Skip to content
Snippets Groups Projects
Select Git revision
  • f20ed84eb8243eca81818dcd739811e681d1441a
  • master default
  • cgnsUnstructured
  • partitioning
  • poppler
  • HighOrderBLCurving
  • gmsh_3_0_4
  • gmsh_3_0_3
  • gmsh_3_0_2
  • gmsh_3_0_1
  • gmsh_3_0_0
  • gmsh_2_16_0
  • gmsh_2_15_0
  • gmsh_2_14_1
  • gmsh_2_14_0
  • gmsh_2_13_2
  • gmsh_2_13_1
  • gmsh_2_12_0
  • gmsh_2_11_0
  • gmsh_2_10_1
  • gmsh_2_10_0
  • gmsh_2_9_3
  • gmsh_2_9_2
  • gmsh_2_9_1
  • gmsh_2_9_0
  • gmsh_2_8_6
26 results

triangle.c

Blame
  • Forked from gmsh / gmsh
    Source project has a limited visibility.
    triangle.c 635.69 KiB
    /*****************************************************************************/
    /*                                                                           */
    /*      888888888        ,o,                          / 888                  */
    /*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         */
    /*         888    888    888       88b 888  888 888 888 888 d888  88b        */
    /*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        */
    /*         888    888    888 C888  888 888  888  /      888 q888             */
    /*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        */
    /*                                              "8oo8D                       */
    /*                                                                           */
    /*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      */
    /*  (triangle.c)                                                             */
    /*                                                                           */
    /*  Version 1.6                                                              */
    /*  July 28, 2005                                                            */
    /*                                                                           */
    /*  Copyright 1993, 1995, 1997, 1998, 2002, 2005                             */
    /*  Jonathan Richard Shewchuk                                                */
    /*  2360 Woolsey #H                                                          */
    /*  Berkeley, California  94705-1927                                         */
    /*  jrs@cs.berkeley.edu                                                      */
    /*                                                                           */
    /*  This program may be freely redistributed under the condition that the    */
    /*    copyright notices (including this entire header and the copyright      */
    /*    notice printed when the `-h' switch is selected) are not removed, and  */
    /*    no compensation is received.  Private, research, and institutional     */
    /*    use is free.  You may distribute modified versions of this code UNDER  */
    /*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
    /*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
    /*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
    /*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
    /*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
    /*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
    /*    customer, and you are instead telling them how they can obtain it for  */
    /*    free, then you are not required to make any arrangement with me.)      */
    /*                                                                           */
    /*  Hypertext instructions for Triangle are available on the Web at          */
    /*                                                                           */
    /*      http://www.cs.cmu.edu/~quake/triangle.html                           */
    /*                                                                           */
    /*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
    /*    whatsoever.  This code is provided "as-is".  Use at your own risk.     */
    /*                                                                           */
    /*  Some of the references listed below are marked with an asterisk.  [*]    */
    /*    These references are available for downloading from the Web page       */
    /*                                                                           */
    /*      http://www.cs.cmu.edu/~quake/triangle.research.html                  */
    /*                                                                           */
    /*  Three papers discussing aspects of Triangle are available.  A short      */
    /*    overview appears in "Triangle:  Engineering a 2D Quality Mesh          */
    /*    Generator and Delaunay Triangulator," in Applied Computational         */
    /*    Geometry:  Towards Geometric Engineering, Ming C. Lin and Dinesh       */
    /*    Manocha, editors, Lecture Notes in Computer Science volume 1148,       */
    /*    pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM   */
    /*    Workshop on Applied Computational Geometry).  [*]                      */
    /*                                                                           */
    /*    The algorithms are discussed in the greatest detail in "Delaunay       */
    /*    Refinement Algorithms for Triangular Mesh Generation," Computational   */
    /*    Geometry:  Theory and Applications 22(1-3):21-74, May 2002.  [*]       */
    /*                                                                           */
    /*    More detail about the data structures may be found in my dissertation: */
    /*    "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report  */
    /*    CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */
    /*    Pittsburgh, Pennsylvania, 18 May 1997.  [*]                            */
    /*                                                                           */
    /*  Triangle was created as part of the Quake Project in the School of       */
    /*    Computer Science at Carnegie Mellon University.  For further           */
    /*    information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F.   */
    /*    Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu,  */
    /*    "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous   */
    /*    Media on Parallel Computers," Computer Methods in Applied Mechanics    */
    /*    and Engineering 152(1-2):85-102, 22 January 1998.                      */
    /*                                                                           */
    /*  Triangle's Delaunay refinement algorithm for quality mesh generation is  */
    /*    a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm   */
    /*    for Quality 2-Dimensional Mesh Generation," Journal of Algorithms      */
    /*    18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */
    /*    Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */
    /*    Annual Symposium on Computational Geometry (San Diego, California),    */
    /*    pages 274-280, Association for Computing Machinery, May 1993,          */
    /*    http://portal.acm.org/citation.cfm?id=161150 .                         */
    /*                                                                           */
    /*  The Delaunay refinement algorithm has been modified so that it meshes    */
    /*    domains with small input angles well, as described in Gary L. Miller,  */
    /*    Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's         */
    /*    Algorithm Works," Twelfth International Meshing Roundtable, pages      */
    /*    91-102, Sandia National Laboratories, September 2003.  [*]             */
    /*                                                                           */
    /*  My implementation of the divide-and-conquer and incremental Delaunay     */
    /*    triangulation algorithms follows closely the presentation of Guibas    */
    /*    and Stolfi, even though I use a triangle-based data structure instead  */
    /*    of their quad-edge data structure.  (In fact, I originally implemented */
    /*    Triangle using the quad-edge data structure, but the switch to a       */
    /*    triangle-based data structure sped Triangle by a factor of two.)  The  */
    /*    mesh manipulation primitives and the two aforementioned Delaunay       */
    /*    triangulation algorithms are described by Leonidas J. Guibas and Jorge */
    /*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   */
    /*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     */
    /*    4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*/
    /*                                                                           */
    /*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   */
    /*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       */
    /*    Delaunay Triangulation," International Journal of Computer and         */
    /*    Information Science 9(3):219-242, 1980.  Triangle's improvement of the */
    /*    divide-and-conquer algorithm by alternating between vertical and       */
    /*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  */
    /*    Conquer Algorithm for Constructing Delaunay Triangulations,"           */
    /*    Algorithmica 2(2):137-151, 1987.                                       */
    /*                                                                           */
    /*  The incremental insertion algorithm was first proposed by C. L. Lawson,  */
    /*    "Software for C1 Surface Interpolation," in Mathematical Software III, */
    /*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     */
    /*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       */
    /*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         */
    /*    Preprocessing in Two- and Three-Dimensional Delaunay Triangulations,"  */
    /*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
    /*    ACM, May 1996.  [*]  If I were to randomize the order of vertex        */
    /*    insertion (I currently don't bother), their result combined with the   */
    /*    result of Kenneth L. Clarkson and Peter W. Shor, "Applications of      */
    /*    Random Sampling in Computational Geometry II," Discrete &              */
    /*    Computational Geometry 4(1):387-421, 1989, would yield an expected     */
    /*    O(n^{4/3}) bound on running time.                                      */
    /*                                                                           */
    /*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  */
    /*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          */
    /*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      */
    /*    boundary of the triangulation are maintained in a splay tree for the   */
    /*    purpose of point location.  Splay trees are described by Daniel        */
    /*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
    /*    Trees," Journal of the ACM 32(3):652-686, July 1985,                   */
    /*    http://portal.acm.org/citation.cfm?id=3835 .                           */
    /*                                                                           */
    /*  The algorithms for exact computation of the signs of determinants are    */
    /*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  */
    /*    Point Arithmetic and Fast Robust Geometric Predicates," Discrete &     */
    /*    Computational Geometry 18(3):305-363, October 1997.  (Also available   */
    /*    as Technical Report CMU-CS-96-140, School of Computer Science,         */
    /*    Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.)  [*]  */
    /*    An abbreviated version appears as Jonathan Richard Shewchuk, "Robust   */
    /*    Adaptive Floating-Point Geometric Predicates," Proceedings of the      */
    /*    Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */
    /*    Many of the ideas for my exact arithmetic routines originate with      */
    /*    Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point  */
    /*    Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */
    /*    Computer Society Press, 1991.  [*]  Many of the ideas for the correct  */
    /*    evaluation of the signs of determinants are taken from Steven Fortune  */
    /*    and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa-   */
    /*    tional Geometry," Proceedings of the Ninth Annual Symposium on         */
    /*    Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven    */
    /*    Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu-   */
    /*    lations," International Journal of Computational Geometry & Applica-   */
    /*    tions 5(1-2):193-213, March-June 1995.                                 */
    /*                                                                           */
    /*  The method of inserting new vertices off-center (not precisely at the    */
    /*    circumcenter of every poor-quality triangle) is from Alper Ungor,      */
    /*    "Off-centers:  A New Type of Steiner Points for Computing Size-Optimal */
    /*    Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN      */
    /*    2004 (Buenos Aires, Argentina), April 2004.                            */
    /*                                                                           */
    /*  For definitions of and results involving Delaunay triangulations,        */
    /*    constrained and conforming versions thereof, and other aspects of      */
    /*    triangular mesh generation, see the excellent survey by Marshall Bern  */
    /*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    */
    /*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         */
    /*    editors, World Scientific, Singapore, pp. 23-90, 1992.  [*]            */
    /*                                                                           */
    /*  The time for incrementally adding PSLG (planar straight line graph)      */
    /*    segments to create a constrained Delaunay triangulation is probably    */
    /*    O(t^2) per segment in the worst case and O(t) per segment in the       */
    /*    common case, where t is the number of triangles that intersect the     */
    /*    segment before it is inserted.  This doesn't count point location,     */
    /*    which can be much more expensive.  I could improve this to O(d log d)  */
    /*    time, but d is usually quite small, so it's not worth the bother.      */
    /*    (This note does not apply when the -s switch is used, invoking a       */
    /*    different method is used to insert segments.)                          */
    /*                                                                           */
    /*  The time for deleting a vertex from a Delaunay triangulation is O(d^2)   */
    /*    in the worst case and O(d) in the common case, where d is the degree   */
    /*    of the vertex being deleted.  I could improve this to O(d log d) time, */
    /*    but d is usually quite small, so it's not worth the bother.            */
    /*                                                                           */
    /*  Ruppert's Delaunay refinement algorithm typically generates triangles    */
    /*    at a linear rate (constant time per triangle) after the initial        */
    /*    triangulation is formed.  There may be pathological cases where        */
    /*    quadratic time is required, but these never arise in practice.         */
    /*                                                                           */
    /*  The geometric predicates (circumcenter calculations, segment             */
    /*    intersection formulae, etc.) appear in my "Lecture Notes on Geometric  */
    /*    Robustness" at http://www.cs.berkeley.edu/~jrs/mesh .                  */
    /*                                                                           */
    /*  If you make any improvements to this code, please please please let me   */
    /*    know, so that I may obtain the improvements.  Even if you don't change */
    /*    the code, I'd still love to hear what it's being used for.             */
    /*                                                                           */
    /*****************************************************************************/
    
    /* For single precision (which will save some memory and reduce paging),     */
    /*   define the symbol SINGLE by using the -DSINGLE compiler switch or by    */
    /*   writing "#define SINGLE" below.                                         */
    /*                                                                           */
    /* For double precision (which will allow you to refine meshes to a smaller  */
    /*   edge length), leave SINGLE undefined.                                   */
    /*                                                                           */
    /* Double precision uses more memory, but improves the resolution of the     */
    /*   meshes you can generate with Triangle.  It also reduces the likelihood  */
    /*   of a floating exception due to overflow.  Finally, it is much faster    */
    /*   than single precision on 64-bit architectures like the DEC Alpha.  I    */
    /*   recommend double precision unless you want to generate a mesh for which */
    /*   you do not have enough memory.                                          */
    
    /* #define SINGLE */
    
    #ifdef SINGLE
    #define REAL float
    #else /* not SINGLE */
    #define REAL double
    #endif /* not SINGLE */
    
    /* If yours is not a Unix system, define the NO_TIMER compiler switch to     */
    /*   remove the Unix-specific timing code.                                   */
    
    /* #define NO_TIMER */
    
    /* To insert lots of self-checks for internal errors, define the SELF_CHECK  */
    /*   symbol.  This will slow down the program significantly.  It is best to  */
    /*   define the symbol using the -DSELF_CHECK compiler switch, but you could */
    /*   write "#define SELF_CHECK" below.  If you are modifying this code, I    */
    /*   recommend you turn self-checks on until your work is debugged.          */
    
    /* #define SELF_CHECK */
    
    /* To compile Triangle as a callable object library (triangle.o), define the */
    /*   TRILIBRARY symbol.  Read the file triangle.h for details on how to call */
    /*   the procedure triangulate() that results.                               */
    
    /* #define TRILIBRARY */
    
    /* It is possible to generate a smaller version of Triangle using one or     */
    /*   both of the following symbols.  Define the REDUCED symbol to eliminate  */
    /*   all features that are primarily of research interest; specifically, the */
    /*   -i, -F, -s, and -C switches.  Define the CDT_ONLY symbol to eliminate   */
    /*   all meshing algorithms above and beyond constrained Delaunay            */
    /*   triangulation; specifically, the -r, -q, -a, -u, -D, -S, and -s         */
    /*   switches.  These reductions are most likely to be useful when           */
    /*   generating an object library (triangle.o) by defining the TRILIBRARY    */
    /*   symbol.                                                                 */
    
    /* #define REDUCED */
    /* #define CDT_ONLY */
    
    /* On some machines, my exact arithmetic routines might be defeated by the   */
    /*   use of internal extended precision floating-point registers.  The best  */
    /*   way to solve this problem is to set the floating-point registers to use */
    /*   single or double precision internally.  On 80x86 processors, this may   */
    /*   be accomplished by setting the CPU86 symbol for the Microsoft C         */
    /*   compiler, or the LINUX symbol for the gcc compiler running on Linux.    */
    /*                                                                           */
    /* An inferior solution is to declare certain values as `volatile', thus     */
    /*   forcing them to be stored to memory and rounded off.  Unfortunately,    */
    /*   this solution might slow Triangle down quite a bit.  To use volatile    */
    /*   values, write "#define INEXACT volatile" below.  Normally, however,     */
    /*   INEXACT should be defined to be nothing.  ("#define INEXACT".)          */
    /*                                                                           */
    /* For more discussion, see http://www.cs.cmu.edu/~quake/robust.pc.html .    */
    /*   For yet more discussion, see Section 5 of my paper, "Adaptive Precision */
    /*   Floating-Point Arithmetic and Fast Robust Geometric Predicates" (also   */
    /*   available as Section 6.6 of my dissertation).                           */
    
    /* #define CPU86 */
    /* #define LINUX */
    
    #define INEXACT /* Nothing */
    /* #define INEXACT volatile */
    
    /* Maximum number of characters in a file name (including the null).         */
    
    #define FILENAMESIZE 2048
    
    /* Maximum number of characters in a line read from a file (including the    */
    /*   null).                                                                  */
    
    #define INPUTLINESIZE 1024
    
    /* For efficiency, a variety of data structures are allocated in bulk.  The  */
    /*   following constants determine how many of each structure is allocated   */
    /*   at once.                                                                */
    
    #define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */
    #define SUBSEGPERBLOCK 508       /* Number of subsegments allocated at once. */
    #define VERTEXPERBLOCK 4092         /* Number of vertices allocated at once. */
    #define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. */
    /* Number of encroached subsegments allocated at once. */
    #define BADSUBSEGPERBLOCK 252
    /* Number of skinny triangles allocated at once. */
    #define BADTRIPERBLOCK 4092
    /* Number of flipped triangles allocated at once. */
    #define FLIPSTACKERPERBLOCK 252
    /* Number of splay tree nodes allocated at once. */
    #define SPLAYNODEPERBLOCK 508
    
    /* The vertex types.   A DEADVERTEX has been deleted entirely.  An           */
    /*   UNDEADVERTEX is not part of the mesh, but is written to the output      */
    /*   .node file and affects the node indexing in the other output files.     */
    
    #define INPUTVERTEX 0
    #define SEGMENTVERTEX 1
    #define FREEVERTEX 2
    #define DEADVERTEX -32768
    #define UNDEADVERTEX -32767
    
    /* The next line is used to outsmart some very stupid compilers.  If your    */
    /*   compiler is smarter, feel free to replace the "int" with "void".        */
    /*   Not that it matters.                                                    */
    
    #define VOID int
    
    /* Two constants for algorithms based on random sampling.  Both constants    */
    /*   have been chosen empirically to optimize their respective algorithms.   */
    
    /* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    */
    /*   how large a random sample of triangles to inspect.                      */
    
    #define SAMPLEFACTOR 11
    
    /* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
    /*   of boundary edges should be maintained in the splay tree for point      */
    /*   location on the front.                                                  */
    
    #define SAMPLERATE 10
    
    /* A number that speaks for itself, every kissable digit.                    */
    
    #define PI 3.141592653589793238462643383279502884197169399375105820974944592308
    
    /* Another fave.                                                             */
    
    #define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
    
    /* And here's one for those of you who are intimidated by math.              */
    
    #define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <math.h>
    #ifndef NO_TIMER
    #include <sys/time.h>
    #endif /* not NO_TIMER */
    #ifdef CPU86
    #include <float.h>
    #endif /* CPU86 */
    #ifdef LINUX
    #include <fpu_control.h>
    #endif /* LINUX */
    #ifdef TRILIBRARY
    #include "triangle.h"
    #endif /* TRILIBRARY */
    
    /* A few forward declarations.                                               */
    
    #ifndef TRILIBRARY
    char *readline();
    char *findfield();
    #endif /* not TRILIBRARY */
    
    /* Labels that signify the result of point location.  The result of a        */
    /*   search indicates that the point falls in the interior of a triangle, on */
    /*   an edge, on a vertex, or outside the mesh.                              */
    
    enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
    
    /* Labels that signify the result of vertex insertion.  The result indicates */
    /*   that the vertex was inserted with complete success, was inserted but    */
    /*   encroaches upon a subsegment, was not inserted because it lies on a     */
    /*   segment, or was not inserted because another vertex occupies the same   */
    /*   location.                                                               */
    
    enum insertvertexresult {SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX,
                             DUPLICATEVERTEX};
    
    /* Labels that signify the result of direction finding.  The result          */
    /*   indicates that a segment connecting the two query points falls within   */
    /*   the direction triangle, along the left edge of the direction triangle,  */
    /*   or along the right edge of the direction triangle.                      */
    
    enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
    
    /*****************************************************************************/
    /*                                                                           */
    /*  The basic mesh data structures                                           */
    /*                                                                           */
    /*  There are three:  vertices, triangles, and subsegments (abbreviated      */
    /*  `subseg').  These three data structures, linked by pointers, comprise    */
    /*  the mesh.  A vertex simply represents a mesh vertex and its properties.  */
    /*  A triangle is a triangle.  A subsegment is a special data structure used */
    /*  to represent an impenetrable edge of the mesh (perhaps on the outer      */
    /*  boundary, on the boundary of a hole, or part of an internal boundary     */
    /*  separating two triangulated regions).  Subsegments represent boundaries, */
    /*  defined by the user, that triangles may not lie across.                  */
    /*                                                                           */
    /*  A triangle consists of a list of three vertices, a list of three         */
    /*  adjoining triangles, a list of three adjoining subsegments (when         */
    /*  segments exist), an arbitrary number of optional user-defined            */
    /*  floating-point attributes, and an optional area constraint.  The latter  */
    /*  is an upper bound on the permissible area of each triangle in a region,  */
    /*  used for mesh refinement.                                                */
    /*                                                                           */
    /*  For a triangle on a boundary of the mesh, some or all of the neighboring */
    /*  triangles may not be present.  For a triangle in the interior of the     */
    /*  mesh, often no neighboring subsegments are present.  Such absent         */
    /*  triangles and subsegments are never represented by NULL pointers; they   */
    /*  are represented by two special records:  `dummytri', the triangle that   */
    /*  fills "outer space", and `dummysub', the omnipresent subsegment.         */
    /*  `dummytri' and `dummysub' are used for several reasons; for instance,    */
    /*  they can be dereferenced and their contents examined without violating   */
    /*  protected memory.                                                        */
    /*                                                                           */
    /*  However, it is important to understand that a triangle includes other    */
    /*  information as well.  The pointers to adjoining vertices, triangles, and */
    /*  subsegments are ordered in a way that indicates their geometric relation */
    /*  to each other.  Furthermore, each of these pointers contains orientation */
    /*  information.  Each pointer to an adjoining triangle indicates which face */
    /*  of that triangle is contacted.  Similarly, each pointer to an adjoining  */
    /*  subsegment indicates which side of that subsegment is contacted, and how */
    /*  the subsegment is oriented relative to the triangle.                     */
    /*                                                                           */
    /*  The data structure representing a subsegment may be thought to be        */
    /*  abutting the edge of one or two triangle data structures:  either        */
    /*  sandwiched between two triangles, or resting against one triangle on an  */
    /*  exterior boundary or hole boundary.                                      */
    /*                                                                           */
    /*  A subsegment consists of a list of four vertices--the vertices of the    */
    /*  subsegment, and the vertices of the segment it is a part of--a list of   */
    /*  two adjoining subsegments, and a list of two adjoining triangles.  One   */
    /*  of the two adjoining triangles may not be present (though there should   */
    /*  always be one), and neighboring subsegments might not be present.        */
    /*  Subsegments also store a user-defined integer "boundary marker".         */
    /*  Typically, this integer is used to indicate what boundary conditions are */
    /*  to be applied at that location in a finite element simulation.           */
    /*                                                                           */
    /*  Like triangles, subsegments maintain information about the relative      */
    /*  orientation of neighboring objects.                                      */
    /*                                                                           */
    /*  Vertices are relatively simple.  A vertex is a list of floating-point    */
    /*  numbers, starting with the x, and y coordinates, followed by an          */
    /*  arbitrary number of optional user-defined floating-point attributes,     */
    /*  followed by an integer boundary marker.  During the segment insertion    */
    /*  phase, there is also a pointer from each vertex to a triangle that may   */
    /*  contain it.  Each pointer is not always correct, but when one is, it     */
    /*  speeds up segment insertion.  These pointers are assigned values once    */
    /*  at the beginning of the segment insertion phase, and are not used or     */
    /*  updated except during this phase.  Edge flipping during segment          */
    /*  insertion will render some of them incorrect.  Hence, don't rely upon    */
    /*  them for anything.                                                       */
    /*                                                                           */
    /*  Other than the exception mentioned above, vertices have no information   */
    /*  about what triangles, subfacets, or subsegments they are linked to.      */
    /*                                                                           */
    /*****************************************************************************/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  Handles                                                                  */
    /*                                                                           */
    /*  The oriented triangle (`otri') and oriented subsegment (`osub') data     */
    /*  structures defined below do not themselves store any part of the mesh.   */
    /*  The mesh itself is made of `triangle's, `subseg's, and `vertex's.        */
    /*                                                                           */
    /*  Oriented triangles and oriented subsegments will usually be referred to  */
    /*  as "handles."  A handle is essentially a pointer into the mesh; it       */
    /*  allows you to "hold" one particular part of the mesh.  Handles are used  */
    /*  to specify the regions in which one is traversing and modifying the mesh.*/
    /*  A single `triangle' may be held by many handles, or none at all.  (The   */
    /*  latter case is not a memory leak, because the triangle is still          */
    /*  connected to other triangles in the mesh.)                               */
    /*                                                                           */
    /*  An `otri' is a handle that holds a triangle.  It holds a specific edge   */
    /*  of the triangle.  An `osub' is a handle that holds a subsegment.  It     */
    /*  holds either the left or right side of the subsegment.                   */
    /*                                                                           */
    /*  Navigation about the mesh is accomplished through a set of mesh          */
    /*  manipulation primitives, further below.  Many of these primitives take   */
    /*  a handle and produce a new handle that holds the mesh near the first     */
    /*  handle.  Other primitives take two handles and glue the corresponding    */
    /*  parts of the mesh together.  The orientation of the handles is           */
    /*  important.  For instance, when two triangles are glued together by the   */
    /*  bond() primitive, they are glued at the edges on which the handles lie.  */
    /*                                                                           */
    /*  Because vertices have no information about which triangles they are      */
    /*  attached to, I commonly represent a vertex by use of a handle whose      */
    /*  origin is the vertex.  A single handle can simultaneously represent a    */
    /*  triangle, an edge, and a vertex.                                         */
    /*                                                                           */
    /*****************************************************************************/
    
    /* The triangle data structure.  Each triangle contains three pointers to    */
    /*   adjoining triangles, plus three pointers to vertices, plus three        */
    /*   pointers to subsegments (declared below; these pointers are usually     */
    /*   `dummysub').  It may or may not also contain user-defined attributes    */
    /*   and/or a floating-point "area constraint."  It may also contain extra   */
    /*   pointers for nodes, when the user asks for high-order elements.         */
    /*   Because the size and structure of a `triangle' is not decided until     */
    /*   runtime, I haven't simply declared the type `triangle' as a struct.     */
    
    typedef REAL **triangle;            /* Really:  typedef triangle *triangle   */
    
    /* An oriented triangle:  includes a pointer to a triangle and orientation.  */
    /*   The orientation denotes an edge of the triangle.  Hence, there are      */
    /*   three possible orientations.  By convention, each edge always points    */
    /*   counterclockwise about the corresponding triangle.                      */
    
    struct otri {
      triangle *tri;
      int orient;                                         /* Ranges from 0 to 2. */
    };
    
    /* The subsegment data structure.  Each subsegment contains two pointers to  */
    /*   adjoining subsegments, plus four pointers to vertices, plus two         */
    /*   pointers to adjoining triangles, plus one boundary marker, plus one     */
    /*   segment number.                                                         */
    
    typedef REAL **subseg;                  /* Really:  typedef subseg *subseg   */
    
    /* An oriented subsegment:  includes a pointer to a subsegment and an        */
    /*   orientation.  The orientation denotes a side of the edge.  Hence, there */
    /*   are two possible orientations.  By convention, the edge is always       */
    /*   directed so that the "side" denoted is the right side of the edge.      */
    
    struct osub {
      subseg *ss;
      int ssorient;                                       /* Ranges from 0 to 1. */
    };
    
    /* The vertex data structure.  Each vertex is actually an array of REALs.    */
    /*   The number of REALs is unknown until runtime.  An integer boundary      */
    /*   marker, and sometimes a pointer to a triangle, is appended after the    */
    /*   REALs.                                                                  */
    
    typedef REAL *vertex;
    
    /* A queue used to store encroached subsegments.  Each subsegment's vertices */
    /*   are stored so that we can check whether a subsegment is still the same. */
    
    struct badsubseg {
      subseg encsubseg;                             /* An encroached subsegment. */
      vertex subsegorg, subsegdest;                         /* Its two vertices. */
    };
    
    /* A queue used to store bad triangles.  The key is the square of the cosine */
    /*   of the smallest angle of the triangle.  Each triangle's vertices are    */
    /*   stored so that one can check whether a triangle is still the same.      */
    
    struct badtriang {
      triangle poortri;                       /* A skinny or too-large triangle. */
      REAL key;                             /* cos^2 of smallest (apical) angle. */
      vertex triangorg, triangdest, triangapex;           /* Its three vertices. */
      struct badtriang *nexttriang;             /* Pointer to next bad triangle. */
    };
    
    /* A stack of triangles flipped during the most recent vertex insertion.     */
    /*   The stack is used to undo the vertex insertion if the vertex encroaches */
    /*   upon a subsegment.                                                      */
    
    struct flipstacker {
      triangle flippedtri;                       /* A recently flipped triangle. */
      struct flipstacker *prevflip;               /* Previous flip in the stack. */
    };
    
    /* A node in a heap used to store events for the sweepline Delaunay          */
    /*   algorithm.  Nodes do not point directly to their parents or children in */
    /*   the heap.  Instead, each node knows its position in the heap, and can   */
    /*   look up its parent and children in a separate array.  The `eventptr'    */
    /*   points either to a `vertex' or to a triangle (in encoded format, so     */
    /*   that an orientation is included).  In the latter case, the origin of    */
    /*   the oriented triangle is the apex of a "circle event" of the sweepline  */
    /*   algorithm.  To distinguish site events from circle events, all circle   */
    /*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */
    
    struct event {
      REAL xkey, ykey;                              /* Coordinates of the event. */
      VOID *eventptr;      /* Can be a vertex or the location of a circle event. */
      int heapposition;              /* Marks this event's position in the heap. */
    };
    
    /* A node in the splay tree.  Each node holds an oriented ghost triangle     */
    /*   that represents a boundary edge of the growing triangulation.  When a   */
    /*   circle event covers two boundary edges with a triangle, so that they    */
    /*   are no longer boundary edges, those edges are not immediately deleted   */
    /*   from the tree; rather, they are lazily deleted when they are next       */
    /*   encountered.  (Since only a random sample of boundary edges are kept    */
    /*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     */
    /*   that a triangle is still the same as when it entered the splay tree; if */
    /*   it has been rotated (due to a circle event), it no longer represents a  */
    /*   boundary edge and should be deleted.                                    */
    
    struct splaynode {
      struct otri keyedge;                     /* Lprev of an edge on the front. */
      vertex keydest;           /* Used to verify that splay node is still live. */
      struct splaynode *lchild, *rchild;              /* Children in splay tree. */
    };
    
    /* A type used to allocate memory.  firstblock is the first block of items.  */
    /*   nowblock is the block from which items are currently being allocated.   */
    /*   nextitem points to the next slab of free memory for an item.            */
    /*   deaditemstack is the head of a linked list (stack) of deallocated items */
    /*   that can be recycled.  unallocateditems is the number of items that     */
    /*   remain to be allocated from nowblock.                                   */
    /*                                                                           */
    /* Traversal is the process of walking through the entire list of items, and */
    /*   is separate from allocation.  Note that a traversal will visit items on */
    /*   the "deaditemstack" stack as well as live items.  pathblock points to   */
    /*   the block currently being traversed.  pathitem points to the next item  */
    /*   to be traversed.  pathitemsleft is the number of items that remain to   */
    /*   be traversed in pathblock.                                              */
    /*                                                                           */
    /* alignbytes determines how new records should be aligned in memory.        */
    /*   itembytes is the length of a record in bytes (after rounding up).       */
    /*   itemsperblock is the number of items allocated at once in a single      */
    /*   block.  itemsfirstblock is the number of items in the first block,      */
    /*   which can vary from the others.  items is the number of currently       */
    /*   allocated items.  maxitems is the maximum number of items that have     */
    /*   been allocated at once; it is the current number of items plus the      */
    /*   number of records kept on deaditemstack.                                */
    
    struct memorypool {
      VOID **firstblock, **nowblock;
      VOID *nextitem;
      VOID *deaditemstack;
      VOID **pathblock;
      VOID *pathitem;
      int alignbytes;
      int itembytes;
      int itemsperblock;
      int itemsfirstblock;
      long items, maxitems;
      int unallocateditems;
      int pathitemsleft;
    };
    
    
    /* Global constants.                                                         */
    
    REAL splitter;       /* Used to split REAL factors for exact multiplication. */
    REAL epsilon;                             /* Floating-point machine epsilon. */
    REAL resulterrbound;
    REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
    REAL iccerrboundA, iccerrboundB, iccerrboundC;
    REAL o3derrboundA, o3derrboundB, o3derrboundC;
    
    /* Random number seed is not constant, but I've made it global anyway.       */
    
    unsigned long randomseed;                     /* Current random number seed. */
    
    
    /* Mesh data structure.  Triangle operates on only one mesh, but the mesh    */
    /*   structure is used (instead of global variables) to allow reentrancy.    */
    
    struct mesh {
    
    /* Variables used to allocate memory for triangles, subsegments, vertices,   */
    /*   viri (triangles being eaten), encroached segments, bad (skinny or too   */
    /*   large) triangles, and splay tree nodes.                                 */
    
      struct memorypool triangles;
      struct memorypool subsegs;
      struct memorypool vertices;
      struct memorypool viri;
      struct memorypool badsubsegs;
      struct memorypool badtriangles;
      struct memorypool flipstackers;
      struct memorypool splaynodes;
    
    /* Variables that maintain the bad triangle queues.  The queues are          */
    /*   ordered from 4095 (highest priority) to 0 (lowest priority).            */
    
      struct badtriang *queuefront[4096];
      struct badtriang *queuetail[4096];
      int nextnonemptyq[4096];
      int firstnonemptyq;
    
    /* Variable that maintains the stack of recently flipped triangles.          */
    
      struct flipstacker *lastflip;
    
    /* Other variables. */
    
      REAL xmin, xmax, ymin, ymax;                            /* x and y bounds. */
      REAL xminextreme;      /* Nonexistent x value used as a flag in sweepline. */
      int invertices;                               /* Number of input vertices. */
      int inelements;                              /* Number of input triangles. */
      int insegments;                               /* Number of input segments. */
      int holes;                                       /* Number of input holes. */
      int regions;                                   /* Number of input regions. */
      int undeads;    /* Number of input vertices that don't appear in the mesh. */
      long edges;                                     /* Number of output edges. */
      int mesh_dim;                                /* Dimension (ought to be 2). */
      int nextras;                           /* Number of attributes per vertex. */
      int eextras;                         /* Number of attributes per triangle. */
      long hullsize;                          /* Number of edges in convex hull. */
      int steinerleft;                 /* Number of Steiner points not yet used. */
      int vertexmarkindex;         /* Index to find boundary marker of a vertex. */
      int vertex2triindex;     /* Index to find a triangle adjacent to a vertex. */
      int highorderindex;  /* Index to find extra nodes for high-order elements. */
      int elemattribindex;            /* Index to find attributes of a triangle. */
      int areaboundindex;             /* Index to find area bound of a triangle. */
      int checksegments;         /* Are there segments in the triangulation yet? */
      int checkquality;                  /* Has quality triangulation begun yet? */
      int readnodefile;                           /* Has a .node file been read? */
      long samples;              /* Number of random samples for point location. */
    
      long incirclecount;                 /* Number of incircle tests performed. */
      long counterclockcount;     /* Number of counterclockwise tests performed. */
      long orient3dcount;           /* Number of 3D orientation tests performed. */
      long hyperbolacount;      /* Number of right-of-hyperbola tests performed. */
      long circumcentercount;  /* Number of circumcenter calculations performed. */
      long circletopcount;       /* Number of circle top calculations performed. */
    
    /* Triangular bounding box vertices.                                         */
    
      vertex infvertex1, infvertex2, infvertex3;
    
    /* Pointer to the `triangle' that occupies all of "outer space."             */
    
      triangle *dummytri;
      triangle *dummytribase;    /* Keep base address so we can free() it later. */
    
    /* Pointer to the omnipresent subsegment.  Referenced by any triangle or     */
    /*   subsegment that isn't really connected to a subsegment at that          */
    /*   location.                                                               */
    
      subseg *dummysub;
      subseg *dummysubbase;      /* Keep base address so we can free() it later. */
    
    /* Pointer to a recently visited triangle.  Improves point location if       */
    /*   proximate vertices are inserted sequentially.                           */
    
      struct otri recenttri;
    
    };                                                  /* End of `struct mesh'. */
    
    
    /* Data structure for command line switches and file names.  This structure  */
    /*   is used (instead of global variables) to allow reentrancy.              */
    
    struct behavior {
    
    /* Switches for the triangulator.                                            */
    /*   poly: -p switch.  refine: -r switch.                                    */
    /*   quality: -q switch.                                                     */
    /*     minangle: minimum angle bound, specified after -q switch.             */
    /*     goodangle: cosine squared of minangle.                                */
    /*     offconstant: constant used to place off-center Steiner points.        */
    /*   vararea: -a switch without number.                                      */
    /*   fixedarea: -a switch with number.                                       */
    /*     maxarea: maximum area bound, specified after -a switch.               */
    /*   usertest: -u switch.                                                    */
    /*   regionattrib: -A switch.  convex: -c switch.                            */
    /*   weighted: 1 for -w switch, 2 for -W switch.  jettison: -j switch        */
    /*   firstnumber: inverse of -z switch.  All items are numbered starting     */
    /*     from `firstnumber'.                                                   */
    /*   edgesout: -e switch.  voronoi: -v switch.                               */
    /*   neighbors: -n switch.  geomview: -g switch.                             */
    /*   nobound: -B switch.  nopolywritten: -P switch.                          */
    /*   nonodewritten: -N switch.  noelewritten: -E switch.                     */
    /*   noiterationnum: -I switch.  noholes: -O switch.                         */
    /*   noexact: -X switch.                                                     */
    /*   order: element order, specified after -o switch.                        */
    /*   nobisect: count of how often -Y switch is selected.                     */
    /*   steiner: maximum number of Steiner points, specified after -S switch.   */
    /*   incremental: -i switch.  sweepline: -F switch.                          */
    /*   dwyer: inverse of -l switch.                                            */
    /*   splitseg: -s switch.                                                    */
    /*   conformdel: -D switch.  docheck: -C switch.                             */
    /*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   */
    /*   usesegments: -p, -r, -q, or -c switch; determines whether segments are  */
    /*     used at all.                                                          */
    /*                                                                           */
    /* Read the instructions to find out the meaning of these switches.          */
    
      int poly, refine, quality, vararea, fixedarea, usertest;
      int regionattrib, convex, weighted, jettison;
      int firstnumber;
      int edgesout, voronoi, neighbors, geomview;
      int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
      int noholes, noexact, conformdel;
      int incremental, sweepline, dwyer;
      int splitseg;
      int docheck;
      int quiet, verbose;
      int usesegments;
      int order;
      int nobisect;
      int steiner;
      REAL minangle, goodangle, offconstant;
      REAL maxarea;
    
    /* Variables for file names.                                                 */
    
    #ifndef TRILIBRARY
      char innodefilename[FILENAMESIZE];
      char inelefilename[FILENAMESIZE];
      char inpolyfilename[FILENAMESIZE];
      char areafilename[FILENAMESIZE];
      char outnodefilename[FILENAMESIZE];
      char outelefilename[FILENAMESIZE];
      char outpolyfilename[FILENAMESIZE];
      char edgefilename[FILENAMESIZE];
      char vnodefilename[FILENAMESIZE];
      char vedgefilename[FILENAMESIZE];
      char neighborfilename[FILENAMESIZE];
      char offfilename[FILENAMESIZE];
    #endif /* not TRILIBRARY */
    
    };                                              /* End of `struct behavior'. */
    
    
    /*****************************************************************************/
    /*                                                                           */
    /*  Mesh manipulation primitives.  Each triangle contains three pointers to  */
    /*  other triangles, with orientations.  Each pointer points not to the      */
    /*  first byte of a triangle, but to one of the first three bytes of a       */
    /*  triangle.  It is necessary to extract both the triangle itself and the   */
    /*  orientation.  To save memory, I keep both pieces of information in one   */
    /*  pointer.  To make this possible, I assume that all triangles are aligned */
    /*  to four-byte boundaries.  The decode() routine below decodes a pointer,  */
    /*  extracting an orientation (in the range 0 to 2) and a pointer to the     */
    /*  beginning of a triangle.  The encode() routine compresses a pointer to a */
    /*  triangle and an orientation into a single pointer.  My assumptions that  */
    /*  triangles are four-byte-aligned and that the `unsigned long' type is     */
    /*  long enough to hold a pointer are two of the few kludges in this program.*/
    /*                                                                           */
    /*  Subsegments are manipulated similarly.  A pointer to a subsegment        */
    /*  carries both an address and an orientation in the range 0 to 1.          */
    /*                                                                           */
    /*  The other primitives take an oriented triangle or oriented subsegment,   */
    /*  and return an oriented triangle or oriented subsegment or vertex; or     */
    /*  they change the connections in the data structure.                       */
    /*                                                                           */
    /*  Below, triangles and subsegments are denoted by their vertices.  The     */
    /*  triangle abc has origin (org) a, destination (dest) b, and apex (apex)   */
    /*  c.  These vertices occur in counterclockwise order about the triangle.   */
    /*  The handle abc may simultaneously denote vertex a, edge ab, and triangle */
    /*  abc.                                                                     */
    /*                                                                           */
    /*  Similarly, the subsegment ab has origin (sorg) a and destination (sdest) */
    /*  b.  If ab is thought to be directed upward (with b directly above a),    */
    /*  then the handle ab is thought to grasp the right side of ab, and may     */
    /*  simultaneously denote vertex a and edge ab.                              */
    /*                                                                           */
    /*  An asterisk (*) denotes a vertex whose identity is unknown.              */
    /*                                                                           */
    /*  Given this notation, a partial list of mesh manipulation primitives      */
    /*  follows.                                                                 */
    /*                                                                           */
    /*                                                                           */
    /*  For triangles:                                                           */
    /*                                                                           */
    /*  sym:  Find the abutting triangle; same edge.                             */
    /*  sym(abc) -> ba*                                                          */
    /*                                                                           */
    /*  lnext:  Find the next edge (counterclockwise) of a triangle.             */
    /*  lnext(abc) -> bca                                                        */
    /*                                                                           */
    /*  lprev:  Find the previous edge (clockwise) of a triangle.                */
    /*  lprev(abc) -> cab                                                        */
    /*                                                                           */
    /*  onext:  Find the next edge counterclockwise with the same origin.        */
    /*  onext(abc) -> ac*                                                        */
    /*                                                                           */
    /*  oprev:  Find the next edge clockwise with the same origin.               */
    /*  oprev(abc) -> a*b                                                        */
    /*                                                                           */
    /*  dnext:  Find the next edge counterclockwise with the same destination.   */
    /*  dnext(abc) -> *ba                                                        */
    /*                                                                           */
    /*  dprev:  Find the next edge clockwise with the same destination.          */
    /*  dprev(abc) -> cb*                                                        */
    /*                                                                           */
    /*  rnext:  Find the next edge (counterclockwise) of the adjacent triangle.  */
    /*  rnext(abc) -> *a*                                                        */
    /*                                                                           */
    /*  rprev:  Find the previous edge (clockwise) of the adjacent triangle.     */
    /*  rprev(abc) -> b**                                                        */
    /*                                                                           */
    /*  org:  Origin          dest:  Destination          apex:  Apex            */
    /*  org(abc) -> a         dest(abc) -> b              apex(abc) -> c         */
    /*                                                                           */
    /*  bond:  Bond two triangles together at the resepective handles.           */
    /*  bond(abc, bad)                                                           */
    /*                                                                           */
    /*                                                                           */
    /*  For subsegments:                                                         */
    /*                                                                           */
    /*  ssym:  Reverse the orientation of a subsegment.                          */
    /*  ssym(ab) -> ba                                                           */
    /*                                                                           */
    /*  spivot:  Find adjoining subsegment with the same origin.                 */
    /*  spivot(ab) -> a*                                                         */
    /*                                                                           */
    /*  snext:  Find next subsegment in sequence.                                */
    /*  snext(ab) -> b*                                                          */
    /*                                                                           */
    /*  sorg:  Origin                      sdest:  Destination                   */
    /*  sorg(ab) -> a                      sdest(ab) -> b                        */
    /*                                                                           */
    /*  sbond:  Bond two subsegments together at the respective origins.         */
    /*  sbond(ab, ac)                                                            */
    /*                                                                           */
    /*                                                                           */
    /*  For interacting tetrahedra and subfacets:                                */
    /*                                                                           */
    /*  tspivot:  Find a subsegment abutting a triangle.                         */
    /*  tspivot(abc) -> ba                                                       */
    /*                                                                           */
    /*  stpivot:  Find a triangle abutting a subsegment.                         */
    /*  stpivot(ab) -> ba*                                                       */
    /*                                                                           */
    /*  tsbond:  Bond a triangle to a subsegment.                                */
    /*  tsbond(abc, ba)                                                          */
    /*                                                                           */
    /*****************************************************************************/
    
    /********* Mesh manipulation primitives begin here                   *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /* Fast lookup arrays to speed some of the mesh manipulation primitives.     */
    
    int plus1mod3[3] = {1, 2, 0};
    int minus1mod3[3] = {2, 0, 1};
    
    /********* Primitives for triangles                                  *********/
    /*                                                                           */
    /*                                                                           */
    
    /* decode() converts a pointer to an oriented triangle.  The orientation is  */
    /*   extracted from the two least significant bits of the pointer.           */
    
    #define decode(ptr, otri)                                                     \
      (otri).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l);         \
      (otri).tri = (triangle *)                                                   \
                      ((unsigned long) (ptr) ^ (unsigned long) (otri).orient)
    
    /* encode() compresses an oriented triangle into a single pointer.  It       */
    /*   relies on the assumption that all triangles are aligned to four-byte    */
    /*   boundaries, so the two least significant bits of (otri).tri are zero.   */
    
    #define encode(otri)                                                          \
      (triangle) ((unsigned long) (otri).tri | (unsigned long) (otri).orient)
    
    /* The following handle manipulation primitives are all described by Guibas  */
    /*   and Stolfi.  However, Guibas and Stolfi use an edge-based data          */
    /*   structure, whereas I use a triangle-based data structure.               */
    
    /* sym() finds the abutting triangle, on the same edge.  Note that the edge  */
    /*   direction is necessarily reversed, because the handle specified by an   */
    /*   oriented triangle is directed counterclockwise around the triangle.     */
    
    #define sym(otri1, otri2)                                                     \
      ptr = (otri1).tri[(otri1).orient];                                          \
      decode(ptr, otri2);
    
    #define symself(otri)                                                         \
      ptr = (otri).tri[(otri).orient];                                            \
      decode(ptr, otri);
    
    /* lnext() finds the next edge (counterclockwise) of a triangle.             */
    
    #define lnext(otri1, otri2)                                                   \
      (otri2).tri = (otri1).tri;                                                  \
      (otri2).orient = plus1mod3[(otri1).orient]
    
    #define lnextself(otri)                                                       \
      (otri).orient = plus1mod3[(otri).orient]
    
    /* lprev() finds the previous edge (clockwise) of a triangle.                */
    
    #define lprev(otri1, otri2)                                                   \
      (otri2).tri = (otri1).tri;                                                  \
      (otri2).orient = minus1mod3[(otri1).orient]
    
    #define lprevself(otri)                                                       \
      (otri).orient = minus1mod3[(otri).orient]
    
    /* onext() spins counterclockwise around a vertex; that is, it finds the     */
    /*   next edge with the same origin in the counterclockwise direction.  This */
    /*   edge is part of a different triangle.                                   */
    
    #define onext(otri1, otri2)                                                   \
      lprev(otri1, otri2);                                                        \
      symself(otri2);
    
    #define onextself(otri)                                                       \
      lprevself(otri);                                                            \
      symself(otri);
    
    /* oprev() spins clockwise around a vertex; that is, it finds the next edge  */
    /*   with the same origin in the clockwise direction.  This edge is part of  */
    /*   a different triangle.                                                   */
    
    #define oprev(otri1, otri2)                                                   \
      sym(otri1, otri2);                                                          \
      lnextself(otri2);
    
    #define oprevself(otri)                                                       \
      symself(otri);                                                              \
      lnextself(otri);
    
    /* dnext() spins counterclockwise around a vertex; that is, it finds the     */
    /*   next edge with the same destination in the counterclockwise direction.  */
    /*   This edge is part of a different triangle.                              */
    
    #define dnext(otri1, otri2)                                                   \
      sym(otri1, otri2);                                                          \
      lprevself(otri2);
    
    #define dnextself(otri)                                                       \
      symself(otri);                                                              \
      lprevself(otri);
    
    /* dprev() spins clockwise around a vertex; that is, it finds the next edge  */
    /*   with the same destination in the clockwise direction.  This edge is     */
    /*   part of a different triangle.                                           */
    
    #define dprev(otri1, otri2)                                                   \
      lnext(otri1, otri2);                                                        \
      symself(otri2);
    
    #define dprevself(otri)                                                       \
      lnextself(otri);                                                            \
      symself(otri);
    
    /* rnext() moves one edge counterclockwise about the adjacent triangle.      */
    /*   (It's best understood by reading Guibas and Stolfi.  It involves        */
    /*   changing triangles twice.)                                              */
    
    #define rnext(otri1, otri2)                                                   \
      sym(otri1, otri2);                                                          \
      lnextself(otri2);                                                           \
      symself(otri2);
    
    #define rnextself(otri)                                                       \
      symself(otri);                                                              \
      lnextself(otri);                                                            \
      symself(otri);
    
    /* rprev() moves one edge clockwise about the adjacent triangle.             */
    /*   (It's best understood by reading Guibas and Stolfi.  It involves        */
    /*   changing triangles twice.)                                              */
    
    #define rprev(otri1, otri2)                                                   \
      sym(otri1, otri2);                                                          \
      lprevself(otri2);                                                           \
      symself(otri2);
    
    #define rprevself(otri)                                                       \
      symself(otri);                                                              \
      lprevself(otri);                                                            \
      symself(otri);
    
    /* These primitives determine or set the origin, destination, or apex of a   */
    /* triangle.                                                                 */
    
    #define org(otri, vertexptr)                                                  \
      vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3]
    
    #define dest(otri, vertexptr)                                                 \
      vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3]
    
    #define apex(otri, vertexptr)                                                 \
      vertexptr = (vertex) (otri).tri[(otri).orient + 3]
    
    #define setorg(otri, vertexptr)                                               \
      (otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr
    
    #define setdest(otri, vertexptr)                                              \
      (otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr
    
    #define setapex(otri, vertexptr)                                              \
      (otri).tri[(otri).orient + 3] = (triangle) vertexptr
    
    /* Bond two triangles together.                                              */
    
    #define bond(otri1, otri2)                                                    \
      (otri1).tri[(otri1).orient] = encode(otri2);                                \
      (otri2).tri[(otri2).orient] = encode(otri1)
    
    /* Dissolve a bond (from one side).  Note that the other triangle will still */
    /*   think it's connected to this triangle.  Usually, however, the other     */
    /*   triangle is being deleted entirely, or bonded to another triangle, so   */
    /*   it doesn't matter.                                                      */
    
    #define dissolve(otri)                                                        \
      (otri).tri[(otri).orient] = (triangle) m->dummytri
    
    /* Copy an oriented triangle.                                                */
    
    #define otricopy(otri1, otri2)                                                \
      (otri2).tri = (otri1).tri;                                                  \
      (otri2).orient = (otri1).orient
    
    /* Test for equality of oriented triangles.                                  */
    
    #define otriequal(otri1, otri2)                                               \
      (((otri1).tri == (otri2).tri) &&                                            \
       ((otri1).orient == (otri2).orient))
    
    /* Primitives to infect or cure a triangle with the virus.  These rely on    */
    /*   the assumption that all subsegments are aligned to four-byte boundaries.*/
    
    #define infect(otri)                                                          \
      (otri).tri[6] = (triangle)                                                  \
                        ((unsigned long) (otri).tri[6] | (unsigned long) 2l)
    
    #define uninfect(otri)                                                        \
      (otri).tri[6] = (triangle)                                                  \
                        ((unsigned long) (otri).tri[6] & ~ (unsigned long) 2l)
    
    /* Test a triangle for viral infection.                                      */
    
    #define infected(otri)                                                        \
      (((unsigned long) (otri).tri[6] & (unsigned long) 2l) != 0l)
    
    /* Check or set a triangle's attributes.                                     */
    
    #define elemattribute(otri, attnum)                                           \
      ((REAL *) (otri).tri)[m->elemattribindex + (attnum)]
    
    #define setelemattribute(otri, attnum, value)                                 \
      ((REAL *) (otri).tri)[m->elemattribindex + (attnum)] = value
    
    /* Check or set a triangle's maximum area bound.                             */
    
    #define areabound(otri)  ((REAL *) (otri).tri)[m->areaboundindex]
    
    #define setareabound(otri, value)                                             \
      ((REAL *) (otri).tri)[m->areaboundindex] = value
    
    /* Check or set a triangle's deallocation.  Its second pointer is set to     */
    /*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
    /*   for the stack of dead items.)  Its fourth pointer (its first vertex)    */
    /*   is set to NULL in case a `badtriang' structure points to it.            */
    
    #define deadtri(tria)  ((tria)[1] == (triangle) NULL)
    
    #define killtri(tria)                                                         \
      (tria)[1] = (triangle) NULL;                                                \
      (tria)[3] = (triangle) NULL
    
    /********* Primitives for subsegments                                *********/
    /*                                                                           */
    /*                                                                           */
    
    /* sdecode() converts a pointer to an oriented subsegment.  The orientation  */
    /*   is extracted from the least significant bit of the pointer.  The two    */
    /*   least significant bits (one for orientation, one for viral infection)   */
    /*   are masked out to produce the real pointer.                             */
    
    #define sdecode(sptr, osub)                                                   \
      (osub).ssorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l);      \
      (osub).ss = (subseg *)                                                      \
                  ((unsigned long) (sptr) & ~ (unsigned long) 3l)
    
    /* sencode() compresses an oriented subsegment into a single pointer.  It    */
    /*   relies on the assumption that all subsegments are aligned to two-byte   */
    /*   boundaries, so the least significant bit of (osub).ss is zero.          */
    
    #define sencode(osub)                                                         \
      (subseg) ((unsigned long) (osub).ss | (unsigned long) (osub).ssorient)
    
    /* ssym() toggles the orientation of a subsegment.                           */
    
    #define ssym(osub1, osub2)                                                    \
      (osub2).ss = (osub1).ss;                                                    \
      (osub2).ssorient = 1 - (osub1).ssorient
    
    #define ssymself(osub)                                                        \
      (osub).ssorient = 1 - (osub).ssorient
    
    /* spivot() finds the other subsegment (from the same segment) that shares   */
    /*   the same origin.                                                        */
    
    #define spivot(osub1, osub2)                                                  \
      sptr = (osub1).ss[(osub1).ssorient];                                        \
      sdecode(sptr, osub2)
    
    #define spivotself(osub)                                                      \
      sptr = (osub).ss[(osub).ssorient];                                          \
      sdecode(sptr, osub)
    
    /* snext() finds the next subsegment (from the same segment) in sequence;    */
    /*   one whose origin is the input subsegment's destination.                 */
    
    #define snext(osub1, osub2)                                                   \
      sptr = (osub1).ss[1 - (osub1).ssorient];                                    \
      sdecode(sptr, osub2)
    
    #define snextself(osub)                                                       \
      sptr = (osub).ss[1 - (osub).ssorient];                                      \
      sdecode(sptr, osub)
    
    /* These primitives determine or set the origin or destination of a          */
    /*   subsegment or the segment that includes it.                             */
    
    #define sorg(osub, vertexptr)                                                 \
      vertexptr = (vertex) (osub).ss[2 + (osub).ssorient]
    
    #define sdest(osub, vertexptr)                                                \
      vertexptr = (vertex) (osub).ss[3 - (osub).ssorient]
    
    #define setsorg(osub, vertexptr)                                              \
      (osub).ss[2 + (osub).ssorient] = (subseg) vertexptr
    
    #define setsdest(osub, vertexptr)                                             \
      (osub).ss[3 - (osub).ssorient] = (subseg) vertexptr
    
    #define segorg(osub, vertexptr)                                               \
      vertexptr = (vertex) (osub).ss[4 + (osub).ssorient]
    
    #define segdest(osub, vertexptr)                                              \
      vertexptr = (vertex) (osub).ss[5 - (osub).ssorient]
    
    #define setsegorg(osub, vertexptr)                                            \
      (osub).ss[4 + (osub).ssorient] = (subseg) vertexptr
    
    #define setsegdest(osub, vertexptr)                                           \
      (osub).ss[5 - (osub).ssorient] = (subseg) vertexptr
    
    /* These primitives read or set a boundary marker.  Boundary markers are     */
    /*   used to hold user-defined tags for setting boundary conditions in       */
    /*   finite element solvers.                                                 */
    
    #define mark(osub)  (* (int *) ((osub).ss + 8))
    
    #define setmark(osub, value)                                                  \
      * (int *) ((osub).ss + 8) = value
    
    /* Bond two subsegments together.                                            */
    
    #define sbond(osub1, osub2)                                                   \
      (osub1).ss[(osub1).ssorient] = sencode(osub2);                              \
      (osub2).ss[(osub2).ssorient] = sencode(osub1)
    
    /* Dissolve a subsegment bond (from one side).  Note that the other          */
    /*   subsegment will still think it's connected to this subsegment.          */
    
    #define sdissolve(osub)                                                       \
      (osub).ss[(osub).ssorient] = (subseg) m->dummysub
    
    /* Copy a subsegment.                                                        */
    
    #define subsegcopy(osub1, osub2)                                              \
      (osub2).ss = (osub1).ss;                                                    \
      (osub2).ssorient = (osub1).ssorient
    
    /* Test for equality of subsegments.                                         */
    
    #define subsegequal(osub1, osub2)                                             \
      (((osub1).ss == (osub2).ss) &&                                              \
       ((osub1).ssorient == (osub2).ssorient))
    
    /* Check or set a subsegment's deallocation.  Its second pointer is set to   */
    /*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
    /*   for the stack of dead items.)  Its third pointer (its first vertex)     */
    /*   is set to NULL in case a `badsubseg' structure points to it.            */
    
    #define deadsubseg(sub)  ((sub)[1] == (subseg) NULL)
    
    #define killsubseg(sub)                                                       \
      (sub)[1] = (subseg) NULL;                                                   \
      (sub)[2] = (subseg) NULL
    
    /********* Primitives for interacting triangles and subsegments      *********/
    /*                                                                           */
    /*                                                                           */
    
    /* tspivot() finds a subsegment abutting a triangle.                         */
    
    #define tspivot(otri, osub)                                                   \
      sptr = (subseg) (otri).tri[6 + (otri).orient];                              \
      sdecode(sptr, osub)
    
    /* stpivot() finds a triangle abutting a subsegment.  It requires that the   */
    /*   variable `ptr' of type `triangle' be defined.                           */
    
    #define stpivot(osub, otri)                                                   \
      ptr = (triangle) (osub).ss[6 + (osub).ssorient];                            \
      decode(ptr, otri)
    
    /* Bond a triangle to a subsegment.                                          */
    
    #define tsbond(otri, osub)                                                    \
      (otri).tri[6 + (otri).orient] = (triangle) sencode(osub);                   \
      (osub).ss[6 + (osub).ssorient] = (subseg) encode(otri)
    
    /* Dissolve a bond (from the triangle side).                                 */
    
    #define tsdissolve(otri)                                                      \
      (otri).tri[6 + (otri).orient] = (triangle) m->dummysub
    
    /* Dissolve a bond (from the subsegment side).                               */
    
    #define stdissolve(osub)                                                      \
      (osub).ss[6 + (osub).ssorient] = (subseg) m->dummytri
    
    /********* Primitives for vertices                                   *********/
    /*                                                                           */
    /*                                                                           */
    
    #define vertexmark(vx)  ((int *) (vx))[m->vertexmarkindex]
    
    #define setvertexmark(vx, value)                                              \
      ((int *) (vx))[m->vertexmarkindex] = value
    
    #define vertextype(vx)  ((int *) (vx))[m->vertexmarkindex + 1]
    
    #define setvertextype(vx, value)                                              \
      ((int *) (vx))[m->vertexmarkindex + 1] = value
    
    #define vertex2tri(vx)  ((triangle *) (vx))[m->vertex2triindex]
    
    #define setvertex2tri(vx, value)                                              \
      ((triangle *) (vx))[m->vertex2triindex] = value
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Mesh manipulation primitives end here                     *********/
    
    /********* User-defined triangle evaluation routine begins here      *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triunsuitable()   Determine if a triangle is unsuitable, and thus must   */
    /*                    be further refined.                                    */
    /*                                                                           */
    /*  You may write your own procedure that decides whether or not a selected  */
    /*  triangle is too big (and needs to be refined).  There are two ways to do */
    /*  this.                                                                    */
    /*                                                                           */
    /*  (1)  Modify the procedure `triunsuitable' below, then recompile          */
    /*  Triangle.                                                                */
    /*                                                                           */
    /*  (2)  Define the symbol EXTERNAL_TEST (either by adding the definition    */
    /*  to this file, or by using the appropriate compiler switch).  This way,   */
    /*  you can compile triangle.c separately from your test.  Write your own    */
    /*  `triunsuitable' procedure in a separate C file (using the same prototype */
    /*  as below).  Compile it and link the object code with triangle.o.         */
    /*                                                                           */
    /*  This procedure returns 1 if the triangle is too large and should be      */
    /*  refined; 0 otherwise.                                                    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef EXTERNAL_TEST
    
    int triunsuitable();
    
    #else /* not EXTERNAL_TEST */
    
    #ifdef ANSI_DECLARATORS
    int triunsuitable(vertex triorg, vertex tridest, vertex triapex, REAL area)
    #else /* not ANSI_DECLARATORS */
    int triunsuitable(triorg, tridest, triapex, area)
    vertex triorg;                              /* The triangle's origin vertex. */
    vertex tridest;                        /* The triangle's destination vertex. */
    vertex triapex;                               /* The triangle's apex vertex. */
    REAL area;                                      /* The area of the triangle. */
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL dxoa, dxda, dxod;
      REAL dyoa, dyda, dyod;
      REAL oalen, dalen, odlen;
      REAL maxlen;
    
      dxoa = triorg[0] - triapex[0];
      dyoa = triorg[1] - triapex[1];
      dxda = tridest[0] - triapex[0];
      dyda = tridest[1] - triapex[1];
      dxod = triorg[0] - tridest[0];
      dyod = triorg[1] - tridest[1];
      /* Find the squares of the lengths of the triangle's three edges. */
      oalen = dxoa * dxoa + dyoa * dyoa;
      dalen = dxda * dxda + dyda * dyda;
      odlen = dxod * dxod + dyod * dyod;
      /* Find the square of the length of the longest edge. */
      maxlen = (dalen > oalen) ? dalen : oalen;
      maxlen = (odlen > maxlen) ? odlen : maxlen;
    
      if (maxlen > 0.05 * (triorg[0] * triorg[0] + triorg[1] * triorg[1]) + 0.02) {
        return 1;
      } else {
        return 0;
      }
    }
    
    #endif /* not EXTERNAL_TEST */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* User-defined triangle evaluation routine ends here        *********/
    
    /********* Memory allocation and program exit wrappers begin here    *********/
    /**                                                                         **/
    /**                                                                         **/
    
    #ifdef ANSI_DECLARATORS
    void triexit(int status)
    #else /* not ANSI_DECLARATORS */
    void triexit(status)
    int status;
    #endif /* not ANSI_DECLARATORS */
    
    {
      exit(status);
    }
    
    #ifdef ANSI_DECLARATORS
    VOID *trimalloc(int size)
    #else /* not ANSI_DECLARATORS */
    VOID *trimalloc(size)
    int size;
    #endif /* not ANSI_DECLARATORS */
    
    {
      VOID *memptr;
    
      memptr = (VOID *) malloc((unsigned int) size);
      if (memptr == (VOID *) NULL) {
        printf("Error:  Out of memory.\n");
        triexit(1);
      }
      return(memptr);
    }
    
    #ifdef ANSI_DECLARATORS
    void trifree(VOID *memptr)
    #else /* not ANSI_DECLARATORS */
    void trifree(memptr)
    VOID *memptr;
    #endif /* not ANSI_DECLARATORS */
    
    {
      free(memptr);
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Memory allocation and program exit wrappers end here      *********/
    
