Forked from
gmsh / gmsh
16788 commits behind the upstream repository.
-
Jean-François Remacle authoredJean-François Remacle authored
BDS.cpp 37.73 KiB
// $Id: BDS.cpp,v 1.93 2008-01-22 17:24:29 remacle Exp $
//
// Copyright (C) 1997-2007 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to "gmsh@geuz.org".
#include <math.h>
#include <stdio.h>
#include "Numeric.h"
#include "GmshMatrix.h"
#include "BDS.h"
#include "Message.h"
#include "GFace.h"
#include "qualityMeasures.h"
bool test_move_point_parametric_triangle (BDS_Point * p, double u, double v, BDS_Face *t);
void outputScalarField(std::list < BDS_Face * >t, const char *iii, int param)
{
FILE *f = fopen(iii, "w");
if(!f) return;
fprintf(f, "View \"scalar\" {\n");
std::list < BDS_Face * >::iterator tit = t.begin();
std::list < BDS_Face * >::iterator tite = t.end();
while(tit != tite) {
BDS_Point *pts[4];
(*tit)->getNodes(pts);
if (param)
fprintf(f, "ST(%g,%g,%g,%g,%g,%g,%g,%g,%g){%g,%g,%g};\n",
pts[0]->u, pts[0]->v, 0.0,
pts[1]->u, pts[1]->v, 0.0,
pts[2]->u, pts[2]->v, 0.0,(double)pts[0]->iD,(double)pts[1]->iD,(double)pts[2]->iD);
else
fprintf(f, "ST(%g,%g,%g,%g,%g,%g,%g,%g,%g){%g,%g,%g};\n",
pts[0]->X, pts[0]->Y, pts[0]->Z,
pts[1]->X, pts[1]->Y, pts[1]->Z,
pts[2]->X, pts[2]->Y, pts[2]->Z,(double)pts[0]->iD,(double)pts[1]->iD,(double)pts[2]->iD);
++tit;
}
fprintf(f, "};\n");
fclose(f);
}
BDS_Vector::BDS_Vector(const BDS_Point & p2, const BDS_Point & p1)
:x(p2.X - p1.X), y(p2.Y - p1.Y), z(p2.Z - p1.Z)
{
}
void vector_triangle(BDS_Point * p1, BDS_Point * p2, BDS_Point * p3,
double c[3])
{
double a[3] = { p1->X - p2->X, p1->Y - p2->Y, p1->Z - p2->Z };
double b[3] = { p1->X - p3->X, p1->Y - p3->Y, p1->Z - p3->Z };
c[2] = a[0] * b[1] - a[1] * b[0];
c[1] = -a[0] * b[2] + a[2] * b[0];
c[0] = a[1] * b[2] - a[2] * b[1];
}
void vector_triangle_parametric(BDS_Point * p1, BDS_Point * p2, BDS_Point * p3,
double &c)
{
double a[2] = { p1->u - p2->u, p1->v - p2->v };
double b[2] = { p1->u - p3->u, p1->v - p3->v };
c = a[0] * b[1] - a[1] * b[0];
}
void normal_triangle(BDS_Point * p1, BDS_Point * p2, BDS_Point * p3,
double c[3])
{
vector_triangle(p1, p2, p3, c);
norme(c);
}
double surface_triangle(BDS_Point * p1, BDS_Point * p2, BDS_Point * p3)
{
double c[3];
vector_triangle(p1, p2, p3, c);
return 0.5 * sqrt(c[0] * c[0] + c[1] * c[1] + c[2] * c[2]);
}
double surface_triangle_param(BDS_Point * p1, BDS_Point * p2, BDS_Point * p3)
{
double c;
vector_triangle_parametric (p1, p2, p3, c);
return (0.5 * c);
}
void BDS_Point::getTriangles(std::list < BDS_Face * >&t) const
{
t.clear();
std::list < BDS_Edge * >::const_iterator it = edges.begin();
std::list < BDS_Edge * >::const_iterator ite = edges.end();
while(it != ite) {
int NF = (*it)->numfaces();
for(int i = 0; i < NF; ++i) {
BDS_Face *tt = (*it)->faces(i);
if(tt) {
std::list < BDS_Face * >::iterator tit = t.begin();
std::list < BDS_Face * >::iterator tite = t.end();
int found = 0;
while(tit != tite) {
if(tt == *tit)
found = 1;
++tit;
}
if(!found)
t.push_back(tt);
}
}
++it;
}
}
BDS_Point *BDS_Mesh::add_point(int num, double x, double y, double z)
{
BDS_Point *pp = new BDS_Point(num, x, y, z);
points.insert(pp);
MAXPOINTNUMBER = (MAXPOINTNUMBER < num) ? num : MAXPOINTNUMBER;
return pp;
}
BDS_Point *BDS_Mesh::add_point(int num, double u, double v, GFace *gf)
{
GPoint gp = gf->point(u*scalingU,v*scalingV);
BDS_Point *pp = new BDS_Point(num, gp.x(), gp.y(), gp.z());
pp->u = u;
pp->v = v;
points.insert(pp);
MAXPOINTNUMBER = (MAXPOINTNUMBER < num) ? num : MAXPOINTNUMBER;
return pp;
}
BDS_Point *BDS_Mesh::find_point(int p)
{
BDS_Point P(p);
std::set < BDS_Point *, PointLessThan >::iterator it = points.find(&P);
if(it != points.end())
return (BDS_Point *) (*it);
else
return 0;
}
BDS_Edge *BDS_Mesh::find_edge(BDS_Point *p, int num2)
{
std::list < BDS_Edge * >::iterator eit = p->edges.begin();
while(eit != p->edges.end()) {
if((*eit)->p1 == p && (*eit)->p2->iD == num2)
return (*eit);
if((*eit)->p2 == p && (*eit)->p1->iD == num2)
return (*eit);
++eit;
}
return 0;
}
BDS_Edge *BDS_Mesh::find_edge(BDS_Point *p1, BDS_Point *p2)
{
return find_edge (p1,p2->iD);
}
BDS_Edge *BDS_Mesh::find_edge(int num1, int num2)
{
BDS_Point *p = find_point(num1);
return find_edge (p,num2);
}
int Intersect_Edges_2d(double x1, double y1, double x2, double y2,
double x3, double y3, double x4, double y4)
{
double mat[2][2];
double rhs[2], x[2];
mat[0][0] = (x2 - x1);
mat[0][1] = -(x4 - x3);
mat[1][0] = (y2 - y1);
