Select Git revision
Forked from
gmsh / gmsh
Source project has a limited visibility.
-
Christophe Geuzaine authored
add option to center glyphs (arrows, labels)
Christophe Geuzaine authoredadd option to center glyphs (arrows, labels)
NearToFarField.cpp 19.60 KiB
// Gmsh - Copyright (C) 1997-2019 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
//
// Contributor(s):
// Ruth Sabariego
//
#include <complex>
#include "NearToFarField.h"
#include "OS.h"
StringXNumber NearToFarFieldOptions_Number[] = {
{GMSH_FULLRC, "Wavenumber", NULL, 1.},
{GMSH_FULLRC, "PhiStart", NULL, 0.},
{GMSH_FULLRC, "PhiEnd", NULL, 2. * M_PI},
{GMSH_FULLRC, "NumPointsPhi", NULL, 60},
{GMSH_FULLRC, "ThetaStart", NULL, 0.},
{GMSH_FULLRC, "ThetaEnd", NULL, M_PI},
{GMSH_FULLRC, "NumPointsTheta", NULL, 30},
{GMSH_FULLRC, "EView", NULL, 0},
{GMSH_FULLRC, "HView", NULL, 1},
{GMSH_FULLRC, "Normalize", NULL, 1},
{GMSH_FULLRC, "dB", NULL, 1},
{GMSH_FULLRC, "NegativeTime", NULL, 0.},
{GMSH_FULLRC, "RFar", NULL, 0},
};
StringXString NearToFarFieldOptions_String[] = {
{GMSH_FULLRC, "MatlabOutputFile", NULL, "farfield.m"},
};
extern "C" {
GMSH_Plugin *GMSH_RegisterNearToFarFieldPlugin()
{
return new GMSH_NearToFarFieldPlugin();
}
}
std::string GMSH_NearToFarFieldPlugin::getHelp() const
{
return "Plugin(NearToFarField) computes the far field pattern "
"from the near electric E and magnetic H fields on a surface "
"enclosing the radiating device (antenna).\n\n"
"Parameters: the wavenumber, the "
"angular discretisation (phi in [0, 2*Pi] and theta in [0, Pi]) "
"of the far field sphere and the indices of the views containing the "
"complex-valued E and H fields. If `Normalize' is set, the far field "
"is normalized to 1. If `dB' is set, the far field is computed in dB. "
"If `NegativeTime' is set, E and H are assumed to have exp(-iwt) time "
"dependency; otherwise they are assume to have exp(+iwt) time "
"dependency. If `MatlabOutputFile' is given the raw far field data is "
"also exported in Matlab format.\n\n"
"Plugin(NearToFarField) creates one new view.";
}
int GMSH_NearToFarFieldPlugin::getNbOptions() const
{
return sizeof(NearToFarFieldOptions_Number) / sizeof(StringXNumber);
}
int GMSH_NearToFarFieldPlugin::getNbOptionsStr() const
{
return sizeof(NearToFarFieldOptions_String) / sizeof(StringXString);
}
StringXNumber *GMSH_NearToFarFieldPlugin::getOption(int iopt)
{
return &NearToFarFieldOptions_Number[iopt];
}
StringXString *GMSH_NearToFarFieldPlugin::getOptionStr(int iopt)
{
return &NearToFarFieldOptions_String[iopt];
}
// Compute field using e^{j\omega t} time dependency, following Jin in "Finite
// Element Analysis of Antennas and Arrays", p. 176. This is not the usual `far
// field', as it still contains the e^{ikr}/r factor.
