Forked from
gmsh / gmsh
19962 commits behind the upstream repository.
-
Jean-François Remacle authored
added ReadImg.* into Graphics modified Makefiles (now libfltk_images.a is used) This is a beta version of image loading with gmsh
Jean-François Remacle authoredadded ReadImg.* into Graphics modified Makefiles (now libfltk_images.a is used) This is a beta version of image loading with gmsh
3D_Mesh.cpp 24.90 KiB
// $Id: 3D_Mesh.cpp,v 1.46 2003-02-12 09:20:41 remacle Exp $
//
// Copyright (C) 1997 - 2003 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to "gmsh@geuz.org".
/*
Isotropic Delaunay 3D
tant que l'arbre des tetraedres de qualites inacceptables
n'est pas vide {
prendre le plus mauvais tetraedre;
creer un nouveau point;
eliminer les tetraedres dont le cercle circonscrit contient le point;
reconstruire le volume convexe;
}
*/
#include <vector>
#include <algorithm>
#include <time.h>
#include "Gmsh.h"
#include "Numeric.h"
#include "Mesh.h"
#include "3D_Mesh.h"
#include "Create.h"
#include "Context.h"
extern Mesh *THEM, *LOCAL;
extern Context_T CTX;
extern int FACE_DIMENSION;
static Tree_T *Tsd, *Sim_Sur_Le_Bord, *POINTS_TREE;
static List_T *Simplexes_Destroyed, *Simplexes_New, *Suppress;
static List_T *LLL, *POINTS_LIST;
static Simplex *THES;
static Vertex *THEV;
static Tree_T *SimXFac;
static double volume, LC3D;
static int ZONEELIMINEE, Methode = 0;
Simplex MyNewBoundary;
int Alerte_Point_Scabreux;
inline void cgsmpl (Simplex *s, double &x, double &y, double &z)
{
//compiler sous linux avec -O2 et faire tourner bench/3d/sphere2.geo
//->boum. Ne se produit pas si on accede a V[3] avant!
//if(!s->V[3]) Msg(GERROR, "oups");
x = 0.25 * ( s->V[0]->Pos.X +
s->V[1]->Pos.X +
s->V[2]->Pos.X +
s->V[3]->Pos.X);
y = 0.25 * ( s->V[0]->Pos.Y +
s->V[1]->Pos.Y +
s->V[2]->Pos.Y +
s->V[3]->Pos.Y);
z = 0.25 * ( s->V[0]->Pos.Z +
s->V[1]->Pos.Z +
s->V[2]->Pos.Z +
s->V[3]->Pos.Z);
}
struct closestSimplex
{
double X,Y,Z;
closestSimplex (double x, double y, double z)
: X(x),Y(y),Z(z){}
bool operator () (Simplex *a, Simplex *b)
{
double x1,y1,z1,x2,y2,z2;
cgsmpl (a,x1,y1,z1);
cgsmpl (b,x2,y2,z2);
double d1 = (x1-X)*(x1-X) + (y1-Y)*(y1-Y) + (z1-Z)*(z1-Z);
double d2 = (x2-X)*(x2-X) + (y2-Y)*(y2-Y) + (z2-Z)*(z2-Z);
return d1<d2;
}
};
void DebugSimplexe (Simplex * s){
int i;
fprintf (stderr, "Simplexe %p = %d %d %d %d \n",