mat[1][1] = -(y4 - y3);
rhs[0] = x3 - x1;
rhs[1] = y3 - y1;
if(!sys2x2(mat, rhs, x))
return 0;
if(x[0] >= 0.0 && x[0] <= 1.0 && x[1] >= 0.0 && x[1] <= 1.0)
return 1;
return 0;
}
BDS_Edge *BDS_Mesh::recover_edge(int num1, int num2, std::set<EdgeToRecover> *e2r, std::set<EdgeToRecover> *not_recovered )
{
BDS_Edge *e = find_edge (num1, num2);
if (e) return e;
BDS_Point *p1 = find_point(num1);
BDS_Point *p2 = find_point(num2);
if (!p1 || !p2) throw;;
Msg(DEBUG," edge %d %d has to be recovered",num1,num2);
int ix = 0;
int ixMax = 300;
while(1)
{
std::vector<BDS_Edge *> intersected;
std::list<BDS_Edge *>::iterator it = edges.begin();
while (it!=edges.end())
{
e = (*it);
// if (e->p1->iD >= 0 && e->p2->iD >= 0)Msg(INFO," %d %d %g %g - %g %g",e->p1->iD,e->p2->iD,e->p1->u,e->p1->v,e->p2->u,e->p2->v);
if (!e->deleted && e->p1 != p1 && e->p1 != p2 && e->p2 != p1 && e->p2 != p2)
if(Intersect_Edges_2d(e->p1->u, e->p1->v,
e->p2->u, e->p2->v,
p1->u, p1->v,
p2->u, p2->v))
{
if (e2r && e2r->find(EdgeToRecover(e->p1->iD,e->p2->iD,0)) != e2r->end())
{
std::set<EdgeToRecover>::iterator itr1 = e2r->find(EdgeToRecover(e->p1->iD,e->p2->iD,0));
std::set<EdgeToRecover>::iterator itr2 = e2r->find(EdgeToRecover(num1,num2,0));
// Msg(WARNING," edge %d %d on model edge %d cannot be recovered because it intersects %d %d on model edge %d",
// num1,num2,itr2->ge->tag(),
// e->p1->iD,e->p2->iD,itr1->ge->tag());
// now throw a class that contains the diagnostic
not_recovered->insert (EdgeToRecover( num1 , num2, itr2->ge));
not_recovered->insert (EdgeToRecover( e->p1->iD, e->p2->iD, itr1->ge));
ixMax = -1;
}
intersected.push_back(e);
}
++it;
}
// if (ix > 300){
// Msg(WARNING," edge %d %d cannot be recovered after %d iterations, trying again",
// num1,num2,ix);
// ix = 0;
// }
if (!intersected.size() || ix > 1000)
{
BDS_Edge *eee = find_edge (num1, num2);
if (!eee)
{
outputScalarField(triangles, "debugp.pos",1);
outputScalarField(triangles, "debugr.pos",0);
Msg(GERROR," edge %d %d cannot be recovered at all, look at debugp.pos and debugr.pos",
num1,num2);
return 0;
}
return eee;
}
int ichoice = ix++ % intersected.size();
swap_edge ( intersected[ichoice] , BDS_SwapEdgeTestQuality (false) );
}
return 0;
}
BDS_Edge *BDS_Mesh::find_edge(BDS_Point * p1, BDS_Point * p2,
BDS_Face * t) const
{
BDS_Point P1(p1->iD);
BDS_Point P2(p2->iD);
BDS_Edge E(&P1, &P2);
if(t->e1->p1->iD == E.p1->iD && t->e1->p2->iD == E.p2->iD)
return t->e1;
if(t->e2->p1->iD == E.p1->iD && t->e2->p2->iD == E.p2->iD)
return t->e2;
if(t->e3->p1->iD == E.p1->iD && t->e3->p2->iD == E.p2->iD)
return t->e3;
return 0;
}
BDS_Face *BDS_Mesh::find_triangle(BDS_Edge * e1, BDS_Edge * e2,
BDS_Edge * e3)
{
int i;
for(i = 0; i < e1->numfaces(); i++) {
BDS_Face *t = e1->faces(i);
BDS_Edge *o1 = t->e1;
BDS_Edge *o2 = t->e2;
BDS_Edge *o3 = t->e3;
if((o1 == e1 && o2 == e2 && o3 == e3) ||
(o1 == e1 && o2 == e3 && o3 == e2) ||
(o1 == e2 && o2 == e1 && o3 == e3) ||
(o1 == e2 && o2 == e3 && o3 == e1) ||
(o1 == e3 && o2 == e1 && o3 == e2) ||
(o1 == e3 && o2 == e2 && o3 == e1))
return t;
}
for(i = 0; i < e2->numfaces(); i++) {
BDS_Face *t = e2->faces(i);
BDS_Edge *o1 = t->e1;
BDS_Edge *o2 = t->e2;
BDS_Edge *o3 = t->e3;
if((o1 == e1 && o2 == e2 && o3 == e3) ||
(o1 == e1 && o2 == e3 && o3 == e2) ||
(o1 == e2 && o2 == e1 && o3 == e3) ||
(o1 == e2 && o2 == e3 && o3 == e1) ||
(o1 == e3 && o2 == e1 && o3 == e2) ||
(o1 == e3 && o2 == e2 && o3 == e1))
return t;
}
for(i = 0; i < e3->numfaces(); i++) {
BDS_Face *t = e3->faces(i);
BDS_Edge *o1 = t->e1;
BDS_Edge *o2 = t->e2;
BDS_Edge *o3 = t->e3;
if((o1 == e1 && o2 == e2 && o3 == e3) ||
(o1 == e1 && o2 == e3 && o3 == e2) ||
(o1 == e2 && o2 == e1 && o3 == e3) ||
(o1 == e2 && o2 == e3 && o3 == e1) ||
(o1 == e3 && o2 == e1 && o3 == e2) ||
(o1 == e3 && o2 == e2 && o3 == e1))
return t;
}
return 0;
}
BDS_Edge *BDS_Mesh::add_edge(int p1, int p2)
{
BDS_Edge *efound = find_edge(p1, p2);
if(efound)
return efound;
BDS_Point *pp1 = find_point(p1);
BDS_Point *pp2 = find_point(p2);
if(!pp1 || !pp2)
throw;
BDS_Edge *e = new BDS_Edge(pp1, pp2);
edges.push_back(e);
return e;
}
BDS_Face *BDS_Mesh::add_triangle(int p1, int p2, int p3)
{
BDS_Edge *e1 = add_edge(p1, p2);
BDS_Edge *e2 = add_edge(p2, p3);
BDS_Edge *e3 = add_edge(p3, p1);
return add_triangle(e1, e2, e3);
}
BDS_Face *BDS_Mesh::add_triangle(BDS_Edge * e1, BDS_Edge * e2,
BDS_Edge * e3)
{
//BDS_Face *tfound = find_triangle(e1, e2, e3);
// if(tfound)
