Select Git revision
fullMatrix.h
Forked from
gmsh / gmsh
11135 commits behind the upstream repository.

Nicolas Marsic authored
fullMatrix.h 19.88 KiB
// Gmsh - Copyright (C) 1997-2013 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.
#ifndef _FULL_MATRIX_H_
#define _FULL_MATRIX_H_
#include <math.h>
#include <stdio.h>
#include "GmshConfig.h"
#include "GmshMessage.h"
template <class scalar> class fullMatrix;
/**
@class fullVector
@brief Vector of scalar
This class represents a vector of scalar.@n
Scalars can be real or complex, with simple or double precision.
The first index of a fullVector is @c 0.
fullVector%s can own their scalars,
or just be an access point to an other fullVector.@n
Such a fullVector is called a proxy.
@see fullVector::setAsProxy(const fullVector&, int, int)
*/
/**
@class fullMatrix
@brief Matrix of scalar
This class represents a matrix of scalar.@n
Scalars can be real or complex, with simple or double precision.
*/
// An abstract interface for vectors of scalar
template <class scalar>
class fullVector
{
private:
int _r; // size of the vector
scalar *_data; // pointer on the first element
bool _own_data;
friend class fullMatrix<scalar>;
public:
// constructor and destructor
/**
Instantiates a zero size fullVector.
*/
fullVector(void) : _r(0),_data(0),_own_data(1) {}
/**
@param r A positive integer.
Instantiates a fullVector of size r filled with zeros.
*/
fullVector(int r) : _r(r),_own_data(1)
{
_data = new scalar[_r];
setAll(scalar(0.));
}
/**
@param original A scalar pointer;
@param r A positive integer.
Instantiates a proxy fullVector given by:
[original[0], original[1], ..., original[r - 1]].
*/
fullVector(scalar *original, int r)
{
_r = r;
_own_data = false;
_data = original;
}
/**
@param other A fullVector.
Instantiates a fullVector, which is a copy (and not a proxy) of other.
*/
fullVector(const fullVector<scalar> &other) : _r(other._r),_own_data(1)
{
_data = new scalar[_r];
for(int i = 0; i < _r; ++i) _data[i] = other._data[i];
}
/**
Deletes this fullVector.
*/
~fullVector()
{
if(_own_data && _data) delete [] _data;
}
// get information (size, value)
/**
@return Returns the size of this fullVector
*/
inline int size() const { return _r; }
/**
@return Returns a const pointer to this fullVector data.@n
This pointer will point to the following memory segment:
[(*this)(0), (*this)(1), ..., (*this)(this->size() - 1)].
*/
inline const scalar * getDataPtr() const { return _data; }
/**
@param i A vector index between 0 and size() - 1.
@returns Returns the ith scalar of this fullVector.
*/
inline scalar operator () (int i) const { return _data[i]; }
/**
@param i A vector index between 0 and size() - 1.
@returns Returns a reference to the ith scalar of this fullVector.
*/
inline scalar & operator () (int i) { return _data[i]; }
// copy
/**
@param other A fullVector.
The right hand side fullVector will become a copy of other,
and will loose its previous data.
*/
fullVector<scalar>& operator= (const fullVector<scalar> &other)
{
if (this != &other) {
if ((!resize(other.size(), false) && _r > 2*other.size())) {
if (_data) delete[] _data;
_r = other.size();
_data = new scalar[_r];
}
setAll(other);
}
return *this;
}
// set
/**
@param r A vector index between 0 and size() - 1;
@param v A scalar.
The rth value of this fullVector is set to v.
*/
inline void set(int r, scalar v){
#ifdef _DEBUG
if (r >= _r || r < 0)
Msg::Fatal("invalid index to access fullVector : %i (size = %i)",
r, _r);
#endif
(*this)(r) = v;
}
// operations
/**
@return Returns the @f$ L^2 @f$ norm of this fullVector.
*/
inline scalar norm() const
{
scalar n = 0.;
for(int i = 0; i < _r; ++i) n += _data[i] * _data[i];
return sqrt(n);
}
/**
@param r A positive integer;
@param resetValue A boolean (with default value equals to true).
Resizes this fullVector to r. Previous data may be damaged.@n
If resetValue is true, the fullVector data are set to zero.@n
If this fullVector was a proxy, it now owns its data.
@return Returns:
@li true if the previous data are damaged;
@li false if not (except if resetValue is true).