double GMSH_NearToFarFieldPlugin::getFarFieldJin(
std::vector<element *> &allElems, std::vector<std::vector<double> > &js,
std::vector<std::vector<double> > &ms, double k0, double rFar, double theta,
double phi)
{
// theta in [0, pi] (elevation/polar angle)
// phi in [0, 2*pi] (azimuthal angle)
double sTheta = sin(theta);
double cTheta = cos(theta);
double sPhi = sin(phi);
double cPhi = cos(phi);
double r[3] = {sTheta * cPhi, sTheta * sPhi, cTheta}; // Unit vector position
double Z0 = 120 * M_PI; // free-space impedance
int numComps = 3, numSteps = 2;
std::vector<std::vector<double> > N;
std::vector<std::vector<double> > Ns;
std::vector<std::vector<double> > L;
std::vector<std::vector<double> > Ls;
N.resize(numSteps);
Ns.resize(numSteps);
L.resize(numSteps);
Ls.resize(numSteps);
for(int step = 0; step < numSteps; step++) {
N[step].resize(numComps, 0.);
Ns[step].resize(numComps);
L[step].resize(numComps, 0.);
Ls[step].resize(numComps);
}
int i = 0;
for(std::size_t ele = 0; ele < allElems.size(); ele++) {
element *e = allElems[ele];
int numNodes = e->getNumNodes();
std::vector<double> valN0(numNodes * numComps), valN1(numNodes * numComps);
std::vector<double> valL0(numNodes * numComps), valL1(numNodes * numComps);
for(int nod = 0; nod < numNodes; nod++) {
double x, y, z;
e->getXYZ(nod, x, y, z);
double r_nod[3] = {x, y, z};
double rr = prosca(r_nod, r);
double e_jk0rr[2] = {cos(k0 * rr), sin(k0 * rr)};
for(int comp = 0; comp < numComps; comp++) {
if(i < (int)js[0].size()) {
valN0[numComps * nod + comp] =
js[0][i] * e_jk0rr[0] - js[1][i] * e_jk0rr[1];
valN1[numComps * nod + comp] =
js[0][i] * e_jk0rr[1] + js[1][i] * e_jk0rr[0];
valL0[numComps * nod + comp] =
ms[0][i] * e_jk0rr[0] - ms[1][i] * e_jk0rr[1];
valL1[numComps * nod + comp] =
ms[0][i] * e_jk0rr[1] + ms[1][i] * e_jk0rr[0];
i++;
}
}
}
N[0][0] += e->integrate(&valN0[0], 3);
N[1][0] += e->integrate(&valN1[0], 3);
N[0][1] += e->integrate(&valN0[1], 3);
N[1][1] += e->integrate(&valN1[1], 3);
N[0][2] += e->integrate(&valN0[2], 3);
N[1][2] += e->integrate(&valN1[2], 3);
L[0][0] += e->integrate(&valL0[0], 3);
L[1][0] += e->integrate(&valL1[0], 3);
L[0][1] += e->integrate(&valL0[1], 3);
L[1][1] += e->integrate(&valL1[1], 3);
L[0][2] += e->integrate(&valL0[2], 3);
L[1][2] += e->integrate(&valL1[2], 3);
}
// From Cartesian to spherical coordinates
for(int step = 0; step < 2; step++) {
Ns[step][0] = N[step][0] * sTheta * cPhi + N[step][1] * sTheta * sPhi +
N[step][2] * cTheta;
Ns[step][1] = N[step][0] * cTheta * cPhi + N[step][1] * cTheta * sPhi -
N[step][2] * sTheta;
Ns[step][2] = -N[step][0] * sPhi + N[step][1] * cPhi;
Ls[step][0] = L[step][0] * sTheta * cPhi + L[step][1] * sTheta * sPhi +
L[step][2] * cTheta;
Ls[step][1] = L[step][0] * cTheta * cPhi + L[step][1] * cTheta * sPhi -
L[step][2] * sTheta;
Ls[step][2] = -L[step][0] * sPhi + L[step][1] * cPhi;
}
// E_r radial component is negligible in far field
double E_theta[2];
double E_phi[2];
double k0_over_4pir = k0 / (4 * M_PI * rFar);
double cos_k0r = cos(k0 * rFar);