// return tfound;
BDS_Face *t = new BDS_Face(e1, e2, e3);
triangles.push_back(t);
return t;
}
BDS_Face *BDS_Mesh::add_quadrangle(BDS_Edge * e1, BDS_Edge * e2,
BDS_Edge * e3,BDS_Edge * e4 )
{
BDS_Face *t = new BDS_Face(e1, e2, e3, e4);
triangles.push_back(t);
return t;
}
// BDS_Tet *BDS_Mesh::add_tet(int p1, int p2, int p3, int p4)
// {
// BDS_Edge *e1 = add_edge(p1, p2);
// BDS_Edge *e2 = add_edge(p2, p3);
// BDS_Edge *e3 = add_edge(p3, p1);
// BDS_Edge *e4 = add_edge(p1, p4);
// BDS_Edge *e5 = add_edge(p2, p4);
// BDS_Edge *e6 = add_edge(p3, p4);
// BDS_Face *t1 = add_triangle(e1, e2, e3);
// BDS_Face *t2 = add_triangle(e1, e4, e5);
// BDS_Face *t3 = add_triangle(e2, e6, e5);
// BDS_Face *t4 = add_triangle(e3, e4, e6);
// BDS_Tet *t = new BDS_Tet(t1, t2, t3, t4);
// tets.push_back(t);
// return t;
// }
void BDS_Mesh::del_face(BDS_Face * t)
{
t->e1->del(t);
t->e2->del(t);
t->e3->del(t);
if(t->e4)t->e4->del(t);
t->deleted = true;
}
void BDS_Mesh::del_edge(BDS_Edge * e)
{
// edges.erase(e);
e->p1->del(e);
e->p2->del(e);
e->deleted = true;
// edges_to_delete.insert(e);
}
void BDS_Mesh::del_point(BDS_Point * p)
{
points.erase(p);
delete p;
}
void BDS_Mesh::add_geom(int p1, int p2)
{
geom.insert(new BDS_GeomEntity(p1, p2));
}
void BDS_Edge::oppositeof(BDS_Point * oface[2]) const
{
oface[0] = oface[1] = 0;
if(faces(0)) {
BDS_Point *pts[4];
faces(0)->getNodes(pts);
if(pts[0] != p1 && pts[0] != p2)
oface[0] = pts[0];
else if(pts[1] != p1 && pts[1] != p2)
oface[0] = pts[1];
else
oface[0] = pts[2];
}
if(faces(1)) {
BDS_Point *pts[4];
faces(1)->getNodes(pts);
if(pts[0] != p1 && pts[0] != p2)
oface[1] = pts[0];
else if(pts[1] != p1 && pts[1] != p2)
oface[1] = pts[1];
else
oface[1] = pts[2];
}
}
BDS_GeomEntity *BDS_Mesh::get_geom(int p1, int p2)
{
BDS_GeomEntity ge(p1, p2);
std::set < BDS_GeomEntity *, GeomLessThan >::iterator it = geom.find(&ge);
if(it == geom.end())
return 0;
return (BDS_GeomEntity *) (*it);
}
void recur_tag(BDS_Face * t, BDS_GeomEntity * g)
{
if(!t->g) {
t->g = g;
// g->t.push_back(t);
if(!t->e1->g && t->e1->numfaces() == 2) {
recur_tag(t->e1->otherFace(t), g);
}
if(!t->e2->g && t->e2->numfaces() == 2) {
recur_tag(t->e2->otherFace(t), g);
}
if(!t->e3->g && t->e3->numfaces() == 2) {
recur_tag(t->e3->otherFace(t), g);
}
}
}
double PointLessThanLexicographic::t = 0;
double BDS_Vector::t = 0;
bool BDS_Mesh::import_view(PView *view, const double tolerance)
{
Msg(GERROR, "View import must be reinterfaced");
return false;
}
template < class IT > void DESTROOOY(IT beg, IT end)
{
while(beg != end) {
delete *beg;
beg++;
}
}
void BDS_Mesh::cleanup()
{
{
std::list<BDS_Face*> :: iterator it = triangles.begin();
while(it != triangles.end()){
if((*it)->deleted){
delete *it;
it = triangles.erase(it);
}
else
it++;
}
}
{
std::list<BDS_Edge*> :: iterator it = edges.begin();
while(it != edges.end()){
if((*it)->deleted){
delete *it;
it = edges.erase(it);
}
else
it++;
}
}
}
BDS_Mesh ::~ BDS_Mesh ()
{
DESTROOOY ( geom.begin(),geom.end());
DESTROOOY ( points.begin(),points.end());
cleanup();
DESTROOOY ( edges.begin(),edges.end());
DESTROOOY ( triangles.begin(),triangles.end());
}
bool BDS_Mesh::split_edge(BDS_Edge * e, BDS_Point *mid)
{
/*
p1
/ | \
/ | \
op1/ 0mid1 \op2
\ | /
\ | /
\ p2/
// p1,op1,mid -
// p2,op2,mid -
// p2,op1,mid +
// p1,op2,mid +
*/
BDS_Point *op[2];
BDS_Point *p1 = e->p1;
BDS_Point *p2 = e->p2;
e->oppositeof(op);
// double qt1 = qmTriangle(p1,op[0],mid,QMTRI_RHO);
// double qt2 = qmTriangle(p2,op[0],mid,QMTRI_RHO);
// double qt3 = qmTriangle(p1,op[1],mid,QMTRI_RHO);
// double qt4 = qmTriangle(p2,op[1],mid,QMTRI_RHO);
// if (qt1 < 1.e-5 || qt2 < 1.e-5 || qt3 < 1.e-5 || qt4 < 1.e-5)
// {
// return false;
// }
// double l1 = sqrt((op[0]->X-op[1]->X) *(op[0]->X-op[1]->X) +
// (op[0]->Y-op[1]->Y) *(op[0]->Y-op[1]->Y) +
// (op[0]->Z-op[1]->Z) *(op[0]->Z-op[1]->Z) );
// if (l1 < 0.1* mid->lc()) return false;
BDS_Point *pts1[4];
e->faces(0)->getNodes(pts1);
int orientation = 0;
for(int i = 0; i < 3; i++) {
if(pts1[i] == p1) {
if(pts1[(i + 1) % 3] == p2)
orientation = 1;
else
orientation = -1;
break;
}
}
// we should project
BDS_GeomEntity *g1 = 0, *g2 = 0, *ge = e->g;
BDS_Edge *p1_op1 = find_edge(p1, op[0], e->faces(0));
BDS_Edge *op1_p2 = find_edge(op[0], p2, e->faces(0));
BDS_Edge *p1_op2 = find_edge(p1, op[1], e->faces(1));
BDS_Edge *op2_p2 = find_edge(op[1], p2, e->faces(1));
if(e->faces(0)) {
g1 = e->faces(0)->g;
del_face(e->faces(0));
}
// not a bug !!!