s, s->V[0]->Num, s->V[1]->Num, s->V[2]->Num, s->V[3]->Num);
for (i = 0; i < 4; i++){
if (s->S[i] != &MyNewBoundary)
printf (" face : %d %d %d -> Simplexe %p\n",
s->F[i].V[0]->Num, s->F[i].V[1]->Num, s->F[i].V[2]->Num, s->S[i]);
else
printf (" face : %d %d %d -> Simplexe Boundary\n",
s->F[i].V[0]->Num, s->F[i].V[1]->Num, s->F[i].V[2]->Num);
}
}
void VSIM (void *a, void *b){
Simplex *S;
S = *(Simplex **) a;
if (S->V[3])
volume += fabs (S->Volume_Simplexe ());
}
void add_points (void *a, void *b){
Tree_Insert (POINTS_TREE, a);
}
void add_points_2 (void *a, void *b){
List_Add (POINTS_LIST, a);
}
double Interpole_lcTetraedre (Simplex * s, Vertex * v){
double mat[3][3], rhs[3], sol[3], det;
s->matsimpl (mat);
rhs[0] = v->Pos.X - s->V[0]->Pos.X;
rhs[1] = v->Pos.Y - s->V[0]->Pos.Y;
rhs[2] = v->Pos.Z - s->V[0]->Pos.Z;
sys3x3 (mat, rhs, sol, &det);
if (det == 0.0 ||
(1. - sol[0] - sol[1] - sol[2]) > 1. ||
(1. - sol[0] - sol[1] - sol[2]) < 0. ||
sol[0] > 1. ||
sol[1] > 1. ||
sol[2] > 1. ||
sol[0] < 0. ||
sol[1] < 0. ||
sol[2] < 0.){
return DMAX (s->V[0]->lc, DMAX (s->V[1]->lc, DMAX (s->V[2]->lc, s->V[3]->lc)));
//sol[0] = sol[1] = sol[2] = 0.25;
}
return (s->V[0]->lc * (1. - sol[0] - sol[1] - sol[2]) +
sol[0] * s->V[1]->lc +
sol[1] * s->V[2]->lc +
sol[2] * s->V[3]->lc);
}
Vertex *NewVertex (Simplex * s){
Vertex *v;
v = Create_Vertex (++THEM->MaxPointNum, s->Center.X, s->Center.Y, s->Center.Z, 1., 0.0);
v->lc = Interpole_lcTetraedre (s, v);
return (v);
}
int Pt_In_Volume (double X, double Y, double Z, Mesh * m,
double *l, double tol){
int i;
Vertex V;
double uvw[3];
Simplex *s;
Brick B;
V.Pos.X = X;
V.Pos.Y = Y;
V.Pos.Z = Z;
if (!(m->BGM.Typ == ONFILE) && !m->BGM.bgm){
*l = -1.0;
return (1);
}
B = LaBrique (&m->Grid, X, Y, Z);
if (B.N < 0){
return (0);
}
for (i = 0; i < List_Nbr (B.pT); i++){
List_Read (B.pT, i, &s);
if (s->Pt_In_Simplexe (&V, uvw, tol)){
*l = (1. - uvw[0] - uvw[1] - uvw[2]) * s->V[0]->lc
+ uvw[0] * s->V[1]->lc
+ uvw[1] * s->V[2]->lc
+ uvw[2] * s->V[3]->lc;
return (1);
}
}
return (0);
}
inline int Pt_In_Circum (Simplex * s, Vertex * v){
double d1, d2, eps;
/* Determine si un point est dans le cercle circonscrit a un simplexe */
d1 = s->Radius;
d2 = sqrt (DSQR (v->Pos.X - s->Center.X) +
DSQR (v->Pos.Y - s->Center.Y) +
DSQR (v->Pos.Z - s->Center.Z));
eps = fabs (d1 - d2) / (d1 + d2);
if (eps < 1.e-12){
return (0); // return 1 ? 0 ?
