Forked from
gmsh / gmsh
16402 commits behind the upstream repository.
-
Christophe Geuzaine authoredChristophe Geuzaine authored
MElement.cpp 26.13 KiB
// $Id: MElement.cpp,v 1.69 2008-06-01 09:14:21 geuzaine Exp $
//
// Copyright (C) 1997-2008 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to <gmsh@geuz.org>.
#include <math.h>
#include "MElement.h"
#include "GEntity.h"
#include "GFace.h"
#if defined(HAVE_GMSH_EMBEDDED)
# include "GmshEmbedded.h"
#else
# include "Numeric.h"
# include "FunctionSpace.h"
# include "GaussLegendre1D.h"
# include "Message.h"
# include "Context.h"
# include "qualityMeasures.h"
#endif
extern Context_T CTX;
int MElement::_globalNum = 0;
double MElementLessThanLexicographic::tolerance = 1.e-6;
void MElement::_getEdgeRep(MVertex *v0, MVertex *v1,
double *x, double *y, double *z, SVector3 *n,
int faceIndex)
{
x[0] = v0->x(); y[0] = v0->y(); z[0] = v0->z();
x[1] = v1->x(); y[1] = v1->y(); z[1] = v1->z();
if(faceIndex >= 0){
n[0] = n[1] = getFace(faceIndex).normal();
}
else{
MEdge e(v0, v1);
n[0] = n[1] = e.normal();
}
}
void MElement::_getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2,
double *x, double *y, double *z, SVector3 *n)
{
x[0] = v0->x(); x[1] = v1->x(); x[2] = v2->x();
y[0] = v0->y(); y[1] = v1->y(); y[2] = v2->y();
z[0] = v0->z(); z[1] = v1->z(); z[2] = v2->z();
SVector3 t1(x[1] - x[0], y[1] - y[0], z[1] - z[0]);
SVector3 t2(x[2] - x[0], y[2] - y[0], z[2] - z[0]);
SVector3 normal = crossprod(t1, t2);
normal.normalize();
for(int i = 0; i < 3; i++) n[i] = normal;
}
char MElement::getVisibility()
{
if(CTX.hide_unselected && _visible < 2) return false;
return _visible;
}
double MElement::minEdge()
{
double m = 1.e25;
for(int i = 0; i < getNumEdges(); i++){
MEdge e = getEdge(i);
m = std::min(m, e.getVertex(0)->distance(e.getVertex(1)));
}
return m;
}
double MElement::maxEdge()
{
double m = 0.;
for(int i = 0; i < getNumEdges(); i++){
MEdge e = getEdge(i);
m = std::max(m, e.getVertex(0)->distance(e.getVertex(1)));
}
return m;
}
double MElement::rhoShapeMeasure()
{
double min = minEdge();
double max = maxEdge();
if(max)
return min / max;
else
return 0.;
}
double MTriangle::gammaShapeMeasure()
{
#if defined(HAVE_GMSH_EMBEDDED)
return 0.;
#else
return qmTriangle(this, QMTRI_RHO);
#endif
}
double MTetrahedron::gammaShapeMeasure()
{
#if defined(HAVE_GMSH_EMBEDDED)
return 0.;
#else
double vol;
return qmTet(this, QMTET_2, &vol);
#endif
}
double MTetrahedron::etaShapeMeasure()
{
#if defined(HAVE_GMSH_EMBEDDED)
return 0.;
#else
double vol;
return qmTet(this, QMTET_3, &vol);
#endif
}
double MTetrahedron::getVolume()
{
double mat[3][3];
getMat(mat);
return det3x3(mat) / 6.;
}
void MTetrahedron::xyz2uvw(double xyz[3], double uvw[3])
{
double mat[3][3], b[3], det;
getMat(mat);
b[0] = xyz[0] - getVertex(0)->x();
b[1] = xyz[1] - getVertex(0)->y();
b[2] = xyz[2] - getVertex(0)->z();
sys3x3(mat, b, uvw, &det);
}
int MHexahedron::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPrism::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[2]->x() - _v[0]->x();
mat[0][2] = _v[3]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[2]->y() - _v[0]->y();
mat[1][2] = _v[3]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[2]->z() - _v[0]->z();
mat[2][2] = _v[3]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPyramid::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
SPoint3 MElement::barycenter()
{
SPoint3 p(0., 0., 0.);
int n = getNumVertices();
for(int i = 0; i < n; i++) {