double sin_k0r = sin(k0 * rFar);
// Elevation component
E_theta[0] = -k0_over_4pir * ((Ls[0][2] + Z0 * Ns[0][1]) * sin_k0r -
(Ls[1][2] + Z0 * Ns[1][1]) * cos_k0r);
E_theta[1] = -k0_over_4pir * ((Ls[0][2] + Z0 * Ns[0][1]) * cos_k0r +
(Ls[1][2] + Z0 * Ns[1][1]) * sin_k0r);
// Azimuthal component
E_phi[0] = k0_over_4pir * ((Ls[0][1] - Z0 * Ns[0][2]) * sin_k0r -
(Ls[1][1] - Z0 * Ns[1][2]) * cos_k0r);
E_phi[1] = k0_over_4pir * ((Ls[0][1] - Z0 * Ns[0][2]) * cos_k0r +
(Ls[1][1] - Z0 * Ns[1][2]) * sin_k0r);
double farF = 1. / 2. / Z0 *
((E_theta[0] * E_theta[0] + E_theta[1] * E_theta[1]) +
(E_phi[0] * E_phi[0] + E_phi[1] * E_phi[1]));
return farF;
}
// Compute far field using e^{-i\omega t} time dependency, following Monk in
// "Finite Element Methods for Maxwell's equations", p. 233
double GMSH_NearToFarFieldPlugin::getFarFieldMonk(
std::vector<element *> &allElems, std::vector<std::vector<double> > &ffvec,
std::vector<std::vector<double> > &js, std::vector<std::vector<double> > &ms,
double k0, double theta, double phi)
{
double sTheta = sin(theta);
double cTheta = cos(theta);
double sPhi = sin(phi);
double cPhi = cos(phi);
double xHat[3] = {sTheta * cPhi, sTheta * sPhi, cTheta};
std::complex<double> I(0., 1.);
double Z0 = 120 * M_PI; // free-space impedance
double integral_r[3] = {0., 0., 0.}, integral_i[3] = {0., 0., 0.};
int i = 0;
for(std::size_t ele = 0; ele < allElems.size(); ele++) {
element *e = allElems[ele];
int numNodes = e->getNumNodes();
std::vector<double> integrand_r(numNodes * 3), integrand_i(numNodes * 3);
for(int nod = 0; nod < numNodes; nod++) {
double y[3];
e->getXYZ(nod, y[0], y[1], y[2]);
double const xHat_dot_y = prosca(xHat, y);
double n_x_e_r[3] = {-ms[0][i], -ms[0][i + 1], -ms[0][i + 2]};
double n_x_e_i[3] = {-ms[1][i], -ms[1][i + 1], -ms[1][i + 2]};
double n_x_h_r[3] = {js[0][i], js[0][i + 1], js[0][i + 2]};
double n_x_h_i[3] = {js[1][i], js[1][i + 1], js[1][i + 2]};
double n_x_h_x_xHat_r[3], n_x_h_x_xHat_i[3];
prodve(n_x_h_r, xHat, n_x_h_x_xHat_r);
prodve(n_x_h_i, xHat, n_x_h_x_xHat_i);
for(int comp = 0; comp < 3; comp++) {
std::complex<double> n_x_e(n_x_e_r[comp], n_x_e_i[comp]);
std::complex<double> n_x_h_x_xHat(n_x_h_x_xHat_r[comp],
n_x_h_x_xHat_i[comp]);
// Warning: Z0 == 1 in Monk
std::complex<double> integrand =
(n_x_e + Z0 * n_x_h_x_xHat) *
(cos(-k0 * xHat_dot_y) + I * sin(-k0 * xHat_dot_y));
integrand_r[3 * nod + comp] = integrand.real();
integrand_i[3 * nod + comp] = integrand.imag();
}
i += 3;
}
for(int comp = 0; comp < 3; comp++) {
integral_r[comp] += e->integrate(&integrand_r[comp], 3);
integral_i[comp] += e->integrate(&integrand_i[comp], 3);
}
}
double xHat_x_integral_r[3], xHat_x_integral_i[3];
prodve(xHat, integral_r, xHat_x_integral_r);
prodve(xHat, integral_i, xHat_x_integral_i);
std::complex<double> coef = I * k0 / 4. / M_PI;
std::complex<double> einf[3] = {
coef * (xHat_x_integral_r[0] + I * xHat_x_integral_i[0]),
coef * (xHat_x_integral_r[1] + I * xHat_x_integral_i[1]),
coef * (xHat_x_integral_r[2] + I * xHat_x_integral_i[2])};