}
if (d2 < d1)
return (1);
return (0);
}
struct SimplexInteriorCheck
{
bool operator() ( Simplex * s , double x[3], double u[3])
{
Vertex v(x[0],x[1],x[2]);
return Pt_In_Circum (s, &v);
}
};
struct SimplexInBox
{
double sizeBox;
SimplexInBox(double sb) : sizeBox(sb) {}
void operator() ( Simplex * s , double min[3], double max[3])
{
double ss;
if(sizeBox > s->Radius) ss = s->Radius;
else ss = sizeBox;
min[0] = s->Center.X - ss;
max[0] = s->Center.X + ss;
min[1] = s->Center.Y - ss;
max[1] = s->Center.Y + ss;
min[2] = s->Center.Z - ss;
max[2] = s->Center.Z + ss;
}
};
/*
Recursive search;
*/
Simplex *SearchPointByNeighbor (Vertex *v, Simplex *s, Tree_T *visited, int depth)
{
if(depth > 150)return 0;
if(Tree_Search(visited,&s))return 0;
Tree_Add(visited,&s);
if(Pt_In_Circum (s,v)) return s;
Simplex *S[4];
int k=0;
for( int i = 0 ; i < 4 ; i++ )
{
if (s->S[i] != &MyNewBoundary)
{
S[k++] = s->S[i];
}
}
std::sort(S,S+k,closestSimplex(v->Pos.X,v->Pos.Y,v->Pos.Z));
for( int i = 0 ; i < k ; i++ )
{
Simplex *q = SearchPointByNeighbor (v,S[i],visited, depth+1);
if (q) return q;
}
return 0;
}
void Action_First_Simplexes (void *a, void *b){
Simplex **q;
if (!THES){
q = (Simplex **) a;
if (Pt_In_Circum (*q, THEV)){
THES = *q;
}
}
}
void LiS (void *a, void *b){
int j, N;
SxF SXF, *pSXF;
Simplex **pS, *S;
pS = (Simplex **) a;
S = *pS;
N = (S->V[3]) ? 4 : 3;
for (j = 0; j < N; j++){
SXF.F = S->F[j];
if ((pSXF = (SxF *) Tree_PQuery (SimXFac, &SXF))){
/* Creation du lien */
S->S[j] = pSXF->S;
pSXF->S->S[pSXF->NumFaceSimpl] = S;
}
else{
SXF.S = S;
SXF.NumFaceSimpl = j;
Tree_Add (SimXFac, &SXF);
}
}
}
void RzS (void *a, void *b){
int j, N;
Simplex **pS, *S;
pS = (Simplex **) a;
S = *pS;
N = (S->V[3]) ? 4 : 3;
for (j = 0; j < N; j++){
if ((S->S[j]) == NULL){
S->S[j] = &MyNewBoundary;
}
}
}
/* Cree les liens entre les simplexes, c.a.d recherche les voisins */
void Link_Simplexes (List_T * Sim, Tree_T * Tim){
Simplex *S;
int i;
SimXFac = Tree_Create (sizeof (SxF), compareSxF);
if (Sim){
for (i = 0; i < List_Nbr (Sim); i++){
List_Read (Sim, i, &S);
LiS (&S, NULL);
}
for (i = 0; i < List_Nbr (Sim); i++){
List_Read (Sim, i, &S);
RzS (&S, NULL);
}
}
else{
Tree_Action (Tim, LiS);
Tree_Action (Tim, RzS);
}
Tree_Delete (SimXFac);
}
void Box_6_Tetraedron (List_T * P, Mesh * m){
#define FACT 1.1
#define LOIN 0.2
int i, j;
static int pts[8][3] = { {0, 0, 0},
{1, 0, 0},
{1, 1, 0},
{0, 1, 0},
{0, 0, 1},
{1, 0, 1},
{1, 1, 1},
{0, 1, 1}};
static int tet[6][4] = { {1, 5, 2, 4},
{2, 5, 6, 4},
{4, 5, 6, 8},
{6, 4, 8, 7},
{6, 4, 7, 3},
{2, 3, 4, 6}};
double Xm, Ym, Zm, XM, YM, ZM, Xc, Yc, Zc;
Simplex *S, *ps;
Vertex *V, *v, *pv;
List_T *smp;
smp = List_Create (8, 1, sizeof (Simplex *));
V = (Vertex *) Malloc (8 * sizeof (Vertex));
for (i = 0; i < List_Nbr (P); i++){
List_Read (P, i, &v);
if (!i){
Xm = XM = v->Pos.X;
Ym = YM = v->Pos.Y;
