Skip to content
Snippets Groups Projects
Commit 6e6c4f1a authored by Kilian Verhetsel's avatar Kilian Verhetsel
Browse files

Added a solver for the Maximum Weight Independent Set problem

parent 6c4266f1
No related branches found
No related tags found
No related merge requests found
#include "search.hpp"
#include <boost/iterator/counting_iterator.hpp>
#include <boost/graph/random.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <random>
#include <vector>
#include <functional>
#include <limits>
#include <numeric>
#include <algorithm>
#include <iostream>
namespace mwis {
/**
* A functor to calculate an upper bound to the maximum weight independent set
* in a graph.
*
* A Lagrangian relaxation of the problem is used:
*
* UB = min_{λ >= 0} max_{x_i \in {0, 1}}
* (\sum_{i \in V} x_iw_i) -
* \sum_{c \in C} λ_c(\sum_{i \in c} - 1)
*
* Where C is a set of cliques within the graph, such that if there is an edge
* between two nodes in the graph, a clique that contains both nodes is present
* in C.
*
* The set {{u, v} | (u, v) \in E} can always be used as the set of
* cliques. However, using larger cliques can lead to better upper bounds.
*/
template<typename Graph, typename WeightMap>
class lagrangian_bound {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::property_traits<WeightMap>::value_type weight;
typedef typename boost::property_map<
Graph, boost::vertex_index_t>::type index_map;
typedef boost::iterator_property_map<
std::vector<bool>::iterator, index_map> selected_map_type;
typedef boost::iterator_property_map<
std::vector<std::vector<size_t>>::iterator, index_map> clique_map_type;
typedef boost::iterator_property_map<
typename std::vector<weight>::iterator, index_map> weight_map_type;
const Graph &_graph;
WeightMap _weight;
size_t _max_size;
std::vector<std::vector<vertex>> _clique_contents;
std::vector<weight> _lambda, _gradient;
std::vector<std::vector<size_t>> _clique_storage;
std::vector<bool> _selected_storage;
std::vector<weight> _effective_weight_storage;
clique_map_type _cliques;
selected_map_type _selected;
weight_map_type _effective_weight;
public:
typedef weight result_type;
template<typename CliqueIterator>
lagrangian_bound(const Graph &graph, WeightMap weight_map,
CliqueIterator clique_begin,
CliqueIterator clique_end,
size_t max_size = std::numeric_limits<size_t>::max()):
_graph(graph), _weight(weight_map), _max_size(max_size) {
auto vs = vertices(graph);
size_t vertex_count = vs.second - vs.first;
_clique_storage.resize(vertex_count);
_selected_storage.resize(vertex_count);
_effective_weight_storage.resize(vertex_count);
index_map ids = boost::get(boost::vertex_index, graph);
_cliques = make_iterator_property_map(_clique_storage.begin(), ids);
_selected = make_iterator_property_map(_selected_storage.begin(), ids);
_effective_weight = make_iterator_property_map(
_effective_weight_storage.begin(), ids);
size_t i = 0;
for (CliqueIterator it = clique_begin; it != clique_end; it++, i++) {
std::vector<vertex> to_add;
for (const vertex &v : *it) {
to_add.push_back(v);
get(_cliques, v).push_back(i);
}
_clique_contents.push_back(to_add);
}
_lambda.resize(_clique_contents.size());
_gradient.resize(_clique_contents.size());
for (weight &v : _lambda) v = weight(0);
}
/**
* Calculates an upper bound. This bound is always admissible, but may not be
* optimal.
*
* Vertices in [solution_begin, solution_end) are all forced to be part of the
* solution.
*
* Vertices in [rest_begin, rest_end) can be selected in any way to maximize
* the objective functions.
*
* Vertices in neither range are assumed not to be part of the solution.
*/
template<typename SolutionIterator,
typename RestIterator>
weight operator()(SolutionIterator solution_begin,
SolutionIterator solution_end,
RestIterator rest_begin,
RestIterator rest_end) {
weight best(std::numeric_limits<weight>::max());
for (size_t i = 0; i < _selected_storage.size(); i++)
_selected_storage[i] = false;
for (SolutionIterator it = solution_begin; it != solution_end; it++)
put(_selected, *it, true);
/**
* We can get away with very few steps, because the starting point is the
* optimum that was found the last time the algorithm was used, and the
* input does not usually change much between two calls (therefore, one
* would expect the optima to be close to each other).