    /********* User interaction routines begin here                      *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  syntax()   Print list of command line switches.                          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    void syntax()
    {
    #ifdef CDT_ONLY
    #ifdef REDUCED
      printf("triangle [-pAcjevngBPNEIOXzo_lQVh] input_file\n");
    #else /* not REDUCED */
      printf("triangle [-pAcjevngBPNEIOXzo_iFlCQVh] input_file\n");
    #endif /* not REDUCED */
    #else /* not CDT_ONLY */
    #ifdef REDUCED
      printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__lQVh] input_file\n");
    #else /* not REDUCED */
      printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n");
    #endif /* not REDUCED */
    #endif /* not CDT_ONLY */
    
      printf("    -p  Triangulates a Planar Straight Line Graph (.poly file).\n");
    #ifndef CDT_ONLY
      printf("    -r  Refines a previously generated mesh.\n");
      printf(
        "    -q  Quality mesh generation.  A minimum angle may be specified.\n");
      printf("    -a  Applies a maximum triangle area constraint.\n");
      printf("    -u  Applies a user-defined triangle constraint.\n");
    #endif /* not CDT_ONLY */
      printf(
        "    -A  Applies attributes to identify triangles in certain regions.\n");
      printf("    -c  Encloses the convex hull with segments.\n");
    #ifndef CDT_ONLY
      printf("    -D  Conforming Delaunay:  all triangles are truly Delaunay.\n");
    #endif /* not CDT_ONLY */
    /*
      printf("    -w  Weighted Delaunay triangulation.\n");
      printf("    -W  Regular triangulation (lower hull of a height field).\n");
    */
      printf("    -j  Jettison unused vertices from output .node file.\n");
      printf("    -e  Generates an edge list.\n");
      printf("    -v  Generates a Voronoi diagram.\n");
      printf("    -n  Generates a list of triangle neighbors.\n");
      printf("    -g  Generates an .off file for Geomview.\n");
      printf("    -B  Suppresses output of boundary information.\n");
      printf("    -P  Suppresses output of .poly file.\n");
      printf("    -N  Suppresses output of .node file.\n");
      printf("    -E  Suppresses output of .ele file.\n");
      printf("    -I  Suppresses mesh iteration numbers.\n");
      printf("    -O  Ignores holes in .poly file.\n");
      printf("    -X  Suppresses use of exact arithmetic.\n");
      printf("    -z  Numbers all items starting from zero (rather than one).\n");
      printf("    -o2 Generates second-order subparametric elements.\n");
    #ifndef CDT_ONLY
      printf("    -Y  Suppresses boundary segment splitting.\n");
      printf("    -S  Specifies maximum number of added Steiner points.\n");
    #endif /* not CDT_ONLY */
    #ifndef REDUCED
      printf("    -i  Uses incremental method, rather than divide-and-conquer.\n");
      printf("    -F  Uses Fortune's sweepline algorithm, rather than d-and-c.\n");
    #endif /* not REDUCED */
      printf("    -l  Uses vertical cuts only, rather than alternating cuts.\n");
    #ifndef REDUCED
    #ifndef CDT_ONLY
      printf(
        "    -s  Force segments into mesh by splitting (instead of using CDT).\n");
    #endif /* not CDT_ONLY */
      printf("    -C  Check consistency of final mesh.\n");
    #endif /* not REDUCED */
      printf("    -Q  Quiet:  No terminal output except errors.\n");
      printf("    -V  Verbose:  Detailed information on what I'm doing.\n");
      printf("    -h  Help:  Detailed instructions for Triangle.\n");
      triexit(0);
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  info()   Print out complete instructions.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    void info()
    {
      printf("Triangle\n");
      printf(
    "A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");
      printf("Version 1.6\n\n");
      printf(
    "Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk\n");
      printf("2360 Woolsey #H / Berkeley, California 94705-1927\n");
      printf("Bugs/comments to jrs@cs.berkeley.edu\n");
      printf(
    "Created as part of the Quake project (tools for earthquake simulation).\n");
      printf(
    "Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
      printf("There is no warranty whatsoever.  Use at your own risk.\n");
    #ifdef SINGLE
      printf("This executable is compiled for single precision arithmetic.\n\n\n");
    #else /* not SINGLE */
      printf("This executable is compiled for double precision arithmetic.\n\n\n");
    #endif /* not SINGLE */
      printf(
    "Triangle generates exact Delaunay triangulations, constrained Delaunay\n");
      printf(
    "triangulations, conforming Delaunay triangulations, Voronoi diagrams, and\n");
      printf(
    "high-quality triangular meshes.  The latter can be generated with no small\n"
    );
      printf(
    "or large angles, and are thus suitable for finite element analysis.  If no\n"
    );
      printf(
    "command line switch is specified, your .node input file is read, and the\n");
      printf(
    "Delaunay triangulation is returned in .node and .ele output files.  The\n");
      printf("command syntax is:\n\n");
      printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n");
      printf(
    "Underscores indicate that numbers may optionally follow certain switches.\n");
      printf(
    "Do not leave any space between a switch and its numeric parameter.\n");
      printf(
    "input_file must be a file with extension .node, or extension .poly if the\n");
      printf(
    "-p switch is used.  If -r is used, you must supply .node and .ele files,\n");
      printf(
    "and possibly a .poly file and an .area file as well.  The formats of these\n"
    );
      printf("files are described below.\n\n");
      printf("Command Line Switches:\n\n");
      printf(
    "    -p  Reads a Planar Straight Line Graph (.poly file), which can specify\n"
    );
      printf(
    "        vertices, segments, holes, regional attributes, and regional area\n");
      printf(
    "        constraints.  Generates a constrained Delaunay triangulation (CDT)\n"
    );
      printf(
    "        fitting the input; or, if -s, -q, -a, or -u is used, a conforming\n");
      printf(
    "        constrained Delaunay triangulation (CCDT).  If you want a truly\n");
      printf(
    "        Delaunay (not just constrained Delaunay) triangulation, use -D as\n");
      printf(
    "        well.  When -p is not used, Triangle reads a .node file by default.\n"
    );
      printf(
    "    -r  Refines a previously generated mesh.  The mesh is read from a .node\n"
    );
      printf(
    "        file and an .ele file.  If -p is also used, a .poly file is read\n");
      printf(
    "        and used to constrain segments in the mesh.  If -a is also used\n");
      printf(
    "        (with no number following), an .area file is read and used to\n");
      printf(
    "        impose area constraints on the mesh.  Further details on refinement\n"
    );
      printf("        appear below.\n");
      printf(
    "    -q  Quality mesh generation by Delaunay refinement (a hybrid of Paul\n");
      printf(
    "        Chew's and Jim Ruppert's algorithms).  Adds vertices to the mesh to\n"
    );
      printf(
    "        ensure that all angles are between 20 and 140 degrees.  An\n");
      printf(
    "        alternative bound on the minimum angle, replacing 20 degrees, may\n");
      printf(
    "        be specified after the `q'.  The specified angle may include a\n");
      printf(
    "        decimal point, but not exponential notation.  Note that a bound of\n"
    );
      printf(
    "        theta degrees on the smallest angle also implies a bound of\n");
      printf(
    "        (180 - 2 theta) on the largest angle.  If the minimum angle is 28.6\n"
    );
      printf(
    "        degrees or smaller, Triangle is mathematically guaranteed to\n");
      printf(
    "        terminate (assuming infinite precision arithmetic--Triangle may\n");
      printf(
    "        fail to terminate if you run out of precision).  In practice,\n");
      printf(
    "        Triangle often succeeds for minimum angles up to 34 degrees.  For\n");
      printf(
    "        some meshes, however, you might need to reduce the minimum angle to\n"
    );
      printf(
    "        avoid problems associated with insufficient floating-point\n");
      printf("        precision.\n");
      printf(
    "    -a  Imposes a maximum triangle area.  If a number follows the `a', no\n");
      printf(
    "        triangle is generated whose area is larger than that number.  If no\n"
    );
      printf(
    "        number is specified, an .area file (if -r is used) or .poly file\n");
      printf(
    "        (if -r is not used) specifies a set of maximum area constraints.\n");
      printf(
    "        An .area file contains a separate area constraint for each\n");
      printf(
    "        triangle, and is useful for refining a finite element mesh based on\n"
    );
      printf(
    "        a posteriori error estimates.  A .poly file can optionally contain\n"
    );
      printf(
    "        an area constraint for each segment-bounded region, thereby\n");
      printf(
    "        controlling triangle densities in a first triangulation of a PSLG.\n"
    );
      printf(
    "        You can impose both a fixed area constraint and a varying area\n");
      printf(
    "        constraint by invoking the -a switch twice, once with and once\n");
      printf(
    "        without a number following.  Each area specified may include a\n");
      printf("        decimal point.\n");
      printf(
    "    -u  Imposes a user-defined constraint on triangle size.  There are two\n"
    );
      printf(
    "        ways to use this feature.  One is to edit the triunsuitable()\n");
      printf(
    "        procedure in triangle.c to encode any constraint you like, then\n");
      printf(
    "        recompile Triangle.  The other is to compile triangle.c with the\n");
      printf(
    "        EXTERNAL_TEST symbol set (compiler switch -DEXTERNAL_TEST), then\n");
      printf(
    "        link Triangle with a separate object file that implements\n");
      printf(
    "        triunsuitable().  In either case, the -u switch causes the user-\n");
      printf("        defined test to be applied to every triangle.\n");
      printf(
    "    -A  Assigns an additional floating-point attribute to each triangle\n");
      printf(
    "        that identifies what segment-bounded region each triangle belongs\n");
      printf(
    "        to.  Attributes are assigned to regions by the .poly file.  If a\n");
      printf(
    "        region is not explicitly marked by the .poly file, triangles in\n");
      printf(
    "        that region are assigned an attribute of zero.  The -A switch has\n");
      printf(
    "        an effect only when the -p switch is used and the -r switch is not.\n"
    );
      printf(
    "    -c  Creates segments on the convex hull of the triangulation.  If you\n");
      printf(
    "        are triangulating a vertex set, this switch causes a .poly file to\n"
    );
      printf(
    "        be written, containing all edges of the convex hull.  If you are\n");
      printf(
    "        triangulating a PSLG, this switch specifies that the whole convex\n");
      printf(
    "        hull of the PSLG should be triangulated, regardless of what\n");
      printf(
    "        segments the PSLG has.  If you do not use this switch when\n");
      printf(
    "        triangulating a PSLG, Triangle assumes that you have identified the\n"
    );
      printf(
    "        region to be triangulated by surrounding it with segments of the\n");
      printf(
    "        input PSLG.  Beware:  if you are not careful, this switch can cause\n"
    );
      printf(
    "        the introduction of an extremely thin angle between a PSLG segment\n"
    );
      printf(
    "        and a convex hull segment, which can cause overrefinement (and\n");
      printf(
    "        possibly failure if Triangle runs out of precision).  If you are\n");
      printf(
    "        refining a mesh, the -c switch works differently:  it causes a\n");
      printf(
    "        .poly file to be written containing the boundary edges of the mesh\n"
    );
      printf("        (useful if no .poly file was read).\n");
      printf(
    "    -D  Conforming Delaunay triangulation:  use this switch if you want to\n"
    );
      printf(
    "        ensure that all the triangles in the mesh are Delaunay, and not\n");
      printf(
    "        merely constrained Delaunay; or if you want to ensure that all the\n"
    );
      printf(
    "        Voronoi vertices lie within the triangulation.  (Some finite volume\n"
    );
      printf(
    "        methods have this requirement.)  This switch invokes Ruppert's\n");
      printf(
    "        original algorithm, which splits every subsegment whose diametral\n");
      printf(
    "        circle is encroached.  It usually increases the number of vertices\n"
    );
      printf("        and triangles.\n");
      printf(
    "    -j  Jettisons vertices that are not part of the final triangulation\n");
      printf(
    "        from the output .node file.  By default, Triangle copies all\n");
      printf(
    "        vertices in the input .node file to the output .node file, in the\n");
      printf(
    "        same order, so their indices do not change.  The -j switch prevents\n"
    );
      printf(
    "        duplicated input vertices, or vertices `eaten' by holes, from\n");
      printf(
    "        appearing in the output .node file.  Thus, if two input vertices\n");
      printf(
    "        have exactly the same coordinates, only the first appears in the\n");
      printf(
    "        output.  If any vertices are jettisoned, the vertex numbering in\n");
      printf(
    "        the output .node file differs from that of the input .node file.\n");
      printf(
    "    -e  Outputs (to an .edge file) a list of edges of the triangulation.\n");
      printf(
    "    -v  Outputs the Voronoi diagram associated with the triangulation.\n");
      printf(
    "        Does not attempt to detect degeneracies, so some Voronoi vertices\n");
      printf(
    "        may be duplicated.  See the discussion of Voronoi diagrams below.\n");
      printf(
    "    -n  Outputs (to a .neigh file) a list of triangles neighboring each\n");
      printf("        triangle.\n");
      printf(
    "    -g  Outputs the mesh to an Object File Format (.off) file, suitable for\n"
    );
      printf("        viewing with the Geometry Center's Geomview package.\n");
      printf(
    "    -B  No boundary markers in the output .node, .poly, and .edge output\n");
      printf(
    "        files.  See the detailed discussion of boundary markers below.\n");
      printf(
    "    -P  No output .poly file.  Saves disk space, but you lose the ability\n");
      printf(
    "        to maintain constraining segments on later refinements of the mesh.\n"
    );
      printf("    -N  No output .node file.\n");
      printf("    -E  No output .ele file.\n");
      printf(
    "    -I  No iteration numbers.  Suppresses the output of .node and .poly\n");
      printf(
    "        files, so your input files won't be overwritten.  (If your input is\n"
    );
      printf(
    "        a .poly file only, a .node file is written.)  Cannot be used with\n");
      printf(
    "        the -r switch, because that would overwrite your input .ele file.\n");
      printf(
    "        Shouldn't be used with the -q, -a, -u, or -s switch if you are\n");
      printf(
    "        using a .node file for input, because no .node file is written, so\n"
    );
      printf("        there is no record of any added Steiner points.\n");
      printf("    -O  No holes.  Ignores the holes in the .poly file.\n");
      printf(
    "    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point\n"
    );
      printf(
    "        arithmetic for certain tests if it thinks the inexact tests are not\n"
    );
      printf(
    "        accurate enough.  Exact arithmetic ensures the robustness of the\n");
      printf(
    "        triangulation algorithms, despite floating-point roundoff error.\n");
      printf(
    "        Disabling exact arithmetic with the -X switch causes a small\n");
      printf(
    "        improvement in speed and creates the possibility that Triangle will\n"
    );
      printf("        fail to produce a valid mesh.  Not recommended.\n");
      printf(
    "    -z  Numbers all items starting from zero (rather than one).  Note that\n"
    );
      printf(
    "        this switch is normally overridden by the value used to number the\n"
    );
      printf(
    "        first vertex of the input .node or .poly file.  However, this\n");
      printf(
    "        switch is useful when calling Triangle from another program.\n");
      printf(
    "    -o2 Generates second-order subparametric elements with six nodes each.\n"
    );
      printf(
    "    -Y  No new vertices on the boundary.  This switch is useful when the\n");
      printf(
    "        mesh boundary must be preserved so that it conforms to some\n");
      printf(
    "        adjacent mesh.  Be forewarned that you will probably sacrifice much\n"
    );
      printf(
    "        of the quality of the mesh; Triangle will try, but the resulting\n");
      printf(
    "        mesh may contain poorly shaped triangles.  Works well if all the\n");
      printf(
    "        boundary vertices are closely spaced.  Specify this switch twice\n");
      printf(
    "        (`-YY') to prevent all segment splitting, including internal\n");
      printf("        boundaries.\n");
      printf(
    "    -S  Specifies the maximum number of Steiner points (vertices that are\n");
      printf(
    "        not in the input, but are added to meet the constraints on minimum\n"
    );
      printf(
    "        angle and maximum area).  The default is to allow an unlimited\n");
      printf(
    "        number.  If you specify this switch with no number after it,\n");
      printf(
    "        the limit is set to zero.  Triangle always adds vertices at segment\n"
    );
      printf(
    "        intersections, even if it needs to use more vertices than the limit\n"
    );
      printf(
    "        you set.  When Triangle inserts segments by splitting (-s), it\n");
      printf(
    "        always adds enough vertices to ensure that all the segments of the\n"
    );
      printf("        PLSG are recovered, ignoring the limit if necessary.\n");
      printf(
    "    -i  Uses an incremental rather than a divide-and-conquer algorithm to\n");
      printf(
    "        construct a Delaunay triangulation.  Try it if the divide-and-\n");
      printf("        conquer algorithm fails.\n");
      printf(
    "    -F  Uses Steven Fortune's sweepline algorithm to construct a Delaunay\n");
      printf(
    "        triangulation.  Warning:  does not use exact arithmetic for all\n");
      printf("        calculations.  An exact result is not guaranteed.\n");
      printf(
    "    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By\n");
      printf(
    "        default, Triangle alternates between vertical and horizontal cuts,\n"
    );
      printf(
    "        which usually improve the speed except with vertex sets that are\n");
      printf(
    "        small or short and wide.  This switch is primarily of theoretical\n");
      printf("        interest.\n");
      printf(
    "    -s  Specifies that segments should be forced into the triangulation by\n"
    );
      printf(
    "        recursively splitting them at their midpoints, rather than by\n");
      printf(
    "        generating a constrained Delaunay triangulation.  Segment splitting\n"
    );
      printf(
    "        is true to Ruppert's original algorithm, but can create needlessly\n"
    );
      printf(
    "        small triangles.  This switch is primarily of theoretical interest.\n"
    );
      printf(
    "    -C  Check the consistency of the final mesh.  Uses exact arithmetic for\n"
    );
      printf(
    "        checking, even if the -X switch is used.  Useful if you suspect\n");
      printf("        Triangle is buggy.\n");
      printf(
    "    -Q  Quiet:  Suppresses all explanation of what Triangle is doing,\n");
      printf("        unless an error occurs.\n");
      printf(
    "    -V  Verbose:  Gives detailed information about what Triangle is doing.\n"
    );
      printf(
    "        Add more `V's for increasing amount of detail.  `-V' is most\n");
      printf(
    "        useful; itgives information on algorithmic progress and much more\n");
      printf(
    "        detailed statistics.  `-VV' gives vertex-by-vertex details, and\n");
      printf(
    "        prints so much that Triangle runs much more slowly.  `-VVVV' gives\n"
    );
      printf("        information only a debugger could love.\n");
      printf("    -h  Help:  Displays these instructions.\n");
      printf("\n");
      printf("Definitions:\n");
      printf("\n");
      printf(
    "  A Delaunay triangulation of a vertex set is a triangulation whose\n");
      printf(
    "  vertices are the vertex set, that covers the convex hull of the vertex\n");
      printf(
    "  set.  A Delaunay triangulation has the property that no vertex lies\n");
      printf(
    "  inside the circumscribing circle (circle that passes through all three\n");
      printf("  vertices) of any triangle in the triangulation.\n\n");
      printf(
    "  A Voronoi diagram of a vertex set is a subdivision of the plane into\n");
      printf(
    "  polygonal cells (some of which may be unbounded, meaning infinitely\n");
      printf(
    "  large), where each cell is the set of points in the plane that are closer\n"
    );
      printf(
    "  to some input vertex than to any other input vertex.  The Voronoi diagram\n"
    );
      printf("  is a geometric dual of the Delaunay triangulation.\n\n");
      printf(
    "  A Planar Straight Line Graph (PSLG) is a set of vertices and segments.\n");
      printf(
    "  Segments are simply edges, whose endpoints are all vertices in the PSLG.\n"
    );
      printf(
    "  Segments may intersect each other only at their endpoints.  The file\n");
      printf("  format for PSLGs (.poly files) is described below.\n\n");
      printf(
    "  A constrained Delaunay triangulation (CDT) of a PSLG is similar to a\n");
      printf(
    "  Delaunay triangulation, but each PSLG segment is present as a single edge\n"
    );
      printf(
    "  of the CDT.  (A constrained Delaunay triangulation is not truly a\n");
      printf(
    "  Delaunay triangulation, because some of its triangles might not be\n");
      printf(
    "  Delaunay.)  By definition, a CDT does not have any vertices other than\n");
      printf(
    "  those specified in the input PSLG.  Depending on context, a CDT might\n");
      printf(
    "  cover the convex hull of the PSLG, or it might cover only a segment-\n");
      printf("  bounded region (e.g. a polygon).\n\n");
      printf(
    "  A conforming Delaunay triangulation of a PSLG is a triangulation in which\n"
    );
      printf(
    "  each triangle is truly Delaunay, and each PSLG segment is represented by\n"
    );
      printf(
    "  a linear contiguous sequence of edges of the triangulation.  New vertices\n"
    );
      printf(
    "  (not part of the PSLG) may appear, and each input segment may have been\n");
      printf(
    "  subdivided into shorter edges (subsegments) by these additional vertices.\n"
    );
      printf(
    "  The new vertices are frequently necessary to maintain the Delaunay\n");
      printf("  property while ensuring that every segment is represented.\n\n");
      printf(
    "  A conforming constrained Delaunay triangulation (CCDT) of a PSLG is a\n");
      printf(
    "  triangulation of a PSLG whose triangles are constrained Delaunay.  New\n");
      printf("  vertices may appear, and input segments may be subdivided into\n");
      printf(
    "  subsegments, but not to guarantee that segments are respected; rather, to\n"
    );
      printf(
    "  improve the quality of the triangles.  The high-quality meshes produced\n");
      printf(
    "  by the -q switch are usually CCDTs, but can be made conforming Delaunay\n");
      printf("  with the -D switch.\n\n");
      printf("File Formats:\n\n");
      printf(
    "  All files may contain comments prefixed by the character '#'.  Vertices,\n"
    );
      printf(
    "  triangles, edges, holes, and maximum area constraints must be numbered\n");
      printf(
    "  consecutively, starting from either 1 or 0.  Whichever you choose, all\n");
      printf(
    "  input files must be consistent; if the vertices are numbered from 1, so\n");
      printf(
    "  must be all other objects.  Triangle automatically detects your choice\n");
      printf(
    "  while reading the .node (or .poly) file.  (When calling Triangle from\n");
      printf(
    "  another program, use the -z switch if you wish to number objects from\n");
      printf("  zero.)  Examples of these file formats are given below.\n\n");
      printf("  .node files:\n");
      printf(
    "    First line:  <# of vertices> <dimension (must be 2)> <# of attributes>\n"
    );
      printf(
    "                                           <# of boundary markers (0 or 1)>\n"
    );
      printf(
    "    Remaining lines:  <vertex #> <x> <y> [attributes] [boundary marker]\n");
      printf("\n");
      printf(
    "    The attributes, which are typically floating-point values of physical\n");
      printf(
    "    quantities (such as mass or conductivity) associated with the nodes of\n"
    );
      printf(
    "    a finite element mesh, are copied unchanged to the output mesh.  If -q,\n"
    );
      printf(
    "    -a, -u, -D, or -s is selected, each new Steiner point added to the mesh\n"
    );
      printf("    has attributes assigned to it by linear interpolation.\n\n");
      printf(
    "    If the fourth entry of the first line is `1', the last column of the\n");
      printf(
    "    remainder of the file is assumed to contain boundary markers.  Boundary\n"
    );
      printf(
    "    markers are used to identify boundary vertices and vertices resting on\n"
    );
      printf(
    "    PSLG segments; a complete description appears in a section below.  The\n"
    );
      printf(
    "    .node file produced by Triangle contains boundary markers in the last\n");
      printf("    column unless they are suppressed by the -B switch.\n\n");
      printf("  .ele files:\n");
      printf(
    "    First line:  <# of triangles> <nodes per triangle> <# of attributes>\n");
      printf(
    "    Remaining lines:  <triangle #> <node> <node> <node> ... [attributes]\n");
      printf("\n");
      printf(
    "    Nodes are indices into the corresponding .node file.  The first three\n");
      printf(
    "    nodes are the corner vertices, and are listed in counterclockwise order\n"
    );
      printf(
    "    around each triangle.  (The remaining nodes, if any, depend on the type\n"
    );
      printf("    of finite element used.)\n\n");
      printf(
    "    The attributes are just like those of .node files.  Because there is no\n"
    );
      printf(
    "    simple mapping from input to output triangles, Triangle attempts to\n");
      printf(
    "    interpolate attributes, and may cause a lot of diffusion of attributes\n"
    );
      printf(
    "    among nearby triangles as the triangulation is refined.  Attributes do\n"
    );
      printf("    not diffuse across segments, so attributes used to identify\n");
      printf("    segment-bounded regions remain intact.\n\n");
      printf(
    "    In .ele files produced by Triangle, each triangular element has three\n");
      printf(
    "    nodes (vertices) unless the -o2 switch is used, in which case\n");
      printf(
    "    subparametric quadratic elements with six nodes each are generated.\n");
      printf(
    "    The first three nodes are the corners in counterclockwise order, and\n");
      printf(
    "    the fourth, fifth, and sixth nodes lie on the midpoints of the edges\n");
      printf(
    "    opposite the first, second, and third vertices, respectively.\n");
      printf("\n");
      printf("  .poly files:\n");
      printf(
    "    First line:  <# of vertices> <dimension (must be 2)> <# of attributes>\n"
    );
      printf(
    "                                           <# of boundary markers (0 or 1)>\n"
    );
      printf(
    "    Following lines:  <vertex #> <x> <y> [attributes] [boundary marker]\n");
      printf("    One line:  <# of segments> <# of boundary markers (0 or 1)>\n");
      printf(
    "    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]\n");
      printf("    One line:  <# of holes>\n");
      printf("    Following lines:  <hole #> <x> <y>\n");
      printf(
    "    Optional line:  <# of regional attributes and/or area constraints>\n");
      printf(
    "    Optional following lines:  <region #> <x> <y> <attribute> <max area>\n");
      printf("\n");
      printf(
    "    A .poly file represents a PSLG, as well as some additional information.\n"
    );
      printf(
    "    The first section lists all the vertices, and is identical to the\n");
      printf(
    "    format of .node files.  <# of vertices> may be set to zero to indicate\n"
    );
      printf(
    "    that the vertices are listed in a separate .node file; .poly files\n");
      printf(
    "    produced by Triangle always have this format.  A vertex set represented\n"
    );
      printf(
    "    this way has the advantage that it may easily be triangulated with or\n");
      printf(
    "    without segments (depending on whether the -p switch is invoked).\n");
      printf("\n");
      printf(
    "    The second section lists the segments.  Segments are edges whose\n");
      printf(
    "    presence in the triangulation is enforced.  (Depending on the choice of\n"
    );
      printf(
    "    switches, segment might be subdivided into smaller edges).  Each\n");
      printf(
    "    segment is specified by listing the indices of its two endpoints.  This\n"
    );
      printf(
    "    means that you must include its endpoints in the vertex list.  Each\n");
      printf("    segment, like each point, may have a boundary marker.\n\n");
      printf(
    "    If -q, -a, -u, and -s are not selected, Triangle produces a constrained\n"
    );
      printf(
    "    Delaunay triangulation (CDT), in which each segment appears as a single\n"
    );
      printf(
    "    edge in the triangulation.  If -q, -a, -u, or -s is selected, Triangle\n"
    );
      printf(
    "    produces a conforming constrained Delaunay triangulation (CCDT), in\n");
      printf(
    "    which segments may be subdivided into smaller edges.  If -D is\n");
      printf(
    "    selected, Triangle produces a conforming Delaunay triangulation, so\n");
      printf(
    "    that every triangle is Delaunay, and not just constrained Delaunay.\n");
      printf("\n");
      printf(
    "    The third section lists holes (and concavities, if -c is selected) in\n");
      printf(
    "    the triangulation.  Holes are specified by identifying a point inside\n");
      printf(
    "    each hole.  After the triangulation is formed, Triangle creates holes\n");
      printf(
    "    by eating triangles, spreading out from each hole point until its\n");
      printf(
    "    progress is blocked by segments in the PSLG.  You must be careful to\n");
      printf(
    "    enclose each hole in segments, or your whole triangulation might be\n");
      printf(
    "    eaten away.  If the two triangles abutting a segment are eaten, the\n");
      printf(
    "    segment itself is also eaten.  Do not place a hole directly on a\n");
      printf("    segment; if you do, Triangle chooses one side of the segment\n");
      printf("    arbitrarily.\n\n");
      printf(
    "    The optional fourth section lists regional attributes (to be assigned\n");
      printf(
    "    to all triangles in a region) and regional constraints on the maximum\n");
      printf(
    "    triangle area.  Triangle reads this section only if the -A switch is\n");
      printf(
    "    used or the -a switch is used without a number following it, and the -r\n"
    );
      printf(
    "    switch is not used.  Regional attributes and area constraints are\n");
      printf(
    "    propagated in the same manner as holes:  you specify a point for each\n");
      printf(
    "    attribute and/or constraint, and the attribute and/or constraint\n");
      printf(
    "    affects the whole region (bounded by segments) containing the point.\n");
      printf(
    "    If two values are written on a line after the x and y coordinate, the\n");
      printf(
    "    first such value is assumed to be a regional attribute (but is only\n");
      printf(
    "    applied if the -A switch is selected), and the second value is assumed\n"
    );
      printf(
    "    to be a regional area constraint (but is only applied if the -a switch\n"
    );
      printf(
    "    is selected).  You may specify just one value after the coordinates,\n");
      printf(
    "    which can serve as both an attribute and an area constraint, depending\n"
    );
      printf(
    "    on the choice of switches.  If you are using the -A and -a switches\n");
      printf(
    "    simultaneously and wish to assign an attribute to some region without\n");
      printf("    imposing an area constraint, use a negative maximum area.\n\n");
      printf(
    "    When a triangulation is created from a .poly file, you must either\n");
      printf(
    "    enclose the entire region to be triangulated in PSLG segments, or\n");
      printf(
    "    use the -c switch, which automatically creates extra segments that\n");
      printf(
    "    enclose the convex hull of the PSLG.  If you do not use the -c switch,\n"
    );
      printf(
    "    Triangle eats all triangles that are not enclosed by segments; if you\n");
      printf(
    "    are not careful, your whole triangulation may be eaten away.  If you do\n"
    );
      printf(
    "    use the -c switch, you can still produce concavities by the appropriate\n"
    );
      printf(
    "    placement of holes just inside the boundary of the convex hull.\n");
      printf("\n");
      printf(
    "    An ideal PSLG has no intersecting segments, nor any vertices that lie\n");
      printf(
    "    upon segments (except, of course, the endpoints of each segment).  You\n"
    );
      printf(
    "    aren't required to make your .poly files ideal, but you should be aware\n"
    );
      printf(
    "    of what can go wrong.  Segment intersections are relatively safe--\n");
      printf(
    "    Triangle calculates the intersection points for you and adds them to\n");
      printf(
    "    the triangulation--as long as your machine's floating-point precision\n");
      printf(
    "    doesn't become a problem.  You are tempting the fates if you have three\n"
    );
      printf(
    "    segments that cross at the same location, and expect Triangle to figure\n"
    );
      printf(
    "    out where the intersection point is.  Thanks to floating-point roundoff\n"
    );
      printf(
    "    error, Triangle will probably decide that the three segments intersect\n"
    );
      printf(
    "    at three different points, and you will find a minuscule triangle in\n");
      printf(
    "    your output--unless Triangle tries to refine the tiny triangle, uses\n");
      printf(
    "    up the last bit of machine precision, and fails to terminate at all.\n");
      printf(
    "    You're better off putting the intersection point in the input files,\n");
      printf(
    "    and manually breaking up each segment into two.  Similarly, if you\n");
      printf(
    "    place a vertex at the middle of a segment, and hope that Triangle will\n"
    );
      printf(
    "    break up the segment at that vertex, you might get lucky.  On the other\n"
    );
      printf(
    "    hand, Triangle might decide that the vertex doesn't lie precisely on\n");
      printf(
    "    the segment, and you'll have a needle-sharp triangle in your output--or\n"
    );
      printf("    a lot of tiny triangles if you're generating a quality mesh.\n");
      printf("\n");
      printf(
    "    When Triangle reads a .poly file, it also writes a .poly file, which\n");
      printf(
    "    includes all the subsegments--the edges that are parts of input\n");
      printf(
    "    segments.  If the -c switch is used, the output .poly file also\n");
      printf(
    "    includes all of the edges on the convex hull.  Hence, the output .poly\n"
    );
      printf(
    "    file is useful for finding edges associated with input segments and for\n"
    );
      printf(
    "    setting boundary conditions in finite element simulations.  Moreover,\n");
      printf(
    "    you will need the output .poly file if you plan to refine the output\n");
      printf(
    "    mesh, and don't want segments to be missing in later triangulations.\n");
      printf("\n");
      printf("  .area files:\n");
      printf("    First line:  <# of triangles>\n");
      printf("    Following lines:  <triangle #> <maximum area>\n");
      printf("\n");
      printf(
    "    An .area file associates with each triangle a maximum area that is used\n"
    );
      printf(
    "    for mesh refinement.  As with other file formats, every triangle must\n");
      printf(
    "    be represented, and the triangles must be numbered consecutively.  A\n");
      printf(
    "    triangle may be left unconstrained by assigning it a negative maximum\n");
      printf("    area.\n\n");
      printf("  .edge files:\n");
      printf("    First line:  <# of edges> <# of boundary markers (0 or 1)>\n");
      printf(
    "    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]\n");
      printf("\n");
      printf(
    "    Endpoints are indices into the corresponding .node file.  Triangle can\n"
    );
      printf(
    "    produce .edge files (use the -e switch), but cannot read them.  The\n");
      printf(
    "    optional column of boundary markers is suppressed by the -B switch.\n");
      printf("\n");
      printf(
    "    In Voronoi diagrams, one also finds a special kind of edge that is an\n");
      printf(
    "    infinite ray with only one endpoint.  For these edges, a different\n");
      printf("    format is used:\n\n");
      printf("        <edge #> <endpoint> -1 <direction x> <direction y>\n\n");
      printf(
    "    The `direction' is a floating-point vector that indicates the direction\n"
    );
      printf("    of the infinite ray.\n\n");
      printf("  .neigh files:\n");
      printf(
    "    First line:  <# of triangles> <# of neighbors per triangle (always 3)>\n"
    );
      printf(
    "    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>\n");
      printf("\n");
      printf(
    "    Neighbors are indices into the corresponding .ele file.  An index of -1\n"
    );
      printf(
    "    indicates no neighbor (because the triangle is on an exterior\n");
      printf(
    "    boundary).  The first neighbor of triangle i is opposite the first\n");
      printf("    corner of triangle i, and so on.\n\n");
      printf(
    "    Triangle can produce .neigh files (use the -n switch), but cannot read\n"
    );
      printf("    them.\n\n");
      printf("Boundary Markers:\n\n");
      printf(
    "  Boundary markers are tags used mainly to identify which output vertices\n");
      printf(
    "  and edges are associated with which PSLG segment, and to identify which\n");
      printf(
    "  vertices and edges occur on a boundary of the triangulation.  A common\n");
      printf(
    "  use is to determine where boundary conditions should be applied to a\n");
      printf(
    "  finite element mesh.  You can prevent boundary markers from being written\n"
    );
      printf("  into files produced by Triangle by using the -B switch.\n\n");
      printf(
    "  The boundary marker associated with each segment in an output .poly file\n"
    );
      printf("  and each edge in an output .edge file is chosen as follows:\n");
      printf(
    "    - If an output edge is part or all of a PSLG segment with a nonzero\n");
      printf(
    "      boundary marker, then the edge is assigned the same marker.\n");
      printf(
    "    - Otherwise, if the edge lies on a boundary of the triangulation\n");
      printf(
    "      (even the boundary of a hole), then the edge is assigned the marker\n");
      printf("      one (1).\n");
      printf("    - Otherwise, the edge is assigned the marker zero (0).\n");
      printf(
    "  The boundary marker associated with each vertex in an output .node file\n");
      printf("  is chosen as follows:\n");
      printf(
    "    - If a vertex is assigned a nonzero boundary marker in the input file,\n"
    );
      printf(
    "      then it is assigned the same marker in the output .node file.\n");
      printf(
    "    - Otherwise, if the vertex lies on a PSLG segment (even if it is an\n");
      printf(
    "      endpoint of the segment) with a nonzero boundary marker, then the\n");
      printf(
    "      vertex is assigned the same marker.  If the vertex lies on several\n");
      printf("      such segments, one of the markers is chosen arbitrarily.\n");
      printf(
    "    - Otherwise, if the vertex occurs on a boundary of the triangulation,\n");
      printf("      then the vertex is assigned the marker one (1).\n");
      printf("    - Otherwise, the vertex is assigned the marker zero (0).\n");
      printf("\n");
      printf(
    "  If you want Triangle to determine for you which vertices and edges are on\n"
    );
      printf(
    "  the boundary, assign them the boundary marker zero (or use no markers at\n"
    );
      printf(
    "  all) in your input files.  In the output files, all boundary vertices,\n");
      printf("  edges, and segments will be assigned the value one.\n\n");
      printf("Triangulation Iteration Numbers:\n\n");
      printf(
    "  Because Triangle can read and refine its own triangulations, input\n");
      printf(
    "  and output files have iteration numbers.  For instance, Triangle might\n");
      printf(
    "  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");
      printf(
    "  triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");
      printf("  mesh.4.poly.  Files with no iteration number are treated as if\n");
      printf(
    "  their iteration number is zero; hence, Triangle might read the file\n");
      printf(
    "  points.node, triangulate it, and produce the files points.1.node and\n");
      printf("  points.1.ele.\n\n");
      printf(
    "  Iteration numbers allow you to create a sequence of successively finer\n");
      printf(
    "  meshes suitable for multigrid methods.  They also allow you to produce a\n"
    );
      printf(
    "  sequence of meshes using error estimate-driven mesh refinement.\n");
      printf("\n");
      printf(
    "  If you're not using refinement or quality meshing, and you don't like\n");
      printf(
    "  iteration numbers, use the -I switch to disable them.  This switch also\n");
      printf(
    "  disables output of .node and .poly files to prevent your input files from\n"
    );
      printf(
    "  being overwritten.  (If the input is a .poly file that contains its own\n");
      printf(
    "  points, a .node file is written.  This can be quite convenient for\n");
      printf("  computing CDTs or quality meshes.)\n\n");
      printf("Examples of How to Use Triangle:\n\n");
      printf(
    "  `triangle dots' reads vertices from dots.node, and writes their Delaunay\n"
    );
      printf(
    "  triangulation to dots.1.node and dots.1.ele.  (dots.1.node is identical\n");
      printf(
    "  to dots.node.)  `triangle -I dots' writes the triangulation to dots.ele\n");
      printf(
    "  instead.  (No additional .node file is needed, so none is written.)\n");
      printf("\n");
      printf(
    "  `triangle -pe object.1' reads a PSLG from object.1.poly (and possibly\n");
      printf(
    "  object.1.node, if the vertices are omitted from object.1.poly) and writes\n"
    );
      printf(
    "  its constrained Delaunay triangulation to object.2.node and object.2.ele.\n"
    );
      printf(
    "  The segments are copied to object.2.poly, and all edges are written to\n");
      printf("  object.2.edge.\n\n");
      printf(
    "  `triangle -pq31.5a.1 object' reads a PSLG from object.poly (and possibly\n"
    );
      printf(
    "  object.node), generates a mesh whose angles are all between 31.5 and 117\n"
    );
      printf(
    "  degrees and whose triangles all have areas of 0.1 or less, and writes the\n"
    );
      printf(
    "  mesh to object.1.node and object.1.ele.  Each segment may be broken up\n");
      printf("  into multiple subsegments; these are written to object.1.poly.\n");
      printf("\n");
      printf(
    "  Here is a sample file `box.poly' describing a square with a square hole:\n"
    );
      printf("\n");
      printf(
    "    # A box with eight vertices in 2D, no attributes, one boundary marker.\n"
    );
      printf("    8 2 0 1\n");
      printf("     # Outer box has these vertices:\n");
      printf("     1   0 0   0\n");
      printf("     2   0 3   0\n");
      printf("     3   3 0   0\n");
      printf("     4   3 3   33     # A special marker for this vertex.\n");
      printf("     # Inner square has these vertices:\n");
      printf("     5   1 1   0\n");
      printf("     6   1 2   0\n");
      printf("     7   2 1   0\n");
      printf("     8   2 2   0\n");
      printf("    # Five segments with boundary markers.\n");
      printf("    5 1\n");
      printf("     1   1 2   5      # Left side of outer box.\n");
      printf("     # Square hole has these segments:\n");
      printf("     2   5 7   0\n");
      printf("     3   7 8   0\n");
      printf("     4   8 6   10\n");
      printf("     5   6 5   0\n");
      printf("    # One hole in the middle of the inner square.\n");
      printf("    1\n");
      printf("     1   1.5 1.5\n");
      printf("\n");
      printf(
    "  Note that some segments are missing from the outer square, so you must\n");
      printf(
    "  use the `-c' switch.  After `triangle -pqc box.poly', here is the output\n"
    );
      printf(
    "  file `box.1.node', with twelve vertices.  The last four vertices were\n");
      printf(
    "  added to meet the angle constraint.  Vertices 1, 2, and 9 have markers\n");
      printf(
    "  from segment 1.  Vertices 6 and 8 have markers from segment 4.  All the\n");
      printf(
    "  other vertices but 4 have been marked to indicate that they lie on a\n");
      printf("  boundary.\n\n");
      printf("    12  2  0  1\n");
      printf("       1    0   0      5\n");
      printf("       2    0   3      5\n");
      printf("       3    3   0      1\n");
      printf("       4    3   3     33\n");
      printf("       5    1   1      1\n");
      printf("       6    1   2     10\n");
      printf("       7    2   1      1\n");
      printf("       8    2   2     10\n");
      printf("       9    0   1.5    5\n");
      printf("      10    1.5   0    1\n");
      printf("      11    3   1.5    1\n");
      printf("      12    1.5   3    1\n");
      printf("    # Generated by triangle -pqc box.poly\n");
      printf("\n");
      printf("  Here is the output file `box.1.ele', with twelve triangles.\n");
      printf("\n");
      printf("    12  3  0\n");
      printf("       1     5   6   9\n");
      printf("       2    10   3   7\n");
      printf("       3     6   8  12\n");
      printf("       4     9   1   5\n");
      printf("       5     6   2   9\n");
      printf("       6     7   3  11\n");
      printf("       7    11   4   8\n");
      printf("       8     7   5  10\n");
      printf("       9    12   2   6\n");
      printf("      10     8   7  11\n");
      printf("      11     5   1  10\n");
      printf("      12     8   4  12\n");
      printf("    # Generated by triangle -pqc box.poly\n\n");
      printf(
    "  Here is the output file `box.1.poly'.  Note that segments have been added\n"
    );
      printf(
    "  to represent the convex hull, and some segments have been subdivided by\n");
      printf(
    "  newly added vertices.  Note also that <# of vertices> is set to zero to\n");
      printf("  indicate that the vertices should be read from the .node file.\n");
      printf("\n");
      printf("    0  2  0  1\n");
      printf("    12  1\n");
      printf("       1     1   9     5\n");
      printf("       2     5   7     1\n");
      printf("       3     8   7     1\n");
      printf("       4     6   8    10\n");
      printf("       5     5   6     1\n");
      printf("       6     3  10     1\n");
      printf("       7     4  11     1\n");
      printf("       8     2  12     1\n");
      printf("       9     9   2     5\n");
      printf("      10    10   1     1\n");
      printf("      11    11   3     1\n");
      printf("      12    12   4     1\n");
      printf("    1\n");
      printf("       1   1.5 1.5\n");
      printf("    # Generated by triangle -pqc box.poly\n");
      printf("\n");
      printf("Refinement and Area Constraints:\n");
      printf("\n");
      printf(
    "  The -r switch causes a mesh (.node and .ele files) to be read and\n");
      printf(
    "  refined.  If the -p switch is also used, a .poly file is read and used to\n"
    );
      printf(
    "  specify edges that are constrained and cannot be eliminated (although\n");
      printf(
    "  they can be subdivided into smaller edges) by the refinement process.\n");
      printf("\n");
      printf(
    "  When you refine a mesh, you generally want to impose tighter constraints.\n"
    );
      printf(
    "  One way to accomplish this is to use -q with a larger angle, or -a\n");
      printf(
    "  followed by a smaller area than you used to generate the mesh you are\n");
      printf(
    "  refining.  Another way to do this is to create an .area file, which\n");
      printf(
    "  specifies a maximum area for each triangle, and use the -a switch\n");
      printf(
    "  (without a number following).  Each triangle's area constraint is applied\n"
    );
      printf(
    "  to that triangle.  Area constraints tend to diffuse as the mesh is\n");
      printf(
    "  refined, so if there are large variations in area constraint between\n");
      printf(
    "  adjacent triangles, you may not get the results you want.  In that case,\n"
    );
      printf(
    "  consider instead using the -u switch and writing a C procedure that\n");
      printf("  determines which triangles are too large.\n\n");
      printf(
    "  If you are refining a mesh composed of linear (three-node) elements, the\n"
    );
      printf(
    "  output mesh contains all the nodes present in the input mesh, in the same\n"
    );
      printf(
    "  order, with new nodes added at the end of the .node file.  However, the\n");
      printf(
    "  refinement is not hierarchical: there is no guarantee that each output\n");
      printf(
    "  element is contained in a single input element.  Often, an output element\n"
    );
      printf(
    "  can overlap two or three input elements, and some input edges are not\n");
      printf(
    "  present in the output mesh.  Hence, a sequence of refined meshes forms a\n"
    );
      printf(
    "  hierarchy of nodes, but not a hierarchy of elements.  If you refine a\n");
      printf(
    "  mesh of higher-order elements, the hierarchical property applies only to\n"
    );
      printf(
    "  the nodes at the corners of an element; the midpoint nodes on each edge\n");
      printf("  are discarded before the mesh is refined.\n\n");
      printf(
    "  Maximum area constraints in .poly files operate differently from those in\n"
    );
      printf(
    "  .area files.  A maximum area in a .poly file applies to the whole\n");
      printf(
    "  (segment-bounded) region in which a point falls, whereas a maximum area\n");
      printf(
    "  in an .area file applies to only one triangle.  Area constraints in .poly\n"
    );
      printf(
    "  files are used only when a mesh is first generated, whereas area\n");
      printf(
    "  constraints in .area files are used only to refine an existing mesh, and\n"
    );
      printf(
    "  are typically based on a posteriori error estimates resulting from a\n");
      printf("  finite element simulation on that mesh.\n\n");
      printf(
    "  `triangle -rq25 object.1' reads object.1.node and object.1.ele, then\n");
      printf(
    "  refines the triangulation to enforce a 25 degree minimum angle, and then\n"
    );
      printf(
    "  writes the refined triangulation to object.2.node and object.2.ele.\n");
      printf("\n");
      printf(
    "  `triangle -rpaa6.2 z.3' reads z.3.node, z.3.ele, z.3.poly, and z.3.area.\n"
    );
      printf(
    "  After reconstructing the mesh and its subsegments, Triangle refines the\n");
      printf(
    "  mesh so that no triangle has area greater than 6.2, and furthermore the\n");
      printf(
    "  triangles satisfy the maximum area constraints in z.3.area.  No angle\n");
      printf(
    "  bound is imposed at all.  The output is written to z.4.node, z.4.ele, and\n"
    );
      printf("  z.4.poly.\n\n");
      printf(
    "  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");
      printf(
    "  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");
      printf("  suitable for multigrid.\n\n");
      printf("Convex Hulls and Mesh Boundaries:\n\n");
      printf(
    "  If the input is a vertex set (not a PSLG), Triangle produces its convex\n");
      printf(
    "  hull as a by-product in the output .poly file if you use the -c switch.\n");
      printf(
    "  There are faster algorithms for finding a two-dimensional convex hull\n");
      printf("  than triangulation, of course, but this one comes for free.\n\n");
      printf(
    "  If the input is an unconstrained mesh (you are using the -r switch but\n");
      printf(
    "  not the -p switch), Triangle produces a list of its boundary edges\n");
      printf(
    "  (including hole boundaries) as a by-product when you use the -c switch.\n");
      printf(
    "  If you also use the -p switch, the output .poly file contains all the\n");
      printf("  segments from the input .poly file as well.\n\n");
      printf("Voronoi Diagrams:\n\n");
      printf(
    "  The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");
      printf(
    "  .v.edge.  For example, `triangle -v points' reads points.node, produces\n");
      printf(
    "  its Delaunay triangulation in points.1.node and points.1.ele, and\n");
      printf(
    "  produces its Voronoi diagram in points.1.v.node and points.1.v.edge.  The\n"
    );
      printf(
    "  .v.node file contains a list of all Voronoi vertices, and the .v.edge\n");
      printf(
    "  file contains a list of all Voronoi edges, some of which may be infinite\n"
    );
      printf(
    "  rays.  (The choice of filenames makes it easy to run the set of Voronoi\n");
      printf("  vertices through Triangle, if so desired.)\n\n");
      printf(
    "  This implementation does not use exact arithmetic to compute the Voronoi\n"
    );
      printf(
    "  vertices, and does not check whether neighboring vertices are identical.\n"
    );
      printf(
    "  Be forewarned that if the Delaunay triangulation is degenerate or\n");
      printf(
    "  near-degenerate, the Voronoi diagram may have duplicate vertices or\n");
      printf("  crossing edges.\n\n");
      printf(
    "  The result is a valid Voronoi diagram only if Triangle's output is a true\n"
    );
      printf(
    "  Delaunay triangulation.  The Voronoi output is usually meaningless (and\n");
      printf(
    "  may contain crossing edges and other pathology) if the output is a CDT or\n"
    );
      printf(
    "  CCDT, or if it has holes or concavities.  If the triangulated domain is\n");
      printf(
    "  convex and has no holes, you can use -D switch to force Triangle to\n");
      printf(
    "  construct a conforming Delaunay triangulation instead of a CCDT, so the\n");
      printf("  Voronoi diagram will be valid.\n\n");
      printf("Mesh Topology:\n\n");
      printf(
    "  You may wish to know which triangles are adjacent to a certain Delaunay\n");
      printf(
    "  edge in an .edge file, which Voronoi cells are adjacent to a certain\n");
      printf(
    "  Voronoi edge in a .v.edge file, or which Voronoi cells are adjacent to\n");
      printf(
    "  each other.  All of this information can be found by cross-referencing\n");
      printf(
    "  output files with the recollection that the Delaunay triangulation and\n");
      printf("  the Voronoi diagram are planar duals.\n\n");
      printf(
    "  Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");
      printf(
    "  the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");
      printf(
    "  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of\n");
      printf(
    "  vertex j of the corresponding .v.node file.  Voronoi cell k is the dual\n");
      printf("  of vertex k of the corresponding .node file.\n\n");
      printf(
    "  Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");
      printf(
    "  vertices of the corresponding Voronoi edge.  If the endpoints of a\n");
      printf(
    "  Voronoi edge are Voronoi vertices 2 and 6 respectively, then triangles 2\n"
    );
      printf(
    "  and 6 adjoin the left and right sides of the corresponding Delaunay edge,\n"
    );
      printf(
    "  respectively.  To find the Voronoi cells adjacent to a Voronoi edge, look\n"
    );
      printf(
    "  at the endpoints of the corresponding Delaunay edge.  If the endpoints of\n"
    );
      printf(
    "  a Delaunay edge are input vertices 7 and 12, then Voronoi cells 7 and 12\n"
    );
      printf(
    "  adjoin the right and left sides of the corresponding Voronoi edge,\n");
      printf(
    "  respectively.  To find which Voronoi cells are adjacent to each other,\n");
      printf("  just read the list of Delaunay edges.\n\n");
      printf(
    "  Triangle does not write a list of the edges adjoining each Voronoi cell,\n"
    );
      printf(
    "  but you can reconstructed it straightforwardly.  For instance, to find\n");
      printf(
    "  all the edges of Voronoi cell 1, search the output .edge file for every\n");
      printf(
    "  edge that has input vertex 1 as an endpoint.  The corresponding dual\n");
      printf(
    "  edges in the output .v.edge file form the boundary of Voronoi cell 1.\n");
      printf("\n");
      printf(
    "  For each Voronoi vertex, the .neigh file gives a list of the three\n");
      printf(
    "  Voronoi vertices attached to it.  You might find this more convenient\n");
      printf("  than the .v.edge file.\n\n");
      printf("Quadratic Elements:\n\n");
      printf(
    "  Triangle generates meshes with subparametric quadratic elements if the\n");
      printf(
    "  -o2 switch is specified.  Quadratic elements have six nodes per element,\n"
    );
      printf(
    "  rather than three.  `Subparametric' means that the edges of the triangles\n"
    );
      printf(
    "  are always straight, so that subparametric quadratic elements are\n");
      printf(
    "  geometrically identical to linear elements, even though they can be used\n"
    );
      printf(
    "  with quadratic interpolating functions.  The three extra nodes of an\n");
      printf(
    "  element fall at the midpoints of the three edges, with the fourth, fifth,\n"
    );
      printf(
    "  and sixth nodes appearing opposite the first, second, and third corners\n");
      printf("  respectively.\n\n");
      printf("Domains with Small Angles:\n\n");
      printf(
    "  If two input segments adjoin each other at a small angle, clearly the -q\n"
    );
      printf(
    "  switch cannot remove the small angle.  Moreover, Triangle may have no\n");
      printf(
    "  choice but to generate additional triangles whose smallest angles are\n");
      printf(
    "  smaller than the specified bound.  However, these triangles only appear\n");
      printf(
    "  between input segments separated by small angles.  Moreover, if you\n");
      printf(
    "  request a minimum angle of theta degrees, Triangle will generally produce\n"
    );
      printf(
    "  no angle larger than 180 - 2 theta, even if it is forced to compromise on\n"
    );
      printf("  the minimum angle.\n\n");
      printf("Statistics:\n\n");
      printf(
    "  After generating a mesh, Triangle prints a count of entities in the\n");
      printf(
    "  output mesh, including the number of vertices, triangles, edges, exterior\n"
    );
      printf(
    "  boundary edges (i.e. subsegments on the boundary of the triangulation,\n");
      printf(
    "  including hole boundaries), interior boundary edges (i.e. subsegments of\n"
    );
      printf(
    "  input segments not on the boundary), and total subsegments.  If you've\n");
      printf(
    "  forgotten the statistics for an existing mesh, run Triangle on that mesh\n"
    );
      printf(
    "  with the -rNEP switches to read the mesh and print the statistics without\n"
    );
      printf(
    "  writing any files.  Use -rpNEP if you've got a .poly file for the mesh.\n");
      printf("\n");
      printf(
    "  The -V switch produces extended statistics, including a rough estimate\n");
      printf(
    "  of memory use, the number of calls to geometric predicates, and\n");
      printf(
    "  histograms of the angles and the aspect ratios of the triangles in the\n");
      printf("  mesh.\n\n");
      printf("Exact Arithmetic:\n\n");
      printf(
    "  Triangle uses adaptive exact arithmetic to perform what computational\n");
      printf(
    "  geometers call the `orientation' and `incircle' tests.  If the floating-\n"
    );
      printf(
    "  point arithmetic of your machine conforms to the IEEE 754 standard (as\n");
      printf(
    "  most workstations do), and does not use extended precision internal\n");
      printf(
    "  floating-point registers, then your output is guaranteed to be an\n");
      printf(
    "  absolutely true Delaunay or constrained Delaunay triangulation, roundoff\n"
    );
      printf(
    "  error notwithstanding.  The word `adaptive' implies that these arithmetic\n"
    );
      printf(
    "  routines compute the result only to the precision necessary to guarantee\n"
    );
      printf(
    "  correctness, so they are usually nearly as fast as their approximate\n");
      printf("  counterparts.\n\n");
      printf(
    "  May CPUs, including Intel x86 processors, have extended precision\n");
      printf(
    "  floating-point registers.  These must be reconfigured so their precision\n"
    );
      printf(
    "  is reduced to memory precision.  Triangle does this if it is compiled\n");
      printf("  correctly.  See the makefile for details.\n\n");
      printf(
    "  The exact tests can be disabled with the -X switch.  On most inputs, this\n"
    );
      printf(
    "  switch reduces the computation time by about eight percent--it's not\n");
      printf(
    "  worth the risk.  There are rare difficult inputs (having many collinear\n");
      printf(
    "  and cocircular vertices), however, for which the difference in speed\n");
      printf(
    "  could be a factor of two.  Be forewarned that these are precisely the\n");
      printf(
    "  inputs most likely to cause errors if you use the -X switch.  Hence, the\n"
    );
      printf("  -X switch is not recommended.\n\n");
      printf(
    "  Unfortunately, the exact tests don't solve every numerical problem.\n");
      printf(
    "  Exact arithmetic is not used to compute the positions of new vertices,\n");
      printf(
    "  because the bit complexity of vertex coordinates would grow without\n");
      printf(
    "  bound.  Hence, segment intersections aren't computed exactly; in very\n");
      printf(
    "  unusual cases, roundoff error in computing an intersection point might\n");
      printf(
    "  actually lead to an inverted triangle and an invalid triangulation.\n");
      printf(
    "  (This is one reason to specify your own intersection points in your .poly\n"
    );
      printf(
    "  files.)  Similarly, exact arithmetic is not used to compute the vertices\n"
    );
      printf("  of the Voronoi diagram.\n\n");
      printf(
    "  Another pair of problems not solved by the exact arithmetic routines is\n");
      printf(
    "  underflow and overflow.  If Triangle is compiled for double precision\n");
      printf(
    "  arithmetic, I believe that Triangle's geometric predicates work correctly\n"
    );
      printf(
    "  if the exponent of every input coordinate falls in the range [-148, 201].\n"
    );
      printf(
    "  Underflow can silently prevent the orientation and incircle tests from\n");
      printf(
    "  being performed exactly, while overflow typically causes a floating\n");
      printf("  exception.\n\n");
      printf("Calling Triangle from Another Program:\n\n");
      printf("  Read the file triangle.h for details.\n\n");
      printf("Troubleshooting:\n\n");
      printf("  Please read this section before mailing me bugs.\n\n");
      printf("  `My output mesh has no triangles!'\n\n");
      printf(
    "    If you're using a PSLG, you've probably failed to specify a proper set\n"
    );
      printf(
    "    of bounding segments, or forgotten to use the -c switch.  Or you may\n");
      printf(
    "    have placed a hole badly, thereby eating all your triangles.  To test\n");
      printf("    these possibilities, try again with the -c and -O switches.\n");
      printf(
    "    Alternatively, all your input vertices may be collinear, in which case\n"
    );
      printf("    you can hardly expect to triangulate them.\n\n");
      printf("  `Triangle doesn't terminate, or just crashes.'\n\n");
      printf(
    "    Bad things can happen when triangles get so small that the distance\n");
      printf(
    "    between their vertices isn't much larger than the precision of your\n");
      printf(
    "    machine's arithmetic.  If you've compiled Triangle for single-precision\n"
    );
      printf(
    "    arithmetic, you might do better by recompiling it for double-precision.\n"
    );
      printf(
    "    Then again, you might just have to settle for more lenient constraints\n"
    );
      printf(
    "    on the minimum angle and the maximum area than you had planned.\n");
      printf("\n");
      printf(
    "    You can minimize precision problems by ensuring that the origin lies\n");
      printf(
    "    inside your vertex set, or even inside the densest part of your\n");
      printf(
    "    mesh.  If you're triangulating an object whose x-coordinates all fall\n");
      printf(
    "    between 6247133 and 6247134, you're not leaving much floating-point\n");
      printf("    precision for Triangle to work with.\n\n");
      printf(
    "    Precision problems can occur covertly if the input PSLG contains two\n");
      printf(
    "    segments that meet (or intersect) at an extremely small angle, or if\n");
      printf(
    "    such an angle is introduced by the -c switch.  If you don't realize\n");
      printf(
    "    that a tiny angle is being formed, you might never discover why\n");
      printf(
    "    Triangle is crashing.  To check for this possibility, use the -S switch\n"
    );
      printf(
    "    (with an appropriate limit on the number of Steiner points, found by\n");
      printf(
    "    trial-and-error) to stop Triangle early, and view the output .poly file\n"
    );
      printf(
    "    with Show Me (described below).  Look carefully for regions where dense\n"
    );
      printf(
    "    clusters of vertices are forming and for small angles between segments.\n"
    );
      printf(
    "    Zoom in closely, as such segments might look like a single segment from\n"
    );
      printf("    a distance.\n\n");
      printf(
    "    If some of the input values are too large, Triangle may suffer a\n");
      printf(
    "    floating exception due to overflow when attempting to perform an\n");
      printf(
    "    orientation or incircle test.  (Read the section on exact arithmetic\n");
      printf(
    "    above.)  Again, I recommend compiling Triangle for double (rather\n");
      printf("    than single) precision arithmetic.\n\n");
      printf(
    "    Unexpected problems can arise if you use quality meshing (-q, -a, or\n");
      printf(
    "    -u) with an input that is not segment-bounded--that is, if your input\n");
      printf(
    "    is a vertex set, or you're using the -c switch.  If the convex hull of\n"
    );
      printf(
    "    your input vertices has collinear vertices on its boundary, an input\n");
      printf(
    "    vertex that you think lies on the convex hull might actually lie just\n");
      printf(
    "    inside the convex hull.  If so, the vertex and the nearby convex hull\n");
      printf(
    "    edge form an extremely thin triangle.  When Triangle tries to refine\n");
      printf(
    "    the mesh to enforce angle and area constraints, Triangle might generate\n"
    );
      printf(
    "    extremely tiny triangles, or it might fail because of insufficient\n");
      printf("    floating-point precision.\n\n");
      printf(
    "  `The numbering of the output vertices doesn't match the input vertices.'\n"
    );
      printf("\n");
      printf(
    "    You may have had duplicate input vertices, or you may have eaten some\n");
      printf(
    "    of your input vertices with a hole, or by placing them outside the area\n"
    );
      printf(
    "    enclosed by segments.  In any case, you can solve the problem by not\n");
      printf("    using the -j switch.\n\n");
      printf(
    "  `Triangle executes without incident, but when I look at the resulting\n");
      printf(
    "  mesh, it has overlapping triangles or other geometric inconsistencies.'\n");
      printf("\n");
      printf(
    "    If you select the -X switch, Triangle occasionally makes mistakes due\n");
      printf(
    "    to floating-point roundoff error.  Although these errors are rare,\n");
      printf(
    "    don't use the -X switch.  If you still have problems, please report the\n"
    );
      printf("    bug.\n\n");
      printf(
    "  `Triangle executes without incident, but when I look at the resulting\n");
      printf("  Voronoi diagram, it has overlapping edges or other geometric\n");
      printf("  inconsistencies.'\n");
      printf("\n");
      printf(
    "    If your input is a PSLG (-p), you can only expect a meaningful Voronoi\n"
    );
      printf(
    "    diagram if the domain you are triangulating is convex and free of\n");
      printf(
    "    holes, and you use the -D switch to construct a conforming Delaunay\n");
      printf("    triangulation (instead of a CDT or CCDT).\n\n");
      printf(
    "  Strange things can happen if you've taken liberties with your PSLG.  Do\n");
      printf(
    "  you have a vertex lying in the middle of a segment?  Triangle sometimes\n");
      printf(
    "  copes poorly with that sort of thing.  Do you want to lay out a collinear\n"
    );
      printf(
    "  row of evenly spaced, segment-connected vertices?  Have you simply\n");
      printf(
    "  defined one long segment connecting the leftmost vertex to the rightmost\n"
    );
      printf(
    "  vertex, and a bunch of vertices lying along it?  This method occasionally\n"
    );
      printf(
    "  works, especially with horizontal and vertical lines, but often it\n");
      printf(
    "  doesn't, and you'll have to connect each adjacent pair of vertices with a\n"
    );
      printf("  separate segment.  If you don't like it, tough.\n\n");
      printf(
    "  Furthermore, if you have segments that intersect other than at their\n");
      printf(
    "  endpoints, try not to let the intersections fall extremely close to PSLG\n"
    );
      printf("  vertices or each other.\n\n");
      printf(
    "  If you have problems refining a triangulation not produced by Triangle:\n");
      printf(
    "  Are you sure the triangulation is geometrically valid?  Is it formatted\n");
      printf(
    "  correctly for Triangle?  Are the triangles all listed so the first three\n"
    );
      printf(
    "  vertices are their corners in counterclockwise order?  Are all of the\n");
      printf(
    "  triangles constrained Delaunay?  Triangle's Delaunay refinement algorithm\n"
    );
      printf("  assumes that it starts with a CDT.\n\n");
      printf("Show Me:\n\n");
      printf(
    "  Triangle comes with a separate program named `Show Me', whose primary\n");
      printf(
    "  purpose is to draw meshes on your screen or in PostScript.  Its secondary\n"
    );
      printf(
    "  purpose is to check the validity of your input files, and do so more\n");
      printf(
    "  thoroughly than Triangle does.  Unlike Triangle, Show Me requires that\n");
      printf(
    "  you have the X Windows system.  Sorry, Microsoft Windows users.\n");
      printf("\n");
      printf("Triangle on the Web:\n");
      printf("\n");
      printf("  To see an illustrated version of these instructions, check out\n");
      printf("\n");
      printf("    http://www.cs.cmu.edu/~quake/triangle.html\n");
      printf("\n");
      printf("A Brief Plea:\n");
      printf("\n");
      printf(
    "  If you use Triangle, and especially if you use it to accomplish real\n");
      printf(
    "  work, I would like very much to hear from you.  A short letter or email\n");
      printf(
    "  (to jrs@cs.berkeley.edu) describing how you use Triangle will mean a lot\n"
    );
      printf(
    "  to me.  The more people I know are using this program, the more easily I\n"
    );
      printf(
    "  can justify spending time on improvements, which in turn will benefit\n");
      printf(
    "  you.  Also, I can put you on a list to receive email whenever a new\n");
      printf("  version of Triangle is available.\n\n");
      printf(
    "  If you use a mesh generated by Triangle in a publication, please include\n"
    );
      printf(
    "  an acknowledgment as well.  And please spell Triangle with a capital `T'!\n"
    );
      printf(
    "  If you want to include a citation, use `Jonathan Richard Shewchuk,\n");
      printf(
    "  ``Triangle: Engineering a 2D Quality Mesh Generator and Delaunay\n");
      printf(
    "  Triangulator,'' in Applied Computational Geometry:  Towards Geometric\n");
      printf(
    "  Engineering (Ming C. Lin and Dinesh Manocha, editors), volume 1148 of\n");
      printf(
    "  Lecture Notes in Computer Science, pages 203-222, Springer-Verlag,\n");
      printf(
    "  Berlin, May 1996.  (From the First ACM Workshop on Applied Computational\n"
    );
      printf("  Geometry.)'\n\n");
      printf("Research credit:\n\n");
      printf(
    "  Of course, I can take credit for only a fraction of the ideas that made\n");
      printf(
    "  this mesh generator possible.  Triangle owes its existence to the efforts\n"
    );
      printf(
    "  of many fine computational geometers and other researchers, including\n");
      printf(
    "  Marshall Bern, L. Paul Chew, Kenneth L. Clarkson, Boris Delaunay, Rex A.\n"
    );
      printf(
    "  Dwyer, David Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E.\n");
      printf(
    "  Knuth, Charles L. Lawson, Der-Tsai Lee, Gary L. Miller, Ernst P. Mucke,\n");
      printf(
    "  Steven E. Pav, Douglas M. Priest, Jim Ruppert, Isaac Saias, Bruce J.\n");
      printf(
    "  Schachter, Micha Sharir, Peter W. Shor, Daniel D. Sleator, Jorge Stolfi,\n"
    );
      printf("  Robert E. Tarjan, Alper Ungor, Christopher J. Van Wyk, Noel J.\n");
      printf(
    "  Walkington, and Binhai Zhu.  See the comments at the beginning of the\n");
      printf("  source code for references.\n\n");
      triexit(0);
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  internalerror()   Ask the user to send me the defective product.  Exit.  */
    /*                                                                           */
    /*****************************************************************************/
    
    void internalerror()
    {
      printf("  Please report this bug to jrs@cs.berkeley.edu\n");
      printf("  Include the message above, your input data set, and the exact\n");
      printf("    command line you used to run Triangle.\n");
      triexit(1);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  parsecommandline()   Read the command line, identify switches, and set   */
    /*                       up options and file names.                          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void parsecommandline(int argc, char **argv, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void parsecommandline(argc, argv, b)
    int argc;
    char **argv;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
    #ifdef TRILIBRARY
    #define STARTINDEX 0
    #else /* not TRILIBRARY */
    #define STARTINDEX 1
      int increment;
      int meshnumber;
    #endif /* not TRILIBRARY */
      int i, j, k;
      char workstring[FILENAMESIZE];
    
      b->poly = b->refine = b->quality = 0;
      b->vararea = b->fixedarea = b->usertest = 0;
      b->regionattrib = b->convex = b->weighted = b->jettison = 0;
      b->firstnumber = 1;
      b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;
      b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;
      b->noiterationnum = 0;
      b->noholes = b->noexact = 0;
      b->incremental = b->sweepline = 0;
      b->dwyer = 1;
      b->splitseg = 0;
      b->docheck = 0;
      b->nobisect = 0;
      b->conformdel = 0;
      b->steiner = -1;
      b->order = 1;
      b->minangle = 0.0;
      b->maxarea = -1.0;
      b->quiet = b->verbose = 0;
    #ifndef TRILIBRARY
      b->innodefilename[0] = '\0';
    #endif /* not TRILIBRARY */
    
      for (i = STARTINDEX; i < argc; i++) {
    #ifndef TRILIBRARY
        if (argv[i][0] == '-') {
    #endif /* not TRILIBRARY */
          for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
            if (argv[i][j] == 'p') {
              b->poly = 1;
    	}
    #ifndef CDT_ONLY
            if (argv[i][j] == 'r') {
              b->refine = 1;
    	}
            if (argv[i][j] == 'q') {
              b->quality = 1;
              if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                  (argv[i][j + 1] == '.')) {
                k = 0;
                while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                       (argv[i][j + 1] == '.')) {
                  j++;
                  workstring[k] = argv[i][j];
                  k++;
                }
                workstring[k] = '\0';
                b->minangle = (REAL) strtod(workstring, (char **) NULL);
    	  } else {
                b->minangle = 20.0;
    	  }
    	}
            if (argv[i][j] == 'a') {
              b->quality = 1;
              if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                  (argv[i][j + 1] == '.')) {
                b->fixedarea = 1;
                k = 0;
                while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                       (argv[i][j + 1] == '.')) {
                  j++;
                  workstring[k] = argv[i][j];
                  k++;
                }
                workstring[k] = '\0';
                b->maxarea = (REAL) strtod(workstring, (char **) NULL);
                if (b->maxarea <= 0.0) {
                  printf("Error:  Maximum area must be greater than zero.\n");
                  triexit(1);
    	    }
    	  } else {
                b->vararea = 1;
    	  }
    	}
            if (argv[i][j] == 'u') {
              b->quality = 1;
              b->usertest = 1;
            }
    #endif /* not CDT_ONLY */
            if (argv[i][j] == 'A') {
              b->regionattrib = 1;
            }
            if (argv[i][j] == 'c') {
              b->convex = 1;
            }
            if (argv[i][j] == 'w') {
              b->weighted = 1;
            }
            if (argv[i][j] == 'W') {
              b->weighted = 2;
            }
            if (argv[i][j] == 'j') {
              b->jettison = 1;
            }
            if (argv[i][j] == 'z') {
              b->firstnumber = 0;
            }
            if (argv[i][j] == 'e') {
              b->edgesout = 1;
    	}
            if (argv[i][j] == 'v') {
              b->voronoi = 1;
    	}
            if (argv[i][j] == 'n') {
              b->neighbors = 1;
    	}
            if (argv[i][j] == 'g') {
              b->geomview = 1;
    	}
            if (argv[i][j] == 'B') {
              b->nobound = 1;
    	}
            if (argv[i][j] == 'P') {
              b->nopolywritten = 1;
    	}
            if (argv[i][j] == 'N') {
              b->nonodewritten = 1;
    	}
            if (argv[i][j] == 'E') {
              b->noelewritten = 1;
    	}
    #ifndef TRILIBRARY
            if (argv[i][j] == 'I') {
              b->noiterationnum = 1;
    	}
    #endif /* not TRILIBRARY */
            if (argv[i][j] == 'O') {
              b->noholes = 1;
    	}
            if (argv[i][j] == 'X') {
              b->noexact = 1;
    	}
            if (argv[i][j] == 'o') {
              if (argv[i][j + 1] == '2') {
                j++;
                b->order = 2;
              }
    	}
    #ifndef CDT_ONLY
            if (argv[i][j] == 'Y') {
              b->nobisect++;
    	}
            if (argv[i][j] == 'S') {
              b->steiner = 0;
              while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
                j++;
                b->steiner = b->steiner * 10 + (int) (argv[i][j] - '0');
              }
            }
    #endif /* not CDT_ONLY */
    #ifndef REDUCED
            if (argv[i][j] == 'i') {
              b->incremental = 1;
            }
            if (argv[i][j] == 'F') {
              b->sweepline = 1;
            }
    #endif /* not REDUCED */
            if (argv[i][j] == 'l') {
              b->dwyer = 0;
            }
    #ifndef REDUCED
    #ifndef CDT_ONLY
            if (argv[i][j] == 's') {
              b->splitseg = 1;
            }
            if ((argv[i][j] == 'D') || (argv[i][j] == 'L')) {
              b->quality = 1;
              b->conformdel = 1;
            }
    #endif /* not CDT_ONLY */
            if (argv[i][j] == 'C') {
              b->docheck = 1;
            }
    #endif /* not REDUCED */
            if (argv[i][j] == 'Q') {
              b->quiet = 1;
            }
            if (argv[i][j] == 'V') {
              b->verbose++;
            }
    #ifndef TRILIBRARY
            if ((argv[i][j] == 'h') || (argv[i][j] == 'H') ||
                (argv[i][j] == '?')) {
              info();
    	}
    #endif /* not TRILIBRARY */
          }
    #ifndef TRILIBRARY
        } else {
          strncpy(b->innodefilename, argv[i], FILENAMESIZE - 1);
          b->innodefilename[FILENAMESIZE - 1] = '\0';
        }
    #endif /* not TRILIBRARY */
      }
    #ifndef TRILIBRARY
      if (b->innodefilename[0] == '\0') {
        syntax();
      }
      if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".node")) {
        b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
      }
      if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".poly")) {
        b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
        b->poly = 1;
      }
    #ifndef CDT_ONLY
      if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 4], ".ele")) {
        b->innodefilename[strlen(b->innodefilename) - 4] = '\0';
        b->refine = 1;
      }
      if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".area")) {
        b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
        b->refine = 1;
        b->quality = 1;
        b->vararea = 1;
      }
    #endif /* not CDT_ONLY */
    #endif /* not TRILIBRARY */
      b->usesegments = b->poly || b->refine || b->quality || b->convex;
      b->goodangle = cos(b->minangle * PI / 180.0);
      if (b->goodangle == 1.0) {
        b->offconstant = 0.0;
      } else {
        b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle));
      }
      b->goodangle *= b->goodangle;
      if (b->refine && b->noiterationnum) {
        printf(
          "Error:  You cannot use the -I switch when refining a triangulation.\n");
        triexit(1);
      }
      /* Be careful not to allocate space for element area constraints that */
      /*   will never be assigned any value (other than the default -1.0).  */
      if (!b->refine && !b->poly) {
        b->vararea = 0;
      }
      /* Be careful not to add an extra attribute to each element unless the */
      /*   input supports it (PSLG in, but not refining a preexisting mesh). */
      if (b->refine || !b->poly) {
        b->regionattrib = 0;
      }
      /* Regular/weighted triangulations are incompatible with PSLGs */
      /*   and meshing.                                              */
      if (b->weighted && (b->poly || b->quality)) {
        b->weighted = 0;
        if (!b->quiet) {
          printf("Warning:  weighted triangulations (-w, -W) are incompatible\n");
          printf("  with PSLGs (-p) and meshing (-q, -a, -u).  Weights ignored.\n"
                 );
        }
      }
      if (b->jettison && b->nonodewritten && !b->quiet) {
        printf("Warning:  -j and -N switches are somewhat incompatible.\n");
        printf("  If any vertices are jettisoned, you will need the output\n");
        printf("  .node file to reconstruct the new node indices.");
      }
    