if(e->faces(0)) {
g2 = e->faces(0)->g;
del_face(e->faces(0));
}
// double t_l = e->target_length;
del_edge(e);
BDS_Edge *p1_mid = new BDS_Edge(p1, mid);
edges.push_back(p1_mid);
BDS_Edge *mid_p2 = new BDS_Edge(mid, p2);
edges.push_back(mid_p2);
BDS_Edge *op1_mid = new BDS_Edge(op[0], mid);
edges.push_back(op1_mid);
BDS_Edge *mid_op2 = new BDS_Edge(mid, op[1]);
edges.push_back(mid_op2);
// p1_mid->target_length = t_l;
// op1_mid->target_length = t_l;
// mid_p2->target_length = t_l;
// mid_op2->target_length = t_l;
// printf("split ends 1 %d (%d %d) %d %d \n",
// p1_op1->numfaces(), p1->iD, op[0]->iD,
// op1_mid->numfaces(),p1_mid->numfaces());
BDS_Face *t1, *t2, *t3, *t4;
if(orientation == 1) {
t1 = new BDS_Face(op1_mid, p1_op1, p1_mid);
t2 = new BDS_Face(mid_op2, op2_p2, mid_p2);
t3 = new BDS_Face(op1_p2, op1_mid, mid_p2);
t4 = new BDS_Face(p1_op2, mid_op2, p1_mid);
}
else {
t1 = new BDS_Face(p1_op1, op1_mid, p1_mid);
t2 = new BDS_Face(op2_p2, mid_op2, mid_p2);
t3 = new BDS_Face(op1_mid, op1_p2, mid_p2);
t4 = new BDS_Face(mid_op2, p1_op2, p1_mid);
}
t1->g = g1;
t2->g = g2;
t3->g = g1;
t4->g = g2;
p1_mid->g = ge;
mid_p2->g = ge;
op1_mid->g = g1;
mid_op2->g = g2;
mid->g = ge;
triangles.push_back(t1);
triangles.push_back(t2);
triangles.push_back(t3);
triangles.push_back(t4);
// config has changed
p1->config_modified = true;
p2->config_modified = true;
op[0]->config_modified = true;
op[1]->config_modified = true;
return true;
}
void BDS_Mesh::saturate_edge(BDS_Edge * e, std::vector<BDS_Point *> &mids)
{
BDS_Point *op[2];
BDS_Point *p1 = e->p1;
BDS_Point *p2 = e->p2;
BDS_Point *pts1[4];
e->faces(0)->getNodes(pts1);
int orientation = 0;
for(int i = 0; i < 3; i++) {
if(pts1[i] == p1) {
if(pts1[(i + 1) % 3] == p2)
orientation = 1;
else
orientation = -1;
break;
}
}
// printf("sat %d\n",mids.size());
// we should project
e->oppositeof(op);
BDS_GeomEntity *g1 = 0, *g2 = 0, *ge = e->g;
BDS_Edge *p1_op1 = find_edge(p1, op[0], e->faces(0));
BDS_Edge *op1_p2 = find_edge(op[0], p2, e->faces(0));
BDS_Edge *p1_op2 = find_edge(p1, op[1], e->faces(1));
BDS_Edge *op2_p2 = find_edge(op[1], p2, e->faces(1));
if(e->faces(0)) {
g1 = e->faces(0)->g;
del_face(e->faces(0));
}
// not a bug !!!