*/
static const size_t n = 2;
for (size_t i = 0; i < n; i++) {
compute_weights();
if (_max_size == std::numeric_limits<size_t>::max())
select(rest_begin, rest_end);
else
select(rest_begin, rest_end,
_max_size - (size_t)std::distance(solution_begin,
solution_end));
best = std::min(best, evaluate());
if (i != n - 1) {
compute_gradient();
follow_gradient(weight(-1e-4 / 1));
}
}
return best;
}
/**
* For debugging purposes, displays any inconsistencies between the graph and
* the sequence of cliques.
*
* (u, v) \in E <=> there is a clique which contains both u and v.
*/
void check_consistency() {
auto es = boost::edges(_graph);
for (auto eit = es.first; eit != es.second; eit++) {
bool found = false;
vertex v = boost::source(*eit, _graph);
vertex w = boost::target(*eit, _graph);
const std::vector<size_t> &cliques_v = get(_cliques, v);
const std::vector<size_t> &cliques_w = get(_cliques, w);
for (size_t clique : cliques_v) {
if (std::find(cliques_w.begin(), cliques_w.end(), clique) !=
cliques_w.end()) {
found = true;
break;
}
}
if (!found) {
std::cout << "no shared clique between connected vertices: " <<
v << " and " << w << "\n";
}
}
for (const std::vector<vertex> &clique : _clique_contents) {
for (vertex v : clique) {
for (vertex w : clique) {
if (v == w) continue;
if (!edge(v, w, _graph).second) {
std::cout << "no edge between " << v << " and " <<
w << "\n";
}
}
}
}
}
private:
/**
* Calculates the gradient according to which nodes are currently selected.
*/
void compute_gradient() {
std::transform(_clique_contents.begin(), _clique_contents.end(),
_gradient.begin(),
[&](const std::vector<vertex> &vertices) {
weight sum{1};
for (const vertex &v : vertices) {
sum -= weight(get(_selected, v) ? 1 : 0);
}
return sum;
});
}
/**
* Calculates the effective weight of each node (w_i - \sum_{c, x \in c} λ_c).
*/
void compute_weights() {
for (size_t i = 0; i < _effective_weight_storage.size(); i++) {
weight result(_weight[i]);
for (size_t clique : _clique_storage[i])
result -= _lambda[clique];
_effective_weight_storage[i] = result;
}
}
/**
* Update the Lagrange multipliers in accordance with the last computed
* gradient, multiplied by scale.
*/
void follow_gradient(weight scale) {
std::transform(_lambda.begin(), _lambda.end(), _gradient.begin(),
_lambda.begin(), [&](const weight &cur, const weight &grad) {
return std::max(weight(0), cur + scale * grad);
});
}
/**
* Iterates over the given range, and selects the subset of its nodes which have
* a non-negative weight, so as to maximize the objective function.
*/
template<typename Iterator>
void select(Iterator begin, Iterator end) {
for (Iterator it = begin; it != end; it++) {
vertex v = *it;
put(_selected, v, get(_effective_weight, v) >= weight(0));
}
}
/**
* Iterates over the given range, and selects subset of its nodes which have
* a non-negative weight, selecting at most n nodes.
*/
template<typename Iterator>
void select(Iterator begin, Iterator end, size_t n) {
n = std::min((size_t)std::distance(begin, end), n);
std::vector<vertex> largest(n);
std::partial_sort_copy(
begin, end,
largest.begin(), largest.end(),
[&](vertex a ,vertex b) {
return get(_effective_weight, a) > get(_effective_weight, b);
});
for (Iterator it = begin; it != end; it++) {
vertex v = *it;
put(_selected, v, false);
}
for (vertex v : largest) {
if (get(_effective_weight, v) <= weight(0))
break;
put(_selected, v, true);
}
}
/**
* Calculates the upper bound for the current values of the Lagrange
* multipliers and the current selection of nodes.
