Forked from
gmsh / gmsh
16874 commits behind the upstream repository.
-
Jean-François Remacle authoredJean-François Remacle authored
meshGFaceTransfinite.cpp 12.57 KiB
// $Id: meshGFaceTransfinite.cpp,v 1.21 2007-09-04 13:47:02 remacle Exp $
//
// Copyright (C) 1997-2007 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to <gmsh@geuz.org>.
#include <map>
#include "meshGFace.h"
#include "GVertex.h"
#include "GEdge.h"
#include "GFace.h"
#include "MVertex.h"
#include "MElement.h"
#include "Context.h"
#include "Message.h"
extern Context_T CTX;
/*
s4 +-----c3-----+ s3
| |
| |
c4 c2
| |
| |
s1 +-----c1-----+ s2
*/
// f(u,v) = (1-u) c4(v) + u c2(v) + (1-v) c1(u) + v c3(u)
// - [ (1-u)(1-v) s1 + u(1-v) s2 + uv s3 + (1-u)v s4 ]
#define TRAN_QUA(c1,c2,c3,c4,s1,s2,s3,s4,u,v) \
(1.-u)*c4+u*c2+(1.-v)*c1+v*c3-((1.-u)*(1.-v)*s1+u*(1.-v)*s2+u*v*s3+(1.-u)*v*s4)
// s1=s4=c4
// f(u,v) = u c2 (v) + (1-v) c1(u) + v c3(u) - u(1-v) s2 - uv s3
#define TRAN_TRI(c1,c2,c3,s1,s2,s3,u,v) u*c2+(1.-v)*c1+v*c3-(u*(1.-v)*s2+u*v*s3)
int MeshTransfiniteSurface(GFace *gf)
{
if(gf->meshAttributes.Method != TRANSFINI) return 0;
Msg(STATUS2, "Meshing surface %d (transfinite)", gf->tag());
std::vector <MVertex *> corners, d_vertices;
std::vector <int> indices;
for(unsigned int i = 0; i < gf->meshAttributes.corners.size(); i++)
corners.push_back(gf->meshAttributes.corners[i]->mesh_vertices[0]);
computeEdgeLoops(gf, d_vertices, indices);
if(corners.size () != 3 && corners.size () != 4){
Msg(GERROR,"Surface %d is transfinite but has %d corners",
gf->tag(), corners.size());
return 0;
}
if(indices.size () != 2){
Msg(GERROR,"Surface %d is transfinite but has %d holes",
gf->tag(), indices.size() - 2);
return 0;
}
// create a list of all boundary vertices, starting at the first
// transfinite corner
std::vector <MVertex *> m_vertices;
unsigned int I;
for(I = 0; I < d_vertices.size(); I++)
if(d_vertices[I] == corners[0]) break;
for(unsigned int j = 0; j < d_vertices.size(); j++)
m_vertices.push_back(d_vertices[(I + j) % d_vertices.size()]);
// make the ordering of the list consistent with the ordering of the
// first two corners (if the second found corner is not the second
// corner, just revert the list)
bool revert = false;
for(unsigned int i = 1; i < m_vertices.size(); i++){
MVertex *v = m_vertices[i];
if(v == corners[1] || v == corners[2] ||
(corners.size() == 4 && v == corners[3])){
if(v != corners[1]) revert = true;
break;
}
}
if(revert){
std::vector <MVertex *> tmp;
tmp.push_back(m_vertices[0]);
for(int i = m_vertices.size() - 1; i > 0; i--)
tmp.push_back(m_vertices[i]);
m_vertices = tmp;
}
// get the indices of the interpolation corners as well as the u,v
// coordinates of all the boundary vertices