if(e->faces(0)) {
g2 = e->faces(0)->g;
del_face(e->faces(0));
}
// double t_l = e->target_length;
del_edge(e);
// create all the sub-edges of e
std::vector<BDS_Edge*> subs;
for (unsigned int i = 0; i < mids.size() + 1; i++)
{
BDS_Point *a,*b;
if (i == 0)a = p1;
else a = mids[i-1];
if (i == mids.size())b = p2;
else b = mids[i];
BDS_Edge *sub = new BDS_Edge(a, b);
// printf("%g %g -> %g %g\n",a->X,a->Y,b->X,b->Y);
edges.push_back(sub);
subs.push_back(sub);
sub->g = ge;
}
// create edges that connect op1 and op2
std::vector<BDS_Edge*> conn1,conn2;
for (unsigned int i = 0; i < mids.size(); i++)
{
BDS_Edge *c1 = new BDS_Edge(mids[i], op[0]);
edges.push_back(c1);
conn1.push_back(c1);
BDS_Edge *c2 = new BDS_Edge(mids[i], op[1]);
edges.push_back(c2);
conn2.push_back(c2);
c1->g = g1;
c2->g = g2;
mids[i]->g = ge;
}
// create the triangles
for (unsigned int i = 0; i < mids.size() + 1; i++)
{
BDS_Edge *e1,*e2,*e3=subs[i];
// printf("--> %d %g %g ->%d %g %g\n",e3->p1->iD,e3->p1->X,e3->p1->Y,e3->p2->iD,e3->p2->X,e3->p2->Y);
if (i==0)e1 = p1_op1;
else e1 = conn1[i-1];
if (i==mids.size())e2 = op1_p2;
else e2 = conn1[i];
// printf("--> %d %g %g ->%d %g %g\n",e1->p1->iD,e1->p1->X,e1->p1->Y,e1->p2->iD,e1->p2->X,e1->p2->Y);
// printf("--> %d %g %g ->%d %g %g\n",e2->p1->iD,e2->p1->X,e2->p1->Y,e2->p2->iD,e2->p2->X,e2->p2->Y);
BDS_Face *t1;
if(orientation == 1)
t1 = new BDS_Face(e3, e2, e1);
else
t1 = new BDS_Face(e3, e1, e2);
if (i==0)e1 = p1_op2;
else e1 = conn2[i-1];
if (i==mids.size())e2 = op2_p2;
else e2 = conn2[i];
BDS_Face *t2;
if(orientation != 1)
t2 = new BDS_Face(e3, e2, e1);
else
t2 = new BDS_Face(e3, e1, e2);
t1->g = g1;
t2->g = g2;
triangles.push_back(t1);
triangles.push_back(t2);
}
// config has changed
p1->config_modified = true;
p2->config_modified = true;
op[0]->config_modified = true;
op[1]->config_modified = true;
}
// This function does actually the swap without taking into account
// the feasability of the operation. Those conditions have to be
// taken into account before doing the edge swap
bool BDS_SwapEdgeTestQuality::operator () (BDS_Point *_p1,BDS_Point *_p2,
BDS_Point *_q1,BDS_Point *_q2) const
{
double s1 = fabs(surface_triangle_param(_p1,_p2,_q1));
double s2 = fabs(surface_triangle_param(_p1,_p2,_q2));
double s3 = fabs(surface_triangle_param(_p1,_q1,_q2));
double s4 = fabs(surface_triangle_param(_p2,_q1,_q2));
if (fabs(s1+s2-s3-s4) > 1.e-10 * (s1+s2))return false;
if (s3 < .02 * (s1+s2) || s4 < .02 * (s1+s2))return false;
return true;
double p1 [2] = {_p1->u,_p1->v};
double p2 [2] = {_p2->u,_p2->v};
double op1[2] = {_q1->u,_q1->v};
double op2[2] = {_q2->u,_q2->v};
double ori_t1 = gmsh::orient2d(op1, p1, op2);
double ori_t2 = gmsh::orient2d(op1, op2, p2);
return ( ori_t1 * ori_t2 > 0 ); // the quadrangle was strictly convex !
}
bool BDS_SwapEdgeTestQuality::operator () (BDS_Point *_p1,BDS_Point *_p2,BDS_Point *_p3,
BDS_Point *_q1,BDS_Point *_q2,BDS_Point *_q3,
BDS_Point *_op1,BDS_Point *_op2,BDS_Point *_op3,
BDS_Point *_oq1,BDS_Point *_oq2,BDS_Point *_oq3 )const
{
if (!testQuality) return true;
double n[3],q[3],on[3],oq[3];
normal_triangle(_p1,_p2,_p3,n);
normal_triangle(_q1,_q2,_q3,q);
normal_triangle(_op1,_op2,_op3,on);
normal_triangle(_oq1,_oq2,_oq3,oq);
double cosnq; prosca(n,q,&cosnq);
double cosonq; prosca(on,oq,&cosonq);
double qa1 = qmTriangle(_p1, _p2, _p3,QMTRI_RHO);
double qa2 = qmTriangle(_q1, _q2, _q3,QMTRI_RHO);
double qb1 = qmTriangle(_op1, _op2, _op3,QMTRI_RHO);
double qb2 = qmTriangle(_oq1, _oq2, _oq3,QMTRI_RHO);
// we swap for a better configuration
double mina = std::min(qa1,qa2);
double minb = std::min(qb1,qb2);
// if (cosnq < .3 && cosonq > .5 && minb > .1)
// printf("mina = %g minb = %g cos %g %g\n",mina,minb,cosnq,cosonq);
if (cosnq < .3 && cosonq > .5 && minb > .1) return true;
if (minb > mina) return true;
// if (mina > minb && cosnq <= cosonq)return true;
return false;
}
void swap_config(BDS_Edge * e,
BDS_Point **p11,BDS_Point **p12,BDS_Point **p13,
BDS_Point **p21,BDS_Point **p22,BDS_Point **p23,
BDS_Point **p31,BDS_Point **p32,BDS_Point **p33,
BDS_Point **p41,BDS_Point **p42,BDS_Point **p43)
{
BDS_Point *op[2];
BDS_Point *p1 = e->p1;
BDS_Point *p2 = e->p2;
e->oppositeof(op);
BDS_Point *pts1[4];
e->faces(0)->getNodes(pts1);
// compute the orientation of the face
// with respect to the edge
int orientation = 0;
for(int i = 0; i < 3; i++) {
if(pts1[i] == p1) {
if(pts1[(i + 1) % 3] == p2)
orientation = 1;
else
orientation = -1;
break;
}
}
if(orientation == 1) {
*p11 = p1;
*p12 = p2;
*p13 = op[0];
*p21 = p2;
*p22 = p1;
*p23 = op[1];
*p31 = p1;
*p32 = op[1];
*p33 = op[0];
*p41 = op[1];
*p42 = p2;
*p43 = op[0];
}
else{
*p11 = p2;
*p12 = p1;
*p13 = op[0];
*p21 = p1;
*p22 = p2;
*p23 = op[1];
*p31 = p1;
*p32 = op[0];
*p33 = op[1];
*p41 = op[1];
*p42 = op[0];
*p43 = p2;
}
}
bool BDS_Mesh::swap_edge(BDS_Edge * e, const BDS_SwapEdgeTest &theTest)
{
/*
p1
/ | \
/ | \
op1/ 0 | 1 \op2
\ | /
\ | /
\ p2/
// op1 p1 op2
// op1 op2 p2
*/
// we test if the edge is deleted
// return false;
if(e->deleted)
return false;
int nbFaces = e->numfaces();
if(nbFaces != 2)
return false;
if(e->g && e->g->classif_degree == 1)
return false;
BDS_Point *op[2];
BDS_Point *p1 = e->p1;
BDS_Point *p2 = e->p2;
e->oppositeof(op);
BDS_GeomEntity *g1 = 0, *g2 = 0, *ge = e->g;
BDS_Point *pts1[4];
e->faces(0)->getNodes(pts1);
// compute the orientation of the face
// with respect to the edge
int orientation = 0;
for(int i = 0; i < 3; i++) {
if(pts1[i] == p1) {
if(pts1[(i + 1) % 3] == p2)
orientation = 1;
else
orientation = -1;
break;
}
}
if(orientation == 1) {
if (!theTest ( p1, p2, op[0],
p2,p1,op[1],
p1,op[1],op[0],
op[1],p2,op[0]))
return false;
}
else{
if (!theTest ( p2, p1, op[0],
p1,p2,op[1],
p1,op[0],op[1],
op[1],op[0],p2))
return false;
}
if (!theTest ( p1, p2, op[0],op[1]))
return false;
BDS_Edge *p1_op1 = find_edge(p1, op[0], e->faces(0));
BDS_Edge *op1_p2 = find_edge(op[0], p2, e->faces(0));
BDS_Edge *p1_op2 = find_edge(p1, op[1], e->faces(1));
BDS_Edge *op2_p2 = find_edge(op[1], p2, e->faces(1));
if(e->faces(0)) {
g1 = e->faces(0)->g;
del_face(e->faces(0));
}
// not a bug !!!