    #ifndef TRILIBRARY
      strcpy(b->inpolyfilename, b->innodefilename);
      strcpy(b->inelefilename, b->innodefilename);
      strcpy(b->areafilename, b->innodefilename);
      increment = 0;
      strcpy(workstring, b->innodefilename);
      j = 1;
      while (workstring[j] != '\0') {
        if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {
          increment = j + 1;
        }
        j++;
      }
      meshnumber = 0;
      if (increment > 0) {
        j = increment;
        do {
          if ((workstring[j] >= '0') && (workstring[j] <= '9')) {
            meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');
          } else {
            increment = 0;
          }
          j++;
        } while (workstring[j] != '\0');
      }
      if (b->noiterationnum) {
        strcpy(b->outnodefilename, b->innodefilename);
        strcpy(b->outelefilename, b->innodefilename);
        strcpy(b->edgefilename, b->innodefilename);
        strcpy(b->vnodefilename, b->innodefilename);
        strcpy(b->vedgefilename, b->innodefilename);
        strcpy(b->neighborfilename, b->innodefilename);
        strcpy(b->offfilename, b->innodefilename);
        strcat(b->outnodefilename, ".node");
        strcat(b->outelefilename, ".ele");
        strcat(b->edgefilename, ".edge");
        strcat(b->vnodefilename, ".v.node");
        strcat(b->vedgefilename, ".v.edge");
        strcat(b->neighborfilename, ".neigh");
        strcat(b->offfilename, ".off");
      } else if (increment == 0) {
        strcpy(b->outnodefilename, b->innodefilename);
        strcpy(b->outpolyfilename, b->innodefilename);
        strcpy(b->outelefilename, b->innodefilename);
        strcpy(b->edgefilename, b->innodefilename);
        strcpy(b->vnodefilename, b->innodefilename);
        strcpy(b->vedgefilename, b->innodefilename);
        strcpy(b->neighborfilename, b->innodefilename);
        strcpy(b->offfilename, b->innodefilename);
        strcat(b->outnodefilename, ".1.node");
        strcat(b->outpolyfilename, ".1.poly");
        strcat(b->outelefilename, ".1.ele");
        strcat(b->edgefilename, ".1.edge");
        strcat(b->vnodefilename, ".1.v.node");
        strcat(b->vedgefilename, ".1.v.edge");
        strcat(b->neighborfilename, ".1.neigh");
        strcat(b->offfilename, ".1.off");
      } else {
        workstring[increment] = '%';
        workstring[increment + 1] = 'd';
        workstring[increment + 2] = '\0';
        sprintf(b->outnodefilename, workstring, meshnumber + 1);
        strcpy(b->outpolyfilename, b->outnodefilename);
        strcpy(b->outelefilename, b->outnodefilename);
        strcpy(b->edgefilename, b->outnodefilename);
        strcpy(b->vnodefilename, b->outnodefilename);
        strcpy(b->vedgefilename, b->outnodefilename);
        strcpy(b->neighborfilename, b->outnodefilename);
        strcpy(b->offfilename, b->outnodefilename);
        strcat(b->outnodefilename, ".node");
        strcat(b->outpolyfilename, ".poly");
        strcat(b->outelefilename, ".ele");
        strcat(b->edgefilename, ".edge");
        strcat(b->vnodefilename, ".v.node");
        strcat(b->vedgefilename, ".v.edge");
        strcat(b->neighborfilename, ".neigh");
        strcat(b->offfilename, ".off");
      }
      strcat(b->innodefilename, ".node");
      strcat(b->inpolyfilename, ".poly");
      strcat(b->inelefilename, ".ele");
      strcat(b->areafilename, ".area");
    #endif /* not TRILIBRARY */
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* User interaction routines begin here                      *********/
    
    /********* Debugging routines begin here                             *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  printtriangle()   Print out the details of an oriented triangle.         */
    /*                                                                           */
    /*  I originally wrote this procedure to simplify debugging; it can be       */
    /*  called directly from the debugger, and presents information about an     */
    /*  oriented triangle in digestible form.  It's also used when the           */
    /*  highest level of verbosity (`-VVV') is specified.                        */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void printtriangle(struct mesh *m, struct behavior *b, struct otri *t)
    #else /* not ANSI_DECLARATORS */
    void printtriangle(m, b, t)
    struct mesh *m;
    struct behavior *b;
    struct otri *t;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri printtri;
      struct osub printsh;
      vertex printvertex;
    
      printf("triangle x%lx with orientation %d:\n", (unsigned long) t->tri,
             t->orient);
      decode(t->tri[0], printtri);
      if (printtri.tri == m->dummytri) {
        printf("    [0] = Outer space\n");
      } else {
        printf("    [0] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
      decode(t->tri[1], printtri);
      if (printtri.tri == m->dummytri) {
        printf("    [1] = Outer space\n");
      } else {
        printf("    [1] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
      decode(t->tri[2], printtri);
      if (printtri.tri == m->dummytri) {
        printf("    [2] = Outer space\n");
      } else {
        printf("    [2] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
    
      org(*t, printvertex);
      if (printvertex == (vertex) NULL)
        printf("    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
      else
        printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
               (t->orient + 1) % 3 + 3, (unsigned long) printvertex,
               printvertex[0], printvertex[1]);
      dest(*t, printvertex);
      if (printvertex == (vertex) NULL)
        printf("    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);
      else
        printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
               (t->orient + 2) % 3 + 3, (unsigned long) printvertex,
               printvertex[0], printvertex[1]);
      apex(*t, printvertex);
      if (printvertex == (vertex) NULL)
        printf("    Apex  [%d] = NULL\n", t->orient + 3);
      else
        printf("    Apex  [%d] = x%lx  (%.12g, %.12g)\n",
               t->orient + 3, (unsigned long) printvertex,
               printvertex[0], printvertex[1]);
    
      if (b->usesegments) {
        sdecode(t->tri[6], printsh);
        if (printsh.ss != m->dummysub) {
          printf("    [6] = x%lx  %d\n", (unsigned long) printsh.ss,
                 printsh.ssorient);
        }
        sdecode(t->tri[7], printsh);
        if (printsh.ss != m->dummysub) {
          printf("    [7] = x%lx  %d\n", (unsigned long) printsh.ss,
                 printsh.ssorient);
        }
        sdecode(t->tri[8], printsh);
        if (printsh.ss != m->dummysub) {
          printf("    [8] = x%lx  %d\n", (unsigned long) printsh.ss,
                 printsh.ssorient);
        }
      }
    
      if (b->vararea) {
        printf("    Area constraint:  %.4g\n", areabound(*t));
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  printsubseg()   Print out the details of an oriented subsegment.         */
    /*                                                                           */
    /*  I originally wrote this procedure to simplify debugging; it can be       */
    /*  called directly from the debugger, and presents information about an     */
    /*  oriented subsegment in digestible form.  It's also used when the highest */
    /*  level of verbosity (`-VVV') is specified.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void printsubseg(struct mesh *m, struct behavior *b, struct osub *s)
    #else /* not ANSI_DECLARATORS */
    void printsubseg(m, b, s)
    struct mesh *m;
    struct behavior *b;
    struct osub *s;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct osub printsh;
      struct otri printtri;
      vertex printvertex;
    
      printf("subsegment x%lx with orientation %d and mark %d:\n",
             (unsigned long) s->ss, s->ssorient, mark(*s));
      sdecode(s->ss[0], printsh);
      if (printsh.ss == m->dummysub) {
        printf("    [0] = No subsegment\n");
      } else {
        printf("    [0] = x%lx  %d\n", (unsigned long) printsh.ss,
               printsh.ssorient);
      }
      sdecode(s->ss[1], printsh);
      if (printsh.ss == m->dummysub) {
        printf("    [1] = No subsegment\n");
      } else {
        printf("    [1] = x%lx  %d\n", (unsigned long) printsh.ss,
               printsh.ssorient);
      }
    
      sorg(*s, printvertex);
      if (printvertex == (vertex) NULL)
        printf("    Origin[%d] = NULL\n", 2 + s->ssorient);
      else
        printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
               2 + s->ssorient, (unsigned long) printvertex,
               printvertex[0], printvertex[1]);
      sdest(*s, printvertex);
      if (printvertex == (vertex) NULL)
        printf("    Dest  [%d] = NULL\n", 3 - s->ssorient);
      else
        printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
               3 - s->ssorient, (unsigned long) printvertex,
               printvertex[0], printvertex[1]);
    
      decode(s->ss[6], printtri);
      if (printtri.tri == m->dummytri) {
        printf("    [6] = Outer space\n");
      } else {
        printf("    [6] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
      decode(s->ss[7], printtri);
      if (printtri.tri == m->dummytri) {
        printf("    [7] = Outer space\n");
      } else {
        printf("    [7] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
    
      segorg(*s, printvertex);
      if (printvertex == (vertex) NULL)
        printf("    Segment origin[%d] = NULL\n", 4 + s->ssorient);
      else
        printf("    Segment origin[%d] = x%lx  (%.12g, %.12g)\n",
               4 + s->ssorient, (unsigned long) printvertex,
               printvertex[0], printvertex[1]);
      segdest(*s, printvertex);
      if (printvertex == (vertex) NULL)
        printf("    Segment dest  [%d] = NULL\n", 5 - s->ssorient);
      else
        printf("    Segment dest  [%d] = x%lx  (%.12g, %.12g)\n",
               5 - s->ssorient, (unsigned long) printvertex,
               printvertex[0], printvertex[1]);
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Debugging routines end here                               *********/
    
    /********* Memory management routines begin here                     *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  poolzero()   Set all of a pool's fields to zero.                         */
    /*                                                                           */
    /*  This procedure should never be called on a pool that has any memory      */
    /*  allocated to it, as that memory would leak.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void poolzero(struct memorypool *pool)
    #else /* not ANSI_DECLARATORS */
    void poolzero(pool)
    struct memorypool *pool;
    #endif /* not ANSI_DECLARATORS */
    
    {
      pool->firstblock = (VOID **) NULL;
      pool->nowblock = (VOID **) NULL;
      pool->nextitem = (VOID *) NULL;
      pool->deaditemstack = (VOID *) NULL;
      pool->pathblock = (VOID **) NULL;
      pool->pathitem = (VOID *) NULL;
      pool->alignbytes = 0;
      pool->itembytes = 0;
      pool->itemsperblock = 0;
      pool->itemsfirstblock = 0;
      pool->items = 0;
      pool->maxitems = 0;
      pool->unallocateditems = 0;
      pool->pathitemsleft = 0;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  poolrestart()   Deallocate all items in a pool.                          */
    /*                                                                           */
    /*  The pool is returned to its starting state, except that no memory is     */
    /*  freed to the operating system.  Rather, the previously allocated blocks  */
    /*  are ready to be reused.                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void poolrestart(struct memorypool *pool)
    #else /* not ANSI_DECLARATORS */
    void poolrestart(pool)
    struct memorypool *pool;
    #endif /* not ANSI_DECLARATORS */
    
    {
      unsigned long alignptr;
    
      pool->items = 0;
      pool->maxitems = 0;
    
      /* Set the currently active block. */
      pool->nowblock = pool->firstblock;
      /* Find the first item in the pool.  Increment by the size of (VOID *). */
      alignptr = (unsigned long) (pool->nowblock + 1);
      /* Align the item on an `alignbytes'-byte boundary. */
      pool->nextitem = (VOID *)
        (alignptr + (unsigned long) pool->alignbytes -
         (alignptr % (unsigned long) pool->alignbytes));
      /* There are lots of unallocated items left in this block. */
      pool->unallocateditems = pool->itemsfirstblock;
      /* The stack of deallocated items is empty. */
      pool->deaditemstack = (VOID *) NULL;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  poolinit()   Initialize a pool of memory for allocation of items.        */
    /*                                                                           */
    /*  This routine initializes the machinery for allocating items.  A `pool'   */
    /*  is created whose records have size at least `bytecount'.  Items will be  */
    /*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      */
    /*  collection of words, and either pointers or floating-point values are    */
    /*  assumed to be the "primary" word type.  (The "primary" word type is used */
    /*  to determine alignment of items.)  If `alignment' isn't zero, all items  */
    /*  will be `alignment'-byte aligned in memory.  `alignment' must be either  */
    /*  a multiple or a factor of the primary word size; powers of two are safe. */
    /*  `alignment' is normally used to create a few unused bits at the bottom   */
    /*  of each item's pointer, in which information may be stored.              */
    /*                                                                           */
    /*  Don't change this routine unless you understand it.                      */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void poolinit(struct memorypool *pool, int bytecount, int itemcount,
                  int firstitemcount, int alignment)
    #else /* not ANSI_DECLARATORS */
    void poolinit(pool, bytecount, itemcount, firstitemcount, alignment)
    struct memorypool *pool;
    int bytecount;
    int itemcount;
    int firstitemcount;
    int alignment;
    #endif /* not ANSI_DECLARATORS */
    
    {
      /* Find the proper alignment, which must be at least as large as:   */
      /*   - The parameter `alignment'.                                   */
      /*   - sizeof(VOID *), so the stack of dead items can be maintained */
      /*       without unaligned accesses.                                */
      if (alignment > sizeof(VOID *)) {
        pool->alignbytes = alignment;
      } else {
        pool->alignbytes = sizeof(VOID *);
      }
      pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) *
                        pool->alignbytes;
      pool->itemsperblock = itemcount;
      if (firstitemcount == 0) {
        pool->itemsfirstblock = itemcount;
      } else {
        pool->itemsfirstblock = firstitemcount;
      }
    
      /* Allocate a block of items.  Space for `itemsfirstblock' items and one  */
      /*   pointer (to point to the next block) are allocated, as well as space */
      /*   to ensure alignment of the items.                                    */
      pool->firstblock = (VOID **)
        trimalloc(pool->itemsfirstblock * pool->itembytes + (int) sizeof(VOID *) +
                  pool->alignbytes);
      /* Set the next block pointer to NULL. */
      *(pool->firstblock) = (VOID *) NULL;
      poolrestart(pool);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  pooldeinit()   Free to the operating system all memory taken by a pool.  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void pooldeinit(struct memorypool *pool)
    #else /* not ANSI_DECLARATORS */
    void pooldeinit(pool)
    struct memorypool *pool;
    #endif /* not ANSI_DECLARATORS */
    
    {
      while (pool->firstblock != (VOID **) NULL) {
        pool->nowblock = (VOID **) *(pool->firstblock);
        trifree((VOID *) pool->firstblock);
        pool->firstblock = pool->nowblock;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  poolalloc()   Allocate space for an item.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    VOID *poolalloc(struct memorypool *pool)
    #else /* not ANSI_DECLARATORS */
    VOID *poolalloc(pool)
    struct memorypool *pool;
    #endif /* not ANSI_DECLARATORS */
    
    {
      VOID *newitem;
      VOID **newblock;
      unsigned long alignptr;
    
      /* First check the linked list of dead items.  If the list is not   */
      /*   empty, allocate an item from the list rather than a fresh one. */
      if (pool->deaditemstack != (VOID *) NULL) {
        newitem = pool->deaditemstack;               /* Take first item in list. */
        pool->deaditemstack = * (VOID **) pool->deaditemstack;
      } else {
        /* Check if there are any free items left in the current block. */
        if (pool->unallocateditems == 0) {
          /* Check if another block must be allocated. */
          if (*(pool->nowblock) == (VOID *) NULL) {
            /* Allocate a new block of items, pointed to by the previous block. */
            newblock = (VOID **) trimalloc(pool->itemsperblock * pool->itembytes +
                                           (int) sizeof(VOID *) +
                                           pool->alignbytes);
            *(pool->nowblock) = (VOID *) newblock;
            /* The next block pointer is NULL. */
            *newblock = (VOID *) NULL;
          }
    
          /* Move to the new block. */
          pool->nowblock = (VOID **) *(pool->nowblock);
          /* Find the first item in the block.    */
          /*   Increment by the size of (VOID *). */
          alignptr = (unsigned long) (pool->nowblock + 1);
          /* Align the item on an `alignbytes'-byte boundary. */
          pool->nextitem = (VOID *)
            (alignptr + (unsigned long) pool->alignbytes -
             (alignptr % (unsigned long) pool->alignbytes));
          /* There are lots of unallocated items left in this block. */
          pool->unallocateditems = pool->itemsperblock;
        }
    
        /* Allocate a new item. */
        newitem = pool->nextitem;
        /* Advance `nextitem' pointer to next free item in block. */
        pool->nextitem = (VOID *) ((char *) pool->nextitem + pool->itembytes);
        pool->unallocateditems--;
        pool->maxitems++;
      }
      pool->items++;
      return newitem;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  pooldealloc()   Deallocate space for an item.                            */
    /*                                                                           */
    /*  The deallocated space is stored in a queue for later reuse.              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void pooldealloc(struct memorypool *pool, VOID *dyingitem)
    #else /* not ANSI_DECLARATORS */
    void pooldealloc(pool, dyingitem)
    struct memorypool *pool;
    VOID *dyingitem;
    #endif /* not ANSI_DECLARATORS */
    
    {
      /* Push freshly killed item onto stack. */
      *((VOID **) dyingitem) = pool->deaditemstack;
      pool->deaditemstack = dyingitem;
      pool->items--;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  traversalinit()   Prepare to traverse the entire list of items.          */
    /*                                                                           */
    /*  This routine is used in conjunction with traverse().                     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void traversalinit(struct memorypool *pool)
    #else /* not ANSI_DECLARATORS */
    void traversalinit(pool)
    struct memorypool *pool;
    #endif /* not ANSI_DECLARATORS */
    
    {
      unsigned long alignptr;
    
      /* Begin the traversal in the first block. */
      pool->pathblock = pool->firstblock;
      /* Find the first item in the block.  Increment by the size of (VOID *). */
      alignptr = (unsigned long) (pool->pathblock + 1);
      /* Align with item on an `alignbytes'-byte boundary. */
      pool->pathitem = (VOID *)
        (alignptr + (unsigned long) pool->alignbytes -
         (alignptr % (unsigned long) pool->alignbytes));
      /* Set the number of items left in the current block. */
      pool->pathitemsleft = pool->itemsfirstblock;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  traverse()   Find the next item in the list.                             */
    /*                                                                           */
    /*  This routine is used in conjunction with traversalinit().  Be forewarned */
    /*  that this routine successively returns all items in the list, including  */
    /*  deallocated ones on the deaditemqueue.  It's up to you to figure out     */
    /*  which ones are actually dead.  Why?  I don't want to allocate extra      */
    /*  space just to demarcate dead items.  It can usually be done more         */
    /*  space-efficiently by a routine that knows something about the structure  */
    /*  of the item.                                                             */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    VOID *traverse(struct memorypool *pool)
    #else /* not ANSI_DECLARATORS */
    VOID *traverse(pool)
    struct memorypool *pool;
    #endif /* not ANSI_DECLARATORS */
    
    {
      VOID *newitem;
      unsigned long alignptr;
    
      /* Stop upon exhausting the list of items. */
      if (pool->pathitem == pool->nextitem) {
        return (VOID *) NULL;
      }
    
      /* Check whether any untraversed items remain in the current block. */
      if (pool->pathitemsleft == 0) {
        /* Find the next block. */
        pool->pathblock = (VOID **) *(pool->pathblock);
        /* Find the first item in the block.  Increment by the size of (VOID *). */
        alignptr = (unsigned long) (pool->pathblock + 1);
        /* Align with item on an `alignbytes'-byte boundary. */
        pool->pathitem = (VOID *)
          (alignptr + (unsigned long) pool->alignbytes -
           (alignptr % (unsigned long) pool->alignbytes));
        /* Set the number of items left in the current block. */
        pool->pathitemsleft = pool->itemsperblock;
      }
    
      newitem = pool->pathitem;
      /* Find the next item in the block. */
      pool->pathitem = (VOID *) ((char *) pool->pathitem + pool->itembytes);
      pool->pathitemsleft--;
      return newitem;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  dummyinit()   Initialize the triangle that fills "outer space" and the   */
    /*                omnipresent subsegment.                                    */
    /*                                                                           */
    /*  The triangle that fills "outer space," called `dummytri', is pointed to  */
    /*  by every triangle and subsegment on a boundary (be it outer or inner) of */
    /*  the triangulation.  Also, `dummytri' points to one of the triangles on   */
    /*  the convex hull (until the holes and concavities are carved), making it  */
    /*  possible to find a starting triangle for point location.                 */
    /*                                                                           */
    /*  The omnipresent subsegment, `dummysub', is pointed to by every triangle  */
    /*  or subsegment that doesn't have a full complement of real subsegments    */
    /*  to point to.                                                             */
    /*                                                                           */
    /*  `dummytri' and `dummysub' are generally required to fulfill only a few   */
    /*  invariants:  their vertices must remain NULL and `dummytri' must always  */
    /*  be bonded (at offset zero) to some triangle on the convex hull of the    */
    /*  mesh, via a boundary edge.  Otherwise, the connections of `dummytri' and */
    /*  `dummysub' may change willy-nilly.  This makes it possible to avoid      */
    /*  writing a good deal of special-case code (in the edge flip, for example) */
    /*  for dealing with the boundary of the mesh, places where no subsegment is */
    /*  present, and so forth.  Other entities are frequently bonded to          */
    /*  `dummytri' and `dummysub' as if they were real mesh entities, with no    */
    /*  harm done.                                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void dummyinit(struct mesh *m, struct behavior *b, int trianglebytes,
                   int subsegbytes)
    #else /* not ANSI_DECLARATORS */
    void dummyinit(m, b, trianglebytes, subsegbytes)
    struct mesh *m;
    struct behavior *b;
    int trianglebytes;
    int subsegbytes;
    #endif /* not ANSI_DECLARATORS */
    
    {
      unsigned long alignptr;
    
      /* Set up `dummytri', the `triangle' that occupies "outer space." */
      m->dummytribase = (triangle *) trimalloc(trianglebytes +
                                               m->triangles.alignbytes);
      /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
      alignptr = (unsigned long) m->dummytribase;
      m->dummytri = (triangle *)
        (alignptr + (unsigned long) m->triangles.alignbytes -
         (alignptr % (unsigned long) m->triangles.alignbytes));
      /* Initialize the three adjoining triangles to be "outer space."  These  */
      /*   will eventually be changed by various bonding operations, but their */
      /*   values don't really matter, as long as they can legally be          */
      /*   dereferenced.                                                       */
      m->dummytri[0] = (triangle) m->dummytri;
      m->dummytri[1] = (triangle) m->dummytri;
      m->dummytri[2] = (triangle) m->dummytri;
      /* Three NULL vertices. */
      m->dummytri[3] = (triangle) NULL;
      m->dummytri[4] = (triangle) NULL;
      m->dummytri[5] = (triangle) NULL;
    
      if (b->usesegments) {
        /* Set up `dummysub', the omnipresent subsegment pointed to by any */
        /*   triangle side or subsegment end that isn't attached to a real */
        /*   subsegment.                                                   */
        m->dummysubbase = (subseg *) trimalloc(subsegbytes +
                                               m->subsegs.alignbytes);
        /* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */
        alignptr = (unsigned long) m->dummysubbase;
        m->dummysub = (subseg *)
          (alignptr + (unsigned long) m->subsegs.alignbytes -
           (alignptr % (unsigned long) m->subsegs.alignbytes));
        /* Initialize the two adjoining subsegments to be the omnipresent      */
        /*   subsegment.  These will eventually be changed by various bonding  */
        /*   operations, but their values don't really matter, as long as they */
        /*   can legally be dereferenced.                                      */
        m->dummysub[0] = (subseg) m->dummysub;
        m->dummysub[1] = (subseg) m->dummysub;
        /* Four NULL vertices. */
        m->dummysub[2] = (subseg) NULL;
        m->dummysub[3] = (subseg) NULL;
        m->dummysub[4] = (subseg) NULL;
        m->dummysub[5] = (subseg) NULL;
        /* Initialize the two adjoining triangles to be "outer space." */
        m->dummysub[6] = (subseg) m->dummytri;
        m->dummysub[7] = (subseg) m->dummytri;
        /* Set the boundary marker to zero. */
        * (int *) (m->dummysub + 8) = 0;
    
        /* Initialize the three adjoining subsegments of `dummytri' to be */
        /*   the omnipresent subsegment.                                  */
        m->dummytri[6] = (triangle) m->dummysub;
        m->dummytri[7] = (triangle) m->dummysub;
        m->dummytri[8] = (triangle) m->dummysub;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  initializevertexpool()   Calculate the size of the vertex data structure */
    /*                           and initialize its memory pool.                 */
    /*                                                                           */
    /*  This routine also computes the `vertexmarkindex' and `vertex2triindex'   */
    /*  indices used to find values within each vertex.                          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void initializevertexpool(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void initializevertexpool(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      int vertexsize;
    
      /* The index within each vertex at which the boundary marker is found,    */
      /*   followed by the vertex type.  Ensure the vertex marker is aligned to */
      /*   a sizeof(int)-byte address.                                          */
      m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(REAL) +
                            sizeof(int) - 1) /
                           sizeof(int);
      vertexsize = (m->vertexmarkindex + 2) * sizeof(int);
      if (b->poly) {
        /* The index within each vertex at which a triangle pointer is found.  */
        /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
        m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) /
                             sizeof(triangle);
        vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);
      }
    
      /* Initialize the pool of vertices. */
      poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,
               m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK,
               sizeof(REAL));
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  initializetrisubpools()   Calculate the sizes of the triangle and        */
    /*                            subsegment data structures and initialize      */
    /*                            their memory pools.                            */
    /*                                                                           */
    /*  This routine also computes the `highorderindex', `elemattribindex', and  */
    /*  `areaboundindex' indices used to find values within each triangle.       */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void initializetrisubpools(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void initializetrisubpools(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      int trisize;
    
      /* The index within each triangle at which the extra nodes (above three)  */
      /*   associated with high order elements are found.  There are three      */
      /*   pointers to other triangles, three pointers to corners, and possibly */
      /*   three pointers to subsegments before the extra nodes.                */
      m->highorderindex = 6 + (b->usesegments * 3);
      /* The number of bytes occupied by a triangle. */
      trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) *
                sizeof(triangle);
      /* The index within each triangle at which its attributes are found, */
      /*   where the index is measured in REALs.                           */
      m->elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
      /* The index within each triangle at which the maximum area constraint  */
      /*   is found, where the index is measured in REALs.  Note that if the  */
      /*   `regionattrib' flag is set, an additional attribute will be added. */
      m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;
      /* If triangle attributes or an area bound are needed, increase the number */
      /*   of bytes occupied by a triangle.                                      */
      if (b->vararea) {
        trisize = (m->areaboundindex + 1) * sizeof(REAL);
      } else if (m->eextras + b->regionattrib > 0) {
        trisize = m->areaboundindex * sizeof(REAL);
      }
      /* If a Voronoi diagram or triangle neighbor graph is requested, make    */
      /*   sure there's room to store an integer index in each triangle.  This */
      /*   integer index can occupy the same space as the subsegment pointers  */
      /*   or attributes or area constraint or extra nodes.                    */
      if ((b->voronoi || b->neighbors) &&
          (trisize < 6 * sizeof(triangle) + sizeof(int))) {
        trisize = 6 * sizeof(triangle) + sizeof(int);
      }
    
      /* Having determined the memory size of a triangle, initialize the pool. */
      poolinit(&m->triangles, trisize, TRIPERBLOCK,
               (2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) :
               TRIPERBLOCK, 4);
    
      if (b->usesegments) {
        /* Initialize the pool of subsegments.  Take into account all eight */
        /*   pointers and one boundary marker.                              */
        poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int),
                 SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4);
    
        /* Initialize the "outer space" triangle and omnipresent subsegment. */
        dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes);
      } else {
        /* Initialize the "outer space" triangle. */
        dummyinit(m, b, m->triangles.itembytes, 0);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangledealloc()   Deallocate space for a triangle, marking it dead.    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void triangledealloc(struct mesh *m, triangle *dyingtriangle)
    #else /* not ANSI_DECLARATORS */
    void triangledealloc(m, dyingtriangle)
    struct mesh *m;
    triangle *dyingtriangle;
    #endif /* not ANSI_DECLARATORS */
    
    {
      /* Mark the triangle as dead.  This makes it possible to detect dead */
      /*   triangles when traversing the list of all triangles.            */
      killtri(dyingtriangle);
      pooldealloc(&m->triangles, (VOID *) dyingtriangle);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangletraverse()   Traverse the triangles, skipping dead ones.         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    triangle *triangletraverse(struct mesh *m)
    #else /* not ANSI_DECLARATORS */
    triangle *triangletraverse(m)
    struct mesh *m;
    #endif /* not ANSI_DECLARATORS */
    
    {
      triangle *newtriangle;
    
      do {
        newtriangle = (triangle *) traverse(&m->triangles);
        if (newtriangle == (triangle *) NULL) {
          return (triangle *) NULL;
        }
      } while (deadtri(newtriangle));                         /* Skip dead ones. */
      return newtriangle;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  subsegdealloc()   Deallocate space for a subsegment, marking it dead.    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void subsegdealloc(struct mesh *m, subseg *dyingsubseg)
    #else /* not ANSI_DECLARATORS */
    void subsegdealloc(m, dyingsubseg)
    struct mesh *m;
    subseg *dyingsubseg;
    #endif /* not ANSI_DECLARATORS */
    
    {
      /* Mark the subsegment as dead.  This makes it possible to detect dead */
      /*   subsegments when traversing the list of all subsegments.          */
      killsubseg(dyingsubseg);
      pooldealloc(&m->subsegs, (VOID *) dyingsubseg);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  subsegtraverse()   Traverse the subsegments, skipping dead ones.         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    subseg *subsegtraverse(struct mesh *m)
    #else /* not ANSI_DECLARATORS */
    subseg *subsegtraverse(m)
    struct mesh *m;
    #endif /* not ANSI_DECLARATORS */
    
    {
      subseg *newsubseg;
    
      do {
        newsubseg = (subseg *) traverse(&m->subsegs);
        if (newsubseg == (subseg *) NULL) {
          return (subseg *) NULL;
        }
      } while (deadsubseg(newsubseg));                        /* Skip dead ones. */
      return newsubseg;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  vertexdealloc()   Deallocate space for a vertex, marking it dead.        */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void vertexdealloc(struct mesh *m, vertex dyingvertex)
    #else /* not ANSI_DECLARATORS */
    void vertexdealloc(m, dyingvertex)
    struct mesh *m;
    vertex dyingvertex;
    #endif /* not ANSI_DECLARATORS */
    
    {
      /* Mark the vertex as dead.  This makes it possible to detect dead */
      /*   vertices when traversing the list of all vertices.            */
      setvertextype(dyingvertex, DEADVERTEX);
      pooldealloc(&m->vertices, (VOID *) dyingvertex);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  vertextraverse()   Traverse the vertices, skipping dead ones.            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    vertex vertextraverse(struct mesh *m)
    #else /* not ANSI_DECLARATORS */
    vertex vertextraverse(m)
    struct mesh *m;
    #endif /* not ANSI_DECLARATORS */
    
    {
      vertex newvertex;
    
      do {
        newvertex = (vertex) traverse(&m->vertices);
        if (newvertex == (vertex) NULL) {
          return (vertex) NULL;
        }
      } while (vertextype(newvertex) == DEADVERTEX);          /* Skip dead ones. */
      return newvertex;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  badsubsegdealloc()   Deallocate space for a bad subsegment, marking it   */
    /*                       dead.                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void badsubsegdealloc(struct mesh *m, struct badsubseg *dyingseg)
    #else /* not ANSI_DECLARATORS */
    void badsubsegdealloc(m, dyingseg)
    struct mesh *m;
    struct badsubseg *dyingseg;
    #endif /* not ANSI_DECLARATORS */
    
    {
      /* Set subsegment's origin to NULL.  This makes it possible to detect dead */
      /*   badsubsegs when traversing the list of all badsubsegs             .   */
      dyingseg->subsegorg = (vertex) NULL;
      pooldealloc(&m->badsubsegs, (VOID *) dyingseg);
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  badsubsegtraverse()   Traverse the bad subsegments, skipping dead ones.  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    struct badsubseg *badsubsegtraverse(struct mesh *m)
    #else /* not ANSI_DECLARATORS */
    struct badsubseg *badsubsegtraverse(m)
    struct mesh *m;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct badsubseg *newseg;
    
      do {
        newseg = (struct badsubseg *) traverse(&m->badsubsegs);
        if (newseg == (struct badsubseg *) NULL) {
          return (struct badsubseg *) NULL;
        }
      } while (newseg->subsegorg == (vertex) NULL);           /* Skip dead ones. */
      return newseg;
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  getvertex()   Get a specific vertex, by number, from the list.           */
    /*                                                                           */
    /*  The first vertex is number 'firstnumber'.                                */
    /*                                                                           */
    /*  Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */
    /*  is large).  I don't care to take the trouble to make it work in constant */
    /*  time.                                                                    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    vertex getvertex(struct mesh *m, struct behavior *b, int number)
    #else /* not ANSI_DECLARATORS */
    vertex getvertex(m, b, number)
    struct mesh *m;
    struct behavior *b;
    int number;
    #endif /* not ANSI_DECLARATORS */
    
    {
      VOID **getblock;
      char *foundvertex;
      unsigned long alignptr;
      int current;
    
      getblock = m->vertices.firstblock;
      current = b->firstnumber;
    
      /* Find the right block. */
      if (current + m->vertices.itemsfirstblock <= number) {
        getblock = (VOID **) *getblock;
        current += m->vertices.itemsfirstblock;
        while (current + m->vertices.itemsperblock <= number) {
          getblock = (VOID **) *getblock;
          current += m->vertices.itemsperblock;
        }
      }
    
      /* Now find the right vertex. */
      alignptr = (unsigned long) (getblock + 1);
      foundvertex = (char *) (alignptr + (unsigned long) m->vertices.alignbytes -
                              (alignptr % (unsigned long) m->vertices.alignbytes));
      return (vertex) (foundvertex + m->vertices.itembytes * (number - current));
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangledeinit()   Free all remaining allocated memory.                  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void triangledeinit(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void triangledeinit(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      pooldeinit(&m->triangles);
      trifree((VOID *) m->dummytribase);
      if (b->usesegments) {
        pooldeinit(&m->subsegs);
        trifree((VOID *) m->dummysubbase);
      }
      pooldeinit(&m->vertices);
    #ifndef CDT_ONLY
      if (b->quality) {
        pooldeinit(&m->badsubsegs);
        if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {
          pooldeinit(&m->badtriangles);
          pooldeinit(&m->flipstackers);
        }
      }
    #endif /* not CDT_ONLY */
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Memory management routines end here                       *********/
    
    /********* Constructors begin here                                   *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  maketriangle()   Create a new triangle with orientation zero.            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri)
    #else /* not ANSI_DECLARATORS */
    void maketriangle(m, b, newotri)
    struct mesh *m;
    struct behavior *b;
    struct otri *newotri;
    #endif /* not ANSI_DECLARATORS */
    
    {
      int i;
    
      newotri->tri = (triangle *) poolalloc(&m->triangles);
      /* Initialize the three adjoining triangles to be "outer space". */
      newotri->tri[0] = (triangle) m->dummytri;
      newotri->tri[1] = (triangle) m->dummytri;
      newotri->tri[2] = (triangle) m->dummytri;
      /* Three NULL vertices. */
      newotri->tri[3] = (triangle) NULL;
      newotri->tri[4] = (triangle) NULL;
      newotri->tri[5] = (triangle) NULL;
      if (b->usesegments) {
        /* Initialize the three adjoining subsegments to be the omnipresent */
        /*   subsegment.                                                    */
        newotri->tri[6] = (triangle) m->dummysub;
        newotri->tri[7] = (triangle) m->dummysub;
        newotri->tri[8] = (triangle) m->dummysub;
      }
      for (i = 0; i < m->eextras; i++) {
        setelemattribute(*newotri, i, 0.0);
      }
      if (b->vararea) {
        setareabound(*newotri, -1.0);
      }
    
      newotri->orient = 0;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  makesubseg()   Create a new subsegment with orientation zero.            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void makesubseg(struct mesh *m, struct osub *newsubseg)
    #else /* not ANSI_DECLARATORS */
    void makesubseg(m, newsubseg)
    struct mesh *m;
    struct osub *newsubseg;
    #endif /* not ANSI_DECLARATORS */
    
    {
      newsubseg->ss = (subseg *) poolalloc(&m->subsegs);
      /* Initialize the two adjoining subsegments to be the omnipresent */
      /*   subsegment.                                                  */
      newsubseg->ss[0] = (subseg) m->dummysub;
      newsubseg->ss[1] = (subseg) m->dummysub;
      /* Four NULL vertices. */
      newsubseg->ss[2] = (subseg) NULL;
      newsubseg->ss[3] = (subseg) NULL;
      newsubseg->ss[4] = (subseg) NULL;
      newsubseg->ss[5] = (subseg) NULL;
      /* Initialize the two adjoining triangles to be "outer space." */
      newsubseg->ss[6] = (subseg) m->dummytri;
      newsubseg->ss[7] = (subseg) m->dummytri;
      /* Set the boundary marker to zero. */
      setmark(*newsubseg, 0);
    
      newsubseg->ssorient = 0;
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Constructors end here                                     *********/
    
    /********* Geometric primitives begin here                           *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /* The adaptive exact arithmetic geometric predicates implemented herein are */
    /*   described in detail in my paper, "Adaptive Precision Floating-Point     */
    /*   Arithmetic and Fast Robust Geometric Predicates."  See the header for a */
    /*   full citation.                                                          */
    
    /* Which of the following two methods of finding the absolute values is      */
    /*   fastest is compiler-dependent.  A few compilers can inline and optimize */
    /*   the fabs() call; but most will incur the overhead of a function call,   */
    /*   which is disastrously slow.  A faster way on IEEE machines might be to  */
    /*   mask the appropriate bit, but that's difficult to do in C without       */
    /*   forcing the value to be stored to memory (rather than be kept in the    */
    /*   register to which the optimizer assigned it).                           */
    
    #define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))
    /* #define Absolute(a)  fabs(a) */
    
    /* Many of the operations are broken up into two pieces, a main part that    */
    /*   performs an approximate operation, and a "tail" that computes the       */
    /*   roundoff error of that operation.                                       */
    /*                                                                           */
    /* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    */
    /*   Split(), and Two_Product() are all implemented as described in the      */
    /*   reference.  Each of these macros requires certain variables to be       */
    /*   defined in the calling routine.  The variables `bvirt', `c', `abig',    */
    /*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   */
    /*   they store the result of an operation that may incur roundoff error.    */
    /*   The input parameter `x' (or the highest numbered `x_' parameter) must   */
    /*   also be declared `INEXACT'.                                             */
    
    #define Fast_Two_Sum_Tail(a, b, x, y) \
      bvirt = x - a; \
      y = b - bvirt
    
    #define Fast_Two_Sum(a, b, x, y) \
      x = (REAL) (a + b); \
      Fast_Two_Sum_Tail(a, b, x, y)
    
    #define Two_Sum_Tail(a, b, x, y) \
      bvirt = (REAL) (x - a); \
      avirt = x - bvirt; \
      bround = b - bvirt; \
      around = a - avirt; \
      y = around + bround
    
    #define Two_Sum(a, b, x, y) \
      x = (REAL) (a + b); \
      Two_Sum_Tail(a, b, x, y)
    
    #define Two_Diff_Tail(a, b, x, y) \
      bvirt = (REAL) (a - x); \
      avirt = x + bvirt; \
      bround = bvirt - b; \
      around = a - avirt; \
      y = around + bround
    
    #define Two_Diff(a, b, x, y) \
      x = (REAL) (a - b); \
      Two_Diff_Tail(a, b, x, y)
    
    #define Split(a, ahi, alo) \
      c = (REAL) (splitter * a); \
      abig = (REAL) (c - a); \
      ahi = c - abig; \
      alo = a - ahi
    
    #define Two_Product_Tail(a, b, x, y) \
      Split(a, ahi, alo); \
      Split(b, bhi, blo); \
      err1 = x - (ahi * bhi); \
      err2 = err1 - (alo * bhi); \
      err3 = err2 - (ahi * blo); \
      y = (alo * blo) - err3
    
    #define Two_Product(a, b, x, y) \
      x = (REAL) (a * b); \
      Two_Product_Tail(a, b, x, y)
    
    /* Two_Product_Presplit() is Two_Product() where one of the inputs has       */
    /*   already been split.  Avoids redundant splitting.                        */
    
    #define Two_Product_Presplit(a, b, bhi, blo, x, y) \
      x = (REAL) (a * b); \
      Split(a, ahi, alo); \
      err1 = x - (ahi * bhi); \
      err2 = err1 - (alo * bhi); \
      err3 = err2 - (ahi * blo); \
      y = (alo * blo) - err3
    
    /* Square() can be done more quickly than Two_Product().                     */
    
    #define Square_Tail(a, x, y) \
      Split(a, ahi, alo); \
      err1 = x - (ahi * ahi); \
      err3 = err1 - ((ahi + ahi) * alo); \
      y = (alo * alo) - err3
    
    #define Square(a, x, y) \
      x = (REAL) (a * a); \
      Square_Tail(a, x, y)
    
    /* Macros for summing expansions of various fixed lengths.  These are all    */
    /*   unrolled versions of Expansion_Sum().                                   */
    
    #define Two_One_Sum(a1, a0, b, x2, x1, x0) \
      Two_Sum(a0, b , _i, x0); \
      Two_Sum(a1, _i, x2, x1)
    
    #define Two_One_Diff(a1, a0, b, x2, x1, x0) \
      Two_Diff(a0, b , _i, x0); \
      Two_Sum( a1, _i, x2, x1)
    
    #define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
      Two_One_Sum(a1, a0, b0, _j, _0, x0); \
      Two_One_Sum(_j, _0, b1, x3, x2, x1)
    
    #define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
      Two_One_Diff(a1, a0, b0, _j, _0, x0); \
      Two_One_Diff(_j, _0, b1, x3, x2, x1)
    
    /* Macro for multiplying a two-component expansion by a single component.    */
    
    #define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
      Split(b, bhi, blo); \
      Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
      Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
      Two_Sum(_i, _0, _k, x1); \
      Fast_Two_Sum(_j, _k, x3, x2)
    
    /*****************************************************************************/
    /*                                                                           */
    /*  exactinit()   Initialize the variables used for exact arithmetic.        */
    /*                                                                           */
    /*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   */
    /*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       */
    /*  error.  It is used for floating-point error analysis.                    */
    /*                                                                           */
    /*  `splitter' is used to split floating-point numbers into two half-        */
    /*  length significands for exact multiplication.                            */
    /*                                                                           */
    /*  I imagine that a highly optimizing compiler might be too smart for its   */
    /*  own good, and somehow cause this routine to fail, if it pretends that    */
    /*  floating-point arithmetic is too much like real arithmetic.              */
    /*                                                                           */
    /*  Don't change this routine unless you fully understand it.                */
    /*                                                                           */
    /*****************************************************************************/
    
    void exactinit()
    {
      REAL half;
      REAL check, lastcheck;
      int every_other;
    #ifdef LINUX
      int cword;
    #endif /* LINUX */
    
    #ifdef CPU86
    #ifdef SINGLE
      _control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */
    #else /* not SINGLE */
      _control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */
    #endif /* not SINGLE */
    #endif /* CPU86 */
    #ifdef LINUX
    #ifdef SINGLE
      /*  cword = 4223; */
      cword = 4210;                 /* set FPU control word for single precision */
    #else /* not SINGLE */
      /*  cword = 4735; */
      cword = 4722;                 /* set FPU control word for double precision */
    #endif /* not SINGLE */
      _FPU_SETCW(cword);
    #endif /* LINUX */
    
      every_other = 1;
      half = 0.5;
      epsilon = 1.0;
      splitter = 1.0;
      check = 1.0;
      /* Repeatedly divide `epsilon' by two until it is too small to add to      */
      /*   one without causing roundoff.  (Also check if the sum is equal to     */
      /*   the previous sum, for machines that round up instead of using exact   */
      /*   rounding.  Not that these routines will work on such machines.)       */
      do {
        lastcheck = check;
        epsilon *= half;
        if (every_other) {
          splitter *= 2.0;
        }
        every_other = !every_other;
        check = 1.0 + epsilon;
      } while ((check != 1.0) && (check != lastcheck));
      splitter += 1.0;
      /* Error bounds for orientation and incircle tests. */
      resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
      ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
      ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
      ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
      iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
      iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
      iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
      o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
      o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
      o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     */
    /*                                  components from the output expansion.    */
    /*                                                                           */
    /*  Sets h = e + f.  See my Robust Predicates paper for details.             */
    /*                                                                           */
    /*  If round-to-even is used (as with IEEE 754), maintains the strongly      */
    /*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   */
    /*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      */
    /*  properties.                                                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h)
    #else /* not ANSI_DECLARATORS */
    int fast_expansion_sum_zeroelim(elen, e, flen, f, h)  /* h cannot be e or f. */
    int elen;
    REAL *e;
    int flen;
    REAL *f;
    REAL *h;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL Q;
      INEXACT REAL Qnew;
      INEXACT REAL hh;
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      int eindex, findex, hindex;
      REAL enow, fnow;
    
      enow = e[0];
      fnow = f[0];
      eindex = findex = 0;
      if ((fnow > enow) == (fnow > -enow)) {
        Q = enow;
        enow = e[++eindex];
      } else {
        Q = fnow;
        fnow = f[++findex];
      }
      hindex = 0;
      if ((eindex < elen) && (findex < flen)) {
        if ((fnow > enow) == (fnow > -enow)) {
          Fast_Two_Sum(enow, Q, Qnew, hh);
          enow = e[++eindex];
        } else {
          Fast_Two_Sum(fnow, Q, Qnew, hh);
          fnow = f[++findex];
        }
        Q = Qnew;
        if (hh != 0.0) {
          h[hindex++] = hh;
        }
        while ((eindex < elen) && (findex < flen)) {
          if ((fnow > enow) == (fnow > -enow)) {
            Two_Sum(Q, enow, Qnew, hh);
            enow = e[++eindex];
          } else {
            Two_Sum(Q, fnow, Qnew, hh);
            fnow = f[++findex];
          }
          Q = Qnew;
          if (hh != 0.0) {
            h[hindex++] = hh;
          }
        }
      }
      while (eindex < elen) {
        Two_Sum(Q, enow, Qnew, hh);
        enow = e[++eindex];
        Q = Qnew;
        if (hh != 0.0) {
          h[hindex++] = hh;
        }
      }
      while (findex < flen) {
        Two_Sum(Q, fnow, Qnew, hh);
        fnow = f[++findex];
        Q = Qnew;
        if (hh != 0.0) {
          h[hindex++] = hh;
        }
      }
      if ((Q != 0.0) || (hindex == 0)) {
        h[hindex++] = Q;
      }
      return hindex;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          */
    /*                               eliminating zero components from the        */
    /*                               output expansion.                           */
    /*                                                                           */
    /*  Sets h = be.  See my Robust Predicates paper for details.                */
    /*                                                                           */
    /*  Maintains the nonoverlapping property.  If round-to-even is used (as     */
    /*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    */
    /*  properties as well.  (That is, if e has one of these properties, so      */
    /*  will h.)                                                                 */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h)
    #else /* not ANSI_DECLARATORS */
    int scale_expansion_zeroelim(elen, e, b, h)   /* e and h cannot be the same. */
    int elen;
    REAL *e;
    REAL b;
    REAL *h;
    #endif /* not ANSI_DECLARATORS */
    
    {
      INEXACT REAL Q, sum;
      REAL hh;
      INEXACT REAL product1;
      REAL product0;
      int eindex, hindex;
      REAL enow;
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      INEXACT REAL c;
      INEXACT REAL abig;
      REAL ahi, alo, bhi, blo;
      REAL err1, err2, err3;
    
      Split(b, bhi, blo);
      Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
      hindex = 0;
      if (hh != 0) {
        h[hindex++] = hh;
      }
      for (eindex = 1; eindex < elen; eindex++) {
        enow = e[eindex];
        Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
        Two_Sum(Q, product0, sum, hh);
        if (hh != 0) {
          h[hindex++] = hh;
        }
        Fast_Two_Sum(product1, sum, Q, hh);
        if (hh != 0) {
          h[hindex++] = hh;
        }
      }
      if ((Q != 0.0) || (hindex == 0)) {
        h[hindex++] = Q;
      }
      return hindex;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  estimate()   Produce a one-word estimate of an expansion's value.        */
    /*                                                                           */
    /*  See my Robust Predicates paper for details.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    REAL estimate(int elen, REAL *e)
    #else /* not ANSI_DECLARATORS */
    REAL estimate(elen, e)
    int elen;
    REAL *e;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL Q;
      int eindex;
    
      Q = e[0];
      for (eindex = 1; eindex < elen; eindex++) {
        Q += e[eindex];
      }
      return Q;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  counterclockwise()   Return a positive value if the points pa, pb, and   */
    /*                       pc occur in counterclockwise order; a negative      */
    /*                       value if they occur in clockwise order; and zero    */
    /*                       if they are collinear.  The result is also a rough  */
    /*                       approximation of twice the signed area of the       */
    /*                       triangle defined by the three points.               */
    /*                                                                           */
    /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
    /*  result returned is the determinant of a matrix.  This determinant is     */
    /*  computed adaptively, in the sense that exact arithmetic is used only to  */
    /*  the degree it is needed to ensure that the returned value has the        */
    /*  correct sign.  Hence, this function is usually quite fast, but will run  */
    /*  more slowly when the input points are collinear or nearly so.            */
    /*                                                                           */
    /*  See my Robust Predicates paper for details.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    REAL counterclockwiseadapt(vertex pa, vertex pb, vertex pc, REAL detsum)
    #else /* not ANSI_DECLARATORS */
    REAL counterclockwiseadapt(pa, pb, pc, detsum)
    vertex pa;
    vertex pb;
    vertex pc;
    REAL detsum;
    #endif /* not ANSI_DECLARATORS */
    
    {
      INEXACT REAL acx, acy, bcx, bcy;
      REAL acxtail, acytail, bcxtail, bcytail;
      INEXACT REAL detleft, detright;
      REAL detlefttail, detrighttail;
      REAL det, errbound;
      REAL B[4], C1[8], C2[12], D[16];
      INEXACT REAL B3;
      int C1length, C2length, Dlength;
      REAL u[4];
      INEXACT REAL u3;
      INEXACT REAL s1, t1;
      REAL s0, t0;
    
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      INEXACT REAL c;
      INEXACT REAL abig;
      REAL ahi, alo, bhi, blo;
      REAL err1, err2, err3;
      INEXACT REAL _i, _j;
      REAL _0;
    
      acx = (REAL) (pa[0] - pc[0]);
      bcx = (REAL) (pb[0] - pc[0]);
      acy = (REAL) (pa[1] - pc[1]);
      bcy = (REAL) (pb[1] - pc[1]);
    
      Two_Product(acx, bcy, detleft, detlefttail);
      Two_Product(acy, bcx, detright, detrighttail);
    
      Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
                   B3, B[2], B[1], B[0]);
      B[3] = B3;
    
      det = estimate(4, B);
      errbound = ccwerrboundB * detsum;
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
      Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
      Two_Diff_Tail(pa[1], pc[1], acy, acytail);
      Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
    
      if ((acxtail == 0.0) && (acytail == 0.0)
          && (bcxtail == 0.0) && (bcytail == 0.0)) {
        return det;
      }
    
      errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
      det += (acx * bcytail + bcy * acxtail)
           - (acy * bcxtail + bcx * acytail);
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      Two_Product(acxtail, bcy, s1, s0);
      Two_Product(acytail, bcx, t1, t0);
      Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
    
      Two_Product(acx, bcytail, s1, s0);
      Two_Product(acy, bcxtail, t1, t0);
      Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
    
      Two_Product(acxtail, bcytail, s1, s0);
      Two_Product(acytail, bcxtail, t1, t0);
      Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
    
      return(D[Dlength - 1]);
    }
    
    #ifdef ANSI_DECLARATORS
    REAL counterclockwise(struct mesh *m, struct behavior *b,
                          vertex pa, vertex pb, vertex pc)
    #else /* not ANSI_DECLARATORS */
    REAL counterclockwise(m, b, pa, pb, pc)
    struct mesh *m;
    struct behavior *b;
    vertex pa;
    vertex pb;
    vertex pc;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL detleft, detright, det;
      REAL detsum, errbound;
    
      m->counterclockcount++;
    
      detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
      detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
      det = detleft - detright;
    
      if (b->noexact) {
        return det;
      }
    
      if (detleft > 0.0) {
        if (detright <= 0.0) {
          return det;
        } else {
          detsum = detleft + detright;
        }
      } else if (detleft < 0.0) {
        if (detright >= 0.0) {
          return det;
        } else {
          detsum = -detleft - detright;
        }
      } else {
        return det;
      }
    
      errbound = ccwerrboundA * detsum;
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      return counterclockwiseadapt(pa, pb, pc, detsum);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  incircle()   Return a positive value if the point pd lies inside the     */
    /*               circle passing through pa, pb, and pc; a negative value if  */
    /*               it lies outside; and zero if the four points are cocircular.*/
    /*               The points pa, pb, and pc must be in counterclockwise       */
    /*               order, or the sign of the result will be reversed.          */
    /*                                                                           */
    /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
    /*  result returned is the determinant of a matrix.  This determinant is     */
    /*  computed adaptively, in the sense that exact arithmetic is used only to  */
    /*  the degree it is needed to ensure that the returned value has the        */
    /*  correct sign.  Hence, this function is usually quite fast, but will run  */
    /*  more slowly when the input points are cocircular or nearly so.           */
    /*                                                                           */
    /*  See my Robust Predicates paper for details.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    REAL incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL permanent)
    #else /* not ANSI_DECLARATORS */
    REAL incircleadapt(pa, pb, pc, pd, permanent)
    vertex pa;
    vertex pb;
    vertex pc;
    vertex pd;
    REAL permanent;
    #endif /* not ANSI_DECLARATORS */
    
    {
      INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
      REAL det, errbound;
    
      INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
      REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
      REAL bc[4], ca[4], ab[4];
      INEXACT REAL bc3, ca3, ab3;
      REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
      int axbclen, axxbclen, aybclen, ayybclen, alen;
      REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
      int bxcalen, bxxcalen, bycalen, byycalen, blen;
      REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
      int cxablen, cxxablen, cyablen, cyyablen, clen;
      REAL abdet[64];
      int ablen;
      REAL fin1[1152], fin2[1152];
      REAL *finnow, *finother, *finswap;
      int finlength;
    
      REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
      INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
      REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
      REAL aa[4], bb[4], cc[4];
      INEXACT REAL aa3, bb3, cc3;
      INEXACT REAL ti1, tj1;
      REAL ti0, tj0;
      REAL u[4], v[4];
      INEXACT REAL u3, v3;
      REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
      REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
      int temp8len, temp16alen, temp16blen, temp16clen;
      int temp32alen, temp32blen, temp48len, temp64len;
      REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
      int axtbblen, axtcclen, aytbblen, aytcclen;
      REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
      int bxtaalen, bxtcclen, bytaalen, bytcclen;
      REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
      int cxtaalen, cxtbblen, cytaalen, cytbblen;
      REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
      int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
      REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
      int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
      REAL axtbctt[8], aytbctt[8], bxtcatt[8];
      REAL bytcatt[8], cxtabtt[8], cytabtt[8];
      int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
      REAL abt[8], bct[8], cat[8];
      int abtlen, bctlen, catlen;
      REAL abtt[4], bctt[4], catt[4];
      int abttlen, bcttlen, cattlen;
      INEXACT REAL abtt3, bctt3, catt3;
      REAL negate;
    
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      INEXACT REAL c;
      INEXACT REAL abig;
      REAL ahi, alo, bhi, blo;
      REAL err1, err2, err3;
      INEXACT REAL _i, _j;
      REAL _0;
    
      adx = (REAL) (pa[0] - pd[0]);
      bdx = (REAL) (pb[0] - pd[0]);
      cdx = (REAL) (pc[0] - pd[0]);
      ady = (REAL) (pa[1] - pd[1]);
      bdy = (REAL) (pb[1] - pd[1]);
      cdy = (REAL) (pc[1] - pd[1]);
    
      Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
      Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
      Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
      bc[3] = bc3;
      axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
      axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
      aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
      ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
      alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
    
      Two_Product(cdx, ady, cdxady1, cdxady0);
      Two_Product(adx, cdy, adxcdy1, adxcdy0);
      Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
      ca[3] = ca3;
      bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
      bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
      bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
      byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
      blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
    