int iCorner = 0;
int N[4] = {0, 0, 0, 0};
std::vector<double> U;
std::vector<double> V;
for(unsigned int i = 0; i < m_vertices.size(); i++){
MVertex *v = m_vertices[i];
if(v == corners[0] || v == corners[1] || v == corners[2] ||
(corners.size() == 4 && v == corners[3])){
N[iCorner++] = i;
if(iCorner > 4){
Msg(GERROR,"Surface %d transfinite parameters are incoherent", gf->tag());
return 0;
}
}
SPoint2 param;
if(v->onWhat()->dim() == 0){
GVertex *gv = (GVertex*)v->onWhat();
param = gv->reparamOnFace(gf, 1);
}
else if(v->onWhat()->dim() == 1){
GEdge *ge = (GEdge*)v->onWhat();
double UU;
v->getParameter(0, UU);
param = ge->reparamOnFace(gf, UU, 1);
}
else{
double UU, VV;
if(v->onWhat() == gf && v->getParameter(0, UU) && v->getParameter(1, VV))
param = SPoint2(UU, VV);
else
param = gf->parFromPoint(SPoint3(v->x(), v->y(), v->z()));
}
U.push_back(param.x());
V.push_back(param.y());
}
int N1 = N[0];
int N2 = N[1];
int N3 = N[2];
int N4 = N[3];
int L = N2 - N1;
int H = N3 - N2;
if(corners.size () == 4){
int Lb = N4 - N3;
int Hb = m_vertices.size() - N4;
if(Lb != L || Hb != H){
Msg(GERROR,"Surface %d cannot be meshed using the transfinite algo",
gf->tag());
return 0;
}
}
else{
int Lb = m_vertices.size() - N3;
if(Lb != L){
Msg(GERROR,"Surface %d cannot be meshed using the transfinite algo %d != %d",
gf->tag(), L, Lb);
return 0;
}
}
std::vector<double> lengths_i;
std::vector<double> lengths_j;
double L_i = 0;
double L_j = 0;
lengths_i.push_back(0.);
lengths_j.push_back(0.);
for(int i = 0; i < L; i++){
MVertex *v1 = m_vertices[i];
MVertex *v2 = m_vertices[i + 1];
L_i += v1->distance(v2);
lengths_i.push_back(L_i);
}
for(int i = L; i < L + H; i++){
MVertex *v1 = m_vertices[i];
MVertex *v2 = m_vertices[i + 1];
L_j += v1->distance(v2);
lengths_j.push_back(L_j);
}
/*
2L+H +------------+ L+H
| |
| |
| |
| |
2L+2H+2 +------------+
0 L
*/
std::vector<std::vector<MVertex*> > &tab(gf->transfinite_vertices);
tab.resize(L + 1);
for(int i = 0; i <= L; i++) tab[i].resize(H + 1);
if(corners.size () == 4){
tab[0][0] = m_vertices[0];
tab[L][0] = m_vertices[L];
tab[L][H] = m_vertices[L+H];
tab[0][H] = m_vertices[2*L+H];
for (int i = 1; i < L; i++){
tab[i][0] = m_vertices[i];
tab[i][H] = m_vertices[2*L+H-i];
}
for(int i = 1; i < H; i++){
tab[L][i] = m_vertices[L+i];
tab[0][i] = m_vertices[2*L+2*H-i];
}
}
else{
tab[0][0] = m_vertices[0];
tab[L][0] = m_vertices[L];
tab[L][H] = m_vertices[L+H];
// degenerated, only necessary for transfinite volume algo
tab[0][H] = m_vertices[0];
for (int i = 1; i < L; i++){
tab[i][0] = m_vertices[i];
tab[i][H] = m_vertices[2*L+H-i];
}
for(int i = 1; i < H;i++){
tab[L][i] = m_vertices[L+i];
// degenerated, only necessary for transfinite volume algo