@warning
Nicolas: I'm not sure if this is exactly what resize does !
@todo
Check doc of fullVector::resize()
*/
bool resize(int r, bool resetValue = true)
{
if (_r < r || !_own_data) {
if (_own_data && _data) delete[] _data;
_r = r;
_data = new scalar[_r];
_own_data = true;
if(resetValue)
setAll(scalar(0.));
return true;
}
_r = r;
if(resetValue)
setAll(scalar(0.));
return false;
}
/**
@param original A fullVector;
@param r_start A valid index of original;
@param r A number between 0 and original.size() - r_start.
This fullVector becomes a proxy of original, that is:
[original(r_start), ..., original(r_start + r - 1)].
Previous data are lost.
*/
void setAsProxy(const fullVector<scalar> &original, int r_start, int r)
{
if(_own_data && _data) delete [] _data;
_own_data = false;
_r = r;
_data = original._data + r_start;
}
/**
@param original A fullMatrix;
@param c A valid column index of original.
This fullVector becomes a proxy of original cth row, that is:
[original(0, c), ..., original(original.size1() - 1, c)].
Previous data are lost.
*/
void setAsProxy(const fullMatrix<scalar> &original, int c)
{
if(_own_data && _data) delete [] _data;
_own_data = false;
_r = original._r;
_data = original._data + c * _r;
}
/**
@param s A scalar.
Multiplies all the data of this fullVector by s.
*/
inline void scale(const scalar s)
{
if(s == scalar(0.))
for(int i = 0; i < _r; ++i) _data[i] = scalar(0.);
else if (s == -1.)
for(int i = 0; i < _r; ++i) _data[i] = -_data[i];
else
for(int i = 0; i < _r; ++i) _data[i] *= s;
}
/**
@param m A scalar.
Sets all the data of this fullVector to m.
*/
inline void setAll(const scalar &m)
{
for(int i = 0; i < _r; i++) set(i,m);
}
/**
@param m A fullVector.
If:
@li @f$ v @f$ is this fullVector;
@li @f$ N @f$ is equal to this fullVector size,
then:
@f$ v(i) = m(i) \qquad \forall{} i \in \{0, \dots, N - 1\} @f$.
m.size() must be greater or equal to @f$ N @f$.
*/
inline void setAll(const fullVector<scalar> &m)
{
for(int i = 0; i < _r; i++) _data[i] = m._data[i];
}
/**
@param other A fullVector.
@return Returns the scalar product of this fullVector with the other.
*/
inline scalar operator *(const fullVector<scalar> &other)
{
scalar s = 0.;
for(int i = 0; i < _r; ++i) s += _data[i] * other._data[i];
return s;
}
/**
@param x A fullVector;
@param alpha A scalar (by default set to one).
If:
@li @f$ v @f$ is this fullVector;
@li @f$ N @f$ is equal to this fullVector size,
then:
@f$ v(i) = v(i) + alpha \times{} x(i) \qquad
\forall{} i \in \{0, \dots, N - 1\} @f$.
x.size() must be greater or equal to @f$ N @f$.
*/
void axpy(const fullVector<scalar> &x, scalar alpha=1.)
#if !defined(HAVE_BLAS)
{
for (int i = 0; i < _r; i++) _data[i] += alpha * x._data[i];
}
#endif
;
/**
@param x A fullVector.
If:
@li @f$ v @f$ is this fullVector;
@li @f$ N @f$ is equal to this fullVector size,
then:
@f$ v(i) = v(i) \times{} x(i) \qquad
\forall{} i \in \{0, \dots, N - 1\} @f$.
x.size() must be greater or equal to @f$ N @f$.
*/
void multTByT(const fullVector<scalar> &x)
{
for (int i = 0; i < _r; i++) _data[i] *= x._data[i];
}
// printing and file treatment
/**
@param name A string in @c C style (set by default to "").
Prints on the standard output a string describing
this fullVector.
This string starts by name.
*/
void print(const char *name="") const
{
printf("double %s[%d]=\n", name,size());
printf("{ ");
for(int I = 0; I < size(); I++){
printf("%12.5E ", (*this)(I));
}
printf("};\n");
}
/**
@param f A pointer to a FILE stream.
Writes a binary representation of this fullVector
into f.
*/
void binarySave (FILE *f) const
{
fwrite (_data, sizeof(scalar), _r, f);
}
/**
@param f A pointer to a FILE stream containing a fullVector.
Loads a binary representation, of the fullVector in f,
into this fullVector.
@see fullVector::binarySave
*/
void binaryLoad (FILE *f)
{
if(fread (_data, sizeof(scalar), _r, f) != (size_t)_r) return;
}
};
// An abstract interface for dense matrix of scalar
template <class scalar>
class fullMatrix
{
private:
bool _own_data; // should data be freed on delete ?
int _r, _c; // size of the matrix
scalar *_data; // pointer on the first element
friend class fullVector<scalar>;
public:
// constructor and destructor
fullMatrix(scalar *original, int r, int c)
{
_r = r;
_c = c;
_own_data = false;
_data = original;
}
fullMatrix(fullMatrix<scalar> &original, int c_start, int c)
{
_c = c;
_r = original._r;
_own_data = false;
_data = original._data + c_start * _r;
}
fullMatrix(int r, int c) : _r(r), _c(c)
{
_data = new scalar[_r * _c];
_own_data = true;
setAll(scalar(0.));
}
fullMatrix(int r, int c, double *data)
: _r(r), _c(c), _data(data), _own_data(false)
{
setAll(scalar(0.));
}
fullMatrix(const fullMatrix<scalar> &other) : _r(other._r), _c(other._c)
{
_data = new scalar[_r * _c];
_own_data=true;
for(int i = 0; i < _r * _c; ++i) _data[i] = other._data[i];
}
fullMatrix() : _own_data(false),_r(0), _c(0), _data(0) {}
~fullMatrix()
{
if(_data && _own_data) delete [] _data;
}
// get information (size, value)
inline int size1() const { return _r; }
inline int size2() const { return _c; }
inline scalar get(int r, int c) const
{
#ifdef _DEBUG
if (r >= _r || r < 0 || c >= _c || c < 0)
Msg::Fatal("invalid index to access fullMatrix : %i %i (size = %i %i)",
r, c, _r, _c);
#endif
return (*this)(r, c);
}
// operations
inline void set(int r, int c, scalar v){
#ifdef _DEBUG
if (r >= _r || r < 0 || c >= _c || c < 0)
Msg::Fatal("invalid index to access fullMatrix : %i %i (size = %i %i)",
r, c, _r, _c);
#endif
(*this)(r, c) = v;
}
inline scalar norm() const
{
scalar n = 0.;
for(int i = 0; i < _r; ++i)
for(int j = 0; j < _c; ++j)
n += (*this)(i, j) * (*this)(i, j);
return sqrt(n);
}
bool resize(int r, int c, bool resetValue = true) // data will be owned (same as constructor)
{
if ((r * c > _r * _c) || !_own_data) {
if (_own_data && _data) delete[] _data;
_r = r;
_c = c;
_data = new scalar[_r * _c];
_own_data = true;
if(resetValue)
setAll(scalar(0.));
return true;
}
_r = r;
_c = c;
if(resetValue)
setAll(scalar(0.));
return false; // no reallocation
} void setAsProxy(const fullMatrix<scalar> &original)
{
if(_data && _own_data)
delete [] _data;
_c = original._c;
_r = original._r;
_own_data = false;
_data = original._data;
}
void setAsProxy(const fullMatrix<scalar> &original, int c_start, int c)
{
if(_data && _own_data)
delete [] _data;
_c = c;
_r = original._r;
_own_data = false;
_data = original._data + c_start * _r;
}
void setAsProxy(double *data, int r, int c)
{
if(_data && _own_data)
delete [] _data;
_c = c;
_r = r;
_own_data = false;
_data = data;
}
fullMatrix<scalar> & operator = (const fullMatrix<scalar> &other)
{
copy(other);
return *this;
}
void operator += (const fullMatrix<scalar> &other)
{
if(_r != other._r || _c!= other._c)
Msg::Error("sum matrices of different sizes\n");
for(int i = 0; i < _r * _c; ++i) _data[i] += other._data[i];
}
inline scalar operator () (int i, int j) const
{
#ifdef _DEBUG
if (i >= _r || i < 0 || j >= _c || j < 0)
Msg::Fatal("invalid index to access fullMatrix : %i %i (size = %i %i)",