*/
weight evaluate() {
weight result(std::accumulate(_lambda.begin(), _lambda.end(),
weight(0), std::plus<weight>()));
for (size_t i = 0; i < _selected_storage.size(); i++) {
if (_selected_storage[i])
result += _effective_weight_storage[i];
}
return result;
}
};
template<typename T>
struct max_bound {
typedef T result_type;
template<typename SolutionIter, typename RestIter>
T operator()(SolutionIter solution_begin, SolutionIter solution_end,
RestIter rest_begin, RestIter rest_end) {
return std::numeric_limits<T>::max();
}
};
template<typename Graph, typename WeightMap>
class state_change;
template<typename Graph, typename WeightMap>
class clique_assignment;
template<typename Graph, typename WeightMap>
struct state {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::property_traits<WeightMap>::value_type weight;
typedef typename boost::property_map<
Graph, boost::vertex_index_t>::type index_map;
typedef boost::iterator_property_map<
std::vector<std::vector<size_t>>::iterator, index_map> clique_map_type;
const Graph &graph;
WeightMap weight_map;
std::vector<std::vector<vertex>> cliques;
std::vector<size_t> clique_sizes;
std::set<vertex> invalid;
std::set<vertex> selectable;
std::vector<bool> assigned;
std::vector<std::vector<size_t>> clique_map_storage;
clique_map_type clique_map;
std::vector<vertex> solution;
weight solution_value;
template<typename CliqueIterator>
state(const Graph &graph,
WeightMap weight_map,
CliqueIterator clique_begin,
CliqueIterator clique_end):
graph(graph), weight_map(weight_map),
cliques(clique_begin, clique_end),
clique_sizes(cliques.size()),
selectable(vertices(graph).first, vertices(graph).second),
assigned(cliques.size(), false),
solution_value(0)
{
clique_map_storage.resize(num_vertices(graph));
index_map id_map = get(boost::vertex_index, graph);
clique_map = make_iterator_property_map(
clique_map_storage.begin(), id_map);
for (size_t i = 0; i < cliques.size(); i++)
clique_sizes[i] = cliques[i].size();
size_t id = 0;
for (std::vector<vertex> &clique : cliques) {
for (vertex v : clique)
get(clique_map, v).push_back(id);
std::sort(clique.begin(), clique.end(), [&](vertex a, vertex b) {
return get(weight_map, a) > get(weight_map, b);
});
id++;
}
}
};
template<typename Graph, typename WeightMap>
class clique_assignment {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::property_traits<WeightMap>::value_type weight;
size_t _id;
vertex _vertex;
bool _selected;
public:
typedef state_change<Graph, WeightMap> result_type;
typedef state<Graph, WeightMap> argument_type;
clique_assignment(size_t id):
_id(id), _selected(false)
{}
clique_assignment(size_t id, vertex vertex_id):
_id(id), _vertex(vertex_id), _selected(true)
{}
state_change<Graph, WeightMap> operator()(
const state<Graph, WeightMap> &state) const {
std::vector<vertex> selected_vertex, removed;
std::vector<size_t> assigned;
weight new_weight(state.solution_value);
if (_selected) {
selected_vertex.push_back(_vertex);
new_weight += get(state.weight_map, _vertex);
auto edges = out_edges(_vertex, state.graph);
for (auto eit = edges.first; eit != edges.second; eit++) {
const vertex &other = target(*eit, state.graph);
if (state.invalid.find(other) == state.invalid.end()) {
removed.push_back(other);
}
}
for (size_t i : get(state.clique_map, _vertex)) {
if (!state.assigned[i]) assigned.push_back(i);
}
}
else {
for (vertex v : state.cliques[_id]) {
if (state.invalid.find(v) == state.invalid.end())
removed.push_back(v);
}
assigned.push_back(_id);
}
std::map<size_t, size_t> size_delta;
for (vertex v : removed) {
for (size_t clique : get(state.clique_map, v)) {
size_delta[clique]++;