tab[0][i] = m_vertices[0];
}
}
double UC1 = U[N1];
double UC2 = U[N2];
double UC3 = U[N3];
double VC1 = V[N1];
double VC2 = V[N2];
double VC3 = V[N3];
//create points using transfinite interpolation
if(corners.size() == 4){
double UC4 = U[N4];
double VC4 = V[N4];
for(int i = 1; i < L; i++){
double u = lengths_i[i] / L_i;
for(int j = 1; j < H; j++){
double v = lengths_j[j] / L_j;
int iP1 = N1 + i;
int iP2 = N2 + j;
int iP3 = N4 - i;
int iP4 = (N4 + (N3 - N2) - j) % m_vertices.size();
double Up = TRAN_QUA(U[iP1], U[iP2], U[iP3], U[iP4], UC1, UC2, UC3, UC4, u, v);
double Vp = TRAN_QUA(V[iP1], V[iP2], V[iP3], V[iP4], VC1, VC2, VC3, VC4, u, v);
GPoint gp = gf->point(SPoint2(Up, Vp));
MFaceVertex *newv = new MFaceVertex(gp.x(), gp.y(), gp.z(), gf, Up, Vp);
gf->mesh_vertices.push_back(newv);
tab[i][j] = newv;
}
}
}
else{
for(int i = 1; i < L; i++){
double u = lengths_i[i] / L_i;
for(int j = 1; j < H; j++){
double v = lengths_j[j] / L_j;
int iP1 = N1 + i;
int iP2 = N2 + j;
int iP3 = ((N3 + N2) - i) % m_vertices.size();
double Up, Vp;
if(gf->geomType() != GEntity::RuledSurface){
Up = TRAN_TRI(U[iP1], U[iP2], U[iP3], UC1, UC2, UC3, u, v);
Vp = TRAN_TRI(V[iP1], V[iP2], V[iP3], VC1, VC2, VC3, u, v);
}
else{
// FIXME: to get nice meshes we would need to make the u,v
// coords match with the (degenerate) coordinates of the
// underlying ruled surface; so instead we just interpolate
// in real space
double xp = TRAN_TRI(m_vertices[iP1]->x(), m_vertices[iP2]->x(),
m_vertices[iP3]->x(), m_vertices[N1]->x(),
m_vertices[N2]->x(), m_vertices[N3]->x(), u, v);
double yp = TRAN_TRI(m_vertices[iP1]->y(), m_vertices[iP2]->y(),
m_vertices[iP3]->y(), m_vertices[N1]->y(),
m_vertices[N2]->y(), m_vertices[N3]->y(), u, v);
double zp = TRAN_TRI(m_vertices[iP1]->z(), m_vertices[iP2]->z(),
m_vertices[iP3]->z(), m_vertices[N1]->z(),
m_vertices[N2]->z(), m_vertices[N3]->z(), u, v);
// xp,yp,zp can be off the surface so we cannot use parFromPoint
gf->XYZtoUV(xp, yp, zp, Up, Vp, 1.0, false);
}
GPoint gp = gf->point(SPoint2(Up, Vp));
MFaceVertex *newv = new MFaceVertex(gp.x(), gp.y(), gp.z(), gf, Up, Vp);
gf->mesh_vertices.push_back(newv);
tab[i][j] = newv;
}
}
}
// elliptic smoother (don't apply this by default)
if(corners.size() == 4 && CTX.mesh.nb_smoothing > 1 && gf->geomType() == GEntity::Plane){
for (int IT = 0; IT< CTX.mesh.nb_smoothing; IT++){
for(int i = 1; i < L; i++){
for(int j = 1; j < H; j++){
MVertex *v11 = tab[i - 1][j - 1];
MVertex *v12 = tab[i - 1][j ];
MVertex *v13 = tab[i - 1][j + 1];
MVertex *v21 = tab[i ][j - 1];
MVertex *v22 = tab[i ][j ];
MVertex *v23 = tab[i ][j + 1];
MVertex *v31 = tab[i + 1][j - 1];
MVertex *v32 = tab[i + 1][j ];
MVertex *v33 = tab[i + 1][j + 1];
