Forked from
gmsh / gmsh
11726 commits behind the upstream repository.
-
Christophe Geuzaine authoredChristophe Geuzaine authored
GSHHS.cpp 34.24 KiB
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sstream>
#include <fstream>
#include "SPoint2.h"
#include "GSHHS.h"
#include "GModel.h"
#if defined(HAVE_MESH)
#include "Field.h"
#else
class Field {
public:
virtual double operator() (double x, double y, double z){ return 0.; }
};
#endif
#if defined(_MSC_VER)
inline double round(double x) { return floor(x + 0.5); }
#endif
class GMSH_GSHHSPlugin : public GMSH_PostPlugin
{
public:
// ************** Inputs (readers) *************
class reader{
public:
virtual int next_loop(bool &closed)=0;
virtual bool next_point(SPoint3 &point)=0;
virtual ~reader(){}
};
class reader_loops2 : public reader{
FILE *fp;
int npoints_in_loop;
int ipoint;
std::string filename;
public:
reader_loops2(std::string _filename)
{
filename = _filename;
fp = fopen(filename.c_str(), "r");
}
virtual ~reader_loops2()
{
fclose(fp);
}
int next_loop(bool & closed)
{
ipoint = 0;
npoints_in_loop = -1;
int i_closed;
if(fscanf(fp, "%d %d", &npoints_in_loop, &i_closed) != 2)
return 0;
closed = i_closed;
return npoints_in_loop;
}
bool next_point(SPoint3 &point)
{
if(ipoint >= npoints_in_loop)
return false;
point[2] = 0;
ipoint++;
if(fscanf(fp, "%le %le", &point[0], &point[1]) != 2)
Msg::Error("gshhs: Error reading loops2 file.");
return true;
}
};
class reader_gshhs : public reader{
/* $Id: GSHHS.cpp,v 1.34 2009-10-12 15:46:20 geuzaine Exp $
*
* Include file defining structures used in gshhs.c
*
* Paul Wessel, SOEST
*
* Copyright (c) 1996-2008 by P. Wessel and W. H. F. Smith
* See COPYING file for copying and redistribution conditions.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Contact info: www.soest.hawaii.edu/pwessel
*
* 14-SEP-2004. PW: Version 1.3. Header is now n * 8 bytes (n = 5)
* For use with version 1.3 of GSHHS
* 2-MAY-2006. PW: Version 1.4. Header is now 32 bytes (all int 4)
* For use with version 1.4 of GSHHS
* 31-MAR-2007. PW: Version 1.5. no format change
* For use with version 1.5 of GSHHS
* 28-AUG-2007. PW: Version 1.6. no format change
* For use with version 1.6 of GSHHS which now has WDBII
* borders and rivers.
*/
#define GSHHS_DATA_VERSION 6 // For v1.5 data set
//define GSHHS_PROG_VERSION "1.9"
#define GSHHS_SCL 1.0e-6 // COnvert micro-degrees to degrees
inline unsigned int swabi4(unsigned int i4)
{ // For byte swapping on little-endian systems (GSHHS is defined to be bigendian)
return (((i4) >> 24) + (((i4) >> 8) & 65280) + (((i4) & 65280) << 8) + (((i4) & 255) << 24));
}
class POINT { /* Each lon, lat pair is stored in micro-degrees in 4-byte integer format */
public:
int x;
int y;
};
class GSHHS { /* Global Self-consistent Hierarchical High-resolution Shorelines */
public:
int id; /* Unique polygon id number, starting at 0 */
int n; /* Number of points in this polygon */
int flag; /* = level + version << 8 + greenwich << 16 + source << 24 */
/* flag contains 4 items, one in each byte, as follows:
* low byte: level = flag & 255: Values: 1 land, 2 lake, 3 island_in_lake, 4 pond_in_island_in_lake
* 2nd byte: version = (flag >> 8) & 255: Values: Should be 4 for GSHHS version 1.4
* 3rd byte: greenwich = (flag >> 16) & 255: Values: Greenwich is 1 if Greenwich is crossed
* 4th byte: source = (flag >> 24) & 255: Values: 0 = CIA WDBII, 1 = WVS
*/
int west, east, south, north; /* min/max extent in micro-degrees */