      Two_Product(adx, bdy, adxbdy1, adxbdy0);
      Two_Product(bdx, ady, bdxady1, bdxady0);
      Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
      ab[3] = ab3;
      cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
      cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
      cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
      cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
      clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
    
      ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
      finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
    
      det = estimate(finlength, fin1);
      errbound = iccerrboundB * permanent;
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
      Two_Diff_Tail(pa[1], pd[1], ady, adytail);
      Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
      Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
      Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
      Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
      if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
          && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
        return det;
      }
    
      errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
      det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
                                         - (bdy * cdxtail + cdx * bdytail))
              + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
           + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
                                         - (cdy * adxtail + adx * cdytail))
              + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
           + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
                                         - (ady * bdxtail + bdx * adytail))
              + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      finnow = fin1;
      finother = fin2;
    
      if ((bdxtail != 0.0) || (bdytail != 0.0)
          || (cdxtail != 0.0) || (cdytail != 0.0)) {
        Square(adx, adxadx1, adxadx0);
        Square(ady, adyady1, adyady0);
        Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
        aa[3] = aa3;
      }
      if ((cdxtail != 0.0) || (cdytail != 0.0)
          || (adxtail != 0.0) || (adytail != 0.0)) {
        Square(bdx, bdxbdx1, bdxbdx0);
        Square(bdy, bdybdy1, bdybdy0);
        Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
        bb[3] = bb3;
      }
      if ((adxtail != 0.0) || (adytail != 0.0)
          || (bdxtail != 0.0) || (bdytail != 0.0)) {
        Square(cdx, cdxcdx1, cdxcdx0);
        Square(cdy, cdycdy1, cdycdy0);
        Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
        cc[3] = cc3;
      }
    
      if (adxtail != 0.0) {
        axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
        temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
                                              temp16a);
    
        axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
        temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
    
        axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
        temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (adytail != 0.0) {
        aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
        temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
                                              temp16a);
    
        aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
        temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
    
        aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
        temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (bdxtail != 0.0) {
        bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
        temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
                                              temp16a);
    
        bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
        temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
    
        bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
        temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (bdytail != 0.0) {
        bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
        temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
                                              temp16a);
    
        bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
        temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
    
        bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
        temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (cdxtail != 0.0) {
        cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
        temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
                                              temp16a);
    
        cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
        temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
    
        cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
        temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (cdytail != 0.0) {
        cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
        temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
                                              temp16a);
    
        cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
        temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
    
        cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
        temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
    
      if ((adxtail != 0.0) || (adytail != 0.0)) {
        if ((bdxtail != 0.0) || (bdytail != 0.0)
            || (cdxtail != 0.0) || (cdytail != 0.0)) {
          Two_Product(bdxtail, cdy, ti1, ti0);
          Two_Product(bdx, cdytail, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
          u[3] = u3;
          negate = -bdy;
          Two_Product(cdxtail, negate, ti1, ti0);
          negate = -bdytail;
          Two_Product(cdx, negate, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
          v[3] = v3;
          bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
    
          Two_Product(bdxtail, cdytail, ti1, ti0);
          Two_Product(cdxtail, bdytail, tj1, tj0);
          Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
          bctt[3] = bctt3;
          bcttlen = 4;
        } else {
          bct[0] = 0.0;
          bctlen = 1;
          bctt[0] = 0.0;
          bcttlen = 1;
        }
    
        if (adxtail != 0.0) {
          temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
          axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
          temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (bdytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
          if (cdytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
    
          temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
                                                temp32a);
          axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
          temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
        if (adytail != 0.0) {
          temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
          aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
          temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
    
    
          temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
                                                temp32a);
          aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
          temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
      }
      if ((bdxtail != 0.0) || (bdytail != 0.0)) {
        if ((cdxtail != 0.0) || (cdytail != 0.0)
            || (adxtail != 0.0) || (adytail != 0.0)) {
          Two_Product(cdxtail, ady, ti1, ti0);
          Two_Product(cdx, adytail, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
          u[3] = u3;
          negate = -cdy;
          Two_Product(adxtail, negate, ti1, ti0);
          negate = -cdytail;
          Two_Product(adx, negate, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
          v[3] = v3;
          catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
    
          Two_Product(cdxtail, adytail, ti1, ti0);
          Two_Product(adxtail, cdytail, tj1, tj0);
          Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
          catt[3] = catt3;
          cattlen = 4;
        } else {
          cat[0] = 0.0;
          catlen = 1;
          catt[0] = 0.0;
          cattlen = 1;
        }
    
        if (bdxtail != 0.0) {
          temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
          bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
          temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (cdytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
          if (adytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
    
          temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
                                                temp32a);
          bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
          temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
        if (bdytail != 0.0) {
          temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
          bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
          temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
    
    
          temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
                                                temp32a);
          bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
          temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
      }
      if ((cdxtail != 0.0) || (cdytail != 0.0)) {
        if ((adxtail != 0.0) || (adytail != 0.0)
            || (bdxtail != 0.0) || (bdytail != 0.0)) {
          Two_Product(adxtail, bdy, ti1, ti0);
          Two_Product(adx, bdytail, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
          u[3] = u3;
          negate = -ady;
          Two_Product(bdxtail, negate, ti1, ti0);
          negate = -adytail;
          Two_Product(bdx, negate, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
          v[3] = v3;
          abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
    
          Two_Product(adxtail, bdytail, ti1, ti0);
          Two_Product(bdxtail, adytail, tj1, tj0);
          Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
          abtt[3] = abtt3;
          abttlen = 4;
        } else {
          abt[0] = 0.0;
          abtlen = 1;
          abtt[0] = 0.0;
          abttlen = 1;
        }
    
        if (cdxtail != 0.0) {
          temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
          cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
          temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (adytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
          if (bdytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
    
          temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
                                                temp32a);
          cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
          temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
        if (cdytail != 0.0) {
          temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
          cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
          temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
    
    
          temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
                                                temp32a);
          cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
          temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
      }
    
      return finnow[finlength - 1];
    }
    
    #ifdef ANSI_DECLARATORS
    REAL incircle(struct mesh *m, struct behavior *b,
                  vertex pa, vertex pb, vertex pc, vertex pd)
    #else /* not ANSI_DECLARATORS */
    REAL incircle(m, b, pa, pb, pc, pd)
    struct mesh *m;
    struct behavior *b;
    vertex pa;
    vertex pb;
    vertex pc;
    vertex pd;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL adx, bdx, cdx, ady, bdy, cdy;
      REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
      REAL alift, blift, clift;
      REAL det;
      REAL permanent, errbound;
    
      m->incirclecount++;
    
      adx = pa[0] - pd[0];
      bdx = pb[0] - pd[0];
      cdx = pc[0] - pd[0];
      ady = pa[1] - pd[1];
      bdy = pb[1] - pd[1];
      cdy = pc[1] - pd[1];
    
      bdxcdy = bdx * cdy;
      cdxbdy = cdx * bdy;
      alift = adx * adx + ady * ady;
    
      cdxady = cdx * ady;
      adxcdy = adx * cdy;
      blift = bdx * bdx + bdy * bdy;
    
      adxbdy = adx * bdy;
      bdxady = bdx * ady;
      clift = cdx * cdx + cdy * cdy;
    
      det = alift * (bdxcdy - cdxbdy)
          + blift * (cdxady - adxcdy)
          + clift * (adxbdy - bdxady);
    
      if (b->noexact) {
        return det;
      }
    
      permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
                + (Absolute(cdxady) + Absolute(adxcdy)) * blift
                + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
      errbound = iccerrboundA * permanent;
      if ((det > errbound) || (-det > errbound)) {
        return det;
      }
    
      return incircleadapt(pa, pb, pc, pd, permanent);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  orient3d()   Return a positive value if the point pd lies below the      */
    /*               plane passing through pa, pb, and pc; "below" is defined so */
    /*               that pa, pb, and pc appear in counterclockwise order when   */
    /*               viewed from above the plane.  Returns a negative value if   */
    /*               pd lies above the plane.  Returns zero if the points are    */
    /*               coplanar.  The result is also a rough approximation of six  */
    /*               times the signed volume of the tetrahedron defined by the   */
    /*               four points.                                                */
    /*                                                                           */
    /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
    /*  result returned is the determinant of a matrix.  This determinant is     */
    /*  computed adaptively, in the sense that exact arithmetic is used only to  */
    /*  the degree it is needed to ensure that the returned value has the        */
    /*  correct sign.  Hence, this function is usually quite fast, but will run  */
    /*  more slowly when the input points are coplanar or nearly so.             */
    /*                                                                           */
    /*  See my Robust Predicates paper for details.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    REAL orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd,
                       REAL aheight, REAL bheight, REAL cheight, REAL dheight,
                       REAL permanent)
    #else /* not ANSI_DECLARATORS */
    REAL orient3dadapt(pa, pb, pc, pd,
                       aheight, bheight, cheight, dheight, permanent)
    vertex pa;
    vertex pb;
    vertex pc;
    vertex pd;
    REAL aheight;
    REAL bheight;
    REAL cheight;
    REAL dheight;
    REAL permanent;
    #endif /* not ANSI_DECLARATORS */
    
    {
      INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
      REAL det, errbound;
    
      INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
      REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
      REAL bc[4], ca[4], ab[4];
      INEXACT REAL bc3, ca3, ab3;
      REAL adet[8], bdet[8], cdet[8];
      int alen, blen, clen;
      REAL abdet[16];
      int ablen;
      REAL *finnow, *finother, *finswap;
      REAL fin1[192], fin2[192];
      int finlength;
    
      REAL adxtail, bdxtail, cdxtail;
      REAL adytail, bdytail, cdytail;
      REAL adheighttail, bdheighttail, cdheighttail;
      INEXACT REAL at_blarge, at_clarge;
      INEXACT REAL bt_clarge, bt_alarge;
      INEXACT REAL ct_alarge, ct_blarge;
      REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
      int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
      INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
      INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1;
      REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
      REAL adxt_cdy0, adxt_bdy0, bdxt_ady0;
      INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
      INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1;
      REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
      REAL adyt_cdx0, adyt_bdx0, bdyt_adx0;
      REAL bct[8], cat[8], abt[8];
      int bctlen, catlen, abtlen;
      INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
      INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
      REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
      REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
      REAL u[4], v[12], w[16];
      INEXACT REAL u3;
      int vlength, wlength;
      REAL negate;
    
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      INEXACT REAL c;
      INEXACT REAL abig;
      REAL ahi, alo, bhi, blo;
      REAL err1, err2, err3;
      INEXACT REAL _i, _j, _k;
      REAL _0;
    
      adx = (REAL) (pa[0] - pd[0]);
      bdx = (REAL) (pb[0] - pd[0]);
      cdx = (REAL) (pc[0] - pd[0]);
      ady = (REAL) (pa[1] - pd[1]);
      bdy = (REAL) (pb[1] - pd[1]);
      cdy = (REAL) (pc[1] - pd[1]);
      adheight = (REAL) (aheight - dheight);
      bdheight = (REAL) (bheight - dheight);
      cdheight = (REAL) (cheight - dheight);
    
      Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
      Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
      Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
      bc[3] = bc3;
      alen = scale_expansion_zeroelim(4, bc, adheight, adet);
    
      Two_Product(cdx, ady, cdxady1, cdxady0);
      Two_Product(adx, cdy, adxcdy1, adxcdy0);
      Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
      ca[3] = ca3;
      blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);
    
      Two_Product(adx, bdy, adxbdy1, adxbdy0);
      Two_Product(bdx, ady, bdxady1, bdxady0);
      Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
      ab[3] = ab3;
      clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);
    
      ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
      finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
    
      det = estimate(finlength, fin1);
      errbound = o3derrboundB * permanent;
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
      Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
      Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
      Two_Diff_Tail(pa[1], pd[1], ady, adytail);
      Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
      Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
      Two_Diff_Tail(aheight, dheight, adheight, adheighttail);
      Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);
      Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);
    
      if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) &&
          (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) &&
          (adheighttail == 0.0) &&
          (bdheighttail == 0.0) &&
          (cdheighttail == 0.0)) {
        return det;
      }
    
      errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
      det += (adheight * ((bdx * cdytail + cdy * bdxtail) -
                          (bdy * cdxtail + cdx * bdytail)) +
              adheighttail * (bdx * cdy - bdy * cdx)) +
             (bdheight * ((cdx * adytail + ady * cdxtail) -
                          (cdy * adxtail + adx * cdytail)) +
              bdheighttail * (cdx * ady - cdy * adx)) +
             (cdheight * ((adx * bdytail + bdy * adxtail) -
                          (ady * bdxtail + bdx * adytail)) +
              cdheighttail * (adx * bdy - ady * bdx));
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      finnow = fin1;
      finother = fin2;
    
      if (adxtail == 0.0) {
        if (adytail == 0.0) {
          at_b[0] = 0.0;
          at_blen = 1;
          at_c[0] = 0.0;
          at_clen = 1;
        } else {
          negate = -adytail;
          Two_Product(negate, bdx, at_blarge, at_b[0]);
          at_b[1] = at_blarge;
          at_blen = 2;
          Two_Product(adytail, cdx, at_clarge, at_c[0]);
          at_c[1] = at_clarge;
          at_clen = 2;
        }
      } else {
        if (adytail == 0.0) {
          Two_Product(adxtail, bdy, at_blarge, at_b[0]);
          at_b[1] = at_blarge;
          at_blen = 2;
          negate = -adxtail;
          Two_Product(negate, cdy, at_clarge, at_c[0]);
          at_c[1] = at_clarge;
          at_clen = 2;
        } else {
          Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
          Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
          Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0,
                       at_blarge, at_b[2], at_b[1], at_b[0]);
          at_b[3] = at_blarge;
          at_blen = 4;
          Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
          Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
          Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0,
                       at_clarge, at_c[2], at_c[1], at_c[0]);
          at_c[3] = at_clarge;
          at_clen = 4;
        }
      }
      if (bdxtail == 0.0) {
        if (bdytail == 0.0) {
          bt_c[0] = 0.0;
          bt_clen = 1;
          bt_a[0] = 0.0;
          bt_alen = 1;
        } else {
          negate = -bdytail;
          Two_Product(negate, cdx, bt_clarge, bt_c[0]);
          bt_c[1] = bt_clarge;
          bt_clen = 2;
          Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
          bt_a[1] = bt_alarge;
          bt_alen = 2;
        }
      } else {
        if (bdytail == 0.0) {
          Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
          bt_c[1] = bt_clarge;
          bt_clen = 2;
          negate = -bdxtail;
          Two_Product(negate, ady, bt_alarge, bt_a[0]);
          bt_a[1] = bt_alarge;
          bt_alen = 2;
        } else {
          Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
          Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
          Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0,
                       bt_clarge, bt_c[2], bt_c[1], bt_c[0]);
          bt_c[3] = bt_clarge;
          bt_clen = 4;
          Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
          Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
          Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0,
                      bt_alarge, bt_a[2], bt_a[1], bt_a[0]);
          bt_a[3] = bt_alarge;
          bt_alen = 4;
        }
      }
      if (cdxtail == 0.0) {
        if (cdytail == 0.0) {
          ct_a[0] = 0.0;
          ct_alen = 1;
          ct_b[0] = 0.0;
          ct_blen = 1;
        } else {
          negate = -cdytail;
          Two_Product(negate, adx, ct_alarge, ct_a[0]);
          ct_a[1] = ct_alarge;
          ct_alen = 2;
          Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
          ct_b[1] = ct_blarge;
          ct_blen = 2;
        }
      } else {
        if (cdytail == 0.0) {
          Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
          ct_a[1] = ct_alarge;
          ct_alen = 2;
          negate = -cdxtail;
          Two_Product(negate, bdy, ct_blarge, ct_b[0]);
          ct_b[1] = ct_blarge;
          ct_blen = 2;
        } else {
          Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
          Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
          Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0,
                       ct_alarge, ct_a[2], ct_a[1], ct_a[0]);
          ct_a[3] = ct_alarge;
          ct_alen = 4;
          Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
          Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
          Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0,
                       ct_blarge, ct_b[2], ct_b[1], ct_b[0]);
          ct_b[3] = ct_blarge;
          ct_blen = 4;
        }
      }
    
      bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
      wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
                                              finother);
      finswap = finnow; finnow = finother; finother = finswap;
    
      catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
      wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
                                              finother);
      finswap = finnow; finnow = finother; finother = finswap;
    
      abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
      wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);
      finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
                                              finother);
      finswap = finnow; finnow = finother; finother = finswap;
    
      if (adheighttail != 0.0) {
        vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
                                                finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (bdheighttail != 0.0) {
        vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
                                                finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (cdheighttail != 0.0) {
        vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
                                                finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
    
      if (adxtail != 0.0) {
        if (bdytail != 0.0) {
          Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
          Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);
          u[3] = u3;
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                  finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (cdheighttail != 0.0) {
            Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail,
                            u3, u[2], u[1], u[0]);
            u[3] = u3;
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                    finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
        }
        if (cdytail != 0.0) {
          negate = -adxtail;
          Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
          Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);
          u[3] = u3;
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                  finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (bdheighttail != 0.0) {
            Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail,
                            u3, u[2], u[1], u[0]);
            u[3] = u3;
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                    finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
        }
      }
      if (bdxtail != 0.0) {
        if (cdytail != 0.0) {
          Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
          Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);
          u[3] = u3;
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                  finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (adheighttail != 0.0) {
            Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail,
                            u3, u[2], u[1], u[0]);
            u[3] = u3;
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                    finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
        }
        if (adytail != 0.0) {
          negate = -bdxtail;
          Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
          Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);
          u[3] = u3;
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                  finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (cdheighttail != 0.0) {
            Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail,
                            u3, u[2], u[1], u[0]);
            u[3] = u3;
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                    finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
        }
      }
      if (cdxtail != 0.0) {
        if (adytail != 0.0) {
          Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
          Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);
          u[3] = u3;
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                  finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (bdheighttail != 0.0) {
            Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail,
                            u3, u[2], u[1], u[0]);
            u[3] = u3;
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                    finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
        }
        if (bdytail != 0.0) {
          negate = -cdxtail;
          Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
          Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);
          u[3] = u3;
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                  finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (adheighttail != 0.0) {
            Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail,
                            u3, u[2], u[1], u[0]);
            u[3] = u3;
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
                                                    finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
        }
      }
    
      if (adheighttail != 0.0) {
        wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
                                                finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (bdheighttail != 0.0) {
        wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
                                                finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (cdheighttail != 0.0) {
        wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
                                                finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
    
      return finnow[finlength - 1];
    }
    
    #ifdef ANSI_DECLARATORS
    REAL orient3d(struct mesh *m, struct behavior *b,
                  vertex pa, vertex pb, vertex pc, vertex pd,
                  REAL aheight, REAL bheight, REAL cheight, REAL dheight)
    #else /* not ANSI_DECLARATORS */
    REAL orient3d(m, b, pa, pb, pc, pd, aheight, bheight, cheight, dheight)
    struct mesh *m;
    struct behavior *b;
    vertex pa;
    vertex pb;
    vertex pc;
    vertex pd;
    REAL aheight;
    REAL bheight;
    REAL cheight;
    REAL dheight;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
      REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
      REAL det;
      REAL permanent, errbound;
    
      m->orient3dcount++;
    
      adx = pa[0] - pd[0];
      bdx = pb[0] - pd[0];
      cdx = pc[0] - pd[0];
      ady = pa[1] - pd[1];
      bdy = pb[1] - pd[1];
      cdy = pc[1] - pd[1];
      adheight = aheight - dheight;
      bdheight = bheight - dheight;
      cdheight = cheight - dheight;
    
      bdxcdy = bdx * cdy;
      cdxbdy = cdx * bdy;
    
      cdxady = cdx * ady;
      adxcdy = adx * cdy;
    
      adxbdy = adx * bdy;
      bdxady = bdx * ady;
    
      det = adheight * (bdxcdy - cdxbdy) 
          + bdheight * (cdxady - adxcdy)
          + cdheight * (adxbdy - bdxady);
    
      if (b->noexact) {
        return det;
      }
    
      permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)
                + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)
                + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);
      errbound = o3derrboundA * permanent;
      if ((det > errbound) || (-det > errbound)) {
        return det;
      }
    
      return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight,
                           permanent);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  nonregular()   Return a positive value if the point pd is incompatible   */
    /*                 with the circle or plane passing through pa, pb, and pc   */
    /*                 (meaning that pd is inside the circle or below the        */
    /*                 plane); a negative value if it is compatible; and zero if */
    /*                 the four points are cocircular/coplanar.  The points pa,  */
    /*                 pb, and pc must be in counterclockwise order, or the sign */
    /*                 of the result will be reversed.                           */
    /*                                                                           */
    /*  If the -w switch is used, the points are lifted onto the parabolic       */
    /*  lifting map, then they are dropped according to their weights, then the  */
    /*  3D orientation test is applied.  If the -W switch is used, the points'   */
    /*  heights are already provided, so the 3D orientation test is applied      */
    /*  directly.  If neither switch is used, the incircle test is applied.      */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    REAL nonregular(struct mesh *m, struct behavior *b,
                    vertex pa, vertex pb, vertex pc, vertex pd)
    #else /* not ANSI_DECLARATORS */
    REAL nonregular(m, b, pa, pb, pc, pd)
    struct mesh *m;
    struct behavior *b;
    vertex pa;
    vertex pb;
    vertex pc;
    vertex pd;
    #endif /* not ANSI_DECLARATORS */
    
    {
      if (b->weighted == 0) {
        return incircle(m, b, pa, pb, pc, pd);
      } else if (b->weighted == 1) {
        return orient3d(m, b, pa, pb, pc, pd,
                        pa[0] * pa[0] + pa[1] * pa[1] - pa[2],
                        pb[0] * pb[0] + pb[1] * pb[1] - pb[2],
                        pc[0] * pc[0] + pc[1] * pc[1] - pc[2],
                        pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);
      } else {
        return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  findcircumcenter()   Find the circumcenter of a triangle.                */
    /*                                                                           */
    /*  The result is returned both in terms of x-y coordinates and xi-eta       */
    /*  (barycentric) coordinates.  The xi-eta coordinate system is defined in   */
    /*  terms of the triangle:  the origin of the triangle is the origin of the  */
    /*  coordinate system; the destination of the triangle is one unit along the */
    /*  xi axis; and the apex of the triangle is one unit along the eta axis.    */
    /*  This procedure also returns the square of the length of the triangle's   */
    /*  shortest edge.                                                           */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void findcircumcenter(struct mesh *m, struct behavior *b,
                          vertex torg, vertex tdest, vertex tapex,
                          vertex circumcenter, REAL *xi, REAL *eta, int offcenter)
    #else /* not ANSI_DECLARATORS */
    void findcircumcenter(m, b, torg, tdest, tapex, circumcenter, xi, eta,
                          offcenter)
    struct mesh *m;
    struct behavior *b;
    vertex torg;
    vertex tdest;
    vertex tapex;
    vertex circumcenter;
    REAL *xi;
    REAL *eta;
    int offcenter;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL xdo, ydo, xao, yao;
      REAL dodist, aodist, dadist;
      REAL denominator;
      REAL dx, dy, dxoff, dyoff;
    
      m->circumcentercount++;
    
      /* Compute the circumcenter of the triangle. */
      xdo = tdest[0] - torg[0];
      ydo = tdest[1] - torg[1];
      xao = tapex[0] - torg[0];
      yao = tapex[1] - torg[1];
      dodist = xdo * xdo + ydo * ydo;
      aodist = xao * xao + yao * yao;
      dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0]) +
               (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);
      if (b->noexact) {
        denominator = 0.5 / (xdo * yao - xao * ydo);
      } else {
        /* Use the counterclockwise() routine to ensure a positive (and */
        /*   reasonably accurate) result, avoiding any possibility of   */
        /*   division by zero.                                          */
        denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);
        /* Don't count the above as an orientation test. */
        m->counterclockcount--;
      }
      dx = (yao * dodist - ydo * aodist) * denominator;
      dy = (xdo * aodist - xao * dodist) * denominator;
    
      /* Find the (squared) length of the triangle's shortest edge.  This   */
      /*   serves as a conservative estimate of the insertion radius of the */
      /*   circumcenter's parent.  The estimate is used to ensure that      */
      /*   the algorithm terminates even if very small angles appear in     */
      /*   the input PSLG.                                                  */
      if ((dodist < aodist) && (dodist < dadist)) {
        if (offcenter && (b->offconstant > 0.0)) {
          /* Find the position of the off-center, as described by Alper Ungor. */
          dxoff = 0.5 * xdo - b->offconstant * ydo;
          dyoff = 0.5 * ydo + b->offconstant * xdo;
          /* If the off-center is closer to the origin than the */
          /*   circumcenter, use the off-center instead.        */
          if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
            dx = dxoff;
            dy = dyoff;
          }
        }
      } else if (aodist < dadist) {
        if (offcenter && (b->offconstant > 0.0)) {
          dxoff = 0.5 * xao + b->offconstant * yao;
          dyoff = 0.5 * yao - b->offconstant * xao;
          /* If the off-center is closer to the origin than the */
          /*   circumcenter, use the off-center instead.        */
          if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
            dx = dxoff;
            dy = dyoff;
          }
        }
      } else {
        if (offcenter && (b->offconstant > 0.0)) {
          dxoff = 0.5 * (tapex[0] - tdest[0]) -
                  b->offconstant * (tapex[1] - tdest[1]);
          dyoff = 0.5 * (tapex[1] - tdest[1]) +
                  b->offconstant * (tapex[0] - tdest[0]);
          /* If the off-center is closer to the destination than the */
          /*   circumcenter, use the off-center instead.             */
          if (dxoff * dxoff + dyoff * dyoff <
              (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) {
            dx = xdo + dxoff;
            dy = ydo + dyoff;
          }
        }
      }
    
      circumcenter[0] = torg[0] + dx;
      circumcenter[1] = torg[1] + dy;
    
      /* To interpolate vertex attributes for the new vertex inserted at */
      /*   the circumcenter, define a coordinate system with a xi-axis,  */
      /*   directed from the triangle's origin to its destination, and   */
      /*   an eta-axis, directed from its origin to its apex.            */
      /*   Calculate the xi and eta coordinates of the circumcenter.     */
      *xi = (yao * dx - xao * dy) * (2.0 * denominator);
      *eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Geometric primitives end here                             *********/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangleinit()   Initialize some variables.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void triangleinit(struct mesh *m)
    #else /* not ANSI_DECLARATORS */
    void triangleinit(m)
    struct mesh *m;
    #endif /* not ANSI_DECLARATORS */
    
    {
      poolzero(&m->vertices);
      poolzero(&m->triangles);
      poolzero(&m->subsegs);
      poolzero(&m->viri);
      poolzero(&m->badsubsegs);
      poolzero(&m->badtriangles);
      poolzero(&m->flipstackers);
      poolzero(&m->splaynodes);
    
      m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
      m->undeads = 0;                       /* No eliminated input vertices yet. */
      m->samples = 1;         /* Point location should take at least one sample. */
      m->checksegments = 0;   /* There are no segments in the triangulation yet. */
      m->checkquality = 0;     /* The quality triangulation stage has not begun. */
      m->incirclecount = m->counterclockcount = m->orient3dcount = 0;
      m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;
      randomseed = 1;
    
      exactinit();                     /* Initialize exact arithmetic constants. */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  randomnation()   Generate a random number between 0 and `choices' - 1.   */
    /*                                                                           */
    /*  This is a simple linear congruential random number generator.  Hence, it */
    /*  is a bad random number generator, but good enough for most randomized    */
    /*  geometric algorithms.                                                    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    unsigned long randomnation(unsigned int choices)
    #else /* not ANSI_DECLARATORS */
    unsigned long randomnation(choices)
    unsigned int choices;
    #endif /* not ANSI_DECLARATORS */
    
    {
      randomseed = (randomseed * 1366l + 150889l) % 714025l;
      return randomseed / (714025l / choices + 1);
    }
    
    /********* Mesh quality testing routines begin here                  *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  checkmesh()   Test the mesh for topological consistency.                 */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    void checkmesh(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void checkmesh(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri triangleloop;
      struct otri oppotri, oppooppotri;
      vertex triorg, tridest, triapex;
      vertex oppoorg, oppodest;
      int horrors;
      int saveexact;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      /* Temporarily turn on exact arithmetic if it's off. */
      saveexact = b->noexact;
      b->noexact = 0;
      if (!b->quiet) {
        printf("  Checking consistency of mesh...\n");
      }
      horrors = 0;
      /* Run through the list of triangles, checking each one. */
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      while (triangleloop.tri != (triangle *) NULL) {
        /* Check all three edges of the triangle. */
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          org(triangleloop, triorg);
          dest(triangleloop, tridest);
          if (triangleloop.orient == 0) {       /* Only test for inversion once. */
            /* Test if the triangle is flat or inverted. */
            apex(triangleloop, triapex);
            if (counterclockwise(m, b, triorg, tridest, triapex) <= 0.0) {
              printf("  !! !! Inverted ");
              printtriangle(m, b, &triangleloop);
              horrors++;
            }
          }
          /* Find the neighboring triangle on this edge. */
          sym(triangleloop, oppotri);
          if (oppotri.tri != m->dummytri) {
            /* Check that the triangle's neighbor knows it's a neighbor. */
            sym(oppotri, oppooppotri);
            if ((triangleloop.tri != oppooppotri.tri)
                || (triangleloop.orient != oppooppotri.orient)) {
              printf("  !! !! Asymmetric triangle-triangle bond:\n");
              if (triangleloop.tri == oppooppotri.tri) {
                printf("   (Right triangle, wrong orientation)\n");
              }
              printf("    First ");
              printtriangle(m, b, &triangleloop);
              printf("    Second (nonreciprocating) ");
              printtriangle(m, b, &oppotri);
              horrors++;
            }
            /* Check that both triangles agree on the identities */
            /*   of their shared vertices.                       */
            org(oppotri, oppoorg);
            dest(oppotri, oppodest);
            if ((triorg != oppodest) || (tridest != oppoorg)) {
              printf("  !! !! Mismatched edge coordinates between two triangles:\n"
                     );
              printf("    First mismatched ");
              printtriangle(m, b, &triangleloop);
              printf("    Second mismatched ");
              printtriangle(m, b, &oppotri);
              horrors++;
            }
          }
        }
        triangleloop.tri = triangletraverse(m);
      }
      if (horrors == 0) {
        if (!b->quiet) {
          printf("  In my studied opinion, the mesh appears to be consistent.\n");
        }
      } else if (horrors == 1) {
        printf("  !! !! !! !! Precisely one festering wound discovered.\n");
      } else {
        printf("  !! !! !! !! %d abominations witnessed.\n", horrors);
      }
      /* Restore the status of exact arithmetic. */
      b->noexact = saveexact;
    }
    
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  checkdelaunay()   Ensure that the mesh is (constrained) Delaunay.        */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    void checkdelaunay(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void checkdelaunay(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri triangleloop;
      struct otri oppotri;
      struct osub opposubseg;
      vertex triorg, tridest, triapex;
      vertex oppoapex;
      int shouldbedelaunay;
      int horrors;
      int saveexact;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      /* Temporarily turn on exact arithmetic if it's off. */
      saveexact = b->noexact;
      b->noexact = 0;
      if (!b->quiet) {
        printf("  Checking Delaunay property of mesh...\n");
      }
      horrors = 0;
      /* Run through the list of triangles, checking each one. */
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      while (triangleloop.tri != (triangle *) NULL) {
        /* Check all three edges of the triangle. */
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          org(triangleloop, triorg);
          dest(triangleloop, tridest);
          apex(triangleloop, triapex);
          sym(triangleloop, oppotri);
          apex(oppotri, oppoapex);
          /* Only test that the edge is locally Delaunay if there is an   */
          /*   adjoining triangle whose pointer is larger (to ensure that */
          /*   each pair isn't tested twice).                             */
          shouldbedelaunay = (oppotri.tri != m->dummytri) &&
                !deadtri(oppotri.tri) && (triangleloop.tri < oppotri.tri) &&
                (triorg != m->infvertex1) && (triorg != m->infvertex2) &&
                (triorg != m->infvertex3) &&
                (tridest != m->infvertex1) && (tridest != m->infvertex2) &&
                (tridest != m->infvertex3) &&
                (triapex != m->infvertex1) && (triapex != m->infvertex2) &&
                (triapex != m->infvertex3) &&
                (oppoapex != m->infvertex1) && (oppoapex != m->infvertex2) &&
                (oppoapex != m->infvertex3);
          if (m->checksegments && shouldbedelaunay) {
            /* If a subsegment separates the triangles, then the edge is */
            /*   constrained, so no local Delaunay test should be done.  */
            tspivot(triangleloop, opposubseg);
            if (opposubseg.ss != m->dummysub){
              shouldbedelaunay = 0;
            }
          }
          if (shouldbedelaunay) {
            if (nonregular(m, b, triorg, tridest, triapex, oppoapex) > 0.0) {
              if (!b->weighted) {
                printf("  !! !! Non-Delaunay pair of triangles:\n");
                printf("    First non-Delaunay ");
                printtriangle(m, b, &triangleloop);
                printf("    Second non-Delaunay ");
              } else {
                printf("  !! !! Non-regular pair of triangles:\n");
                printf("    First non-regular ");
                printtriangle(m, b, &triangleloop);
                printf("    Second non-regular ");
              }
              printtriangle(m, b, &oppotri);
              horrors++;
            }
          }
        }
        triangleloop.tri = triangletraverse(m);
      }
      if (horrors == 0) {
        if (!b->quiet) {
          printf(
      "  By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");
        }
      } else if (horrors == 1) {
        printf(
             "  !! !! !! !! Precisely one terrifying transgression identified.\n");
      } else {
        printf("  !! !! !! !! %d obscenities viewed with horror.\n", horrors);
      }
      /* Restore the status of exact arithmetic. */
      b->noexact = saveexact;
    }
    
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  enqueuebadtriang()   Add a bad triangle data structure to the end of a   */
    /*                       queue.                                              */
    /*                                                                           */
    /*  The queue is actually a set of 4096 queues.  I use multiple queues to    */
    /*  give priority to smaller angles.  I originally implemented a heap, but   */
    /*  the queues are faster by a larger margin than I'd suspected.             */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void enqueuebadtriang(struct mesh *m, struct behavior *b,
                          struct badtriang *badtri)
    #else /* not ANSI_DECLARATORS */
    void enqueuebadtriang(m, b, badtri)
    struct mesh *m;
    struct behavior *b;
    struct badtriang *badtri;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL length, multiplier;
      int exponent, expincrement;
      int queuenumber;
      int posexponent;
      int i;
    
      if (b->verbose > 2) {
        printf("  Queueing bad triangle:\n");
        printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
               badtri->triangorg[0], badtri->triangorg[1],
               badtri->triangdest[0], badtri->triangdest[1],
               badtri->triangapex[0], badtri->triangapex[1]);
      }
    
      /* Determine the appropriate queue to put the bad triangle into.    */
      /*   Recall that the key is the square of its shortest edge length. */
      if (badtri->key >= 1.0) {
        length = badtri->key;
        posexponent = 1;
      } else {
        /* `badtri->key' is 2.0 to a negative exponent, so we'll record that */
        /*   fact and use the reciprocal of `badtri->key', which is > 1.0.   */
        length = 1.0 / badtri->key;
        posexponent = 0;
      }
      /* `length' is approximately 2.0 to what exponent?  The following code */
      /*   determines the answer in time logarithmic in the exponent.        */
      exponent = 0;
      while (length > 2.0) {
        /* Find an approximation by repeated squaring of two. */
        expincrement = 1;
        multiplier = 0.5;
        while (length * multiplier * multiplier > 1.0) {
          expincrement *= 2;
          multiplier *= multiplier;
        }
        /* Reduce the value of `length', then iterate if necessary. */
        exponent += expincrement;
        length *= multiplier;
      }
      /* `length' is approximately squareroot(2.0) to what exponent? */
      exponent = 2.0 * exponent + (length > SQUAREROOTTWO);
      /* `exponent' is now in the range 0...2047 for IEEE double precision.   */
      /*   Choose a queue in the range 0...4095.  The shortest edges have the */
      /*   highest priority (queue 4095).                                     */
      if (posexponent) {
        queuenumber = 2047 - exponent;
      } else {
        queuenumber = 2048 + exponent;
      }
    
      /* Are we inserting into an empty queue? */
      if (m->queuefront[queuenumber] == (struct badtriang *) NULL) {
        /* Yes, we are inserting into an empty queue.     */
        /*   Will this become the highest-priority queue? */
        if (queuenumber > m->firstnonemptyq) {
          /* Yes, this is the highest-priority queue. */
          m->nextnonemptyq[queuenumber] = m->firstnonemptyq;
          m->firstnonemptyq = queuenumber;
        } else {
          /* No, this is not the highest-priority queue. */
          /*   Find the queue with next higher priority. */
          i = queuenumber + 1;
          while (m->queuefront[i] == (struct badtriang *) NULL) {
            i++;
          }
          /* Mark the newly nonempty queue as following a higher-priority queue. */
          m->nextnonemptyq[queuenumber] = m->nextnonemptyq[i];
          m->nextnonemptyq[i] = queuenumber;
        }
        /* Put the bad triangle at the beginning of the (empty) queue. */
        m->queuefront[queuenumber] = badtri;
      } else {
        /* Add the bad triangle to the end of an already nonempty queue. */
        m->queuetail[queuenumber]->nexttriang = badtri;
      }
      /* Maintain a pointer to the last triangle of the queue. */
      m->queuetail[queuenumber] = badtri;
      /* Newly enqueued bad triangle has no successor in the queue. */
      badtri->nexttriang = (struct badtriang *) NULL;
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  enqueuebadtri()   Add a bad triangle to the end of a queue.              */
    /*                                                                           */
    /*  Allocates a badtriang data structure for the triangle, then passes it to */
    /*  enqueuebadtriang().                                                      */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void enqueuebadtri(struct mesh *m, struct behavior *b, struct otri *enqtri,
                       REAL minedge, vertex enqapex, vertex enqorg, vertex enqdest)
    #else /* not ANSI_DECLARATORS */
    void enqueuebadtri(m, b, enqtri, minedge, enqapex, enqorg, enqdest)
    struct mesh *m;
    struct behavior *b;
    struct otri *enqtri;
    REAL minedge;
    vertex enqapex;
    vertex enqorg;
    vertex enqdest;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct badtriang *newbad;
    
      /* Allocate space for the bad triangle. */
      newbad = (struct badtriang *) poolalloc(&m->badtriangles);
      newbad->poortri = encode(*enqtri);
      newbad->key = minedge;
      newbad->triangapex = enqapex;
      newbad->triangorg = enqorg;
      newbad->triangdest = enqdest;
      enqueuebadtriang(m, b, newbad);
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  dequeuebadtriang()   Remove a triangle from the front of the queue.      */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    struct badtriang *dequeuebadtriang(struct mesh *m)
    #else /* not ANSI_DECLARATORS */
    struct badtriang *dequeuebadtriang(m)
    struct mesh *m;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct badtriang *result;
    
      /* If no queues are nonempty, return NULL. */
      if (m->firstnonemptyq < 0) {
        return (struct badtriang *) NULL;
      }
      /* Find the first triangle of the highest-priority queue. */
      result = m->queuefront[m->firstnonemptyq];
      /* Remove the triangle from the queue. */
      m->queuefront[m->firstnonemptyq] = result->nexttriang;
      /* If this queue is now empty, note the new highest-priority */
      /*   nonempty queue.                                         */
      if (result == m->queuetail[m->firstnonemptyq]) {
        m->firstnonemptyq = m->nextnonemptyq[m->firstnonemptyq];
      }
      return result;
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  checkseg4encroach()   Check a subsegment to see if it is encroached; add */
    /*                        it to the list if it is.                           */
    /*                                                                           */
    /*  A subsegment is encroached if there is a vertex in its diametral lens.   */
    /*  For Ruppert's algorithm (-D switch), the "diametral lens" is the         */
    /*  diametral circle.  For Chew's algorithm (default), the diametral lens is */
    /*  just big enough to enclose two isosceles triangles whose bases are the   */
    /*  subsegment.  Each of the two isosceles triangles has two angles equal    */
    /*  to `b->minangle'.                                                        */
    /*                                                                           */
    /*  Chew's algorithm does not require diametral lenses at all--but they save */
    /*  time.  Any vertex inside a subsegment's diametral lens implies that the  */
    /*  triangle adjoining the subsegment will be too skinny, so it's only a     */
    /*  matter of time before the encroaching vertex is deleted by Chew's        */
    /*  algorithm.  It's faster to simply not insert the doomed vertex in the    */
    /*  first place, which is why I use diametral lenses with Chew's algorithm.  */
    /*                                                                           */
    /*  Returns a nonzero value if the subsegment is encroached.                 */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    int checkseg4encroach(struct mesh *m, struct behavior *b,
                          struct osub *testsubseg)
    #else /* not ANSI_DECLARATORS */
    int checkseg4encroach(m, b, testsubseg)
    struct mesh *m;
    struct behavior *b;
    struct osub *testsubseg;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri neighbortri;
      struct osub testsym;
      struct badsubseg *encroachedseg;
      REAL dotproduct;
      int encroached;
      int sides;
      vertex eorg, edest, eapex;
      triangle ptr;                     /* Temporary variable used by stpivot(). */
    
      encroached = 0;
      sides = 0;
    
      sorg(*testsubseg, eorg);
      sdest(*testsubseg, edest);
      /* Check one neighbor of the subsegment. */
      stpivot(*testsubseg, neighbortri);
      /* Does the neighbor exist, or is this a boundary edge? */
      if (neighbortri.tri != m->dummytri) {
        sides++;
        /* Find a vertex opposite this subsegment. */
        apex(neighbortri, eapex);
        /* Check whether the apex is in the diametral lens of the subsegment */
        /*   (the diametral circle if `conformdel' is set).  A dot product   */
        /*   of two sides of the triangle is used to check whether the angle */
        /*   at the apex is greater than (180 - 2 `minangle') degrees (for   */
        /*   lenses; 90 degrees for diametral circles).                      */
        dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
                     (eorg[1] - eapex[1]) * (edest[1] - eapex[1]);
        if (dotproduct < 0.0) {
          if (b->conformdel ||
              (dotproduct * dotproduct >=
               (2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) *
               ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +
                (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *
               ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +
                (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {
            encroached = 1;
          }
        }
      }
      /* Check the other neighbor of the subsegment. */
      ssym(*testsubseg, testsym);
      stpivot(testsym, neighbortri);
      /* Does the neighbor exist, or is this a boundary edge? */
      if (neighbortri.tri != m->dummytri) {
        sides++;
        /* Find the other vertex opposite this subsegment. */
        apex(neighbortri, eapex);
        /* Check whether the apex is in the diametral lens of the subsegment */
        /*   (or the diametral circle, if `conformdel' is set).              */
        dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
                     (eorg[1] - eapex[1]) * (edest[1] - eapex[1]);
        if (dotproduct < 0.0) {
          if (b->conformdel ||
              (dotproduct * dotproduct >=
               (2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) *
               ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +
                (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *
               ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +
                (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {
            encroached += 2;
          }
        }
      }
    
      if (encroached && (!b->nobisect || ((b->nobisect == 1) && (sides == 2)))) {
        if (b->verbose > 2) {
          printf(
            "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
            eorg[0], eorg[1], edest[0], edest[1]);
        }
        /* Add the subsegment to the list of encroached subsegments. */
        /*   Be sure to get the orientation right.                   */
        encroachedseg = (struct badsubseg *) poolalloc(&m->badsubsegs);
        if (encroached == 1) {
          encroachedseg->encsubseg = sencode(*testsubseg);
          encroachedseg->subsegorg = eorg;
          encroachedseg->subsegdest = edest;
        } else {
          encroachedseg->encsubseg = sencode(testsym);
          encroachedseg->subsegorg = edest;
          encroachedseg->subsegdest = eorg;
        }
      }
    
      return encroached;
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  testtriangle()   Test a triangle for quality and size.                   */
    /*                                                                           */
    /*  Tests a triangle to see if it satisfies the minimum angle condition and  */
    /*  the maximum area condition.  Triangles that aren't up to spec are added  */
    /*  to the bad triangle queue.                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void testtriangle(struct mesh *m, struct behavior *b, struct otri *testtri)
    #else /* not ANSI_DECLARATORS */
    void testtriangle(m, b, testtri)
    struct mesh *m;
    struct behavior *b;
    struct otri *testtri;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri tri1, tri2;
      struct osub testsub;
      vertex torg, tdest, tapex;
      vertex base1, base2;
      vertex org1, dest1, org2, dest2;
      vertex joinvertex;
      REAL dxod, dyod, dxda, dyda, dxao, dyao;
      REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
      REAL apexlen, orglen, destlen, minedge;
      REAL angle;
      REAL area;
      REAL dist1, dist2;
      subseg sptr;                      /* Temporary variable used by tspivot(). */
      triangle ptr;           /* Temporary variable used by oprev() and dnext(). */
    
      org(*testtri, torg);
      dest(*testtri, tdest);
      apex(*testtri, tapex);
      dxod = torg[0] - tdest[0];
      dyod = torg[1] - tdest[1];
      dxda = tdest[0] - tapex[0];
      dyda = tdest[1] - tapex[1];
      dxao = tapex[0] - torg[0];
      dyao = tapex[1] - torg[1];
      dxod2 = dxod * dxod;
      dyod2 = dyod * dyod;
      dxda2 = dxda * dxda;
      dyda2 = dyda * dyda;
      dxao2 = dxao * dxao;
      dyao2 = dyao * dyao;
      /* Find the lengths of the triangle's three edges. */
      apexlen = dxod2 + dyod2;
      orglen = dxda2 + dyda2;
      destlen = dxao2 + dyao2;
    
      if ((apexlen < orglen) && (apexlen < destlen)) {
        /* The edge opposite the apex is shortest. */
        minedge = apexlen;
        /* Find the square of the cosine of the angle at the apex. */
        angle = dxda * dxao + dyda * dyao;
        angle = angle * angle / (orglen * destlen);
        base1 = torg;
        base2 = tdest;
        otricopy(*testtri, tri1);
      } else if (orglen < destlen) {
        /* The edge opposite the origin is shortest. */
        minedge = orglen;
        /* Find the square of the cosine of the angle at the origin. */
        angle = dxod * dxao + dyod * dyao;
        angle = angle * angle / (apexlen * destlen);
        base1 = tdest;
        base2 = tapex;
        lnext(*testtri, tri1);
      } else {
        /* The edge opposite the destination is shortest. */
        minedge = destlen;
        /* Find the square of the cosine of the angle at the destination. */
        angle = dxod * dxda + dyod * dyda;
        angle = angle * angle / (apexlen * orglen);
        base1 = tapex;
        base2 = torg;
        lprev(*testtri, tri1);
      }
    
      if (b->vararea || b->fixedarea || b->usertest) {
        /* Check whether the area is larger than permitted. */
        area = 0.5 * (dxod * dyda - dyod * dxda);
        if (b->fixedarea && (area > b->maxarea)) {
          /* Add this triangle to the list of bad triangles. */
          enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
          return;
        }
    
        /* Nonpositive area constraints are treated as unconstrained. */
        if ((b->vararea) && (area > areabound(*testtri)) &&
            (areabound(*testtri) > 0.0)) {
          /* Add this triangle to the list of bad triangles. */
          enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
          return;
        }
    
        if (b->usertest) {
          /* Check whether the user thinks this triangle is too large. */
          if (triunsuitable(torg, tdest, tapex, area)) {
            enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
            return;
          }
        }
      }
    
      /* Check whether the angle is smaller than permitted. */
      if (angle > b->goodangle) {
        /* Use the rules of Miller, Pav, and Walkington to decide that certain */
        /*   triangles should not be split, even if they have bad angles.      */
        /*   A skinny triangle is not split if its shortest edge subtends a    */
        /*   small input angle, and both endpoints of the edge lie on a        */
        /*   concentric circular shell.  For convenience, I make a small       */
        /*   adjustment to that rule:  I check if the endpoints of the edge    */
        /*   both lie in segment interiors, equidistant from the apex where    */
        /*   the two segments meet.                                            */
        /* First, check if both points lie in segment interiors.               */
        if ((vertextype(base1) == SEGMENTVERTEX) &&
            (vertextype(base2) == SEGMENTVERTEX)) {
          /* Check if both points lie in a common segment.  If they do, the */
          /*   skinny triangle is enqueued to be split as usual.            */
          tspivot(tri1, testsub);
          if (testsub.ss == m->dummysub) {
            /* No common segment.  Find a subsegment that contains `torg'. */
            otricopy(tri1, tri2);
            do {
              oprevself(tri1);
              tspivot(tri1, testsub);
            } while (testsub.ss == m->dummysub);
            /* Find the endpoints of the containing segment. */
            segorg(testsub, org1);
            segdest(testsub, dest1);
            /* Find a subsegment that contains `tdest'. */
            do {
              dnextself(tri2);
              tspivot(tri2, testsub);
            } while (testsub.ss == m->dummysub);
            /* Find the endpoints of the containing segment. */
            segorg(testsub, org2);
            segdest(testsub, dest2);
            /* Check if the two containing segments have an endpoint in common. */
            joinvertex = (vertex) NULL;
            if ((dest1[0] == org2[0]) && (dest1[1] == org2[1])) {
              joinvertex = dest1;
            } else if ((org1[0] == dest2[0]) && (org1[1] == dest2[1])) {
              joinvertex = org1;
            }
            if (joinvertex != (vertex) NULL) {
              /* Compute the distance from the common endpoint (of the two  */
              /*   segments) to each of the endpoints of the shortest edge. */
              dist1 = ((base1[0] - joinvertex[0]) * (base1[0] - joinvertex[0]) +
                       (base1[1] - joinvertex[1]) * (base1[1] - joinvertex[1]));
              dist2 = ((base2[0] - joinvertex[0]) * (base2[0] - joinvertex[0]) +
                       (base2[1] - joinvertex[1]) * (base2[1] - joinvertex[1]));
              /* If the two distances are equal, don't split the triangle. */
              if ((dist1 < 1.001 * dist2) && (dist1 > 0.999 * dist2)) {
                /* Return now to avoid enqueueing the bad triangle. */
                return;
              }
            }
          }
        }
    
        /* Add this triangle to the list of bad triangles. */
        enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Mesh quality testing routines end here                    *********/
    
    /********* Point location routines begin here                        *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  makevertexmap()   Construct a mapping from vertices to triangles to      */
    /*                    improve the speed of point location for segment        */
    /*                    insertion.                                             */
    /*                                                                           */
    /*  Traverses all the triangles, and provides each corner of each triangle   */
    /*  with a pointer to that triangle.  Of course, pointers will be            */
    /*  overwritten by other pointers because (almost) each vertex is a corner   */
    /*  of several triangles, but in the end every vertex will point to some     */
    /*  triangle that contains it.                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void makevertexmap(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void makevertexmap(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri triangleloop;
      vertex triorg;
    
      if (b->verbose) {
        printf("    Constructing mapping from vertices to triangles.\n");
      }
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      while (triangleloop.tri != (triangle *) NULL) {
        /* Check all three vertices of the triangle. */
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          org(triangleloop, triorg);
          setvertex2tri(triorg, encode(triangleloop));
        }
        triangleloop.tri = triangletraverse(m);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  preciselocate()   Find a triangle or edge containing a given point.      */
    /*                                                                           */
    /*  Begins its search from `searchtri'.  It is important that `searchtri'    */
    /*  be a handle with the property that `searchpoint' is strictly to the left */
    /*  of the edge denoted by `searchtri', or is collinear with that edge and   */
    /*  does not intersect that edge.  (In particular, `searchpoint' should not  */
    /*  be the origin or destination of that edge.)                              */
    /*                                                                           */
    /*  These conditions are imposed because preciselocate() is normally used in */
    /*  one of two situations:                                                   */
    /*                                                                           */
    /*  (1)  To try to find the location to insert a new point.  Normally, we    */
    /*       know an edge that the point is strictly to the left of.  In the     */
    /*       incremental Delaunay algorithm, that edge is a bounding box edge.   */
    /*       In Ruppert's Delaunay refinement algorithm for quality meshing,     */
    /*       that edge is the shortest edge of the triangle whose circumcenter   */
    /*       is being inserted.                                                  */
    /*                                                                           */
    /*  (2)  To try to find an existing point.  In this case, any edge on the    */
    /*       convex hull is a good starting edge.  You must screen out the       */
    /*       possibility that the vertex sought is an endpoint of the starting   */
    /*       edge before you call preciselocate().                               */
    /*                                                                           */
    /*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
    /*                                                                           */
    /*  This implementation differs from that given by Guibas and Stolfi.  It    */
    /*  walks from triangle to triangle, crossing an edge only if `searchpoint'  */
    /*  is on the other side of the line containing that edge.  After entering   */
    /*  a triangle, there are two edges by which one can leave that triangle.    */
    /*  If both edges are valid (`searchpoint' is on the other side of both      */
    /*  edges), one of the two is chosen by drawing a line perpendicular to      */
    /*  the entry edge (whose endpoints are `forg' and `fdest') passing through  */
    /*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    */
    /*  falls on, an exit edge is chosen.                                        */
    /*                                                                           */
    /*  This implementation is empirically faster than the Guibas and Stolfi     */
    /*  point location routine (which I originally used), which tends to spiral  */
    /*  in toward its target.                                                    */
    /*                                                                           */
    /*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
    /*  is a handle whose origin is the existing vertex.                         */
    /*                                                                           */
    /*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
    /*  handle whose primary edge is the edge on which the point lies.           */
    /*                                                                           */
    /*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
    /*  `searchtri' is a handle on the triangle that contains the point.         */
    /*                                                                           */
    /*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
    /*  handle whose primary edge the point is to the right of.  This might      */
    /*  occur when the circumcenter of a triangle falls just slightly outside    */
    /*  the mesh due to floating-point roundoff error.  It also occurs when      */
    /*  seeking a hole or region point that a foolish user has placed outside    */
    /*  the mesh.                                                                */
    /*                                                                           */
    /*  If `stopatsubsegment' is nonzero, the search will stop if it tries to    */
    /*  walk through a subsegment, and will return OUTSIDE.                      */
    /*                                                                           */
    /*  WARNING:  This routine is designed for convex triangulations, and will   */
    /*  not generally work after the holes and concavities have been carved.     */
    /*  However, it can still be used to find the circumcenter of a triangle, as */
    /*  long as the search is begun from the triangle in question.               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    enum locateresult preciselocate(struct mesh *m, struct behavior *b,
                                    vertex searchpoint, struct otri *searchtri,
                                    int stopatsubsegment)
    #else /* not ANSI_DECLARATORS */
    enum locateresult preciselocate(m, b, searchpoint, searchtri, stopatsubsegment)
    struct mesh *m;
    struct behavior *b;
    vertex searchpoint;
    struct otri *searchtri;
    int stopatsubsegment;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri backtracktri;
      struct osub checkedge;
      vertex forg, fdest, fapex;
      REAL orgorient, destorient;
      int moveleft;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      if (b->verbose > 2) {
        printf("  Searching for point (%.12g, %.12g).\n",
               searchpoint[0], searchpoint[1]);
      }
      /* Where are we? */
      org(*searchtri, forg);
      dest(*searchtri, fdest);
      apex(*searchtri, fapex);
      while (1) {
        if (b->verbose > 2) {
          printf("    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                 forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
        }
        /* Check whether the apex is the point we seek. */
        if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
          lprevself(*searchtri);
          return ONVERTEX;
        }
        /* Does the point lie on the other side of the line defined by the */
        /*   triangle edge opposite the triangle's destination?            */
        destorient = counterclockwise(m, b, forg, fapex, searchpoint);
        /* Does the point lie on the other side of the line defined by the */
        /*   triangle edge opposite the triangle's origin?                 */
        orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);
        if (destorient > 0.0) {
          if (orgorient > 0.0) {
            /* Move left if the inner product of (fapex - searchpoint) and  */
            /*   (fdest - forg) is positive.  This is equivalent to drawing */
            /*   a line perpendicular to the line (forg, fdest) and passing */
            /*   through `fapex', and determining which side of this line   */
            /*   `searchpoint' falls on.                                    */
            moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
                       (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
          } else {
            moveleft = 1;
          }
        } else {
          if (orgorient > 0.0) {
            moveleft = 0;
          } else {
            /* The point we seek must be on the boundary of or inside this */
            /*   triangle.                                                 */
            if (destorient == 0.0) {
              lprevself(*searchtri);
              return ONEDGE;
            }
            if (orgorient == 0.0) {
              lnextself(*searchtri);
              return ONEDGE;
            }
            return INTRIANGLE;
          }
        }
    
        /* Move to another triangle.  Leave a trace `backtracktri' in case */
        /*   floating-point roundoff or some such bogey causes us to walk  */
        /*   off a boundary of the triangulation.                          */
        if (moveleft) {
          lprev(*searchtri, backtracktri);
          fdest = fapex;
        } else {
          lnext(*searchtri, backtracktri);
          forg = fapex;
        }
        sym(backtracktri, *searchtri);
    
        if (m->checksegments && stopatsubsegment) {
          /* Check for walking through a subsegment. */
          tspivot(backtracktri, checkedge);
          if (checkedge.ss != m->dummysub) {
            /* Go back to the last triangle. */
            otricopy(backtracktri, *searchtri);
            return OUTSIDE;
          }
        }
        /* Check for walking right out of the triangulation. */
        if (searchtri->tri == m->dummytri) {
          /* Go back to the last triangle. */
          otricopy(backtracktri, *searchtri);
          return OUTSIDE;
        }
    
        apex(*searchtri, fapex);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  locate()   Find a triangle or edge containing a given point.             */
    /*                                                                           */
    /*  Searching begins from one of:  the input `searchtri', a recently         */
    /*  encountered triangle `recenttri', or from a triangle chosen from a       */
    /*  random sample.  The choice is made by determining which triangle's       */
    /*  origin is closest to the point we are searching for.  Normally,          */
    /*  `searchtri' should be a handle on the convex hull of the triangulation.  */
    /*                                                                           */
    /*  Details on the random sampling method can be found in the Mucke, Saias,  */
    /*  and Zhu paper cited in the header of this code.                          */
    /*                                                                           */
    /*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
    /*                                                                           */
    /*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
    /*  is a handle whose origin is the existing vertex.                         */
    /*                                                                           */
    /*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
    /*  handle whose primary edge is the edge on which the point lies.           */
    /*                                                                           */
    /*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
    /*  `searchtri' is a handle on the triangle that contains the point.         */
    /*                                                                           */
    /*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
    /*  handle whose primary edge the point is to the right of.  This might      */
    /*  occur when the circumcenter of a triangle falls just slightly outside    */
    /*  the mesh due to floating-point roundoff error.  It also occurs when      */
    /*  seeking a hole or region point that a foolish user has placed outside    */
    /*  the mesh.                                                                */
    /*                                                                           */
    /*  WARNING:  This routine is designed for convex triangulations, and will   */
    /*  not generally work after the holes and concavities have been carved.     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    enum locateresult locate(struct mesh *m, struct behavior *b,
                             vertex searchpoint, struct otri *searchtri)
    #else /* not ANSI_DECLARATORS */
    enum locateresult locate(m, b, searchpoint, searchtri)
    struct mesh *m;
    struct behavior *b;
    vertex searchpoint;
    struct otri *searchtri;
    #endif /* not ANSI_DECLARATORS */
    
    {
      VOID **sampleblock;
      char *firsttri;
      struct otri sampletri;
      vertex torg, tdest;
      unsigned long alignptr;
      REAL searchdist, dist;
      REAL ahead;
      long samplesperblock, totalsamplesleft, samplesleft;
      long population, totalpopulation;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (b->verbose > 2) {
        printf("  Randomly sampling for a triangle near point (%.12g, %.12g).\n",
               searchpoint[0], searchpoint[1]);
      }
      /* Record the distance from the suggested starting triangle to the */
      /*   point we seek.                                                */
      org(*searchtri, torg);
      searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
                   (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
      if (b->verbose > 2) {
        printf("    Boundary triangle has origin (%.12g, %.12g).\n",
               torg[0], torg[1]);
      }
    
      /* If a recently encountered triangle has been recorded and has not been */
      /*   deallocated, test it as a good starting point.                      */
      if (m->recenttri.tri != (triangle *) NULL) {
        if (!deadtri(m->recenttri.tri)) {
          org(m->recenttri, torg);
          if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
            otricopy(m->recenttri, *searchtri);
            return ONVERTEX;
          }
          dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
                 (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
          if (dist < searchdist) {
            otricopy(m->recenttri, *searchtri);
            searchdist = dist;
            if (b->verbose > 2) {
              printf("    Choosing recent triangle with origin (%.12g, %.12g).\n",
                     torg[0], torg[1]);
            }
          }
        }
      }
    
      /* The number of random samples taken is proportional to the cube root of */
      /*   the number of triangles in the mesh.  The next bit of code assumes   */
      /*   that the number of triangles increases monotonically (or at least    */
      /*   doesn't decrease enough to matter).                                  */
      while (SAMPLEFACTOR * m->samples * m->samples * m->samples <
             m->triangles.items) {
        m->samples++;
      }
    
      /* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples  */
      /*   from each block of triangles (except the first)--until we meet the */
      /*   sample quota.  The ceiling means that blocks at the end might be   */
      /*   neglected, but I don't care.                                       */
      samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1;
      /* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */
      /*   from the first block of triangles.                                    */
      samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) /
                    m->triangles.maxitems + 1;
      totalsamplesleft = m->samples;
      population = m->triangles.itemsfirstblock;
      totalpopulation = m->triangles.maxitems;
      sampleblock = m->triangles.firstblock;
      sampletri.orient = 0;
      while (totalsamplesleft > 0) {
        /* If we're in the last block, `population' needs to be corrected. */
        if (population > totalpopulation) {
          population = totalpopulation;
        }
        /* Find a pointer to the first triangle in the block. */
        alignptr = (unsigned long) (sampleblock + 1);
        firsttri = (char *) (alignptr +
                             (unsigned long) m->triangles.alignbytes -
                             (alignptr %
                              (unsigned long) m->triangles.alignbytes));
    
        /* Choose `samplesleft' randomly sampled triangles in this block. */
        do {
          sampletri.tri = (triangle *) (firsttri +
                                        (randomnation((unsigned int) population) *
                                         m->triangles.itembytes));
          if (!deadtri(sampletri.tri)) {
            org(sampletri, torg);
            dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
                   (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
            if (dist < searchdist) {
              otricopy(sampletri, *searchtri);
              searchdist = dist;
              if (b->verbose > 2) {
                printf("    Choosing triangle with origin (%.12g, %.12g).\n",
                       torg[0], torg[1]);
              }
            }
          }
    
          samplesleft--;
          totalsamplesleft--;
        } while ((samplesleft > 0) && (totalsamplesleft > 0));
    
        if (totalsamplesleft > 0) {
          sampleblock = (VOID **) *sampleblock;
          samplesleft = samplesperblock;
          totalpopulation -= population;
          population = TRIPERBLOCK;
        }
      }
    
      /* Where are we? */
      org(*searchtri, torg);
      dest(*searchtri, tdest);
      /* Check the starting triangle's vertices. */
      if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
        return ONVERTEX;
      }
      if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
        lnextself(*searchtri);
        return ONVERTEX;
      }
      /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
      ahead = counterclockwise(m, b, torg, tdest, searchpoint);
      if (ahead < 0.0) {
        /* Turn around so that `searchpoint' is to the left of the */
        /*   edge specified by `searchtri'.                        */
        symself(*searchtri);
      } else if (ahead == 0.0) {
        /* Check if `searchpoint' is between `torg' and `tdest'. */
        if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0])) &&
            ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
          return ONEDGE;
        }
      }
      return preciselocate(m, b, searchpoint, searchtri, 0);
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Point location routines end here                          *********/
    