if(e->faces(0)) {
g2 = e->faces(0)->g;
del_face(e->faces(0));
}
del_edge(e);
BDS_Edge *op1_op2 = new BDS_Edge(op[0], op[1]);
edges.push_back(op1_op2);
BDS_Face *t1, *t2;
if(orientation == 1) {
t1 = new BDS_Face(p1_op1, p1_op2, op1_op2);
t2 = new BDS_Face(op1_op2, op2_p2, op1_p2);
}
else {
t1 = new BDS_Face(p1_op2, p1_op1, op1_op2);
t2 = new BDS_Face(op2_p2, op1_op2, op1_p2);
}
t1->g = g1;
t2->g = g2;
op1_op2->g = ge;
triangles.push_back(t1);
triangles.push_back(t2);
p1->config_modified = true;
p2->config_modified = true;
op[0]->config_modified = true;
op[1]->config_modified = true;
return true;
}
int BDS_Edge :: numTriangles() const
{
int NT = 0;
for (unsigned int i=0;i<_faces.size();i++)
if (faces(i)->numEdges() == 3) NT++ ;
return NT;
}
// This function does actually the swap without taking into account
// the feasability of the operation. Those conditions have to be
// taken into account before doing the edge swap
bool BDS_Mesh::recombine_edge(BDS_Edge * e)
{
/*
p1
/ | \
/ | \
op1/ 0 | 1 \op2
\ | /
\ | /
\ p2/
// op1 p1 op2
// op1 op2 p2
*/
// we test if the edge is deleted
// return false;
if(e->deleted)
return false;
if(e->numfaces() != 2 || e->numTriangles() != 2)
return false;
if(e->g && e->g->classif_degree == 1)
return false;
BDS_Point *op[2];
BDS_Point *p1 = e->p1;
BDS_Point *p2 = e->p2;
e->oppositeof(op);
BDS_Point *pts1[4];
e->faces(0)->getNodes(pts1);
// FIXME !!!!!!!!!!!!!!!!!
// should ensure that orientation is unchanged
BDS_Edge *p1_op1 = find_edge(p1, op[0], e->faces(0));
BDS_Edge *op1_p2 = find_edge(op[0], p2, e->faces(0));
BDS_Edge *p1_op2 = find_edge(p1, op[1], e->faces(1));
BDS_Edge *op2_p2 = find_edge(op[1], p2, e->faces(1));
BDS_GeomEntity *g=0;
if(e->faces(0)) {
g = e->faces(0)->g;
del_face(e->faces(0));
}
// not a bug !!!
if(e->faces(0)) {
del_face(e->faces(0));
}
del_edge(e);
BDS_Face *f = add_quadrangle (p1_op1, op1_p2, op2_p2, p1_op2);
f->g = g;
p1->config_modified = true;
p2->config_modified = true;
op[0]->config_modified = true;
op[1]->config_modified = true;
return true;
}
bool BDS_Mesh::collapse_edge_parametric(BDS_Edge * e, BDS_Point * p)
{
if(e->numfaces() != 2)
return false;
if(p->g && p->g->classif_degree == 0)
return false;
// not really ok but 'til now this is the best choice not to do collapses on model edges
if(p->g && p->g->classif_degree == 1)
return false;
if(e->g && p->g) {
if(e->g->classif_degree == 2 && p->g != e->g)
return false;
}
std::list < BDS_Face * >t;
BDS_Point *o = e->othervertex(p);
// if(o->g != p->g)
// return false;
// printf("collapsing an edge :");
// print_edge(e);
static BDS_Point* pt[3][1024];
static BDS_GeomEntity *gs[1024];
static int ept[2][1024];
static BDS_GeomEntity *egs[1024];
int nt = 0;
{
p->getTriangles(t);
std::list < BDS_Face * >::iterator it = t.begin();
std::list < BDS_Face * >::iterator ite = t.end();
while(it != ite) {
BDS_Face *t = *it;
if(t->e1 != e && t->e2 != e && t->e3 != e) {
if (!test_move_point_parametric_triangle ( p, o->u, o->v, t))
return false;
gs[nt] = t->g;
BDS_Point *pts[4];
t->getNodes(pts);
pt[0][nt] = (pts[0] == p) ? o : pts[0];
pt[1][nt] = (pts[1] == p) ? o : pts[1];
pt[2][nt] = (pts[2] == p) ? o : pts[2];
// double qnew = qmTriangle(pt[0][nt],pt[1][nt],pt[2][nt],QMTRI_RHO);
// double qold = qmTriangle(pts[0],pts[1],pts[2],QMTRI_RHO);
// if ( qold > 1.e-4 && qnew < 1.e-4)return false;
nt++;
// pt[0][nt] = (pts[0] == p) ? o->iD : pts[0]->iD;
// pt[1][nt] = (pts[1] == p) ? o->iD : pts[1]->iD;
// pt[2][nt++] = (pts[2] == p) ? o->iD : pts[2]->iD;
}
++it;
}
}
{
std::list < BDS_Face * >::iterator it = t.begin();
std::list < BDS_Face * >::iterator ite = t.end();
while(it != ite) {
BDS_Face *t = *it;
del_face(t);
++it;
}
}
// printf("%d triangles 2 add\n",nt);
int kk = 0;
{
std::list < BDS_Edge * >edges(p->edges);
std::list < BDS_Edge * >::iterator eit = edges.begin();
std::list < BDS_Edge * >::iterator eite = edges.end();
while(eit != eite) {
(*eit)->p1->config_modified = (*eit)->p2->config_modified = true;
ept[0][kk] = ((*eit)->p1 == p) ? o->iD : (*eit)->p1->iD;