double alpha = 0.25 * (DSQR(v23->x() - v21->x()) +
DSQR(v23->y() - v21->y()) +
DSQR(v23->z() - v21->z()));
double gamma = 0.25 * (DSQR(v32->x() - v12->x()) +
DSQR(v32->y() - v12->y()) +
DSQR(v32->z() - v12->z()));
double beta = 0.0625 * ((v32->x() - v12->x()) * (v23->x() - v21->x()) +
(v32->y() - v12->y()) * (v23->y() - v21->y()) +
(v32->z() - v12->z()) * (v23->z() - v21->z()));
v22->x() = 0.5 * (alpha * (v32->x() + v12->x()) +
gamma * (v23->x() + v21->x()) -
2. * beta * (v33->x() - v13->x() -
v31->x() + v11->x())) / (alpha + gamma);
v22->y() = 0.5 * (alpha * (v32->y() + v12->y()) +
gamma * (v23->y() + v21->y()) -
2. * beta * (v33->y() - v13->y() -
v31->y() + v11->y())) / (alpha + gamma);
v22->z() = 0.5 * (alpha * (v32->z() + v12->z()) +
gamma * (v23->z() + v21->z()) -
2. * beta * (v33->z() - v13->z() -
v31->z() + v11->z())) / (alpha + gamma);
}
}
}
// recompute corresponding u,v coordinates (necessary e.g. for 2nd order algo)
for(int i = 1; i < L; i++){
for(int j = 1; j < H; j++){
MVertex *v = tab[i][j];
SPoint2 param = gf->parFromPoint(SPoint3(v->x(), v->y(), v->z()));
v->setParameter(0, param[0]);
v->setParameter(1, param[1]);
}
}
}
if(corners.size() == 4){
// create elements
for(int i = 0; i < L ; i++){
for(int j = 0; j < H; j++){
MVertex *v1 = tab[i ][j ];
MVertex *v2 = tab[i + 1][j ];
MVertex *v3 = tab[i + 1][j + 1];
MVertex *v4 = tab[i ][j + 1];
if(gf->meshAttributes.recombine)
gf->quadrangles.push_back(new MQuadrangle(v1, v2, v3, v4));
else if(gf->meshAttributes.transfiniteArrangement == 1 ||
(gf->meshAttributes.transfiniteArrangement == 0 &&
((i % 2 == 0 && j % 2 == 1) ||
(i % 2 == 1 && j % 2 == 0)))){
gf->triangles.push_back(new MTriangle(v1, v2, v3));
gf->triangles.push_back(new MTriangle(v3, v4, v1));
}
else{
gf->triangles.push_back(new MTriangle(v1, v2, v4));
gf->triangles.push_back(new MTriangle(v4, v2, v3));
}
}
}
}
else{
for(int j = 0; j < H; j++){
MVertex *v1 = tab[0 ][0 ];
MVertex *v2 = tab[1 ][j ];
MVertex *v3 = tab[1 ][j + 1];
gf->triangles.push_back(new MTriangle(v1, v2, v3));
}
for(int i = 1; i < L ; i++){
for(int j = 0; j < H; j++){
MVertex *v1 = tab[i ][j ];
MVertex *v2 = tab[i + 1][j ];
MVertex *v3 = tab[i + 1][j + 1];
MVertex *v4 = tab[i ][j + 1];
if(gf->meshAttributes.recombine)
gf->quadrangles.push_back(new MQuadrangle(v1, v2, v3, v4));
else if(gf->meshAttributes.transfiniteArrangement == 1 ||
(gf->meshAttributes.transfiniteArrangement == 0 &&
((i % 2 == 0 && j % 2 == 1) ||
(i % 2 == 1 && j % 2 == 0)))){
gf->triangles.push_back(new MTriangle(v1, v2, v3));
gf->triangles.push_back(new MTriangle(v3, v4, v1));
}
else{
gf->triangles.push_back(new MTriangle(v1, v2, v4));
gf->triangles.push_back(new MTriangle(v4, v2, v3));
}
}
}
}
return 1;
}