    /********* Mesh transformation routines begin here                   *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  insertsubseg()   Create a new subsegment and insert it between two       */
    /*                   triangles.                                              */
    /*                                                                           */
    /*  The new subsegment is inserted at the edge described by the handle       */
    /*  `tri'.  Its vertices are properly initialized.  The marker `subsegmark'  */
    /*  is applied to the subsegment and, if appropriate, its vertices.          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri,
                      int subsegmark)
    #else /* not ANSI_DECLARATORS */
    void insertsubseg(m, b, tri, subsegmark)
    struct mesh *m;
    struct behavior *b;
    struct otri *tri;             /* Edge at which to insert the new subsegment. */
    int subsegmark;                            /* Marker for the new subsegment. */
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri oppotri;
      struct osub newsubseg;
      vertex triorg, tridest;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      org(*tri, triorg);
      dest(*tri, tridest);
      /* Mark vertices if possible. */
      if (vertexmark(triorg) == 0) {
        setvertexmark(triorg, subsegmark);
      }
      if (vertexmark(tridest) == 0) {
        setvertexmark(tridest, subsegmark);
      }
      /* Check if there's already a subsegment here. */
      tspivot(*tri, newsubseg);
      if (newsubseg.ss == m->dummysub) {
        /* Make new subsegment and initialize its vertices. */
        makesubseg(m, &newsubseg);
        setsorg(newsubseg, tridest);
        setsdest(newsubseg, triorg);
        setsegorg(newsubseg, tridest);
        setsegdest(newsubseg, triorg);
        /* Bond new subsegment to the two triangles it is sandwiched between. */
        /*   Note that the facing triangle `oppotri' might be equal to        */
        /*   `dummytri' (outer space), but the new subsegment is bonded to it */
        /*   all the same.                                                    */
        tsbond(*tri, newsubseg);
        sym(*tri, oppotri);
        ssymself(newsubseg);
        tsbond(oppotri, newsubseg);
        setmark(newsubseg, subsegmark);
        if (b->verbose > 2) {
          printf("  Inserting new ");
          printsubseg(m, b, &newsubseg);
        }
      } else {
        if (mark(newsubseg) == 0) {
          setmark(newsubseg, subsegmark);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  Terminology                                                              */
    /*                                                                           */
    /*  A "local transformation" replaces a small set of triangles with another  */
    /*  set of triangles.  This may or may not involve inserting or deleting a   */
    /*  vertex.                                                                  */
    /*                                                                           */
    /*  The term "casing" is used to describe the set of triangles that are      */
    /*  attached to the triangles being transformed, but are not transformed     */
    /*  themselves.  Think of the casing as a fixed hollow structure inside      */
    /*  which all the action happens.  A "casing" is only defined relative to    */
    /*  a single transformation; each occurrence of a transformation will        */
    /*  involve a different casing.                                              */
    /*                                                                           */
    /*****************************************************************************/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  flip()   Transform two triangles to two different triangles by flipping  */
    /*           an edge counterclockwise within a quadrilateral.                */
    /*                                                                           */
    /*  Imagine the original triangles, abc and bad, oriented so that the        */
    /*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
    /*  and the vertex a on the right.  The vertex c lies below the edge, and    */
    /*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
    /*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
    /*                                                                           */
    /*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
    /*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
    /*  they are reused for dca and cdb, respectively.  Hence, any handles that  */
    /*  may have held the original triangles are still valid, although not       */
    /*  directed as they were before.                                            */
    /*                                                                           */
    /*  Upon completion of this routine, the `flipedge' handle holds the edge    */
    /*  dc of triangle dca, and is directed down, from vertex d to vertex c.     */
    /*  (Hence, the two triangles have rotated counterclockwise.)                */
    /*                                                                           */
    /*  WARNING:  This transformation is geometrically valid only if the         */
    /*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
    /*  valid only if there is not a subsegment between the triangles abc and    */
    /*  bad.  This routine does not check either of these preconditions, and     */
    /*  it is the responsibility of the calling routine to ensure that they are  */
    /*  met.  If they are not, the streets shall be filled with wailing and      */
    /*  gnashing of teeth.                                                       */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void flip(struct mesh *m, struct behavior *b, struct otri *flipedge)
    #else /* not ANSI_DECLARATORS */
    void flip(m, b, flipedge)
    struct mesh *m;
    struct behavior *b;
    struct otri *flipedge;                    /* Handle for the triangle abc. */
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri botleft, botright;
      struct otri topleft, topright;
      struct otri top;
      struct otri botlcasing, botrcasing;
      struct otri toplcasing, toprcasing;
      struct osub botlsubseg, botrsubseg;
      struct osub toplsubseg, toprsubseg;
      vertex leftvertex, rightvertex, botvertex;
      vertex farvertex;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      /* Identify the vertices of the quadrilateral. */
      org(*flipedge, rightvertex);
      dest(*flipedge, leftvertex);
      apex(*flipedge, botvertex);
      sym(*flipedge, top);
    #ifdef SELF_CHECK
      if (top.tri == m->dummytri) {
        printf("Internal error in flip():  Attempt to flip on boundary.\n");
        lnextself(*flipedge);
        return;
      }
      if (m->checksegments) {
        tspivot(*flipedge, toplsubseg);
        if (toplsubseg.ss != m->dummysub) {
          printf("Internal error in flip():  Attempt to flip a segment.\n");
          lnextself(*flipedge);
          return;
        }
      }
    #endif /* SELF_CHECK */
      apex(top, farvertex);
    
      /* Identify the casing of the quadrilateral. */
      lprev(top, topleft);
      sym(topleft, toplcasing);
      lnext(top, topright);
      sym(topright, toprcasing);
      lnext(*flipedge, botleft);
      sym(botleft, botlcasing);
      lprev(*flipedge, botright);
      sym(botright, botrcasing);
      /* Rotate the quadrilateral one-quarter turn counterclockwise. */
      bond(topleft, botlcasing);
      bond(botleft, botrcasing);
      bond(botright, toprcasing);
      bond(topright, toplcasing);
    
      if (m->checksegments) {
        /* Check for subsegments and rebond them to the quadrilateral. */
        tspivot(topleft, toplsubseg);
        tspivot(botleft, botlsubseg);
        tspivot(botright, botrsubseg);
        tspivot(topright, toprsubseg);
        if (toplsubseg.ss == m->dummysub) {
          tsdissolve(topright);
        } else {
          tsbond(topright, toplsubseg);
        }
        if (botlsubseg.ss == m->dummysub) {
          tsdissolve(topleft);
        } else {
          tsbond(topleft, botlsubseg);
        }
        if (botrsubseg.ss == m->dummysub) {
          tsdissolve(botleft);
        } else {
          tsbond(botleft, botrsubseg);
        }
        if (toprsubseg.ss == m->dummysub) {
          tsdissolve(botright);
        } else {
          tsbond(botright, toprsubseg);
        }
      }
    
      /* New vertex assignments for the rotated quadrilateral. */
      setorg(*flipedge, farvertex);
      setdest(*flipedge, botvertex);
      setapex(*flipedge, rightvertex);
      setorg(top, botvertex);
      setdest(top, farvertex);
      setapex(top, leftvertex);
      if (b->verbose > 2) {
        printf("  Edge flip results in left ");
        printtriangle(m, b, &top);
        printf("  and right ");
        printtriangle(m, b, flipedge);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  unflip()   Transform two triangles to two different triangles by         */
    /*             flipping an edge clockwise within a quadrilateral.  Reverses  */
    /*             the flip() operation so that the data structures representing */
    /*             the triangles are back where they were before the flip().     */
    /*                                                                           */
    /*  Imagine the original triangles, abc and bad, oriented so that the        */
    /*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
    /*  and the vertex a on the right.  The vertex c lies below the edge, and    */
    /*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
    /*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
    /*                                                                           */
    /*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
    /*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
    /*  they are reused for cdb and dca, respectively.  Hence, any handles that  */
    /*  may have held the original triangles are still valid, although not       */
    /*  directed as they were before.                                            */
    /*                                                                           */
    /*  Upon completion of this routine, the `flipedge' handle holds the edge    */
    /*  cd of triangle cdb, and is directed up, from vertex c to vertex d.       */
    /*  (Hence, the two triangles have rotated clockwise.)                       */
    /*                                                                           */
    /*  WARNING:  This transformation is geometrically valid only if the         */
    /*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
    /*  valid only if there is not a subsegment between the triangles abc and    */
    /*  bad.  This routine does not check either of these preconditions, and     */
    /*  it is the responsibility of the calling routine to ensure that they are  */
    /*  met.  If they are not, the streets shall be filled with wailing and      */
    /*  gnashing of teeth.                                                       */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge)
    #else /* not ANSI_DECLARATORS */
    void unflip(m, b, flipedge)
    struct mesh *m;
    struct behavior *b;
    struct otri *flipedge;                    /* Handle for the triangle abc. */
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri botleft, botright;
      struct otri topleft, topright;
      struct otri top;
      struct otri botlcasing, botrcasing;
      struct otri toplcasing, toprcasing;
      struct osub botlsubseg, botrsubseg;
      struct osub toplsubseg, toprsubseg;
      vertex leftvertex, rightvertex, botvertex;
      vertex farvertex;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      /* Identify the vertices of the quadrilateral. */
      org(*flipedge, rightvertex);
      dest(*flipedge, leftvertex);
      apex(*flipedge, botvertex);
      sym(*flipedge, top);
    #ifdef SELF_CHECK
      if (top.tri == m->dummytri) {
        printf("Internal error in unflip():  Attempt to flip on boundary.\n");
        lnextself(*flipedge);
        return;
      }
      if (m->checksegments) {
        tspivot(*flipedge, toplsubseg);
        if (toplsubseg.ss != m->dummysub) {
          printf("Internal error in unflip():  Attempt to flip a subsegment.\n");
          lnextself(*flipedge);
          return;
        }
      }
    #endif /* SELF_CHECK */
      apex(top, farvertex);
    
      /* Identify the casing of the quadrilateral. */
      lprev(top, topleft);
      sym(topleft, toplcasing);
      lnext(top, topright);
      sym(topright, toprcasing);
      lnext(*flipedge, botleft);
      sym(botleft, botlcasing);
      lprev(*flipedge, botright);
      sym(botright, botrcasing);
      /* Rotate the quadrilateral one-quarter turn clockwise. */
      bond(topleft, toprcasing);
      bond(botleft, toplcasing);
      bond(botright, botlcasing);
      bond(topright, botrcasing);
    
      if (m->checksegments) {
        /* Check for subsegments and rebond them to the quadrilateral. */
        tspivot(topleft, toplsubseg);
        tspivot(botleft, botlsubseg);
        tspivot(botright, botrsubseg);
        tspivot(topright, toprsubseg);
        if (toplsubseg.ss == m->dummysub) {
          tsdissolve(botleft);
        } else {
          tsbond(botleft, toplsubseg);
        }
        if (botlsubseg.ss == m->dummysub) {
          tsdissolve(botright);
        } else {
          tsbond(botright, botlsubseg);
        }
        if (botrsubseg.ss == m->dummysub) {
          tsdissolve(topright);
        } else {
          tsbond(topright, botrsubseg);
        }
        if (toprsubseg.ss == m->dummysub) {
          tsdissolve(topleft);
        } else {
          tsbond(topleft, toprsubseg);
        }
      }
    
      /* New vertex assignments for the rotated quadrilateral. */
      setorg(*flipedge, botvertex);
      setdest(*flipedge, farvertex);
      setapex(*flipedge, leftvertex);
      setorg(top, farvertex);
      setdest(top, botvertex);
      setapex(top, rightvertex);
      if (b->verbose > 2) {
        printf("  Edge unflip results in left ");
        printtriangle(m, b, flipedge);
        printf("  and right ");
        printtriangle(m, b, &top);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  insertvertex()   Insert a vertex into a Delaunay triangulation,          */
    /*                   performing flips as necessary to maintain the Delaunay  */
    /*                   property.                                               */
    /*                                                                           */
    /*  The point `insertvertex' is located.  If `searchtri.tri' is not NULL,    */
    /*  the search for the containing triangle begins from `searchtri'.  If      */
    /*  `searchtri.tri' is NULL, a full point location procedure is called.      */
    /*  If `insertvertex' is found inside a triangle, the triangle is split into */
    /*  three; if `insertvertex' lies on an edge, the edge is split in two,      */
    /*  thereby splitting the two adjacent triangles into four.  Edge flips are  */
    /*  used to restore the Delaunay property.  If `insertvertex' lies on an     */
    /*  existing vertex, no action is taken, and the value DUPLICATEVERTEX is    */
    /*  returned.  On return, `searchtri' is set to a handle whose origin is the */
    /*  existing vertex.                                                         */
    /*                                                                           */
    /*  Normally, the parameter `splitseg' is set to NULL, implying that no      */
    /*  subsegment should be split.  In this case, if `insertvertex' is found to */
    /*  lie on a segment, no action is taken, and the value VIOLATINGVERTEX is   */
    /*  returned.  On return, `searchtri' is set to a handle whose primary edge  */
    /*  is the violated subsegment.                                              */
    /*                                                                           */
    /*  If the calling routine wishes to split a subsegment by inserting a       */
    /*  vertex in it, the parameter `splitseg' should be that subsegment.  In    */
    /*  this case, `searchtri' MUST be the triangle handle reached by pivoting   */
    /*  from that subsegment; no point location is done.                         */
    /*                                                                           */
    /*  `segmentflaws' and `triflaws' are flags that indicate whether or not     */
    /*  there should be checks for the creation of encroached subsegments or bad */
    /*  quality triangles.  If a newly inserted vertex encroaches upon           */
    /*  subsegments, these subsegments are added to the list of subsegments to   */
    /*  be split if `segmentflaws' is set.  If bad triangles are created, these  */
    /*  are added to the queue if `triflaws' is set.                             */
    /*                                                                           */
    /*  If a duplicate vertex or violated segment does not prevent the vertex    */
    /*  from being inserted, the return value will be ENCROACHINGVERTEX if the   */
    /*  vertex encroaches upon a subsegment (and checking is enabled), or        */
    /*  SUCCESSFULVERTEX otherwise.  In either case, `searchtri' is set to a     */
    /*  handle whose origin is the newly inserted vertex.                        */
    /*                                                                           */
    /*  insertvertex() does not use flip() for reasons of speed; some            */
    /*  information can be reused from edge flip to edge flip, like the          */
    /*  locations of subsegments.                                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b,
                                         vertex newvertex, struct otri *searchtri,
                                         struct osub *splitseg,
                                         int segmentflaws, int triflaws)
    #else /* not ANSI_DECLARATORS */
    enum insertvertexresult insertvertex(m, b, newvertex, searchtri, splitseg,
                                         segmentflaws, triflaws)
    struct mesh *m;
    struct behavior *b;
    vertex newvertex;
    struct otri *searchtri;
    struct osub *splitseg;
    int segmentflaws;
    int triflaws;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri horiz;
      struct otri top;
      struct otri botleft, botright;
      struct otri topleft, topright;
      struct otri newbotleft, newbotright;
      struct otri newtopright;
      struct otri botlcasing, botrcasing;
      struct otri toplcasing, toprcasing;
      struct otri testtri;
      struct osub botlsubseg, botrsubseg;
      struct osub toplsubseg, toprsubseg;
      struct osub brokensubseg;
      struct osub checksubseg;
      struct osub rightsubseg;
      struct osub newsubseg;
      struct badsubseg *encroached;
      struct flipstacker *newflip;
      vertex first;
      vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
      vertex segmentorg, segmentdest;
      REAL attrib;
      REAL area;
      enum insertvertexresult success;
      enum locateresult intersect;
      int doflip;
      int mirrorflag;
      int enq;
      int i;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;         /* Temporary variable used by spivot() and tspivot(). */
    
      if (b->verbose > 1) {
        printf("  Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
      }
    
      if (splitseg == (struct osub *) NULL) {
        /* Find the location of the vertex to be inserted.  Check if a good */
        /*   starting triangle has already been provided by the caller.     */
        if (searchtri->tri == m->dummytri) {
          /* Find a boundary triangle. */
          horiz.tri = m->dummytri;
          horiz.orient = 0;
          symself(horiz);
          /* Search for a triangle containing `newvertex'. */
          intersect = locate(m, b, newvertex, &horiz);
        } else {
          /* Start searching from the triangle provided by the caller. */
          otricopy(*searchtri, horiz);
          intersect = preciselocate(m, b, newvertex, &horiz, 1);
        }
      } else {
        /* The calling routine provides the subsegment in which */
        /*   the vertex is inserted.                             */
        otricopy(*searchtri, horiz);
        intersect = ONEDGE;
      }
    
      if (intersect == ONVERTEX) {
        /* There's already a vertex there.  Return in `searchtri' a triangle */
        /*   whose origin is the existing vertex.                            */
        otricopy(horiz, *searchtri);
        otricopy(horiz, m->recenttri);
        return DUPLICATEVERTEX;
      }
      if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
        /* The vertex falls on an edge or boundary. */
        if (m->checksegments && (splitseg == (struct osub *) NULL)) {
          /* Check whether the vertex falls on a subsegment. */
          tspivot(horiz, brokensubseg);
          if (brokensubseg.ss != m->dummysub) {
            /* The vertex falls on a subsegment, and hence will not be inserted. */
            if (segmentflaws) {
              enq = b->nobisect != 2;
              if (enq && (b->nobisect == 1)) {
                /* This subsegment may be split only if it is an */
                /*   internal boundary.                          */
                sym(horiz, testtri);
                enq = testtri.tri != m->dummytri;
              }
              if (enq) {
                /* Add the subsegment to the list of encroached subsegments. */
                encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);
                encroached->encsubseg = sencode(brokensubseg);
                sorg(brokensubseg, encroached->subsegorg);
                sdest(brokensubseg, encroached->subsegdest);
                if (b->verbose > 2) {
                  printf(
              "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
                         encroached->subsegorg[0], encroached->subsegorg[1],
                         encroached->subsegdest[0], encroached->subsegdest[1]);
                }
              }
            }
            /* Return a handle whose primary edge contains the vertex, */
            /*   which has not been inserted.                          */
            otricopy(horiz, *searchtri);
            otricopy(horiz, m->recenttri);
            return VIOLATINGVERTEX;
          }
        }
    
        /* Insert the vertex on an edge, dividing one triangle into two (if */
        /*   the edge lies on a boundary) or two triangles into four.       */
        lprev(horiz, botright);
        sym(botright, botrcasing);
        sym(horiz, topright);
        /* Is there a second triangle?  (Or does this edge lie on a boundary?) */
        mirrorflag = topright.tri != m->dummytri;
        if (mirrorflag) {
          lnextself(topright);
          sym(topright, toprcasing);
          maketriangle(m, b, &newtopright);
        } else {
          /* Splitting a boundary edge increases the number of boundary edges. */
          m->hullsize++;
        }
        maketriangle(m, b, &newbotright);
    
        /* Set the vertices of changed and new triangles. */
        org(horiz, rightvertex);
        dest(horiz, leftvertex);
        apex(horiz, botvertex);
        setorg(newbotright, botvertex);
        setdest(newbotright, rightvertex);
        setapex(newbotright, newvertex);
        setorg(horiz, newvertex);
        for (i = 0; i < m->eextras; i++) {
          /* Set the element attributes of a new triangle. */
          setelemattribute(newbotright, i, elemattribute(botright, i));
        }
        if (b->vararea) {
          /* Set the area constraint of a new triangle. */
          setareabound(newbotright, areabound(botright));
        }
        if (mirrorflag) {
          dest(topright, topvertex);
          setorg(newtopright, rightvertex);
          setdest(newtopright, topvertex);
          setapex(newtopright, newvertex);
          setorg(topright, newvertex);
          for (i = 0; i < m->eextras; i++) {
            /* Set the element attributes of another new triangle. */
            setelemattribute(newtopright, i, elemattribute(topright, i));
          }
          if (b->vararea) {
            /* Set the area constraint of another new triangle. */
            setareabound(newtopright, areabound(topright));
          }
        }
    
        /* There may be subsegments that need to be bonded */
        /*   to the new triangle(s).                       */
        if (m->checksegments) {
          tspivot(botright, botrsubseg);
          if (botrsubseg.ss != m->dummysub) {
            tsdissolve(botright);
            tsbond(newbotright, botrsubseg);
          }
          if (mirrorflag) {
            tspivot(topright, toprsubseg);
            if (toprsubseg.ss != m->dummysub) {
              tsdissolve(topright);
              tsbond(newtopright, toprsubseg);
            }
          }
        }
    
        /* Bond the new triangle(s) to the surrounding triangles. */
        bond(newbotright, botrcasing);
        lprevself(newbotright);
        bond(newbotright, botright);
        lprevself(newbotright);
        if (mirrorflag) {
          bond(newtopright, toprcasing);
          lnextself(newtopright);
          bond(newtopright, topright);
          lnextself(newtopright);
          bond(newtopright, newbotright);
        }
    
        if (splitseg != (struct osub *) NULL) {
          /* Split the subsegment into two. */
          setsdest(*splitseg, newvertex);
          segorg(*splitseg, segmentorg);
          segdest(*splitseg, segmentdest);
          ssymself(*splitseg);
          spivot(*splitseg, rightsubseg);
          insertsubseg(m, b, &newbotright, mark(*splitseg));
          tspivot(newbotright, newsubseg);
          setsegorg(newsubseg, segmentorg);
          setsegdest(newsubseg, segmentdest);
          sbond(*splitseg, newsubseg);
          ssymself(newsubseg);
          sbond(newsubseg, rightsubseg);
          ssymself(*splitseg);
          /* Transfer the subsegment's boundary marker to the vertex */
          /*   if required.                                          */
          if (vertexmark(newvertex) == 0) {
            setvertexmark(newvertex, mark(*splitseg));
          }
        }
    
        if (m->checkquality) {
          poolrestart(&m->flipstackers);
          m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
          m->lastflip->flippedtri = encode(horiz);
          m->lastflip->prevflip = (struct flipstacker *) &insertvertex;
        }
    
    #ifdef SELF_CHECK
        if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {
          printf("Internal error in insertvertex():\n");
          printf(
                "  Clockwise triangle prior to edge vertex insertion (bottom).\n");
        }
        if (mirrorflag) {
          if (counterclockwise(m, b, leftvertex, rightvertex, topvertex) < 0.0) {
            printf("Internal error in insertvertex():\n");
            printf("  Clockwise triangle prior to edge vertex insertion (top).\n");
          }
          if (counterclockwise(m, b, rightvertex, topvertex, newvertex) < 0.0) {
            printf("Internal error in insertvertex():\n");
            printf(
                "  Clockwise triangle after edge vertex insertion (top right).\n");
          }
          if (counterclockwise(m, b, topvertex, leftvertex, newvertex) < 0.0) {
            printf("Internal error in insertvertex():\n");
            printf(
                "  Clockwise triangle after edge vertex insertion (top left).\n");
          }
        }
        if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {
          printf("Internal error in insertvertex():\n");
          printf(
              "  Clockwise triangle after edge vertex insertion (bottom left).\n");
        }
        if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {
          printf("Internal error in insertvertex():\n");
          printf(
            "  Clockwise triangle after edge vertex insertion (bottom right).\n");
        }
    #endif /* SELF_CHECK */
        if (b->verbose > 2) {
          printf("  Updating bottom left ");
          printtriangle(m, b, &botright);
          if (mirrorflag) {
            printf("  Updating top left ");
            printtriangle(m, b, &topright);
            printf("  Creating top right ");
            printtriangle(m, b, &newtopright);
          }
          printf("  Creating bottom right ");
          printtriangle(m, b, &newbotright);
        }
    
        /* Position `horiz' on the first edge to check for */
        /*   the Delaunay property.                        */
        lnextself(horiz);
      } else {
        /* Insert the vertex in a triangle, splitting it into three. */
        lnext(horiz, botleft);
        lprev(horiz, botright);
        sym(botleft, botlcasing);
        sym(botright, botrcasing);
        maketriangle(m, b, &newbotleft);
        maketriangle(m, b, &newbotright);
    
        /* Set the vertices of changed and new triangles. */
        org(horiz, rightvertex);
        dest(horiz, leftvertex);
        apex(horiz, botvertex);
        setorg(newbotleft, leftvertex);
        setdest(newbotleft, botvertex);
        setapex(newbotleft, newvertex);
        setorg(newbotright, botvertex);
        setdest(newbotright, rightvertex);
        setapex(newbotright, newvertex);
        setapex(horiz, newvertex);
        for (i = 0; i < m->eextras; i++) {
          /* Set the element attributes of the new triangles. */
          attrib = elemattribute(horiz, i);
          setelemattribute(newbotleft, i, attrib);
          setelemattribute(newbotright, i, attrib);
        }
        if (b->vararea) {
          /* Set the area constraint of the new triangles. */
          area = areabound(horiz);
          setareabound(newbotleft, area);
          setareabound(newbotright, area);
        }
    
        /* There may be subsegments that need to be bonded */
        /*   to the new triangles.                         */
        if (m->checksegments) {
          tspivot(botleft, botlsubseg);
          if (botlsubseg.ss != m->dummysub) {
            tsdissolve(botleft);
            tsbond(newbotleft, botlsubseg);
          }
          tspivot(botright, botrsubseg);
          if (botrsubseg.ss != m->dummysub) {
            tsdissolve(botright);
            tsbond(newbotright, botrsubseg);
          }
        }
    
        /* Bond the new triangles to the surrounding triangles. */
        bond(newbotleft, botlcasing);
        bond(newbotright, botrcasing);
        lnextself(newbotleft);
        lprevself(newbotright);
        bond(newbotleft, newbotright);
        lnextself(newbotleft);
        bond(botleft, newbotleft);
        lprevself(newbotright);
        bond(botright, newbotright);
    
        if (m->checkquality) {
          poolrestart(&m->flipstackers);
          m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
          m->lastflip->flippedtri = encode(horiz);
          m->lastflip->prevflip = (struct flipstacker *) NULL;
        }
    
    #ifdef SELF_CHECK
        if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {
          printf("Internal error in insertvertex():\n");
          printf("  Clockwise triangle prior to vertex insertion.\n");
        }
        if (counterclockwise(m, b, rightvertex, leftvertex, newvertex) < 0.0) {
          printf("Internal error in insertvertex():\n");
          printf("  Clockwise triangle after vertex insertion (top).\n");
        }
        if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {
          printf("Internal error in insertvertex():\n");
          printf("  Clockwise triangle after vertex insertion (left).\n");
        }
        if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {
          printf("Internal error in insertvertex():\n");
          printf("  Clockwise triangle after vertex insertion (right).\n");
        }
    #endif /* SELF_CHECK */
        if (b->verbose > 2) {
          printf("  Updating top ");
          printtriangle(m, b, &horiz);
          printf("  Creating left ");
          printtriangle(m, b, &newbotleft);
          printf("  Creating right ");
          printtriangle(m, b, &newbotright);
        }
      }
    
      /* The insertion is successful by default, unless an encroached */
      /*   subsegment is found.                                       */
      success = SUCCESSFULVERTEX;
      /* Circle around the newly inserted vertex, checking each edge opposite */
      /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */
      /*   `horiz' is always the edge being checked.  `first' marks where to  */
      /*   stop circling.                                                     */
      org(horiz, first);
      rightvertex = first;
      dest(horiz, leftvertex);
      /* Circle until finished. */
      while (1) {
        /* By default, the edge will be flipped. */
        doflip = 1;
    
        if (m->checksegments) {
          /* Check for a subsegment, which cannot be flipped. */
          tspivot(horiz, checksubseg);
          if (checksubseg.ss != m->dummysub) {
            /* The edge is a subsegment and cannot be flipped. */
            doflip = 0;
    #ifndef CDT_ONLY
            if (segmentflaws) {
              /* Does the new vertex encroach upon this subsegment? */
              if (checkseg4encroach(m, b, &checksubseg)) {
                success = ENCROACHINGVERTEX;
              }
            }
    #endif /* not CDT_ONLY */
          }
        }
    
        if (doflip) {
          /* Check if the edge is a boundary edge. */
          sym(horiz, top);
          if (top.tri == m->dummytri) {
            /* The edge is a boundary edge and cannot be flipped. */
            doflip = 0;
          } else {
            /* Find the vertex on the other side of the edge. */
            apex(top, farvertex);
            /* In the incremental Delaunay triangulation algorithm, any of      */
            /*   `leftvertex', `rightvertex', and `farvertex' could be vertices */
            /*   of the triangular bounding box.  These vertices must be        */
            /*   treated as if they are infinitely distant, even though their   */
            /*   "coordinates" are not.                                         */
            if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2) ||
                (leftvertex == m->infvertex3)) {
              /* `leftvertex' is infinitely distant.  Check the convexity of  */
              /*   the boundary of the triangulation.  'farvertex' might be   */
              /*   infinite as well, but trust me, this same condition should */
              /*   be applied.                                                */
              doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex)
                       > 0.0;
            } else if ((rightvertex == m->infvertex1) ||
                       (rightvertex == m->infvertex2) ||
                       (rightvertex == m->infvertex3)) {
              /* `rightvertex' is infinitely distant.  Check the convexity of */
              /*   the boundary of the triangulation.  'farvertex' might be   */
              /*   infinite as well, but trust me, this same condition should */
              /*   be applied.                                                */
              doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex)
                       > 0.0;
            } else if ((farvertex == m->infvertex1) ||
                       (farvertex == m->infvertex2) ||
                       (farvertex == m->infvertex3)) {
              /* `farvertex' is infinitely distant and cannot be inside */
              /*   the circumcircle of the triangle `horiz'.            */
              doflip = 0;
            } else {
              /* Test whether the edge is locally Delaunay. */
              doflip = incircle(m, b, leftvertex, newvertex, rightvertex,
                                farvertex) > 0.0;
            }
            if (doflip) {
              /* We made it!  Flip the edge `horiz' by rotating its containing */
              /*   quadrilateral (the two triangles adjacent to `horiz').      */
              /* Identify the casing of the quadrilateral. */
              lprev(top, topleft);
              sym(topleft, toplcasing);
              lnext(top, topright);
              sym(topright, toprcasing);
              lnext(horiz, botleft);
              sym(botleft, botlcasing);
              lprev(horiz, botright);
              sym(botright, botrcasing);
              /* Rotate the quadrilateral one-quarter turn counterclockwise. */
              bond(topleft, botlcasing);
              bond(botleft, botrcasing);
              bond(botright, toprcasing);
              bond(topright, toplcasing);
              if (m->checksegments) {
                /* Check for subsegments and rebond them to the quadrilateral. */
                tspivot(topleft, toplsubseg);
                tspivot(botleft, botlsubseg);
                tspivot(botright, botrsubseg);
                tspivot(topright, toprsubseg);
                if (toplsubseg.ss == m->dummysub) {
                  tsdissolve(topright);
                } else {
                  tsbond(topright, toplsubseg);
                }
                if (botlsubseg.ss == m->dummysub) {
                  tsdissolve(topleft);
                } else {
                  tsbond(topleft, botlsubseg);
                }
                if (botrsubseg.ss == m->dummysub) {
                  tsdissolve(botleft);
                } else {
                  tsbond(botleft, botrsubseg);
                }
                if (toprsubseg.ss == m->dummysub) {
                  tsdissolve(botright);
                } else {
                  tsbond(botright, toprsubseg);
                }
              }
              /* New vertex assignments for the rotated quadrilateral. */
              setorg(horiz, farvertex);
              setdest(horiz, newvertex);
              setapex(horiz, rightvertex);
              setorg(top, newvertex);
              setdest(top, farvertex);
              setapex(top, leftvertex);
              for (i = 0; i < m->eextras; i++) {
                /* Take the average of the two triangles' attributes. */
                attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
                setelemattribute(top, i, attrib);
                setelemattribute(horiz, i, attrib);
              }
              if (b->vararea) {
                if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
                  area = -1.0;
                } else {
                  /* Take the average of the two triangles' area constraints.    */
                  /*   This prevents small area constraints from migrating a     */
                  /*   long, long way from their original location due to flips. */
                  area = 0.5 * (areabound(top) + areabound(horiz));
                }
                setareabound(top, area);
                setareabound(horiz, area);
              }
    
              if (m->checkquality) {
                newflip = (struct flipstacker *) poolalloc(&m->flipstackers);
                newflip->flippedtri = encode(horiz);
                newflip->prevflip = m->lastflip;
                m->lastflip = newflip;
              }
    
    #ifdef SELF_CHECK
              if (newvertex != (vertex) NULL) {
                if (counterclockwise(m, b, leftvertex, newvertex, rightvertex) <
                    0.0) {
                  printf("Internal error in insertvertex():\n");
                  printf("  Clockwise triangle prior to edge flip (bottom).\n");
                }
                /* The following test has been removed because constrainededge() */
                /*   sometimes generates inverted triangles that insertvertex()  */
                /*   removes.                                                    */
    /*
                if (counterclockwise(m, b, rightvertex, farvertex, leftvertex) <
                    0.0) {
                  printf("Internal error in insertvertex():\n");
                  printf("  Clockwise triangle prior to edge flip (top).\n");
                }
    */
                if (counterclockwise(m, b, farvertex, leftvertex, newvertex) <
                    0.0) {
                  printf("Internal error in insertvertex():\n");
                  printf("  Clockwise triangle after edge flip (left).\n");
                }
                if (counterclockwise(m, b, newvertex, rightvertex, farvertex) <
                    0.0) {
                  printf("Internal error in insertvertex():\n");
                  printf("  Clockwise triangle after edge flip (right).\n");
                }
              }
    #endif /* SELF_CHECK */
              if (b->verbose > 2) {
                printf("  Edge flip results in left ");
                lnextself(topleft);
                printtriangle(m, b, &topleft);
                printf("  and right ");
                printtriangle(m, b, &horiz);
              }
              /* On the next iterations, consider the two edges that were  */
              /*   exposed (this is, are now visible to the newly inserted */
              /*   vertex) by the edge flip.                               */
              lprevself(horiz);
              leftvertex = farvertex;
            }
          }
        }
        if (!doflip) {
          /* The handle `horiz' is accepted as locally Delaunay. */
    #ifndef CDT_ONLY
          if (triflaws) {
            /* Check the triangle `horiz' for quality. */
            testtriangle(m, b, &horiz);
          }
    #endif /* not CDT_ONLY */
          /* Look for the next edge around the newly inserted vertex. */
          lnextself(horiz);
          sym(horiz, testtri);
          /* Check for finishing a complete revolution about the new vertex, or */
          /*   falling outside  of the triangulation.  The latter will happen   */
          /*   when a vertex is inserted at a boundary.                         */
          if ((leftvertex == first) || (testtri.tri == m->dummytri)) {
            /* We're done.  Return a triangle whose origin is the new vertex. */
            lnext(horiz, *searchtri);
            lnext(horiz, m->recenttri);
            return success;
          }
          /* Finish finding the next edge around the newly inserted vertex. */
          lnext(testtri, horiz);
          rightvertex = leftvertex;
          dest(horiz, leftvertex);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that */
    /*                         has a certain "nice" shape.  This includes the    */
    /*                         polygons that result from deletion of a vertex or */
    /*                         insertion of a segment.                           */
    /*                                                                           */
    /*  This is a conceptually difficult routine.  The starting assumption is    */
    /*  that we have a polygon with n sides.  n - 1 of these sides are currently */
    /*  represented as edges in the mesh.  One side, called the "base", need not */
    /*  be.                                                                      */
    /*                                                                           */
    /*  Inside the polygon is a structure I call a "fan", consisting of n - 1    */
    /*  triangles that share a common origin.  For each of these triangles, the  */
    /*  edge opposite the origin is one of the sides of the polygon.  The        */
    /*  primary edge of each triangle is the edge directed from the origin to    */
    /*  the destination; note that this is not the same edge that is a side of   */
    /*  the polygon.  `firstedge' is the primary edge of the first triangle.     */
    /*  From there, the triangles follow in counterclockwise order about the     */
    /*  polygon, until `lastedge', the primary edge of the last triangle.        */
    /*  `firstedge' and `lastedge' are probably connected to other triangles     */
    /*  beyond the extremes of the fan, but their identity is not important, as  */
    /*  long as the fan remains connected to them.                               */
    /*                                                                           */
    /*  Imagine the polygon oriented so that its base is at the bottom.  This    */
    /*  puts `firstedge' on the far right, and `lastedge' on the far left.       */
    /*  The right vertex of the base is the destination of `firstedge', and the  */
    /*  left vertex of the base is the apex of `lastedge'.                       */
    /*                                                                           */
    /*  The challenge now is to find the right sequence of edge flips to         */
    /*  transform the fan into a Delaunay triangulation of the polygon.  Each    */
    /*  edge flip effectively removes one triangle from the fan, committing it   */
    /*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  */
    /*  is set, the final flip will be performed, resulting in a fan of one      */
    /*  (useless?) triangle.  If `doflip' is not set, the final flip is not      */
    /*  performed, resulting in a fan of two triangles, and an unfinished        */
    /*  triangular polygon that is not yet filled out with a single triangle.    */
    /*  On completion of the routine, `lastedge' is the last remaining triangle, */
    /*  or the leftmost of the last two.                                         */
    /*                                                                           */
    /*  Although the flips are performed in the order described above, the       */
    /*  decisions about what flips to perform are made in precisely the reverse  */
    /*  order.  The recursive triangulatepolygon() procedure makes a decision,   */
    /*  uses up to two recursive calls to triangulate the "subproblems"          */
    /*  (polygons with fewer edges), and then performs an edge flip.             */
    /*                                                                           */
    /*  The "decision" it makes is which vertex of the polygon should be         */
    /*  connected to the base.  This decision is made by testing every possible  */
    /*  vertex.  Once the best vertex is found, the two edges that connect this  */
    /*  vertex to the base become the bases for two smaller polygons.  These     */
    /*  are triangulated recursively.  Unfortunately, this approach can take     */
    /*  O(n^2) time not only in the worst case, but in many common cases.  It's  */
    /*  rarely a big deal for vertex deletion, where n is rarely larger than     */
    /*  ten, but it could be a big deal for segment insertion, especially if     */
    /*  there's a lot of long segments that each cut many triangles.  I ought to */
    /*  code a faster algorithm some day.                                        */
    /*                                                                           */
    /*  The `edgecount' parameter is the number of sides of the polygon,         */
    /*  including its base.  `triflaws' is a flag that determines whether the    */
    /*  new triangles should be tested for quality, and enqueued if they are     */
    /*  bad.                                                                     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void triangulatepolygon(struct mesh *m, struct behavior *b,
                            struct otri *firstedge, struct otri *lastedge,
                            int edgecount, int doflip, int triflaws)
    #else /* not ANSI_DECLARATORS */
    void triangulatepolygon(m, b, firstedge, lastedge, edgecount, doflip, triflaws)
    struct mesh *m;
    struct behavior *b;
    struct otri *firstedge;
    struct otri *lastedge;
    int edgecount;
    int doflip;
    int triflaws;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri testtri;
      struct otri besttri;
      struct otri tempedge;
      vertex leftbasevertex, rightbasevertex;
      vertex testvertex;
      vertex bestvertex;
      int bestnumber;
      int i;
      triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
    
      /* Identify the base vertices. */
      apex(*lastedge, leftbasevertex);
      dest(*firstedge, rightbasevertex);
      if (b->verbose > 2) {
        printf("  Triangulating interior polygon at edge\n");
        printf("    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasevertex[0],
               leftbasevertex[1], rightbasevertex[0], rightbasevertex[1]);
      }
      /* Find the best vertex to connect the base to. */
      onext(*firstedge, besttri);
      dest(besttri, bestvertex);
      otricopy(besttri, testtri);
      bestnumber = 1;
      for (i = 2; i <= edgecount - 2; i++) {
        onextself(testtri);
        dest(testtri, testvertex);
        /* Is this a better vertex? */
        if (incircle(m, b, leftbasevertex, rightbasevertex, bestvertex,
                     testvertex) > 0.0) {
          otricopy(testtri, besttri);
          bestvertex = testvertex;
          bestnumber = i;
        }
      }
      if (b->verbose > 2) {
        printf("    Connecting edge to (%.12g, %.12g)\n", bestvertex[0],
               bestvertex[1]);
      }
      if (bestnumber > 1) {
        /* Recursively triangulate the smaller polygon on the right. */
        oprev(besttri, tempedge);
        triangulatepolygon(m, b, firstedge, &tempedge, bestnumber + 1, 1,
                           triflaws);
      }
      if (bestnumber < edgecount - 2) {
        /* Recursively triangulate the smaller polygon on the left. */
        sym(besttri, tempedge);
        triangulatepolygon(m, b, &besttri, lastedge, edgecount - bestnumber, 1,
                           triflaws);
        /* Find `besttri' again; it may have been lost to edge flips. */
        sym(tempedge, besttri);
      }
      if (doflip) {
        /* Do one final edge flip. */
        flip(m, b, &besttri);
    #ifndef CDT_ONLY
        if (triflaws) {
          /* Check the quality of the newly committed triangle. */
          sym(besttri, testtri);
          testtriangle(m, b, &testtri);
        }
    #endif /* not CDT_ONLY */
      }
      /* Return the base triangle. */
      otricopy(besttri, *lastedge);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  deletevertex()   Delete a vertex from a Delaunay triangulation, ensuring */
    /*                   that the triangulation remains Delaunay.                */
    /*                                                                           */
    /*  The origin of `deltri' is deleted.  The union of the triangles adjacent  */
    /*  to this vertex is a polygon, for which the Delaunay triangulation is     */
    /*  found.  Two triangles are removed from the mesh.                         */
    /*                                                                           */
    /*  Only interior vertices that do not lie on segments or boundaries may be  */
    /*  deleted.                                                                 */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void deletevertex(struct mesh *m, struct behavior *b, struct otri *deltri)
    #else /* not ANSI_DECLARATORS */
    void deletevertex(m, b, deltri)
    struct mesh *m;
    struct behavior *b;
    struct otri *deltri;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri countingtri;
      struct otri firstedge, lastedge;
      struct otri deltriright;
      struct otri lefttri, righttri;
      struct otri leftcasing, rightcasing;
      struct osub leftsubseg, rightsubseg;
      vertex delvertex;
      vertex neworg;
      int edgecount;
      triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      org(*deltri, delvertex);
      if (b->verbose > 1) {
        printf("  Deleting (%.12g, %.12g).\n", delvertex[0], delvertex[1]);
      }
      vertexdealloc(m, delvertex);
    
      /* Count the degree of the vertex being deleted. */
      onext(*deltri, countingtri);
      edgecount = 1;
      while (!otriequal(*deltri, countingtri)) {
    #ifdef SELF_CHECK
        if (countingtri.tri == m->dummytri) {
          printf("Internal error in deletevertex():\n");
          printf("  Attempt to delete boundary vertex.\n");
          internalerror();
        }
    #endif /* SELF_CHECK */
        edgecount++;
        onextself(countingtri);
      }
    
    #ifdef SELF_CHECK
      if (edgecount < 3) {
        printf("Internal error in deletevertex():\n  Vertex has degree %d.\n",
               edgecount);
        internalerror();
      }
    #endif /* SELF_CHECK */
      if (edgecount > 3) {
        /* Triangulate the polygon defined by the union of all triangles */
        /*   adjacent to the vertex being deleted.  Check the quality of */
        /*   the resulting triangles.                                    */
        onext(*deltri, firstedge);
        oprev(*deltri, lastedge);
        triangulatepolygon(m, b, &firstedge, &lastedge, edgecount, 0,
                           !b->nobisect);
      }
      /* Splice out two triangles. */
      lprev(*deltri, deltriright);
      dnext(*deltri, lefttri);
      sym(lefttri, leftcasing);
      oprev(deltriright, righttri);
      sym(righttri, rightcasing);
      bond(*deltri, leftcasing);
      bond(deltriright, rightcasing);
      tspivot(lefttri, leftsubseg);
      if (leftsubseg.ss != m->dummysub) {
        tsbond(*deltri, leftsubseg);
      }
      tspivot(righttri, rightsubseg);
      if (rightsubseg.ss != m->dummysub) {
        tsbond(deltriright, rightsubseg);
      }
    
      /* Set the new origin of `deltri' and check its quality. */
      org(lefttri, neworg);
      setorg(*deltri, neworg);
      if (!b->nobisect) {
        testtriangle(m, b, deltri);
      }
    
      /* Delete the two spliced-out triangles. */
      triangledealloc(m, lefttri.tri);
      triangledealloc(m, righttri.tri);
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  undovertex()   Undo the most recent vertex insertion.                    */
    /*                                                                           */
    /*  Walks through the list of transformations (flips and a vertex insertion) */
    /*  in the reverse of the order in which they were done, and undoes them.    */
    /*  The inserted vertex is removed from the triangulation and deallocated.   */
    /*  Two triangles (possibly just one) are also deallocated.                  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void undovertex(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void undovertex(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri fliptri;
      struct otri botleft, botright, topright;
      struct otri botlcasing, botrcasing, toprcasing;
      struct otri gluetri;
      struct osub botlsubseg, botrsubseg, toprsubseg;
      vertex botvertex, rightvertex;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      /* Walk through the list of transformations (flips and a vertex insertion) */
      /*   in the reverse of the order in which they were done, and undo them.   */
      while (m->lastflip != (struct flipstacker *) NULL) {
        /* Find a triangle involved in the last unreversed transformation. */
        decode(m->lastflip->flippedtri, fliptri);
    
        /* We are reversing one of three transformations:  a trisection of one */
        /*   triangle into three (by inserting a vertex in the triangle), a    */
        /*   bisection of two triangles into four (by inserting a vertex in an */
        /*   edge), or an edge flip.                                           */
        if (m->lastflip->prevflip == (struct flipstacker *) NULL) {
          /* Restore a triangle that was split into three triangles, */
          /*   so it is again one triangle.                          */
          dprev(fliptri, botleft);
          lnextself(botleft);
          onext(fliptri, botright);
          lprevself(botright);
          sym(botleft, botlcasing);
          sym(botright, botrcasing);
          dest(botleft, botvertex);
    
          setapex(fliptri, botvertex);
          lnextself(fliptri);
          bond(fliptri, botlcasing);
          tspivot(botleft, botlsubseg);
          tsbond(fliptri, botlsubseg);
          lnextself(fliptri);
          bond(fliptri, botrcasing);
          tspivot(botright, botrsubseg);
          tsbond(fliptri, botrsubseg);
    
          /* Delete the two spliced-out triangles. */
          triangledealloc(m, botleft.tri);
          triangledealloc(m, botright.tri);
        } else if (m->lastflip->prevflip == (struct flipstacker *) &insertvertex) {
          /* Restore two triangles that were split into four triangles, */
          /*   so they are again two triangles.                         */
          lprev(fliptri, gluetri);
          sym(gluetri, botright);
          lnextself(botright);
          sym(botright, botrcasing);
          dest(botright, rightvertex);
    
          setorg(fliptri, rightvertex);
          bond(gluetri, botrcasing);
          tspivot(botright, botrsubseg);
          tsbond(gluetri, botrsubseg);
    
          /* Delete the spliced-out triangle. */
          triangledealloc(m, botright.tri);
    
          sym(fliptri, gluetri);
          if (gluetri.tri != m->dummytri) {
            lnextself(gluetri);
            dnext(gluetri, topright);
            sym(topright, toprcasing);
    
            setorg(gluetri, rightvertex);
            bond(gluetri, toprcasing);
            tspivot(topright, toprsubseg);
            tsbond(gluetri, toprsubseg);
    
            /* Delete the spliced-out triangle. */
            triangledealloc(m, topright.tri);
          }
    
          /* This is the end of the list, sneakily encoded. */
          m->lastflip->prevflip = (struct flipstacker *) NULL;
        } else {
          /* Undo an edge flip. */
          unflip(m, b, &fliptri);
        }
    
        /* Go on and process the next transformation. */
        m->lastflip = m->lastflip->prevflip;
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Mesh transformation routines end here                     *********/
    
    /********* Divide-and-conquer Delaunay triangulation begins here     *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  The divide-and-conquer bounding box                                      */
    /*                                                                           */
    /*  I originally implemented the divide-and-conquer and incremental Delaunay */
    /*  triangulations using the edge-based data structure presented by Guibas   */
    /*  and Stolfi.  Switching to a triangle-based data structure doubled the    */
    /*  speed.  However, I had to think of a few extra tricks to maintain the    */
    /*  elegance of the original algorithms.                                     */
    /*                                                                           */
    /*  The "bounding box" used by my variant of the divide-and-conquer          */
    /*  algorithm uses one triangle for each edge of the convex hull of the      */
    /*  triangulation.  These bounding triangles all share a common apical       */
    /*  vertex, which is represented by NULL and which represents nothing.       */
    /*  The bounding triangles are linked in a circular fan about this NULL      */
    /*  vertex, and the edges on the convex hull of the triangulation appear     */
    /*  opposite the NULL vertex.  You might find it easiest to imagine that     */
    /*  the NULL vertex is a point in 3D space behind the center of the          */
    /*  triangulation, and that the bounding triangles form a sort of cone.      */
    /*                                                                           */
    /*  This bounding box makes it easy to represent degenerate cases.  For      */
    /*  instance, the triangulation of two vertices is a single edge.  This edge */
    /*  is represented by two bounding box triangles, one on each "side" of the  */
    /*  edge.  These triangles are also linked together in a fan about the NULL  */
    /*  vertex.                                                                  */
    /*                                                                           */
    /*  The bounding box also makes it easy to traverse the convex hull, as the  */
    /*  divide-and-conquer algorithm needs to do.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  vertexsort()   Sort an array of vertices by x-coordinate, using the      */
    /*                 y-coordinate as a secondary key.                          */
    /*                                                                           */
    /*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  */
    /*  the usual quicksort mistakes.                                            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void vertexsort(vertex *sortarray, int arraysize)
    #else /* not ANSI_DECLARATORS */
    void vertexsort(sortarray, arraysize)
    vertex *sortarray;
    int arraysize;
    #endif /* not ANSI_DECLARATORS */
    
    {
      int left, right;
      int pivot;
      REAL pivotx, pivoty;
      vertex temp;
    
      if (arraysize == 2) {
        /* Recursive base case. */
        if ((sortarray[0][0] > sortarray[1][0]) ||
            ((sortarray[0][0] == sortarray[1][0]) &&
             (sortarray[0][1] > sortarray[1][1]))) {
          temp = sortarray[1];
          sortarray[1] = sortarray[0];
          sortarray[0] = temp;
        }
        return;
      }
      /* Choose a random pivot to split the array. */
      pivot = (int) randomnation((unsigned int) arraysize);
      pivotx = sortarray[pivot][0];
      pivoty = sortarray[pivot][1];
      /* Split the array. */
      left = -1;
      right = arraysize;
      while (left < right) {
        /* Search for a vertex whose x-coordinate is too large for the left. */
        do {
          left++;
        } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
                                     ((sortarray[left][0] == pivotx) &&
                                      (sortarray[left][1] < pivoty))));
        /* Search for a vertex whose x-coordinate is too small for the right. */
        do {
          right--;
        } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
                                     ((sortarray[right][0] == pivotx) &&
                                      (sortarray[right][1] > pivoty))));
        if (left < right) {
          /* Swap the left and right vertices. */
          temp = sortarray[left];
          sortarray[left] = sortarray[right];
          sortarray[right] = temp;
        }
      }
      if (left > 1) {
        /* Recursively sort the left subset. */
        vertexsort(sortarray, left);
      }
      if (right < arraysize - 2) {
        /* Recursively sort the right subset. */
        vertexsort(&sortarray[right + 1], arraysize - right - 1);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  vertexmedian()   An order statistic algorithm, almost.  Shuffles an      */
    /*                   array of vertices so that the first `median' vertices   */
    /*                   occur lexicographically before the remaining vertices.  */
    /*                                                                           */
    /*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  */
    /*  if axis == 1.  Very similar to the vertexsort() procedure, but runs in   */
    /*  randomized linear time.                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void vertexmedian(vertex *sortarray, int arraysize, int median, int axis)
    #else /* not ANSI_DECLARATORS */
    void vertexmedian(sortarray, arraysize, median, axis)
    vertex *sortarray;
    int arraysize;
    int median;
    int axis;
    #endif /* not ANSI_DECLARATORS */
    
    {
      int left, right;
      int pivot;
      REAL pivot1, pivot2;
      vertex temp;
    
      if (arraysize == 2) {
        /* Recursive base case. */
        if ((sortarray[0][axis] > sortarray[1][axis]) ||
            ((sortarray[0][axis] == sortarray[1][axis]) &&
             (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
          temp = sortarray[1];
          sortarray[1] = sortarray[0];
          sortarray[0] = temp;
        }
        return;
      }
      /* Choose a random pivot to split the array. */
      pivot = (int) randomnation((unsigned int) arraysize);
      pivot1 = sortarray[pivot][axis];
      pivot2 = sortarray[pivot][1 - axis];
      /* Split the array. */
      left = -1;
      right = arraysize;
      while (left < right) {
        /* Search for a vertex whose x-coordinate is too large for the left. */
        do {
          left++;
        } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
                                     ((sortarray[left][axis] == pivot1) &&
                                      (sortarray[left][1 - axis] < pivot2))));
        /* Search for a vertex whose x-coordinate is too small for the right. */
        do {
          right--;
        } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
                                     ((sortarray[right][axis] == pivot1) &&
                                      (sortarray[right][1 - axis] > pivot2))));
        if (left < right) {
          /* Swap the left and right vertices. */
          temp = sortarray[left];
          sortarray[left] = sortarray[right];
          sortarray[right] = temp;
        }
      }
      /* Unlike in vertexsort(), at most one of the following */
      /*   conditionals is true.                             */
      if (left > median) {
        /* Recursively shuffle the left subset. */
        vertexmedian(sortarray, left, median, axis);
      }
      if (right < median - 1) {
        /* Recursively shuffle the right subset. */
        vertexmedian(&sortarray[right + 1], arraysize - right - 1,
                     median - right - 1, axis);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  alternateaxes()   Sorts the vertices as appropriate for the divide-and-  */
    /*                    conquer algorithm with alternating cuts.               */
    /*                                                                           */
    /*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   */
    /*  For the base case, subsets containing only two or three vertices are     */
    /*  always sorted by x-coordinate.                                           */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void alternateaxes(vertex *sortarray, int arraysize, int axis)
    #else /* not ANSI_DECLARATORS */
    void alternateaxes(sortarray, arraysize, axis)
    vertex *sortarray;
    int arraysize;
    int axis;
    #endif /* not ANSI_DECLARATORS */
    
    {
      int divider;
    
      divider = arraysize >> 1;
      if (arraysize <= 3) {
        /* Recursive base case:  subsets of two or three vertices will be    */
        /*   handled specially, and should always be sorted by x-coordinate. */
        axis = 0;
      }
      /* Partition with a horizontal or vertical cut. */
      vertexmedian(sortarray, arraysize, divider, axis);
      /* Recursively partition the subsets with a cross cut. */
      if (arraysize - divider >= 2) {
        if (divider >= 2) {
          alternateaxes(sortarray, divider, 1 - axis);
        }
        alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  mergehulls()   Merge two adjacent Delaunay triangulations into a         */
    /*                 single Delaunay triangulation.                            */
    /*                                                                           */
    /*  This is similar to the algorithm given by Guibas and Stolfi, but uses    */
    /*  a triangle-based, rather than edge-based, data structure.                */
    /*                                                                           */
    /*  The algorithm walks up the gap between the two triangulations, knitting  */
    /*  them together.  As they are merged, some of their bounding triangles     */
    /*  are converted into real triangles of the triangulation.  The procedure   */
    /*  pulls each hull's bounding triangles apart, then knits them together     */
    /*  like the teeth of two gears.  The Delaunay property determines, at each  */
    /*  step, whether the next "tooth" is a bounding triangle of the left hull   */
    /*  or the right.  When a bounding triangle becomes real, its apex is        */
    /*  changed from NULL to a real vertex.                                      */
    /*                                                                           */
    /*  Only two new triangles need to be allocated.  These become new bounding  */
    /*  triangles at the top and bottom of the seam.  They are used to connect   */
    /*  the remaining bounding triangles (those that have not been converted     */
    /*  into real triangles) into a single fan.                                  */
    /*                                                                           */
    /*  On entry, `farleft' and `innerleft' are bounding triangles of the left   */
    /*  triangulation.  The origin of `farleft' is the leftmost vertex, and      */
    /*  the destination of `innerleft' is the rightmost vertex of the            */
    /*  triangulation.  Similarly, `innerright' and `farright' are bounding      */
    /*  triangles of the right triangulation.  The origin of `innerright' and    */
    /*  destination of `farright' are the leftmost and rightmost vertices.       */
    /*                                                                           */
    /*  On completion, the origin of `farleft' is the leftmost vertex of the     */
    /*  merged triangulation, and the destination of `farright' is the rightmost */
    /*  vertex.                                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft,
                    struct otri *innerleft, struct otri *innerright,
                    struct otri *farright, int axis)
    #else /* not ANSI_DECLARATORS */
    void mergehulls(m, b, farleft, innerleft, innerright, farright, axis)
    struct mesh *m;
    struct behavior *b;
    struct otri *farleft;
    struct otri *innerleft;
    struct otri *innerright;
    struct otri *farright;
    int axis;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri leftcand, rightcand;
      struct otri baseedge;
      struct otri nextedge;
      struct otri sidecasing, topcasing, outercasing;
      struct otri checkedge;
      vertex innerleftdest;
      vertex innerrightorg;
      vertex innerleftapex, innerrightapex;
      vertex farleftpt, farrightpt;
      vertex farleftapex, farrightapex;
      vertex lowerleft, lowerright;
      vertex upperleft, upperright;
      vertex nextapex;
      vertex checkvertex;
      int changemade;
      int badedge;
      int leftfinished, rightfinished;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      dest(*innerleft, innerleftdest);
      apex(*innerleft, innerleftapex);
      org(*innerright, innerrightorg);
      apex(*innerright, innerrightapex);
      /* Special treatment for horizontal cuts. */
      if (b->dwyer && (axis == 1)) {
        org(*farleft, farleftpt);
        apex(*farleft, farleftapex);
        dest(*farright, farrightpt);
        apex(*farright, farrightapex);
        /* The pointers to the extremal vertices are shifted to point to the */
        /*   topmost and bottommost vertex of each hull, rather than the     */
        /*   leftmost and rightmost vertices.                                */
        while (farleftapex[1] < farleftpt[1]) {
          lnextself(*farleft);
          symself(*farleft);
          farleftpt = farleftapex;
          apex(*farleft, farleftapex);
        }
        sym(*innerleft, checkedge);
        apex(checkedge, checkvertex);
        while (checkvertex[1] > innerleftdest[1]) {
          lnext(checkedge, *innerleft);
          innerleftapex = innerleftdest;
          innerleftdest = checkvertex;
          sym(*innerleft, checkedge);
          apex(checkedge, checkvertex);
        }
        while (innerrightapex[1] < innerrightorg[1]) {
          lnextself(*innerright);
          symself(*innerright);
          innerrightorg = innerrightapex;
          apex(*innerright, innerrightapex);
        }
        sym(*farright, checkedge);
        apex(checkedge, checkvertex);
        while (checkvertex[1] > farrightpt[1]) {
          lnext(checkedge, *farright);
          farrightapex = farrightpt;
          farrightpt = checkvertex;
          sym(*farright, checkedge);
          apex(checkedge, checkvertex);
        }
      }
      /* Find a line tangent to and below both hulls. */
      do {
        changemade = 0;
        /* Make innerleftdest the "bottommost" vertex of the left hull. */
        if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) >
            0.0) {
          lprevself(*innerleft);
          symself(*innerleft);
          innerleftdest = innerleftapex;
          apex(*innerleft, innerleftapex);
          changemade = 1;
        }
        /* Make innerrightorg the "bottommost" vertex of the right hull. */
        if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) >
            0.0) {
          lnextself(*innerright);
          symself(*innerright);
          innerrightorg = innerrightapex;
          apex(*innerright, innerrightapex);
          changemade = 1;
        }
      } while (changemade);
      /* Find the two candidates to be the next "gear tooth." */
      sym(*innerleft, leftcand);
      sym(*innerright, rightcand);
      /* Create the bottom new bounding triangle. */
      maketriangle(m, b, &baseedge);
      /* Connect it to the bounding boxes of the left and right triangulations. */
      bond(baseedge, *innerleft);
      lnextself(baseedge);
      bond(baseedge, *innerright);
      lnextself(baseedge);
      setorg(baseedge, innerrightorg);
      setdest(baseedge, innerleftdest);
      /* Apex is intentionally left NULL. */
      if (b->verbose > 2) {
        printf("  Creating base bounding ");
        printtriangle(m, b, &baseedge);
      }
      /* Fix the extreme triangles if necessary. */
      org(*farleft, farleftpt);
      if (innerleftdest == farleftpt) {
        lnext(baseedge, *farleft);
      }
      dest(*farright, farrightpt);
      if (innerrightorg == farrightpt) {
        lprev(baseedge, *farright);
      }
      /* The vertices of the current knitting edge. */
      lowerleft = innerleftdest;
      lowerright = innerrightorg;
      /* The candidate vertices for knitting. */
      apex(leftcand, upperleft);
      apex(rightcand, upperright);
      /* Walk up the gap between the two triangulations, knitting them together. */
      while (1) {
        /* Have we reached the top?  (This isn't quite the right question,       */
        /*   because even though the left triangulation might seem finished now, */
        /*   moving up on the right triangulation might reveal a new vertex of   */
        /*   the left triangulation.  And vice-versa.)                           */
        leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <=
                       0.0;
        rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright)
                     <= 0.0;
        if (leftfinished && rightfinished) {
          /* Create the top new bounding triangle. */
          maketriangle(m, b, &nextedge);
          setorg(nextedge, lowerleft);
          setdest(nextedge, lowerright);
          /* Apex is intentionally left NULL. */
          /* Connect it to the bounding boxes of the two triangulations. */
          bond(nextedge, baseedge);
          lnextself(nextedge);
          bond(nextedge, rightcand);
          lnextself(nextedge);
          bond(nextedge, leftcand);
          if (b->verbose > 2) {
            printf("  Creating top bounding ");
            printtriangle(m, b, &nextedge);
          }
          /* Special treatment for horizontal cuts. */
          if (b->dwyer && (axis == 1)) {
            org(*farleft, farleftpt);
            apex(*farleft, farleftapex);
            dest(*farright, farrightpt);
            apex(*farright, farrightapex);
            sym(*farleft, checkedge);
            apex(checkedge, checkvertex);
            /* The pointers to the extremal vertices are restored to the  */
            /*   leftmost and rightmost vertices (rather than topmost and */
            /*   bottommost).                                             */
            while (checkvertex[0] < farleftpt[0]) {
              lprev(checkedge, *farleft);
              farleftapex = farleftpt;
              farleftpt = checkvertex;
              sym(*farleft, checkedge);
              apex(checkedge, checkvertex);
            }
            while (farrightapex[0] > farrightpt[0]) {
              lprevself(*farright);
              symself(*farright);
              farrightpt = farrightapex;
              apex(*farright, farrightapex);
            }
          }
          return;
        }
        /* Consider eliminating edges from the left triangulation. */
        if (!leftfinished) {
          /* What vertex would be exposed if an edge were deleted? */
          lprev(leftcand, nextedge);
          symself(nextedge);
          apex(nextedge, nextapex);
          /* If nextapex is NULL, then no vertex would be exposed; the */
          /*   triangulation would have been eaten right through.      */
          if (nextapex != (vertex) NULL) {
            /* Check whether the edge is Delaunay. */
            badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) >
                      0.0;
            while (badedge) {
              /* Eliminate the edge with an edge flip.  As a result, the    */
              /*   left triangulation will have one more boundary triangle. */
              lnextself(nextedge);
              sym(nextedge, topcasing);
              lnextself(nextedge);
              sym(nextedge, sidecasing);
              bond(nextedge, topcasing);
              bond(leftcand, sidecasing);
              lnextself(leftcand);
              sym(leftcand, outercasing);
              lprevself(nextedge);
              bond(nextedge, outercasing);
              /* Correct the vertices to reflect the edge flip. */
              setorg(leftcand, lowerleft);
              setdest(leftcand, NULL);
              setapex(leftcand, nextapex);
              setorg(nextedge, NULL);
              setdest(nextedge, upperleft);
              setapex(nextedge, nextapex);
              /* Consider the newly exposed vertex. */
              upperleft = nextapex;
              /* What vertex would be exposed if another edge were deleted? */
              otricopy(sidecasing, nextedge);
              apex(nextedge, nextapex);
              if (nextapex != (vertex) NULL) {
                /* Check whether the edge is Delaunay. */
                badedge = incircle(m, b, lowerleft, lowerright, upperleft,
                                   nextapex) > 0.0;
              } else {
                /* Avoid eating right through the triangulation. */
                badedge = 0;
              }
            }
          }
        }
        /* Consider eliminating edges from the right triangulation. */
        if (!rightfinished) {
          /* What vertex would be exposed if an edge were deleted? */
          lnext(rightcand, nextedge);
          symself(nextedge);
          apex(nextedge, nextapex);
          /* If nextapex is NULL, then no vertex would be exposed; the */
          /*   triangulation would have been eaten right through.      */
          if (nextapex != (vertex) NULL) {
            /* Check whether the edge is Delaunay. */
            badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) >
                      0.0;
            while (badedge) {
              /* Eliminate the edge with an edge flip.  As a result, the     */
              /*   right triangulation will have one more boundary triangle. */
              lprevself(nextedge);
              sym(nextedge, topcasing);
              lprevself(nextedge);
              sym(nextedge, sidecasing);
              bond(nextedge, topcasing);
              bond(rightcand, sidecasing);
              lprevself(rightcand);
              sym(rightcand, outercasing);
              lnextself(nextedge);
              bond(nextedge, outercasing);
              /* Correct the vertices to reflect the edge flip. */
              setorg(rightcand, NULL);
              setdest(rightcand, lowerright);
              setapex(rightcand, nextapex);
              setorg(nextedge, upperright);
              setdest(nextedge, NULL);
              setapex(nextedge, nextapex);
              /* Consider the newly exposed vertex. */
              upperright = nextapex;
              /* What vertex would be exposed if another edge were deleted? */
              otricopy(sidecasing, nextedge);
              apex(nextedge, nextapex);
              if (nextapex != (vertex) NULL) {
                /* Check whether the edge is Delaunay. */
                badedge = incircle(m, b, lowerleft, lowerright, upperright,
                                   nextapex) > 0.0;
              } else {
                /* Avoid eating right through the triangulation. */
                badedge = 0;
              }
            }
          }
        }
        if (leftfinished || (!rightfinished &&
               (incircle(m, b, upperleft, lowerleft, lowerright, upperright) >
                0.0))) {
          /* Knit the triangulations, adding an edge from `lowerleft' */
          /*   to `upperright'.                                       */
          bond(baseedge, rightcand);
          lprev(rightcand, baseedge);
          setdest(baseedge, lowerleft);
          lowerright = upperright;
          sym(baseedge, rightcand);
          apex(rightcand, upperright);
        } else {
          /* Knit the triangulations, adding an edge from `upperleft' */
          /*   to `lowerright'.                                       */
          bond(baseedge, leftcand);
          lnext(leftcand, baseedge);
          setorg(baseedge, lowerright);
          lowerleft = upperleft;
          sym(baseedge, leftcand);
          apex(leftcand, upperleft);
        }
        if (b->verbose > 2) {
          printf("  Connecting ");
          printtriangle(m, b, &baseedge);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  divconqrecurse()   Recursively form a Delaunay triangulation by the      */
    /*                     divide-and-conquer method.                            */
    /*                                                                           */
    /*  Recursively breaks down the problem into smaller pieces, which are       */
    /*  knitted together by mergehulls().  The base cases (problems of two or    */
    /*  three vertices) are handled specially here.                              */
    /*                                                                           */
    /*  On completion, `farleft' and `farright' are bounding triangles such that */
    /*  the origin of `farleft' is the leftmost vertex (breaking ties by         */
    /*  choosing the highest leftmost vertex), and the destination of            */
    /*  `farright' is the rightmost vertex (breaking ties by choosing the        */
    /*  lowest rightmost vertex).                                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray,
                        int vertices, int axis,
                        struct otri *farleft, struct otri *farright)
    #else /* not ANSI_DECLARATORS */
    void divconqrecurse(m, b, sortarray, vertices, axis, farleft, farright)
    struct mesh *m;
    struct behavior *b;
    vertex *sortarray;
    int vertices;
    int axis;
    struct otri *farleft;
    struct otri *farright;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri midtri, tri1, tri2, tri3;
      struct otri innerleft, innerright;
      REAL area;
      int divider;
    
      if (b->verbose > 2) {
        printf("  Triangulating %d vertices.\n", vertices);
      }
      if (vertices == 2) {
        /* The triangulation of two vertices is an edge.  An edge is */
        /*   represented by two bounding triangles.                  */
        maketriangle(m, b, farleft);
        setorg(*farleft, sortarray[0]);
        setdest(*farleft, sortarray[1]);
        /* The apex is intentionally left NULL. */
        maketriangle(m, b, farright);
        setorg(*farright, sortarray[1]);
        setdest(*farright, sortarray[0]);
        /* The apex is intentionally left NULL. */
        bond(*farleft, *farright);
        lprevself(*farleft);
        lnextself(*farright);
        bond(*farleft, *farright);
        lprevself(*farleft);
        lnextself(*farright);
        bond(*farleft, *farright);
        if (b->verbose > 2) {
          printf("  Creating ");
          printtriangle(m, b, farleft);
          printf("  Creating ");
          printtriangle(m, b, farright);
        }
        /* Ensure that the origin of `farleft' is sortarray[0]. */
        lprev(*farright, *farleft);
        return;
      } else if (vertices == 3) {
        /* The triangulation of three vertices is either a triangle (with */
        /*   three bounding triangles) or two edges (with four bounding   */
        /*   triangles).  In either case, four triangles are created.     */
        maketriangle(m, b, &midtri);
        maketriangle(m, b, &tri1);
        maketriangle(m, b, &tri2);
        maketriangle(m, b, &tri3);
        area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);
        if (area == 0.0) {
          /* Three collinear vertices; the triangulation is two edges. */
          setorg(midtri, sortarray[0]);
          setdest(midtri, sortarray[1]);
          setorg(tri1, sortarray[1]);
          setdest(tri1, sortarray[0]);
          setorg(tri2, sortarray[2]);
          setdest(tri2, sortarray[1]);
          setorg(tri3, sortarray[1]);
          setdest(tri3, sortarray[2]);
          /* All apices are intentionally left NULL. */
          bond(midtri, tri1);
          bond(tri2, tri3);
          lnextself(midtri);
          lprevself(tri1);
          lnextself(tri2);
          lprevself(tri3);
          bond(midtri, tri3);
          bond(tri1, tri2);
          lnextself(midtri);
          lprevself(tri1);
          lnextself(tri2);
          lprevself(tri3);
          bond(midtri, tri1);
          bond(tri2, tri3);
          /* Ensure that the origin of `farleft' is sortarray[0]. */
          otricopy(tri1, *farleft);
          /* Ensure that the destination of `farright' is sortarray[2]. */
          otricopy(tri2, *farright);
        } else {
          /* The three vertices are not collinear; the triangulation is one */
          /*   triangle, namely `midtri'.                                   */
          setorg(midtri, sortarray[0]);
          setdest(tri1, sortarray[0]);
          setorg(tri3, sortarray[0]);
          /* Apices of tri1, tri2, and tri3 are left NULL. */
          if (area > 0.0) {
            /* The vertices are in counterclockwise order. */
            setdest(midtri, sortarray[1]);
            setorg(tri1, sortarray[1]);
            setdest(tri2, sortarray[1]);
            setapex(midtri, sortarray[2]);
            setorg(tri2, sortarray[2]);
            setdest(tri3, sortarray[2]);
          } else {
            /* The vertices are in clockwise order. */
            setdest(midtri, sortarray[2]);
            setorg(tri1, sortarray[2]);
            setdest(tri2, sortarray[2]);
            setapex(midtri, sortarray[1]);
            setorg(tri2, sortarray[1]);
            setdest(tri3, sortarray[1]);
          }
          /* The topology does not depend on how the vertices are ordered. */
          bond(midtri, tri1);
          lnextself(midtri);
          bond(midtri, tri2);
          lnextself(midtri);
          bond(midtri, tri3);
          lprevself(tri1);
          lnextself(tri2);
          bond(tri1, tri2);
          lprevself(tri1);
          lprevself(tri3);
          bond(tri1, tri3);
          lnextself(tri2);
          lprevself(tri3);
          bond(tri2, tri3);
          /* Ensure that the origin of `farleft' is sortarray[0]. */
          otricopy(tri1, *farleft);
          /* Ensure that the destination of `farright' is sortarray[2]. */
          if (area > 0.0) {
            otricopy(tri2, *farright);
          } else {
            lnext(*farleft, *farright);
          }
        }
        if (b->verbose > 2) {
          printf("  Creating ");
          printtriangle(m, b, &midtri);
          printf("  Creating ");
          printtriangle(m, b, &tri1);
          printf("  Creating ");
          printtriangle(m, b, &tri2);
          printf("  Creating ");
          printtriangle(m, b, &tri3);
        }
        return;
      } else {
        /* Split the vertices in half. */
        divider = vertices >> 1;
        /* Recursively triangulate each half. */
        divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);
        divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis,
                       &innerright, farright);
        if (b->verbose > 1) {
          printf("  Joining triangulations with %d and %d vertices.\n", divider,
                 vertices - divider);
        }
        /* Merge the two triangulations into one. */
        mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);
      }
    }
    
