Forked from
gmsh / gmsh
-
Christophe Geuzaine authored
moving to new post-processing database *** WARNING *** do not upgrade if you need plugins or adaptive views: these have not been ported (yet) to the new database *** WARNING ***
Christophe Geuzaine authoredmoving to new post-processing database *** WARNING *** do not upgrade if you need plugins or adaptive views: these have not been ported (yet) to the new database *** WARNING ***
Generator.cpp 9.73 KiB
// $Id: Generator.cpp,v 1.123 2007-09-10 04:47:04 geuzaine Exp $
//
// Copyright (C) 1997-2007 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to <gmsh@geuz.org>.
#include "Gmsh.h"
#include "Numeric.h"
#include "Context.h"
#include "PView.h"
#include "OS.h"
#include "GModel.h"
#include "meshGEdge.h"
#include "meshGFace.h"
#include "meshGRegion.h"
#include "BackgroundMesh.h"
#include "BoundaryLayer.h"
#include "HighOrder.h"
extern Context_T CTX;
template<class T>
static void GetQualityMeasure(std::vector<T*>& ele,
double &gamma, double &gammaMin, double &gammaMax,
double &eta, double &etaMin, double &etaMax,
double &rho, double &rhoMin, double &rhoMax,
double quality[3][100])
{
for(unsigned int i = 0; i < ele.size(); i++){
double g = ele[i]->gammaShapeMeasure();
gamma += g;
gammaMin = std::min(gammaMin, g);
gammaMax = std::max(gammaMax, g);
double e = ele[i]->etaShapeMeasure();
eta += e;
etaMin = std::min(etaMin, e);
etaMax = std::max(etaMax, e);
double r = ele[i]->rhoShapeMeasure();
rho += r;
rhoMin = std::min(rhoMin, r);
rhoMax = std::max(rhoMax, r);
for(int j = 0; j < 100; j++){
if(g > j / 100. && g <= (j + 1) / 100.) quality[0][j]++;
if(e > j / 100. && e <= (j + 1) / 100.) quality[1][j]++;
if(r > j / 100. && r <= (j + 1) / 100.) quality[2][j]++;
}
}
}
void GetStatistics(double stat[50], double quality[3][100])
{
for(int i = 0; i < 50; i++) stat[i] = 0.;
GModel *m = GModel::current();
stat[0] = m->numVertex();
stat[1] = m->numEdge();
stat[2] = m->numFace();
stat[3] = m->numRegion();
std::map<int, std::vector<GEntity*> > physicals[4];
m->getPhysicalGroups(physicals);
stat[45] = physicals[0].size() + physicals[1].size() +
physicals[2].size() + physicals[3].size();
for(GModel::eiter it = m->firstEdge(); it != m->lastEdge(); ++it)
stat[4] += (*it)->mesh_vertices.size();
for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it){
stat[5] += (*it)->mesh_vertices.size();
stat[7] += (*it)->triangles.size();
stat[8] += (*it)->quadrangles.size();
}
for(GModel::riter it = m->firstRegion(); it != m->lastRegion(); ++it){
stat[6] += (*it)->mesh_vertices.size();
stat[9] += (*it)->tetrahedra.size();
stat[10] += (*it)->hexahedra.size();
stat[11] += (*it)->prisms.size();
stat[12] += (*it)->pyramids.size();
}
stat[13] = CTX.mesh_timer[0];
stat[14] = CTX.mesh_timer[1];
stat[15] = CTX.mesh_timer[2];
if(quality){
for(int i = 0; i < 3; i++)
for(int j = 0; j < 100; j++)
quality[i][j] = 0.;
double gamma=0., gammaMin=1., gammaMax=0.;
double eta=0., etaMin=1., etaMax=0.;
double rho=0., rhoMin=1., rhoMax=0.;
for(GModel::riter it = m->firstRegion(); it != m->lastRegion(); ++it){
GetQualityMeasure((*it)->tetrahedra, gamma, gammaMin, gammaMax,
eta, etaMin, etaMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->hexahedra, gamma, gammaMin, gammaMax,
eta, etaMin, etaMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->prisms, gamma, gammaMin, gammaMax,
eta, etaMin, etaMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->pyramids, gamma, gammaMin, gammaMax,
eta, etaMin, etaMax, rho, rhoMin, rhoMax, quality);
}
double N = stat[9] + stat[10] + stat[11] + stat[12];
stat[17] = N ? gamma / N : 0.;
stat[18] = gammaMin;
stat[19] = gammaMax;
stat[20] = N ? eta / N : 0.;
stat[21] = etaMin;
stat[22] = etaMax;
stat[23] = N ? rho / N : 0;
stat[24] = rhoMin;
stat[25] = rhoMax;
}
stat[26] = PView::list.size();
for(unsigned int i = 0; i < PView::list.size(); i++) {
PViewData *data = PView::list[i]->getData();
stat[27] += data->getNumElements(PViewData::Point);
stat[28] += data->getNumElements(PViewData::Line);
stat[29] += data->getNumElements(PViewData::Triangle);
stat[30] += data->getNumElements(PViewData::Quadrangle);
stat[31] += data->getNumElements(PViewData::Tetrahedron);
stat[32] += data->getNumElements(PViewData::Hexahedron);
stat[33] += data->getNumElements(PViewData::Prism);
stat[34] += data->getNumElements(PViewData::Pyramid);
stat[35] += data->getNumStrings2D() + data->getNumStrings3D();
}
}
bool TooManyElements(GModel *m, int dim)
{
if(CTX.expert_mode || !m->numVertex()) return false;
// try to detect obvious mistakes in characteristic lenghts (one of
// the most common cause for erroneous bug reports on the mailing
// list)
double sumAllLc = 0.;
for(GModel::viter it = m->firstVertex(); it != m->lastVertex(); ++it)
sumAllLc += (*it)->prescribedMeshSizeAtVertex();
sumAllLc /= (double)m->numVertex();
if(!sumAllLc || pow(CTX.lc / sumAllLc, dim) > 1.e10)
return !GetBinaryAnswer("Your choice of characteristic lengths will likely produce\n"
"a very large mesh. Do you really want to continue?\n\n"
"(To disable this warning in the future, select `Enable\n"
"expert mode' in the option dialog.)",
"Continue", "Cancel");
return false;
}
void Mesh1D(GModel *m)
{
if(TooManyElements(m, 1)) return;
Msg(STATUS1, "Meshing 1D...");
double t1 = Cpu();
std::for_each(m->firstEdge(), m->lastEdge(), meshGEdge());
double t2 = Cpu();
CTX.mesh_timer[0] = t2 - t1;
Msg(INFO, "Mesh 1D complete (%g s)", CTX.mesh_timer[0]);
Msg(STATUS1, "Mesh");
}
void Mesh2D(GModel *m)
{
if(TooManyElements(m, 2)) return;
if(CTX.mesh.algo2d == ALGO_2D_DELAUNAY && !CTX.expert_mode){
if(!GetBinaryAnswer("The 2D Delaunay algorithm is still highly experimental\n"
"and produces triangles with random orientations. Do you\n"
"really want to continue?\n\n"
"(To disable this warning in the future, select `Enable\n"
"expert mode' in the option dialog.)",
"Continue", "Cancel")) return;
}
Msg(STATUS1, "Meshing 2D...");
double t1 = Cpu();
// boundary layers are special: their generation (including vertices
// and curve meshes) is global as it depends on a smooth normal
// field generated from the surface mesh of the source surfaces
if(!Mesh2DWithBoundaryLayers(m))
std::for_each(m->firstFace(), m->lastFace(), meshGFace());
double t2 = Cpu();
CTX.mesh_timer[1] = t2 - t1;
Msg(INFO, "Mesh 2D complete (%g s)", CTX.mesh_timer[1]);
Msg(STATUS1, "Mesh");
}
void FindConnectedRegions(std::vector<GRegion*> &delaunay,
std::vector<std::vector<GRegion*> > &connected)
{
// FIXME: need to split region vector into connected components here!
connected.push_back(delaunay);
}
void Mesh3D(GModel *m)
{
if(TooManyElements(m, 3)) return;
Msg(STATUS1, "Meshing 3D...");
double t1 = Cpu();
// mesh the extruded volumes first
std::for_each(m->firstRegion(), m->lastRegion(), meshGRegionExtruded());
// then subdivide if necessary (unfortunately the subdivision is a
// global operation, which can require changing the surface mesh!)
SubdivideExtrudedMesh(m);
// then mesh all the non-delaunay regions
std::vector<GRegion*> delaunay;
std::for_each(m->firstRegion(), m->lastRegion(), meshGRegion(delaunay));
// and finally mesh the delaunay regions (again, this is global; but
// we mesh each connected part separately for performance and mesh
// quality reasons)
std::vector<std::vector<GRegion*> > connected;
FindConnectedRegions(delaunay, connected);
for(unsigned int i = 0; i < connected.size(); i++)
MeshDelaunayVolume(connected[i]);
double t2 = Cpu();
CTX.mesh_timer[2] = t2 - t1;
Msg(INFO, "Mesh 3D complete (%g s)", CTX.mesh_timer[2]);
Msg(STATUS1, "Mesh");
}
void OptimizeMesh(GModel *m)
{
Msg(STATUS1, "Optimizing 3D...");
double t1 = Cpu();
std::for_each(m->firstRegion(), m->lastRegion(), optimizeMeshGRegion());
double t2 = Cpu();
Msg(INFO, "Mesh 3D optimization complete (%g s)", t2 - t1);
Msg(STATUS1, "Mesh");
}
void GenerateMesh(int ask)
{
if(CTX.threads_lock) {
Msg(INFO, "I'm busy! Ask me that later...");
return;
}
CTX.threads_lock = 1;
GModel *m = GModel::current();
int old = m->getMeshStatus(false);
// Change any high order elements back into first order ones
SetOrder1(m);
// 1D mesh
if(ask == 1 || (ask > 1 && old < 1)) {
std::for_each(m->firstRegion(), m->lastRegion(), deMeshGRegion());
std::for_each(m->firstFace(), m->lastFace(), deMeshGFace());
Mesh1D(m);
}
// 2D mesh
if(ask == 2 || (ask > 2 && old < 2)) {
std::for_each(m->firstRegion(), m->lastRegion(), deMeshGRegion());
Mesh2D(m);
}
// 3D mesh
if(ask == 3) {
Mesh3D(m);
}
// Orient the surface mesh so that it matches the geometry
if(m->getMeshStatus() >= 2)
std::for_each(m->firstFace(), m->lastFace(), orientMeshGFace());
// Optimize quality
if(m->getMeshStatus() == 3 && CTX.mesh.optimize)
OptimizeMesh(m);
// Create high order elements
if(m->getMeshStatus() && CTX.mesh.order > 1)
SetOrderN(m, CTX.mesh.order, CTX.mesh.second_order_linear,
CTX.mesh.second_order_incomplete);
Msg(INFO, "%d vertices %d elements", m->numVertices(), m->numElements());
CTX.threads_lock = 0;
CTX.mesh.changed = ENT_ALL;
}