Zm = ZM = v->Pos.Z;
}
else{
Xm = DMIN (Xm, v->Pos.X);
XM = DMAX (XM, v->Pos.X);
Ym = DMIN (Ym, v->Pos.Y);
YM = DMAX (YM, v->Pos.Y);
Zm = DMIN (Zm, v->Pos.Z);
ZM = DMAX (ZM, v->Pos.Z);
}
}
if (Xm == XM)
XM = Xm + 1.;
if (Ym == YM)
YM = Ym + 1.;
if (Zm == ZM)
ZM = Zm + 1.;
Xc = XM - Xm;
Yc = YM - Ym;
Zc = ZM - Zm;
/* initialisation de la grille */
m->Grid.init = 0;
m->Grid.min.X = Xm - LOIN * FACT * Xc;
m->Grid.min.Y = Ym - LOIN * FACT * Yc;
m->Grid.min.Z = Zm - LOIN * FACT * Zc;
m->Grid.max.X = XM + LOIN * FACT * Xc;
m->Grid.max.Y = YM + LOIN * FACT * Yc;
m->Grid.max.Z = ZM + LOIN * FACT * Zc;
m->Grid.Nx = m->Grid.Ny = m->Grid.Nz = 20;
/* Longueur Caracteristique */
LC3D = sqrt (Xc * Xc + Yc * Yc + Zc * Zc);
/* Points de la boite de 1 a 8
Z 8____________7
| /| /|
| / | / |
| / | / |
5|/___|________/6 |
| 4|________|___|3
| / | /
| / Y | /
| / | /
|/____________|/___ X
1 2
*/
for (i = 0; i < 8; i++){
if (pts[i][0])
V[i].Pos.X = Xm - LOIN * Xc;
else
V[i].Pos.X = XM + LOIN * Xc;
if (pts[i][1])
V[i].Pos.Y = Ym - LOIN * Yc;
else
V[i].Pos.Y = YM + LOIN * Yc;
if (pts[i][2])
V[i].Pos.Z = Zm - LOIN * Zc;
else
V[i].Pos.Z = ZM + LOIN * Zc;
V[i].Num = -(++THEM->MaxPointNum);
pv = &V[i];
pv->lc = 1.0;
pv->Mov = NULL;
Tree_Replace (m->Vertices, &pv);
}
/* 6 Tetraedres forment le maillage de la boite */
for (i = 0; i < 6; i++){
S = Create_Simplex (&V[tet[i][0] - 1], &V[tet[i][1] - 1],
&V[tet[i][2] - 1], &V[tet[i][3] - 1]);
List_Add (smp, &S);
}
Link_Simplexes (smp, NULL);
for (i = 0; i < List_Nbr (smp); i++){
List_Read (smp, i, &ps);
for (j = 0; j < 4; j++)
if (ps->S[j] == NULL)
ps->S[j] = &MyNewBoundary;
Tree_Replace (m->Simplexes, &ps);
}
}
void Fill_Sim_Des (void *a, void *b){
Simplex **S;
S = (Simplex **) a;
if (Pt_In_Circum (*S, THEV))
List_Add (Simplexes_Destroyed, a);
}
void TStoLS (void *a, void *b){
List_Add (Simplexes_Destroyed, a);
}
void TAtoLA (void *a, void *b){
List_Add (Simplexes_New, a);
}
void CrSi (void *a, void *b){
SxF *S;
Simplex *s;
S = (SxF *) a;
if (S->NumFaceSimpl == 1){
s = Create_Simplex (THEV, S->F.V[0], S->F.V[1], S->F.V[2]);
s->iEnt = ZONEELIMINEE;
THEM->Metric->setSimplexQuality (s);
List_Add (Simplexes_New, &s);
}
else if (S->NumFaceSimpl != 2){
Msg(WARNING, "Huh! Panic in CrSi");
}
}
void NewSimplexes (Mesh * m, List_T * Sim, List_T * news){
int i, j;
Tree_T *SimXFac;
Simplex *S;
SxF SXF, *pSXF;
SimXFac = Tree_Create (sizeof (SxF), compareSxF);
for (i = 0; i < List_Nbr (Sim); i++){
List_Read (Sim, i, &S);
if (!i)
ZONEELIMINEE = S->iEnt;
else {
if (S->iEnt != ZONEELIMINEE){
Msg(WARNING, "Huh! The elimination failed %d %d",
S->iEnt, ZONEELIMINEE);
}
}
for (j = 0; j < 4; j++){
SXF.F = S->F[j];
if ((pSXF = (SxF *) Tree_PQuery (SimXFac, &SXF))){
(pSXF->NumFaceSimpl)++;
}
else{
SXF.NumFaceSimpl = 1;
Tree_Add (SimXFac, &SXF);
}
}
}
/* Les faces non communes sont obligatoirement a la frontiere ...
