVertex*, double> smoothness_essai;
for (std::vector<MVertex*>::iterator it = backgroundMesh::current()->begin_vertices();it!=backgroundMesh::current()->end_vertices();it++){
MVertex *v = *it;
SPoint2 param_point(v->x(),v->y());GPoint gpt = gf->point(param_point); MVertex v_real(gpt.x(),gpt.y(),gpt.z());
SVector3 t1,t2,n;double covar1[2],covar2[2],L,size_param_1,size_param_2;
get_local_sizes_and_directions(&v_real, param_point, 0, gf, covar1, covar2, size_param_1, size_param_2, L, t1, t2, n);
// compare to all neighbors...
pair<multimap<MVertex*,MVertex*>::iterator, multimap<MVertex*,MVertex*>::iterator> range = vertex2vertex.equal_range(v);
SVector3 t1_nb,t2_nb,n_nb;double covar1_nb[2],covar2_nb[2],L_nb,size_param_1_nb,size_param_2_nb;
double maxprod,angle=0.;
int N=0;
for (multimap<MVertex*,MVertex*>::iterator itneighbor = range.first;itneighbor!=range.second;itneighbor++){
N++;
maxprod=0.;
MVertex *v_nb = itneighbor->second;
SPoint2 param_point_nb(v_nb->x(),v_nb->y());GPoint gpt_nb = gf->point(param_point_nb); MVertex v_real_nb(gpt_nb.x(),gpt_nb.y(),gpt_nb.z());
get_local_sizes_and_directions(&v_real_nb, param_point_nb, 0, gf, covar1_nb, covar2_nb, size_param_1_nb, size_param_2_nb, L_nb, t1_nb, t2_nb, n_nb);
// angle comparison...
maxprod = fmax(maxprod, fabs(t1[0]*t1_nb[0] + t1[1]*t1_nb[1]));
maxprod = fmax(maxprod, fabs(t1[0]*t2_nb[0] + t1[1]*t2_nb[1]));
angle += fabs(acos(max(min(maxprod,1.),-1.)));
}
angle /= N;
vertices2smoothness[v] = angle;
}
// if (debug){
// stringstream ss;
// ss << "backgroundmesh_smoothness_" << gf->tag() << ".pos";
// backgroundMesh::current()->print(ss.str().c_str(),gf, vertices2smoothness);
// }
// --------------- export de smoothness comme elements.... -----------------------
if (debug){
stringstream ss;
ss << "backgroundmesh_element_smoothness_" << gf->tag() << ".pos";
ofstream out(ss.str().c_str());
out << "View \"directions\" {" << endl;
for (std::vector<MElement*>::iterator it = backgroundMesh::current()->begin_triangles();it!=backgroundMesh::current()->end_triangles();it++){
MElement *e = *it;
vector<MVertex *> nodes;
vector<double> smoothtemp;
for (int i=0;i<3;i++){
MVertex *v = e->getVertex(i);
nodes.push_back(v);
smoothtemp.push_back(vertices2smoothness[v]);
}
out << "ST(";
for (int i=0;i<3;i++){
GPoint pp = gf->point(SPoint2(nodes[i]->x(),nodes[i]->y()));
out << pp.x() << "," << pp.y() << "," << pp.z();
if (i!=2) out << ",";
}
out << "){";
for (int i=0;i<3;i++){
out << (1.-(smoothtemp[i]/M_PI*4.));
if (i!=2) out << ",";
}
out << "};" << endl;
}
out << "};" << endl;
out.close();
}
// --------------- END ----------------
// for debug check...