int area; /* Area of polygon in 1/10 km^2 */
int area_full; /* Area of original full-resolution polygon in 1/10 km^2 */
int container; /* Id of container polygon that encloses this polygon (-1 if none) */
int ancestor; /* Id of ancestor polygon in the full resolution set that was the source of this polygon (-1 if none) */
};
GSHHS h;
POINT p;
FILE *fp;
int max_east,flip,ip,greenwich;
bool first_loop;
public:
reader_gshhs(std::string filename)
{
fp = fopen(filename.c_str(),"rb");
max_east = 270000000;
first_loop = true;
}
~reader_gshhs()
{
fclose(fp);
}
int next_loop(bool &closed)
{
closed = true;
int level = 0;
ip = 0;
while(level != 1){
int n_read = fread ((void *)&h, (size_t)sizeof (GSHHS), (size_t)1, fp);
if(n_read != 1 || feof(fp))
return 0;
level = h.flag & 255;
int version = (h.flag >> 8) & 255;
flip = (version != GSHHS_DATA_VERSION); /* Take as sign that byte-swabbing is needed */
if (flip) {
h.id = swabi4 ((unsigned int)h.id);
h.n = swabi4 ((unsigned int)h.n);
h.west = swabi4 ((unsigned int)h.west);
h.east = swabi4 ((unsigned int)h.east);
h.south = swabi4 ((unsigned int)h.south);
h.north = swabi4 ((unsigned int)h.north);
h.area = swabi4 ((unsigned int)h.area);
h.flag = swabi4 ((unsigned int)h.flag);
}
if(level!=1)
fseek(fp, (size_t)(h.n * sizeof(POINT)), SEEK_CUR);
if(first_loop)
first_loop=false;
else
max_east = 180000000; /* Only Eurasiafrica needs 270 */
}
greenwich = (h.flag >> 16) & 255;
//int src = (h.flag >> 24) & 255;
//double w = h.west * GSHHS_SCL; /* Convert from microdegrees to degrees */
//double e = h.east * GSHHS_SCL;
//double s = h.south * GSHHS_SCL;
//double n = h.north * GSHHS_SCL;
//char source = (src == 1) ? 'W' : 'C'; /* Either WVS or CIA (WDBII) pedigree */
//int line = (h.area) ? 0 : 1; /* Either Polygon (0) or Line (1) (if no area) */
//double area = 0.1 * h.area; /* Now im km^2 */
return h.n;
}
bool next_point(SPoint3 &point)
{
if(ip >= h.n)
return false;
if (fread ((void *)&p, (size_t)sizeof(POINT), (size_t)1, fp) != 1) {
Msg::Error("gshhs: Error reading gshhs file.");
return false;
}
if (flip) {
p.x = swabi4 ((unsigned int)p.x);
p.y = swabi4 ((unsigned int)p.y);
}
double lon = p.x * GSHHS_SCL;
if (greenwich && p.x > max_east)
lon -= 360.0;
double lat = p.y * GSHHS_SCL;
point[0] = lon * M_PI / 180;
point[1] = lat * M_PI / 180;
point[2] = 0;
ip++;
return true;
}
};
// ************** Coordinate Systems *************
class coordinate_system{
public:
virtual void to_cartesian(const SPoint3 coord, SPoint3 &cartesian)=0;
virtual void from_cartesian(const SPoint3 cartesian, SPoint3 &coord)=0;
virtual ~coordinate_system(){}
};
// ************** Longitude Latitude ***************
class coordinate_lonlat : public coordinate_system{
double radius;
public:
coordinate_lonlat(double r)
{
radius = r;
}
void to_cartesian(const SPoint3 ll, SPoint3 &xyz)
{
double clat = cos(ll.y());
xyz.setPosition(clat * cos(ll.x()) * radius, clat * sin(ll.x()) * radius, sin(ll.y()) * radius);
}
void from_cartesian(const SPoint3 xyz, SPoint3 &ll)
{
double r = sqrt(xyz.x() * xyz.x() + xyz.y() * xyz.y() + xyz.z() * xyz.z());
ll.setPosition(atan2(xyz.y(), xyz.x()), asin(xyz.z() / r), r);
}
};
// ************** Longitude Latitude (degrees) ***************
class coordinate_lonlat_degrees : public coordinate_system{
coordinate_lonlat cll;
SPoint3 llradian;
public:
coordinate_lonlat_degrees(double r) : cll(r){}
void to_cartesian(const SPoint3 ll, SPoint3 &xyz)
{
llradian.setPosition(ll.x() * M_PI / 180, ll.y() * M_PI / 180, 0);