MVertex *v = getVertex(i);
p[0] += v->x();
p[1] += v->y();
p[2] += v->z();
}
p[0] /= (double)n;
p[1] /= (double)n;
p[2] /= (double)n;
return p;
}
std::string MElement::getInfoString()
{
char tmp[256];
sprintf(tmp, "Element %d", getNum());
return std::string(tmp);
}
double MElement::getJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
double s[3];
switch(getDim()){
case 3 :
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
jac[1][0] += p->x() * s[1]; jac[1][1] += p->y() * s[1]; jac[1][2] += p->z() * s[1];
jac[2][0] += p->x() * s[2]; jac[2][1] += p->y() * s[2]; jac[2][2] += p->z() * s[2];
}
return fabs(jac[0][0] * jac[1][1] * jac[2][2] + jac[0][2] * jac[1][0] * jac[2][1] +
jac[0][1] * jac[1][2] * jac[2][0] - jac[0][2] * jac[1][1] * jac[2][0] -
jac[0][0] * jac[1][2] * jac[2][1] - jac[0][1] * jac[1][0] * jac[2][2]);
case 2 :
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
jac[1][0] += p->x() * s[1]; jac[1][1] += p->y() * s[1]; jac[1][2] += p->z() * s[1];
}
{
double a[3], b[3], c[3];
a[0] = getVertex(1)->x() - getVertex(0)->x();
a[1] = getVertex(1)->y() - getVertex(0)->y();
a[2] = getVertex(1)->z() - getVertex(0)->z();
b[0] = getVertex(2)->x() - getVertex(0)->x();
b[1] = getVertex(2)->y() - getVertex(0)->y();
b[2] = getVertex(2)->z() - getVertex(0)->z();
prodve(a, b, c);
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
}
return sqrt(SQR(jac[0][0] * jac[1][1] - jac[0][1] * jac[1][0]) +
SQR(jac[0][2] * jac[1][0] - jac[0][0] * jac[1][2]) +
SQR(jac[0][1] * jac[1][2] - jac[0][2] * jac[1][1]));
case 1:
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
}
{
double a[3], b[3], c[3];
a[0] = getVertex(1)->x() - getVertex(0)->x();
a[1] = getVertex(1)->y() - getVertex(0)->y();
a[2] = getVertex(1)->z() - getVertex(0)->z();
if((fabs(a[0]) >= fabs(a[1]) && fabs(a[0]) >= fabs(a[2])) ||
(fabs(a[1]) >= fabs(a[0]) && fabs(a[1]) >= fabs(a[2]))) {
b[0] = a[1]; b[1] = -a[0]; b[2] = 0.;
}
else {
b[0] = 0.; b[1] = a[2]; b[2] = -a[1];
}
prodve(a, b, c);
jac[1][0] = b[0]; jac[1][1] = b[1]; jac[1][2] = b[2];
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
}
return sqrt(SQR(jac[0][0]) + SQR(jac[0][1]) + SQR(jac[0][2]));
default:
return 1.;
}
}
void MElement::xyz2uvw(double xyz[3], double uvw[3])
{
// general Newton routine for the nonlinear case (more efficient
// routines are implemented for simplices, where the basis functions
// are linear)
uvw[0] = uvw[1] = uvw[2] = 0.;
int iter = 1, maxiter = 20;
double error = 1., tol = 1.e-6;
while (error > tol && iter < maxiter){
double jac[3][3];
if(!getJacobian(uvw[0], uvw[1], uvw[2], jac)) break;
double xn = 0., yn = 0., zn = 0.;
for (int i = 0; i < getNumVertices(); i++) {
double s;
getShapeFunction(i, uvw[0], uvw[1], uvw[2], s);
MVertex *v = getVertex(i);
xn += v->x() * s;
yn += v->y() * s;
zn += v->z() * s;
}
double inv[3][3];
inv3x3(jac, inv);
double un = uvw[0] +
inv[0][0] * (xyz[0] - xn) + inv[1][0] * (xyz[1] - yn) + inv[2][0] * (xyz[2] - zn);
double vn = uvw[1] +
inv[0][1] * (xyz[0] - xn) + inv[1][1] * (xyz[1] - yn) + inv[2][1] * (xyz[2] - zn) ;
double wn = uvw[2] +
inv[0][2] * (xyz[0] - xn) + inv[1][2] * (xyz[1] - yn) + inv[2][2] * (xyz[2] - zn) ;
error = sqrt(SQR(un - uvw[0]) + SQR(vn - uvw[1]) + SQR(wn - uvw[2]));
uvw[0] = un;
uvw[1] = vn;
uvw[2] = wn;
iter++ ;
}
}
double MElement::interpolate(double val[], double u, double v, double w, int stride)
{
double sum = 0;
int j = 0;
for(int i = 0; i < getNumVertices(); i++){
double s;
getShapeFunction(i, u, v, w, s);