double coef1 = k0 / 4. / M_PI;
for(int comp = 0; comp < 3; comp++) {
ffvec[comp][0] = -coef1 * xHat_x_integral_i[comp];
ffvec[comp][1] = coef1 * xHat_x_integral_r[comp];
}
return (norm(einf[0]) + norm(einf[1]) + norm(einf[2]));
}
static void printVector(FILE *fp, const std::string &name,
std::vector<std::vector<double> > &vec)
{
fprintf(fp, "%s = [", name.c_str());
for(std::size_t i = 0; i < vec.size(); i++)
for(std::size_t j = 0; j < vec[i].size(); j++)
fprintf(fp, "%.16g ", vec[i][j]);
fprintf(fp, "];\n");
}
PView *GMSH_NearToFarFieldPlugin::execute(PView *v)
{
double _k0 = (double)NearToFarFieldOptions_Number[0].def;
double _phiStart = (double)NearToFarFieldOptions_Number[1].def;
double _phiEnd = (double)NearToFarFieldOptions_Number[2].def;
int _nbPhi = (int)NearToFarFieldOptions_Number[3].def;
double _thetaStart = (double)NearToFarFieldOptions_Number[4].def;
double _thetaEnd = (double)NearToFarFieldOptions_Number[5].def;
int _nbThe = (int)NearToFarFieldOptions_Number[6].def;
int _eView = (int)NearToFarFieldOptions_Number[7].def;
int _hView = (int)NearToFarFieldOptions_Number[8].def;
bool _normalize = (bool)NearToFarFieldOptions_Number[9].def;
bool _dB = (bool)NearToFarFieldOptions_Number[10].def;
int _negativeTime = (int)NearToFarFieldOptions_Number[11].def;
double _rfar = (int)NearToFarFieldOptions_Number[12].def;
std::string _outFile = NearToFarFieldOptions_String[0].def;
PView *ve = getView(_eView, v);
if(!ve) {
Msg::Error("NearToFarField plugin could not find EView %i", _eView);
return v;
}
PView *vh = getView(_hView, v);
if(!vh) {
Msg::Error("NearToFarField plugin could not find HView %i", _hView);
return v;
}
PViewData *eData = ve->getData();
PViewData *hData = vh->getData();
if(eData->getNumEntities() != hData->getNumEntities() ||
eData->getNumElements() != hData->getNumElements() ||
eData->getNumTimeSteps() != hData->getNumTimeSteps()) {
Msg::Error("Incompatible views for E field and H field");
return v;
}
if(eData->getNumTimeSteps() != 2 || hData->getNumTimeSteps() != 2) {
Msg::Error("Invalid number of steps for E or H fields (must be complex)");
return v;
}
// center and radius of the visualization sphere
SBoundingBox3d bbox = eData->getBoundingBox();
double x0 = bbox.center().x();
double y0 = bbox.center().y();
double z0 = bbox.center().z();
double lc = norm(SVector3(bbox.max(), bbox.min()));
double r_sph = lc ? lc / 2. : 1;
if(x0 != hData->getBoundingBox().center().x() ||
y0 != hData->getBoundingBox().center().y() ||
z0 != hData->getBoundingBox().center().z()) {
Msg::Error("E and H fields must be given on the same grid");
return v;
}
// compute surface currents on all input elements
std::vector<element *> allElems;
std::vector<std::vector<double> > js(2);
std::vector<std::vector<double> > ms(2);
for(int ent = 0; ent < eData->getNumEntities(0); ent++) {
for(int ele = 0; ele < eData->getNumElements(0, ent); ele++) {
if(eData->skipElement(0, ent, ele)) continue;
if(hData->skipElement(0, ent, ele)) continue;
int numComp = eData->getNumComponents(0, ent, ele);