-> Nouveaux simplexes */
Tree_Action (SimXFac, CrSi);
Tree_Delete (SimXFac);
}
/* Methode recursive : Rempli Tsd les simplexes detruits
Invariant : Le simplexe est a eliminer
Le simplexe n'est pas encore considere */
int recur_bowyer (Simplex * s){
int i;
Tree_Insert (Tsd, &s);
for (i = 0; i < 4; i++){
if (s->S[i] && s->S[i] != &MyNewBoundary && !Tree_Query (Tsd, &s->S[i])){
if (Pt_In_Circum (s->S[i], THEV) && (s->iEnt == s->S[i]->iEnt)){
recur_bowyer (s->S[i]);
}
else{
if (s->iEnt != s->S[i]->iEnt){
//Msg(WARNING, "Point scabreux %d", s->S[i]->Num);
Alerte_Point_Scabreux = 1;
}
Tree_Insert (Sim_Sur_Le_Bord, &s->S[i]);
}
}
}
return 1;
}
bool Bowyer_Watson (Mesh * m, Vertex * v, Simplex * S, int force){
int i;
Simplex *s;
double volumeold, volumenew;
THEV = v;
double x = (S->V[0]->Pos.X + S->V[1]->Pos.X + S->V[2]->Pos.X + S->V[3]->Pos.X) / 4.;
double y = (S->V[0]->Pos.Y + S->V[1]->Pos.Y + S->V[2]->Pos.Y + S->V[3]->Pos.Y) / 4.;
double z = (S->V[0]->Pos.Z + S->V[1]->Pos.Z + S->V[2]->Pos.Z + S->V[3]->Pos.Z) / 4.;
if (force)
THEM->Metric->Identity ();
else
THEM->Metric->setMetric (x, y, z);
Tsd = Tree_Create (sizeof (Simplex *), compareSimplex);
Sim_Sur_Le_Bord = Tree_Create (sizeof (Simplex *), compareSimplex);
List_Reset (Simplexes_Destroyed);
List_Reset (Simplexes_New);
if (Methode){
Tree_Action (m->Simplexes, Fill_Sim_Des);
}
else{
recur_bowyer (S);
}
Tree_Action (Tsd, TStoLS);
NewSimplexes (m, Simplexes_Destroyed, Simplexes_New);
/* calcul des volumes des simplexes crees */
if (Alerte_Point_Scabreux || !CTX.mesh.speed_max){
volume = 0.0;
for (i = 0; i < List_Nbr (Simplexes_Destroyed); i++){
VSIM (List_Pointer (Simplexes_Destroyed, i), NULL);
}
volumeold = volume;
volume = 0.0;
for (i = 0; i < List_Nbr (Simplexes_New); i++){
VSIM (List_Pointer (Simplexes_New, i), NULL);
}
volumenew = volume;
}
else{
volumeold = 1.0;
volumenew = 1.0;
}
/* critere du volume */
if ((fabs (volumeold - volumenew) / (volumeold + volumenew)) > 1.e-8){
if (Tree_Suppress (m->Simplexes, &S)){
S->Quality = 0.0;
Tree_Add (m->Simplexes, &S);
}
if(force){
List_Reset (Simplexes_Destroyed);
List_Reset (Simplexes_New);
Tree_Delete (Sim_Sur_Le_Bord);
Tree_Delete (Tsd);
//printf(" Aie Aie Aie volume changed %g -> %g\n",volumeold,volumenew);
return false;
}
}
else{
Tree_Add (m->Vertices, &THEV);
for (i = 0; i < List_Nbr (Simplexes_New); i++){
Simplex *theNewS;
List_Read (Simplexes_New, i, &theNewS);
/* if(force)
{
double xc = theNewS->Center.X;
double yc = theNewS->Center.Y;
double zc = theNewS->Center.Z;
double rd = theNewS->Radius;
cgsmpl (theNewS,x,y,z);
THEM->Metric->setMetric (x, y, z);
THEM->Metric->setSimplexQuality (theNewS);
theNewS->Center.X = xc;
theNewS->Center.Y = yc;
theNewS->Center.Z = zc;
theNewS->Radius = rd;
}*/
Tree_Add (m->Simplexes, &theNewS);