if (size_delta[clique] == state.clique_sizes[clique]) {
if (!state.assigned[clique])
assigned.push_back(clique);
}
}
}
return state_change<Graph, WeightMap>(
assigned,
size_delta,
selected_vertex, removed,
state.solution_value, new_weight);
}
};
template<typename Graph, typename WeightMap>
class state_change {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::property_traits<WeightMap>::value_type weight;
std::vector<size_t> _assigned_id;
std::map<size_t, size_t> _size_delta;
std::vector<vertex> _selected;
std::vector<vertex> _invalidated;
weight _old_weight, _new_weight;
public:
state_change() {}
state_change(const std::vector<size_t> &assigned_id,
const std::map<size_t, size_t> &size_delta,
const std::vector<vertex> &selected,
const std::vector<vertex> &invalidated,
weight old_weight, weight new_weight):
_assigned_id(assigned_id),
_size_delta(size_delta),
_selected(selected), _invalidated(invalidated),
_old_weight(old_weight), _new_weight(new_weight)
{}
void apply(state<Graph, WeightMap> &state) const {
for (size_t i : _assigned_id)
state.assigned[i] = true;
size_t old_size = state.solution.size();
state.solution.resize(state.solution.size() + _selected.size());
std::copy(_selected.begin(), _selected.end(),
state.solution.begin() + old_size);
for (vertex v : _selected)
state.selectable.erase(v);
state.solution_value = _new_weight;
for (vertex v : _invalidated) {
state.invalid.insert(v);
state.selectable.erase(v);
}
for (auto pair : _size_delta)
state.clique_sizes[pair.first] -= pair.second;
}
void reverse(state<Graph, WeightMap> &state) const {
for (size_t i : _assigned_id)
state.assigned[i] = false;
state.solution.resize(state.solution.size() - _selected.size());
for (vertex v : _selected)
state.selectable.insert(v);
state.solution_value = _old_weight;
for (vertex v : _invalidated) {
state.invalid.erase(v);
state.selectable.insert(v);
}
for (auto pair : _size_delta)
state.clique_sizes[pair.first] += pair.second;
}
};
template<typename Graph, typename WeightMap>
struct visit_state {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::property_traits<WeightMap>::value_type weight;
bool quiet;
weight best_value;
std::vector<vertex> best_solution;
visit_state(bool quiet = true): quiet(quiet), best_value(0) {}
void operator()(state<Graph, WeightMap> &state) {
if (best_value < state.solution_value) {
if (!quiet) {
std::cout << "new best: " << state.solution_value <<
" (" << state.solution.size() << ")\n";
}
best_value = state.solution_value;
best_solution = state.solution;
}
}
};
template<typename Graph, typename WeightMap, typename UpperBound>
class successor {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename std::vector<vertex>::iterator viterator;
typedef typename boost::property_traits<WeightMap>::value_type weight;
UpperBound &_bound;
size_t _visited;
weight *_best_weight;
size_t _limit;
public:
typedef clique_assignment<Graph, WeightMap> action_type;
successor(UpperBound &bound, weight &best_weight,
size_t limit = std::numeric_limits<size_t>::max()):
_bound(bound), _visited(0), _best_weight(&best_weight), _limit(limit)
{}
template<typename OutputIterator>
void operator()(state<Graph, WeightMap> &state, OutputIterator it) {
if (_visited > 1000 * 1000 * 10)
return;
else
_visited++;
if (state.solution.size() == _limit)
return;
auto clique_begin = boost::make_counting_iterator<size_t>(0);
auto clique_end = boost::make_counting_iterator<size_t>(
state.cliques.size());
auto clique_it = std::min_element(
clique_begin, clique_end, [&](size_t a, size_t b) {
return clique_key(state, a) < clique_key(state, b);
});
if (clique_it == clique_end || state.assigned[*clique_it])
return;
std::vector<vertex> vertices;