cll.to_cartesian(llradian, xyz);
}
void from_cartesian(const SPoint3 xyz, SPoint3 &ll){
cll.from_cartesian(xyz, llradian);
ll.setPosition(llradian.x() * 180 / M_PI, llradian.y() * 180 / M_PI, 0);
}
};
// ************** UTM **************
class coordinate_utm : public coordinate_system{
int zone;
coordinate_lonlat ll_conv;
SPoint3 ll;
double a, b, n, n2, n3, n4, n5, e, e2, e1, e12, e13, e14, J1, J2, J3, J4,
Ap, Bp, Cp, Dp, Ep, e4, e6, ep, ep2, ep4, k0, mu_fact;
public:
static int get_zone_from_longitude(double lon)
{
return (int)ceil((lon / M_PI + 1) * 30);
}
double meridionalarc(double lon, double lat)
{
return Ap * lat + Bp * sin(2 * lat) + Cp * sin(4 * lat) +
Dp * sin(6 * lat) + Ep;
}
void from_cartesian(const SPoint3 xyz,SPoint3 &utm)
{
ll_conv.from_cartesian(xyz,ll);
double S = meridionalarc(ll.x(),ll.y());
double slat = sin(ll.y());
double clat = cos(ll.y());
double slat2 = slat * slat;
double clat2 = clat * clat;
double clat3 = clat2 * clat;
double clat4 = clat3 * clat;
double tlat2 = slat2 / clat2;
double nu = a / sqrt(1 - e * e * slat2);
double p = ll.x() - ((zone - 0.5) / 30 - 1) * M_PI;
double p2 = p * p;
double p3 = p * p2;
double p4 = p2 * p2;
utm.setPosition(k0 * nu * clat * p + (k0 * nu * clat3 / 6)
* (1 - tlat2 + ep2 * clat2) * p3 + 5e5,
S * k0 + k0 * nu * slat * clat / 2 * p2
+ k0 * nu * slat * clat3 / 24
* (5 - tlat2 + 9 * ep2 * clat2 + 4 * ep4 * clat4) * p4,
0);
}
void to_cartesian(const SPoint3 utm, SPoint3 &xyz)
{
double mu = utm.y() * mu_fact;
double fp =
mu + J1 * sin(2 * mu) + J2 * sin(4 * mu) + J3 * sin(6 * mu) +
J4 * sin(8 * mu);
double cfp = cos(fp);
double cfp2 = cfp * cfp;
double sfp = sin(fp);
double sfp2 = sfp * sfp;
double c1 = ep2 * cfp2;
double c12 = c1 * c1;
double t1 = sfp2 / cfp2;
double t12 = t1 * t1;
double r1 = a * (1 - e2) / pow((1 - e2 * sfp2), 1.5);
double n1 = a / sqrt(1 - e2 * sfp2);
double d = (utm.x() - 5e5) / (n1 * k0);
double d2 = d * d;
double d3 = d2 * d;
double d4 = d2 * d2;
double d5 = d4 * d;
double d6 = d4 * d2;
ll.setPosition(
((zone - 0.5) / 30 - 1) * M_PI + (d - (1 + 2 * t1 + c1) * d3 / 6 +
(5 - 2 * c1 + 28 * t1 - 3 * c12 +
8 * ep2 +
24 * t12) * d5 / 120) / cfp,
fp - n1 * sfp / cfp / r1
* (d2 / 2 - (5 + 3 * t1 + 10 * c1 - 4 * c12 - 9 * ep2) * d4 / 24
+ (61 + 90 * t1 + 298 * c1 + 45 * t12 - 3 * c12 - 252 * ep2) * d6 / 720),
0);
ll_conv.to_cartesian(ll,xyz);
}
coordinate_utm(int _zone,double ll_radius, double _a = 6378137, double _b = 6356752.3142) : ll_conv(ll_radius)
{
/* see http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM */
a = _a; /* Equatorial Radius*/
b = _b; /* Rayon Polar Radius*/
zone=_zone;
n = (a - b) / (a + b);
n2 = n * n;
n3 = n * n * n;
n4 = n * n * n * n;
n5 = n * n * n * n * n;
e = sqrt(1 - b * b / a / a);
e2 = e * e;
e1 = (1 - sqrt(1 - e2)) / (1 + sqrt(1 - e2));
e12 = e1 * e1;
e13 = e1 * e1 * e1;
e14 = e1 * e1 * e1 * e1;
J1 = (3 * e1 / 2 - 27 * e13 / 32);
J2 = (21 * e12 / 16 - 55 * e14 / 32);
J3 = 151 * e13 / 96;
J4 = 1097 * e14 / 512;
Ap = a * (1 - n + (5. / 4.) * (n2 - n3) + (81. / 64.) * (n4 - n5));
Bp = -3 * a * n / 2 * (1 - n + (7. / 8.) * (n2 - n3) +
(55. / 64.) * (n4 - n5));
Cp = 14 * a * n2 / 16 * (1 - n + (3. / 4) * (n2 - n3));
Dp = -35 * a * n3 / 48 * (1 - n + 11. / 16. * (n2 - n3));
Ep = +315 * a * n4 / 51 * (1 - n);
e4 = e2 * e2;
e6 = e2 * e2 * e2;
ep = e * a / b;
ep2 = ep * ep;
ep4 = ep2 * ep2;
k0 = 0.9996;
mu_fact = 1 / (k0 * a * (1 - e2 / 4 - 3 * e4 / 64 - 5 * e6 / 256));
}
};