sum += val[j] * s;
j += stride;
}
return sum;
}
void MElement::interpolateGrad(double val[], double u, double v, double w, double f[3],
int stride, double invjac[3][3])
{
double dfdu[3] = {0., 0., 0.};
int j = 0;
for(int i = 0; i < getNumVertices(); i++){
double s[3];
getGradShapeFunction(i, u, v, w, s);
dfdu[0] += val[j] * s[0];
dfdu[1] += val[j] * s[1];
dfdu[2] += val[j] * s[2];
j += stride;
}
if(invjac){
matvec(invjac, dfdu, f);
}
else{
double jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
matvec(inv, dfdu, f);
}
}
void MElement::interpolateCurl(double val[], double u, double v, double w, double f[3],
int stride)
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv);
interpolateGrad(&val[1], u, v, w, fy, stride, inv);
interpolateGrad(&val[2], u, v, w, fz, stride, inv);
f[0] = fz[1] - fy[2];
f[1] = -(fz[0] - fx[2]);
f[2] = fy[0] - fx[1];
}
double MElement::interpolateDiv(double val[], double u, double v, double w, int stride)
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv);
interpolateGrad(&val[1], u, v, w, fy, stride, inv);
interpolateGrad(&val[2], u, v, w, fz, stride, inv);
return fx[0] + fy[1] + fz[2];
}
void MElement::writeMSH(FILE *fp, double version, bool binary, int num,
int elementary, int physical)
{
int type = getTypeForMSH();
if(!type) return;
// if necessary, change the ordering of the vertices to get positive
// volume
setVolumePositive();
int n = getNumVertices();
if(!binary){
fprintf(fp, "%d %d", num ? num : _num, type);
if(version < 2.0)
fprintf(fp, " %d %d %d", abs(physical), elementary, n);
else
fprintf(fp, " 3 %d %d %d", abs(physical), elementary, _partition);
}
else{
int tags[4] = {num ? num : _num, abs(physical), elementary, _partition};
fwrite(tags, sizeof(int), 4, fp);
}
if(physical < 0) revert();
int verts[30];
for(int i = 0; i < n; i++)
verts[i] = getVertex(i)->getIndex();
if(!binary){
for(int i = 0; i < n; i++)
fprintf(fp, " %d", verts[i]);
fprintf(fp, "\n");
}
else{
fwrite(verts, sizeof(int), n, fp);
}
if(physical < 0) revert();
}
void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber,
bool printGamma, bool printEta, bool printRho,
double scalingFactor, int elementary)
{
const char *str = getStringForPOS();
if(!str) return;
int n = getNumVertices();
fprintf(fp, "%s(", str);
for(int i = 0; i < n; i++){
if(i) fprintf(fp, ",");
fprintf(fp, "%g,%g,%g", getVertex(i)->x() * scalingFactor,
getVertex(i)->y() * scalingFactor, getVertex(i)->z() * scalingFactor);
}
fprintf(fp, "){");
bool first = true;
if(printElementary){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", elementary);
}
}
if(printElementNumber){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", getNum());
}
}
if(printGamma){
double gamma = gammaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", gamma);
}
}
if(printEta){
double eta = etaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", eta);
}
}
if(printRho){
double rho = rhoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", rho);
}
}
fprintf(fp, "};\n");
}
void MElement::writeSTL(FILE *fp, bool binary, double scalingFactor)
{
if(getNumEdges() != 3 && getNumEdges() != 4) return;
int qid[3] = {0, 2, 3};
SVector3 n = getFace(0).normal();
if(!binary){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
fprintf(fp, " outer loop\n");
for(int j = 0; j < 3; j++)
fprintf(fp, " vertex %g %g %g\n",
getVertex(j)->x() * scalingFactor,
getVertex(j)->y() * scalingFactor,
getVertex(j)->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
