Skip to content
Snippets Groups Projects
Select Git revision
  • 64a556c85dc13b58cea39d45c17a8d0b9f19d53a
  • master default
  • cgnsUnstructured
  • partitioning
  • poppler
  • HighOrderBLCurving
  • gmsh_3_0_4
  • gmsh_3_0_3
  • gmsh_3_0_2
  • gmsh_3_0_1
  • gmsh_3_0_0
  • gmsh_2_16_0
  • gmsh_2_15_0
  • gmsh_2_14_1
  • gmsh_2_14_0
  • gmsh_2_13_2
  • gmsh_2_13_1
  • gmsh_2_12_0
  • gmsh_2_11_0
  • gmsh_2_10_1
  • gmsh_2_10_0
  • gmsh_2_9_3
  • gmsh_2_9_2
  • gmsh_2_9_1
  • gmsh_2_9_0
  • gmsh_2_8_6
26 results

jdcoefct.c

Blame
  • Forked from gmsh / gmsh
    Source project has a limited visibility.
    jdcoefct.c 11.91 KiB
    /*
     * jdcoefct.c
     *
     * Copyright (C) 1994, Thomas G. Lane.
     * This file is part of the Independent JPEG Group's software.
     * For conditions of distribution and use, see the accompanying README file.
     *
     * This file contains the coefficient buffer controller for decompression.
     * This controller is the top level of the JPEG decompressor proper.
     * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
     */
    
    #define JPEG_INTERNALS
    #include "jinclude.h"
    #include "jpeglib.h"
    
    
    /* Private buffer controller object */
    
    typedef struct {
      struct jpeg_d_coef_controller pub; /* public fields */
    
      JDIMENSION MCU_col_num;	/* saves next MCU column to process */
      JDIMENSION MCU_row_num;	/* keep track of MCU row # within image */
    
      /* In single-pass modes without block smoothing, it's sufficient to buffer
       * just one MCU (although this may prove a bit slow in practice).
       * We allocate a workspace of MAX_BLOCKS_IN_MCU coefficient blocks,
       * and let the entropy decoder write into that workspace each time.
       * (On 80x86, the workspace is FAR even though it's not really very big;
       * this is to keep the module interfaces unchanged when a large coefficient
       * buffer is necessary.)
       * In multi-pass modes, this array points to the current MCU's blocks
       * within the virtual arrays.
       */
      JBLOCKROW MCU_buffer[MAX_BLOCKS_IN_MCU];
    
      /* In multi-pass modes, we need a virtual block array for each component. */
      jvirt_barray_ptr whole_image[MAX_COMPONENTS];
    } my_coef_controller;
    
    typedef my_coef_controller * my_coef_ptr;
    
    
    /* Forward declarations */
    METHODDEF boolean decompress_data
    	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
    #ifdef D_MULTISCAN_FILES_SUPPORTED
    METHODDEF boolean decompress_read
    	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
    METHODDEF boolean decompress_output
    	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
    #endif
    
    
    /*
     * Initialize for a processing pass.
     */
    
    METHODDEF void
    start_pass_coef (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
    {
      my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    
      coef->MCU_col_num = 0;
      coef->MCU_row_num = 0;
    
      switch (pass_mode) {
      case JBUF_PASS_THRU:
        if (coef->whole_image[0] != NULL)
          ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
        coef->pub.decompress_data = decompress_data;
        break;
    #ifdef D_MULTISCAN_FILES_SUPPORTED
      case JBUF_SAVE_SOURCE:
        if (coef->whole_image[0] == NULL)
          ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
        coef->pub.decompress_data = decompress_read;
        break;
      case JBUF_CRANK_DEST:
        if (coef->whole_image[0] == NULL)
          ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
        coef->pub.decompress_data = decompress_output;
        break;
    #endif
      default:
        ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
        break;
      }
    }
    
    
    /*
     * Process some data in the single-pass case.
     * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
     * Returns TRUE if it completed a row, FALSE if not (suspension).
     *
     * NB: output_buf contains a plane for each component in image.
     * For single pass, this is the same as the components in the scan.
     */
    
    METHODDEF boolean
    decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    {
      my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
      JDIMENSION MCU_col_num;	/* index of current MCU within row */
      JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
      JDIMENSION last_MCU_row = cinfo->MCU_rows_in_scan - 1;
      int blkn, ci, xindex, yindex, useful_width;
      JSAMPARRAY output_ptr;
      JDIMENSION start_col, output_col;
      jpeg_component_info *compptr;
      inverse_DCT_method_ptr inverse_DCT;
    
      /* Loop to process as much as one whole MCU row */
    
      for (MCU_col_num = coef->MCU_col_num; MCU_col_num <= last_MCU_col;
           MCU_col_num++) {
    
        /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
        jzero_far((void FAR *) coef->MCU_buffer[0],
    	      (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
        if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
          /* Suspension forced; return with row unfinished */
          coef->MCU_col_num = MCU_col_num; /* update my state */
          return FALSE;
        }
    
        /* Determine where data should go in output_buf and do the IDCT thing.
         * We skip dummy blocks at the right and bottom edges (but blkn gets
         * incremented past them!).  Note the inner loop relies on having
         * allocated the MCU_buffer[] blocks sequentially.
         */
        blkn = 0;			/* index of current DCT block within MCU */
        for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
          compptr = cinfo->cur_comp_info[ci];
          /* Don't bother to IDCT an uninteresting component. */
          if (! compptr->component_needed) {
    	blkn += compptr->MCU_blocks;
    	continue;
          }
          inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
          useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    						  : compptr->last_col_width;
          output_ptr = output_buf[ci];
          start_col = MCU_col_num * compptr->MCU_sample_width;
          for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    	if (coef->MCU_row_num < last_MCU_row ||
    	    yindex < compptr->last_row_height) {
    	  output_col = start_col;
    	  for (xindex = 0; xindex < useful_width; xindex++) {
    	    (*inverse_DCT) (cinfo, compptr,
    			    (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
    			    output_ptr, output_col);
    	    output_col += compptr->DCT_scaled_size;
    	  }
    	}
    	blkn += compptr->MCU_width;
    	output_ptr += compptr->DCT_scaled_size;
          }
        }
      }
    
      /* We finished the row successfully */
      coef->MCU_col_num = 0;	/* prepare for next row */
      coef->MCU_row_num++;
      return TRUE;
    }
    
    
    #ifdef D_MULTISCAN_FILES_SUPPORTED
    
    /*
     * Process some data: handle an input pass for a multiple-scan file.
     * We read the equivalent of one fully interleaved MCU row ("iMCU" row)
     * per call, ie, v_samp_factor block rows for each component in the scan.
     * No data is returned; we just stash it in the virtual arrays.
     *
     * Returns TRUE if it completed a row, FALSE if not (suspension).
     * Currently, the suspension case is not supported.
     */
    
    METHODDEF boolean
    decompress_read (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    {
      my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
      JDIMENSION MCU_col_num;	/* index of current MCU within row */
      int blkn, ci, xindex, yindex, yoffset, num_MCU_rows;
      JDIMENSION total_width, remaining_rows, start_col;
      JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
      JBLOCKROW buffer_ptr;
      jpeg_component_info *compptr;
    
      /* Align the virtual buffers for the components used in this scan. */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
        compptr = cinfo->cur_comp_info[ci];
        buffer[ci] = (*cinfo->mem->access_virt_barray)
          ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
           coef->MCU_row_num * compptr->v_samp_factor, TRUE);
        /* Entropy decoder expects buffer to be zeroed. */
        total_width = (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    					 (long) compptr->h_samp_factor);
        for (yindex = 0; yindex < compptr->v_samp_factor; yindex++) {
          jzero_far((void FAR *) buffer[ci][yindex], 
    		(size_t) (total_width * SIZEOF(JBLOCK)));
        }
      }
    
      /* In an interleaved scan, we process exactly one MCU row.
       * In a noninterleaved scan, we need to process v_samp_factor MCU rows,
       * each of which contains a single block row.
       */
      if (cinfo->comps_in_scan == 1) {
        compptr = cinfo->cur_comp_info[0];
        num_MCU_rows = compptr->v_samp_factor;
        /* but watch out for the bottom of the image */
        remaining_rows = cinfo->MCU_rows_in_scan -
    		     coef->MCU_row_num * compptr->v_samp_factor;
        if (remaining_rows < (JDIMENSION) num_MCU_rows)
          num_MCU_rows = (int) remaining_rows;
      } else {
        num_MCU_rows = 1;
      }
    