/********** classes and functions to ensure minimal distance and angle between points **********/
class box;
class loop;
class point{
public:
SPoint3 v;
std::list<point>::iterator it_loop;
std::list<point*>::iterator it_box;
box *b;
double min_dist;
loop *l;
point(double _x,double _y,double _z,Field *f) : b(0), min_dist(0.), l(0)
{
v[0]=_x; v[1]=_y; v[2]=_z;
if(f)
min_dist=(*f)(v[0],v[1],v[2]);
}
point(double _x,double _y,double _z,double _min_dist) : b(0), l(0)
{
v[0]=_x; v[1]=_y; v[2]=_z;
min_dist=_min_dist;
}
double dist(point p)
{
return sqrt((v[0]-p.v[0])*(v[0]-p.v[0])
+(v[1]-p.v[1])*(v[1]-p.v[1])
+(v[2]-p.v[2])*(v[2]-p.v[2]));
}
void to_stereo(double &xp,double &yp,bool inverse_stereo=false)
{
double r=sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
if(inverse_stereo){
xp=v[1]/(r-v[2]);
yp=v[0]/(r-v[2]);
}
else{
xp=-v[0]/(r+v[2]);
yp=-v[1]/(r+v[2]);
}
}
void to_latlon(double &lat,double &lon)
{
lat=asin(v[2]);
lon=atan2(v[1],v[0]);
if(lon<-15*M_PI/16)lon+=2*M_PI;
}
};
class box{
public:
box *sub_boxes[2];
point min,max;
int max_n;
double min_size,size;
bool splitted;
std::list<point*> list;
int cut_dim,ndim;
int n;
box(point _min,point _max,int _max_n=100,double _min_size=0,int _cut_dim=0):min(_min),max(_max),max_n(_max_n)
{
n=0;
min_size=_min_size;
size=0;
ndim=3;
for(int i=0;i<ndim;i++)
size=std::max(size,fabs(max.v[i]-min.v[i]));
splitted=false;
cut_dim=_cut_dim;
}
void add(point &p)
{
if(!splitted){
list.push_back(&p);
p.it_box=list.end();
p.it_box--;
p.b=this;
n++;
if(n>max_n && size>=min_size){
point mid0(min);
point mid1(max);
mid1.v[cut_dim]=mid0.v[cut_dim]=(min.v[cut_dim]+max.v[cut_dim])/2;
int newdim=(cut_dim+1)%ndim;
sub_boxes[0]=new box(min,mid1,max_n,min_size,newdim);
sub_boxes[1]=new box(mid0,max,max_n,min_size,newdim);
splitted=true;
for(std::list<point*>::iterator it=list.begin();it!=list.end();it++)
add(**it);
list.clear();
}
}
else{
int ix=(p.v[cut_dim]-min.v[cut_dim])>(max.v[cut_dim]-min.v[cut_dim])/2;
sub_boxes[ix]->add(p);
}
}
void remove(point *p)
{
if(p->b!=this)
p->b->remove(p);
else{
list.erase(p->it_box);
n--;
}
}
void find_closest(point p,int nc,double *d,point **cp)
{
int i=(cut_dim+ndim-1)%ndim;
if(p.v[i]<min.v[i]-d[nc-1] || p.v[i]>max.v[i]+d[nc-1])
return;
if(splitted){
for(int i=0;i<2;i++)
sub_boxes[i]->find_closest(p,nc,d,cp);
}else for(std::list<point*>::iterator it=list.begin();it!=list.end();it++){
double dd=p.dist(**it);
if(dd<d[nc-1]){
int j;
for(j=nc-2;j>=0;j--){
if(dd>d[j])break;
d[j+1]=d[j];
cp[j+1]=cp[j];
}
d[j+1]=dd;
cp[j+1]=*it;
}
}
}
};
static double get_angle(double x0,double y0,double x1,double y1,double x2,double y2)
{
double dx0=x1-x0;
double dx1=x2-x1;
double dy0=y1-y0;
double dy1=y2-y1;
return atan2(dx0*dy1-dx1*dy0,dx1*dx0+dy1*dy0);
}
static double get_angle(point &p0,point &p1,point &p2)
{
double dx0=p1.v[0]-p0.v[0];
double dy0=p1.v[1]-p0.v[1];
double dz0=p1.v[2]-p0.v[2];
double dx1=p2.v[0]-p1.v[0];
double dy1=p2.v[1]-p1.v[1];
double dz1=p2.v[2]-p1.v[2];
double scalar=dx0*dx1+dy0*dy1+dz0*dz1;
double vectx=dy0*dz1-dy1*dz0;
double vecty=dz0*dx1-dz1*dx0;
double vectz=dx0*dy1-dx1*dy0;
int sign=vectx*p1.v[0]+vecty*p1.v[1]+vectz*p1.v[2]<0?-1:1;
double vect=sqrt(vectx*vectx+vecty*vecty+vectz*vectz);
return atan2(-vect*sign,scalar);
}
// angle (01,12)
class loop:public std::list<point>{
public:
bool closed;
loop(){
closed=true;
}
inline iterator next(iterator i)
{
++i;
if(i==end()){
i=begin();
}
return i;
}
inline iterator prev(iterator i)
{
if(i==begin())
i=end();
--i;
return i;
}