    #ifdef ANSI_DECLARATORS
    long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost)
    #else /* not ANSI_DECLARATORS */
    long removeghosts(m, b, startghost)
    struct mesh *m;
    struct behavior *b;
    struct otri *startghost;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri searchedge;
      struct otri dissolveedge;
      struct otri deadtriangle;
      vertex markorg;
      long hullsize;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (b->verbose) {
        printf("  Removing ghost triangles.\n");
      }
      /* Find an edge on the convex hull to start point location from. */
      lprev(*startghost, searchedge);
      symself(searchedge);
      m->dummytri[0] = encode(searchedge);
      /* Remove the bounding box and count the convex hull edges. */
      otricopy(*startghost, dissolveedge);
      hullsize = 0;
      do {
        hullsize++;
        lnext(dissolveedge, deadtriangle);
        lprevself(dissolveedge);
        symself(dissolveedge);
        /* If no PSLG is involved, set the boundary markers of all the vertices */
        /*   on the convex hull.  If a PSLG is used, this step is done later.   */
        if (!b->poly) {
          /* Watch out for the case where all the input vertices are collinear. */
          if (dissolveedge.tri != m->dummytri) {
            org(dissolveedge, markorg);
            if (vertexmark(markorg) == 0) {
              setvertexmark(markorg, 1);
            }
          }
        }
        /* Remove a bounding triangle from a convex hull triangle. */
        dissolve(dissolveedge);
        /* Find the next bounding triangle. */
        sym(deadtriangle, dissolveedge);
        /* Delete the bounding triangle. */
        triangledealloc(m, deadtriangle.tri);
      } while (!otriequal(dissolveedge, *startghost));
      return hullsize;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     */
    /*                      conquer method.                                      */
    /*                                                                           */
    /*  Sorts the vertices, calls a recursive procedure to triangulate them, and */
    /*  removes the bounding box, setting boundary markers as appropriate.       */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    long divconqdelaunay(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    long divconqdelaunay(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      vertex *sortarray;
      struct otri hullleft, hullright;
      int divider;
      int i, j;
    
      if (b->verbose) {
        printf("  Sorting vertices.\n");
      }
    
      /* Allocate an array of pointers to vertices for sorting. */
      sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex));
      traversalinit(&m->vertices);
      for (i = 0; i < m->invertices; i++) {
        sortarray[i] = vertextraverse(m);
      }
      /* Sort the vertices. */
      vertexsort(sortarray, m->invertices);
      /* Discard duplicate vertices, which can really mess up the algorithm. */
      i = 0;
      for (j = 1; j < m->invertices; j++) {
        if ((sortarray[i][0] == sortarray[j][0])
            && (sortarray[i][1] == sortarray[j][1])) {
          if (!b->quiet) {
            printf(
    "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
                   sortarray[j][0], sortarray[j][1]);
          }
          setvertextype(sortarray[j], UNDEADVERTEX);
          m->undeads++;
        } else {
          i++;
          sortarray[i] = sortarray[j];
        }
      }
      i++;
      if (b->dwyer) {
        /* Re-sort the array of vertices to accommodate alternating cuts. */
        divider = i >> 1;
        if (i - divider >= 2) {
          if (divider >= 2) {
            alternateaxes(sortarray, divider, 1);
          }
          alternateaxes(&sortarray[divider], i - divider, 1);
        }
      }
    
      if (b->verbose) {
        printf("  Forming triangulation.\n");
      }
    
      /* Form the Delaunay triangulation. */
      divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);
      trifree((VOID *) sortarray);
    
      return removeghosts(m, b, &hullleft);
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Divide-and-conquer Delaunay triangulation ends here       *********/
    
    /********* Incremental Delaunay triangulation begins here            *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  boundingbox()   Form an "infinite" bounding triangle to insert vertices  */
    /*                  into.                                                    */
    /*                                                                           */
    /*  The vertices at "infinity" are assigned finite coordinates, which are    */
    /*  used by the point location routines, but (mostly) ignored by the         */
    /*  Delaunay edge flip routines.                                             */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    void boundingbox(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void boundingbox(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri inftri;          /* Handle for the triangular bounding box. */
      REAL width;
    
      if (b->verbose) {
        printf("  Creating triangular bounding box.\n");
      }
      /* Find the width (or height, whichever is larger) of the triangulation. */
      width = m->xmax - m->xmin;
      if (m->ymax - m->ymin > width) {
        width = m->ymax - m->ymin;
      }
      if (width == 0.0) {
        width = 1.0;
      }
      /* Create the vertices of the bounding box. */
      m->infvertex1 = (vertex) trimalloc(m->vertices.itembytes);
      m->infvertex2 = (vertex) trimalloc(m->vertices.itembytes);
      m->infvertex3 = (vertex) trimalloc(m->vertices.itembytes);
      m->infvertex1[0] = m->xmin - 50.0 * width;
      m->infvertex1[1] = m->ymin - 40.0 * width;
      m->infvertex2[0] = m->xmax + 50.0 * width;
      m->infvertex2[1] = m->ymin - 40.0 * width;
      m->infvertex3[0] = 0.5 * (m->xmin + m->xmax);
      m->infvertex3[1] = m->ymax + 60.0 * width;
    
      /* Create the bounding box. */
      maketriangle(m, b, &inftri);
      setorg(inftri, m->infvertex1);
      setdest(inftri, m->infvertex2);
      setapex(inftri, m->infvertex3);
      /* Link dummytri to the bounding box so we can always find an */
      /*   edge to begin searching (point location) from.           */
      m->dummytri[0] = (triangle) inftri.tri;
      if (b->verbose > 2) {
        printf("  Creating ");
        printtriangle(m, b, &inftri);
      }
    }
    
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  removebox()   Remove the "infinite" bounding triangle, setting boundary  */
    /*                markers as appropriate.                                    */
    /*                                                                           */
    /*  The triangular bounding box has three boundary triangles (one for each   */
    /*  side of the bounding box), and a bunch of triangles fanning out from     */
    /*  the three bounding box vertices (one triangle for each edge of the       */
    /*  convex hull of the inner mesh).  This routine removes these triangles.   */
    /*                                                                           */
    /*  Returns the number of edges on the convex hull of the triangulation.     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    long removebox(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    long removebox(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri deadtriangle;
      struct otri searchedge;
      struct otri checkedge;
      struct otri nextedge, finaledge, dissolveedge;
      vertex markorg;
      long hullsize;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (b->verbose) {
        printf("  Removing triangular bounding box.\n");
      }
      /* Find a boundary triangle. */
      nextedge.tri = m->dummytri;
      nextedge.orient = 0;
      symself(nextedge);
      /* Mark a place to stop. */
      lprev(nextedge, finaledge);
      lnextself(nextedge);
      symself(nextedge);
      /* Find a triangle (on the boundary of the vertex set) that isn't */
      /*   a bounding box triangle.                                     */
      lprev(nextedge, searchedge);
      symself(searchedge);
      /* Check whether nextedge is another boundary triangle */
      /*   adjacent to the first one.                        */
      lnext(nextedge, checkedge);
      symself(checkedge);
      if (checkedge.tri == m->dummytri) {
        /* Go on to the next triangle.  There are only three boundary   */
        /*   triangles, and this next triangle cannot be the third one, */
        /*   so it's safe to stop here.                                 */
        lprevself(searchedge);
        symself(searchedge);
      }
      /* Find a new boundary edge to search from, as the current search */
      /*   edge lies on a bounding box triangle and will be deleted.    */
      m->dummytri[0] = encode(searchedge);
      hullsize = -2l;
      while (!otriequal(nextedge, finaledge)) {
        hullsize++;
        lprev(nextedge, dissolveedge);
        symself(dissolveedge);
        /* If not using a PSLG, the vertices should be marked now. */
        /*   (If using a PSLG, markhull() will do the job.)        */
        if (!b->poly) {
          /* Be careful!  One must check for the case where all the input     */
          /*   vertices are collinear, and thus all the triangles are part of */
          /*   the bounding box.  Otherwise, the setvertexmark() call below   */
          /*   will cause a bad pointer reference.                            */
          if (dissolveedge.tri != m->dummytri) {
            org(dissolveedge, markorg);
            if (vertexmark(markorg) == 0) {
              setvertexmark(markorg, 1);
            }
          }
        }
        /* Disconnect the bounding box triangle from the mesh triangle. */
        dissolve(dissolveedge);
        lnext(nextedge, deadtriangle);
        sym(deadtriangle, nextedge);
        /* Get rid of the bounding box triangle. */
        triangledealloc(m, deadtriangle.tri);
        /* Do we need to turn the corner? */
        if (nextedge.tri == m->dummytri) {
          /* Turn the corner. */
          otricopy(dissolveedge, nextedge);
        }
      }
      triangledealloc(m, finaledge.tri);
    
      trifree((VOID *) m->infvertex1);  /* Deallocate the bounding box vertices. */
      trifree((VOID *) m->infvertex2);
      trifree((VOID *) m->infvertex3);
    
      return hullsize;
    }
    
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  incrementaldelaunay()   Form a Delaunay triangulation by incrementally   */
    /*                          inserting vertices.                              */
    /*                                                                           */
    /*  Returns the number of edges on the convex hull of the triangulation.     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    long incrementaldelaunay(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    long incrementaldelaunay(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri starttri;
      vertex vertexloop;
    
      /* Create a triangular bounding box. */
      boundingbox(m, b);
      if (b->verbose) {
        printf("  Incrementally inserting vertices.\n");
      }
      traversalinit(&m->vertices);
      vertexloop = vertextraverse(m);
      while (vertexloop != (vertex) NULL) {
        starttri.tri = m->dummytri;
        if (insertvertex(m, b, vertexloop, &starttri, (struct osub *) NULL, 0, 0)
            == DUPLICATEVERTEX) {
          if (!b->quiet) {
            printf(
    "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
                   vertexloop[0], vertexloop[1]);
          }
          setvertextype(vertexloop, UNDEADVERTEX);
          m->undeads++;
        }
        vertexloop = vertextraverse(m);
      }
      /* Remove the bounding box. */
      return removebox(m, b);
    }
    
    #endif /* not REDUCED */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Incremental Delaunay triangulation ends here              *********/
    
    /********* Sweepline Delaunay triangulation begins here              *********/
    /**                                                                         **/
    /**                                                                         **/
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    void eventheapinsert(struct event **heap, int heapsize, struct event *newevent)
    #else /* not ANSI_DECLARATORS */
    void eventheapinsert(heap, heapsize, newevent)
    struct event **heap;
    int heapsize;
    struct event *newevent;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL eventx, eventy;
      int eventnum;
      int parent;
      int notdone;
    
      eventx = newevent->xkey;
      eventy = newevent->ykey;
      eventnum = heapsize;
      notdone = eventnum > 0;
      while (notdone) {
        parent = (eventnum - 1) >> 1;
        if ((heap[parent]->ykey < eventy) ||
            ((heap[parent]->ykey == eventy)
             && (heap[parent]->xkey <= eventx))) {
          notdone = 0;
        } else {
          heap[eventnum] = heap[parent];
          heap[eventnum]->heapposition = eventnum;
    
          eventnum = parent;
          notdone = eventnum > 0;
        }
      }
      heap[eventnum] = newevent;
      newevent->heapposition = eventnum;
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    void eventheapify(struct event **heap, int heapsize, int eventnum)
    #else /* not ANSI_DECLARATORS */
    void eventheapify(heap, heapsize, eventnum)
    struct event **heap;
    int heapsize;
    int eventnum;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct event *thisevent;
      REAL eventx, eventy;
      int leftchild, rightchild;
      int smallest;
      int notdone;
    
      thisevent = heap[eventnum];
      eventx = thisevent->xkey;
      eventy = thisevent->ykey;
      leftchild = 2 * eventnum + 1;
      notdone = leftchild < heapsize;
      while (notdone) {
        if ((heap[leftchild]->ykey < eventy) ||
            ((heap[leftchild]->ykey == eventy)
             && (heap[leftchild]->xkey < eventx))) {
          smallest = leftchild;
        } else {
          smallest = eventnum;
        }
        rightchild = leftchild + 1;
        if (rightchild < heapsize) {
          if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||
              ((heap[rightchild]->ykey == heap[smallest]->ykey)
               && (heap[rightchild]->xkey < heap[smallest]->xkey))) {
            smallest = rightchild;
          }
        }
        if (smallest == eventnum) {
          notdone = 0;
        } else {
          heap[eventnum] = heap[smallest];
          heap[eventnum]->heapposition = eventnum;
          heap[smallest] = thisevent;
          thisevent->heapposition = smallest;
    
          eventnum = smallest;
          leftchild = 2 * eventnum + 1;
          notdone = leftchild < heapsize;
        }
      }
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    void eventheapdelete(struct event **heap, int heapsize, int eventnum)
    #else /* not ANSI_DECLARATORS */
    void eventheapdelete(heap, heapsize, eventnum)
    struct event **heap;
    int heapsize;
    int eventnum;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct event *moveevent;
      REAL eventx, eventy;
      int parent;
      int notdone;
    
      moveevent = heap[heapsize - 1];
      if (eventnum > 0) {
        eventx = moveevent->xkey;
        eventy = moveevent->ykey;
        do {
          parent = (eventnum - 1) >> 1;
          if ((heap[parent]->ykey < eventy) ||
              ((heap[parent]->ykey == eventy)
               && (heap[parent]->xkey <= eventx))) {
            notdone = 0;
          } else {
            heap[eventnum] = heap[parent];
            heap[eventnum]->heapposition = eventnum;
    
            eventnum = parent;
            notdone = eventnum > 0;
          }
        } while (notdone);
      }
      heap[eventnum] = moveevent;
      moveevent->heapposition = eventnum;
      eventheapify(heap, heapsize - 1, eventnum);
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    void createeventheap(struct mesh *m, struct event ***eventheap,
                         struct event **events, struct event **freeevents)
    #else /* not ANSI_DECLARATORS */
    void createeventheap(m, eventheap, events, freeevents)
    struct mesh *m;
    struct event ***eventheap;
    struct event **events;
    struct event **freeevents;
    #endif /* not ANSI_DECLARATORS */
    
    {
      vertex thisvertex;
      int maxevents;
      int i;
    
      maxevents = (3 * m->invertices) / 2;
      *eventheap = (struct event **) trimalloc(maxevents *
                                               (int) sizeof(struct event *));
      *events = (struct event *) trimalloc(maxevents * (int) sizeof(struct event));
      traversalinit(&m->vertices);
      for (i = 0; i < m->invertices; i++) {
        thisvertex = vertextraverse(m);
        (*events)[i].eventptr = (VOID *) thisvertex;
        (*events)[i].xkey = thisvertex[0];
        (*events)[i].ykey = thisvertex[1];
        eventheapinsert(*eventheap, i, *events + i);
      }
      *freeevents = (struct event *) NULL;
      for (i = maxevents - 1; i >= m->invertices; i--) {
        (*events)[i].eventptr = (VOID *) *freeevents;
        *freeevents = *events + i;
      }
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    int rightofhyperbola(struct mesh *m, struct otri *fronttri, vertex newsite)
    #else /* not ANSI_DECLARATORS */
    int rightofhyperbola(m, fronttri, newsite)
    struct mesh *m;
    struct otri *fronttri;
    vertex newsite;
    #endif /* not ANSI_DECLARATORS */
    
    {
      vertex leftvertex, rightvertex;
      REAL dxa, dya, dxb, dyb;
    
      m->hyperbolacount++;
    
      dest(*fronttri, leftvertex);
      apex(*fronttri, rightvertex);
      if ((leftvertex[1] < rightvertex[1]) ||
          ((leftvertex[1] == rightvertex[1]) &&
           (leftvertex[0] < rightvertex[0]))) {
        if (newsite[0] >= rightvertex[0]) {
          return 1;
        }
      } else {
        if (newsite[0] <= leftvertex[0]) {
          return 0;
        }
      }
      dxa = leftvertex[0] - newsite[0];
      dya = leftvertex[1] - newsite[1];
      dxb = rightvertex[0] - newsite[0];
      dyb = rightvertex[1] - newsite[1];
      return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    REAL circletop(struct mesh *m, vertex pa, vertex pb, vertex pc, REAL ccwabc)
    #else /* not ANSI_DECLARATORS */
    REAL circletop(m, pa, pb, pc, ccwabc)
    struct mesh *m;
    vertex pa;
    vertex pb;
    vertex pc;
    REAL ccwabc;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL xac, yac, xbc, ybc, xab, yab;
      REAL aclen2, bclen2, ablen2;
    
      m->circletopcount++;
    
      xac = pa[0] - pc[0];
      yac = pa[1] - pc[1];
      xbc = pb[0] - pc[0];
      ybc = pb[1] - pc[1];
      xab = pa[0] - pb[0];
      yab = pa[1] - pb[1];
      aclen2 = xac * xac + yac * yac;
      bclen2 = xbc * xbc + ybc * ybc;
      ablen2 = xab * xab + yab * yab;
      return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))
                   / (2.0 * ccwabc);
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    void check4deadevent(struct otri *checktri, struct event **freeevents,
                         struct event **eventheap, int *heapsize)
    #else /* not ANSI_DECLARATORS */
    void check4deadevent(checktri, freeevents, eventheap, heapsize)
    struct otri *checktri;
    struct event **freeevents;
    struct event **eventheap;
    int *heapsize;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct event *deadevent;
      vertex eventvertex;
      int eventnum;
    
      org(*checktri, eventvertex);
      if (eventvertex != (vertex) NULL) {
        deadevent = (struct event *) eventvertex;
        eventnum = deadevent->heapposition;
        deadevent->eventptr = (VOID *) *freeevents;
        *freeevents = deadevent;
        eventheapdelete(eventheap, *heapsize, eventnum);
        (*heapsize)--;
        setorg(*checktri, NULL);
      }
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    struct splaynode *splay(struct mesh *m, struct splaynode *splaytree,
                            vertex searchpoint, struct otri *searchtri)
    #else /* not ANSI_DECLARATORS */
    struct splaynode *splay(m, splaytree, searchpoint, searchtri)
    struct mesh *m;
    struct splaynode *splaytree;
    vertex searchpoint;
    struct otri *searchtri;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct splaynode *child, *grandchild;
      struct splaynode *lefttree, *righttree;
      struct splaynode *leftright;
      vertex checkvertex;
      int rightofroot, rightofchild;
    
      if (splaytree == (struct splaynode *) NULL) {
        return (struct splaynode *) NULL;
      }
      dest(splaytree->keyedge, checkvertex);
      if (checkvertex == splaytree->keydest) {
        rightofroot = rightofhyperbola(m, &splaytree->keyedge, searchpoint);
        if (rightofroot) {
          otricopy(splaytree->keyedge, *searchtri);
          child = splaytree->rchild;
        } else {
          child = splaytree->lchild;
        }
        if (child == (struct splaynode *) NULL) {
          return splaytree;
        }
        dest(child->keyedge, checkvertex);
        if (checkvertex != child->keydest) {
          child = splay(m, child, searchpoint, searchtri);
          if (child == (struct splaynode *) NULL) {
            if (rightofroot) {
              splaytree->rchild = (struct splaynode *) NULL;
            } else {
              splaytree->lchild = (struct splaynode *) NULL;
            }
            return splaytree;
          }
        }
        rightofchild = rightofhyperbola(m, &child->keyedge, searchpoint);
        if (rightofchild) {
          otricopy(child->keyedge, *searchtri);
          grandchild = splay(m, child->rchild, searchpoint, searchtri);
          child->rchild = grandchild;
        } else {
          grandchild = splay(m, child->lchild, searchpoint, searchtri);
          child->lchild = grandchild;
        }
        if (grandchild == (struct splaynode *) NULL) {
          if (rightofroot) {
            splaytree->rchild = child->lchild;
            child->lchild = splaytree;
          } else {
            splaytree->lchild = child->rchild;
            child->rchild = splaytree;
          }
          return child;
        }
        if (rightofchild) {
          if (rightofroot) {
            splaytree->rchild = child->lchild;
            child->lchild = splaytree;
          } else {
            splaytree->lchild = grandchild->rchild;
            grandchild->rchild = splaytree;
          }
          child->rchild = grandchild->lchild;
          grandchild->lchild = child;
        } else {
          if (rightofroot) {
            splaytree->rchild = grandchild->lchild;
            grandchild->lchild = splaytree;
          } else {
            splaytree->lchild = child->rchild;
            child->rchild = splaytree;
          }
          child->lchild = grandchild->rchild;
          grandchild->rchild = child;
        }
        return grandchild;
      } else {
        lefttree = splay(m, splaytree->lchild, searchpoint, searchtri);
        righttree = splay(m, splaytree->rchild, searchpoint, searchtri);
    
        pooldealloc(&m->splaynodes, (VOID *) splaytree);
        if (lefttree == (struct splaynode *) NULL) {
          return righttree;
        } else if (righttree == (struct splaynode *) NULL) {
          return lefttree;
        } else if (lefttree->rchild == (struct splaynode *) NULL) {
          lefttree->rchild = righttree->lchild;
          righttree->lchild = lefttree;
          return righttree;
        } else if (righttree->lchild == (struct splaynode *) NULL) {
          righttree->lchild = lefttree->rchild;
          lefttree->rchild = righttree;
          return lefttree;
        } else {
    /*      printf("Holy Toledo!!!\n"); */
          leftright = lefttree->rchild;
          while (leftright->rchild != (struct splaynode *) NULL) {
            leftright = leftright->rchild;
          }
          leftright->rchild = righttree;
          return lefttree;
        }
      }
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    struct splaynode *splayinsert(struct mesh *m, struct splaynode *splayroot,
                                  struct otri *newkey, vertex searchpoint)
    #else /* not ANSI_DECLARATORS */
    struct splaynode *splayinsert(m, splayroot, newkey, searchpoint)
    struct mesh *m;
    struct splaynode *splayroot;
    struct otri *newkey;
    vertex searchpoint;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct splaynode *newsplaynode;
    
      newsplaynode = (struct splaynode *) poolalloc(&m->splaynodes);
      otricopy(*newkey, newsplaynode->keyedge);
      dest(*newkey, newsplaynode->keydest);
      if (splayroot == (struct splaynode *) NULL) {
        newsplaynode->lchild = (struct splaynode *) NULL;
        newsplaynode->rchild = (struct splaynode *) NULL;
      } else if (rightofhyperbola(m, &splayroot->keyedge, searchpoint)) {
        newsplaynode->lchild = splayroot;
        newsplaynode->rchild = splayroot->rchild;
        splayroot->rchild = (struct splaynode *) NULL;
      } else {
        newsplaynode->lchild = splayroot->lchild;
        newsplaynode->rchild = splayroot;
        splayroot->lchild = (struct splaynode *) NULL;
      }
      return newsplaynode;
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    struct splaynode *circletopinsert(struct mesh *m, struct behavior *b,
                                      struct splaynode *splayroot,
                                      struct otri *newkey,
                                      vertex pa, vertex pb, vertex pc, REAL topy)
    #else /* not ANSI_DECLARATORS */
    struct splaynode *circletopinsert(m, b, splayroot, newkey, pa, pb, pc, topy)
    struct mesh *m;
    struct behavior *b;
    struct splaynode *splayroot;
    struct otri *newkey;
    vertex pa;
    vertex pb;
    vertex pc;
    REAL topy;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL ccwabc;
      REAL xac, yac, xbc, ybc;
      REAL aclen2, bclen2;
      REAL searchpoint[2];
      struct otri dummytri;
    
      ccwabc = counterclockwise(m, b, pa, pb, pc);
      xac = pa[0] - pc[0];
      yac = pa[1] - pc[1];
      xbc = pb[0] - pc[0];
      ybc = pb[1] - pc[1];
      aclen2 = xac * xac + yac * yac;
      bclen2 = xbc * xbc + ybc * ybc;
      searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
      searchpoint[1] = topy;
      return splayinsert(m, splay(m, splayroot, (vertex) searchpoint, &dummytri),
                         newkey, (vertex) searchpoint);
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    struct splaynode *frontlocate(struct mesh *m, struct splaynode *splayroot,
                                  struct otri *bottommost, vertex searchvertex,
                                  struct otri *searchtri, int *farright)
    #else /* not ANSI_DECLARATORS */
    struct splaynode *frontlocate(m, splayroot, bottommost, searchvertex,
                                  searchtri, farright)
    struct mesh *m;
    struct splaynode *splayroot;
    struct otri *bottommost;
    vertex searchvertex;
    struct otri *searchtri;
    int *farright;
    #endif /* not ANSI_DECLARATORS */
    
    {
      int farrightflag;
      triangle ptr;                       /* Temporary variable used by onext(). */
    
      otricopy(*bottommost, *searchtri);
      splayroot = splay(m, splayroot, searchvertex, searchtri);
    
      farrightflag = 0;
      while (!farrightflag && rightofhyperbola(m, searchtri, searchvertex)) {
        onextself(*searchtri);
        farrightflag = otriequal(*searchtri, *bottommost);
      }
      *farright = farrightflag;
      return splayroot;
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    #ifdef ANSI_DECLARATORS
    long sweeplinedelaunay(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    long sweeplinedelaunay(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct event **eventheap;
      struct event *events;
      struct event *freeevents;
      struct event *nextevent;
      struct event *newevent;
      struct splaynode *splayroot;
      struct otri bottommost;
      struct otri searchtri;
      struct otri fliptri;
      struct otri lefttri, righttri, farlefttri, farrighttri;
      struct otri inserttri;
      vertex firstvertex, secondvertex;
      vertex nextvertex, lastvertex;
      vertex connectvertex;
      vertex leftvertex, midvertex, rightvertex;
      REAL lefttest, righttest;
      int heapsize;
      int check4events, farrightflag;
      triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
    
      poolinit(&m->splaynodes, sizeof(struct splaynode), SPLAYNODEPERBLOCK,
               SPLAYNODEPERBLOCK, 0);
      splayroot = (struct splaynode *) NULL;
    
      if (b->verbose) {
        printf("  Placing vertices in event heap.\n");
      }
      createeventheap(m, &eventheap, &events, &freeevents);
      heapsize = m->invertices;
    
      if (b->verbose) {
        printf("  Forming triangulation.\n");
      }
      maketriangle(m, b, &lefttri);
      maketriangle(m, b, &righttri);
      bond(lefttri, righttri);
      lnextself(lefttri);
      lprevself(righttri);
      bond(lefttri, righttri);
      lnextself(lefttri);
      lprevself(righttri);
      bond(lefttri, righttri);
      firstvertex = (vertex) eventheap[0]->eventptr;
      eventheap[0]->eventptr = (VOID *) freeevents;
      freeevents = eventheap[0];
      eventheapdelete(eventheap, heapsize, 0);
      heapsize--;
      do {
        if (heapsize == 0) {
          printf("Error:  Input vertices are all identical.\n");
          triexit(1);
        }
        secondvertex = (vertex) eventheap[0]->eventptr;
        eventheap[0]->eventptr = (VOID *) freeevents;
        freeevents = eventheap[0];
        eventheapdelete(eventheap, heapsize, 0);
        heapsize--;
        if ((firstvertex[0] == secondvertex[0]) &&
            (firstvertex[1] == secondvertex[1])) {
          if (!b->quiet) {
            printf(
    "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
                   secondvertex[0], secondvertex[1]);
          }
          setvertextype(secondvertex, UNDEADVERTEX);
          m->undeads++;
        }
      } while ((firstvertex[0] == secondvertex[0]) &&
               (firstvertex[1] == secondvertex[1]));
      setorg(lefttri, firstvertex);
      setdest(lefttri, secondvertex);
      setorg(righttri, secondvertex);
      setdest(righttri, firstvertex);
      lprev(lefttri, bottommost);
      lastvertex = secondvertex;
      while (heapsize > 0) {
        nextevent = eventheap[0];
        eventheapdelete(eventheap, heapsize, 0);
        heapsize--;
        check4events = 1;
        if (nextevent->xkey < m->xmin) {
          decode(nextevent->eventptr, fliptri);
          oprev(fliptri, farlefttri);
          check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);
          onext(fliptri, farrighttri);
          check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);
    
          if (otriequal(farlefttri, bottommost)) {
            lprev(fliptri, bottommost);
          }
          flip(m, b, &fliptri);
          setapex(fliptri, NULL);
          lprev(fliptri, lefttri);
          lnext(fliptri, righttri);
          sym(lefttri, farlefttri);
    
          if (randomnation(SAMPLERATE) == 0) {
            symself(fliptri);
            dest(fliptri, leftvertex);
            apex(fliptri, midvertex);
            org(fliptri, rightvertex);
            splayroot = circletopinsert(m, b, splayroot, &lefttri, leftvertex,
                                        midvertex, rightvertex, nextevent->ykey);
          }
        } else {
          nextvertex = (vertex) nextevent->eventptr;
          if ((nextvertex[0] == lastvertex[0]) &&
              (nextvertex[1] == lastvertex[1])) {
            if (!b->quiet) {
              printf(
    "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
                     nextvertex[0], nextvertex[1]);
            }
            setvertextype(nextvertex, UNDEADVERTEX);
            m->undeads++;
            check4events = 0;
          } else {
            lastvertex = nextvertex;
    
            splayroot = frontlocate(m, splayroot, &bottommost, nextvertex,
                                    &searchtri, &farrightflag);
    /*
            otricopy(bottommost, searchtri);
            farrightflag = 0;
            while (!farrightflag && rightofhyperbola(m, &searchtri, nextvertex)) {
              onextself(searchtri);
              farrightflag = otriequal(searchtri, bottommost);
            }
    */
    
            check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);
    
            otricopy(searchtri, farrighttri);
            sym(searchtri, farlefttri);
            maketriangle(m, b, &lefttri);
            maketriangle(m, b, &righttri);
            dest(farrighttri, connectvertex);
            setorg(lefttri, connectvertex);
            setdest(lefttri, nextvertex);
            setorg(righttri, nextvertex);
            setdest(righttri, connectvertex);
            bond(lefttri, righttri);
            lnextself(lefttri);
            lprevself(righttri);
            bond(lefttri, righttri);
            lnextself(lefttri);
            lprevself(righttri);
            bond(lefttri, farlefttri);
            bond(righttri, farrighttri);
            if (!farrightflag && otriequal(farrighttri, bottommost)) {
              otricopy(lefttri, bottommost);
            }
    
            if (randomnation(SAMPLERATE) == 0) {
              splayroot = splayinsert(m, splayroot, &lefttri, nextvertex);
            } else if (randomnation(SAMPLERATE) == 0) {
              lnext(righttri, inserttri);
              splayroot = splayinsert(m, splayroot, &inserttri, nextvertex);
            }
          }
        }
        nextevent->eventptr = (VOID *) freeevents;
        freeevents = nextevent;
    
        if (check4events) {
          apex(farlefttri, leftvertex);
          dest(lefttri, midvertex);
          apex(lefttri, rightvertex);
          lefttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);
          if (lefttest > 0.0) {
            newevent = freeevents;
            freeevents = (struct event *) freeevents->eventptr;
            newevent->xkey = m->xminextreme;
            newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,
                                       lefttest);
            newevent->eventptr = (VOID *) encode(lefttri);
            eventheapinsert(eventheap, heapsize, newevent);
            heapsize++;
            setorg(lefttri, newevent);
          }
          apex(righttri, leftvertex);
          org(righttri, midvertex);
          apex(farrighttri, rightvertex);
          righttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);
          if (righttest > 0.0) {
            newevent = freeevents;
            freeevents = (struct event *) freeevents->eventptr;
            newevent->xkey = m->xminextreme;
            newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,
                                       righttest);
            newevent->eventptr = (VOID *) encode(farrighttri);
            eventheapinsert(eventheap, heapsize, newevent);
            heapsize++;
            setorg(farrighttri, newevent);
          }
        }
      }
    
      pooldeinit(&m->splaynodes);
      lprevself(bottommost);
      return removeghosts(m, b, &bottommost);
    }
    
    #endif /* not REDUCED */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Sweepline Delaunay triangulation ends here                *********/
    
    /********* General mesh construction routines begin here             *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  delaunay()   Form a Delaunay triangulation.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    long delaunay(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    long delaunay(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      long hulledges;
    
      m->eextras = 0;
      initializetrisubpools(m, b);
    
    #ifdef REDUCED
      if (!b->quiet) {
        printf(
          "Constructing Delaunay triangulation by divide-and-conquer method.\n");
      }
      hulledges = divconqdelaunay(m, b);
    #else /* not REDUCED */
      if (!b->quiet) {
        printf("Constructing Delaunay triangulation ");
        if (b->incremental) {
          printf("by incremental method.\n");
        } else if (b->sweepline) {
          printf("by sweepline method.\n");
        } else {
          printf("by divide-and-conquer method.\n");
        }
      }
      if (b->incremental) {
        hulledges = incrementaldelaunay(m, b);
      } else if (b->sweepline) {
        hulledges = sweeplinedelaunay(m, b);
      } else {
        hulledges = divconqdelaunay(m, b);
      }
    #endif /* not REDUCED */
    
      if (m->triangles.items == 0) {
        /* The input vertices were all collinear, so there are no triangles. */
        return 0l;
      } else {
        return hulledges;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  reconstruct()   Reconstruct a triangulation from its .ele (and possibly  */
    /*                  .poly) file.  Used when the -r switch is used.           */
    /*                                                                           */
    /*  Reads an .ele file and reconstructs the original mesh.  If the -p switch */
    /*  is used, this procedure will also read a .poly file and reconstruct the  */
    /*  subsegments of the original mesh.  If the -a switch is used, this        */
    /*  procedure will also read an .area file and set a maximum area constraint */
    /*  on each triangle.                                                        */
    /*                                                                           */
    /*  Vertices that are not corners of triangles, such as nodes on edges of    */
    /*  subparametric elements, are discarded.                                   */
    /*                                                                           */
    /*  This routine finds the adjacencies between triangles (and subsegments)   */
    /*  by forming one stack of triangles for each vertex.  Each triangle is on  */
    /*  three different stacks simultaneously.  Each triangle's subsegment       */
    /*  pointers are used to link the items in each stack.  This memory-saving   */
    /*  feature makes the code harder to read.  The most important thing to keep */
    /*  in mind is that each triangle is removed from a stack precisely when     */
    /*  the corresponding pointer is adjusted to refer to a subsegment rather    */
    /*  than the next triangle of the stack.                                     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    int reconstruct(struct mesh *m, struct behavior *b, int *trianglelist,
                    REAL *triangleattriblist, REAL *trianglearealist,
                    int elements, int corners, int attribs,
                    int *segmentlist,int *segmentmarkerlist, int numberofsegments)
    #else /* not ANSI_DECLARATORS */
    int reconstruct(m, b, trianglelist, triangleattriblist, trianglearealist,
                    elements, corners, attribs, segmentlist, segmentmarkerlist,
                    numberofsegments)
    struct mesh *m;
    struct behavior *b;
    int *trianglelist;
    REAL *triangleattriblist;
    REAL *trianglearealist;
    int elements;
    int corners;
    int attribs;
    int *segmentlist;
    int *segmentmarkerlist;
    int numberofsegments;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    long reconstruct(struct mesh *m, struct behavior *b, char *elefilename,
                     char *areafilename, char *polyfilename, FILE *polyfile)
    #else /* not ANSI_DECLARATORS */
    long reconstruct(m, b, elefilename, areafilename, polyfilename, polyfile)
    struct mesh *m;
    struct behavior *b;
    char *elefilename;
    char *areafilename;
    char *polyfilename;
    FILE *polyfile;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int vertexindex;
      int attribindex;
    #else /* not TRILIBRARY */
      FILE *elefile;
      FILE *areafile;
      char inputline[INPUTLINESIZE];
      char *stringptr;
      int areaelements;
    #endif /* not TRILIBRARY */
      struct otri triangleloop;
      struct otri triangleleft;
      struct otri checktri;
      struct otri checkleft;
      struct otri checkneighbor;
      struct osub subsegloop;
      triangle *vertexarray;
      triangle *prevlink;
      triangle nexttri;
      vertex tdest, tapex;
      vertex checkdest, checkapex;
      vertex shorg;
      vertex killvertex;
      vertex segmentorg, segmentdest;
      REAL area;
      int corner[3];
      int end[2];
      int killvertexindex;
      int incorners;
      int segmentmarkers;
      int boundmarker;
      int aroundvertex;
      long hullsize;
      int notfound;
      long elementnumber, segmentnumber;
      int i, j;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
    #ifdef TRILIBRARY
      m->inelements = elements;
      incorners = corners;
      if (incorners < 3) {
        printf("Error:  Triangles must have at least 3 vertices.\n");
        triexit(1);
      }
      m->eextras = attribs;
    #else /* not TRILIBRARY */
      /* Read the triangles from an .ele file. */
      if (!b->quiet) {
        printf("Opening %s.\n", elefilename);
      }
      elefile = fopen(elefilename, "r");
      if (elefile == (FILE *) NULL) {
        printf("  Error:  Cannot access file %s.\n", elefilename);
        triexit(1);
      }
      /* Read number of triangles, number of vertices per triangle, and */
      /*   number of triangle attributes from .ele file.                */
      stringptr = readline(inputline, elefile, elefilename);
      m->inelements = (int) strtol(stringptr, &stringptr, 0);
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        incorners = 3;
      } else {
        incorners = (int) strtol(stringptr, &stringptr, 0);
        if (incorners < 3) {
          printf("Error:  Triangles in %s must have at least 3 vertices.\n",
                 elefilename);
          triexit(1);
        }
      }
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        m->eextras = 0;
      } else {
        m->eextras = (int) strtol(stringptr, &stringptr, 0);
      }
    #endif /* not TRILIBRARY */
    
      initializetrisubpools(m, b);
    
      /* Create the triangles. */
      for (elementnumber = 1; elementnumber <= m->inelements; elementnumber++) {
        maketriangle(m, b, &triangleloop);
        /* Mark the triangle as living. */
        triangleloop.tri[3] = (triangle) triangleloop.tri;
      }
    
      segmentmarkers = 0;
      if (b->poly) {
    #ifdef TRILIBRARY
        m->insegments = numberofsegments;
        segmentmarkers = segmentmarkerlist != (int *) NULL;
    #else /* not TRILIBRARY */
        /* Read number of segments and number of segment */
        /*   boundary markers from .poly file.           */
        stringptr = readline(inputline, polyfile, b->inpolyfilename);
        m->insegments = (int) strtol(stringptr, &stringptr, 0);
        stringptr = findfield(stringptr);
        if (*stringptr != '\0') {
          segmentmarkers = (int) strtol(stringptr, &stringptr, 0);
        }
    #endif /* not TRILIBRARY */
    
        /* Create the subsegments. */
        for (segmentnumber = 1; segmentnumber <= m->insegments; segmentnumber++) {
          makesubseg(m, &subsegloop);
          /* Mark the subsegment as living. */
          subsegloop.ss[2] = (subseg) subsegloop.ss;
        }
      }
    
    #ifdef TRILIBRARY
      vertexindex = 0;
      attribindex = 0;
    #else /* not TRILIBRARY */
      if (b->vararea) {
        /* Open an .area file, check for consistency with the .ele file. */
        if (!b->quiet) {
          printf("Opening %s.\n", areafilename);
        }
        areafile = fopen(areafilename, "r");
        if (areafile == (FILE *) NULL) {
          printf("  Error:  Cannot access file %s.\n", areafilename);
          triexit(1);
        }
        stringptr = readline(inputline, areafile, areafilename);
        areaelements = (int) strtol(stringptr, &stringptr, 0);
        if (areaelements != m->inelements) {
          printf("Error:  %s and %s disagree on number of triangles.\n",
                 elefilename, areafilename);
          triexit(1);
        }
      }
    #endif /* not TRILIBRARY */
    
      if (!b->quiet) {
        printf("Reconstructing mesh.\n");
      }
      /* Allocate a temporary array that maps each vertex to some adjacent */
      /*   triangle.  I took care to allocate all the permanent memory for */
      /*   triangles and subsegments first.                                */
      vertexarray = (triangle *) trimalloc(m->vertices.items *
                                           (int) sizeof(triangle));
      /* Each vertex is initially unrepresented. */
      for (i = 0; i < m->vertices.items; i++) {
        vertexarray[i] = (triangle) m->dummytri;
      }
    
      if (b->verbose) {
        printf("  Assembling triangles.\n");
      }
      /* Read the triangles from the .ele file, and link */
      /*   together those that share an edge.            */
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      elementnumber = b->firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
    #ifdef TRILIBRARY
        /* Copy the triangle's three corners. */
        for (j = 0; j < 3; j++) {
          corner[j] = trianglelist[vertexindex++];
          if ((corner[j] < b->firstnumber) ||
              (corner[j] >= b->firstnumber + m->invertices)) {
            printf("Error:  Triangle %ld has an invalid vertex index.\n",
                   elementnumber);
            triexit(1);
          }
        }
    #else /* not TRILIBRARY */
        /* Read triangle number and the triangle's three corners. */
        stringptr = readline(inputline, elefile, elefilename);
        for (j = 0; j < 3; j++) {
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Triangle %ld is missing vertex %d in %s.\n",
                   elementnumber, j + 1, elefilename);
            triexit(1);
          } else {
            corner[j] = (int) strtol(stringptr, &stringptr, 0);
            if ((corner[j] < b->firstnumber) ||
                (corner[j] >= b->firstnumber + m->invertices)) {
              printf("Error:  Triangle %ld has an invalid vertex index.\n",
                     elementnumber);
              triexit(1);
            }
          }
        }
    #endif /* not TRILIBRARY */
    
        /* Find out about (and throw away) extra nodes. */
        for (j = 3; j < incorners; j++) {
    #ifdef TRILIBRARY
          killvertexindex = trianglelist[vertexindex++];
    #else /* not TRILIBRARY */
          stringptr = findfield(stringptr);
          if (*stringptr != '\0') {
            killvertexindex = (int) strtol(stringptr, &stringptr, 0);
    #endif /* not TRILIBRARY */
            if ((killvertexindex >= b->firstnumber) &&
                (killvertexindex < b->firstnumber + m->invertices)) {
              /* Delete the non-corner vertex if it's not already deleted. */
              killvertex = getvertex(m, b, killvertexindex);
              if (vertextype(killvertex) != DEADVERTEX) {
                vertexdealloc(m, killvertex);
              }
            }
    #ifndef TRILIBRARY
          }
    #endif /* not TRILIBRARY */
        }
    
        /* Read the triangle's attributes. */
        for (j = 0; j < m->eextras; j++) {
    #ifdef TRILIBRARY
          setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);
    #else /* not TRILIBRARY */
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            setelemattribute(triangleloop, j, 0);
          } else {
            setelemattribute(triangleloop, j,
                             (REAL) strtod(stringptr, &stringptr));
          }
    #endif /* not TRILIBRARY */
        }
    
        if (b->vararea) {
    #ifdef TRILIBRARY
          area = trianglearealist[elementnumber - b->firstnumber];
    #else /* not TRILIBRARY */
          /* Read an area constraint from the .area file. */
          stringptr = readline(inputline, areafile, areafilename);
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            area = -1.0;                      /* No constraint on this triangle. */
          } else {
            area = (REAL) strtod(stringptr, &stringptr);
          }
    #endif /* not TRILIBRARY */
          setareabound(triangleloop, area);
        }
    
        /* Set the triangle's vertices. */
        triangleloop.orient = 0;
        setorg(triangleloop, getvertex(m, b, corner[0]));
        setdest(triangleloop, getvertex(m, b, corner[1]));
        setapex(triangleloop, getvertex(m, b, corner[2]));
        /* Try linking the triangle to others that share these vertices. */
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          /* Take the number for the origin of triangleloop. */
          aroundvertex = corner[triangleloop.orient];
          /* Look for other triangles having this vertex. */
          nexttri = vertexarray[aroundvertex - b->firstnumber];
          /* Link the current triangle to the next one in the stack. */
          triangleloop.tri[6 + triangleloop.orient] = nexttri;
          /* Push the current triangle onto the stack. */
          vertexarray[aroundvertex - b->firstnumber] = encode(triangleloop);
          decode(nexttri, checktri);
          if (checktri.tri != m->dummytri) {
            dest(triangleloop, tdest);
            apex(triangleloop, tapex);
            /* Look for other triangles that share an edge. */
            do {
              dest(checktri, checkdest);
              apex(checktri, checkapex);
              if (tapex == checkdest) {
                /* The two triangles share an edge; bond them together. */
                lprev(triangleloop, triangleleft);
                bond(triangleleft, checktri);
              }
              if (tdest == checkapex) {
                /* The two triangles share an edge; bond them together. */
                lprev(checktri, checkleft);
                bond(triangleloop, checkleft);
              }
              /* Find the next triangle in the stack. */
              nexttri = checktri.tri[6 + checktri.orient];
              decode(nexttri, checktri);
            } while (checktri.tri != m->dummytri);
          }
        }
        triangleloop.tri = triangletraverse(m);
        elementnumber++;
      }
    
    #ifdef TRILIBRARY
      vertexindex = 0;
    #else /* not TRILIBRARY */
      fclose(elefile);
      if (b->vararea) {
        fclose(areafile);
      }
    #endif /* not TRILIBRARY */
    
      hullsize = 0;                      /* Prepare to count the boundary edges. */
      if (b->poly) {
        if (b->verbose) {
          printf("  Marking segments in triangulation.\n");
        }
        /* Read the segments from the .poly file, and link them */
        /*   to their neighboring triangles.                    */
        boundmarker = 0;
        traversalinit(&m->subsegs);
        subsegloop.ss = subsegtraverse(m);
        segmentnumber = b->firstnumber;
        while (subsegloop.ss != (subseg *) NULL) {
    #ifdef TRILIBRARY
          end[0] = segmentlist[vertexindex++];
          end[1] = segmentlist[vertexindex++];
          if (segmentmarkers) {
            boundmarker = segmentmarkerlist[segmentnumber - b->firstnumber];
          }
    #else /* not TRILIBRARY */
          /* Read the endpoints of each segment, and possibly a boundary marker. */
          stringptr = readline(inputline, polyfile, b->inpolyfilename);
          /* Skip the first (segment number) field. */
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Segment %ld has no endpoints in %s.\n", segmentnumber,
                   polyfilename);
            triexit(1);
          } else {
            end[0] = (int) strtol(stringptr, &stringptr, 0);
          }
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Segment %ld is missing its second endpoint in %s.\n",
                   segmentnumber, polyfilename);
            triexit(1);
          } else {
            end[1] = (int) strtol(stringptr, &stringptr, 0);
          }
          if (segmentmarkers) {
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              boundmarker = 0;
            } else {
              boundmarker = (int) strtol(stringptr, &stringptr, 0);
            }
          }
    #endif /* not TRILIBRARY */
          for (j = 0; j < 2; j++) {
            if ((end[j] < b->firstnumber) ||
                (end[j] >= b->firstnumber + m->invertices)) {
              printf("Error:  Segment %ld has an invalid vertex index.\n", 
                     segmentnumber);
              triexit(1);
            }
          }
    
          /* set the subsegment's vertices. */
          subsegloop.ssorient = 0;
          segmentorg = getvertex(m, b, end[0]);
          segmentdest = getvertex(m, b, end[1]);
          setsorg(subsegloop, segmentorg);
          setsdest(subsegloop, segmentdest);
          setsegorg(subsegloop, segmentorg);
          setsegdest(subsegloop, segmentdest);
          setmark(subsegloop, boundmarker);
          /* Try linking the subsegment to triangles that share these vertices. */
          for (subsegloop.ssorient = 0; subsegloop.ssorient < 2;
               subsegloop.ssorient++) {
            /* Take the number for the destination of subsegloop. */
            aroundvertex = end[1 - subsegloop.ssorient];
            /* Look for triangles having this vertex. */
            prevlink = &vertexarray[aroundvertex - b->firstnumber];
            nexttri = vertexarray[aroundvertex - b->firstnumber];
            decode(nexttri, checktri);
            sorg(subsegloop, shorg);
            notfound = 1;
            /* Look for triangles having this edge.  Note that I'm only       */
            /*   comparing each triangle's destination with the subsegment;   */
            /*   each triangle's apex is handled through a different vertex.  */
            /*   Because each triangle appears on three vertices' lists, each */
            /*   occurrence of a triangle on a list can (and does) represent  */
            /*   an edge.  In this way, most edges are represented twice, and */
            /*   every triangle-subsegment bond is represented once.          */
            while (notfound && (checktri.tri != m->dummytri)) {
              dest(checktri, checkdest);
              if (shorg == checkdest) {
                /* We have a match.  Remove this triangle from the list. */
                *prevlink = checktri.tri[6 + checktri.orient];
                /* Bond the subsegment to the triangle. */
                tsbond(checktri, subsegloop);
                /* Check if this is a boundary edge. */
                sym(checktri, checkneighbor);
                if (checkneighbor.tri == m->dummytri) {
                  /* The next line doesn't insert a subsegment (because there's */
                  /*   already one there), but it sets the boundary markers of  */
                  /*   the existing subsegment and its vertices.                */
                  insertsubseg(m, b, &checktri, 1);
                  hullsize++;
                }
                notfound = 0;
              }
              /* Find the next triangle in the stack. */
              prevlink = &checktri.tri[6 + checktri.orient];
              nexttri = checktri.tri[6 + checktri.orient];
              decode(nexttri, checktri);
            }
          }
          subsegloop.ss = subsegtraverse(m);
          segmentnumber++;
        }
      }
    
      /* Mark the remaining edges as not being attached to any subsegment. */
      /* Also, count the (yet uncounted) boundary edges.                   */
      for (i = 0; i < m->vertices.items; i++) {
        /* Search the stack of triangles adjacent to a vertex. */
        nexttri = vertexarray[i];
        decode(nexttri, checktri);
        while (checktri.tri != m->dummytri) {
          /* Find the next triangle in the stack before this */
          /*   information gets overwritten.                 */
          nexttri = checktri.tri[6 + checktri.orient];
          /* No adjacent subsegment.  (This overwrites the stack info.) */
          tsdissolve(checktri);
          sym(checktri, checkneighbor);
          if (checkneighbor.tri == m->dummytri) {
            insertsubseg(m, b, &checktri, 1);
            hullsize++;
          }
          decode(nexttri, checktri);
        }
      }
    
      trifree((VOID *) vertexarray);
      return hullsize;
    }
    
    #endif /* not CDT_ONLY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* General mesh construction routines end here               *********/
    
    /********* Segment insertion begins here                             *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  finddirection()   Find the first triangle on the path from one point     */
    /*                    to another.                                            */
    /*                                                                           */
    /*  Finds the triangle that intersects a line segment drawn from the         */
    /*  origin of `searchtri' to the point `searchpoint', and returns the result */
    /*  in `searchtri'.  The origin of `searchtri' does not change, even though  */
    /*  the triangle returned may differ from the one passed in.  This routine   */
    /*  is used to find the direction to move in to get from one point to        */
    /*  another.                                                                 */
    /*                                                                           */
    /*  The return value notes whether the destination or apex of the found      */
    /*  triangle is collinear with the two points in question.                   */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    enum finddirectionresult finddirection(struct mesh *m, struct behavior *b,
                                           struct otri *searchtri,
                                           vertex searchpoint)
    #else /* not ANSI_DECLARATORS */
    enum finddirectionresult finddirection(m, b, searchtri, searchpoint)
    struct mesh *m;
    struct behavior *b;
    struct otri *searchtri;
    vertex searchpoint;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri checktri;
      vertex startvertex;
      vertex leftvertex, rightvertex;
      REAL leftccw, rightccw;
      int leftflag, rightflag;
      triangle ptr;           /* Temporary variable used by onext() and oprev(). */
    
      org(*searchtri, startvertex);
      dest(*searchtri, rightvertex);
      apex(*searchtri, leftvertex);
      /* Is `searchpoint' to the left? */
      leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
      leftflag = leftccw > 0.0;
      /* Is `searchpoint' to the right? */
      rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
      rightflag = rightccw > 0.0;
      if (leftflag && rightflag) {
        /* `searchtri' faces directly away from `searchpoint'.  We could go left */
        /*   or right.  Ask whether it's a triangle or a boundary on the left.   */
        onext(*searchtri, checktri);
        if (checktri.tri == m->dummytri) {
          leftflag = 0;
        } else {
          rightflag = 0;
        }
      }
      while (leftflag) {
        /* Turn left until satisfied. */
        onextself(*searchtri);
        if (searchtri->tri == m->dummytri) {
          printf("Internal error in finddirection():  Unable to find a\n");
          printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],
                 startvertex[1]);
          printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
          internalerror();
        }
        apex(*searchtri, leftvertex);
        rightccw = leftccw;
        leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
        leftflag = leftccw > 0.0;
      }
      while (rightflag) {
        /* Turn right until satisfied. */
        oprevself(*searchtri);
        if (searchtri->tri == m->dummytri) {
          printf("Internal error in finddirection():  Unable to find a\n");
          printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],
                 startvertex[1]);
          printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
          internalerror();
        }
        dest(*searchtri, rightvertex);
        leftccw = rightccw;
        rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
        rightflag = rightccw > 0.0;
      }
      if (leftccw == 0.0) {
        return LEFTCOLLINEAR;
      } else if (rightccw == 0.0) {
        return RIGHTCOLLINEAR;
      } else {
        return WITHIN;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  segmentintersection()   Find the intersection of an existing segment     */
    /*                          and a segment that is being inserted.  Insert    */
    /*                          a vertex at the intersection, splitting an       */
    /*                          existing subsegment.                             */
    /*                                                                           */
    /*  The segment being inserted connects the apex of splittri to endpoint2.   */
    /*  splitsubseg is the subsegment being split, and MUST adjoin splittri.     */
    /*  Hence, endpoints of the subsegment being split are the origin and        */
    /*  destination of splittri.                                                 */
    /*                                                                           */
    /*  On completion, splittri is a handle having the newly inserted            */
    /*  intersection point as its origin, and endpoint1 as its destination.      */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void segmentintersection(struct mesh *m, struct behavior *b,
                             struct otri *splittri, struct osub *splitsubseg,
                             vertex endpoint2)
    #else /* not ANSI_DECLARATORS */
    void segmentintersection(m, b, splittri, splitsubseg, endpoint2)
    struct mesh *m;
    struct behavior *b;
    struct otri *splittri;
    struct osub *splitsubseg;
    vertex endpoint2;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct osub opposubseg;
      vertex endpoint1;
      vertex torg, tdest;
      vertex leftvertex, rightvertex;
      vertex newvertex;
      enum insertvertexresult success;
      enum finddirectionresult collinear;
      REAL ex, ey;
      REAL tx, ty;
      REAL etx, ety;
      REAL split, denom;
      int i;
      triangle ptr;                       /* Temporary variable used by onext(). */
      subseg sptr;                        /* Temporary variable used by snext(). */
    
      /* Find the other three segment endpoints. */
      apex(*splittri, endpoint1);
      org(*splittri, torg);
      dest(*splittri, tdest);
      /* Segment intersection formulae; see the Antonio reference. */
      tx = tdest[0] - torg[0];
      ty = tdest[1] - torg[1];
      ex = endpoint2[0] - endpoint1[0];
      ey = endpoint2[1] - endpoint1[1];
      etx = torg[0] - endpoint2[0];
      ety = torg[1] - endpoint2[1];
      denom = ty * ex - tx * ey;
      if (denom == 0.0) {
        printf("Internal error in segmentintersection():");
        printf("  Attempt to find intersection of parallel segments.\n");
        internalerror();
      }
      split = (ey * etx - ex * ety) / denom;
      /* Create the new vertex. */
      newvertex = (vertex) poolalloc(&m->vertices);
      /* Interpolate its coordinate and attributes. */
      for (i = 0; i < 2 + m->nextras; i++) {
        newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);
      }
      setvertexmark(newvertex, mark(*splitsubseg));
      setvertextype(newvertex, INPUTVERTEX);
      if (b->verbose > 1) {
        printf(
      "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
               torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);
      }
      /* Insert the intersection vertex.  This should always succeed. */
      success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0);
      if (success != SUCCESSFULVERTEX) {
        printf("Internal error in segmentintersection():\n");
        printf("  Failure to split a segment.\n");
        internalerror();
      }
      /* Record a triangle whose origin is the new vertex. */
      setvertex2tri(newvertex, encode(*splittri));
      if (m->steinerleft > 0) {
        m->steinerleft--;
      }
    
      /* Divide the segment into two, and correct the segment endpoints. */
      ssymself(*splitsubseg);
      spivot(*splitsubseg, opposubseg);
      sdissolve(*splitsubseg);
      sdissolve(opposubseg);
      do {
        setsegorg(*splitsubseg, newvertex);
        snextself(*splitsubseg);
      } while (splitsubseg->ss != m->dummysub);
      do {
        setsegorg(opposubseg, newvertex);
        snextself(opposubseg);
      } while (opposubseg.ss != m->dummysub);
    