}
/* Suppression des simplexes elimines */
for (i = 0; i < List_Nbr (Simplexes_Destroyed); i++){
List_Read (Simplexes_Destroyed, i, &s);
if (!Tree_Suppress (m->Simplexes, &s))
Msg(GERROR, "Impossible to delete simplex");
Free_Simplex (&s,0);
}
/* Creation des liens entre nouveaux simplexes */
Tree_Action (Sim_Sur_Le_Bord, TAtoLA);
Link_Simplexes (Simplexes_New, m->Simplexes);
}
Tree_Delete (Sim_Sur_Le_Bord);
Tree_Delete (Tsd);
return true;
}
void Convex_Hull_Mesh (List_T * Points, Mesh * m){
int i, j, N, n;
N = List_Nbr (Points);
n = IMAX (N / 20, 1);
//clock_t t1 = clock();
Box_6_Tetraedron (Points, m);
List_Sort (Points, comparePosition);
int Nb1 = 0, Nb2 = 0, Nb3 = 0;
for (i = 0; i < N; i++){
THES = NULL;
List_Read (Points, i, &THEV);
if (Simplexes_New)
for (j = 0; j < List_Nbr (Simplexes_New); j++)
{
Simplex *simp;
List_Read (Simplexes_New, j, &simp);
if(Pt_In_Circum(simp,THEV))
{
THES = simp;
break;
}
}
if(THES) Nb1 ++;
if(!THES)
{
if (Simplexes_New && List_Nbr (Simplexes_New))
{
Tree_T *visited = Tree_Create (sizeof (Simplex *), compareSimplex);
Simplex *simp;
List_Read (Simplexes_New, 0, &simp);
THES = SearchPointByNeighbor (THEV, simp, visited,0);
Tree_Delete(visited);
}
if(THES) Nb2 ++;
}
if (!THES){
Tree_Action (m->Simplexes, Action_First_Simplexes);
if(THES) Nb3 ++;
}
if (i % n == n - 1){
volume = 0.0;
Tree_Action (m->Simplexes, VSIM);
Msg(STATUS3, "Nod=%d/%d Elm=%d", i+1,N,Tree_Nbr(m->Simplexes));
Msg(STATUS1, "Vol=%g (%d %d %d)",volume,Nb1,Nb2,Nb3);
}
if (!THES){
Msg(WARNING, "Vertex (%g,%g,%g) in no simplex", THEV->Pos.X,THEV->Pos.Y,THEV->Pos.Z);
THEV->Pos.X += CTX.mesh.rand_factor * LC3D * (1.-(double)rand()/(double)RAND_MAX);
THEV->Pos.Y += CTX.mesh.rand_factor * LC3D * (1.-(double)rand()/(double)RAND_MAX);
THEV->Pos.Z += CTX.mesh.rand_factor * LC3D * (1.-(double)rand()/(double)RAND_MAX);
Tree_Action (m->Simplexes, Action_First_Simplexes);
}
bool ca_marche = Bowyer_Watson (m, THEV, THES, 1);
int count = 0;
while(!ca_marche){
count ++;
double dx = CTX.mesh.rand_factor * LC3D * (1.-(double)rand()/(double)RAND_MAX);
double dy = CTX.mesh.rand_factor * LC3D * (1.-(double)rand()/(double)RAND_MAX);
double dz = CTX.mesh.rand_factor * LC3D * (1.-(double)rand()/(double)RAND_MAX);
THEV->Pos.X += dx;
THEV->Pos.Y += dy;
THEV->Pos.Z += dz;
THES = NULL;
Tree_Action (m->Simplexes, Action_First_Simplexes);
ca_marche = Bowyer_Watson (m, THEV, THES, 1);
THEV->Pos.X -= dx;
THEV->Pos.Y -= dy;
THEV->Pos.Z -= dz;
if(count > 5){
N++;
List_Add(POINTS_LIST,&THEV);
Msg(WARNING, "Unable to add point %d (will try it later)", THEV->Num);
break;
}
}
}
//clock_t t2 = clock();
//Msg(STATUS3,"Nb1 = %d Nb2 = %d Nb3 = %d N = %d t = %lf",Nb1,Nb2,Nb3
// ,N,(double)(t2-t1)/CLOCKS_PER_SEC);
}
void suppress_vertex (void *data, void *dum){
Vertex **pv;
pv = (Vertex **) data;
if ((*pv)->Num < 0)
List_Add (Suppress, pv);
}
void suppress_simplex (void *data, void *dum){
Simplex **pv;
pv = (Simplex **) data;
if ((*pv)->iEnt == 0) List_Add (Suppress, pv);
}
void add_in_bgm (void *a, void *b){
Simplex **s, *S;
s = (Simplex **) a;
S = *s;
List_Add (LLL, S);
}
void Bgm_With_Points (Mesh * bgm){
int i;
Simplex *s;
bgm->BGM.bgm = List_Create (Tree_Nbr (bgm->Simplexes), 10, sizeof (Simplex));
LLL = bgm->BGM.bgm;
Tree_Action (bgm->Simplexes, add_in_bgm);
for (i = 0; i < List_Nbr (LLL); i++){
s = (Simplex *) List_Pointer (LLL, i);
AddSimplexInGrid (bgm, s, BOITE);
}
}
void Create_BgMesh (int Type, double lc, Mesh * m){
m->BGM.Typ = Type;
switch (Type){
case CONSTANT:
m->BGM.lc = lc;
break;
case ONFILE:
break;
case WITHPOINTS:
m->BGM.bgm = NULL;
break;
}
}
void Maillage_Volume (void *data, void *dum){
Volume *v, **pv;
Mesh M;
Surface S, *s;
Simplex *simp;
Vertex *newv;
int n, N;
double uvw[3];
int i;
FACE_DIMENSION = 2;
pv = (Volume **) data;
v = *pv;
if(v->Dirty){
Msg(INFO, "Not meshing dirty Volume %d", v->Num);
return;
}
if (Extrude_Mesh (v)){
}
else if (MeshTransfiniteVolume (v)){
}
else if (v->Typ == 99999){
Simplexes_New = List_Create (10, 10, sizeof (Simplex *));
Simplexes_Destroyed = List_Create (10, 10, sizeof (Simplex *));
LOCAL = &M;
Create_BgMesh (THEM->BGM.Typ, .2, LOCAL);
s = &S;
POINTS_TREE = Tree_Create (sizeof (Vertex *), comparePosition);
POINTS_LIST = List_Create (100, 100, sizeof (Vertex *));
LOCAL->Simplexes = v->Simplexes;
LOCAL->Vertices = v->Vertices;
for (i = 0; i < List_Nbr (v->Surfaces); i++){
List_Read (v->Surfaces, i, &s);
Tree_Action (s->Vertices, add_points);
}
Tree_Action (POINTS_TREE, add_points_2);
Tree_Delete (POINTS_TREE);
N = List_Nbr (POINTS_LIST);
n = N / 30 + 1;
if(!N) return;
/* Creation d'un maillage initial respectant la frontiere */
Msg(STATUS2, "Mesh 3D... (initial)");
Convex_Hull_Mesh (POINTS_LIST, LOCAL);
if(!Coherence (v, LOCAL))
Msg(GERROR, "Surface recovery failed (send a bug report with the geo file to <gmsh@geuz.org>!)");
Link_Simplexes (NULL, LOCAL->Simplexes);
if(CTX.mesh.initial_only==3){
POINTS_TREE = THEM->Vertices;
Tree_Action (v->Vertices, add_points);
POINTS_TREE = THEM->Simplexes;
Tree_Action (v->Simplexes, add_points);
return;
}
/* Suppression des noeuds de num < 0 */
Suppress = List_Create (10, 10, sizeof (Vertex *));
Tree_Action (v->Vertices, suppress_vertex);
for (i = 0; i < List_Nbr (Suppress); i++){
Tree_Suppress (v->Vertices, List_Pointer (Suppress, i));
}
List_Delete (Suppress);
/* Suppression des elements dont le num de vol == 0 (cad qui
n'appartiennent a auncun volume defini) */
Suppress = List_Create (10, 10, sizeof (Simplex *));
Tree_Action (v->Simplexes, suppress_simplex);