iterator remove_range(loop::iterator i0,loop::iterator i1)
{ //remove [id0, id1] and replace it by a single point at (id0+id1)/2;
for(int i=0;i<3;i++)
i1->v[i]=(i0->v[i]+i1->v[i])/2;
while(i0!=i1){
if(i0->b)
i0->b->remove(&*i0);
i0=erase(i0);
if(i0==end())
i0=begin();
}
return i1;
}
int orientation(iterator i0, iterator i1,bool reverse_stereo=false)
{
if(next(i0)==i1)
return 0;
double alpha=0;
double x[3],y[3];
i1->to_stereo(x[0],y[0],reverse_stereo);
i0->to_stereo(x[1],y[1],reverse_stereo);
iterator p=i0;
do{
p=next(p);
p->to_stereo(x[2],y[2],reverse_stereo);
alpha+=get_angle(x[0],y[0],x[1],y[1],x[2],y[2]);
x[0]=x[1];y[0]=y[1];
x[1]=x[2];y[1]=y[2];
}while(p!=i1);
i0->to_stereo(x[2],y[2],reverse_stereo);
alpha+=get_angle(x[0],y[0],x[1],y[1],x[2],y[2]);
return (int)round(alpha/(M_PI*2));
}
int length(iterator i0,iterator i1)
{
int l=1;
while(i0!=i1){
i0=next(i0);
l++;
}
return l;
}
void insert_range(iterator i,iterator j0,iterator j1)
{
iterator n=j0;
do{
j0=n;
iterator is=insert(i,*j0);
is->it_loop=is;
is->l=this;
*(j0->it_box)=&*is;
n=j0->l->next(j0);
}while(j0!=j1);
}
};
class loops:public std::list<loop>{
public:
void print_gnuplot(std::ostream &stream)
{
double lat,lon;
for(iterator il=begin();il!=end();il++){
stream<<"\n";
for(loop::iterator ip=il->begin();ip!=il->end();ip++){
ip->to_latlon(lat,lon);
stream<<lon*180/M_PI<<" "<<lat*180/M_PI<<"\n";
}
il->front().to_latlon(lat,lon);
stream<<lon*180/M_PI<<" "<<lat*180/M_PI<<"\n";
}
}
};
double stereo_cross_product(point p00,point p01, point p10,point p11)
{
double x[4],y[4];
p00.to_stereo(x[0],y[0]);
p01.to_stereo(x[1],y[1]);
p10.to_stereo(x[2],y[2]);
p11.to_stereo(x[3],y[3]);
return (x[1]-x[0])*(y[3]-y[2])-(y[1]-y[0])*(x[3]-x[2]);
}
bool is_intersected(point p00,point p01, point p10,point p11)
{
if(stereo_cross_product(p00,p01,p00,p10)*stereo_cross_product(p00,p01,p00,p11)>0)
return false;
if(stereo_cross_product(p10,p11,p10,p00)*stereo_cross_product(p10,p11,p10,p01)>0)
return false;
return true;
}
void loop_fill_box(loop *l,box &b)
{
for(loop::iterator ip=l->begin();ip!=l->end();ip++){
ip->l=l;
ip->it_loop=ip;
b.add(*ip);
}
}
bool loop_check_intersections(loop *l,box &b)
{
// Check for intersections
bool result=false;
for(loop::iterator i00=l->begin();i00!=l->end();++i00){
loop::iterator i01=l->next(i00);
if(i01==l->begin() && !l->closed)
break;
double length0=i00->dist(*i01);
#define NP 5
double d[NP*2]={length0*1.0001};
for(int i=0;i<NP*2;i++)
d[i]=DBL_MAX;
point *cp[NP*2];
b.find_closest(*i00,NP,d,cp);
b.find_closest(*i01,NP,d+NP,cp+NP);
for(int i=0;i<NP*2;i++){
if(d[i]>length0)
break;
if(i00!=cp[i]->it_loop && i01!=cp[i]->it_loop){
loop::iterator i10=cp[i]->it_loop;
loop::iterator i11=l->next(i10);
if((i11!=l->begin() || l->closed) &&(i11 != i00 && i11 != i01))
if(is_intersected(*i00,*i01,*i10,*i11)){
if(l->length(i11,i00)<l->length(i01,i10))
i00=l->remove_range(i11,i00);
else
i00=l->remove_range(i01,i10);
result=true;
if(i00!=l->begin())
i00--;
break;
}
i11=i10;
i10=l->prev(i11);
if((i11!=l->begin() || l->closed) &&(i10 != i00 && i10 != i01))
if(is_intersected(*i00,*i01,*i10,*i11)){
if(l->length(i11,i00)<l->length(i01,i10))
i00=l->remove_range(i11,i00);
else
i00=l->remove_range(i01,i10);
result=true;
if(i00!=l->begin())
i00--;
break;
}
}
}
}
return result;
}
bool loop_check_close_points_self(loop *l,box &b)
{
bool result=false;
int orientation = l->orientation(l->begin(), --l->end());
for(loop::iterator i=l->begin();i!=l->end();){
double d[2]={i->min_dist*1.001,i->min_dist*1.001};
point *cp[2];
b.find_closest(*i,2,d,cp);
if(d[1]<i->min_dist){
loop::iterator id1=cp[1]->it_loop;
int not_a_loop=-1;
if(!l->closed){
loop::iterator ii;
for(ii=i;ii!=l->end() && ii!=id1;ii++);
not_a_loop= ii==l->end()?0:1;
}
if(not_a_loop!=0 && (l->orientation(i,id1)!=orientation || l->length(i,id1)<3)){
i=l->remove_range(i,id1);
result=true;
}
if(not_a_loop!=1 && (l->orientation(id1,i)!=orientation || l->length(id1,i)<3)){
i=l->remove_range(id1,i);
result=true;
}else
i++;
}else
i++;
}
return result;
}
bool loop_check_small_angles(loop *l)
{
bool removed=false;
for(loop::iterator i=l->begin();i!=l->end();++i){
loop::iterator i1=l->next(i);
loop::iterator i2=l->next(i1);
if((!l->closed) && i2==l->begin())
break;
double alpha=get_angle(*i,*i1,*i2);
if(alpha>3*M_PI/4){
i1->b->remove(&*i1);
i=l->erase(i1);
removed=true;
}
}
return removed;
}
bool loop_check_close_points(loop *l,box &b)
{
#define NPD 10
for(loop::iterator i=l->begin();i!=l->end();){
double d[NPD];
point *cp[NPD];
for(int j=0;j<NPD;j++){
d[j]=i->min_dist*1.001;
cp[j]=NULL;
}
b.find_closest(*i,NPD,d,cp);
bool merged=false;
for(int j=0;j<NPD;j++){
if(!cp[j])break;
if(i->l!=cp[j]->l){
double lat,lon;
i->to_latlon(lat,lon);
loop::iterator f0=i;
loop::iterator f1=cp[j]->it_loop;
double newx[3],dx[3],crossx[3];
for(int k=0;k<3;k++){
newx[k]=(f0->v[k]+f1->v[k])/2;
dx[k]=(f1->v[k]-f0->v[k])/2;
}
for(int k=0;k<3;k++){
int k1=(k+1)%3;
int k2=(k+2)%3;
crossx[k]=newx[k1]*dx[k2]-newx[k2]*dx[k1];
}
double norm=sqrt(crossx[0]*crossx[0]+crossx[1]*crossx[1]+crossx[2]*crossx[2]);
for(int k=0;k<3;k++){
crossx[k]*=i->min_dist*0.1/norm;
f0->v[k]=newx[k]-crossx[k];
f1->v[k]=newx[k]+crossx[k];
}
l->insert_range(++f0,f1->l->next(f1),f1);
cp[j]->l->clear();
merged=true;
break;
}
}
if(!merged)
i++;
}
return true;
}
class GeoEarthImport
{
std::ostringstream loop_buff, surface_buff;;
std::string filename;
std::ofstream *file;
int il, ip, is, ill, ifi;
int first_point_in_loop, first_point_in_surface,first_point_in_attractor;
bool empty_surface;
void new_attractor()
{
first_point_in_attractor = ip;
}
void new_surface()
{
surface_buff.str("");
surface_buff << "Plane Surface( IS + " << is++ << " ) = { ";
first_point_in_surface = ip;
empty_surface = true;
}
void new_loop()
{
loop_buff.str("");
first_point_in_loop = ip;
}
int _write_polar_sphere;
public:
GeoEarthImport(const std::string _filename, int write_polar_sphere,double radius)
{
_write_polar_sphere = write_polar_sphere;
filename = _filename;
file=new std::ofstream(filename.c_str());
loop_buff.precision(16);
std::ostringstream buff;
il = ip = ill = is = ifi = 0;
buff << "IP = newp;\n";
buff << "IL = newl;\n";
buff << "ILL = newll;\n";
buff << "IS = news;\n";
buff << "IFI = newf;\n";
if(write_polar_sphere > 0){
buff << "Point ( IP + " << ip++ << " ) = {0, 0, 0 };\n";
buff << "Point ( IP + " << ip++ <<" ) = {0, 0,"<<radius<<"};\n";
buff << "PolarSphere ( IS + " << is++ << " ) = {IP , IP+1};\n";
}
*file << buff.str();
new_surface();
new_attractor();
new_loop();
}
~GeoEarthImport()
{
//file << "Euclidian Coordinates;";
file->close();
}
void add_point(SPoint3 point)
{
double r=sqrt(point.x()*point.x()+point.y()*point.y()+point.z()*point.z());
SPoint2 stereo(-point.x() / (r + point.z()), -point.y() / (r + point.z()));
if (_write_polar_sphere == -2){
stereo = SPoint2(2 * r * point.x() / (r + point.z()), 2 * r * point.y() / (r + point.z()));
}
loop_buff << "Point ( IP + " << ip++ << " ) = {" << stereo.