size_t id = *clique_it;
for (vertex v : state.cliques[id]) {
if (state.invalid.find(v) == state.invalid.end()) {
vertices.push_back(v);
}
}
if (vertices.size() > 0) {
weight max(_bound(state.solution.begin(), state.solution.end(),
state.selectable.begin(), state.selectable.end()));
if (max <= *_best_weight)
return;
}
std::sort(vertices.begin(), vertices.end(),
[&](vertex a, vertex b) {
return vertex_regret(state, a) < vertex_regret(state, b);
});
for (vertex v : vertices)
*it++ = clique_assignment<Graph, WeightMap>(id, v);
*it++ = clique_assignment<Graph, WeightMap>(id);
}
std::tuple<int, size_t, weight>
clique_key(state<Graph, WeightMap> &state,
size_t id) {
if (state.assigned[id]) {
return std::make_tuple(1,
std::numeric_limits<size_t>::max(),
weight(0));
}
else if (state.clique_sizes[id] == 0) {
return std::make_tuple(0, 0, weight(0));
}
else {
vertex v = *std::find_if(
state.cliques[id].begin(), state.cliques[id].end(), [&](vertex v) {
return state.invalid.find(v) == state.invalid.end();
});
return std::make_tuple(id < 1361 ? 0 : 1,
state.clique_sizes[id],
-get(state.weight_map, v));
}
}
weight vertex_regret(const state<Graph, WeightMap> &state, vertex v) {
weight result(-get(state.weight_map, v));
auto es = out_edges(v, state.graph);
for (auto eit = es.first; eit != es.second; eit++) {
vertex u = target(*eit, state.graph);
if (state.invalid.find(u) != state.invalid.end())
result += get(state.weight_map, u);
}
return result;
}
};
template<typename Graph, typename WeightMap>
class evaluator {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::property_traits<WeightMap>::value_type weight;
std::vector<std::vector<vertex>> _cliques;
size_t _limit;
public:
typedef weight result_type;
typedef state<Graph, WeightMap> argument_type;
template<typename Iterator>
evaluator(Iterator begin, Iterator end, size_t limit):
_cliques(begin, end), _limit(limit)
{}
weight operator()(state<Graph, WeightMap> &cur) const {
visit_state<Graph, WeightMap> visitor;
// max_bound<weight> bound;
lagrangian_bound<Graph, WeightMap>
bound(cur.graph, cur.weight_map, _cliques.begin(), _cliques.end(),
cur.solution.size() + _limit);
successor<Graph, WeightMap, decltype(bound)>
successor(bound, visitor.best_value, cur.solution.size() + _limit);
visitor(cur);
search::depth_limited_search(cur, visitor, successor, _limit);
return visitor.best_value;
}
};
template<typename Graph, typename WeightMap>
struct lns_state {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
const Graph &graph;
WeightMap weight_map;
std::vector<vertex> solution;
lns_state(const Graph &graph, WeightMap weight_map,
const std::vector<vertex> &solution):
graph(graph), weight_map(weight_map), solution(solution)
{}
};
template<typename Graph>
struct lns_fragment {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
std::set<vertex> vertices;
lns_fragment(const std::set<vertex> &vertices):
vertices(vertices)
{}
};
/**
* Behaves like a queue, but elements can only be inserted into the queue a
* limited amount of times.
*/
template<typename T>
class limited_queue {
std::queue<T> _queue;
size_t _size, _max_size;
public:
typedef T value_type;
typedef typename std::queue<T>::size_type size_type;
limited_queue(size_t max_size):
_size(0), _max_size(max_size) {}
void push(const T &t) {
if (_size != _max_size) {
_size++;
_queue.push(t);
}
}
void pop() { _queue.pop(); }
T &top() { return _queue.front(); }
const T &top() const { return _queue.front(); }
size_type size() const { return _queue.size(); }
bool empty() { return _queue.empty(); }
};
/**
* A visitor for graph traversal algoritms which records the target of every
* visited edge into a set.