if(numComp != 3) continue;
int dim = eData->getDimension(0, ent, ele);
if(dim != 1 && dim != 2) continue;
int numNodes = eData->getNumNodes(0, ent, ele);
std::vector<double> x(numNodes), y(numNodes), z(numNodes);
for(int nod = 0; nod < numNodes; nod++)
eData->getNode(0, ent, ele, nod, x[nod], y[nod], z[nod]);
elementFactory factory;
allElems.push_back(
factory.create(numNodes, dim, &x[0], &y[0], &z[0], true));
double n[3] = {0., 0., 0.};
if(numNodes > 2)
normal3points(x[0], y[0], z[0], x[1], y[1], z[1], x[2], y[2], z[2], n);
else
normal2points(x[0], y[0], z[0], x[1], y[1], z[1], n);
for(int step = 0; step < 2; step++) {
for(int nod = 0; nod < numNodes; nod++) {
double h[3], e[3];
for(int comp = 0; comp < numComp; comp++) {
eData->getValue(step, ent, ele, nod, comp, e[comp]);
hData->getValue(step, ent, ele, nod, comp, h[comp]);
}
double j[3], m[3];
prodve(n, h, j); // Js = n x H ; Surface electric current
prodve(e, n, m); // Ms = - n x E ; Surface magnetic current
js[step].push_back(j[0]);
js[step].push_back(j[1]);
js[step].push_back(j[2]);
ms[step].push_back(m[0]);
ms[step].push_back(m[1]);
ms[step].push_back(m[2]);
}
}
}
}
if(allElems.empty()) {
Msg::Error("No valid elements found to compute far field");
return v;
}
// view for far field that will contain the radiation pattern
PView *vf = new PView();
PViewDataList *dataFar = getDataList(vf);
std::vector<std::vector<double> > phi(_nbPhi + 1), theta(_nbPhi + 1);
std::vector<std::vector<double> > x(_nbPhi + 1), y(_nbPhi + 1), z(_nbPhi + 1);
std::vector<std::vector<double> > farField(_nbPhi + 1);
std::vector<std::vector<double> > farField1r(_nbPhi + 1);
std::vector<std::vector<double> > farField2r(_nbPhi + 1);
std::vector<std::vector<double> > farField3r(_nbPhi + 1);
std::vector<std::vector<double> > farField1i(_nbPhi + 1);
std::vector<std::vector<double> > farField2i(_nbPhi + 1);
std::vector<std::vector<double> > farField3i(_nbPhi + 1);
std::vector<std::vector<double> > farFieldVec(3);
for(int comp = 0; comp < 3; comp++) {
farFieldVec[comp].resize(2, 0.);
}
for(int i = 0; i <= _nbPhi; i++) {
phi[i].resize(_nbThe + 1);
theta[i].resize(_nbThe + 1);
x[i].resize(_nbThe + 1);
y[i].resize(_nbThe + 1);
z[i].resize(_nbThe + 1);
farField[i].resize(_nbThe + 1);
farField1r[i].resize(_nbThe + 1);
farField2r[i].resize(_nbThe + 1);
farField3r[i].resize(_nbThe + 1);
farField1i[i].resize(_nbThe + 1);
farField2i[i].resize(_nbThe + 1);
farField3i[i].resize(_nbThe + 1);
}
double dPhi = (_phiEnd - _phiStart) / _nbPhi;
double dTheta = (_thetaEnd - _thetaStart) / _nbThe;
double ffmin = 1e200, ffmax = -1e200;
Msg::ResetProgressMeter();
for(int i = 0; i <= _nbPhi; i++) {
for(int j = 0; j <= _nbThe; j++) {
phi[i][j] = _phiStart + i * dPhi;
theta[i][j] = _thetaStart + j * dTheta;
if(_negativeTime) {
farField[i][j] = getFarFieldMonk(allElems, farFieldVec, js, ms, _k0,
theta[i][j], phi[i][j]);
farField1r[i][j] = farFieldVec[0][0];
farField2r[i][j] = farFieldVec[1][0];
farField3r[i][j] = farFieldVec[2][0];
farField1i[i][j] = farFieldVec[0][1];