      /* Loop to process one whole iMCU row */
      for (yoffset = 0; yoffset < num_MCU_rows; yoffset++) {
        for (MCU_col_num = 0; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) {
          /* Construct list of pointers to DCT blocks belonging to this MCU */
          blkn = 0;			/* index of current DCT block within MCU */
          for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    	compptr = cinfo->cur_comp_info[ci];
    	start_col = MCU_col_num * compptr->MCU_width;
    	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    	    coef->MCU_buffer[blkn++] = buffer_ptr++;
    	  }
    	}
          }
          /* Try to fetch the MCU. */
          if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    	ERREXIT(cinfo, JERR_CANT_SUSPEND); /* not supported */
          }
        }
      }
    
      coef->MCU_row_num++;
      return TRUE;
    }
    
    
    /*
     * Process some data: output from the virtual arrays after reading is done.
     * Always emits one fully interleaved MCU row ("iMCU" row).
     * Always returns TRUE --- suspension is not possible.
     *
     * NB: output_buf contains a plane for each component in image.
     */
    
    METHODDEF boolean
    decompress_output (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    {
      my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
      JDIMENSION last_MCU_row = cinfo->total_iMCU_rows - 1;
      JDIMENSION block_num;
      int ci, block_row, block_rows;
      JBLOCKARRAY buffer;
      JBLOCKROW buffer_ptr;
      JSAMPARRAY output_ptr;
      JDIMENSION output_col;
      jpeg_component_info *compptr;
      inverse_DCT_method_ptr inverse_DCT;
    
      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
           ci++, compptr++) {
        /* Don't bother to IDCT an uninteresting component. */
        if (! compptr->component_needed)
          continue;
        /* Align the virtual buffer for this component. */
        buffer = (*cinfo->mem->access_virt_barray)
          ((j_common_ptr) cinfo, coef->whole_image[ci],
           coef->MCU_row_num * compptr->v_samp_factor, FALSE);
        /* Count non-dummy DCT block rows in this iMCU row. */
        if (coef->MCU_row_num < last_MCU_row)
          block_rows = compptr->v_samp_factor;
        else {
          block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
          if (block_rows == 0) block_rows = compptr->v_samp_factor;
        }
        inverse_DCT = cinfo->idct->inverse_DCT[ci];
        output_ptr = output_buf[ci];
        /* Loop over all DCT blocks to be processed. */
        for (block_row = 0; block_row < block_rows; block_row++) {
          buffer_ptr = buffer[block_row];
          output_col = 0;
          for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
    	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
    			output_ptr, output_col);
    	buffer_ptr++;
    	output_col += compptr->DCT_scaled_size;
          }
          output_ptr += compptr->DCT_scaled_size;
        }
      }
    
      coef->MCU_row_num++;
      return TRUE;
    }
    
    #endif /* D_MULTISCAN_FILES_SUPPORTED */
    
    
    /*
     * Initialize coefficient buffer controller.
     */
    
    GLOBAL void
    jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
    {
      my_coef_ptr coef;
      int ci, i;
      jpeg_component_info *compptr;
      JBLOCKROW buffer;
    
      coef = (my_coef_ptr)
        (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    				SIZEOF(my_coef_controller));
      cinfo->coef = (struct jpeg_d_coef_controller *) coef;
      coef->pub.start_pass = start_pass_coef;
    
      /* Create the coefficient buffer. */
      if (need_full_buffer) {
    #ifdef D_MULTISCAN_FILES_SUPPORTED
        /* Allocate a full-image virtual array for each component, */
        /* padded to a multiple of samp_factor DCT blocks in each direction. */
        /* Note memmgr implicitly pads the vertical direction. */
        for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    	 ci++, compptr++) {
          coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    	((j_common_ptr) cinfo, JPOOL_IMAGE,
    	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    				(long) compptr->h_samp_factor),
    	 compptr->height_in_blocks,
    	 (JDIMENSION) compptr->v_samp_factor);
        }
    #else
        ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    #endif
      } else {
        /* We only need a single-MCU buffer. */
        buffer = (JBLOCKROW)
          (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    				  MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
        for (i = 0; i < MAX_BLOCKS_IN_MCU; i++) {
          coef->MCU_buffer[i] = buffer + i;
        }
        coef->whole_image[0] = NULL; /* flag for no virtual arrays */
      }
    }