*/
template<typename Graph, typename Tag>
class set_recorder : public boost::base_visitor<set_recorder<Graph, Tag>> {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::graph_traits<Graph>::edge_descriptor edge;
std::set<vertex> &_set;
public:
typedef Tag event_filter;
set_recorder(std::set<vertex> &set): _set(set) {}
void operator()(edge e, const Graph &g) {
_set.insert(boost::target(e, g));
}
};
template<typename Graph, typename WeightMap>
lns_fragment<Graph> fragment_selector(const lns_state<Graph, WeightMap> &state) {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
std::random_device dev;
std::mt19937 gen(dev());
vertex v = boost::random_vertex(state.graph, gen);
size_t neighborhood_size = std::uniform_int_distribution<size_t>(50, 80)(gen);
std::set<vertex> set;
set.insert(v);
set_recorder<Graph, boost::on_black_target> recorder(set);
limited_queue<vertex> queue(neighborhood_size);
boost::breadth_first_search(
state.graph, v,
boost::buffer(queue).
visitor(boost::make_bfs_visitor(recorder)));
return lns_fragment<Graph>(set);
}
template<typename Graph>
class lns_assignment {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
std::vector<vertex> _vertices;
public:
lns_assignment(const std::vector<vertex> &vertices): _vertices(vertices) {}
template<typename WeightMap>
void operator()(lns_state<Graph, WeightMap> &state,
const lns_fragment<Graph> &fragment) const {
static int i = 0;
std::cout << "\rsize: " << state.solution.size() << " " << i++;
std::cout.flush();
state.solution.erase(
std::remove_if(
state.solution.begin(), state.solution.end(),
[&](vertex v) {
return fragment.vertices.find(v) != fragment.vertices.end();
}),
state.solution.end());
std::copy(_vertices.begin(), _vertices.end(),
std::back_inserter(state.solution));
}
};
template<typename Graph, typename WeightMap>
class lns_search {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::property_traits<WeightMap>::value_type weight;
std::vector<std::vector<vertex>> _cliques;
public:
typedef lns_assignment<Graph> result_type;
typedef lns_state<Graph, WeightMap> first_argument_type;
typedef lns_fragment<Graph> second_argument_type;
template<typename Iterator>
lns_search(Iterator begin, Iterator end): _cliques(begin, end) {}
lns_assignment<Graph> operator()(const lns_state<Graph, WeightMap> &l_state,
const lns_fragment<Graph> &fragment) const {
state<Graph, WeightMap> search_state(l_state.graph, l_state.weight_map,
_cliques.begin(), _cliques.end());
std::vector<vertex> selected_vertex;
std::set<vertex> removed;
std::set<size_t> assigned;
weight new_weight(0);
for (vertex v : l_state.solution) {
if (fragment.vertices.find(v) != fragment.vertices.end())
continue;
selected_vertex.push_back(v);
new_weight += get(l_state.weight_map, v);
auto edges = out_edges(v, l_state.graph);
for (auto eit = edges.first; eit != edges.second; eit++) {
const vertex &other = target(*eit, l_state.graph);
removed.insert(other);
}
for (size_t i : get(search_state.clique_map, v))
assigned.insert(i);
}
auto vs = boost::vertices(l_state.graph);
for (auto it = vs.first; it != vs.second; it++) {
vertex v = *it;
if (fragment.vertices.find(v) == fragment.vertices.end())
removed.insert(v);
}
std::map<size_t, size_t> size_delta;
for (vertex v : removed) {
for (size_t clique : get(search_state.clique_map, v)) {
size_delta[clique]++;
if (size_delta[clique] == search_state.clique_sizes[clique]) {
assigned.insert(clique);
}
}
}
std::vector<size_t> assigned_v(assigned.begin(), assigned.end());
std::vector<vertex> removed_v(removed.begin(), removed.end());
state_change<Graph, WeightMap> delta(
assigned_v, size_delta,
selected_vertex, removed_v,
weight(0), new_weight);
delta.apply(search_state);
lagrangian_bound<Graph, WeightMap>
bound(l_state.graph, l_state.weight_map,
_cliques.begin(), _cliques.end());
visit_state<Graph, WeightMap> visitor;
visitor.best_solution = l_state.solution;
visitor.best_value = weight(0);
for (vertex v : visitor.best_solution)
visitor.best_value += get(l_state.weight_map, v);
