Forked from
gmsh / gmsh
11315 commits behind the upstream repository.
-
Christophe Geuzaine authoredChristophe Geuzaine authored
meshGFaceBoundaryLayers.cpp 12.85 KiB
// Gmsh - Copyright (C) 1997-2013 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.
#include "GModel.h"
#include "GFace.h"
#include "MVertex.h"
#include "MLine.h"
#include "MTriangle.h"
#include "MEdge.h"
#include "meshGFaceBoundaryLayers.h"
#include "Field.h"
SVector3 interiorNormal (SPoint2 p1, SPoint2 p2, SPoint2 p3)
{
SVector3 ez (0,0,1);
SVector3 d (p1.x()-p2.x(),p1.y()-p2.y(),0);
SVector3 h (p3.x()-0.5*(p2.x()+p1.x()),p3.y()-0.5*(p2.y()+p1.y()),0);
SVector3 n = crossprod(d,ez);
n.normalize();
if (dot(n,h) > 0)return n;
return n*(-1.);
}
double computeAngle (GFace *gf, const MEdge &e1, const MEdge &e2, SVector3 &n1, SVector3 &n2)
{
double cosa = dot(n1,n2);
SPoint2 p0,p1,p2;
MVertex *v11 = e1.getVertex(0);
MVertex *v12 = e1.getVertex(1);
MVertex *v21 = e2.getVertex(0);
MVertex *v22 = e2.getVertex(1);
MVertex *v0,*v1,*v2;
if (v11 == v21){
v0 = v12 ; v1 = v11 ; v2 = v22;
}
else if (v11 == v22){
v0 = v12 ; v1 = v11 ; v2 = v21;
}
else if (v12 == v21){
v0 = v11 ; v1 = v12 ; v2 = v22;
}
else if (v12 == v22){
v0 = v11 ; v1 = v12 ; v2 = v21;
}
else throw;
reparamMeshEdgeOnFace(v0, v1, gf, p0, p1);
reparamMeshEdgeOnFace(v0, v2, gf, p0, p2);
SVector3 t1 (p1.x()-p0.x(),p1.y()-p0.y(),0);
SVector3 t2 (p2.x()-p1.x(),p2.y()-p1.y(),0);
t1.normalize();
t2.normalize();
SVector3 n = crossprod(t1,t2);
double sign = dot(t1,n2);
double a = atan2 (n.z(),cosa);
a = sign > 0 ? fabs(a) : -fabs(a);
// printf("a = %12.5e cos %12.5E sin %12.5E %g %g vs %g %g\n",
// a,cosa,n.z(),n1.x(),n1.y(),n2.x(),n2.y());
return a;
}
void buildMeshMetric(GFace *gf, double *uv, SMetric3 &m, double metric[3])
{
Pair<SVector3, SVector3> der = gf->firstDer(SPoint2(uv[0], uv[1]));
double res[2][2];
double M[2][3] = {{der.first().x(),der.first().y(),der.first().z()},
{der.second().x(),der.second().y(),der.second().z()}};
for (int i=0;i<3;i++){
for (int l=0;l<3;l++){
res[i][l] = 0;
for (int j=0;j<3;j++){
for (int k=0;k<3;k++){
res[i][l] += M[i][j]*m(j,k)*M[l][k];
}
}
}
}
metric[0] = res[0][0];
metric[1] = res[1][0];
metric[2] = res[1][1];
}
BoundaryLayerColumns* buildAdditionalPoints2D (GFace *gf)
{
// return 0;
#if !defined(HAVE_ANN)
return 0;
#else
FieldManager *fields = gf->model()->getFields();
if(fields->getBoundaryLayerField() <= 0){
return 0;
}
Field *bl_field = fields->get(fields->getBoundaryLayerField());
BoundaryLayerField *blf = dynamic_cast<BoundaryLayerField*> (bl_field);
if (!blf)return 0;
double _treshold = blf->fan_angle * M_PI / 180 ;
BoundaryLayerColumns * _columns = new BoundaryLayerColumns;
// assume a field that i) gives us the closest point on one of the BL components
// ii) Gives us mesh sizes in the 3 directions.
// build vertex to vertex connexions
std::list<GEdge*> edges = gf->edges();
std::list<GEdge*> embedded_edges = gf->embeddedEdges();
edges.insert(edges.begin(), embedded_edges.begin(),embedded_edges.end());
std::list<GEdge*>::iterator ite = edges.begin();
std::set<MVertex*> _vertices;
while(ite != edges.end()){
for(unsigned int i = 0; i< (*ite)->lines.size(); i++){
MVertex *v1 = (*ite)->lines[i]->getVertex(0);
MVertex *v2 = (*ite)->lines[i]->getVertex(1);
_columns->_non_manifold_edges.insert(std::make_pair(v1,v2));
_columns->_non_manifold_edges.insert(std::make_pair(v2,v1));
_vertices.insert(v1);
_vertices.insert(v2);
}
++ite;
}
// printf("%d boundary points\n",_vertices.size());
// assume that the initial mesh has been created i.e. that there exist
// triangles inside the domain. Triangles are used to define
// exterior normals
for (unsigned int i = 0; i < gf->triangles.size(); i++){
SPoint2 p0,p1,p2;
MVertex *v0 = gf->triangles[i]->getVertex(0);
MVertex *v1 = gf->triangles[i]->getVertex(1);
MVertex *v2 = gf->triangles[i]->getVertex(2);
reparamMeshEdgeOnFace(v0, v1, gf, p0, p1);
reparamMeshEdgeOnFace(v0, v2, gf, p0, p2);
MEdge me01(v0,v1);
SVector3 v01 = interiorNormal (p0,p1,p2);
_columns->_normals.insert(std::make_pair(me01,v01));
MEdge me02(v0,v2);
SVector3 v02 = interiorNormal (p0,p2,p1);
_columns->_normals.insert(std::make_pair(me02,v02));
MEdge me21(v2,v1);
SVector3 v21 = interiorNormal (p2,p1,p0);
_columns->_normals.insert(std::make_pair(me21,v21));
}
// for all boundry points
for (std::set<MVertex*>::iterator it = _vertices.begin(); it != _vertices.end() ; ++it){
std::vector<MVertex*> _connections;
std::vector<SVector3> _dirs;
//double LL;
for (std::multimap<MVertex*,MVertex*>::iterator itm =
_columns->_non_manifold_edges.lower_bound(*it);
itm != _columns->_non_manifold_edges.upper_bound(*it); ++itm)
_connections.push_back (itm->second);
// printf("point %d %d edegs connected\n",(*it)->getNum(),_connections.size());
// Trailing edge : 3 edges incident to a vertex
if (_connections.size() == 3){
MEdge e1 (*it,_connections[0]);
MEdge e2 (*it,_connections[1]);
MEdge e3 (*it,_connections[2]);
std::vector<SVector3> N1,N2,N3;
for (std::multimap<MEdge,SVector3,Less_Edge>::iterator itm =
_columns->_normals.lower_bound(e1);
itm != _columns->_normals.upper_bound(e1); ++itm) N1.push_back(itm->second);
for (std::multimap<MEdge,SVector3,Less_Edge>::iterator itm =
_columns->_normals.lower_bound(e2);
itm != _columns->_normals.upper_bound(e2); ++itm) N2.push_back(itm->second);
for (std::multimap<MEdge,SVector3,Less_Edge>::iterator itm =
_columns->_normals.lower_bound(e3);
itm != _columns->_normals.upper_bound(e3); ++itm) N3.push_back(itm->second);
SVector3 x1,x2;
if (N1.size() == 2){
}
else if (N2.size() == 2){
std::vector<SVector3> temp = N1;
N1.clear();
N1 = N2;
N2.clear();
N2 = temp;
}
else if (N3.size() == 2){
std::vector<SVector3> temp = N1;
N1.clear();
N1 = N3;
N3.clear();
N3 = temp;
}
else {
Msg::Fatal("IMPOSSIBLE BL CONFIGURATION");
}
if (dot(N1[0],N2[0]) > dot(N1[0],N3[0])){
x1 = N1[0]*1.01+N2[0];
x2 = N1[1]*1.01+N3[0];
}
else {
x1 = N1[1]*1.01+N2[0];
x2 = N1[0]*1.01+N3[0];
}
x1.normalize();
_dirs.push_back(x1);
x2.normalize();
_dirs.push_back(x2);
printf("%g %g vs %g %g\n",N1[0].x(),N1[0].y(),N1[1].x(),N1[1].y());
printf("%g %g vs %g %g\n",N2[0].x(),N2[0].y(),N3[0].x(),N3[0].y());
printf("%g %g vs %g %g\n",x1.x(),x1.y(),x2.x(),x2.y());
}
// STANDARD CASE, one vertex connected to two neighboring vertices
if (_connections.size() == 2){
MEdge e1 (*it,_connections[0]);
MEdge e2 (*it,_connections[1]);
//LL = 0.5 * (e1.length() + e2.length());
std::vector<SVector3> N1,N2;
for (std::multimap<MEdge,SVector3,Less_Edge>::iterator itm =
_columns->_normals.lower_bound(e1);
itm != _columns->_normals.upper_bound(e1); ++itm) N1.push_back(itm->second);
for (std::multimap<MEdge,SVector3,Less_Edge>::iterator itm =
_columns->_normals.lower_bound(e2);
itm != _columns->_normals.upper_bound(e2); ++itm) N2.push_back(itm->second);
if (N1.size() == N2.size()){
// if (N1.size() > 1)printf("%d sides\n",N1.size());
for (unsigned int SIDE = 0; SIDE < N1.size() ; SIDE++){
// IF THE ANGLE IS GREATER THAN THRESHOLD, ADD DIRECTIONS !!
double angle = computeAngle (gf,e1,e2,N1[SIDE],N2[SIDE]);
// if (N1.size() > 1)printf("angle = %g\n",angle);
if (angle < _treshold /*&& angle > - _treshold*/){
SVector3 x = N1[SIDE]*1.01+N2[SIDE];
x.normalize();
_dirs.push_back(x);
}
else if (angle >= _treshold){
int fanSize = angle / _treshold;
// printf("ONE FAN HAS BEEN CREATED : %d %d %d %d ANGLE = %g | %g %g %g %g\n",e1.getVertex(0)->getNum(),
// e1.getVertex(1)->getNum(),e2.getVertex(0)->getNum(),e2.getVertex(1)->getNum(),
// angle/M_PI*180,N1[SIDE].x(),N1[SIDE].y(),N2[SIDE].x(),N2[SIDE].y());
// if the angle is greater than PI, than reverse the sense
double alpha1 = atan2(N1[SIDE].y(),N1[SIDE].x());
double alpha2 = atan2(N2[SIDE].y(),N2[SIDE].x());
double AMAX = std::max(alpha1,alpha2);
double AMIN = std::min(alpha1,alpha2);
MEdge ee[2];
if (alpha1 > alpha2){
// _dirs.push_back(N2[0]);
// _dirs.push_back(N1[0]);
ee[0] = e2;ee[1] = e1;
// printf("reversing the first and the last normal %g %g\n",alpha2,alpha1);
}
else {
// _dirs.push_back(N1[0]);
// _dirs.push_back(N2[0]);
ee[0] = e1;ee[1] = e2;
// printf("the first and the last normal are ok %g %g\n",alpha1,alpha2);
}
if ( AMAX - AMIN >= M_PI){
double temp = AMAX;
AMAX = AMIN + 2*M_PI;
AMIN = temp;
// printf("wrong part of the quadrant taken %g %g\n",AMIN,AMAX);
// fanSize = 0;
MEdge eee0 = ee[0];
ee[0] = ee[1];ee[1] = eee0;
}
_columns->addFan (*it,ee[0],ee[1],true);
// printf("fansize = %d\n",fanSize);
for (int i=-1; i<=fanSize; i++){
double t = (double)(i+1)/ (fanSize+1);
double alpha = t * AMAX + (1.-t)* AMIN;
// printf("%d %g %g %g %g\n",i,alpha,alpha1,alpha2,alpha2-alpha1);
SVector3 x (cos(alpha),sin(alpha),0);
x.normalize();
_dirs.push_back(x);
}
}
}
}
}
// if (_dirs.size() > 1)printf("%d directions\n",_dirs.size());
// now create the BL points