if(getNumVertices() == 4){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
fprintf(fp, " outer loop\n");
for(int j = 0; j < 3; j++)
fprintf(fp, " vertex %g %g %g\n",
getVertex(qid[j])->x() * scalingFactor,
getVertex(qid[j])->y() * scalingFactor,
getVertex(qid[j])->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
}
}
else{
char data[50];
float *coords = (float*)data;
coords[0] = n[0];
coords[1] = n[1];
coords[2] = n[2];
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(j)->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(j)->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(j)->z() * scalingFactor;
}
data[48] = data[49] = 0;
fwrite(data, sizeof(char), 50, fp);
if(getNumVertices() == 4){
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(qid[j])->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(qid[j])->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(qid[j])->z() * scalingFactor;
}
fwrite(data, sizeof(char), 50, fp);
}
}
}
void MElement::writeVRML(FILE *fp)
{
for(int i = 0; i < getNumVertices(); i++)
fprintf(fp, "%d,", getVertex(i)->getIndex() - 1);
fprintf(fp, "-1,\n");
}
void MElement::writeVTK(FILE *fp, bool binary)
{
int type = getTypeForUNV();
if(!type) return;
setVolumePositive();
int n = getNumVertices();
if(binary){
int verts[30];
verts[0] = n;
for(int i = 0; i < n; i++)
verts[i + 1] = getVertexVTK(i)->getIndex() - 1;
fwrite(verts, sizeof(int), n + 1, fp);
}
else{
fprintf(fp, "%d", n);
for(int i = 0; i < n; i++)
fprintf(fp, " %d", getVertexVTK(i)->getIndex() - 1);
fprintf(fp, "\n");
}
}
void MElement::writeUNV(FILE *fp, int num, int elementary, int physical)
{
int type = getTypeForUNV();
if(!type) return;
setVolumePositive();
int n = getNumVertices();
int physical_property = elementary;
int material_property = abs(physical);
int color = 7;
fprintf(fp, "%10d%10d%10d%10d%10d%10d\n",
num ? num : _num, type, physical_property, material_property, color, n);
if(type == 21 || type == 24) // linear beam or parabolic beam
fprintf(fp, "%10d%10d%10d\n", 0, 0, 0);
if(physical < 0) revert();
for(int k = 0; k < n; k++) {
fprintf(fp, "%10d", getVertexUNV(k)->getIndex());
if(k % 8 == 7)
fprintf(fp, "\n");
}
if(n - 1 % 8 != 7)
fprintf(fp, "\n");
if(physical < 0) revert();
}
void MElement::writeMESH(FILE *fp, int elementary)
{
for(int i = 0; i < getNumVertices(); i++)
fprintf(fp, " %d", getVertex(i)->getIndex());
fprintf(fp, " %d\n", elementary);
}
void MElement::writeBDF(FILE *fp, int format, int elementary)
{
const char *str = getStringForBDF();
if(!str) return;
setVolumePositive();
int n = getNumVertices();
const char *cont[4] = {"E", "F", "G", "H"};
int ncont = 0;
if(format == 0){ // free field format
fprintf(fp, "%s,%d,%d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, ",%d", getVertexBDF(i)->getIndex());
if(i != n - 1 && !((i + 3) % 8)){
fprintf(fp, ",+%s%d\n+%s%d", cont[ncont], _num, cont[ncont], _num);
ncont++;
}
}
if(n == 2) // CBAR
fprintf(fp, ",0.,0.,0.");
fprintf(fp, "\n");
}
else{ // small or large field format
fprintf(fp, "%-8s%-8d%-8d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, "%-8d", getVertexBDF(i)->getIndex());
if(i != n - 1 && !((i + 3) % 8)){
fprintf(fp, "+%s%-6d\n+%s%-6d", cont[ncont], _num, cont[ncont], _num);
ncont++;
}
}
if(n == 2) // CBAR
fprintf(fp, "%-8s%-8s%-8s", "0.", "0.", "0.");
fprintf(fp, "\n");
}
}
void MTriangle::jac(int ord, MVertex *vs[], double uu, double vv, double j[2][3])
{
#if defined(HAVE_GMSH_EMBEDDED)
return;
#else
double grads[256][2];