      /* Inserting the vertex may have caused edge flips.  We wish to rediscover */
      /*   the edge connecting endpoint1 to the new intersection vertex.         */
      collinear = finddirection(m, b, splittri, endpoint1);
      dest(*splittri, rightvertex);
      apex(*splittri, leftvertex);
      if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {
        onextself(*splittri);
      } else if ((rightvertex[0] != endpoint1[0]) ||
                 (rightvertex[1] != endpoint1[1])) {
        printf("Internal error in segmentintersection():\n");
        printf("  Topological inconsistency after splitting a segment.\n");
        internalerror();
      }
      /* `splittri' should have destination endpoint1. */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  scoutsegment()   Scout the first triangle on the path from one endpoint  */
    /*                   to another, and check for completion (reaching the      */
    /*                   second endpoint), a collinear vertex, or the            */
    /*                   intersection of two segments.                           */
    /*                                                                           */
    /*  Returns one if the entire segment is successfully inserted, and zero if  */
    /*  the job must be finished by conformingedge() or constrainededge().       */
    /*                                                                           */
    /*  If the first triangle on the path has the second endpoint as its         */
    /*  destination or apex, a subsegment is inserted and the job is done.       */
    /*                                                                           */
    /*  If the first triangle on the path has a destination or apex that lies on */
    /*  the segment, a subsegment is inserted connecting the first endpoint to   */
    /*  the collinear vertex, and the search is continued from the collinear     */
    /*  vertex.                                                                  */
    /*                                                                           */
    /*  If the first triangle on the path has a subsegment opposite its origin,  */
    /*  then there is a segment that intersects the segment being inserted.      */
    /*  Their intersection vertex is inserted, splitting the subsegment.         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri,
                     vertex endpoint2, int newmark)
    #else /* not ANSI_DECLARATORS */
    int scoutsegment(m, b, searchtri, endpoint2, newmark)
    struct mesh *m;
    struct behavior *b;
    struct otri *searchtri;
    vertex endpoint2;
    int newmark;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri crosstri;
      struct osub crosssubseg;
      vertex leftvertex, rightvertex;
      enum finddirectionresult collinear;
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      collinear = finddirection(m, b, searchtri, endpoint2);
      dest(*searchtri, rightvertex);
      apex(*searchtri, leftvertex);
      if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) ||
          ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {
        /* The segment is already an edge in the mesh. */
        if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {
          lprevself(*searchtri);
        }
        /* Insert a subsegment, if there isn't already one there. */
        insertsubseg(m, b, searchtri, newmark);
        return 1;
      } else if (collinear == LEFTCOLLINEAR) {
        /* We've collided with a vertex between the segment's endpoints. */
        /* Make the collinear vertex be the triangle's origin. */
        lprevself(*searchtri);
        insertsubseg(m, b, searchtri, newmark);
        /* Insert the remainder of the segment. */
        return scoutsegment(m, b, searchtri, endpoint2, newmark);
      } else if (collinear == RIGHTCOLLINEAR) {
        /* We've collided with a vertex between the segment's endpoints. */
        insertsubseg(m, b, searchtri, newmark);
        /* Make the collinear vertex be the triangle's origin. */
        lnextself(*searchtri);
        /* Insert the remainder of the segment. */
        return scoutsegment(m, b, searchtri, endpoint2, newmark);
      } else {
        lnext(*searchtri, crosstri);
        tspivot(crosstri, crosssubseg);
        /* Check for a crossing segment. */
        if (crosssubseg.ss == m->dummysub) {
          return 0;
        } else {
          /* Insert a vertex at the intersection. */
          segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);
          otricopy(crosstri, *searchtri);
          insertsubseg(m, b, searchtri, newmark);
          /* Insert the remainder of the segment. */
          return scoutsegment(m, b, searchtri, endpoint2, newmark);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  conformingedge()   Force a segment into a conforming Delaunay            */
    /*                     triangulation by inserting a vertex at its midpoint,  */
    /*                     and recursively forcing in the two half-segments if   */
    /*                     necessary.                                            */
    /*                                                                           */
    /*  Generates a sequence of subsegments connecting `endpoint1' to            */
    /*  `endpoint2'.  `newmark' is the boundary marker of the segment, assigned  */
    /*  to each new splitting vertex and subsegment.                             */
    /*                                                                           */
    /*  Note that conformingedge() does not always maintain the conforming       */
    /*  Delaunay property.  Once inserted, segments are locked into place;       */
    /*  vertices inserted later (to force other segments in) may render these    */
    /*  fixed segments non-Delaunay.  The conforming Delaunay property will be   */
    /*  restored by enforcequality() by splitting encroached subsegments.        */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void conformingedge(struct mesh *m, struct behavior *b,
                        vertex endpoint1, vertex endpoint2, int newmark)
    #else /* not ANSI_DECLARATORS */
    void conformingedge(m, b, endpoint1, endpoint2, newmark)
    struct mesh *m;
    struct behavior *b;
    vertex endpoint1;
    vertex endpoint2;
    int newmark;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri searchtri1, searchtri2;
      struct osub brokensubseg;
      vertex newvertex;
      vertex midvertex1, midvertex2;
      enum insertvertexresult success;
      int i;
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      if (b->verbose > 2) {
        printf("Forcing segment into triangulation by recursive splitting:\n");
        printf("  (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],
               endpoint2[0], endpoint2[1]);
      }
      /* Create a new vertex to insert in the middle of the segment. */
      newvertex = (vertex) poolalloc(&m->vertices);
      /* Interpolate coordinates and attributes. */
      for (i = 0; i < 2 + m->nextras; i++) {
        newvertex[i] = 0.5 * (endpoint1[i] + endpoint2[i]);
      }
      setvertexmark(newvertex, newmark);
      setvertextype(newvertex, SEGMENTVERTEX);
      /* No known triangle to search from. */
      searchtri1.tri = m->dummytri;
      /* Attempt to insert the new vertex. */
      success = insertvertex(m, b, newvertex, &searchtri1, (struct osub *) NULL,
                             0, 0);
      if (success == DUPLICATEVERTEX) {
        if (b->verbose > 2) {
          printf("  Segment intersects existing vertex (%.12g, %.12g).\n",
                 newvertex[0], newvertex[1]);
        }
        /* Use the vertex that's already there. */
        vertexdealloc(m, newvertex);
        org(searchtri1, newvertex);
      } else {
        if (success == VIOLATINGVERTEX) {
          if (b->verbose > 2) {
            printf("  Two segments intersect at (%.12g, %.12g).\n",
                   newvertex[0], newvertex[1]);
          }
          /* By fluke, we've landed right on another segment.  Split it. */
          tspivot(searchtri1, brokensubseg);
          success = insertvertex(m, b, newvertex, &searchtri1, &brokensubseg,
                                 0, 0);
          if (success != SUCCESSFULVERTEX) {
            printf("Internal error in conformingedge():\n");
            printf("  Failure to split a segment.\n");
            internalerror();
          }
        }
        /* The vertex has been inserted successfully. */
        if (m->steinerleft > 0) {
          m->steinerleft--;
        }
      }
      otricopy(searchtri1, searchtri2);
      /* `searchtri1' and `searchtri2' are fastened at their origins to         */
      /*   `newvertex', and will be directed toward `endpoint1' and `endpoint2' */
      /*   respectively.  First, we must get `searchtri2' out of the way so it  */
      /*   won't be invalidated during the insertion of the first half of the   */
      /*   segment.                                                             */
      finddirection(m, b, &searchtri2, endpoint2);
      if (!scoutsegment(m, b, &searchtri1, endpoint1, newmark)) {
        /* The origin of searchtri1 may have changed if a collision with an */
        /*   intervening vertex on the segment occurred.                    */
        org(searchtri1, midvertex1);
        conformingedge(m, b, midvertex1, endpoint1, newmark);
      }
      if (!scoutsegment(m, b, &searchtri2, endpoint2, newmark)) {
        /* The origin of searchtri2 may have changed if a collision with an */
        /*   intervening vertex on the segment occurred.                    */
        org(searchtri2, midvertex2);
        conformingedge(m, b, midvertex2, endpoint2, newmark);
      }
    }
    
    #endif /* not CDT_ONLY */
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out */
    /*                    recursively from an existing vertex.  Pay special      */
    /*                    attention to stacking inverted triangles.              */
    /*                                                                           */
    /*  This is a support routine for inserting segments into a constrained      */
    /*  Delaunay triangulation.                                                  */
    /*                                                                           */
    /*  The origin of fixuptri is treated as if it has just been inserted, and   */
    /*  the local Delaunay condition needs to be enforced.  It is only enforced  */
    /*  in one sector, however, that being the angular range defined by          */
    /*  fixuptri.                                                                */
    /*                                                                           */
    /*  This routine also needs to make decisions regarding the "stacking" of    */
    /*  triangles.  (Read the description of constrainededge() below before      */
    /*  reading on here, so you understand the algorithm.)  If the position of   */
    /*  the new vertex (the origin of fixuptri) indicates that the vertex before */
    /*  it on the polygon is a reflex vertex, then "stack" the triangle by       */
    /*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  */
    /*  triangles are identified.)                                               */
    /*                                                                           */
    /*  Otherwise, check whether the vertex before that was a reflex vertex.     */
    /*  If so, perform an edge flip, thereby eliminating an inverted triangle    */
    /*  (popping it off the stack).  The edge flip may result in the creation    */
    /*  of a new inverted triangle, depending on whether or not the new vertex   */
    /*  is visible to the vertex three edges behind on the polygon.              */
    /*                                                                           */
    /*  If neither of the two vertices behind the new vertex are reflex          */
    /*  vertices, fixuptri and fartri, the triangle opposite it, are not         */
    /*  inverted; hence, ensure that the edge between them is locally Delaunay.  */
    /*                                                                           */
    /*  `leftside' indicates whether or not fixuptri is to the left of the       */
    /*  segment being inserted.  (Imagine that the segment is pointing up from   */
    /*  endpoint1 to endpoint2.)                                                 */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void delaunayfixup(struct mesh *m, struct behavior *b,
                       struct otri *fixuptri, int leftside)
    #else /* not ANSI_DECLARATORS */
    void delaunayfixup(m, b, fixuptri, leftside)
    struct mesh *m;
    struct behavior *b;
    struct otri *fixuptri;
    int leftside;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri neartri;
      struct otri fartri;
      struct osub faredge;
      vertex nearvertex, leftvertex, rightvertex, farvertex;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      lnext(*fixuptri, neartri);
      sym(neartri, fartri);
      /* Check if the edge opposite the origin of fixuptri can be flipped. */
      if (fartri.tri == m->dummytri) {
        return;
      }
      tspivot(neartri, faredge);
      if (faredge.ss != m->dummysub) {
        return;
      }
      /* Find all the relevant vertices. */
      apex(neartri, nearvertex);
      org(neartri, leftvertex);
      dest(neartri, rightvertex);
      apex(fartri, farvertex);
      /* Check whether the previous polygon vertex is a reflex vertex. */
      if (leftside) {
        if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {
          /* leftvertex is a reflex vertex too.  Nothing can */
          /*   be done until a convex section is found.      */
          return;
        }
      } else {
        if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {
          /* rightvertex is a reflex vertex too.  Nothing can */
          /*   be done until a convex section is found.       */
          return;
        }
      }
      if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {
        /* fartri is not an inverted triangle, and farvertex is not a reflex */
        /*   vertex.  As there are no reflex vertices, fixuptri isn't an     */
        /*   inverted triangle, either.  Hence, test the edge between the    */
        /*   triangles to ensure it is locally Delaunay.                     */
        if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <=
            0.0) {
          return;
        }
        /* Not locally Delaunay; go on to an edge flip. */
      }        /* else fartri is inverted; remove it from the stack by flipping. */
      flip(m, b, &neartri);
      lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */
      /* Recursively process the two triangles that result from the flip. */
      delaunayfixup(m, b, fixuptri, leftside);
      delaunayfixup(m, b, &fartri, leftside);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  constrainededge()   Force a segment into a constrained Delaunay          */
    /*                      triangulation by deleting the triangles it           */
    /*                      intersects, and triangulating the polygons that      */
    /*                      form on each side of it.                             */
    /*                                                                           */
    /*  Generates a single subsegment connecting `endpoint1' to `endpoint2'.     */
    /*  The triangle `starttri' has `endpoint1' as its origin.  `newmark' is the */
    /*  boundary marker of the segment.                                          */
    /*                                                                           */
    /*  To insert a segment, every triangle whose interior intersects the        */
    /*  segment is deleted.  The union of these deleted triangles is a polygon   */
    /*  (which is not necessarily monotone, but is close enough), which is       */
    /*  divided into two polygons by the new segment.  This routine's task is    */
    /*  to generate the Delaunay triangulation of these two polygons.            */
    /*                                                                           */
    /*  You might think of this routine's behavior as a two-step process.  The   */
    /*  first step is to walk from endpoint1 to endpoint2, flipping each edge    */
    /*  encountered.  This step creates a fan of edges connected to endpoint1,   */
    /*  including the desired edge to endpoint2.  The second step enforces the   */
    /*  Delaunay condition on each side of the segment in an incremental manner: */
    /*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   */
    /*  independently on each side of the segment), each vertex is "enforced"    */
    /*  as if it had just been inserted, but affecting only the previous         */
    /*  vertices.  The result is the same as if the vertices had been inserted   */
    /*  in the order they appear on the polygon, so the result is Delaunay.      */
    /*                                                                           */
    /*  In truth, constrainededge() interleaves these two steps.  The procedure  */
    /*  walks from endpoint1 to endpoint2, and each time an edge is encountered  */
    /*  and flipped, the newly exposed vertex (at the far end of the flipped     */
    /*  edge) is "enforced" upon the previously flipped edges, usually affecting */
    /*  only one side of the polygon (depending upon which side of the segment   */
    /*  the vertex falls on).                                                    */
    /*                                                                           */
    /*  The algorithm is complicated by the need to handle polygons that are not */
    /*  convex.  Although the polygon is not necessarily monotone, it can be     */
    /*  triangulated in a manner similar to the stack-based algorithms for       */
    /*  monotone polygons.  For each reflex vertex (local concavity) of the      */
    /*  polygon, there will be an inverted triangle formed by one of the edge    */
    /*  flips.  (An inverted triangle is one with negative area - that is, its   */
    /*  vertices are arranged in clockwise order - and is best thought of as a   */
    /*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       */
    /*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   */
    /*  later.                                                                   */
    /*                                                                           */
    /*  A reflex vertex is popped from the stack when a vertex is inserted that  */
    /*  is visible to the reflex vertex.  (However, if the vertex behind the     */
    /*  reflex vertex is not visible to the reflex vertex, a new inverted        */
    /*  triangle will take its place on the stack.)  These details are handled   */
    /*  by the delaunayfixup() routine above.                                    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void constrainededge(struct mesh *m, struct behavior *b,
                         struct otri *starttri, vertex endpoint2, int newmark)
    #else /* not ANSI_DECLARATORS */
    void constrainededge(m, b, starttri, endpoint2, newmark)
    struct mesh *m;
    struct behavior *b;
    struct otri *starttri;
    vertex endpoint2;
    int newmark;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri fixuptri, fixuptri2;
      struct osub crosssubseg;
      vertex endpoint1;
      vertex farvertex;
      REAL area;
      int collision;
      int done;
      triangle ptr;             /* Temporary variable used by sym() and oprev(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      org(*starttri, endpoint1);
      lnext(*starttri, fixuptri);
      flip(m, b, &fixuptri);
      /* `collision' indicates whether we have found a vertex directly */
      /*   between endpoint1 and endpoint2.                            */
      collision = 0;
      done = 0;
      do {
        org(fixuptri, farvertex);
        /* `farvertex' is the extreme point of the polygon we are "digging" */
        /*   to get from endpoint1 to endpoint2.                           */
        if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {
          oprev(fixuptri, fixuptri2);
          /* Enforce the Delaunay condition around endpoint2. */
          delaunayfixup(m, b, &fixuptri, 0);
          delaunayfixup(m, b, &fixuptri2, 1);
          done = 1;
        } else {
          /* Check whether farvertex is to the left or right of the segment */
          /*   being inserted, to decide which edge of fixuptri to dig      */
          /*   through next.                                                */
          area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);
          if (area == 0.0) {
            /* We've collided with a vertex between endpoint1 and endpoint2. */
            collision = 1;
            oprev(fixuptri, fixuptri2);
            /* Enforce the Delaunay condition around farvertex. */
            delaunayfixup(m, b, &fixuptri, 0);
            delaunayfixup(m, b, &fixuptri2, 1);
            done = 1;
          } else {
            if (area > 0.0) {        /* farvertex is to the left of the segment. */
              oprev(fixuptri, fixuptri2);
              /* Enforce the Delaunay condition around farvertex, on the */
              /*   left side of the segment only.                        */
              delaunayfixup(m, b, &fixuptri2, 1);
              /* Flip the edge that crosses the segment.  After the edge is */
              /*   flipped, one of its endpoints is the fan vertex, and the */
              /*   destination of fixuptri is the fan vertex.               */
              lprevself(fixuptri);
            } else {                /* farvertex is to the right of the segment. */
              delaunayfixup(m, b, &fixuptri, 0);
              /* Flip the edge that crosses the segment.  After the edge is */
              /*   flipped, one of its endpoints is the fan vertex, and the */
              /*   destination of fixuptri is the fan vertex.               */
              oprevself(fixuptri);
            }
            /* Check for two intersecting segments. */
            tspivot(fixuptri, crosssubseg);
            if (crosssubseg.ss == m->dummysub) {
              flip(m, b, &fixuptri);    /* May create inverted triangle at left. */
            } else {
              /* We've collided with a segment between endpoint1 and endpoint2. */
              collision = 1;
              /* Insert a vertex at the intersection. */
              segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);
              done = 1;
            }
          }
        }
      } while (!done);
      /* Insert a subsegment to make the segment permanent. */
      insertsubseg(m, b, &fixuptri, newmark);
      /* If there was a collision with an interceding vertex, install another */
      /*   segment connecting that vertex with endpoint2.                     */
      if (collision) {
        /* Insert the remainder of the segment. */
        if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {
          constrainededge(m, b, &fixuptri, endpoint2, newmark);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  insertsegment()   Insert a PSLG segment into a triangulation.            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void insertsegment(struct mesh *m, struct behavior *b,
                       vertex endpoint1, vertex endpoint2, int newmark)
    #else /* not ANSI_DECLARATORS */
    void insertsegment(m, b, endpoint1, endpoint2, newmark)
    struct mesh *m;
    struct behavior *b;
    vertex endpoint1;
    vertex endpoint2;
    int newmark;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri searchtri1, searchtri2;
      triangle encodedtri;
      vertex checkvertex;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (b->verbose > 1) {
        printf("  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
               endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
      }
    
      /* Find a triangle whose origin is the segment's first endpoint. */
      checkvertex = (vertex) NULL;
      encodedtri = vertex2tri(endpoint1);
      if (encodedtri != (triangle) NULL) {
        decode(encodedtri, searchtri1);
        org(searchtri1, checkvertex);
      }
      if (checkvertex != endpoint1) {
        /* Find a boundary triangle to search from. */
        searchtri1.tri = m->dummytri;
        searchtri1.orient = 0;
        symself(searchtri1);
        /* Search for the segment's first endpoint by point location. */
        if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {
          printf(
            "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
          printf("  (%.12g, %.12g) in triangulation.\n",
                 endpoint1[0], endpoint1[1]);
          internalerror();
        }
      }
      /* Remember this triangle to improve subsequent point location. */
      otricopy(searchtri1, m->recenttri);
      /* Scout the beginnings of a path from the first endpoint */
      /*   toward the second.                                   */
      if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {
        /* The segment was easily inserted. */
        return;
      }
      /* The first endpoint may have changed if a collision with an intervening */
      /*   vertex on the segment occurred.                                      */
      org(searchtri1, endpoint1);
    
      /* Find a triangle whose origin is the segment's second endpoint. */
      checkvertex = (vertex) NULL;
      encodedtri = vertex2tri(endpoint2);
      if (encodedtri != (triangle) NULL) {
        decode(encodedtri, searchtri2);
        org(searchtri2, checkvertex);
      }
      if (checkvertex != endpoint2) {
        /* Find a boundary triangle to search from. */
        searchtri2.tri = m->dummytri;
        searchtri2.orient = 0;
        symself(searchtri2);
        /* Search for the segment's second endpoint by point location. */
        if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {
          printf(
            "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
          printf("  (%.12g, %.12g) in triangulation.\n",
                 endpoint2[0], endpoint2[1]);
          internalerror();
        }
      }
      /* Remember this triangle to improve subsequent point location. */
      otricopy(searchtri2, m->recenttri);
      /* Scout the beginnings of a path from the second endpoint */
      /*   toward the first.                                     */
      if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {
        /* The segment was easily inserted. */
        return;
      }
      /* The second endpoint may have changed if a collision with an intervening */
      /*   vertex on the segment occurred.                                       */
      org(searchtri2, endpoint2);
    
    #ifndef REDUCED
    #ifndef CDT_ONLY
      if (b->splitseg) {
        /* Insert vertices to force the segment into the triangulation. */
        conformingedge(m, b, endpoint1, endpoint2, newmark);
      } else {
    #endif /* not CDT_ONLY */
    #endif /* not REDUCED */
        /* Insert the segment directly into the triangulation. */
        constrainededge(m, b, &searchtri1, endpoint2, newmark);
    #ifndef REDUCED
    #ifndef CDT_ONLY
      }
    #endif /* not CDT_ONLY */
    #endif /* not REDUCED */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  markhull()   Cover the convex hull of a triangulation with subsegments.  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void markhull(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void markhull(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri hulltri;
      struct otri nexttri;
      struct otri starttri;
      triangle ptr;             /* Temporary variable used by sym() and oprev(). */
    
      /* Find a triangle handle on the hull. */
      hulltri.tri = m->dummytri;
      hulltri.orient = 0;
      symself(hulltri);
      /* Remember where we started so we know when to stop. */
      otricopy(hulltri, starttri);
      /* Go once counterclockwise around the convex hull. */
      do {
        /* Create a subsegment if there isn't already one here. */
        insertsubseg(m, b, &hulltri, 1);
        /* To find the next hull edge, go clockwise around the next vertex. */
        lnextself(hulltri);
        oprev(hulltri, nexttri);
        while (nexttri.tri != m->dummytri) {
          otricopy(nexttri, hulltri);
          oprev(hulltri, nexttri);
        }
      } while (!otriequal(hulltri, starttri));
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  formskeleton()   Create the segments of a triangulation, including PSLG  */
    /*                   segments and edges on the convex hull.                  */
    /*                                                                           */
    /*  The PSLG segments are read from a .poly file.  The return value is the   */
    /*  number of segments in the file.                                          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist,
                      int *segmentmarkerlist, int numberofsegments)
    #else /* not ANSI_DECLARATORS */
    void formskeleton(m, b, segmentlist, segmentmarkerlist, numberofsegments)
    struct mesh *m;
    struct behavior *b;
    int *segmentlist;
    int *segmentmarkerlist;
    int numberofsegments;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    void formskeleton(struct mesh *m, struct behavior *b,
                      FILE *polyfile, char *polyfilename)
    #else /* not ANSI_DECLARATORS */
    void formskeleton(m, b, polyfile, polyfilename)
    struct mesh *m;
    struct behavior *b;
    FILE *polyfile;
    char *polyfilename;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      char polyfilename[6];
      int index;
    #else /* not TRILIBRARY */
      char inputline[INPUTLINESIZE];
      char *stringptr;
    #endif /* not TRILIBRARY */
      vertex endpoint1, endpoint2;
      int segmentmarkers;
      int end1, end2;
      int boundmarker;
      int i;
    
      if (b->poly) {
        if (!b->quiet) {
          printf("Recovering segments in Delaunay triangulation.\n");
        }
    #ifdef TRILIBRARY
        strcpy(polyfilename, "input");
        m->insegments = numberofsegments;
        segmentmarkers = segmentmarkerlist != (int *) NULL;
        index = 0;
    #else /* not TRILIBRARY */
        /* Read the segments from a .poly file. */
        /* Read number of segments and number of boundary markers. */
        stringptr = readline(inputline, polyfile, polyfilename);
        m->insegments = (int) strtol(stringptr, &stringptr, 0);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          segmentmarkers = 0;
        } else {
          segmentmarkers = (int) strtol(stringptr, &stringptr, 0);
        }
    #endif /* not TRILIBRARY */
        /* If the input vertices are collinear, there is no triangulation, */
        /*   so don't try to insert segments.                              */
        if (m->triangles.items == 0) {
          return;
        }
    
        /* If segments are to be inserted, compute a mapping */
        /*   from vertices to triangles.                     */
        if (m->insegments > 0) {
          makevertexmap(m, b);
          if (b->verbose) {
            printf("  Recovering PSLG segments.\n");
          }
        }
    
        boundmarker = 0;
        /* Read and insert the segments. */
        for (i = 0; i < m->insegments; i++) {
    #ifdef TRILIBRARY
          end1 = segmentlist[index++];
          end2 = segmentlist[index++];
          if (segmentmarkers) {
            boundmarker = segmentmarkerlist[i];
          }
    #else /* not TRILIBRARY */
          stringptr = readline(inputline, polyfile, b->inpolyfilename);
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Segment %d has no endpoints in %s.\n",
                   b->firstnumber + i, polyfilename);
            triexit(1);
          } else {
            end1 = (int) strtol(stringptr, &stringptr, 0);
          }
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Segment %d is missing its second endpoint in %s.\n",
                   b->firstnumber + i, polyfilename);
            triexit(1);
          } else {
            end2 = (int) strtol(stringptr, &stringptr, 0);
          }
          if (segmentmarkers) {
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              boundmarker = 0;
            } else {
              boundmarker = (int) strtol(stringptr, &stringptr, 0);
            }
          }
    #endif /* not TRILIBRARY */
          if ((end1 < b->firstnumber) ||
              (end1 >= b->firstnumber + m->invertices)) {
            if (!b->quiet) {
              printf("Warning:  Invalid first endpoint of segment %d in %s.\n",
                     b->firstnumber + i, polyfilename);
            }
          } else if ((end2 < b->firstnumber) ||
                     (end2 >= b->firstnumber + m->invertices)) {
            if (!b->quiet) {
              printf("Warning:  Invalid second endpoint of segment %d in %s.\n",
                     b->firstnumber + i, polyfilename);
            }
          } else {
            /* Find the vertices numbered `end1' and `end2'. */
            endpoint1 = getvertex(m, b, end1);
            endpoint2 = getvertex(m, b, end2);
            if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
              if (!b->quiet) {
                printf("Warning:  Endpoints of segment %d are coincident in %s.\n",
                       b->firstnumber + i, polyfilename);
              }
            } else {
              insertsegment(m, b, endpoint1, endpoint2, boundmarker);
            }
          }
        }
      } else {
        m->insegments = 0;
      }
      if (b->convex || !b->poly) {
        /* Enclose the convex hull with subsegments. */
        if (b->verbose) {
          printf("  Enclosing convex hull with segments.\n");
        }
        markhull(m, b);
      }
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Segment insertion ends here                               *********/
    
    /********* Carving out holes and concavities begins here             *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  infecthull()   Virally infect all of the triangles of the convex hull    */
    /*                 that are not protected by subsegments.  Where there are   */
    /*                 subsegments, set boundary markers as appropriate.         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void infecthull(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void infecthull(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri hulltri;
      struct otri nexttri;
      struct otri starttri;
      struct osub hullsubseg;
      triangle **deadtriangle;
      vertex horg, hdest;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      if (b->verbose) {
        printf("  Marking concavities (external triangles) for elimination.\n");
      }
      /* Find a triangle handle on the hull. */
      hulltri.tri = m->dummytri;
      hulltri.orient = 0;
      symself(hulltri);
      /* Remember where we started so we know when to stop. */
      otricopy(hulltri, starttri);
      /* Go once counterclockwise around the convex hull. */
      do {
        /* Ignore triangles that are already infected. */
        if (!infected(hulltri)) {
          /* Is the triangle protected by a subsegment? */
          tspivot(hulltri, hullsubseg);
          if (hullsubseg.ss == m->dummysub) {
            /* The triangle is not protected; infect it. */
            if (!infected(hulltri)) {
              infect(hulltri);
              deadtriangle = (triangle **) poolalloc(&m->viri);
              *deadtriangle = hulltri.tri;
            }
          } else {
            /* The triangle is protected; set boundary markers if appropriate. */
            if (mark(hullsubseg) == 0) {
              setmark(hullsubseg, 1);
              org(hulltri, horg);
              dest(hulltri, hdest);
              if (vertexmark(horg) == 0) {
                setvertexmark(horg, 1);
              }
              if (vertexmark(hdest) == 0) {
                setvertexmark(hdest, 1);
              }
            }
          }
        }
        /* To find the next hull edge, go clockwise around the next vertex. */
        lnextself(hulltri);
        oprev(hulltri, nexttri);
        while (nexttri.tri != m->dummytri) {
          otricopy(nexttri, hulltri);
          oprev(hulltri, nexttri);
        }
      } while (!otriequal(hulltri, starttri));
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  plague()   Spread the virus from all infected triangles to any neighbors */
    /*             not protected by subsegments.  Delete all infected triangles. */
    /*                                                                           */
    /*  This is the procedure that actually creates holes and concavities.       */
    /*                                                                           */
    /*  This procedure operates in two phases.  The first phase identifies all   */
    /*  the triangles that will die, and marks them as infected.  They are       */
    /*  marked to ensure that each triangle is added to the virus pool only      */
    /*  once, so the procedure will terminate.                                   */
    /*                                                                           */
    /*  The second phase actually eliminates the infected triangles.  It also    */
    /*  eliminates orphaned vertices.                                            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void plague(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void plague(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri testtri;
      struct otri neighbor;
      triangle **virusloop;
      triangle **deadtriangle;
      struct osub neighborsubseg;
      vertex testvertex;
      vertex norg, ndest;
      vertex deadorg, deaddest, deadapex;
      int killorg;
      triangle ptr;             /* Temporary variable used by sym() and onext(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      if (b->verbose) {
        printf("  Marking neighbors of marked triangles.\n");
      }
      /* Loop through all the infected triangles, spreading the virus to */
      /*   their neighbors, then to their neighbors' neighbors.          */
      traversalinit(&m->viri);
      virusloop = (triangle **) traverse(&m->viri);
      while (virusloop != (triangle **) NULL) {
        testtri.tri = *virusloop;
        /* A triangle is marked as infected by messing with one of its pointers */
        /*   to subsegments, setting it to an illegal value.  Hence, we have to */
        /*   temporarily uninfect this triangle so that we can examine its      */
        /*   adjacent subsegments.                                              */
        uninfect(testtri);
        if (b->verbose > 2) {
          /* Assign the triangle an orientation for convenience in */
          /*   checking its vertices.                              */
          testtri.orient = 0;
          org(testtri, deadorg);
          dest(testtri, deaddest);
          apex(testtri, deadapex);
          printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                 deadorg[0], deadorg[1], deaddest[0], deaddest[1],
                 deadapex[0], deadapex[1]);
        }
        /* Check each of the triangle's three neighbors. */
        for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
          /* Find the neighbor. */
          sym(testtri, neighbor);
          /* Check for a subsegment between the triangle and its neighbor. */
          tspivot(testtri, neighborsubseg);
          /* Check if the neighbor is nonexistent or already infected. */
          if ((neighbor.tri == m->dummytri) || infected(neighbor)) {
            if (neighborsubseg.ss != m->dummysub) {
              /* There is a subsegment separating the triangle from its      */
              /*   neighbor, but both triangles are dying, so the subsegment */
              /*   dies too.                                                 */
              subsegdealloc(m, neighborsubseg.ss);
              if (neighbor.tri != m->dummytri) {
                /* Make sure the subsegment doesn't get deallocated again */
                /*   later when the infected neighbor is visited.         */
                uninfect(neighbor);
                tsdissolve(neighbor);
                infect(neighbor);
              }
            }
          } else {                   /* The neighbor exists and is not infected. */
            if (neighborsubseg.ss == m->dummysub) {
              /* There is no subsegment protecting the neighbor, so */
              /*   the neighbor becomes infected.                   */
              if (b->verbose > 2) {
                org(neighbor, deadorg);
                dest(neighbor, deaddest);
                apex(neighbor, deadapex);
                printf(
                  "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                       deadorg[0], deadorg[1], deaddest[0], deaddest[1],
                       deadapex[0], deadapex[1]);
              }
              infect(neighbor);
              /* Ensure that the neighbor's neighbors will be infected. */
              deadtriangle = (triangle **) poolalloc(&m->viri);
              *deadtriangle = neighbor.tri;
            } else {               /* The neighbor is protected by a subsegment. */
              /* Remove this triangle from the subsegment. */
              stdissolve(neighborsubseg);
              /* The subsegment becomes a boundary.  Set markers accordingly. */
              if (mark(neighborsubseg) == 0) {
                setmark(neighborsubseg, 1);
              }
              org(neighbor, norg);
              dest(neighbor, ndest);
              if (vertexmark(norg) == 0) {
                setvertexmark(norg, 1);
              }
              if (vertexmark(ndest) == 0) {
                setvertexmark(ndest, 1);
              }
            }
          }
        }
        /* Remark the triangle as infected, so it doesn't get added to the */
        /*   virus pool again.                                             */
        infect(testtri);
        virusloop = (triangle **) traverse(&m->viri);
      }
    
      if (b->verbose) {
        printf("  Deleting marked triangles.\n");
      }
    
      traversalinit(&m->viri);
      virusloop = (triangle **) traverse(&m->viri);
      while (virusloop != (triangle **) NULL) {
        testtri.tri = *virusloop;
    
        /* Check each of the three corners of the triangle for elimination. */
        /*   This is done by walking around each vertex, checking if it is  */
        /*   still connected to at least one live triangle.                 */
        for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
          org(testtri, testvertex);
          /* Check if the vertex has already been tested. */
          if (testvertex != (vertex) NULL) {
            killorg = 1;
            /* Mark the corner of the triangle as having been tested. */
            setorg(testtri, NULL);
            /* Walk counterclockwise about the vertex. */
            onext(testtri, neighbor);
            /* Stop upon reaching a boundary or the starting triangle. */
            while ((neighbor.tri != m->dummytri) &&
                   (!otriequal(neighbor, testtri))) {
              if (infected(neighbor)) {
                /* Mark the corner of this triangle as having been tested. */
                setorg(neighbor, NULL);
              } else {
                /* A live triangle.  The vertex survives. */
                killorg = 0;
              }
              /* Walk counterclockwise about the vertex. */
              onextself(neighbor);
            }
            /* If we reached a boundary, we must walk clockwise as well. */
            if (neighbor.tri == m->dummytri) {
              /* Walk clockwise about the vertex. */
              oprev(testtri, neighbor);
              /* Stop upon reaching a boundary. */
              while (neighbor.tri != m->dummytri) {
                if (infected(neighbor)) {
                /* Mark the corner of this triangle as having been tested. */
                  setorg(neighbor, NULL);
                } else {
                  /* A live triangle.  The vertex survives. */
                  killorg = 0;
                }
                /* Walk clockwise about the vertex. */
                oprevself(neighbor);
              }
            }
            if (killorg) {
              if (b->verbose > 1) {
                printf("    Deleting vertex (%.12g, %.12g)\n",
                       testvertex[0], testvertex[1]);
              }
              setvertextype(testvertex, UNDEADVERTEX);
              m->undeads++;
            }
          }
        }
    
        /* Record changes in the number of boundary edges, and disconnect */
        /*   dead triangles from their neighbors.                         */
        for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
          sym(testtri, neighbor);
          if (neighbor.tri == m->dummytri) {
            /* There is no neighboring triangle on this edge, so this edge    */
            /*   is a boundary edge.  This triangle is being deleted, so this */
            /*   boundary edge is deleted.                                    */
            m->hullsize--;
          } else {
            /* Disconnect the triangle from its neighbor. */
            dissolve(neighbor);
            /* There is a neighboring triangle on this edge, so this edge */
            /*   becomes a boundary edge when this triangle is deleted.   */
            m->hullsize++;
          }
        }
        /* Return the dead triangle to the pool of triangles. */
        triangledealloc(m, testtri.tri);
        virusloop = (triangle **) traverse(&m->viri);
      }
      /* Empty the virus pool. */
      poolrestart(&m->viri);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  regionplague()   Spread regional attributes and/or area constraints      */
    /*                   (from a .poly file) throughout the mesh.                */
    /*                                                                           */
    /*  This procedure operates in two phases.  The first phase spreads an       */
    /*  attribute and/or an area constraint through a (segment-bounded) region.  */
    /*  The triangles are marked to ensure that each triangle is added to the    */
    /*  virus pool only once, so the procedure will terminate.                   */
    /*                                                                           */
    /*  The second phase uninfects all infected triangles, returning them to     */
    /*  normal.                                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void regionplague(struct mesh *m, struct behavior *b,
                      REAL attribute, REAL area)
    #else /* not ANSI_DECLARATORS */
    void regionplague(m, b, attribute, area)
    struct mesh *m;
    struct behavior *b;
    REAL attribute;
    REAL area;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri testtri;
      struct otri neighbor;
      triangle **virusloop;
      triangle **regiontri;
      struct osub neighborsubseg;
      vertex regionorg, regiondest, regionapex;
      triangle ptr;             /* Temporary variable used by sym() and onext(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      if (b->verbose > 1) {
        printf("  Marking neighbors of marked triangles.\n");
      }
      /* Loop through all the infected triangles, spreading the attribute      */
      /*   and/or area constraint to their neighbors, then to their neighbors' */
      /*   neighbors.                                                          */
      traversalinit(&m->viri);
      virusloop = (triangle **) traverse(&m->viri);
      while (virusloop != (triangle **) NULL) {
        testtri.tri = *virusloop;
        /* A triangle is marked as infected by messing with one of its pointers */
        /*   to subsegments, setting it to an illegal value.  Hence, we have to */
        /*   temporarily uninfect this triangle so that we can examine its      */
        /*   adjacent subsegments.                                              */
        uninfect(testtri);
        if (b->regionattrib) {
          /* Set an attribute. */
          setelemattribute(testtri, m->eextras, attribute);
        }
        if (b->vararea) {
          /* Set an area constraint. */
          setareabound(testtri, area);
        }
        if (b->verbose > 2) {
          /* Assign the triangle an orientation for convenience in */
          /*   checking its vertices.                              */
          testtri.orient = 0;
          org(testtri, regionorg);
          dest(testtri, regiondest);
          apex(testtri, regionapex);
          printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                 regionorg[0], regionorg[1], regiondest[0], regiondest[1],
                 regionapex[0], regionapex[1]);
        }
        /* Check each of the triangle's three neighbors. */
        for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
          /* Find the neighbor. */
          sym(testtri, neighbor);
          /* Check for a subsegment between the triangle and its neighbor. */
          tspivot(testtri, neighborsubseg);
          /* Make sure the neighbor exists, is not already infected, and */
          /*   isn't protected by a subsegment.                          */
          if ((neighbor.tri != m->dummytri) && !infected(neighbor)
              && (neighborsubseg.ss == m->dummysub)) {
            if (b->verbose > 2) {
              org(neighbor, regionorg);
              dest(neighbor, regiondest);
              apex(neighbor, regionapex);
              printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                     regionorg[0], regionorg[1], regiondest[0], regiondest[1],
                     regionapex[0], regionapex[1]);
            }
            /* Infect the neighbor. */
            infect(neighbor);
            /* Ensure that the neighbor's neighbors will be infected. */
            regiontri = (triangle **) poolalloc(&m->viri);
            *regiontri = neighbor.tri;
          }
        }
        /* Remark the triangle as infected, so it doesn't get added to the */
        /*   virus pool again.                                             */
        infect(testtri);
        virusloop = (triangle **) traverse(&m->viri);
      }
    
      /* Uninfect all triangles. */
      if (b->verbose > 1) {
        printf("  Unmarking marked triangles.\n");
      }
      traversalinit(&m->viri);
      virusloop = (triangle **) traverse(&m->viri);
      while (virusloop != (triangle **) NULL) {
        testtri.tri = *virusloop;
        uninfect(testtri);
        virusloop = (triangle **) traverse(&m->viri);
      }
      /* Empty the virus pool. */
      poolrestart(&m->viri);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  carveholes()   Find the holes and infect them.  Find the area            */
    /*                 constraints and infect them.  Infect the convex hull.     */
    /*                 Spread the infection and kill triangles.  Spread the      */
    /*                 area constraints.                                         */
    /*                                                                           */
    /*  This routine mainly calls other routines to carry out all these          */
    /*  functions.                                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void carveholes(struct mesh *m, struct behavior *b, REAL *holelist, int holes,
                    REAL *regionlist, int regions)
    #else /* not ANSI_DECLARATORS */
    void carveholes(m, b, holelist, holes, regionlist, regions)
    struct mesh *m;
    struct behavior *b;
    REAL *holelist;
    int holes;
    REAL *regionlist;
    int regions;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri searchtri;
      struct otri triangleloop;
      struct otri *regiontris;
      triangle **holetri;
      triangle **regiontri;
      vertex searchorg, searchdest;
      enum locateresult intersect;
      int i;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (!(b->quiet || (b->noholes && b->convex))) {
        printf("Removing unwanted triangles.\n");
        if (b->verbose && (holes > 0)) {
          printf("  Marking holes for elimination.\n");
        }
      }
    
      if (regions > 0) {
        /* Allocate storage for the triangles in which region points fall. */
        regiontris = (struct otri *) trimalloc(regions *
                                               (int) sizeof(struct otri));
      } else {
        regiontris = (struct otri *) NULL;
      }
    
      if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
        /* Initialize a pool of viri to be used for holes, concavities, */
        /*   regional attributes, and/or regional area constraints.     */
        poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0);
      }
    
      if (!b->convex) {
        /* Mark as infected any unprotected triangles on the boundary. */
        /*   This is one way by which concavities are created.         */
        infecthull(m, b);
      }
    
      if ((holes > 0) && !b->noholes) {
        /* Infect each triangle in which a hole lies. */
        for (i = 0; i < 2 * holes; i += 2) {
          /* Ignore holes that aren't within the bounds of the mesh. */
          if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax)
              && (holelist[i + 1] >= m->ymin) && (holelist[i + 1] <= m->ymax)) {
            /* Start searching from some triangle on the outer boundary. */
            searchtri.tri = m->dummytri;
            searchtri.orient = 0;
            symself(searchtri);
            /* Ensure that the hole is to the left of this boundary edge; */
            /*   otherwise, locate() will falsely report that the hole    */
            /*   falls within the starting triangle.                      */
            org(searchtri, searchorg);
            dest(searchtri, searchdest);
            if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) >
                0.0) {
              /* Find a triangle that contains the hole. */
              intersect = locate(m, b, &holelist[i], &searchtri);
              if ((intersect != OUTSIDE) && (!infected(searchtri))) {
                /* Infect the triangle.  This is done by marking the triangle  */
                /*   as infected and including the triangle in the virus pool. */
                infect(searchtri);
                holetri = (triangle **) poolalloc(&m->viri);
                *holetri = searchtri.tri;
              }
            }
          }
        }
      }
    
      /* Now, we have to find all the regions BEFORE we carve the holes, because */
      /*   locate() won't work when the triangulation is no longer convex.       */
      /*   (Incidentally, this is the reason why regional attributes and area    */
      /*   constraints can't be used when refining a preexisting mesh, which     */
      /*   might not be convex; they can only be used with a freshly             */
      /*   triangulated PSLG.)                                                   */
      if (regions > 0) {
        /* Find the starting triangle for each region. */
        for (i = 0; i < regions; i++) {
          regiontris[i].tri = m->dummytri;
          /* Ignore region points that aren't within the bounds of the mesh. */
          if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax) &&
              (regionlist[4 * i + 1] >= m->ymin) &&
              (regionlist[4 * i + 1] <= m->ymax)) {
            /* Start searching from some triangle on the outer boundary. */
            searchtri.tri = m->dummytri;
            searchtri.orient = 0;
            symself(searchtri);
            /* Ensure that the region point is to the left of this boundary */
            /*   edge; otherwise, locate() will falsely report that the     */
            /*   region point falls within the starting triangle.           */
            org(searchtri, searchorg);
            dest(searchtri, searchdest);
            if (counterclockwise(m, b, searchorg, searchdest, &regionlist[4 * i]) >
                0.0) {
              /* Find a triangle that contains the region point. */
              intersect = locate(m, b, &regionlist[4 * i], &searchtri);
              if ((intersect != OUTSIDE) && (!infected(searchtri))) {
                /* Record the triangle for processing after the */
                /*   holes have been carved.                    */
                otricopy(searchtri, regiontris[i]);
              }
            }
          }
        }
      }
    
      if (m->viri.items > 0) {
        /* Carve the holes and concavities. */
        plague(m, b);
      }
      /* The virus pool should be empty now. */
    
      if (regions > 0) {
        if (!b->quiet) {
          if (b->regionattrib) {
            if (b->vararea) {
              printf("Spreading regional attributes and area constraints.\n");
            } else {
              printf("Spreading regional attributes.\n");
            }
          } else { 
            printf("Spreading regional area constraints.\n");
          }
        }
        if (b->regionattrib && !b->refine) {
          /* Assign every triangle a regional attribute of zero. */
          traversalinit(&m->triangles);
          triangleloop.orient = 0;
          triangleloop.tri = triangletraverse(m);
          while (triangleloop.tri != (triangle *) NULL) {
            setelemattribute(triangleloop, m->eextras, 0.0);
            triangleloop.tri = triangletraverse(m);
          }
        }
        for (i = 0; i < regions; i++) {
          if (regiontris[i].tri != m->dummytri) {
            /* Make sure the triangle under consideration still exists. */
            /*   It may have been eaten by the virus.                   */
            if (!deadtri(regiontris[i].tri)) {
              /* Put one triangle in the virus pool. */
              infect(regiontris[i]);
              regiontri = (triangle **) poolalloc(&m->viri);
              *regiontri = regiontris[i].tri;
              /* Apply one region's attribute and/or area constraint. */
              regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);
              /* The virus pool should be empty now. */
            }
          }
        }
        if (b->regionattrib && !b->refine) {
          /* Note the fact that each triangle has an additional attribute. */
          m->eextras++;
        }
      }
    
      /* Free up memory. */
      if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
        pooldeinit(&m->viri);
      }
      if (regions > 0) {
        trifree((VOID *) regiontris);
      }
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Carving out holes and concavities ends here               *********/
    
    /********* Mesh quality maintenance begins here                      *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  tallyencs()   Traverse the entire list of subsegments, and check each    */
    /*                to see if it is encroached.  If so, add it to the list.    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void tallyencs(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void tallyencs(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct osub subsegloop;
      int dummy;
    
      traversalinit(&m->subsegs);
      subsegloop.ssorient = 0;
      subsegloop.ss = subsegtraverse(m);
      while (subsegloop.ss != (subseg *) NULL) {
        /* If the segment is encroached, add it to the list. */
        dummy = checkseg4encroach(m, b, &subsegloop);
        subsegloop.ss = subsegtraverse(m);
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  precisionerror()  Print an error message for precision problems.         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void precisionerror()
    {
      printf("Try increasing the area criterion and/or reducing the minimum\n");
      printf("  allowable angle so that tiny triangles are not created.\n");
    #ifdef SINGLE
      printf("Alternatively, try recompiling me with double precision\n");
      printf("  arithmetic (by removing \"#define SINGLE\" from the\n");
      printf("  source file or \"-DSINGLE\" from the makefile).\n");
    #endif /* SINGLE */
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  splitencsegs()   Split all the encroached subsegments.                   */
    /*                                                                           */
    /*  Each encroached subsegment is repaired by splitting it - inserting a     */
    /*  vertex at or near its midpoint.  Newly inserted vertices may encroach    */
    /*  upon other subsegments; these are also repaired.                         */
    /*                                                                           */
    /*  `triflaws' is a flag that specifies whether one should take note of new  */
    /*  bad triangles that result from inserting vertices to repair encroached   */
    /*  subsegments.                                                             */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void splitencsegs(struct mesh *m, struct behavior *b, int triflaws)
    #else /* not ANSI_DECLARATORS */
    void splitencsegs(m, b, triflaws)
    struct mesh *m;
    struct behavior *b;
    int triflaws;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri enctri;
      struct otri testtri;
      struct osub testsh;
      struct osub currentenc;
      struct badsubseg *encloop;
      vertex eorg, edest, eapex;
      vertex newvertex;
      enum insertvertexresult success;
      REAL segmentlength, nearestpoweroftwo;
      REAL split;
      REAL multiplier, divisor;
      int acuteorg, acuteorg2, acutedest, acutedest2;
      int dummy;
      int i;
      triangle ptr;                     /* Temporary variable used by stpivot(). */
      subseg sptr;                        /* Temporary variable used by snext(). */
    
      /* Note that steinerleft == -1 if an unlimited number */
      /*   of Steiner points is allowed.                    */
      while ((m->badsubsegs.items > 0) && (m->steinerleft != 0)) {
        traversalinit(&m->badsubsegs);
        encloop = badsubsegtraverse(m);
        while ((encloop != (struct badsubseg *) NULL) && (m->steinerleft != 0)) {
          sdecode(encloop->encsubseg, currentenc);
          sorg(currentenc, eorg);
          sdest(currentenc, edest);
          /* Make sure that this segment is still the same segment it was   */
          /*   when it was determined to be encroached.  If the segment was */
          /*   enqueued multiple times (because several newly inserted      */
          /*   vertices encroached it), it may have already been split.     */
          if (!deadsubseg(currentenc.ss) &&
              (eorg == encloop->subsegorg) && (edest == encloop->subsegdest)) {
            /* To decide where to split a segment, we need to know if the   */
            /*   segment shares an endpoint with an adjacent segment.       */
            /*   The concern is that, if we simply split every encroached   */
            /*   segment in its center, two adjacent segments with a small  */
            /*   angle between them might lead to an infinite loop; each    */
            /*   vertex added to split one segment will encroach upon the   */
            /*   other segment, which must then be split with a vertex that */
            /*   will encroach upon the first segment, and so on forever.   */
            /* To avoid this, imagine a set of concentric circles, whose    */
            /*   radii are powers of two, about each segment endpoint.      */
            /*   These concentric circles determine where the segment is    */
            /*   split.  (If both endpoints are shared with adjacent        */
            /*   segments, split the segment in the middle, and apply the   */
            /*   concentric circles for later splittings.)                  */
    
            /* Is the origin shared with another segment? */
            stpivot(currentenc, enctri);
            lnext(enctri, testtri);
            tspivot(testtri, testsh);
            acuteorg = testsh.ss != m->dummysub;
            /* Is the destination shared with another segment? */
            lnextself(testtri);
            tspivot(testtri, testsh);
            acutedest = testsh.ss != m->dummysub;
    
            /* If we're using Chew's algorithm (rather than Ruppert's) */
            /*   to define encroachment, delete free vertices from the */
            /*   subsegment's diametral circle.                        */
            if (!b->conformdel && !acuteorg && !acutedest) {
              apex(enctri, eapex);
              while ((vertextype(eapex) == FREEVERTEX) &&
                     ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
                      (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {
                deletevertex(m, b, &testtri);
                stpivot(currentenc, enctri);
                apex(enctri, eapex);
                lprev(enctri, testtri);
              }
            }
    
            /* Now, check the other side of the segment, if there's a triangle */
            /*   there.                                                        */
            sym(enctri, testtri);
            if (testtri.tri != m->dummytri) {
              /* Is the destination shared with another segment? */
              lnextself(testtri);
              tspivot(testtri, testsh);
              acutedest2 = testsh.ss != m->dummysub;
              acutedest = acutedest || acutedest2;
              /* Is the origin shared with another segment? */
              lnextself(testtri);
              tspivot(testtri, testsh);
              acuteorg2 = testsh.ss != m->dummysub;
              acuteorg = acuteorg || acuteorg2;
    
              /* Delete free vertices from the subsegment's diametral circle. */
              if (!b->conformdel && !acuteorg2 && !acutedest2) {
                org(testtri, eapex);
                while ((vertextype(eapex) == FREEVERTEX) &&
                       ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
                        (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {
                  deletevertex(m, b, &testtri);
                  sym(enctri, testtri);
                  apex(testtri, eapex);
                  lprevself(testtri);
                }
              }
            }
    
            /* Use the concentric circles if exactly one endpoint is shared */
            /*   with another adjacent segment.                             */
            if (acuteorg || acutedest) {
              segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0]) +
                                   (edest[1] - eorg[1]) * (edest[1] - eorg[1]));
              /* Find the power of two that most evenly splits the segment.  */
              /*   The worst case is a 2:1 ratio between subsegment lengths. */
              nearestpoweroftwo = 1.0;
              while (segmentlength > 3.0 * nearestpoweroftwo) {
                nearestpoweroftwo *= 2.0;
              }
              while (segmentlength < 1.5 * nearestpoweroftwo) {
                nearestpoweroftwo *= 0.5;
              }
              /* Where do we split the segment? */
              split = nearestpoweroftwo / segmentlength;
              if (acutedest) {
                split = 1.0 - split;
              }
            } else {
              /* If we're not worried about adjacent segments, split */
              /*   this segment in the middle.                       */
              split = 0.5;
            }
    
            /* Create the new vertex. */
            newvertex = (vertex) poolalloc(&m->vertices);
            /* Interpolate its coordinate and attributes. */
            for (i = 0; i < 2 + m->nextras; i++) {
              newvertex[i] = eorg[i] + split * (edest[i] - eorg[i]);
            }
    
            if (!b->noexact) {
              /* Roundoff in the above calculation may yield a `newvertex'   */
              /*   that is not precisely collinear with `eorg' and `edest'.  */
              /*   Improve collinearity by one step of iterative refinement. */
              multiplier = counterclockwise(m, b, eorg, edest, newvertex);
              divisor = ((eorg[0] - edest[0]) * (eorg[0] - edest[0]) +
                         (eorg[1] - edest[1]) * (eorg[1] - edest[1]));
              if ((multiplier != 0.0) && (divisor != 0.0)) {
                multiplier = multiplier / divisor;
                /* Watch out for NANs. */
                if (multiplier == multiplier) {
                  newvertex[0] += multiplier * (edest[1] - eorg[1]);
                  newvertex[1] += multiplier * (eorg[0] - edest[0]);
                }
              }
            }
    
            setvertexmark(newvertex, mark(currentenc));
            setvertextype(newvertex, SEGMENTVERTEX);
            if (b->verbose > 1) {
              printf(
      "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
                     eorg[0], eorg[1], edest[0], edest[1],
                     newvertex[0], newvertex[1]);
            }
            /* Check whether the new vertex lies on an endpoint. */
            if (((newvertex[0] == eorg[0]) && (newvertex[1] == eorg[1])) ||
                ((newvertex[0] == edest[0]) && (newvertex[1] == edest[1]))) {
              printf("Error:  Ran out of precision at (%.12g, %.12g).\n",
                     newvertex[0], newvertex[1]);
              printf("I attempted to split a segment to a smaller size than\n");
              printf("  can be accommodated by the finite precision of\n");
              printf("  floating point arithmetic.\n");
              precisionerror();
              triexit(1);
            }
            /* Insert the splitting vertex.  This should always succeed. */
            success = insertvertex(m, b, newvertex, &enctri, &currentenc,
                                   1, triflaws);
            if ((success != SUCCESSFULVERTEX) && (success != ENCROACHINGVERTEX)) {
              printf("Internal error in splitencsegs():\n");
              printf("  Failure to split a segment.\n");
              internalerror();
            }
            if (m->steinerleft > 0) {
              m->steinerleft--;
            }
            /* Check the two new subsegments to see if they're encroached. */
            dummy = checkseg4encroach(m, b, &currentenc);
            snextself(currentenc);
            dummy = checkseg4encroach(m, b, &currentenc);
          }
    
          badsubsegdealloc(m, encloop);
          encloop = badsubsegtraverse(m);
        }
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  tallyfaces()   Test every triangle in the mesh for quality measures.     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void tallyfaces(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void tallyfaces(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri triangleloop;
    
      if (b->verbose) {
        printf("  Making a list of bad triangles.\n");
      }
      traversalinit(&m->triangles);
      triangleloop.orient = 0;
      triangleloop.tri = triangletraverse(m);
      while (triangleloop.tri != (triangle *) NULL) {
        /* If the triangle is bad, enqueue it. */
        testtriangle(m, b, &triangleloop);
        triangleloop.tri = triangletraverse(m);
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  splittriangle()   Inserts a vertex at the circumcenter of a triangle.    */
    /*                    Deletes the newly inserted vertex if it encroaches     */
    /*                    upon a segment.                                        */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void splittriangle(struct mesh *m, struct behavior *b,
                       struct badtriang *badtri)
    #else /* not ANSI_DECLARATORS */
    void splittriangle(m, b, badtri)
    struct mesh *m;
    struct behavior *b;
    struct badtriang *badtri;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri badotri;
      vertex borg, bdest, bapex;
      vertex newvertex;
      REAL xi, eta;
      enum insertvertexresult success;
      int errorflag;
      int i;
    
      decode(badtri->poortri, badotri);
      org(badotri, borg);
      dest(badotri, bdest);
      apex(badotri, bapex);
      /* Make sure that this triangle is still the same triangle it was      */
      /*   when it was tested and determined to be of bad quality.           */
      /*   Subsequent transformations may have made it a different triangle. */
      if (!deadtri(badotri.tri) && (borg == badtri->triangorg) &&
          (bdest == badtri->triangdest) && (bapex == badtri->triangapex)) {
        if (b->verbose > 1) {
          printf("  Splitting this triangle at its circumcenter:\n");
          printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],
                 borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
        }
    
        errorflag = 0;
        /* Create a new vertex at the triangle's circumcenter. */
        newvertex = (vertex) poolalloc(&m->vertices);
        findcircumcenter(m, b, borg, bdest, bapex, newvertex, &xi, &eta, 1);
    
        /* Check whether the new vertex lies on a triangle vertex. */
        if (((newvertex[0] == borg[0]) && (newvertex[1] == borg[1])) ||
            ((newvertex[0] == bdest[0]) && (newvertex[1] == bdest[1])) ||
            ((newvertex[0] == bapex[0]) && (newvertex[1] == bapex[1]))) {
          if (!b->quiet) {
            printf(
                 "Warning:  New vertex (%.12g, %.12g) falls on existing vertex.\n",
                   newvertex[0], newvertex[1]);
            errorflag = 1;
          }
          vertexdealloc(m, newvertex);
        } else {
          for (i = 2; i < 2 + m->nextras; i++) {
            /* Interpolate the vertex attributes at the circumcenter. */
            newvertex[i] = borg[i] + xi * (bdest[i] - borg[i])
                                  + eta * (bapex[i] - borg[i]);
          }
          /* The new vertex must be in the interior, and therefore is a */
          /*   free vertex with a marker of zero.                       */
          setvertexmark(newvertex, 0);
          setvertextype(newvertex, FREEVERTEX);
    
          /* Ensure that the handle `badotri' does not represent the longest  */
          /*   edge of the triangle.  This ensures that the circumcenter must */
          /*   fall to the left of this edge, so point location will work.    */
          /*   (If the angle org-apex-dest exceeds 90 degrees, then the       */
          /*   circumcenter lies outside the org-dest edge, and eta is        */
          /*   negative.  Roundoff error might prevent eta from being         */
          /*   negative when it should be, so I test eta against xi.)         */
          if (eta < xi) {
            lprevself(badotri);
          }
    
          /* Insert the circumcenter, searching from the edge of the triangle, */
          /*   and maintain the Delaunay property of the triangulation.        */
          success = insertvertex(m, b, newvertex, &badotri, (struct osub *) NULL,
                                 1, 1);
          if (success == SUCCESSFULVERTEX) {
            if (m->steinerleft > 0) {
              m->steinerleft--;
            }
          } else if (success == ENCROACHINGVERTEX) {
            /* If the newly inserted vertex encroaches upon a subsegment, */
            /*   delete the new vertex.                                   */
            undovertex(m, b);
            if (b->verbose > 1) {
              printf("  Rejecting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
            }
            vertexdealloc(m, newvertex);
          } else if (success == VIOLATINGVERTEX) {
            /* Failed to insert the new vertex, but some subsegment was */
            /*   marked as being encroached.                            */
            vertexdealloc(m, newvertex);
          } else {                                 /* success == DUPLICATEVERTEX */
            /* Couldn't insert the new vertex because a vertex is already there. */
            if (!b->quiet) {
              printf(
                "Warning:  New vertex (%.12g, %.12g) falls on existing vertex.\n",
                     newvertex[0], newvertex[1]);
              errorflag = 1;
            }
            vertexdealloc(m, newvertex);
          }
        }
        if (errorflag) {
          if (b->verbose) {
            printf("  The new vertex is at the circumcenter of triangle\n");
            printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                   borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
          }
          printf("This probably means that I am trying to refine triangles\n");
          printf("  to a smaller size than can be accommodated by the finite\n");
          printf("  precision of floating point arithmetic.  (You can be\n");
          printf("  sure of this if I fail to terminate.)\n");
          precisionerror();
        }
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  enforcequality()   Remove all the encroached subsegments and bad         */
    /*                     triangles from the triangulation.                     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef ANSI_DECLARATORS
    void enforcequality(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void enforcequality(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct badtriang *badtri;
      int i;
    
      if (!b->quiet) {
        printf("Adding Steiner points to enforce quality.\n");
      }
      /* Initialize the pool of encroached subsegments. */
      poolinit(&m->badsubsegs, sizeof(struct badsubseg), BADSUBSEGPERBLOCK,
               BADSUBSEGPERBLOCK, 0);
      if (b->verbose) {
        printf("  Looking for encroached subsegments.\n");
      }
      /* Test all segments to see if they're encroached. */
      tallyencs(m, b);
      if (b->verbose && (m->badsubsegs.items > 0)) {
        printf("  Splitting encroached subsegments.\n");
      }
      /* Fix encroached subsegments without noting bad triangles. */
      splitencsegs(m, b, 0);
      /* At this point, if we haven't run out of Steiner points, the */
      /*   triangulation should be (conforming) Delaunay.            */
    
      /* Next, we worry about enforcing triangle quality. */
      if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {
        /* Initialize the pool of bad triangles. */
        poolinit(&m->badtriangles, sizeof(struct badtriang), BADTRIPERBLOCK,
                 BADTRIPERBLOCK, 0);
        /* Initialize the queues of bad triangles. */
        for (i = 0; i < 4096; i++) {
          m->queuefront[i] = (struct badtriang *) NULL;
        }
        m->firstnonemptyq = -1;
        /* Test all triangles to see if they're bad. */
        tallyfaces(m, b);
        /* Initialize the pool of recently flipped triangles. */
        poolinit(&m->flipstackers, sizeof(struct flipstacker), FLIPSTACKERPERBLOCK,
                 FLIPSTACKERPERBLOCK, 0);
        m->checkquality = 1;
        if (b->verbose) {
          printf("  Splitting bad triangles.\n");
        }
        while ((m->badtriangles.items > 0) && (m->steinerleft != 0)) {
          /* Fix one bad triangle by inserting a vertex at its circumcenter. */
          badtri = dequeuebadtriang(m);
          splittriangle(m, b, badtri);
          if (m->badsubsegs.items > 0) {
            /* Put bad triangle back in queue for another try later. */
            enqueuebadtriang(m, b, badtri);
            /* Fix any encroached subsegments that resulted. */
            /*   Record any new bad triangles that result.   */
            splitencsegs(m, b, 1);
          } else {
            /* Return the bad triangle to the pool. */
            pooldealloc(&m->badtriangles, (VOID *) badtri);
          }
        }
      }
      /* At this point, if the "-D" switch was selected and we haven't run out  */
      /*   of Steiner points, the triangulation should be (conforming) Delaunay */
      /*   and have no low-quality triangles.                                   */
    
      /* Might we have run out of Steiner points too soon? */
      if (!b->quiet && b->conformdel && (m->badsubsegs.items > 0) &&
          (m->steinerleft == 0)) {
        printf("\nWarning:  I ran out of Steiner points, but the mesh has\n");
        if (m->badsubsegs.items == 1) {
          printf("  one encroached subsegment, and therefore might not be truly\n"
                 );
        } else {
          printf("  %ld encroached subsegments, and therefore might not be truly\n"
                 , m->badsubsegs.items);
        }
        printf("  Delaunay.  If the Delaunay property is important to you,\n");
        printf("  try increasing the number of Steiner points (controlled by\n");
        printf("  the -S switch) slightly and try again.\n\n");
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Mesh quality maintenance ends here                        *********/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  highorder()   Create extra nodes for quadratic subparametric elements.   */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void highorder(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void highorder(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri triangleloop, trisym;
      struct osub checkmark;
      vertex newvertex;
      vertex torg, tdest;
      int i;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
      if (!b->quiet) {
        printf("Adding vertices for second-order triangles.\n");
      }
      /* The following line ensures that dead items in the pool of nodes    */
      /*   cannot be allocated for the extra nodes associated with high     */
      /*   order elements.  This ensures that the primary nodes (at the     */
      /*   corners of elements) will occur earlier in the output files, and */
      /*   have lower indices, than the extra nodes.                        */
      m->vertices.deaditemstack = (VOID *) NULL;
    
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      /* To loop over the set of edges, loop over all triangles, and look at   */
      /*   the three edges of each triangle.  If there isn't another triangle  */
      /*   adjacent to the edge, operate on the edge.  If there is another     */
      /*   adjacent triangle, operate on the edge only if the current triangle */
      /*   has a smaller pointer than its neighbor.  This way, each edge is    */
      /*   considered only once.                                               */
      while (triangleloop.tri != (triangle *) NULL) {
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          sym(triangleloop, trisym);
          if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
            org(triangleloop, torg);
            dest(triangleloop, tdest);
            /* Create a new node in the middle of the edge.  Interpolate */
            /*   its attributes.                                         */
            newvertex = (vertex) poolalloc(&m->vertices);
            for (i = 0; i < 2 + m->nextras; i++) {
              newvertex[i] = 0.5 * (torg[i] + tdest[i]);
            }
            /* Set the new node's marker to zero or one, depending on */
            /*   whether it lies on a boundary.                       */
            setvertexmark(newvertex, trisym.tri == m->dummytri);
            setvertextype(newvertex,
                          trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);
            if (b->usesegments) {
              tspivot(triangleloop, checkmark);
              /* If this edge is a segment, transfer the marker to the new node. */
              if (checkmark.ss != m->dummysub) {
                setvertexmark(newvertex, mark(checkmark));
                setvertextype(newvertex, SEGMENTVERTEX);
              }
            }
            if (b->verbose > 1) {
              printf("  Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
            }
            /* Record the new node in the (one or two) adjacent elements. */
            triangleloop.tri[m->highorderindex + triangleloop.orient] =
                    (triangle) newvertex;
            if (trisym.tri != m->dummytri) {
              trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;
            }
          }
        }
        triangleloop.tri = triangletraverse(m);
      }
    }
    