int priority_counter=0;
map<MVertex*,int> vert_priority;
// get all the boundary vertices
std::set<MVertex*> bnd_vertices;
for(unsigned int i=0;i<gf->getNumMeshElements();i++){
MElement* element = gf->getMeshElement(i);
for(int j=0;j<element->getNumVertices();j++){
MVertex *vertex = element->getVertex(j);
if (vertex->onWhat()->dim() < 2)bnd_vertices.insert(vertex);
}
}
// --------- put boundary vertices in a fifo queue ---------------
std::set<smoothness_point_pair, compareSurfacePointWithExclusionRegionPtr_Smoothness> fifo;
std::vector<surfacePointWithExclusionRegion*> vertices;
// put the RTREE
RTree<surfacePointWithExclusionRegion*,double,2,double> rtree;
SMetric3 metricField(1.0);
SPoint2 newp[4][NUMDIR];
std::set<MVertex*>::iterator it = bnd_vertices.begin() ;
char NAME[345]; sprintf(NAME,"crossReal%d.pos",gf->tag());
FILE *crossf=NULL;
if (debug){
crossf = Fopen (NAME,"w");
}
if (crossf)fprintf(crossf,"View \"\"{\n");
for (; it != bnd_vertices.end() ; ++it){
SPoint2 midpoint;
//compute4neighbors_RK2 (gf, *it, midpoint, goNonLinear, newp, metricField,crossf);
compute4neighbors(gf, *it, midpoint, goNonLinear, newp, metricField,crossf);
surfacePointWithExclusionRegion *sp =
new surfacePointWithExclusionRegion (*it, newp, midpoint,metricField);
smoothness_point_pair mp;mp.ptr = sp;mp.rank=get_smoothness(*it,gf,vertices2smoothness);
fifo.insert(mp);
if (debug){
smoothness_essai[*it] = mp.rank;
}
vertices.push_back(sp);
double _min[2],_max[2];
sp->minmax(_min,_max);
rtree.Insert(_min,_max,sp);
if (crossf) export_point(sp, 0, crossf, gf);
}
// ---------- main loop -----------------
while(!fifo.empty()){
if (debug) std::cout << " -------- fifo.size() = " << fifo.size() << std::endl;
surfacePointWithExclusionRegion * parent = (*fifo.begin()).ptr;
fifo.erase(fifo.begin());
int count_nbaddedpt = 0;
for (int dir=0;dir<NUMDIR;dir++){
for (int i=0;i<4;i++){
if (!inExclusionZone (parent->_p[i][dir], rtree, vertices) ){
GPoint gp = gf->point(parent->_p[i][dir]);
MFaceVertex *v = new MFaceVertex(gp.x(),gp.y(),gp.z(),gf,gp.u(),gp.v());
SPoint2 midpoint;
//compute4neighbors_RK2 (gf, v, midpoint, goNonLinear, newp, metricField,crossf);
compute4neighbors(gf, v, midpoint, goNonLinear, newp, metricField,crossf);
surfacePointWithExclusionRegion *sp =
new surfacePointWithExclusionRegion (v, newp, midpoint, metricField, parent);
smoothness_point_pair mp;mp.ptr = sp;mp.rank=get_smoothness(v,gf,vertices2smoothness);
if (debug){
smoothness_essai[v] = mp.rank;
vert_priority[v] = priority_counter++;
}
fifo.insert(mp);
vertices.push_back(sp);
double _min[2],_max[2];
sp->minmax(_min,_max);
rtree.Insert(_min,_max,sp);
if (crossf) export_point(sp, dir, crossf, gf);
if (debug){
std::cout << " adding node (" << sp->_v->x() << "," << sp->_v->y() << "," << sp->_v->z() << ")" << std::endl;
std::cout << " ----------------------------- sub --- fifo.size() = " << fifo.size() << std::endl;
}
count_nbaddedpt++;
}
}
}
if (debug) std::cout << "////////// nbre of added point: " << count_nbaddedpt << std::endl;
}
if (crossf){
fprintf(crossf,"};\n");
fclose (crossf);
}
if (debug){
stringstream ss;
ss << "priority_" << gf->tag() << ".pos";
print_nodal_info_int(ss.str().c_str(),vert_priority);
ss.clear();
ss << "smoothness_test_" << gf->tag() << ".pos";
print_nodal_info_double(ss.str().c_str(),smoothness_essai);
}
// add the vertices as additional vertices in the
// surface mesh
char ccc[256]; sprintf(ccc,"points%d.pos",gf->tag());
FILE *f = Fopen(ccc,"w");
fprintf(f,"View \"\"{\n");
for (unsigned int i=0;i<vertices.size();i++){
vertices[i]->print(f,i);
if(vertices[i]->_v->onWhat() == gf) {
packed.push_back(vertices[i]->_v);
metrics.push_back(vertices[i]->_meshMetric);
SPoint2 midpoint;
reparamMeshVertexOnFace(vertices[i]->_v, gf, midpoint);
}
delete vertices[i];
}
fprintf(f,"};");
fclose(f);
#endif
}
// ---------------------------------------------------------------------------------------------
// fills a surface with points in order to build a nice // fills a surface with points in order to build a nice
// quad mesh ------------ // quad mesh ------------
void packingOfParallelograms(GFace* gf, std::vector<MVertex*> &packed, std::vector<SMetric3> &metrics){ void packingOfParallelograms(GFace* gf, std::vector<MVertex*> &packed, std::vector<SMetric3> &metrics){
//PE MODIF
// packingOfParallelogramsSmoothness(gf,packed,metrics);
// return;
// END PE MODIF
#if defined(HAVE_RTREE) #if defined(HAVE_RTREE)
const bool goNonLinear = true; const bool goNonLinear = true;
......
...@@ -8,4 +8,5 @@ ...@@ -8,4 +8,5 @@
#include <vector> #include <vector>
class GFace; class GFace;
class MVertex; class MVertex;
void packingOfParallelogramsSmoothness(GFace* gf, std::vector<MVertex*> &packed, std::vector<SMetric3> &metrics );
void packingOfParallelograms(GFace* gf, std::vector<MVertex*> &packed, std::vector<SMetric3> &metrics ); void packingOfParallelograms(GFace* gf, std::vector<MVertex*> &packed, std::vector<SMetric3> &metrics );
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment