Forked from
gmsh / gmsh
14929 commits behind the upstream repository.
-
Christophe Geuzaine authoredChristophe Geuzaine authored
GModel.cpp 40.26 KiB
// Gmsh - Copyright (C) 1997-2009 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include <stdlib.h>
#include <sstream>
#include "GmshConfig.h"
#include "GmshMessage.h"
#include "GModel.h"
#include "MPoint.h"
#include "MLine.h"
#include "MTriangle.h"
#include "MQuadrangle.h"
#include "MTetrahedron.h"
#include "MHexahedron.h"
#include "MPrism.h"
#include "MPyramid.h"
#include "MElementCut.h"
#include "discreteRegion.h"
#include "discreteFace.h"
#include "discreteEdge.h"
#include "discreteVertex.h"
#include "gmshSurface.h"
#include "Octree.h"
#include "SmoothData.h"
#include "Context.h"
#include "OS.h"
#if defined(HAVE_MESH)
#include "Field.h"
#include "Generator.h"
#endif
std::vector<GModel*> GModel::list;
int GModel::_current = -1;
GModel::GModel(std::string name)
: _name(name), _visible(1), _octree(0),
_geo_internals(0), _occ_internals(0), _fm_internals(0),
_fields(0), _currentMeshEntity(0), normals(0)
{
partitionSize[0] = 0; partitionSize[1] = 0;
list.push_back(this);
// at the moment we always create (at least an empty) GEO model
_createGEOInternals();
#if defined(HAVE_MESH)
_fields = new FieldManager();
#endif
}
GModel::~GModel()
{
std::vector<GModel*>::iterator it = std::find(list.begin(), list.end(), this);
if(it != list.end()) list.erase(it);
destroy();
_deleteGEOInternals();
_deleteOCCInternals();
#if defined(HAVE_MESH)
delete _fields;
#endif
}
GModel *GModel::current(int index)
{
if(list.empty()){
Msg::Warning("No current model available: creating one");
new GModel();
}
if(index >= 0) _current = index;
if(_current < 0 || _current >= (int)list.size()) return list.back();
return list[_current];
}
int GModel::setCurrent(GModel *m)
{
for (unsigned int i = 0; i < list.size(); i++){
if (list[i] == m){
_current = i;
return i;
}
}
}
GModel *GModel::findByName(std::string name)
{
// return last mesh with given name
for(int i = list.size() - 1; i >= 0; i--)
if(list[i]->getName() == name) return list[i];
return 0;
}
void GModel::destroy()
{
_name.clear();
for(riter it = firstRegion(); it != lastRegion(); ++it)
delete *it;
regions.clear();
std::vector<GFace*> to_keep;
for(fiter it = firstFace(); it != lastFace(); ++it){
// projection faces are persistent
if((*it)->getNativeType() == GEntity::UnknownModel &&
(*it)->geomType() == GEntity::ProjectionFace)
to_keep.push_back(*it);
else
delete *it;
}
faces.clear();
faces.insert(to_keep.begin(), to_keep.end());
for(eiter it = firstEdge(); it != lastEdge(); ++it)
delete *it;
edges.clear();
for(viter it = firstVertex(); it != lastVertex(); ++it)
delete *it;
vertices.clear();
destroyMeshCaches();
MVertex::resetGlobalNumber();
MElement::resetGlobalNumber();
if(normals) delete normals;
normals = 0;
#if defined(HAVE_MESH)
_fields->reset();
#endif
gmshSurface::reset();
}
void GModel::destroyMeshCaches()
{
_vertexVectorCache.clear();
_vertexMapCache.clear();
_elementVectorCache.clear();
_elementMapCache.clear();
if(_octree) Octree_Delete(_octree);
_octree = 0;
}
bool GModel::empty() const
{
return vertices.empty() && edges.empty() && faces.empty() && regions.empty();
}
int GModel::maxVertexNum()
{
viter it = firstVertex();
viter itv = lastVertex();
int MAXX = 0;
while(it != itv){
MAXX = std::max(MAXX, (*it)->tag());
++it;
}
return MAXX;
}
int GModel::maxEdgeNum()
{
eiter it = firstEdge();
eiter ite = lastEdge();
int MAXX = 0;
while(it != ite){
MAXX = std::max(MAXX, (*it)->tag());
++it;
}
return MAXX;
}
int GModel::maxFaceNum()
{
fiter it = firstFace();
fiter ite = lastFace();
int MAXX = 0;
while(it != ite){
MAXX = std::max(MAXX, (*it)->tag());
++it;
}
return MAXX;
}
GRegion *GModel::getRegionByTag(int n) const
{
GEntity tmp((GModel*)this, n);
std::set<GRegion*, GEntityLessThan>::const_iterator it = regions.find((GRegion*)&tmp);
if(it != regions.end())
return *it;
else
return 0;
}
GFace *GModel::getFaceByTag(int n) const
{
GEntity tmp((GModel*)this, n);
std::set<GFace*, GEntityLessThan>::const_iterator it = faces.find((GFace*)&tmp);
if(it != faces.end())
return *it;
else
return 0;
}
GEdge *GModel::getEdgeByTag(int n) const
{
GEntity tmp((GModel*)this, n);
std::set<GEdge*, GEntityLessThan>::const_iterator it = edges.find((GEdge*)&tmp);
if(it != edges.end())
return *it;
else
return 0;
}
GVertex *GModel::getVertexByTag(int n) const
{
GEntity tmp((GModel*)this, n);
std::set<GVertex*, GEntityLessThan>::const_iterator it = vertices.find((GVertex*)&tmp);
if(it != vertices.end())
return *it;
else
return 0;
}
void GModel::remove(GRegion *r)
{
riter it = std::find(firstRegion(), lastRegion(), r);
if(it != (riter)regions.end()) regions.erase(it);
}
void GModel::remove(GFace *f)
{
fiter it = std::find(firstFace(), lastFace(), f);
if(it != faces.end()) faces.erase(it);
}
void GModel::remove(GEdge *e)
{
eiter it = std::find(firstEdge(), lastEdge(), e);
if(it != edges.end()) edges.erase(it);
}
void GModel::remove(GVertex *v)
{
viter it = std::find(firstVertex(), lastVertex(), v);
if(it != vertices.end()) vertices.erase(it);
}
void GModel::snapVertices()
{
viter vit = firstVertex();
double tol = CTX::instance()->geom.tolerance;
while (vit != lastVertex()){
std::list<GEdge*> edges = (*vit)->edges();
for (std::list<GEdge*>::iterator it = edges.begin(); it != edges.end(); ++it){
Range<double> parb = (*it)->parBounds(0);
double t;
if ((*it)->getBeginVertex() == *vit){
t = parb.low();
}
else if ((*it)->getEndVertex() == *vit){
t = parb.high();
}
else{
Msg::Error("Weird vertex: impossible to snap");
break;
}
GPoint gp = (*it)->point(t);
double d = sqrt((gp.x() - (*vit)->x()) * (gp.x() - (*vit)->x()) +
(gp.y() - (*vit)->y()) * (gp.y() - (*vit)->y()) +
(gp.z() - (*vit)->z()) * (gp.z() - (*vit)->z()));
if (d > tol){
(*vit)->setPosition(gp);
Msg::Warning("Geom Vertex %d Corrupted (%12.5E)... Snap performed",
(*vit)->tag(), d);
}
}
vit++;
}
}
void GModel::getEntities(std::vector<GEntity*> &entities)
{
entities.clear();
entities.insert(entities.end(), vertices.begin(), vertices.end());
entities.insert(entities.end(), edges.begin(), edges.end());
entities.insert(entities.end(), faces.begin(), faces.end());
entities.insert(entities.end(), regions.begin(), regions.end());
}
int GModel::getMaxElementaryNumber(int dim)
{
std::vector<GEntity*> entities;
getEntities(entities);
int num = 0;
for(unsigned int i = 0; i < entities.size(); i++)
if(entities[i]->dim() == dim)
num = std::max(num, std::abs(entities[i]->tag()));
return num;
}
bool GModel::noPhysicalGroups()
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
if(entities[i]->physicals.size()) return false;
return true;
}
void GModel::getPhysicalGroups(std::map<int, std::vector<GEntity*> > groups[4])
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++){
std::map<int, std::vector<GEntity*> > &group(groups[entities[i]->dim()]);
for(unsigned int j = 0; j < entities[i]->physicals.size(); j++){
// physicals can be stored with negative signs when the entity
// should be "reversed"
int p = std::abs(entities[i]->physicals[j]);
if(std::find(group[p].begin(), group[p].end(), entities[i]) == group[p].end())
group[p].push_back(entities[i]);
}
}
}
void GModel::deletePhysicalGroups()
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
entities[i]->physicals.clear();
}
void GModel::deletePhysicalGroup(int dim, int num)
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++){
if(dim == entities[i]->dim()){
std::vector<int> p;
for(unsigned int j = 0; j < entities[i]->physicals.size(); j++)
if(entities[i]->physicals[j] != num)
p.push_back(entities[i]->physicals[j]);
entities[i]->physicals = p;
}
}
}
int GModel::getMaxPhysicalNumber(int dim)
{
std::vector<GEntity*> entities;
getEntities(entities);
int num = 0;
for(unsigned int i = 0; i < entities.size(); i++)
if(entities[i]->dim() == dim)
for(unsigned int j = 0; j < entities[i]->physicals.size(); j++)
num = std::max(num, std::abs(entities[i]->physicals[j]));
return num;
}
int GModel::setPhysicalName(std::string name, int dim, int number)
{
// check if the name is already used
piter it = physicalNames.begin();
while(it != physicalNames.end()){
if(name == it->second && dim == it->first.first) return it->first.second;
++it;
}
// if no number is given, find the next available one
if(!number) number = getMaxPhysicalNumber(dim) + 1;
physicalNames[std::pair<int, int>(dim, number)] = name;
return number;
}
std::string GModel::getPhysicalName(int dim, int number)
{
std::map<std::pair<int, int>, std::string>::iterator it =
physicalNames.find(std::pair<int, int>(dim, number));
if(it != physicalNames.end()) return it->second;
return "";
}
int GModel::getPhysicalNumber(const int &dim, const std::string &name)
{
for(piter physIt = firstPhysicalName(); physIt != lastPhysicalName(); ++physIt)
if(dim == physIt->first.first && name == physIt->second)
return physIt->first.second;