ept[1][kk] = ((*eit)->p2 == p) ? o->iD : (*eit)->p2->iD;
egs[kk++] = (*eit)->g;
del_edge(*eit);
++eit;
}
}
del_point(p);
{
for(int k = 0; k < nt; k++) {
BDS_Face *t = add_triangle(pt[0][k]->iD, pt[1][k]->iD, pt[2][k]->iD);
t->g = gs[k];
}
}
for(int i = 0; i < kk; ++i) {
BDS_Edge *e = find_edge(ept[0][i], ept[1][i]);
if(e)
e->g = egs[i];
}
return true;
}
// use robust predicates for not allowing to revert a triangle
// by moving one of its vertices
bool test_move_point_parametric_triangle (BDS_Point * p, double u, double v, BDS_Face *t)
{
BDS_Point *pts[4];
t->getNodes(pts);
double pa[2] = { pts[0]->u,pts[0]->v};
double pb[2] = { pts[1]->u,pts[1]->v};
double pc[2] = { pts[2]->u,pts[2]->v};
double a[2] = {pb[0]-pa[0],pb[1]-pa[1]};
double b[2] = {pc[0]-pa[0],pc[1]-pa[1]};
double area_init = fabs(a[0] * b[1] - a[1] * b[0]);
if (area_init == 0.0) return true;
double ori_init = gmsh::orient2d(pa, pb, pc);
if (p == pts[0])
{pa[0]=u;pa[1]=v;}
else if (p == pts[1])
{pb[0]=u;pb[1]=v;}
else if (p == pts[2])
{pc[0]=u;pc[1]=v;}
else
return false;
double area_final = fabs(a[0] * b[1] - a[1] * b[0]);
if (area_final < 0.1 * area_init)return false;
double ori_final = gmsh::orient2d(pa, pb, pc);
// allow to move a point when a triangle was flat
return ori_init*ori_final > 0;
}
/**
d^2_i = (x^2_i - x)^T M (x_i - x)
= M11 (x_i - x)^2 + 2 M21 (x_i-x)(y_i-y) + M22 (y_i-y)^2
~:-)
*/
struct smoothVertexData{
BDS_Point *p;
GFace *gf;
double scalu,scalv;
std::list < BDS_Face * >ts;
};
double smoothing_objective_function(double U, double V, BDS_Point *v, std::list < BDS_Face * >&ts,double su, double sv,GFace *gf){
GPoint gp = gf->point(U*su,V*sv);
const double oldX = v->X;
const double oldY = v->Y;
const double oldZ = v->Z;
v->X = gp.x();
v->Y = gp.y();
v->Z = gp.z();
std::list < BDS_Face * >::iterator it = ts.begin();
std::list < BDS_Face * >::iterator ite = ts.end();
double qMin=1;
while(it != ite) {
BDS_Face *t = *it;
qMin = std::min(qmTriangle(*it,QMTRI_RHO),qMin);
++it;
}
v->X = oldX;
v->Y = oldY;
v->Z = oldZ;
return -qMin;
}
void deriv_smoothing_objective_function(double U, double V,
double &F, double &dFdU, double &dFdV,void *data){
smoothVertexData *svd = (smoothVertexData*)data;
BDS_Point *v = svd->p;
const double LARGE = 1.e5;
const double SMALL = 1./LARGE;
F = smoothing_objective_function(U,V,v,svd->ts,svd->scalu,svd->scalv,svd->gf);
double F_U = smoothing_objective_function(U+SMALL,V,v,svd->ts,svd->scalu,svd->scalv,svd->gf);
double F_V = smoothing_objective_function(U,V+SMALL,v,svd->ts,svd->scalu,svd->scalv,svd->gf);
dFdU = (F_U-F)*LARGE;
dFdV = (F_V-F)*LARGE;
}
double smooth_obj(double U, double V, void *data){
smoothVertexData *svd = (smoothVertexData*)data;
return smoothing_objective_function(U,V,svd->p,svd->ts,svd->scalu,svd->scalv,svd->gf);
}
void optimize_vertex_position (GFace *GF, BDS_Point *data, double su, double sv){
#ifdef HAVE_GSL
if(data->g && data->g->classif_degree <= 1)
return;
smoothVertexData vd;
vd.p = data;
vd.scalu = su;
vd.scalv = sv;
vd.gf = GF;
data->getTriangles(vd.ts);
double U=data->u,V=data->v,val;
val = smooth_obj(U, V, &vd);
if (val < -.90)return;
minimize_2 ( smooth_obj, deriv_smoothing_objective_function, &vd, 5, U,V,val);
std::list < BDS_Face * >::iterator it = vd.ts.begin();
std::list < BDS_Face * >::iterator ite = vd.ts.end();
while(it != ite) {
BDS_Face *t = *it;
if (!test_move_point_parametric_triangle ( data, U, V, t)){
return;
}
++it;
}
data->u = U;
data->v = V;
GPoint gp = GF->point(U*su,V*sv);
data->X = gp.x();
data->Y = gp.y();
data->Z = gp.z();
#endif
}
bool BDS_Mesh::smooth_point_centroid(BDS_Point * p, GFace *gf)
{
if (!p->config_modified)return false;
if(p->g && p->g->classif_degree <= 1)
return false;
std::list < BDS_Edge * >::iterator eit = p->edges.begin();
while(eit != p->edges.end()) {
if ((*eit)->numfaces() == 1) return false;
eit++;
}
double U = 0;
double V = 0;
double LC = 0;
std::list < BDS_Face * >ts;
p->getTriangles(ts);
std::list < BDS_Face * >::iterator it = ts.begin();
std::list < BDS_Face * >::iterator ite = ts.end();