x() << ", " << stereo.y() << ", " << 0 << " };\n";
}
void end_loop(bool closed)
{
if(ip - first_point_in_loop > 3) {
loop_buff<<"LoopStart"<<il<<" = IP + "<< first_point_in_loop<<";\n";
loop_buff<<"LoopEnd"<<il<<" = IP + "<< ip - 1<<";\n";
loop_buff << "BSpline ( IL + " << il++ << " ) = { IP + " <<
first_point_in_loop << " : IP + " << ip - 1 ;
if(closed) loop_buff<< ", IP + " << first_point_in_loop;
loop_buff<< " };\n";
if(closed){
loop_buff << "Line Loop ( ILL + " << ill++ << " ) = { IL + " << il -
1 << " };";
}
*file << loop_buff.str();
if(closed){
if(!empty_surface)
surface_buff << ", ";
surface_buff << "ILL + " << ill - 1;
empty_surface = false;
}
}
else {
ip = first_point_in_loop;
}
new_loop();
}
void end_surface()
{
if(!empty_surface) {
surface_buff << "};\n";
surface_buff.str("");
*file << surface_buff.str()<<"\n";
}
new_surface();
}
void end_attractor()
{
*file << "Field [ IFI + " << ifi << "] = Attractor;\n";
*file << "Field [ IFI + " << ifi++ << "].NodesList = { IP + " <<
first_point_in_attractor << " : IP + " << ip - 1 << " };";
new_attractor();
}
};
std::string getName() const { return "GSHHS"; }
std::string getShortHelp() const
{
return "Import and process GSHHS data sets";
}
std::string getHelp() const;
std::string getAuthor() const { return "J. Lambrechts"; }
int getNbOptions() const;
int getNbOptionsStr() const;
StringXNumber *getOption(int iopt);
StringXString *getOptionStr(int iopt);
PView *execute(PView *);
};
// ************** MAIN PLUGIN **************
StringXNumber GSHHSOptions_Number[] = {
{GMSH_FULLRC, "iField", NULL, -1.},
{GMSH_FULLRC, "UTMZone", NULL, 0},
{GMSH_FULLRC, "UTMEquatorialRadius", NULL, 6378137},
{GMSH_FULLRC, "UTMPolarRadius", NULL, 6356752.3142},
{GMSH_FULLRC, "radius", NULL,6371009},
{GMSH_FULLRC, "WritePolarSphere",NULL,1},
{GMSH_FULLRC, "MinStraitsFactor",NULL,1}
};
StringXString GSHHSOptions_String[] = {
{GMSH_FULLRC, "InFileName", NULL, "gshhs_c.b"},
{GMSH_FULLRC, "OutFileName", NULL, "earth.geo"},
{GMSH_FULLRC, "Format", NULL, "gshhs"},
{GMSH_FULLRC, "Coordinate", NULL, "cartesian"}
};
extern "C"
{
GMSH_Plugin *GMSH_RegisterGSHHSPlugin()
{
return new GMSH_GSHHSPlugin();
}
}
std::string GMSH_GSHHSPlugin::getHelp() const
{
return
"Plugin(GSHHS) read different kind of contour lines data "
"and write a .geo file on the surface of a sphere (the Earth).\n\n"
"The principal application is to load GSHHS data\n (see "
"http://www.soest.hawaii.edu/wessel/gshhs/gshhs.html).\n\n"
"Valid values for \"Format\" are:\n\n"
"- \"gshhs\": open GSHHS file\n\n"
"- \"loops2\": import 2D contour lines in simple text format:\n\n"
"NB_POINTS_IN_FIRST_LOOP FIRST_LOOP_IS_CLOSED\n"
"COORD1 COORD2\n"
"COORD1 COORD2\n"
"... ...\n"
"NB_POINTS_IN_SECOND_LOOP SECOND_LOOP_IS_CLOSED\n"
"...\n\n"
"(LOOP_IS_CLOSED specifies if this coast line describes a closed "
"curve (0=no, 1=yes)).\n\n"
"In the case of \"loops2\" format, you "
"can specify the coordinate system used in the input file "
"with the \"Coordinate\" option. Valid values are\n\n"
"- \"lonlat\" for longitude-latidute radian,\n\n"
"- \"lonlat_degrees\" for longitude-latitude degrees,\n\n"
"- \"UTM\" for universal transverse mercartor (\"UTMZone\" "
"option should be specified)\n\n"
"- \"cartesian\" for full 3D coordinates\n\n"
"- \"radius\" specify the earth radius.\n\n"
"If the \"iField\" option is set, consecutive points closer "
"than the value of the field iField (in meters) will not be "
"added.\n\n"
"If \"MinStraitsFactor\" > 0 and if a field iField is "
"provided, coastlines closer than MinStraitsFactor * "
"field(IField) are merged and inner corners which form an "
"angle < pi/3 are removed.\n\n"
"The output is always in stereographic coordinates, if "
"the \"WritePolarSphere\" option is greater than 0, a sphere is "
"added to the geo file.\n\n"
"WARNING: this plugin is still experimental and needs "
"polishing and error-handling. In particular, it will "
"probably crash if an inexistant field id is given or if "
"the input/output cannot be open.";
}
int GMSH_GSHHSPlugin::getNbOptions() const
{
return sizeof(GSHHSOptions_Number) / sizeof(StringXNumber);
}
int GMSH_GSHHSPlugin::getNbOptionsStr() const
{
return sizeof(GSHHSOptions_String) / sizeof(StringXString);
}
StringXNumber *GMSH_GSHHSPlugin::getOption(int iopt)
{
return &GSHHSOptions_Number[iopt];
}
StringXString *GMSH_GSHHSPlugin::getOptionStr(int iopt)
{
return &GSHHSOptions_String[iopt];
}
PView *GMSH_GSHHSPlugin::execute(PView * v)
{
void projector(SPoint2,SPoint3);
int iField = (int)GSHHSOptions_Number[0].def;
char *filename = (char *)GSHHSOptions_String[0].def.c_str();
char *outfilename = (char *)GSHHSOptions_String[1].def.c_str();
std::string format(GSHHSOptions_String[2].def);
std::string coordinate_name(GSHHSOptions_String[3].def);
int utm_zone=(int)GSHHSOptions_Number[1].def;
double utm_equatorial_radius=(double)GSHHSOptions_Number[2].def;
double utm_polar_radius=(double)GSHHSOptions_Number[3].def;
double radius=(double)GSHHSOptions_Number[4].def;
int write_polar_sphere = (int)GSHHSOptions_Number[5].def;
double straits_factor = (double)GSHHSOptions_Number[6].def;
coordinate_lonlat lonlat(radius);
coordinate_lonlat_degrees lonlat_degrees(radius);
coordinate_utm utm(utm_zone, radius,utm_equatorial_radius, utm_polar_radius);
GeoEarthImport geo_import(outfilename,write_polar_sphere,radius);
coordinate_system *c_syst=NULL;
if(coordinate_name == "lonlat")
c_syst=&lonlat;
else if(coordinate_name == "lonlat_degrees")
c_syst=&lonlat_degrees;
else if(coordinate_name == "utm")
c_syst=&utm;
else if(coordinate_name != "cartesian"){
Msg::Error("gshhs: Unknown coordinate system %s.\n",
coordinate_name.c_str());
return NULL;
}
Field *field = NULL;
#if defined(HAVE_MESH)
if (iField != -1) {
field = GModel::current()->getFields()->get(iField);
if(!field){
Msg::Error("Field[%d] does not exist", iField);
return NULL;
}
}
#endif
SPoint3 p;
reader *read=0;
if(format == "loops2") {
read=new reader_loops2(filename);
}
else if(format == "gshhs") {
c_syst=&lonlat;
read=new reader_gshhs(filename);
}
loops ll;
bool closed;
while(read->next_loop(closed)!=0){
loop l;
l.closed=closed;
point oldp(0,0,0,0.);
while(read->next_point(p)){
if(c_syst)
c_syst->to_cartesian(p,p);
point newp(p[0],p[1],p[2],field);
if(newp.min_dist<0){
while(!l.empty() && l.back().dist(l.front())<l.back().min_dist)
l.pop_back();
l.closed=false;
if(l.size()>=3)
ll.push_back(l);
l.clear();
}
else if (l.empty() || oldp.dist(newp)>newp.min_dist){
l.push_back(newp);
oldp=newp;
}
}
while(!l.empty() && l.back().dist(l.front())<l.back().min_dist)
l.pop_back();
if(l.size()>=3)
ll.push_back(l);
}
delete read;
if(straits_factor>0 && iField !=0){
for(loops::iterator il=ll.begin();il!=ll.end();il++)
for(loop::iterator ip=il->begin();ip!=il->end();ip++)
ip->min_dist*=straits_factor;
box *b=new box(point(-radius,-radius,-radius,0.),point(radius,radius,radius,0.));
for(loops::iterator il=ll.begin();il!=ll.end();il++)
loop_fill_box(&*il,*b);
for(loops::iterator il=ll.begin();il!=ll.end();il++)
loop_check_close_points(&*il,*b);
delete b;
for(loops::iterator il=ll.begin();il!=ll.end();il++){
box b(point(-radius,-radius,-radius,0.),point(radius,radius,radius,0.));
loop_fill_box(&*il,b);
while(false
|| loop_check_small_angles(&*il)
|| loop_check_close_points_self(&*il,b)
|| loop_check_intersections(&*il,b)
);
}
}
for(std::list<loop>::iterator l=ll.begin();l!=ll.end();l++){
for(loop::iterator p=l->begin();p!=l->end();p++)
geo_import.add_point(p->v);
geo_import.end_loop(l->closed);
}
geo_import.end_surface();
geo_import.end_attractor();
return NULL;
}