Msg::Warning("No physical group found with the name '%s'", name.c_str());
return -1;
}
std::string GModel::getElementaryName(int dim, int number)
{
std::map<std::pair<int, int>, std::string>::iterator it =
elementaryNames.find(std::pair<int, int>(dim, number));
if(it != elementaryNames.end()) return it->second;
return "";
}
void GModel::setSelection(int val)
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++){
entities[i]->setSelection(val);
// reset selection in elements (stored in the visibility flag to
// save space)
if(val == 0){
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
if(entities[i]->getMeshElement(j)->getVisibility() == 2)
entities[i]->getMeshElement(j)->setVisibility(1);
}
}
}
SBoundingBox3d GModel::bounds()
{
std::vector<GEntity*> entities;
getEntities(entities);
// using the mesh vertices for now; should use entities[i]->bounds() instead
SBoundingBox3d bb;
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
bb += entities[i]->mesh_vertices[j]->point();
return bb;
}
int GModel::mesh(int dimension)
{
#if defined(HAVE_MESH)
GenerateMesh(this, dimension);
return true;
#else
Msg::Error("Mesh module not compiled");
return false;
#endif
}
int GModel::getMeshStatus(bool countDiscrete)
{
for(riter it = firstRegion(); it != lastRegion(); ++it)
if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteVolume &&
(*it)->meshAttributes.Method != MESH_NONE)) &&
((*it)->tetrahedra.size() ||(*it)->hexahedra.size() ||
(*it)->prisms.size() || (*it)->pyramids.size() ||
(*it)->polyhedra.size())) return 3;
for(fiter it = firstFace(); it != lastFace(); ++it)
if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteSurface &&
(*it)->meshAttributes.Method != MESH_NONE)) &&
((*it)->triangles.size() || (*it)->quadrangles.size() ||
(*it)->polygons.size())) return 2;
for(eiter it = firstEdge(); it != lastEdge(); ++it)
if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteCurve &&
(*it)->meshAttributes.Method != MESH_NONE)) &&
(*it)->lines.size()) return 1;
for(viter it = firstVertex(); it != lastVertex(); ++it)
if((*it)->mesh_vertices.size()) return 0;
return -1;
}
int GModel::getNumMeshVertices()
{
std::vector<GEntity*> entities;
getEntities(entities);
unsigned int n = 0;
for(unsigned int i = 0; i < entities.size(); i++)
n += entities[i]->mesh_vertices.size();
return n;
}
int GModel::getNumMeshElements()
{
std::vector<GEntity*> entities;
getEntities(entities);
unsigned int n = 0;
for(unsigned int i = 0; i < entities.size(); i++)
n += entities[i]->getNumMeshElements();
return n;
}
int GModel::getNumMeshElements(unsigned c[5])
{
c[0] = 0; c[1] = 0; c[2] = 0; c[3] = 0; c[4] = 0;
for(riter it = firstRegion(); it != lastRegion(); ++it)
(*it)->getNumMeshElements(c);
if(c[0] + c[1] + c[2] + c[3] + c[4]) return 3;
for(fiter it = firstFace(); it != lastFace(); ++it)
(*it)->getNumMeshElements(c);
if(c[0] + c[1] + c[2]) return 2;
for(eiter it = firstEdge(); it != lastEdge(); ++it)
(*it)->getNumMeshElements(c);
if(c[0]) return 1;
return 0;
}
static void MElementBB(void *a, double *min, double *max)
{
MElement *e = (MElement*)a;
MVertex *v = e->getVertex(0);
min[0] = max[0] = v->x();
min[1] = max[1] = v->y();
min[2] = max[2] = v->z();
for(int i = 1; i < e->getNumVertices(); i++){
v = e->getVertex(i);
min[0] = std::min(min[0], v->x()); max[0] = std::max(max[0], v->x());
min[1] = std::min(min[1], v->y()); max[1] = std::max(max[1], v->y());
min[2] = std::min(min[2], v->z()); max[2] = std::max(max[2], v->z());
}
}
static void MElementCentroid(void *a, double *x)
{
MElement *e = (MElement*)a;
MVertex *v = e->getVertex(0);
int n = e->getNumVertices();
x[0] = v->x(); x[1] = v->y(); x[2] = v->z();
for(int i = 1; i < n; i++) {
v = e->getVertex(i);
x[0] += v->x(); x[1] += v->y(); x[2] += v->z();
}
double oc = 1. / (double)n;
x[0] *= oc;
x[1] *= oc;
x[2] *= oc;
}
static int MElementInEle(void *a, double *x)
{
MElement *e = (MElement*)a;
double uvw[3];
e->xyz2uvw(x, uvw);
return e->isInside(uvw[0], uvw[1], uvw[2]) ? 1 : 0;
}
MElement *GModel::getMeshElementByCoord(SPoint3 &p)
{
if(!_octree){
Msg::Debug("Rebuilding mesh element octree");
SBoundingBox3d bb = bounds();
double min[3] = {bb.min().x(), bb.min().y(), bb.min().z()};
double size[3] = {bb.max().x() - bb.min().x(),
bb.max().y() - bb.min().y(),
bb.max().z() - bb.min().z()};
const int maxElePerBucket = 100; // memory vs. speed trade-off
_octree = Octree_Create(maxElePerBucket, min, size,
MElementBB, MElementCentroid, MElementInEle);
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
Octree_Insert(entities[i]->getMeshElement(j), _octree);
Octree_Arrange(_octree);
}
double P[3] = {p.x(), p.y(), p.z()};
return (MElement*)Octree_Search(P, _octree);
}
MVertex *GModel::getMeshVertexByTag(int n)
{
if(_vertexVectorCache.empty() && _vertexMapCache.empty()){
Msg::Debug("Rebuilding mesh vertex cache");
_vertexVectorCache.clear();
_vertexMapCache.clear();
bool dense = (getNumMeshVertices() == MVertex::getGlobalNumber());
std::vector<GEntity*> entities;
getEntities(entities);
if(dense){
Msg::Debug("Good: we have a dense vertex numbering in the cache");
// numbering starts at 1
_vertexVectorCache.resize(MVertex::getGlobalNumber() + 1);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
_vertexVectorCache[entities[i]->mesh_vertices[j]->getNum()] =
entities[i]->mesh_vertices[j];
}
else{
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
_vertexMapCache[entities[i]->mesh_vertices[j]->getNum()] =
entities[i]->mesh_vertices[j];
}
}
if(n < (int)_vertexVectorCache.size())
return _vertexVectorCache[n];
else
return _vertexMapCache[n];
}
void GModel::getMeshVerticesForPhysicalGroup(int dim, int num, std::vector<MVertex*> &v)
{
v.clear();
std::map<int, std::vector<GEntity*> > groups[4];
getPhysicalGroups(groups);
std::map<int, std::vector<GEntity*> >::const_iterator it = groups[dim].find(num);
if(it == groups[dim].end()) return;
const std::vector<GEntity *> &entities = it->second;
std::set<MVertex*> sv;
for(unsigned int i = 0; i < entities.size(); i++){
if(dim == 0){
GVertex *g = (GVertex*)entities[i];
sv.insert(g->mesh_vertices[0]);
}
else{
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
for(int k = 0; k < e->getNumVertices(); k++)
sv.insert(e->getVertex(k));
}
}
}
v.insert(v.begin(), sv.begin(), sv.end());
}
MElement *GModel::getMeshElementByTag(int n)
{
if(_elementVectorCache.empty() && _elementMapCache.empty()){
Msg::Debug("Rebuilding mesh element cache");
_elementVectorCache.clear();
_elementMapCache.clear();
bool dense = (getNumMeshElements() == MElement::getGlobalNumber());
std::vector<GEntity*> entities;
getEntities(entities);
if(dense){
Msg::Debug("Good: we have a dense element numbering in the cache");
// numbering starts at 1
_elementVectorCache.resize(MElement::getGlobalNumber() + 1);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
_elementVectorCache[e->getNum()] = e;
}
}
else{
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
_elementMapCache[e->getNum()] = e;
}
}
}
if(n < (int)_elementVectorCache.size())
return _elementVectorCache[n];
else
return _elementMapCache[n];
}
template <class T>
static void removeInvisible(std::vector<T*> &elements, bool all)
{
std::vector<T*> tmp;
for(unsigned int i = 0; i < elements.size(); i++){
if(all || !elements[i]->getVisibility())
delete elements[i];
else
tmp.push_back(elements[i]);
}
elements.clear();
elements = tmp;
}
void GModel::removeInvisibleElements()
{
for(riter it = firstRegion(); it != lastRegion(); ++it){
bool all = !(*it)->getVisibility();
removeInvisible((*it)->tetrahedra, all);
removeInvisible((*it)->hexahedra, all);
removeInvisible((*it)->prisms, all);
removeInvisible((*it)->pyramids, all);
removeInvisible((*it)->polyhedra, all);
(*it)->deleteVertexArrays();
}
for(fiter it = firstFace(); it != lastFace(); ++it){
bool all = !(*it)->getVisibility();
removeInvisible((*it)->triangles, all);
removeInvisible((*it)->quadrangles, all);
removeInvisible((*it)->polygons, all);
(*it)->deleteVertexArrays();
}
for(eiter it = firstEdge(); it != lastEdge(); ++it){
bool all = !(*it)->getVisibility();
removeInvisible((*it)->lines, all);
(*it)->deleteVertexArrays();
}
}
int GModel::indexMeshVertices(bool all)
{
std::vector<GEntity*> entities;
getEntities(entities);
// tag all mesh vertices with -1 (negative vertices will not be
// saved)
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
entities[i]->mesh_vertices[j]->setIndex(-1);
// tag all mesh vertices belonging to elements that need to be saved
//with 0
for(unsigned int i = 0; i < entities.size(); i++)
if(all || entities[i]->physicals.size())
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
for(int k = 0; k < entities[i]->getMeshElement(j)->getNumVertices(); k++)
entities[i]->getMeshElement(j)->getVertex(k)->setIndex(0);
// renumber all the mesh vertices tagged with 0
int numVertices = 0;
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
if(!entities[i]->mesh_vertices[j]->getIndex())
entities[i]->mesh_vertices[j]->setIndex(++numVertices);
return numVertices;
}
void GModel::scaleMesh(double factor)
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
MVertex *v = entities[i]->mesh_vertices[j];
v->x() *= factor;
v->y() *= factor;
v->z() *= factor;
}
}
void GModel::recomputeMeshPartitions()
{
meshPartitions.clear();
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++){
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
int part = entities[i]->getMeshElement(j)->getPartition();
if(part) meshPartitions.insert(part);
}
}
}
void GModel::deleteMeshPartitions()
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
entities[i]->getMeshElement(j)->setPartition(0);
meshPartitions.clear();
}
template<class T>
static void _addElements(std::vector<T*> &dst, const std::vector<MElement*> &src)
{
for(unsigned int i = 0; i < src.size(); i++) dst.push_back((T*)src[i]);
}
void GModel::_storeElementsInEntities(std::map<int, std::vector<MElement*> > &map)
{
std::map<int, std::vector<MElement*> >::const_iterator it = map.begin();
for(; it != map.end(); ++it){
if(!it->second.size()) continue;
int type = it->second[0]->getType();
switch(type){
case TYPE_PNT:
{
GVertex *v = getVertexByTag(it->first);
if(!v){
v = new discreteVertex(this, it->first);
add(v);
}
if(!v->points.empty()) v->points.clear(); // CAD points already have one by default
_addElements(v->points, it->second);
}
break;
case TYPE_LIN:
{
GEdge *e = getEdgeByTag(it->first);
if(!e){
e = new discreteEdge(this, it->first, 0, 0);
add(e);
}
_addElements(e->lines, it->second);
}
break;
case TYPE_TRI: case TYPE_QUA: case TYPE_POLYG:
{
GFace *f = getFaceByTag(it->first);
if(!f){
f = new discreteFace(this, it->first);
add(f);
}
if(type == TYPE_TRI) _addElements(f->triangles, it->second);
else if(type == TYPE_QUA) _addElements(f->quadrangles, it->second);
else _addElements(f->polygons, it->second);
}
break;
case TYPE_TET: case TYPE_HEX: case TYPE_PYR: case TYPE_PRI: case TYPE_POLYH:
{
GRegion *r = getRegionByTag(it->first);
if(!r){
r = new discreteRegion(this, it->first);
add(r);
}
if(type == TYPE_TET) _addElements(r->tetrahedra, it->second);
else if(type == TYPE_HEX) _addElements(r->hexahedra, it->second);
else if(type == TYPE_PRI) _addElements(r->prisms, it->second);
else if(type == TYPE_PYR) _addElements(r->pyramids, it->second);
else _addElements(r->polyhedra, it->second);
}
break;
}
}
}
template<class T>
static void _associateEntityWithElementVertices(GEntity *ge, std::vector<T*> &elements)
{
for(unsigned int i = 0; i < elements.size(); i++){
for(int j = 0; j < elements[i]->getNumVertices(); j++){
if (!elements[i]->getVertex(j)->onWhat() ||
elements[i]->getVertex(j)->onWhat()->dim() > ge->dim()){
elements[i]->getVertex(j)->setEntity(ge);
}
}
}
}
void GModel::_associateEntityWithMeshVertices()
{
// loop on regions, then on faces, edges and vertices and store the
// entity pointer in the the elements' vertices (this way we
// associate the entity of lowest geometrical degree with each
// vertex)
for(riter it = firstRegion(); it != lastRegion(); ++it){
_associateEntityWithElementVertices(*it, (*it)->tetrahedra);
_associateEntityWithElementVertices(*it, (*it)->hexahedra);
_associateEntityWithElementVertices(*it, (*it)->prisms);
_associateEntityWithElementVertices(*it, (*it)->pyramids);
_associateEntityWithElementVertices(*it, (*it)->polyhedra);
}
for(fiter it = firstFace(); it != lastFace(); ++it){
_associateEntityWithElementVertices(*it, (*it)->triangles);
_associateEntityWithElementVertices(*it, (*it)->quadrangles);
_associateEntityWithElementVertices(*it, (*it)->polygons);
}
for(eiter it = firstEdge(); it != lastEdge(); ++it){
_associateEntityWithElementVertices(*it, (*it)->lines);
}
for(viter it = firstVertex(); it != lastVertex(); ++it){
_associateEntityWithElementVertices(*it, (*it)->points);
}
}
void GModel::_storeVerticesInEntities(std::map<int, MVertex*> &vertices)
{
std::map<int, MVertex*>::const_iterator it = vertices.begin();
for(; it != vertices.end(); ++it){
MVertex *v = it->second;
GEntity *ge = v->onWhat();
if(ge){
if(ge->dim() || ge->mesh_vertices.empty()){ // special case for points
ge->mesh_vertices.push_back(v);
}
}
else
delete v; // we delete all unused vertices
}
}
void GModel::_storeVerticesInEntities(std::vector<MVertex*> &vertices)
{
for(unsigned int i = 0; i < vertices.size(); i++){
MVertex *v = vertices[i];
if(v){ // the vector is allowed to have null entries
GEntity *ge = v->onWhat();
if(ge) {
if(ge->dim() || ge->mesh_vertices.empty()){ // special case for points
ge->mesh_vertices.push_back(v);
}
}
else
delete v; // we delete all unused vertices
}
}
}
void GModel::checkMeshCoherence(double tolerance)
{
int numEle = getNumMeshElements();
if(!numEle) return;
Msg::Info("Checking mesh coherence (%d elements)", numEle);
SBoundingBox3d bbox = bounds();
double lc = bbox.empty() ? 1. : norm(SVector3(bbox.max(), bbox.min()));
std::vector<GEntity*> entities;
getEntities(entities);
// check for duplicate mesh vertices
{
double old_tol = MVertexLessThanLexicographic::tolerance;
MVertexLessThanLexicographic::tolerance = tolerance * lc;
std::set<MVertex*, MVertexLessThanLexicographic> pos;
int num = 0;
for(unsigned int i = 0; i < entities.size(); i++){
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
MVertex *v = entities[i]->mesh_vertices[j];
std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.find(v);
if(it == pos.end()){
pos.insert(v);
}
else{
Msg::Info("Vertices %d and %d have identical position (%g, %g, %g)",
(*it)->getNum(), v->getNum(), v->x(), v->y(), v->z());
num++;
}
}
}
if(num) Msg::Warning("%d duplicate vertices", num);
MVertexLessThanLexicographic::tolerance = old_tol;
}
// check for duplicate elements
{
double old_tol = MElementLessThanLexicographic::tolerance;
MElementLessThanLexicographic::tolerance = tolerance * lc;
std::set<MElement*, MElementLessThanLexicographic> pos;
int num = 0;
for(unsigned int i = 0; i < entities.size(); i++){
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
std::set<MElement*, MElementLessThanLexicographic>::iterator it = pos.find(e);
if(it == pos.end()){
pos.insert(e);
}
else{
std::ostringstream sstream;
sstream << "Element " << e->getNum() << " [ ";
for (int k = 0; k < e->getNumVertices(); k++)
sstream << e->getVertex(k)->getNum() << " ";
sstream << "] on entity " << entities[i]->tag()
<< " has same barycenter as element " << (*it)->getNum()
<< " [ ";
for (int k = 0; k < (*it)->getNumVertices(); k++)
sstream << (*it)->getVertex(k)->getNum() << " ";
sstream << "]";
Msg::Info("%s", sstream.str().c_str());
num++;
}
}
}
if(num) Msg::Warning("%d duplicate elements", num);
MElementLessThanLexicographic::tolerance = old_tol;
}
}
int GModel::removeDuplicateMeshVertices(double tolerance)
{
SBoundingBox3d bbox = bounds();
double lc = bbox.empty() ? 1. : norm(SVector3(bbox.max(), bbox.min()));
std::vector<GEntity*> entities;
getEntities(entities);
double old_tol = MVertexLessThanLexicographic::tolerance;
MVertexLessThanLexicographic::tolerance = tolerance * lc;
std::set<MVertex*, MVertexLessThanLexicographic> pos;
for(unsigned int i = 0; i < entities.size(); i++){
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
MVertex *v = entities[i]->mesh_vertices[j];
MVertex w(v->x(), v->y(), v->z());
std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.find(&w);
if(it == pos.end())
pos.insert(new MVertex(v->x(), v->y(), v->z()));
}
}
int diff = getNumMeshVertices() - pos.size();
if(!diff){
for(std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.begin();
it != pos.end(); it++)
delete *it;
Msg::Info("No duplicate vertices found");
return 0;
}
std::map<int, std::vector<MElement*> > elements[10];
for(unsigned int i = 0; i < entities.size(); i++){
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
std::vector<MVertex*> verts;
for(int k = 0; k < e->getNumVertices(); k++){
MVertex *v = e->getVertex(k);
std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.find(v);
if(it != pos.end())
verts.push_back(*it);
else
Msg::Error("Could not find unique vertex (%g,%g,%g)", v->x(), v->y(), v->z());
}
MElementFactory factory;
MElement *e2 = factory.create(e->getTypeForMSH(), verts, e->getNum(),
e->getPartition());
switch(e2->getType()){
case TYPE_PNT: elements[0][entities[i]->tag()].push_back(e2); break;
case TYPE_LIN: elements[1][entities[i]->tag()].push_back(e2); break;
case TYPE_TRI: elements[2][entities[i]->tag()].push_back(e2); break;
case TYPE_QUA: elements[3][entities[i]->tag()].push_back(e2); break;
case TYPE_TET: elements[4][entities[i]->tag()].push_back(e2); break;
case TYPE_HEX: elements[5][entities[i]->tag()].push_back(e2); break;
case TYPE_PRI: elements[6][entities[i]->tag()].push_back(e2); break;
case TYPE_PYR: elements[7][entities[i]->tag()].push_back(e2); break;
case TYPE_POLYG: elements[8][entities[i]->tag()].push_back(e2); break;
case TYPE_POLYH: elements[9][entities[i]->tag()].push_back(e2); break;
}
}
}
for(unsigned int i = 0; i < entities.size(); i++)
entities[i]->deleteMesh();
std::vector<MVertex*> vertices;
for(std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.begin();
it != pos.end(); it++)
vertices.push_back(*it);
for(int i = 0; i < (int)(sizeof(elements) / sizeof(elements[0])); i++)
_storeElementsInEntities(elements[i]);
_associateEntityWithMeshVertices();
_storeVerticesInEntities(vertices);
MVertexLessThanLexicographic::tolerance = old_tol;
Msg::Info("Removed %d duplicate mesh vertices", diff);
return diff;
}
void GModel::createTopologyFromMesh()
{
// for each discreteRegion, create topology
std::vector<discreteRegion*> discRegions;
for(riter it = firstRegion(); it != lastRegion(); it++)
if((*it)->geomType() == GEntity::DiscreteVolume)
discRegions.push_back((discreteRegion*) *it);
for (std::vector<discreteRegion*>::iterator it = discRegions.begin();
it != discRegions.end(); it++)
(*it)->setBoundFaces();
//for each discreteFace, createTopology
std::vector<discreteFace*> discFaces;
for(fiter it = firstFace(); it != lastFace(); it++)
if((*it)->geomType() == GEntity::DiscreteSurface)
discFaces.push_back((discreteFace*) *it);
//EMI TODO
//check for closed faces
// for (std::vector<discreteFace*>::iterator itf = discFaces.begin(); itf != discFaces.end(); itf++){
// std::list<MTriangles*> tris;
// for (unsigned int i = 0; i < (*itf)->trinagles.size(); i++){
// tris.push_back((*itf)->triangles[i]);
// }
// while (!tris.empty()) {
// for (int i=0; i<3; i++) {
// for (std::list<MTriangle*>::iterator it = tris.begin() ; it != segments.end(); ++it){
// MEdge *e0 = (*it)->getEdge(0);
// MEdge *e1 = (*it)->getEdge(1);
// MEdge *e2 = (*it)->getEdge(2);
// //printf("mline %d %d \n", v1->getNum(), v2->getNum());
// std::list<MTriangle*>::iterator itp;
// if ( v1 == vE ){
// //printf("->push back this mline \n");
// myLines.push_back(*it);
// itp = it;
// it++;
// segments.erase(itp);
// vE = v2;
// i = -1;
// }
// else if ( v2 == vE){
// //printf("->push back this mline \n");
// myLines.push_back(*it);
// itp = it;
// it++;
// segments.erase(itp);
// vE = v1;
// i=-1;
// }
// if (it == segments.end()) break;
// }
// if (vB == vE) break;
// if (segments.empty()) break;
// //printf("not found VB=%d vE=%d\n", vB->getNum(), vE->getNum());
// MVertex *temp = vB;
// vB = vE;
// vE = temp;
// }
// GFace *newGe = new discreteFace(GModel::current(), GModel::current()->maxFaceNum() + 1, 0, 0);
// newGe->lines.insert(newGe->lines.end(), myLines.begin(), myLines.end());
// GModel::current()->add(newGe);
// }
// }
// }
//create Topo Fro Faces
createTopologyFromFaces(discFaces);
}
void GModel::createTopologyFromFaces(std::vector<discreteFace*> &discFaces)
{
std::vector<discreteEdge*> discEdges;
for(eiter it = firstEdge(); it != lastEdge(); it++){
if((*it)->geomType() == GEntity::DiscreteCurve)
discEdges.push_back((discreteEdge*) *it);
}
// find boundary edges of each face and put them in a map_edges that
// associates the MEdges with the tags of the adjacent faces
std::map<MEdge, std::vector<int>, Less_Edge > map_edges;
for (std::vector<discreteFace*>::iterator it = discFaces.begin(); it != discFaces.end(); it++)
(*it)->findEdges(map_edges);
//return if no boundary edges (torus, sphere, ..)
if (map_edges.empty()) return;
// create reverse map, for each face find set of MEdges that are
// candidate for new discrete Edges
std::map<int, std::vector<int> > face2Edges;
while (!map_edges.empty()){
std::vector<MEdge> myEdges;
std::vector<int> tagFaces = map_edges.begin()->second;
myEdges.push_back(map_edges.begin()->first);
map_edges.erase(map_edges.begin());
std::map<MEdge, std::vector<int>, Less_Edge >::iterator itmap = map_edges.begin();
while (itmap != map_edges.end()){
std::vector<int> tagFaces2 = itmap->second;
if (tagFaces2 == tagFaces){
myEdges.push_back(itmap->first);
map_edges.erase(itmap++);
}
else
itmap++;
}
//printf("*** %d Edges that bound \n", myEdges.size());
//for(std::vector<int>::iterator itFace = tagFaces.begin(); itFace != tagFaces.end(); itFace++)
// printf("face %d \n", *itFace);
// if the loaded mesh already contains discrete Edges, check if
// the candidate discrete Edge does contain any of those; if not,
// create discreteEdges and create a map face2Edges that associate
// for each face the boundary discrete Edges
for (std::vector<discreteEdge*>::iterator itE = discEdges.begin(); itE != discEdges.end(); itE++){
bool candidate = true;
for (unsigned int i = 0; i < (*itE)->getNumMeshElements(); i++){
MEdge me = (*itE)->getMeshElement(i)->getEdge(0);
if (std::find(myEdges.begin(), myEdges.end(), me) == myEdges.end()){
candidate = false;
break;
}
}
if (candidate){
std::vector<int> tagEdges;
tagEdges.push_back((*itE)->tag());
//printf("Push back edge %d\n", (*itE)->tag());
for (unsigned int i = 0; i < (*itE)->getNumMeshElements(); i++){
MEdge me = (*itE)->getMeshElement(i)->getEdge(0);
std::vector<MEdge>::iterator itME = std::find(myEdges.begin(), myEdges.end(), me);
myEdges.erase(itME);
}
for (std::vector<int>::iterator itFace = tagFaces.begin(); itFace != tagFaces.end(); itFace++) {
std::map<int, std::vector<int> >::iterator it = face2Edges.find(*itFace);
if (it == face2Edges.end()) face2Edges.insert(std::make_pair(*itFace, tagEdges));
else{
std::vector<int> allEdges = it->second;
allEdges.insert(allEdges.begin(), tagEdges.begin(), tagEdges.end());
it->second = allEdges;
}
}
}
}
while (!myEdges.empty()) {
std::vector<MEdge> myLines;
myLines.clear();
std::vector<MEdge>::iterator it = myEdges.begin();
MVertex *vB = (*it).getVertex(0);
MVertex *vE = (*it).getVertex(1);
myLines.push_back(*it);
myEdges.erase(it);
it++;
for (int i = 0; i < 2; i++) {
std::vector<MEdge>::iterator it= myEdges.begin();
while (it != myEdges.end()){
MVertex *v1 = (*it).getVertex(0);
MVertex *v2 = (*it).getVertex(1);
std::vector<MEdge>::iterator itp;
if (v1 == vE){
myLines.push_back(*it);
myEdges.erase(it);
vE = v2;
i = -1;
}
else if (v2 == vE){
myLines.push_back(*it);
myEdges.erase(it);
vE = v1;
i = -1;
}
else it++;
}
if (vB == vE) break;
if (myEdges.empty()) break;
MVertex *temp = vB;
vB = vE;
vE = temp;
}
int numE = maxEdgeNum()+1;
discreteEdge *e = new discreteEdge(this, numE, 0, 0);
//printf("*** Created discreteEdge %d \n", numE);
add(e);
discEdges.push_back(e);
//fill new edge with mesh vertices
std::vector<MVertex*> allV;
for(unsigned int i = 0; i < myLines.size(); i++) {
MVertex *v0 = myLines[i].getVertex(0);
MVertex *v1 = myLines[i].getVertex(1);
e->lines.push_back(new MLine( v0, v1));
if (std::find(allV.begin(), allV.end(), v0) == allV.end()) allV.push_back(v0);
if (std::find(allV.begin(), allV.end(), v1) == allV.end()) allV.push_back(v1);
v0->setEntity(e);
v1->setEntity(e);
}
e->mesh_vertices.insert(e->mesh_vertices.begin(), allV.begin(),allV.end());
for (std::vector<int>::iterator itFace = tagFaces.begin(); itFace != tagFaces.end(); itFace++) {
//delete new mesh vertices of edge from adjacent faces
GFace *dFace = getFaceByTag(*itFace);
for (std::vector<MVertex*>::iterator itv = allV.begin(); itv != allV.end(); itv++) {
std::vector<MVertex*>::iterator itve = std::find(dFace->mesh_vertices.begin(), dFace->mesh_vertices.end(), *itv);
if (itve != dFace->mesh_vertices.end()) dFace->mesh_vertices.erase(itve);
}
//fill face2Edges with the new edge
std::map<int, std::vector<int> >::iterator f2e = face2Edges.find(*itFace);
if (f2e == face2Edges.end()){
std::vector<int> tagEdges;
tagEdges.push_back(numE);
face2Edges.insert(std::make_pair(*itFace,tagEdges));
}
else{
std::vector<int> tagEdges = f2e->second;
tagEdges.push_back(numE);
f2e->second = tagEdges;
}
}
}
}
// set boundary edges for each face
for (std::vector<discreteFace*>::iterator it = discFaces.begin(); it != discFaces.end(); it++){
//printf("set boundary edge for face =%d \n", (*it)->tag());
std::map<int, std::vector<int> >::iterator ite = face2Edges.find((*it)->tag());
if (ite != face2Edges.end()){
std::vector<int> myEdges = ite->second;
(*it)->setBoundEdges(myEdges);
}
}
// for each discreteEdge, create Topology
for (std::vector<discreteEdge*>::iterator it = discEdges.begin(); it != discEdges.end(); it++){
(*it)->createTopo();
(*it)->parametrize();
}
}
GModel *GModel::buildCutGModel(gLevelset *ls)
{
std::map<int, std::vector<MElement*> > elements[10];
std::map<int, std::map<int, std::string> > physicals[4];
std::map<int, MVertex*> vertexMap;
Msg::Info("Cutting mesh...");
double t1 = Cpu();
GModel *cutGM = buildCutMesh(this, ls, elements, vertexMap, physicals);
for(int i = 0; i < (int)(sizeof(elements) / sizeof(elements[0])); i++)
cutGM->_storeElementsInEntities(elements[i]);
cutGM->_associateEntityWithMeshVertices();
cutGM->_storeVerticesInEntities(vertexMap);
for(int i = 0; i < 4; i++)
cutGM->_storePhysicalTagsInEntities(i, physicals[i]);
double t2 = Cpu();
Msg::Info("Mesh cutting complete (%g s)", t2 - t1);
return cutGM;
}