farField2i[i][j] = farFieldVec[1][1];
farField3i[i][j] = farFieldVec[2][1];
}
else {
double rfar = (_rfar ? _rfar : 10 * lc);
farField[i][j] =
getFarFieldJin(allElems, js, ms, _k0, rfar, theta[i][j], phi[i][j]);
}
ffmin = std::min(ffmin, farField[i][j]);
ffmax = std::max(ffmax, farField[i][j]);
}
Msg::ProgressMeter(i, _nbPhi, true, "Computing far field");
}
for(std::size_t i = 0; i < allElems.size(); i++) delete allElems[i];
if(_normalize) {
if(!ffmax)
Msg::Warning("Cannot normalize far field (max = 0)");
else
for(int i = 0; i <= _nbPhi; i++)
for(int j = 0; j <= _nbThe; j++) farField[i][j] /= ffmax;
}
if(_dB) {
ffmin = 1e200;
ffmax = -1e200;
for(int i = 0; i <= _nbPhi; i++) {
for(int j = 0; j <= _nbThe; j++) {
farField[i][j] = 10 * log10(farField[i][j]);
ffmin = std::min(ffmin, farField[i][j]);
ffmax = std::max(ffmax, farField[i][j]);
}
}
}
for(int i = 0; i <= _nbPhi; i++) {
for(int j = 0; j <= _nbThe; j++) {
double df = (ffmax - ffmin);
if(!df) {
Msg::Warning("zero far field range");
df = 1.;
}
double f = (farField[i][j] - ffmin) / df; // in [0,1]
x[i][j] = x0 + r_sph * f * sin(theta[i][j]) * cos(phi[i][j]);
y[i][j] = y0 + r_sph * f * sin(theta[i][j]) * sin(phi[i][j]);
z[i][j] = z0 + r_sph * f * cos(theta[i][j]);
}
}
if(_outFile.size()) {
FILE *fp = Fopen(_outFile.c_str(), "w");
if(fp) {
printVector(fp, "phi", phi);
printVector(fp, "theta", theta);
printVector(fp, "farField", farField);
if(_negativeTime) {
printVector(fp, "farField1r", farField1r);
printVector(fp, "farField2r", farField2r);
printVector(fp, "farField3r", farField3r);
printVector(fp, "farField1i", farField1i);
printVector(fp, "farField2i", farField2i);
printVector(fp, "farField3i", farField3i);
}
printVector(fp, "x", x);
printVector(fp, "y", y);
printVector(fp, "z", z);
fclose(fp);
}
else
Msg::Error("Could not open file '%s'", _outFile.c_str());
}
for(int i = 0; i < _nbPhi; i++) {
for(int j = 0; j < _nbThe; j++) {
if(_nbPhi == 1 || _nbThe == 1) {
dataFar->NbSP++;
dataFar->SP.push_back(x[i][j]);
dataFar->SP.push_back(y[i][j]);
dataFar->SP.push_back(z[i][j]);
dataFar->SP.push_back(farField[i][j]);
}
else {
double P1[3] = {x[i][j], y[i][j], z[i][j]};
double P2[3] = {x[i + 1][j], y[i + 1][j], z[i + 1][j]};
double P3[3] = {x[i + 1][j + 1], y[i + 1][j + 1], z[i + 1][j + 1]};
double P4[3] = {x[i][j + 1], y[i][j + 1], z[i][j + 1]};
dataFar->NbSQ++;
dataFar->SQ.push_back(P1[0]);
dataFar->SQ.push_back(P2[0]);
dataFar->SQ.push_back(P3[0]);
dataFar->SQ.push_back(P4[0]);
dataFar->SQ.push_back(P1[1]);
dataFar->SQ.push_back(P2[1]);
dataFar->SQ.push_back(P3[1]);
dataFar->SQ.push_back(P4[1]);
dataFar->SQ.push_back(P1[2]);
dataFar->SQ.push_back(P2[2]);
dataFar->SQ.push_back(P3[2]);
dataFar->SQ.push_back(P4[2]);
dataFar->SQ.push_back(farField[i][j]);
dataFar->SQ.push_back(farField[i + 1][j]);
dataFar->SQ.push_back(farField[i + 1][j + 1]);
dataFar->SQ.push_back(farField[i][j + 1]);
}
}
}
dataFar->setName("_NearToFarField");
dataFar->setFileName("_NearToFarField.pos");
dataFar->finalize();
return vf;
}