for (i = 0; i < List_Nbr (Suppress); i++){
Tree_Suppress (v->Simplexes, List_Pointer (Suppress, i));
}
List_Delete (Suppress);
if (Tree_Nbr (LOCAL->Simplexes) == 0) return;
/* Si il reste quelque chose a mailler en volume : */
Msg(STATUS2, "Mesh 3D... (final)");
v->Simplexes = LOCAL->Simplexes;
Bgm_With_Points (LOCAL);
POINTS_TREE = THEM->Simplexes;
Tree_Right (LOCAL->Simplexes, &simp);
i = 0;
while (simp->Quality > CONV_VALUE){
newv = NewVertex (simp);
//double l;
//while(!Pt_In_Volume(newv->Pos.X,newv->Pos.Y,newv->Pos.Z,LOCAL,&l,0.0)){
while (!simp->Pt_In_Simplexe (newv, uvw, 1.e-5) &&
(simp->S[0] == &MyNewBoundary ||
!simp->S[0]->Pt_In_Simplexe (newv, uvw, 1.e-5)) &&
(simp->S[1] == &MyNewBoundary ||
!simp->S[1]->Pt_In_Simplexe (newv, uvw, 1.e-5)) &&
(simp->S[2] == &MyNewBoundary ||
!simp->S[2]->Pt_In_Simplexe (newv, uvw, 1.e-5)) &&
(simp->S[3] == &MyNewBoundary ||
!simp->S[3]->Pt_In_Simplexe (newv, uvw, 1.e-5))) {
Tree_Suppress (LOCAL->Simplexes, &simp);
simp->Quality = 0.1;
Tree_Insert (LOCAL->Simplexes, &simp);
Tree_Right (LOCAL->Simplexes, &simp);
if (simp->Quality < CONV_VALUE)
break;
newv = NewVertex (simp);
}
if (simp->Quality < CONV_VALUE)
break;
i++;
if (i % n == n - 1){
volume = 0.0;
Tree_Action (LOCAL->Simplexes, VSIM);
Msg(STATUS3, "Nod=%d Elm=%d",
Tree_Nbr (LOCAL->Vertices), Tree_Nbr (LOCAL->Simplexes));
Msg(STATUS1, "Vol(%g) Conv(%g->%g)", volume, simp->Quality, CONV_VALUE);
}
Bowyer_Watson (LOCAL, newv, simp, 0);
Tree_Right (LOCAL->Simplexes, &simp);
}
POINTS_TREE = THEM->Vertices;
Tree_Action (v->Vertices, add_points);
POINTS_TREE = THEM->Simplexes;
Tree_Action (v->Simplexes, add_points);
if (CTX.mesh.quality){
extern void SwapEdges3D (Mesh * M, Volume * v, double GammaPrescribed, bool order);
Msg(STATUS3, "Swapping edges (1st pass)");
SwapEdges3D (THEM, v, CTX.mesh.quality, true);
Msg(STATUS3, "Swapping edges (2nd pass)");
SwapEdges3D (THEM, v, CTX.mesh.quality, false);
Msg(STATUS3, "Swapping edges (last pass)");
SwapEdges3D (THEM, v, CTX.mesh.quality, true);
}
if (CTX.mesh.nb_smoothing){
/*
Msg(STATUS3, "Laplacian smoothing");
tnxe = Tree_Create (sizeof (NXE), compareNXE);
create_NXE (v->Vertices, v->Simplexes, tnxe);
for (int i = 0; i < CTX.mesh.nb_smoothing; i++)
Tree_Action (tnxe, ActionLiss);
delete_NXE (tnxe);
Msg(STATUS3, "Swapping edges (last pass)");
SwapEdges3D (THEM, v, 0.5, true);
*/
}
if (CTX.mesh.degree == 2)
Degre2 (THEM->Vertices, THEM->VertexEdges, v->Simplexes, NULL, NULL);
List_Delete(Simplexes_New);
List_Delete(Simplexes_Destroyed);
}
THEM->Statistics[6] += Tree_Nbr(v->Vertices);
THEM->Statistics[9] += Tree_Nbr(v->Simplexes);
THEM->Statistics[10] += Tree_Nbr(v->Hexahedra);
THEM->Statistics[11] += Tree_Nbr(v->Prisms);
THEM->Statistics[12] += Tree_Nbr(v->Pyramids);
}