int nf = getNumFaceVertices();
if (!nf){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_9).df(uu, vv, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_12).df(uu, vv, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_15I).df(uu, vv, grads); break;
default: throw;
}
}
else{
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_10).df(uu, vv, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_15).df(uu, vv, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_21).df(uu, vv, grads); break;
default: throw;
}
}
j[0][0] = 0 ; for(int i = 0; i < 3; i++) j[0][0] += grads [i][0] * _v[i]->x();
j[1][0] = 0 ; for(int i = 0; i < 3; i++) j[1][0] += grads [i][1] * _v[i]->x();
j[0][1] = 0 ; for(int i = 0; i < 3; i++) j[0][1] += grads [i][0] * _v[i]->y();
j[1][1] = 0 ; for(int i = 0; i < 3; i++) j[1][1] += grads [i][1] * _v[i]->y();
j[0][2] = 0 ; for(int i = 0; i < 3; i++) j[0][2] += grads [i][0] * _v[i]->z();
j[1][2] = 0 ; for(int i = 0; i < 3; i++) j[1][2] += grads [i][1] * _v[i]->z();
if (ord == 1) return;
for(int i = 3; i < 3 * ord + nf; i++) j[0][0] += grads[i][0] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) j[1][0] += grads[i][1] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) j[0][1] += grads[i][0] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) j[1][1] += grads[i][1] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) j[0][2] += grads[i][0] * vs[i - 3]->z();
for(int i = 3; i < 3 * ord + nf; i++) j[1][2] += grads[i][1] * vs[i - 3]->z();
#endif
}
void MTriangle::pnt(int ord, MVertex *vs[], double uu, double vv, SPoint3 &p)
{
#if !defined(HAVE_GMSH_EMBEDDED)
double sf[256];
int nf = getNumFaceVertices();
if (!nf){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv, sf); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv, sf); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_9).f(uu, vv, sf); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_12).f(uu, vv, sf); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_15I).f(uu, vv, sf); break;
default: throw;
}
}
else{
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv, sf); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv, sf); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_10).f(uu, vv, sf); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_15).f(uu, vv, sf); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_21).f(uu, vv, sf); break;
default: throw;
}
}
double x = 0 ; for(int i = 0; i < 3; i++) x += sf[i] * _v[i]->x();
double y = 0 ; for(int i = 0; i < 3; i++) y += sf[i] * _v[i]->y();
double z = 0 ; for(int i = 0; i < 3; i++) z += sf[i] * _v[i]->z();
for(int i = 3; i < 3 * ord + nf; i++) x += sf[i] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) y += sf[i] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) z += sf[i] * vs[i - 3]->z();
p = SPoint3(x,y,z);
#endif
}
int MTriangle6::getNumEdgesRep(){ return 3 * 6; }
void MTriangle6::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
{
n[0] = n[1] = getFace(0).normal();
int N = getNumEdgesRep() / 3;
if (num < N){
SPoint3 pnt1, pnt2;
pnt((double)num / N, 0., pnt1);
pnt((double)(num + 1) / N, 0., pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
return;
}
if (num < 2 * N){
SPoint3 pnt1, pnt2;
num -= N;
pnt(1. - (double)num / N, (double)num / N, pnt1);
pnt(1. - (double)(num + 1) / N, (double)(num + 1) / N, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
return ;
}
{
SPoint3 pnt1, pnt2;
num -= 2 * N;
pnt(0, (double)num / N, pnt1);
pnt(0, (double)(num + 1) / N, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
}
}
int MTriangleN::getNumEdgesRep(){ return 3 * 12; }
void MTriangleN::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
{
n[0] = n[1] = getFace(0).normal();
int N = getNumEdgesRep() / 3;
if (num < N){
SPoint3 pnt1, pnt2;
pnt((double)num / N, 0., pnt1);
pnt((double)(num + 1) / N, 0., pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
return;
}
if (num < 2 * N){
SPoint3 pnt1, pnt2;
num -= N;
pnt(1. - (double)num / N, (double)num / N, pnt1);
pnt(1. - (double)(num + 1) / N, (double)(num + 1) / N, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
return ;
}
{
SPoint3 pnt1, pnt2;
num -= 2 * N;
pnt(0, (double)num / N, pnt1);
pnt(0, (double)(num + 1) / N, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
}
}
MElement *MElementFactory::create(int type, std::vector<MVertex*> &v,
int num, int part)
{
switch (type) {
case MSH_PNT: return 0;
case MSH_LIN_2: return new MLine(v, num, part);
case MSH_LIN_3: return new MLine3(v, num, part);
case MSH_LIN_4: return new MLineN(v, num, part);
case MSH_LIN_5: return new MLineN(v, num, part);
case MSH_LIN_6: return new MLineN(v, num, part);
case MSH_TRI_3: return new MTriangle(v, num, part);
case MSH_TRI_6: return new MTriangle6(v, num, part);
case MSH_TRI_9: return new MTriangleN(v, 3, num, part);
case MSH_TRI_10: return new MTriangleN(v, 3, num, part);
case MSH_TRI_12: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15I:return new MTriangleN(v, 5, num, part);
case MSH_TRI_21: return new MTriangleN(v, 5, num, part);
case MSH_QUA_4: return new MQuadrangle(v, num, part);
case MSH_QUA_8: return new MQuadrangle8(v, num, part);
case MSH_QUA_9: return new MQuadrangle9(v, num, part);
case MSH_TET_4: return new MTetrahedron(v, num, part);
case MSH_TET_10: return new MTetrahedron10(v, num, part);
case MSH_HEX_8: return new MHexahedron(v, num, part);
case MSH_HEX_20: return new MHexahedron20(v, num, part);
case MSH_HEX_27: return new MHexahedron27(v, num, part);
case MSH_PRI_6: return new MPrism(v, num, part);
case MSH_PRI_15: return new MPrism15(v, num, part);
case MSH_PRI_18: return new MPrism18(v, num, part);
case MSH_PYR_5: return new MPyramid(v, num, part);
case MSH_PYR_13: return new MPyramid13(v, num, part);
case MSH_PYR_14: return new MPyramid14(v, num, part);
default: return 0;
}
}
extern int getNGQTPts(int order);
extern IntPt *getGQTPts (int order);
extern int getNGQTetPts(int order);
extern IntPt *getGQTetPts(int order);
extern int getNGQQPts(int order);
extern IntPt *getGQQPts(int order);
extern int getNGQHPts(int order);
extern IntPt *getGQHPts(int order);
IntPt GQL[100];
void MLine::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)
double *t, *w;
int nbP = pOrder / 2 + 1;
gmshGaussLegendre1D(nbP, &t, &w);
for (int i = 0; i < nbP; i++){
GQL[i].pt[0] = t[i];
GQL[i].pt[1] = 0;
GQL[i].pt[2] = 0;
GQL[i].weight = w[i];
}
*npts = nbP;
*pts = GQL;
#endif
}
void MTriangle:: getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)
*npts = getNGQTPts(pOrder);
*pts = getGQTPts(pOrder);
#endif
}
void MTetrahedron::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)
*npts = getNGQTetPts(pOrder);
*pts = getGQTetPts(pOrder);
#endif
}
void MHexahedron::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)
*npts = getNGQHPts(pOrder);
*pts = getGQHPts(pOrder);
#endif
}
void MQuadrangle::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)
*npts = getNGQQPts(pOrder);
*pts = getGQQPts(pOrder);
#endif
}