double sTot = 0;
while(it != ite) {
BDS_Face *t = *it;
BDS_Point *n[4];
t->getNodes(n);
// double S = fabs(surface_triangle(n[0],n[1],n[2]));
double S = 1;
sTot += S;
U += (n[0]->u + n[1]->u + n[2]->u) *S;
V += (n[0]->v + n[1]->v + n[2]->v) *S;
LC += (n[0]->lc() + n[1]->lc() + n[2]->lc()) *S;
++it;
}
U /= (3.*sTot);
V /= (3.*sTot);
LC /= (3.*sTot);
GPoint gp = gf->point(U*scalingU,V*scalingV);
const double oldX = p->X;
const double oldY = p->Y;
const double oldZ = p->Z;
double oldU=p->u;
double oldV=p->v;
it = ts.begin();
double s1=0,s2=0;
while(it != ite) {
BDS_Face *t = *it;
BDS_Point *n[4];
t->getNodes(n);
p->u = U;
p->v = V;
double snew = fabs(surface_triangle_param(n[0],n[1],n[2]));
s1 += snew;
p->u = oldU;
p->v = oldV;
double sold = fabs(surface_triangle_param(n[0],n[1],n[2]));
s2 += sold;
// printf("%22.15E %22.15E\n",snew,sold);
if ( snew < .1 * sold) return false;
// if (!test_move_point_parametric_triangle ( p, U, V, t)){
// return false;
// }
// p->X = gp.x();
// p->Y = gp.y();
// p->Z = gp.z();
// newWorst = std::min(newWorst,qmTriangle(*it,QMTRI_RHO));
// p->X = oldX;
// p->Y = oldY;
// p->Z = oldZ;
// oldWorst = std::min(oldWorst,qmTriangle(*it,QMTRI_RHO));
++it;
}
// printf("%22.15E %22.15E %22.15E\n",s1,s2,fabs(s2-s1));
if (fabs(s2-s1) > 1.e-14 * (s2+s1))return false;
// if (newWorst < 1.e-2)
// {
// printf("chmoochiong %g %g\n",oldWorst,newWorst);
// // return false;
// }
p->u = U;
p->v = V;
p->lc() = LC;
p->X = gp.x();
p->Y = gp.y();
p->Z = gp.z();
eit = p->edges.begin();
while(eit != p->edges.end()) {
(*eit)->update();
++eit;
}
return true;
}
bool BDS_Mesh::smooth_point_parametric(BDS_Point * p, GFace *gf)
{
if (!p->config_modified)return false;
if(p->g && p->g->classif_degree <= 1)
return false;
double U = 0;
double V = 0;
double tot_length = 0;
double LC = 0;
std::list < BDS_Edge * >::iterator eit = p->edges.begin();
while(eit != p->edges.end()) {
if ((*eit)->numfaces() == 1) return false;
BDS_Point *op = ((*eit)->p1 == p) ? (*eit)->p2 : (*eit)->p1;
const double l_e = (*eit)->length();
U += op->u*l_e;
V += op->v*l_e;
tot_length += l_e;
LC += op->lc();
++eit;
}
U /= tot_length;
V /= tot_length;
LC /= p->edges.size();
std::list < BDS_Face * >ts;
p->getTriangles(ts);
std::list < BDS_Face * >::iterator it = ts.begin();
std::list < BDS_Face * >::iterator ite = ts.end();
while(it != ite) {
BDS_Face *t = *it;
if (!test_move_point_parametric_triangle ( p, U, V, t))
return false;
++it;
}
GPoint gp = gf->point(U*scalingU,V*scalingV);
p->u = U;
p->v = V;
p->lc() = LC;
p->X = gp.x();
p->Y = gp.y();
p->Z = gp.z();
eit = p->edges.begin();
while(eit != p->edges.end()) {
(*eit)->update();
++eit;
}
return true;
}
struct recombine_T
{
const BDS_Edge *e ;
double angle ;
recombine_T (const BDS_Edge *_e );
bool operator < ( const recombine_T & other ) const
{
return angle < other.angle;
}
};
recombine_T::recombine_T (const BDS_Edge *_e )
: e(_e)
{
BDS_Point *op[2];
BDS_Point *p1 = e->p1;
BDS_Point *p2 = e->p2;
e->oppositeof(op);
BDS_Vector v1 (*p1,*op[0]);
BDS_Vector v2 (*op[0],*p2);
BDS_Vector v3 (*p2,*op[1]);
BDS_Vector v4 (*op[1],*p1);
angle = fabs(90.-v1.angle_deg(v2));
angle = std::max(fabs(90.-v2.angle_deg(v3)),angle);
angle = std::max(fabs(90.-v3.angle_deg(v4)),angle);
angle = std::max(fabs(90.-v4.angle_deg(v1)),angle);
}
void BDS_Mesh::recombineIntoQuads (const double angle_limit, GFace *gf)
{
Msg(INFO,"Recombining triangles for surface %d",gf->tag());
for (int i=0;i<5;i++)
{
bool rec = false;
std::set<recombine_T> _pairs;
for(std::list < BDS_Edge * >::const_iterator it = edges.begin();
it != edges.end(); ++it)
{
if (!(*it)->deleted && (*it)->numfaces () == 2)
_pairs.insert ( recombine_T ( *it ) );
}
std::set<recombine_T>::iterator itp = _pairs.begin();
while (itp != _pairs.end())
{
rec |= recombine_edge ((BDS_Edge*)itp->e);
++itp;
}
if (!rec) break;
std::set<BDS_Point*,PointLessThan>::iterator itpt = points.begin();
while (itpt != points.end())
{
smooth_point_parametric(*itpt,gf);
++itpt;
}
}
}
void FullQuadMesh ()
{
}