i, j, _r, _c);
#endif
return _data[i + _r * j];
}
inline scalar & operator () (int i, int j)
{
#ifdef _DEBUG
if (i >= _r || i < 0 || j >= _c || j < 0)
Msg::Fatal("invalid index to access fullMatrix : %i %i (size = %i %i)",
i, j, _r, _c);
#endif
return _data[i + _r * j];
}
void copy(const fullMatrix<scalar> &a, int i0, int ni, int j0, int nj,
int desti0, int destj0)
{
for(int i = i0, desti = desti0; i < i0 + ni; i++, desti++)
for(int j = j0, destj = destj0; j < j0 + nj; j++, destj++)
(*this)(desti, destj) = a(i, j);
}
void copy(const fullMatrix<scalar> &a)
{
if (_data && !_own_data)
Msg::Fatal("fullMatrix::copy operation is prohibited for proxies, use setAll instead");
if (_r != a._r || _c != a._c) {
if(_data && _own_data)
delete [] _data;
_r = a._r;
_c = a._c;
_data = new scalar[_r * _c];
_own_data = true;
}
setAll(a);
}
void mult_naive(const fullMatrix<scalar> &b, fullMatrix<scalar> &c) const
{
c.scale(scalar(0.));
for(int i = 0; i < _r; i++)
for(int j = 0; j < b.size2(); j++)
for(int k = 0; k < _c; k++)
c._data[i + _r * j] += (*this)(i, k) * b(k, j);
}
void mult(const fullMatrix<scalar> &b, fullMatrix<scalar> &c) const
#if !defined(HAVE_BLAS)
{
mult_naive(b,c);
}
#endif
;
void multTByT(const fullMatrix<scalar> &a)
{
for (int i = 0; i < _r * _c; i++) _data[i] *= a._data[i];
}
void axpy(const fullMatrix<scalar> &x, scalar alpha=1.)
#if !defined(HAVE_BLAS)
{
int n = _r * _c;
for (int i = 0; i < n; i++) _data[i] += alpha * x._data[i];
}
#endif
;
void gemm_naive(const fullMatrix<scalar> &a, const fullMatrix<scalar> &b,
scalar alpha=1., scalar beta=1.)
{
fullMatrix<scalar> temp(a.size1(), b.size2());
a.mult_naive(b, temp);
temp.scale(alpha);
scale(beta);
add(temp);
}
void gemm(const fullMatrix<scalar> &a, const fullMatrix<scalar> &b,
scalar alpha=1., scalar beta=1.)
#if !defined(HAVE_BLAS)
{
gemm_naive(a,b,alpha,beta);
}
#endif
;
inline void setAll(const scalar &m)
{
for(int i = 0; i < _r * _c; i++) _data[i] = m;
}
inline void setAll(const fullMatrix<scalar> &m)
{
if (_r != m._r || _c != m._c )
Msg::Fatal("fullMatrix size does not match");
for(int i = 0; i < _r * _c; i++) _data[i] = m._data[i];
}
void scale(const double s)
#if !defined(HAVE_BLAS)
{
if(s == 0.) // this is not really correct nan*0 (or inf*0) is expected to give nan
for(int i = 0; i < _r * _c; ++i) _data[i] = scalar(0.);
else
for(int i = 0; i < _r * _c; ++i) _data[i] *= s;
}
#endif
;
inline void add(const double &a)
{
for(int i = 0; i < _r * _c; ++i) _data[i] += a;
}
inline void add(const fullMatrix<scalar> &m)
{
for(int i = 0; i < size1(); i++)
for(int j = 0; j < size2(); j++)
(*this)(i, j) += m(i, j);
}
inline void add(const fullMatrix<scalar> &m, const double &a)
{
for(int i = 0; i < size1(); i++)
for(int j = 0; j < size2(); j++)
(*this)(i, j) += a*m(i, j);
}
void mult(const fullVector<scalar> &x, fullVector<scalar> &y) const
#if !defined(HAVE_BLAS)
{
y.scale(scalar(0.));
for(int i = 0; i < _r; i++)
for(int j = 0; j < _c; j++)
y._data[i] += (*this)(i, j) * x(j);
}
#endif
;
void multAddy(const fullVector<scalar> &x, fullVector<scalar> &y) const
#if !defined(HAVE_BLAS)
{
for(int i = 0; i < _r; i++)
for(int j = 0; j < _c; j++)
y._data[i] += (*this)(i, j) * x(j);
}
#endif
;
inline fullMatrix<scalar> transpose() const
{
fullMatrix<scalar> T(size2(), size1());
for(int i = 0; i < size1(); i++)
for(int j = 0; j < size2(); j++)
T(j, i) = (*this)(i, j);
return T;
}
inline void transposeInPlace()
{
if(size1() != size2()){
Msg::Error("Not a square matrix (size1: %d, size2: %d)", size1(), size2());
}
scalar t;
for(int i = 0; i < size1(); i++)
for(int j = 0; j < i; j++) {
t = _data[i + _r * j];
_data[i + _r * j] = _data[j + _r * i];
_data[j + _r * i] = t;
}
}
bool luSolve(const fullVector<scalar> &rhs, fullVector<scalar> &result)
#if !defined(HAVE_LAPACK)
{
Msg::Error("LU factorization requires LAPACK");
return false;
}
#endif
;
bool invertInPlace()
#if !defined(HAVE_LAPACK)
{
Msg::Error("Matrix inversion requires LAPACK");
return false;
}
#endif
;
bool eig(fullVector<double> &eigenValReal, fullVector<double> &eigenValImag,
fullMatrix<scalar> &leftEigenVect, fullMatrix<scalar> &rightEigenVect,
bool sortRealPart=false)
#if !defined(HAVE_LAPACK)
{
Msg::Error("Eigenvalue computations requires LAPACK");
return false;
}
#endif
;
bool invert(fullMatrix<scalar> &result) const;
fullMatrix<scalar> cofactor(int i, int j) const
{
int ni = size1();
int nj = size2();
fullMatrix<scalar> cof(ni - 1, nj - 1);
for(int I = 0; I < ni; I++)
for(int J = 0; J < nj; J++)
if(J != j && I != i)
cof(I < i ? I : I - 1, J < j ? J : J - 1) = (*this)(I, J);
return cof;
}
scalar determinant() const;
bool svd(fullMatrix<scalar> &V, fullVector<scalar> &S)
#if !defined(HAVE_LAPACK)
{
Msg::Error("Singular value decomposition requires LAPACK");
return false;
}
#endif
;
void print(const std::string name = "", const std::string format = "%12.5E ") const
{
int ni = size1();
int nj = size2();
printf("double %s [ %d ][ %d ]= { \n", name.c_str(),ni,nj);
for(int I = 0; I < ni; I++){
printf("{ ");
for(int J = 0; J < nj; J++){
printf(format.c_str(), (*this)(I, J));
if (J!=nj-1)printf(",");
}
if (I!=ni-1)printf("},\n");
else printf("}\n");
}
printf("};\n");
}
// specific functions for dgshell
void mult_naiveBlock(const fullMatrix<scalar> &b, const int ncol, const int fcol,
const int alpha, const int beta, fullVector<scalar> &c,
const int row=0) const
{
if(beta != 1)
c.scale(beta);
for(int j = fcol; j < fcol+ncol; j++)
for(int k = 0; k < _c ; k++)
c._data[j] += alpha*(*this)(row, k) * b(k, j);
}
void multOnBlock(const fullMatrix<scalar> &b, const int ncol, const int fcol,
const int alpha, const int beta, fullVector<scalar> &c) const
#if !defined(HAVE_BLAS)
{
mult_naiveBlock(b,ncol,fcol,alpha,beta,c);
}
#endif
;
void multWithATranspose(const fullVector<scalar> &x, scalar alpha, scalar beta,
fullVector<scalar> &y) const
#if !defined(HAVE_BLAS)
{
y.scale(beta);
for(int j = 0; j < _c; j++)
for(int i = 0; i < _r; i++)
y._data[j] += alpha * (*this)(i, j) * x(i);
}
#endif
;
void copyOneColumn(const fullVector<scalar> &x, const int ind) const
{
int cind = _c*ind;
for(int i = 0; i < _r; i++)
_data[cind+i] = x(i);
}
void gemmWithAtranspose(const fullMatrix<scalar> &a, const fullMatrix<scalar> &b,
scalar alpha=1., scalar beta=1.)
#if !defined(HAVE_BLAS)
{
Msg::Error("gemmWithAtranspose is only available with blas. If blas is not "
"installed please transpose a before used gemm_naive");
}
#endif
;
void reshape(int nbRows, int nbColumns){
if (nbRows*nbColumns != size1()*size2())
Msg::Error("Invalid reshape, total number of entries must be equal");
_r = nbRows;
_c = nbColumns;
}
};
#endif