for (unsigned int DIR=0;DIR<_dirs.size();DIR++){
SPoint2 p;
SVector3 n = _dirs[DIR];
// < ------------------------------- > //
// N = X(p0+ e n) - X(p0) //
// = e * (dX/du n_u + dX/dv n_v) //
// < ------------------------------- > //
MVertex *current = *it;
reparamMeshVertexOnFace(current,gf,p);
int nbCol = 100;
std::vector<MVertex*> _column;
std::vector<SMetric3> _metrics;
// printf("start with point %g %g (%g %g)\n",current->x(),current->y(),p.x(),p.y());
AttractorField *catt = 0;
SPoint3 _close;
double _current_distance = 0.;
while(1){
SMetric3 m;
double metric[3];
double l;
(*bl_field)(current->x(),current->y(), current->z(), m, current->onWhat());
if (!catt){
catt = blf->current_closest;
_close = blf->_closest_point;
_current_distance = blf -> current_distance;
}
SPoint2 poffset (p.x() + 1.e-8 * n.x(),
p.y() + 1.e-8 * n.y());
buildMeshMetric(gf, poffset, m, metric);
const double l2 = n.x()*n.x()*metric[0] + 2*n.x()*n.y()*metric[1] + n.y()*n.y()*metric[2] ;
l = 1./sqrt(l2);
if (l >= blf->hfar){
break;
}
// printf("%g %g %g \n",current->x(),current->y(),blf->current_distance);
if (blf->current_closest != catt || blf -> current_distance < _current_distance){
SVector3 aaa (_close- blf->_closest_point);
if (aaa.norm() > 8*blf->hwall_n || blf -> current_distance < _current_distance){
// printf("reaching the skelton %d\n", (int) _column.size());
delete _column[_column.size()-1];
_column.erase(--_column.end());
_metrics.erase(--_metrics.end());
if (_column.size()){
delete _column[_column.size()-1];
_column.erase(--_column.end());
_metrics.erase(--_metrics.end());
}
break;
}
}
if (blf -> current_distance > blf->thickness) break;
catt = blf->current_closest;
_close = blf->_closest_point;
_current_distance = blf -> current_distance;
SPoint2 pnew (p.x() + l * n.x(),
p.y() + l * n.y());
GPoint gp = gf->point (pnew);
MFaceVertex *_current = new MFaceVertex (gp.x(),gp.y(),gp.z(),gf,pnew.x(),pnew.y());
_current->bl_data = new MVertexBoundaryLayerData;
current = _current;
_column.push_back(current);
// printf("pnew %g %g new point %g %g n %g %g\n",pnew.x(),pnew.y(),gp.x(),gp.y(),n.x(),n.y());
_metrics.push_back(m);
// const double l = n[0]*m(0,0) +;
if ((int)_column.size() > nbCol) break; // FIXME
p = pnew;
}
// if (_dirs.size() > 1)printf("adding column with %d nodes\n",_column.size());
_columns->addColumn(n,*it, _column, _metrics);
}
}
// HERE WE SHOULD FILTER THE POINTS IN ORDER NOT TO HAVE POINTS THAT ARE TOO CLOSE
// DEBUG STUFF
FILE *f = fopen ("test.pos","w");
fprintf(f,"View \"\" {\n");
for (std::set<MVertex*>::iterator it = _vertices.begin(); it != _vertices.end() ; ++it){
MVertex *v = *it;
for (int i=0;i<_columns->getNbColumns(v);i++){
const BoundaryLayerData &data = _columns->getColumn(v,i);
for (unsigned int j = 0; j < data._column.size(); j++){
MVertex *blv = data._column[j];
fprintf(f,"SP(%g,%g,%g){%d};\n",blv->x(),blv->y(),blv->z(),v->getNum());
}
}
}
fprintf(f,"};\n");
fclose (f);
// END OF DEBUG STUFF
return _columns;
#endif
}