    /********* File I/O routines begin here                              *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  readline()   Read a nonempty line from a file.                           */
    /*                                                                           */
    /*  A line is considered "nonempty" if it contains something that looks like */
    /*  a number.  Comments (prefaced by `#') are ignored.                       */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    char *readline(char *string, FILE *infile, char *infilename)
    #else /* not ANSI_DECLARATORS */
    char *readline(string, infile, infilename)
    char *string;
    FILE *infile;
    char *infilename;
    #endif /* not ANSI_DECLARATORS */
    
    {
      char *result;
    
      /* Search for something that looks like a number. */
      do {
        result = fgets(string, INPUTLINESIZE, infile);
        if (result == (char *) NULL) {
          printf("  Error:  Unexpected end of file in %s.\n", infilename);
          triexit(1);
        }
        /* Skip anything that doesn't look like a number, a comment, */
        /*   or the end of a line.                                   */
        while ((*result != '\0') && (*result != '#')
               && (*result != '.') && (*result != '+') && (*result != '-')
               && ((*result < '0') || (*result > '9'))) {
          result++;
        }
      /* If it's a comment or end of line, read another line and try again. */
      } while ((*result == '#') || (*result == '\0'));
      return result;
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  findfield()   Find the next field of a string.                           */
    /*                                                                           */
    /*  Jumps past the current field by searching for whitespace, then jumps     */
    /*  past the whitespace to find the next field.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    char *findfield(char *string)
    #else /* not ANSI_DECLARATORS */
    char *findfield(string)
    char *string;
    #endif /* not ANSI_DECLARATORS */
    
    {
      char *result;
    
      result = string;
      /* Skip the current field.  Stop upon reaching whitespace. */
      while ((*result != '\0') && (*result != '#')
             && (*result != ' ') && (*result != '\t')) {
        result++;
      }
      /* Now skip the whitespace and anything else that doesn't look like a */
      /*   number, a comment, or the end of a line.                         */
      while ((*result != '\0') && (*result != '#')
             && (*result != '.') && (*result != '+') && (*result != '-')
             && ((*result < '0') || (*result > '9'))) {
        result++;
      }
      /* Check for a comment (prefixed with `#'). */
      if (*result == '#') {
        *result = '\0';
      }
      return result;
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  readnodes()   Read the vertices from a file, which may be a .node or     */
    /*                .poly file.                                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void readnodes(struct mesh *m, struct behavior *b, char *nodefilename,
                   char *polyfilename, FILE **polyfile)
    #else /* not ANSI_DECLARATORS */
    void readnodes(m, b, nodefilename, polyfilename, polyfile)
    struct mesh *m;
    struct behavior *b;
    char *nodefilename;
    char *polyfilename;
    FILE **polyfile;
    #endif /* not ANSI_DECLARATORS */
    
    {
      FILE *infile;
      vertex vertexloop;
      char inputline[INPUTLINESIZE];
      char *stringptr;
      char *infilename;
      REAL x, y;
      int firstnode;
      int nodemarkers;
      int currentmarker;
      int i, j;
    
      if (b->poly) {
        /* Read the vertices from a .poly file. */
        if (!b->quiet) {
          printf("Opening %s.\n", polyfilename);
        }
        *polyfile = fopen(polyfilename, "r");
        if (*polyfile == (FILE *) NULL) {
          printf("  Error:  Cannot access file %s.\n", polyfilename);
          triexit(1);
        }
        /* Read number of vertices, number of dimensions, number of vertex */
        /*   attributes, and number of boundary markers.                   */
        stringptr = readline(inputline, *polyfile, polyfilename);
        m->invertices = (int) strtol(stringptr, &stringptr, 0);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          m->mesh_dim = 2;
        } else {
          m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          m->nextras = 0;
        } else {
          m->nextras = (int) strtol(stringptr, &stringptr, 0);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          nodemarkers = 0;
        } else {
          nodemarkers = (int) strtol(stringptr, &stringptr, 0);
        }
        if (m->invertices > 0) {
          infile = *polyfile;
          infilename = polyfilename;
          m->readnodefile = 0;
        } else {
          /* If the .poly file claims there are zero vertices, that means that */
          /*   the vertices should be read from a separate .node file.         */
          m->readnodefile = 1;
          infilename = nodefilename;
        }
      } else {
        m->readnodefile = 1;
        infilename = nodefilename;
        *polyfile = (FILE *) NULL;
      }
    
      if (m->readnodefile) {
        /* Read the vertices from a .node file. */
        if (!b->quiet) {
          printf("Opening %s.\n", nodefilename);
        }
        infile = fopen(nodefilename, "r");
        if (infile == (FILE *) NULL) {
          printf("  Error:  Cannot access file %s.\n", nodefilename);
          triexit(1);
        }
        /* Read number of vertices, number of dimensions, number of vertex */
        /*   attributes, and number of boundary markers.                   */
        stringptr = readline(inputline, infile, nodefilename);
        m->invertices = (int) strtol(stringptr, &stringptr, 0);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          m->mesh_dim = 2;
        } else {
          m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          m->nextras = 0;
        } else {
          m->nextras = (int) strtol(stringptr, &stringptr, 0);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          nodemarkers = 0;
        } else {
          nodemarkers = (int) strtol(stringptr, &stringptr, 0);
        }
      }
    
      if (m->invertices < 3) {
        printf("Error:  Input must have at least three input vertices.\n");
        triexit(1);
      }
      if (m->mesh_dim != 2) {
        printf("Error:  Triangle only works with two-dimensional meshes.\n");
        triexit(1);
      }
      if (m->nextras == 0) {
        b->weighted = 0;
      }
    
      initializevertexpool(m, b);
    
      /* Read the vertices. */
      for (i = 0; i < m->invertices; i++) {
        vertexloop = (vertex) poolalloc(&m->vertices);
        stringptr = readline(inputline, infile, infilename);
        if (i == 0) {
          firstnode = (int) strtol(stringptr, &stringptr, 0);
          if ((firstnode == 0) || (firstnode == 1)) {
            b->firstnumber = firstnode;
          }
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          printf("Error:  Vertex %d has no x coordinate.\n", b->firstnumber + i);
          triexit(1);
        }
        x = (REAL) strtod(stringptr, &stringptr);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          printf("Error:  Vertex %d has no y coordinate.\n", b->firstnumber + i);
          triexit(1);
        }
        y = (REAL) strtod(stringptr, &stringptr);
        vertexloop[0] = x;
        vertexloop[1] = y;
        /* Read the vertex attributes. */
        for (j = 2; j < 2 + m->nextras; j++) {
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            vertexloop[j] = 0.0;
          } else {
            vertexloop[j] = (REAL) strtod(stringptr, &stringptr);
          }
        }
        if (nodemarkers) {
          /* Read a vertex marker. */
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            setvertexmark(vertexloop, 0);
          } else {
            currentmarker = (int) strtol(stringptr, &stringptr, 0);
            setvertexmark(vertexloop, currentmarker);
          }
        } else {
          /* If no markers are specified in the file, they default to zero. */
          setvertexmark(vertexloop, 0);
        }
        setvertextype(vertexloop, INPUTVERTEX);
        /* Determine the smallest and largest x and y coordinates. */
        if (i == 0) {
          m->xmin = m->xmax = x;
          m->ymin = m->ymax = y;
        } else {
          m->xmin = (x < m->xmin) ? x : m->xmin;
          m->xmax = (x > m->xmax) ? x : m->xmax;
          m->ymin = (y < m->ymin) ? y : m->ymin;
          m->ymax = (y > m->ymax) ? y : m->ymax;
        }
      }
      if (m->readnodefile) {
        fclose(infile);
      }
    
      /* Nonexistent x value used as a flag to mark circle events in sweepline */
      /*   Delaunay algorithm.                                                 */
      m->xminextreme = 10 * m->xmin - 9 * m->xmax;
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  transfernodes()   Read the vertices from memory.                         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void transfernodes(struct mesh *m, struct behavior *b, REAL *pointlist,
                       REAL *pointattriblist, int *pointmarkerlist,
                       int numberofpoints, int numberofpointattribs)
    #else /* not ANSI_DECLARATORS */
    void transfernodes(m, b, pointlist, pointattriblist, pointmarkerlist,
                       numberofpoints, numberofpointattribs)
    struct mesh *m;
    struct behavior *b;
    REAL *pointlist;
    REAL *pointattriblist;
    int *pointmarkerlist;
    int numberofpoints;
    int numberofpointattribs;
    #endif /* not ANSI_DECLARATORS */
    
    {
      vertex vertexloop;
      REAL x, y;
      int i, j;
      int coordindex;
      int attribindex;
    
      m->invertices = numberofpoints;
      m->mesh_dim = 2;
      m->nextras = numberofpointattribs;
      m->readnodefile = 0;
      if (m->invertices < 3) {
        printf("Error:  Input must have at least three input vertices.\n");
        triexit(1);
      }
      if (m->nextras == 0) {
        b->weighted = 0;
      }
    
      initializevertexpool(m, b);
    
      /* Read the vertices. */
      coordindex = 0;
      attribindex = 0;
      for (i = 0; i < m->invertices; i++) {
        vertexloop = (vertex) poolalloc(&m->vertices);
        /* Read the vertex coordinates. */
        x = vertexloop[0] = pointlist[coordindex++];
        y = vertexloop[1] = pointlist[coordindex++];
        /* Read the vertex attributes. */
        for (j = 0; j < numberofpointattribs; j++) {
          vertexloop[2 + j] = pointattriblist[attribindex++];
        }
        if (pointmarkerlist != (int *) NULL) {
          /* Read a vertex marker. */
          setvertexmark(vertexloop, pointmarkerlist[i]);
        } else {
          /* If no markers are specified, they default to zero. */
          setvertexmark(vertexloop, 0);
        }
        setvertextype(vertexloop, INPUTVERTEX);
        /* Determine the smallest and largest x and y coordinates. */
        if (i == 0) {
          m->xmin = m->xmax = x;
          m->ymin = m->ymax = y;
        } else {
          m->xmin = (x < m->xmin) ? x : m->xmin;
          m->xmax = (x > m->xmax) ? x : m->xmax;
          m->ymin = (y < m->ymin) ? y : m->ymin;
          m->ymax = (y > m->ymax) ? y : m->ymax;
        }
      }
    
      /* Nonexistent x value used as a flag to mark circle events in sweepline */
      /*   Delaunay algorithm.                                                 */
      m->xminextreme = 10 * m->xmin - 9 * m->xmax;
    }
    
    #endif /* TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  readholes()   Read the holes, and possibly regional attributes and area  */
    /*                constraints, from a .poly file.                            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void readholes(struct mesh *m, struct behavior *b,
                   FILE *polyfile, char *polyfilename, REAL **hlist, int *holes,
                   REAL **rlist, int *regions)
    #else /* not ANSI_DECLARATORS */
    void readholes(m, b, polyfile, polyfilename, hlist, holes, rlist, regions)
    struct mesh *m;
    struct behavior *b;
    FILE *polyfile;
    char *polyfilename;
    REAL **hlist;
    int *holes;
    REAL **rlist;
    int *regions;
    #endif /* not ANSI_DECLARATORS */
    
    {
      REAL *holelist;
      REAL *regionlist;
      char inputline[INPUTLINESIZE];
      char *stringptr;
      int index;
      int i;
    
      /* Read the holes. */
      stringptr = readline(inputline, polyfile, polyfilename);
      *holes = (int) strtol(stringptr, &stringptr, 0);
      if (*holes > 0) {
        holelist = (REAL *) trimalloc(2 * *holes * (int) sizeof(REAL));
        *hlist = holelist;
        for (i = 0; i < 2 * *holes; i += 2) {
          stringptr = readline(inputline, polyfile, polyfilename);
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Hole %d has no x coordinate.\n",
                   b->firstnumber + (i >> 1));
            triexit(1);
          } else {
            holelist[i] = (REAL) strtod(stringptr, &stringptr);
          }
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Hole %d has no y coordinate.\n",
                   b->firstnumber + (i >> 1));
            triexit(1);
          } else {
            holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);
          }
        }
      } else {
        *hlist = (REAL *) NULL;
      }
    
    #ifndef CDT_ONLY
      if ((b->regionattrib || b->vararea) && !b->refine) {
        /* Read the area constraints. */
        stringptr = readline(inputline, polyfile, polyfilename);
        *regions = (int) strtol(stringptr, &stringptr, 0);
        if (*regions > 0) {
          regionlist = (REAL *) trimalloc(4 * *regions * (int) sizeof(REAL));
          *rlist = regionlist;
          index = 0;
          for (i = 0; i < *regions; i++) {
            stringptr = readline(inputline, polyfile, polyfilename);
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              printf("Error:  Region %d has no x coordinate.\n",
                     b->firstnumber + i);
              triexit(1);
            } else {
              regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
            }
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              printf("Error:  Region %d has no y coordinate.\n",
                     b->firstnumber + i);
              triexit(1);
            } else {
              regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
            }
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              printf(
                "Error:  Region %d has no region attribute or area constraint.\n",
                     b->firstnumber + i);
              triexit(1);
            } else {
              regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
            }
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              regionlist[index] = regionlist[index - 1];
            } else {
              regionlist[index] = (REAL) strtod(stringptr, &stringptr);
            }
            index++;
          }
        }
      } else {
        /* Set `*regions' to zero to avoid an accidental free() later. */
        *regions = 0;
        *rlist = (REAL *) NULL;
      }
    #endif /* not CDT_ONLY */
    
      fclose(polyfile);
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  finishfile()   Write the command line to the output file so the user     */
    /*                 can remember how the file was generated.  Close the file. */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void finishfile(FILE *outfile, int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    void finishfile(outfile, argc, argv)
    FILE *outfile;
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    {
      int i;
    
      fprintf(outfile, "# Generated by");
      for (i = 0; i < argc; i++) {
        fprintf(outfile, " ");
        fputs(argv[i], outfile);
      }
      fprintf(outfile, "\n");
      fclose(outfile);
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writenodes()   Number the vertices and write them to a .node file.       */
    /*                                                                           */
    /*  To save memory, the vertex numbers are written over the boundary markers */
    /*  after the vertices are written to a file.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void writenodes(struct mesh *m, struct behavior *b, REAL **pointlist,
                    REAL **pointattriblist, int **pointmarkerlist)
    #else /* not ANSI_DECLARATORS */
    void writenodes(m, b, pointlist, pointattriblist, pointmarkerlist)
    struct mesh *m;
    struct behavior *b;
    REAL **pointlist;
    REAL **pointattriblist;
    int **pointmarkerlist;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    void writenodes(struct mesh *m, struct behavior *b, char *nodefilename,
                    int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    void writenodes(m, b, nodefilename, argc, argv)
    struct mesh *m;
    struct behavior *b;
    char *nodefilename;
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      REAL *plist;
      REAL *palist;
      int *pmlist;
      int coordindex;
      int attribindex;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      vertex vertexloop;
      long outvertices;
      int vertexnumber;
      int i;
    
      if (b->jettison) {
        outvertices = m->vertices.items - m->undeads;
      } else {
        outvertices = m->vertices.items;
      }
    
    #ifdef TRILIBRARY
      if (!b->quiet) {
        printf("Writing vertices.\n");
      }
      /* Allocate memory for output vertices if necessary. */
      if (*pointlist == (REAL *) NULL) {
        *pointlist = (REAL *) trimalloc((int) (outvertices * 2 * sizeof(REAL)));
      }
      /* Allocate memory for output vertex attributes if necessary. */
      if ((m->nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
        *pointattriblist = (REAL *) trimalloc((int) (outvertices * m->nextras *
                                                     sizeof(REAL)));
      }
      /* Allocate memory for output vertex markers if necessary. */
      if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {
        *pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int)));
      }
      plist = *pointlist;
      palist = *pointattriblist;
      pmlist = *pointmarkerlist;
      coordindex = 0;
      attribindex = 0;
    #else /* not TRILIBRARY */
      if (!b->quiet) {
        printf("Writing %s.\n", nodefilename);
      }
      outfile = fopen(nodefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", nodefilename);
        triexit(1);
      }
      /* Number of vertices, number of dimensions, number of vertex attributes, */
      /*   and number of boundary markers (zero or one).                        */
      fprintf(outfile, "%ld  %d  %d  %d\n", outvertices, m->mesh_dim,
              m->nextras, 1 - b->nobound);
    #endif /* not TRILIBRARY */
    
      traversalinit(&m->vertices);
      vertexnumber = b->firstnumber;
      vertexloop = vertextraverse(m);
      while (vertexloop != (vertex) NULL) {
        if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
    #ifdef TRILIBRARY
          /* X and y coordinates. */
          plist[coordindex++] = vertexloop[0];
          plist[coordindex++] = vertexloop[1];
          /* Vertex attributes. */
          for (i = 0; i < m->nextras; i++) {
            palist[attribindex++] = vertexloop[2 + i];
          }
          if (!b->nobound) {
            /* Copy the boundary marker. */
            pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);
          }
    #else /* not TRILIBRARY */
          /* Vertex number, x and y coordinates. */
          fprintf(outfile, "%4d    %.17g  %.17g", vertexnumber, vertexloop[0],
                  vertexloop[1]);
          for (i = 0; i < m->nextras; i++) {
            /* Write an attribute. */
            fprintf(outfile, "  %.17g", vertexloop[i + 2]);
          }
          if (b->nobound) {
            fprintf(outfile, "\n");
          } else {
            /* Write the boundary marker. */
            fprintf(outfile, "    %d\n", vertexmark(vertexloop));
          }
    #endif /* not TRILIBRARY */
    
          setvertexmark(vertexloop, vertexnumber);
          vertexnumber++;
        }
        vertexloop = vertextraverse(m);
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  numbernodes()   Number the vertices.                                     */
    /*                                                                           */
    /*  Each vertex is assigned a marker equal to its number.                    */
    /*                                                                           */
    /*  Used when writenodes() is not called because no .node file is written.   */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void numbernodes(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void numbernodes(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      vertex vertexloop;
      int vertexnumber;
    
      traversalinit(&m->vertices);
      vertexnumber = b->firstnumber;
      vertexloop = vertextraverse(m);
      while (vertexloop != (vertex) NULL) {
        setvertexmark(vertexloop, vertexnumber);
        if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
          vertexnumber++;
        }
        vertexloop = vertextraverse(m);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writeelements()   Write the triangles to an .ele file.                   */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void writeelements(struct mesh *m, struct behavior *b,
                       int **trianglelist, REAL **triangleattriblist)
    #else /* not ANSI_DECLARATORS */
    void writeelements(m, b, trianglelist, triangleattriblist)
    struct mesh *m;
    struct behavior *b;
    int **trianglelist;
    REAL **triangleattriblist;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    void writeelements(struct mesh *m, struct behavior *b, char *elefilename,
                       int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    void writeelements(m, b, elefilename, argc, argv)
    struct mesh *m;
    struct behavior *b;
    char *elefilename;
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int *tlist;
      REAL *talist;
      int vertexindex;
      int attribindex;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      struct otri triangleloop;
      vertex p1, p2, p3;
      vertex mid1, mid2, mid3;
      long elementnumber;
      int i;
    
    #ifdef TRILIBRARY
      if (!b->quiet) {
        printf("Writing triangles.\n");
      }
      /* Allocate memory for output triangles if necessary. */
      if (*trianglelist == (int *) NULL) {
        *trianglelist = (int *) trimalloc((int) (m->triangles.items *
                                                 ((b->order + 1) * (b->order + 2) /
                                                  2) * sizeof(int)));
      }
      /* Allocate memory for output triangle attributes if necessary. */
      if ((m->eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
        *triangleattriblist = (REAL *) trimalloc((int) (m->triangles.items *
                                                        m->eextras *
                                                        sizeof(REAL)));
      }
      tlist = *trianglelist;
      talist = *triangleattriblist;
      vertexindex = 0;
      attribindex = 0;
    #else /* not TRILIBRARY */
      if (!b->quiet) {
        printf("Writing %s.\n", elefilename);
      }
      outfile = fopen(elefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", elefilename);
        triexit(1);
      }
      /* Number of triangles, vertices per triangle, attributes per triangle. */
      fprintf(outfile, "%ld  %d  %d\n", m->triangles.items,
              (b->order + 1) * (b->order + 2) / 2, m->eextras);
    #endif /* not TRILIBRARY */
    
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      triangleloop.orient = 0;
      elementnumber = b->firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
        org(triangleloop, p1);
        dest(triangleloop, p2);
        apex(triangleloop, p3);
        if (b->order == 1) {
    #ifdef TRILIBRARY
          tlist[vertexindex++] = vertexmark(p1);
          tlist[vertexindex++] = vertexmark(p2);
          tlist[vertexindex++] = vertexmark(p3);
    #else /* not TRILIBRARY */
          /* Triangle number, indices for three vertices. */
          fprintf(outfile, "%4ld    %4d  %4d  %4d", elementnumber,
                  vertexmark(p1), vertexmark(p2), vertexmark(p3));
    #endif /* not TRILIBRARY */
        } else {
          mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];
          mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];
          mid3 = (vertex) triangleloop.tri[m->highorderindex];
    #ifdef TRILIBRARY
          tlist[vertexindex++] = vertexmark(p1);
          tlist[vertexindex++] = vertexmark(p2);
          tlist[vertexindex++] = vertexmark(p3);
          tlist[vertexindex++] = vertexmark(mid1);
          tlist[vertexindex++] = vertexmark(mid2);
          tlist[vertexindex++] = vertexmark(mid3);
    #else /* not TRILIBRARY */
          /* Triangle number, indices for six vertices. */
          fprintf(outfile, "%4ld    %4d  %4d  %4d  %4d  %4d  %4d", elementnumber,
                  vertexmark(p1), vertexmark(p2), vertexmark(p3), vertexmark(mid1),
                  vertexmark(mid2), vertexmark(mid3));
    #endif /* not TRILIBRARY */
        }
    
    #ifdef TRILIBRARY
        for (i = 0; i < m->eextras; i++) {
          talist[attribindex++] = elemattribute(triangleloop, i);
        }
    #else /* not TRILIBRARY */
        for (i = 0; i < m->eextras; i++) {
          fprintf(outfile, "  %.17g", elemattribute(triangleloop, i));
        }
        fprintf(outfile, "\n");
    #endif /* not TRILIBRARY */
    
        triangleloop.tri = triangletraverse(m);
        elementnumber++;
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writepoly()   Write the segments and holes to a .poly file.              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void writepoly(struct mesh *m, struct behavior *b,
                   int **segmentlist, int **segmentmarkerlist)
    #else /* not ANSI_DECLARATORS */
    void writepoly(m, b, segmentlist, segmentmarkerlist)
    struct mesh *m;
    struct behavior *b;
    int **segmentlist;
    int **segmentmarkerlist;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    void writepoly(struct mesh *m, struct behavior *b, char *polyfilename,
                   REAL *holelist, int holes, REAL *regionlist, int regions,
                   int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    void writepoly(m, b, polyfilename, holelist, holes, regionlist, regions,
                   argc, argv)
    struct mesh *m;
    struct behavior *b;
    char *polyfilename;
    REAL *holelist;
    int holes;
    REAL *regionlist;
    int regions;
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int *slist;
      int *smlist;
      int index;
    #else /* not TRILIBRARY */
      FILE *outfile;
      long holenumber, regionnumber;
    #endif /* not TRILIBRARY */
      struct osub subsegloop;
      vertex endpoint1, endpoint2;
      long subsegnumber;
    
    #ifdef TRILIBRARY
      if (!b->quiet) {
        printf("Writing segments.\n");
      }
      /* Allocate memory for output segments if necessary. */
      if (*segmentlist == (int *) NULL) {
        *segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 *
                                                sizeof(int)));
      }
      /* Allocate memory for output segment markers if necessary. */
      if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {
        *segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items *
                                                      sizeof(int)));
      }
      slist = *segmentlist;
      smlist = *segmentmarkerlist;
      index = 0;
    #else /* not TRILIBRARY */
      if (!b->quiet) {
        printf("Writing %s.\n", polyfilename);
      }
      outfile = fopen(polyfilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", polyfilename);
        triexit(1);
      }
      /* The zero indicates that the vertices are in a separate .node file. */
      /*   Followed by number of dimensions, number of vertex attributes,   */
      /*   and number of boundary markers (zero or one).                    */
      fprintf(outfile, "%d  %d  %d  %d\n", 0, m->mesh_dim, m->nextras,
              1 - b->nobound);
      /* Number of segments, number of boundary markers (zero or one). */
      fprintf(outfile, "%ld  %d\n", m->subsegs.items, 1 - b->nobound);
    #endif /* not TRILIBRARY */
    
      traversalinit(&m->subsegs);
      subsegloop.ss = subsegtraverse(m);
      subsegloop.ssorient = 0;
      subsegnumber = b->firstnumber;
      while (subsegloop.ss != (subseg *) NULL) {
        sorg(subsegloop, endpoint1);
        sdest(subsegloop, endpoint2);
    #ifdef TRILIBRARY
        /* Copy indices of the segment's two endpoints. */
        slist[index++] = vertexmark(endpoint1);
        slist[index++] = vertexmark(endpoint2);
        if (!b->nobound) {
          /* Copy the boundary marker. */
          smlist[subsegnumber - b->firstnumber] = mark(subsegloop);
        }
    #else /* not TRILIBRARY */
        /* Segment number, indices of its two endpoints, and possibly a marker. */
        if (b->nobound) {
          fprintf(outfile, "%4ld    %4d  %4d\n", subsegnumber,
                  vertexmark(endpoint1), vertexmark(endpoint2));
        } else {
          fprintf(outfile, "%4ld    %4d  %4d    %4d\n", subsegnumber,
                  vertexmark(endpoint1), vertexmark(endpoint2), mark(subsegloop));
        }
    #endif /* not TRILIBRARY */
    
        subsegloop.ss = subsegtraverse(m);
        subsegnumber++;
      }
    
    #ifndef TRILIBRARY
    #ifndef CDT_ONLY
      fprintf(outfile, "%d\n", holes);
      if (holes > 0) {
        for (holenumber = 0; holenumber < holes; holenumber++) {
          /* Hole number, x and y coordinates. */
          fprintf(outfile, "%4ld   %.17g  %.17g\n", b->firstnumber + holenumber,
                  holelist[2 * holenumber], holelist[2 * holenumber + 1]);
        }
      }
      if (regions > 0) {
        fprintf(outfile, "%d\n", regions);
        for (regionnumber = 0; regionnumber < regions; regionnumber++) {
          /* Region number, x and y coordinates, attribute, maximum area. */
          fprintf(outfile, "%4ld   %.17g  %.17g  %.17g  %.17g\n",
                  b->firstnumber + regionnumber,
                  regionlist[4 * regionnumber], regionlist[4 * regionnumber + 1],
                  regionlist[4 * regionnumber + 2],
                  regionlist[4 * regionnumber + 3]);
        }
      }
    #endif /* not CDT_ONLY */
    
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writeedges()   Write the edges to an .edge file.                         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void writeedges(struct mesh *m, struct behavior *b,
                    int **edgelist, int **edgemarkerlist)
    #else /* not ANSI_DECLARATORS */
    void writeedges(m, b, edgelist, edgemarkerlist)
    struct mesh *m;
    struct behavior *b;
    int **edgelist;
    int **edgemarkerlist;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    void writeedges(struct mesh *m, struct behavior *b, char *edgefilename,
                    int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    void writeedges(m, b, edgefilename, argc, argv)
    struct mesh *m;
    struct behavior *b;
    char *edgefilename;
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int *elist;
      int *emlist;
      int index;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      struct otri triangleloop, trisym;
      struct osub checkmark;
      vertex p1, p2;
      long edgenumber;
      triangle ptr;                         /* Temporary variable used by sym(). */
      subseg sptr;                      /* Temporary variable used by tspivot(). */
    
    #ifdef TRILIBRARY
      if (!b->quiet) {
        printf("Writing edges.\n");
      }
      /* Allocate memory for edges if necessary. */
      if (*edgelist == (int *) NULL) {
        *edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
      }
      /* Allocate memory for edge markers if necessary. */
      if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {
        *edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int)));
      }
      elist = *edgelist;
      emlist = *edgemarkerlist;
      index = 0;
    #else /* not TRILIBRARY */
      if (!b->quiet) {
        printf("Writing %s.\n", edgefilename);
      }
      outfile = fopen(edgefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", edgefilename);
        triexit(1);
      }
      /* Number of edges, number of boundary markers (zero or one). */
      fprintf(outfile, "%ld  %d\n", m->edges, 1 - b->nobound);
    #endif /* not TRILIBRARY */
    
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      edgenumber = b->firstnumber;
      /* To loop over the set of edges, loop over all triangles, and look at   */
      /*   the three edges of each triangle.  If there isn't another triangle  */
      /*   adjacent to the edge, operate on the edge.  If there is another     */
      /*   adjacent triangle, operate on the edge only if the current triangle */
      /*   has a smaller pointer than its neighbor.  This way, each edge is    */
      /*   considered only once.                                               */
      while (triangleloop.tri != (triangle *) NULL) {
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          sym(triangleloop, trisym);
          if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
            org(triangleloop, p1);
            dest(triangleloop, p2);
    #ifdef TRILIBRARY
            elist[index++] = vertexmark(p1);
            elist[index++] = vertexmark(p2);
    #endif /* TRILIBRARY */
            if (b->nobound) {
    #ifndef TRILIBRARY
              /* Edge number, indices of two endpoints. */
              fprintf(outfile, "%4ld   %d  %d\n", edgenumber,
                      vertexmark(p1), vertexmark(p2));
    #endif /* not TRILIBRARY */
            } else {
              /* Edge number, indices of two endpoints, and a boundary marker. */
              /*   If there's no subsegment, the boundary marker is zero.      */
              if (b->usesegments) {
                tspivot(triangleloop, checkmark);
                if (checkmark.ss == m->dummysub) {
    #ifdef TRILIBRARY
                  emlist[edgenumber - b->firstnumber] = 0;
    #else /* not TRILIBRARY */
                  fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
                          vertexmark(p1), vertexmark(p2), 0);
    #endif /* not TRILIBRARY */
                } else {
    #ifdef TRILIBRARY
                  emlist[edgenumber - b->firstnumber] = mark(checkmark);
    #else /* not TRILIBRARY */
                  fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
                          vertexmark(p1), vertexmark(p2), mark(checkmark));
    #endif /* not TRILIBRARY */
                }
              } else {
    #ifdef TRILIBRARY
                emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;
    #else /* not TRILIBRARY */
                fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
                        vertexmark(p1), vertexmark(p2), trisym.tri == m->dummytri);
    #endif /* not TRILIBRARY */
              }
            }
            edgenumber++;
          }
        }
        triangleloop.tri = triangletraverse(m);
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      */
    /*                   file.                                                   */
    /*                                                                           */
    /*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
    /*  Hence, the Voronoi vertices are listed by traversing the Delaunay        */
    /*  triangles, and the Voronoi edges are listed by traversing the Delaunay   */
    /*  edges.                                                                   */
    /*                                                                           */
    /*  WARNING:  In order to assign numbers to the Voronoi vertices, this       */
    /*  procedure messes up the subsegments or the extra nodes of every          */
    /*  element.  Hence, you should call this procedure last.                    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void writevoronoi(struct mesh *m, struct behavior *b, REAL **vpointlist,
                      REAL **vpointattriblist, int **vpointmarkerlist,
                      int **vedgelist, int **vedgemarkerlist, REAL **vnormlist)
    #else /* not ANSI_DECLARATORS */
    void writevoronoi(m, b, vpointlist, vpointattriblist, vpointmarkerlist,
                      vedgelist, vedgemarkerlist, vnormlist)
    struct mesh *m;
    struct behavior *b;
    REAL **vpointlist;
    REAL **vpointattriblist;
    int **vpointmarkerlist;
    int **vedgelist;
    int **vedgemarkerlist;
    REAL **vnormlist;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    void writevoronoi(struct mesh *m, struct behavior *b, char *vnodefilename,
                      char *vedgefilename, int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    void writevoronoi(m, b, vnodefilename, vedgefilename, argc, argv)
    struct mesh *m;
    struct behavior *b;
    char *vnodefilename;
    char *vedgefilename;
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      REAL *plist;
      REAL *palist;
      int *elist;
      REAL *normlist;
      int coordindex;
      int attribindex;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      struct otri triangleloop, trisym;
      vertex torg, tdest, tapex;
      REAL circumcenter[2];
      REAL xi, eta;
      long vnodenumber, vedgenumber;
      int p1, p2;
      int i;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
    #ifdef TRILIBRARY
      if (!b->quiet) {
        printf("Writing Voronoi vertices.\n");
      }
      /* Allocate memory for Voronoi vertices if necessary. */
      if (*vpointlist == (REAL *) NULL) {
        *vpointlist = (REAL *) trimalloc((int) (m->triangles.items * 2 *
                                                sizeof(REAL)));
      }
      /* Allocate memory for Voronoi vertex attributes if necessary. */
      if (*vpointattriblist == (REAL *) NULL) {
        *vpointattriblist = (REAL *) trimalloc((int) (m->triangles.items *
                                                      m->nextras * sizeof(REAL)));
      }
      *vpointmarkerlist = (int *) NULL;
      plist = *vpointlist;
      palist = *vpointattriblist;
      coordindex = 0;
      attribindex = 0;
    #else /* not TRILIBRARY */
      if (!b->quiet) {
        printf("Writing %s.\n", vnodefilename);
      }
      outfile = fopen(vnodefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", vnodefilename);
        triexit(1);
      }
      /* Number of triangles, two dimensions, number of vertex attributes, */
      /*   no markers.                                                     */
      fprintf(outfile, "%ld  %d  %d  %d\n", m->triangles.items, 2, m->nextras, 0);
    #endif /* not TRILIBRARY */
    
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      triangleloop.orient = 0;
      vnodenumber = b->firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
        org(triangleloop, torg);
        dest(triangleloop, tdest);
        apex(triangleloop, tapex);
        findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0);
    #ifdef TRILIBRARY
        /* X and y coordinates. */
        plist[coordindex++] = circumcenter[0];
        plist[coordindex++] = circumcenter[1];
        for (i = 2; i < 2 + m->nextras; i++) {
          /* Interpolate the vertex attributes at the circumcenter. */
          palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
                                         + eta * (tapex[i] - torg[i]);
        }
    #else /* not TRILIBRARY */
        /* Voronoi vertex number, x and y coordinates. */
        fprintf(outfile, "%4ld    %.17g  %.17g", vnodenumber, circumcenter[0],
                circumcenter[1]);
        for (i = 2; i < 2 + m->nextras; i++) {
          /* Interpolate the vertex attributes at the circumcenter. */
          fprintf(outfile, "  %.17g", torg[i] + xi * (tdest[i] - torg[i])
                                             + eta * (tapex[i] - torg[i]));
        }
        fprintf(outfile, "\n");
    #endif /* not TRILIBRARY */
    
        * (int *) (triangleloop.tri + 6) = (int) vnodenumber;
        triangleloop.tri = triangletraverse(m);
        vnodenumber++;
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    
    #ifdef TRILIBRARY
      if (!b->quiet) {
        printf("Writing Voronoi edges.\n");
      }
      /* Allocate memory for output Voronoi edges if necessary. */
      if (*vedgelist == (int *) NULL) {
        *vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
      }
      *vedgemarkerlist = (int *) NULL;
      /* Allocate memory for output Voronoi norms if necessary. */
      if (*vnormlist == (REAL *) NULL) {
        *vnormlist = (REAL *) trimalloc((int) (m->edges * 2 * sizeof(REAL)));
      }
      elist = *vedgelist;
      normlist = *vnormlist;
      coordindex = 0;
    #else /* not TRILIBRARY */
      if (!b->quiet) {
        printf("Writing %s.\n", vedgefilename);
      }
      outfile = fopen(vedgefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", vedgefilename);
        triexit(1);
      }
      /* Number of edges, zero boundary markers. */
      fprintf(outfile, "%ld  %d\n", m->edges, 0);
    #endif /* not TRILIBRARY */
    
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      vedgenumber = b->firstnumber;
      /* To loop over the set of edges, loop over all triangles, and look at   */
      /*   the three edges of each triangle.  If there isn't another triangle  */
      /*   adjacent to the edge, operate on the edge.  If there is another     */
      /*   adjacent triangle, operate on the edge only if the current triangle */
      /*   has a smaller pointer than its neighbor.  This way, each edge is    */
      /*   considered only once.                                               */
      while (triangleloop.tri != (triangle *) NULL) {
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          sym(triangleloop, trisym);
          if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
            /* Find the number of this triangle (and Voronoi vertex). */
            p1 = * (int *) (triangleloop.tri + 6);
            if (trisym.tri == m->dummytri) {
              org(triangleloop, torg);
              dest(triangleloop, tdest);
    #ifdef TRILIBRARY
              /* Copy an infinite ray.  Index of one endpoint, and -1. */
              elist[coordindex] = p1;
              normlist[coordindex++] = tdest[1] - torg[1];
              elist[coordindex] = -1;
              normlist[coordindex++] = torg[0] - tdest[0];
    #else /* not TRILIBRARY */
              /* Write an infinite ray.  Edge number, index of one endpoint, -1, */
              /*   and x and y coordinates of a vector representing the          */
              /*   direction of the ray.                                         */
              fprintf(outfile, "%4ld   %d  %d   %.17g  %.17g\n", vedgenumber,
                      p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);
    #endif /* not TRILIBRARY */
            } else {
              /* Find the number of the adjacent triangle (and Voronoi vertex). */
              p2 = * (int *) (trisym.tri + 6);
              /* Finite edge.  Write indices of two endpoints. */
    #ifdef TRILIBRARY
              elist[coordindex] = p1;
              normlist[coordindex++] = 0.0;
              elist[coordindex] = p2;
              normlist[coordindex++] = 0.0;
    #else /* not TRILIBRARY */
              fprintf(outfile, "%4ld   %d  %d\n", vedgenumber, p1, p2);
    #endif /* not TRILIBRARY */
            }
            vedgenumber++;
          }
        }
        triangleloop.tri = triangletraverse(m);
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist)
    #else /* not ANSI_DECLARATORS */
    void writeneighbors(m, b, neighborlist)
    struct mesh *m;
    struct behavior *b;
    int **neighborlist;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    void writeneighbors(struct mesh *m, struct behavior *b, char *neighborfilename,
                        int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    void writeneighbors(m, b, neighborfilename, argc, argv)
    struct mesh *m;
    struct behavior *b;
    char *neighborfilename;
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int *nlist;
      int index;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      struct otri triangleloop, trisym;
      long elementnumber;
      int neighbor1, neighbor2, neighbor3;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
    #ifdef TRILIBRARY
      if (!b->quiet) {
        printf("Writing neighbors.\n");
      }
      /* Allocate memory for neighbors if necessary. */
      if (*neighborlist == (int *) NULL) {
        *neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 *
                                                 sizeof(int)));
      }
      nlist = *neighborlist;
      index = 0;
    #else /* not TRILIBRARY */
      if (!b->quiet) {
        printf("Writing %s.\n", neighborfilename);
      }
      outfile = fopen(neighborfilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", neighborfilename);
        triexit(1);
      }
      /* Number of triangles, three neighbors per triangle. */
      fprintf(outfile, "%ld  %d\n", m->triangles.items, 3);
    #endif /* not TRILIBRARY */
    
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      triangleloop.orient = 0;
      elementnumber = b->firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
        * (int *) (triangleloop.tri + 6) = (int) elementnumber;
        triangleloop.tri = triangletraverse(m);
        elementnumber++;
      }
      * (int *) (m->dummytri + 6) = -1;
    
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      elementnumber = b->firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
        triangleloop.orient = 1;
        sym(triangleloop, trisym);
        neighbor1 = * (int *) (trisym.tri + 6);
        triangleloop.orient = 2;
        sym(triangleloop, trisym);
        neighbor2 = * (int *) (trisym.tri + 6);
        triangleloop.orient = 0;
        sym(triangleloop, trisym);
        neighbor3 = * (int *) (trisym.tri + 6);
    #ifdef TRILIBRARY
        nlist[index++] = neighbor1;
        nlist[index++] = neighbor2;
        nlist[index++] = neighbor3;
    #else /* not TRILIBRARY */
        /* Triangle number, neighboring triangle numbers. */
        fprintf(outfile, "%4ld    %d  %d  %d\n", elementnumber,
                neighbor1, neighbor2, neighbor3);
    #endif /* not TRILIBRARY */
    
        triangleloop.tri = triangletraverse(m);
        elementnumber++;
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writeoff()   Write the triangulation to an .off file.                    */
    /*                                                                           */
    /*  OFF stands for the Object File Format, a format used by the Geometry     */
    /*  Center's Geomview package.                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void writeoff(struct mesh *m, struct behavior *b, char *offfilename,
                  int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    void writeoff(m, b, offfilename, argc, argv)
    struct mesh *m;
    struct behavior *b;
    char *offfilename;
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    {
      FILE *outfile;
      struct otri triangleloop;
      vertex vertexloop;
      vertex p1, p2, p3;
      long outvertices;
    
      if (!b->quiet) {
        printf("Writing %s.\n", offfilename);
      }
    
      if (b->jettison) {
        outvertices = m->vertices.items - m->undeads;
      } else {
        outvertices = m->vertices.items;
      }
    
      outfile = fopen(offfilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", offfilename);
        triexit(1);
      }
      /* Number of vertices, triangles, and edges. */
      fprintf(outfile, "OFF\n%ld  %ld  %ld\n", outvertices, m->triangles.items,
              m->edges);
    
      /* Write the vertices. */
      traversalinit(&m->vertices);
      vertexloop = vertextraverse(m);
      while (vertexloop != (vertex) NULL) {
        if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
          /* The "0.0" is here because the OFF format uses 3D coordinates. */
          fprintf(outfile, " %.17g  %.17g  %.17g\n", vertexloop[0], vertexloop[1],
                  0.0);
        }
        vertexloop = vertextraverse(m);
      }
    
      /* Write the triangles. */
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      triangleloop.orient = 0;
      while (triangleloop.tri != (triangle *) NULL) {
        org(triangleloop, p1);
        dest(triangleloop, p2);
        apex(triangleloop, p3);
        /* The "3" means a three-vertex polygon. */
        fprintf(outfile, " 3   %4d  %4d  %4d\n", vertexmark(p1) - b->firstnumber,
                vertexmark(p2) - b->firstnumber, vertexmark(p3) - b->firstnumber);
        triangleloop.tri = triangletraverse(m);
      }
      finishfile(outfile, argc, argv);
    }
    
    #endif /* not TRILIBRARY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* File I/O routines end here                                *********/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  quality_statistics()   Print statistics about the quality of the mesh.   */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void quality_statistics(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void quality_statistics(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      struct otri triangleloop;
      vertex p[3];
      REAL cossquaretable[8];
      REAL ratiotable[16];
      REAL dx[3], dy[3];
      REAL edgelength[3];
      REAL dotproduct;
      REAL cossquare;
      REAL triarea;
      REAL shortest, longest;
      REAL trilongest2;
      REAL smallestarea, biggestarea;
      REAL triminaltitude2;
      REAL minaltitude;
      REAL triaspect2;
      REAL worstaspect;
      REAL smallestangle, biggestangle;
      REAL radconst, degconst;
      int angletable[18];
      int aspecttable[16];
      int aspectindex;
      int tendegree;
      int acutebiggest;
      int i, ii, j, k;
    
      printf("Mesh quality statistics:\n\n");
      radconst = PI / 18.0;
      degconst = 180.0 / PI;
      for (i = 0; i < 8; i++) {
        cossquaretable[i] = cos(radconst * (REAL) (i + 1));
        cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
      }
      for (i = 0; i < 18; i++) {
        angletable[i] = 0;
      }
    
      ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;
      ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;
      ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;
      ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;
      ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;
      ratiotable[10] =    100.0;      ratiotable[11] =   300.0;
      ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;
      ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;
      for (i = 0; i < 16; i++) {
        aspecttable[i] = 0;
      }
    
      worstaspect = 0.0;
      minaltitude = m->xmax - m->xmin + m->ymax - m->ymin;
      minaltitude = minaltitude * minaltitude;
      shortest = minaltitude;
      longest = 0.0;
      smallestarea = minaltitude;
      biggestarea = 0.0;
      worstaspect = 0.0;
      smallestangle = 0.0;
      biggestangle = 2.0;
      acutebiggest = 1;
    
      traversalinit(&m->triangles);
      triangleloop.tri = triangletraverse(m);
      triangleloop.orient = 0;
      while (triangleloop.tri != (triangle *) NULL) {
        org(triangleloop, p[0]);
        dest(triangleloop, p[1]);
        apex(triangleloop, p[2]);
        trilongest2 = 0.0;
    
        for (i = 0; i < 3; i++) {
          j = plus1mod3[i];
          k = minus1mod3[i];
          dx[i] = p[j][0] - p[k][0];
          dy[i] = p[j][1] - p[k][1];
          edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
          if (edgelength[i] > trilongest2) {
            trilongest2 = edgelength[i];
          }
          if (edgelength[i] > longest) {
            longest = edgelength[i];
          }
          if (edgelength[i] < shortest) {
            shortest = edgelength[i];
          }
        }
    
        triarea = counterclockwise(m, b, p[0], p[1], p[2]);
        if (triarea < smallestarea) {
          smallestarea = triarea;
        }
        if (triarea > biggestarea) {
          biggestarea = triarea;
        }
        triminaltitude2 = triarea * triarea / trilongest2;
        if (triminaltitude2 < minaltitude) {
          minaltitude = triminaltitude2;
        }
        triaspect2 = trilongest2 / triminaltitude2;
        if (triaspect2 > worstaspect) {
          worstaspect = triaspect2;
        }
        aspectindex = 0;
        while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
               && (aspectindex < 15)) {
          aspectindex++;
        }
        aspecttable[aspectindex]++;
    
        for (i = 0; i < 3; i++) {
          j = plus1mod3[i];
          k = minus1mod3[i];
          dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
          cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
          tendegree = 8;
          for (ii = 7; ii >= 0; ii--) {
            if (cossquare > cossquaretable[ii]) {
              tendegree = ii;
            }
          }
          if (dotproduct <= 0.0) {
            angletable[tendegree]++;
            if (cossquare > smallestangle) {
              smallestangle = cossquare;
            }
            if (acutebiggest && (cossquare < biggestangle)) {
              biggestangle = cossquare;
            }
          } else {
            angletable[17 - tendegree]++;
            if (acutebiggest || (cossquare > biggestangle)) {
              biggestangle = cossquare;
              acutebiggest = 0;
            }
          }
        }
        triangleloop.tri = triangletraverse(m);
      }
    
      shortest = sqrt(shortest);
      longest = sqrt(longest);
      minaltitude = sqrt(minaltitude);
      worstaspect = sqrt(worstaspect);
      smallestarea *= 0.5;
      biggestarea *= 0.5;
      if (smallestangle >= 1.0) {
        smallestangle = 0.0;
      } else {
        smallestangle = degconst * acos(sqrt(smallestangle));
      }
      if (biggestangle >= 1.0) {
        biggestangle = 180.0;
      } else {
        if (acutebiggest) {
          biggestangle = degconst * acos(sqrt(biggestangle));
        } else {
          biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
        }
      }
    
      printf("  Smallest area: %16.5g   |  Largest area: %16.5g\n",
             smallestarea, biggestarea);
      printf("  Shortest edge: %16.5g   |  Longest edge: %16.5g\n",
             shortest, longest);
      printf("  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n",
             minaltitude, worstaspect);
    
      printf("  Triangle aspect ratio histogram:\n");
      printf("  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
             ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],
             aspecttable[8]);
      for (i = 1; i < 7; i++) {
        printf("  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
               ratiotable[i - 1], ratiotable[i], aspecttable[i],
               ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
      }
      printf("  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",
             ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],
             aspecttable[15]);
      printf("  (Aspect ratio is longest edge divided by shortest altitude)\n\n");
    
      printf("  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n",
             smallestangle, biggestangle);
    
      printf("  Angle histogram:\n");
      for (i = 0; i < 9; i++) {
        printf("    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",
               i * 10, i * 10 + 10, angletable[i],
               i * 10 + 90, i * 10 + 100, angletable[i + 9]);
      }
      printf("\n");
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  statistics()   Print all sorts of cool facts.                            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef ANSI_DECLARATORS
    void statistics(struct mesh *m, struct behavior *b)
    #else /* not ANSI_DECLARATORS */
    void statistics(m, b)
    struct mesh *m;
    struct behavior *b;
    #endif /* not ANSI_DECLARATORS */
    
    {
      printf("\nStatistics:\n\n");
      printf("  Input vertices: %d\n", m->invertices);
      if (b->refine) {
        printf("  Input triangles: %d\n", m->inelements);
      }
      if (b->poly) {
        printf("  Input segments: %d\n", m->insegments);
        if (!b->refine) {
          printf("  Input holes: %d\n", m->holes);
        }
      }
    
      printf("\n  Mesh vertices: %ld\n", m->vertices.items - m->undeads);
      printf("  Mesh triangles: %ld\n", m->triangles.items);
      printf("  Mesh edges: %ld\n", m->edges);
      printf("  Mesh exterior boundary edges: %ld\n", m->hullsize);
      if (b->poly || b->refine) {
        printf("  Mesh interior boundary edges: %ld\n",
               m->subsegs.items - m->hullsize);
        printf("  Mesh subsegments (constrained edges): %ld\n",
               m->subsegs.items);
      }
      printf("\n");
    
      if (b->verbose) {
        quality_statistics(m, b);
        printf("Memory allocation statistics:\n\n");
        printf("  Maximum number of vertices: %ld\n", m->vertices.maxitems);
        printf("  Maximum number of triangles: %ld\n", m->triangles.maxitems);
        if (m->subsegs.maxitems > 0) {
          printf("  Maximum number of subsegments: %ld\n", m->subsegs.maxitems);
        }
        if (m->viri.maxitems > 0) {
          printf("  Maximum number of viri: %ld\n", m->viri.maxitems);
        }
        if (m->badsubsegs.maxitems > 0) {
          printf("  Maximum number of encroached subsegments: %ld\n",
                 m->badsubsegs.maxitems);
        }
        if (m->badtriangles.maxitems > 0) {
          printf("  Maximum number of bad triangles: %ld\n",
                 m->badtriangles.maxitems);
        }
        if (m->flipstackers.maxitems > 0) {
          printf("  Maximum number of stacked triangle flips: %ld\n",
                 m->flipstackers.maxitems);
        }
        if (m->splaynodes.maxitems > 0) {
          printf("  Maximum number of splay tree nodes: %ld\n",
                 m->splaynodes.maxitems);
        }
        printf("  Approximate heap memory use (bytes): %ld\n\n",
               m->vertices.maxitems * m->vertices.itembytes +
               m->triangles.maxitems * m->triangles.itembytes +
               m->subsegs.maxitems * m->subsegs.itembytes +
               m->viri.maxitems * m->viri.itembytes +
               m->badsubsegs.maxitems * m->badsubsegs.itembytes +
               m->badtriangles.maxitems * m->badtriangles.itembytes +
               m->flipstackers.maxitems * m->flipstackers.itembytes +
               m->splaynodes.maxitems * m->splaynodes.itembytes);
    
        printf("Algorithmic statistics:\n\n");
        if (!b->weighted) {
          printf("  Number of incircle tests: %ld\n", m->incirclecount);
        } else {
          printf("  Number of 3D orientation tests: %ld\n", m->orient3dcount);
        }
        printf("  Number of 2D orientation tests: %ld\n", m->counterclockcount);
        if (m->hyperbolacount > 0) {
          printf("  Number of right-of-hyperbola tests: %ld\n",
                 m->hyperbolacount);
        }
        if (m->circletopcount > 0) {
          printf("  Number of circle top computations: %ld\n",
                 m->circletopcount);
        }
        if (m->circumcentercount > 0) {
          printf("  Number of triangle circumcenter computations: %ld\n",
                 m->circumcentercount);
        }
        printf("\n");
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  main() or triangulate()   Gosh, do everything.                           */
    /*                                                                           */
    /*  The sequence is roughly as follows.  Many of these steps can be skipped, */
    /*  depending on the command line switches.                                  */
    /*                                                                           */
    /*  - Initialize constants and parse the command line.                       */
    /*  - Read the vertices from a file and either                               */
    /*    - triangulate them (no -r), or                                         */
    /*    - read an old mesh from files and reconstruct it (-r).                 */
    /*  - Insert the PSLG segments (-p), and possibly segments on the convex     */
    /*      hull (-c).                                                           */
    /*  - Read the holes (-p), regional attributes (-pA), and regional area      */
    /*      constraints (-pa).  Carve the holes and concavities, and spread the  */
    /*      regional attributes and area constraints.                            */
    /*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   */
    /*      Also enforce the conforming Delaunay property (-q and -a).           */
    /*  - Compute the number of edges in the resulting mesh.                     */
    /*  - Promote the mesh's linear triangles to higher order elements (-o).     */
    /*  - Write the output files and print the statistics.                       */
    /*  - Check the consistency and Delaunay property of the mesh (-C).          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    #ifdef ANSI_DECLARATORS
    void triangulate(char *triswitches, struct triangulateio *in,
                     struct triangulateio *out, struct triangulateio *vorout)
    #else /* not ANSI_DECLARATORS */
    void triangulate(triswitches, in, out, vorout)
    char *triswitches;
    struct triangulateio *in;
    struct triangulateio *out;
    struct triangulateio *vorout;
    #endif /* not ANSI_DECLARATORS */
    
    #else /* not TRILIBRARY */
    
    #ifdef ANSI_DECLARATORS
    int main(int argc, char **argv)
    #else /* not ANSI_DECLARATORS */
    int main(argc, argv)
    int argc;
    char **argv;
    #endif /* not ANSI_DECLARATORS */
    
    #endif /* not TRILIBRARY */
    
    {
      struct mesh m;
      struct behavior b;
      REAL *holearray;                                        /* Array of holes. */
      REAL *regionarray;   /* Array of regional attributes and area constraints. */
    #ifndef TRILIBRARY
      FILE *polyfile;
    #endif /* not TRILIBRARY */
    #ifndef NO_TIMER
      /* Variables for timing the performance of Triangle.  The types are */
      /*   defined in sys/time.h.                                         */
      struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;
      struct timezone tz;
    #endif /* not NO_TIMER */
    
    #ifndef NO_TIMER
      gettimeofday(&tv0, &tz);
    #endif /* not NO_TIMER */
    
      triangleinit(&m);
    #ifdef TRILIBRARY
      parsecommandline(1, &triswitches, &b);
    #else /* not TRILIBRARY */
      parsecommandline(argc, argv, &b);
    #endif /* not TRILIBRARY */
      m.steinerleft = b.steiner;
    
    #ifdef TRILIBRARY
      transfernodes(&m, &b, in->pointlist, in->pointattributelist,
                    in->pointmarkerlist, in->numberofpoints,
                    in->numberofpointattributes);
    #else /* not TRILIBRARY */
      readnodes(&m, &b, b.innodefilename, b.inpolyfilename, &polyfile);
    #endif /* not TRILIBRARY */
    
    #ifndef NO_TIMER
      if (!b.quiet) {
        gettimeofday(&tv1, &tz);
      }
    #endif /* not NO_TIMER */
    
    #ifdef CDT_ONLY
      m.hullsize = delaunay(&m, &b);                /* Triangulate the vertices. */
    #else /* not CDT_ONLY */
      if (b.refine) {
        /* Read and reconstruct a mesh. */
    #ifdef TRILIBRARY
        m.hullsize = reconstruct(&m, &b, in->trianglelist,
                                 in->triangleattributelist, in->trianglearealist,
                                 in->numberoftriangles, in->numberofcorners,
                                 in->numberoftriangleattributes,
                                 in->segmentlist, in->segmentmarkerlist,
                                 in->numberofsegments);
    #else /* not TRILIBRARY */
        m.hullsize = reconstruct(&m, &b, b.inelefilename, b.areafilename,
                                 b.inpolyfilename, polyfile);
    #endif /* not TRILIBRARY */
      } else {
        m.hullsize = delaunay(&m, &b);              /* Triangulate the vertices. */
      }
    #endif /* not CDT_ONLY */
    
    #ifndef NO_TIMER
      if (!b.quiet) {
        gettimeofday(&tv2, &tz);
        if (b.refine) {
          printf("Mesh reconstruction");
        } else {
          printf("Delaunay");
        }
        printf(" milliseconds:  %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec) +
               (tv2.tv_usec - tv1.tv_usec) / 1000l);
      }
    #endif /* not NO_TIMER */
    
      /* Ensure that no vertex can be mistaken for a triangular bounding */
      /*   box vertex in insertvertex().                                 */
      m.infvertex1 = (vertex) NULL;
      m.infvertex2 = (vertex) NULL;
      m.infvertex3 = (vertex) NULL;
    
      if (b.usesegments) {
        m.checksegments = 1;                /* Segments will be introduced next. */
        if (!b.refine) {
          /* Insert PSLG segments and/or convex hull segments. */
    #ifdef TRILIBRARY
          formskeleton(&m, &b, in->segmentlist,
                       in->segmentmarkerlist, in->numberofsegments);
    #else /* not TRILIBRARY */
          formskeleton(&m, &b, polyfile, b.inpolyfilename);
    #endif /* not TRILIBRARY */
        }
      }
    
    #ifndef NO_TIMER
      if (!b.quiet) {
        gettimeofday(&tv3, &tz);
        if (b.usesegments && !b.refine) {
          printf("Segment milliseconds:  %ld\n",
                 1000l * (tv3.tv_sec - tv2.tv_sec) +
                 (tv3.tv_usec - tv2.tv_usec) / 1000l);
        }
      }
    #endif /* not NO_TIMER */
    
      if (b.poly && (m.triangles.items > 0)) {
    #ifdef TRILIBRARY
        holearray = in->holelist;
        m.holes = in->numberofholes;
        regionarray = in->regionlist;
        m.regions = in->numberofregions;
    #else /* not TRILIBRARY */
        readholes(&m, &b, polyfile, b.inpolyfilename, &holearray, &m.holes,
                  &regionarray, &m.regions);
    #endif /* not TRILIBRARY */
        if (!b.refine) {
          /* Carve out holes and concavities. */
          carveholes(&m, &b, holearray, m.holes, regionarray, m.regions);
        }
      } else {
        /* Without a PSLG, there can be no holes or regional attributes   */
        /*   or area constraints.  The following are set to zero to avoid */
        /*   an accidental free() later.                                  */
        m.holes = 0;
        m.regions = 0;
      }
    
    #ifndef NO_TIMER
      if (!b.quiet) {
        gettimeofday(&tv4, &tz);
        if (b.poly && !b.refine) {
          printf("Hole milliseconds:  %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec) +
                 (tv4.tv_usec - tv3.tv_usec) / 1000l);
        }
      }
    #endif /* not NO_TIMER */
    
    #ifndef CDT_ONLY
      if (b.quality && (m.triangles.items > 0)) {
        enforcequality(&m, &b);           /* Enforce angle and area constraints. */
      }
    #endif /* not CDT_ONLY */
    
    #ifndef NO_TIMER
      if (!b.quiet) {
        gettimeofday(&tv5, &tz);
    #ifndef CDT_ONLY
        if (b.quality) {
          printf("Quality milliseconds:  %ld\n",
                 1000l * (tv5.tv_sec - tv4.tv_sec) +
                 (tv5.tv_usec - tv4.tv_usec) / 1000l);
        }
    #endif /* not CDT_ONLY */
      }
    #endif /* not NO_TIMER */
    
      /* Calculate the number of edges. */
      m.edges = (3l * m.triangles.items + m.hullsize) / 2l;
    
      if (b.order > 1) {
        highorder(&m, &b);       /* Promote elements to higher polynomial order. */
      }
      if (!b.quiet) {
        printf("\n");
      }
    
    #ifdef TRILIBRARY
      if (b.jettison) {
        out->numberofpoints = m.vertices.items - m.undeads;
      } else {
        out->numberofpoints = m.vertices.items;
      }
      out->numberofpointattributes = m.nextras;
      out->numberoftriangles = m.triangles.items;
      out->numberofcorners = (b.order + 1) * (b.order + 2) / 2;
      out->numberoftriangleattributes = m.eextras;
      out->numberofedges = m.edges;
      if (b.usesegments) {
        out->numberofsegments = m.subsegs.items;
      } else {
        out->numberofsegments = m.hullsize;
      }
      if (vorout != (struct triangulateio *) NULL) {
        vorout->numberofpoints = m.triangles.items;
        vorout->numberofpointattributes = m.nextras;
        vorout->numberofedges = m.edges;
      }
    #endif /* TRILIBRARY */
      /* If not using iteration numbers, don't write a .node file if one was */
      /*   read, because the original one would be overwritten!              */
      if (b.nonodewritten || (b.noiterationnum && m.readnodefile)) {
        if (!b.quiet) {
    #ifdef TRILIBRARY
          printf("NOT writing vertices.\n");
    #else /* not TRILIBRARY */
          printf("NOT writing a .node file.\n");
    #endif /* not TRILIBRARY */
        }
        numbernodes(&m, &b);         /* We must remember to number the vertices. */
      } else {
        /* writenodes() numbers the vertices too. */
    #ifdef TRILIBRARY
        writenodes(&m, &b, &out->pointlist, &out->pointattributelist,
                   &out->pointmarkerlist);
    #else /* not TRILIBRARY */
        writenodes(&m, &b, b.outnodefilename, argc, argv);
    #endif /* TRILIBRARY */
      }
      if (b.noelewritten) {
        if (!b.quiet) {
    #ifdef TRILIBRARY
          printf("NOT writing triangles.\n");
    #else /* not TRILIBRARY */
          printf("NOT writing an .ele file.\n");
    #endif /* not TRILIBRARY */
        }
      } else {
    #ifdef TRILIBRARY
        writeelements(&m, &b, &out->trianglelist, &out->triangleattributelist);
    #else /* not TRILIBRARY */
        writeelements(&m, &b, b.outelefilename, argc, argv);
    #endif /* not TRILIBRARY */
      }
      /* The -c switch (convex switch) causes a PSLG to be written */
      /*   even if none was read.                                  */
      if (b.poly || b.convex) {
        /* If not using iteration numbers, don't overwrite the .poly file. */
        if (b.nopolywritten || b.noiterationnum) {
          if (!b.quiet) {
    #ifdef TRILIBRARY
            printf("NOT writing segments.\n");
    #else /* not TRILIBRARY */
            printf("NOT writing a .poly file.\n");
    #endif /* not TRILIBRARY */
          }
        } else {
    #ifdef TRILIBRARY
          writepoly(&m, &b, &out->segmentlist, &out->segmentmarkerlist);
          out->numberofholes = m.holes;
          out->numberofregions = m.regions;
          if (b.poly) {
            out->holelist = in->holelist;
            out->regionlist = in->regionlist;
          } else {
            out->holelist = (REAL *) NULL;
            out->regionlist = (REAL *) NULL;
          }
    #else /* not TRILIBRARY */
          writepoly(&m, &b, b.outpolyfilename, holearray, m.holes, regionarray,
                    m.regions, argc, argv);
    #endif /* not TRILIBRARY */
        }
      }
    #ifndef TRILIBRARY
    #ifndef CDT_ONLY
      if (m.regions > 0) {
        trifree((VOID *) regionarray);
      }
    #endif /* not CDT_ONLY */
      if (m.holes > 0) {
        trifree((VOID *) holearray);
      }
      if (b.geomview) {
        writeoff(&m, &b, b.offfilename, argc, argv);
      }
    #endif /* not TRILIBRARY */
      if (b.edgesout) {
    #ifdef TRILIBRARY
        writeedges(&m, &b, &out->edgelist, &out->edgemarkerlist);
    #else /* not TRILIBRARY */
        writeedges(&m, &b, b.edgefilename, argc, argv);
    #endif /* not TRILIBRARY */
      }
      if (b.voronoi) {
    #ifdef TRILIBRARY
        writevoronoi(&m, &b, &vorout->pointlist, &vorout->pointattributelist,
                     &vorout->pointmarkerlist, &vorout->edgelist,
                     &vorout->edgemarkerlist, &vorout->normlist);
    #else /* not TRILIBRARY */
        writevoronoi(&m, &b, b.vnodefilename, b.vedgefilename, argc, argv);
    #endif /* not TRILIBRARY */
      }
      if (b.neighbors) {
    #ifdef TRILIBRARY
        writeneighbors(&m, &b, &out->neighborlist);
    #else /* not TRILIBRARY */
        writeneighbors(&m, &b, b.neighborfilename, argc, argv);
    #endif /* not TRILIBRARY */
      }
    
      if (!b.quiet) {
    #ifndef NO_TIMER
        gettimeofday(&tv6, &tz);
        printf("\nOutput milliseconds:  %ld\n",
               1000l * (tv6.tv_sec - tv5.tv_sec) +
               (tv6.tv_usec - tv5.tv_usec) / 1000l);
        printf("Total running milliseconds:  %ld\n",
               1000l * (tv6.tv_sec - tv0.tv_sec) +
               (tv6.tv_usec - tv0.tv_usec) / 1000l);
    #endif /* not NO_TIMER */
    
        statistics(&m, &b);
      }
    
    #ifndef REDUCED
      if (b.docheck) {
        checkmesh(&m, &b);
        checkdelaunay(&m, &b);
      }
    #endif /* not REDUCED */
    
      triangledeinit(&m, &b);
    #ifndef TRILIBRARY
      return 0;
    #endif /* not TRILIBRARY */
    }