successor<Graph, WeightMap, decltype(bound)> successor(
bound, visitor.best_value);
search::depth_first_search(search_state, visitor, successor);
std::vector<vertex> newly_selected;
for (vertex v : visitor.best_solution) {
if (fragment.vertices.find(v) != fragment.vertices.end())
newly_selected.push_back(v);
}
return lns_assignment<Graph>(newly_selected);
}
};
template<typename Graph, typename WeightMap>
class direct_evaluator {
public:
typedef typename boost::property_traits<WeightMap>::value_type result_type;
typedef state<Graph, WeightMap> argument_type;
private:
result_type _bound;
public:
direct_evaluator(result_type bound): _bound(bound) {}
result_type operator()(const argument_type &state) const {
return state.solution_value / _bound;
}
};
template<typename Graph, typename OutputIterator>
void find_cliques(const Graph &graph, OutputIterator out) {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
std::set<std::pair<vertex, vertex>> visited_edges;
auto es = edges(graph);
for (auto eit = es.first; eit != es.second; eit++) {
auto u = source(*eit, graph);
auto v = target(*eit, graph);
if (visited_edges.find(std::make_pair(u, v)) == visited_edges.end()) {
std::vector<vertex> contents, candidates;
auto connected_es = out_edges(u, graph);
for (auto eit = connected_es.first; eit != connected_es.second; eit++) {
auto new_v = target(*eit, graph);
if (new_v != v && visited_edges.find(std::make_pair(u, new_v)) ==
visited_edges.end()) {
candidates.push_back(new_v);
}
}
candidates.push_back(v);
contents.push_back(u);
while (!candidates.empty()) {
vertex v = candidates.back();
candidates.pop_back();
contents.push_back(v);
candidates.erase(
std::remove_if(candidates.begin(), candidates.end(),
[&](vertex w) {
return visited_edges.find(std::make_pair(v, w)) ==
visited_edges.end();
}),
candidates.end());
}
for (size_t i = 0; i < contents.size(); i++) {
for (size_t j = 0; j < i; j++) {
visited_edges.insert(std::make_pair(contents[i], contents[j]));
visited_edges.insert(std::make_pair(contents[j], contents[i]));
}
}
*out++ = contents;
}
}
}
}
template<typename Graph, typename WeightMap, typename OutputIterator>
void maximum_weight_independent_set(const Graph &graph, WeightMap weight_map,
OutputIterator out) {
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::property_traits<WeightMap>::value_type weight;
std::vector<std::vector<vertex>> cliques;
mwis::find_cliques(graph, std::back_inserter(cliques));
mwis::lagrangian_bound<Graph, WeightMap> bound(
graph, weight_map,
cliques.begin(), cliques.end());
bound.check_consistency();
mwis::visit_state<Graph, WeightMap> visitor;
mwis::successor<Graph, WeightMap, decltype(bound)> successor(
bound, visitor.best_value);
mwis::state<Graph, WeightMap> state(
graph, weight_map,
cliques.begin(), cliques.end());
// search::depth_first_search(state, visitor, successor);
// for (vertex v : visitor.best_solution)
// *out++ = v;
auto vs = vertices(graph);
weight root_bound(bound(vs.second, vs.second, vs.first, vs.second));
mwis::direct_evaluator<Graph, WeightMap> direct_eval(root_bound);
mwis::max_bound<weight> max_bound;
mwis::successor<Graph, WeightMap, decltype(max_bound)>
max_successor(max_bound, visitor.best_value);
search::monte_carlo_tree_search(state, max_successor, direct_eval);
std::cout << "\n";
for (vertex v : state.solution)
*out++ = v;
// mwis::evaluator<Graph, WeightMap> eval(cliques.begin(), cliques.end(), 5);
// visitor(state);
// search::greedy_search(state, successor, eval);
// mwis::lns_state<Graph, WeightMap> l_state(graph, weight_map, state.solution);
// mwis::lns_fragment<Graph> (*l_selector)(const decltype(l_state)&) =
// mwis::fragment_selector<Graph, WeightMap>;
// mwis::lns_search<Graph, WeightMap> l_search(cliques.begin(), cliques.end());
// search::large_neighborhood_search(l_state, l_selector, l_search, 300);
// std::cout << "\n";
// for (vertex v : l_state.solution)
// *out++ = v;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment