Skip to content
Snippets Groups Projects
Select Git revision
  • 2f97f76be56b34d45375388068b28380334cd798
  • master default
  • cgnsUnstructured
  • partitioning
  • poppler
  • HighOrderBLCurving
  • gmsh_3_0_4
  • gmsh_3_0_3
  • gmsh_3_0_2
  • gmsh_3_0_1
  • gmsh_3_0_0
  • gmsh_2_16_0
  • gmsh_2_15_0
  • gmsh_2_14_1
  • gmsh_2_14_0
  • gmsh_2_13_2
  • gmsh_2_13_1
  • gmsh_2_12_0
  • gmsh_2_11_0
  • gmsh_2_10_1
  • gmsh_2_10_0
  • gmsh_2_9_3
  • gmsh_2_9_2
  • gmsh_2_9_1
  • gmsh_2_9_0
  • gmsh_2_8_6
26 results

meshGEdge.cpp

Blame
  • Forked from gmsh / gmsh
    Source project has a limited visibility.
    meshGEdge.cpp 11.03 KiB
    // $Id: meshGEdge.cpp,v 1.45 2007-10-11 08:59:22 remacle Exp $
    //
    // Copyright (C) 1997-2007 C. Geuzaine, J.-F. Remacle
    //
    // This program is free software; you can redistribute it and/or modify
    // it under the terms of the GNU General Public License as published by
    // the Free Software Foundation; either version 2 of the License, or
    // (at your option) any later version.
    //
    // This program is distributed in the hope that it will be useful,
    // but WITHOUT ANY WARRANTY; without even the implied warranty of
    // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    // GNU General Public License for more details.
    //
    // You should have received a copy of the GNU General Public License
    // along with this program; if not, write to the Free Software
    // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
    // USA.
    // 
    // Please report all bugs and problems to <gmsh@geuz.org>.
    
    #include "Gmsh.h"
    #include "meshGEdge.h"
    #include "GEdge.h"
    #include "GFace.h"
    #include "BackgroundMesh.h"
    #include "Message.h"
    
    typedef struct{
      int Num;
      double t, lc, p;
    }IntPoint;
    
    struct xi2lc
    {
      double xi, lc;
      xi2lc(const double &_xi,const double _lc)
        : xi(_xi), lc(_lc)
      { 
      }
      bool operator < (const xi2lc &other)
      {
        return xi < other.xi; 
      }
    };
    
    static std::vector<xi2lc> interpLc;
    
    void smoothInterpLc(bool periodic, int nbSmooth)
    {
      if(periodic){
        for(int i = 0; i < (int)interpLc.size() * nbSmooth; i++){	  	  
          xi2lc &left = interpLc[(i - 1) % interpLc.size()];
          xi2lc &mid = interpLc[i % interpLc.size()];
          xi2lc &right = interpLc[(i + 1) % interpLc.size()];
          if(1. / mid.lc > 1.1 * 1. / left.lc) mid.lc = left.lc/ 1.1;
          if(1. / mid.lc > 1.1 * 1. / right.lc) mid.lc = right.lc/ 1.1;
        }
      } 
      else{
        for(int j = 0; j < nbSmooth; j++){
          for(int i = 0 ; i < (int)interpLc.size(); i++){	  	  
    	xi2lc &left = (i == 0) ? interpLc[0] : interpLc[i - 1];
    	xi2lc &mid = interpLc[i];
    	xi2lc &right = (i == (int)interpLc.size() - 1) ?
    	  interpLc[interpLc.size() - 1] : interpLc[i+1];
    	if(1. / mid.lc > 1.1 * 1. / left.lc) mid.lc = left.lc / 1.1;
    	if(1. / mid.lc > 1.1 * 1. / right.lc) mid.lc = right.lc / 1.1;
          }
        } 
      }
    }
    
    void printInterpLc(const char *name)
    {
      FILE *f = fopen(name,"w");
      for(unsigned int i = 0; i < interpLc.size(); i++){	  	  
        xi2lc &interp = interpLc[i];
        fprintf(f,"%12.5E %12.5E\n", interp.xi, 1 / interp.lc);
      }
      fclose(f);
    }
    
    void buildInterpLc(List_T *lcPoints)
    {
      IntPoint p;
      interpLc.clear();
      for(int i = 0; i < List_Nbr(lcPoints); i++){
        List_Read(lcPoints, i, &p);
        interpLc.push_back(xi2lc( p.t, p.lc));
      }
    }
    
    double F_Lc_usingInterpLc(GEdge *ge, double t)
    {
      std::vector<xi2lc>::iterator it = std::lower_bound(interpLc.begin(),
    						     interpLc.end(), xi2lc(t, 0));
      double t1 = it->xi;
      double l1 = it->lc;
      it++;
      SVector3 der = ge->firstDer(t);
      const double d = norm(der);
      if(it == interpLc.end()) return d * l1;
      double t2 = it->xi;
      double l2 = it->lc;
      double l = l1 + ((t - t1) / (t2 - t1)) * (l2 - l1);
      return d * l;
    }
    
    double F_Lc_usingInterpLcBis(GEdge *ge, double t)
    {
      GPoint p = ge->point(t);
      double lc_here;
    
      Range<double> bounds = ge->parBounds(0);
      double t_begin = bounds.low();
      double t_end = bounds.high();
    
      if(t == t_begin)
        lc_here = BGM_MeshSize(ge->getBeginVertex(), t, 0, p.x(), p.y(), p.z());
      else if(t == t_end)
        lc_here = BGM_MeshSize(ge->getEndVertex(), t, 0, p.x(), p.y(), p.z());
      else
        lc_here = BGM_MeshSize(ge, t, 0, p.x(), p.y(), p.z());
    
      return 1 / lc_here;
    }
    
    double F_Lc(GEdge *ge, double t)
    {
      GPoint p = ge->point(t);
      double lc_here;
    
      Range<double> bounds = ge->parBounds(0);
      double t_begin = bounds.low();
      double t_end = bounds.high();
    
      if(t == t_begin)
        lc_here = BGM_MeshSize(ge->getBeginVertex(), t, 0, p.x(), p.y(), p.z());
      else if(t == t_end)
        lc_here = BGM_MeshSize(ge->getEndVertex(), t, 0, p.x(), p.y(), p.z());
      else
        lc_here = BGM_MeshSize(ge, t, 0, p.x(), p.y(), p.z());
    
      SVector3 der = ge->firstDer(t);
      const double d = norm(der);
      return d / lc_here;
    }
    
    double F_Transfinite(GEdge *ge, double t)
    {
      double val, r;
    
      SVector3 der = ge->firstDer(t) ;
      double d = norm(der);
    
      double coef = ge->meshAttributes.coeffTransfinite;
      int type = ge->meshAttributes.typeTransfinite;
      int nbpt = ge->meshAttributes.nbPointsTransfinite;
    
      if(coef <= 0.0 || coef == 1.0) {
        // coef < 0 should never happen
        val = d * coef / ge->length();
      }
      else {
        switch (abs(type)) {
    
        case 1: // Geometric progression ar^i; Sum of n terms = length = a (r^n-1)/(r-1)
          {
    	if(sign(type) >= 0)
    	  r = coef;
    	else
    	  r = 1. / coef;
    	double a = ge->length() * (r - 1.) / (pow(r, nbpt - 1.) - 1.);
    	int i = (int)(log(t * ge->length() / a * (r - 1.) + 1.) / log(r));
    	val = d / (a * pow(r, (double)i));
          }
          break;
    	
        case 2: // Bump
          {
    	double a;
    	if(coef > 1.0) {
    	  a = -4. * sqrt(coef - 1.) *
    	    atan2(1., sqrt(coef - 1.)) /
    	    ((double)nbpt *  ge->length());
    	}
    	else {
    	  a = 2. * sqrt(1. - coef) *
    	    log(fabs((1. + 1. / sqrt(1. - coef))
    		     / (1. - 1. / sqrt(1. - coef))))
    	    / ((double)nbpt * ge->length());
    	}
    	double b = -a * ge->length() * ge->length() / (4. * (coef - 1.));
    	val = d / (-a * DSQR(t * ge->length() - (ge->length()) * 0.5) + b);
          }
          break;
          
        default:
          Msg(WARNING, "Unknown case in Transfinite Line mesh");
          val = 1.;
          break;
        }
      }
      return val;
    }
    
    double F_One(GEdge *ge, double t)
    {
      SVector3 der = ge->firstDer(t) ;
      return norm(der);
    }
    
    double trapezoidal(IntPoint * P1, IntPoint * P2)
    {
      return (0.5 * (P1->lc + P2->lc) * (P2->t - P1->t));
    }
    
    void RecursiveIntegration(GEdge *ge, IntPoint * from, IntPoint * to,
                              double (*f) (GEdge *e, double X), List_T * pPoints,
                              double Prec, int *depth)
    {
      IntPoint P, p1;
    
      (*depth)++;
    
      P.t = 0.5 * (from->t + to->t);
      P.lc = f(ge, P.t);
    
      double val1 = trapezoidal(from, to);
      double val2 = trapezoidal(from, &P);
      double val3 = trapezoidal(&P, to);
      double err = fabs(val1 - val2 - val3);
    
      if(((err < Prec) && (*depth > 1)) || (*depth > 25)) {
        List_Read(pPoints, List_Nbr(pPoints) - 1, &p1);
        P.p = p1.p + val2;
        List_Add(pPoints, &P);
    
        List_Read(pPoints, List_Nbr(pPoints) - 1, &p1);
        to->p = p1.p + val3;
        List_Add(pPoints, to);
      }
      else {
        RecursiveIntegration(ge, from, &P, f, pPoints, Prec, depth);
        RecursiveIntegration(ge, &P, to, f, pPoints, Prec, depth);
      }
    
      (*depth)--;
    }
    
    double Integration(GEdge *ge, double t1, double t2, 
    		   double (*f) (GEdge *e, double X),
                       List_T * pPoints, double Prec)
    {
      IntPoint from, to;
    
      int depth = 0;
    
      from.t = t1;
      from.lc = f(ge, from.t);
      from.p = 0.0;
      List_Add(pPoints, &from);
    
      to.t = t2;
      to.lc = f(ge, to.t);
      RecursiveIntegration(ge, &from, &to, f, pPoints, Prec, &depth);
    
      List_Read(pPoints, List_Nbr(pPoints) - 1, &to);
      return to.p;
    }
    
    void deMeshGEdge::operator() (GEdge *ge) 
    {
      if(ge->geomType() == GEntity::DiscreteCurve) return;
    
      for (unsigned int i = 0; i < ge->mesh_vertices.size(); i++) 
        delete ge->mesh_vertices[i];
      ge->mesh_vertices.clear();
      for (unsigned int i = 0; i < ge->lines.size(); i++) 
        delete ge->lines[i];
      ge->lines.clear();
      ge->deleteVertexArrays();
    }
    
    void meshGEdge::operator() (GEdge *ge) 
    {  
      if(ge->geomType() == GEntity::DiscreteCurve) return;
      if(ge->geomType() == GEntity::BoundaryLayerCurve) return;
    
      // Send a messsage to the GMSH environment
      Msg(INFO, "Meshing curve %d", ge->tag());
    
      deMeshGEdge dem;
      dem(ge);
    
      if(MeshExtrudedCurve(ge)) return;
    
      // Create a list of integration points
      List_T *Points = List_Create(10, 10, sizeof(IntPoint));
      // Create a list of points for interpolating the LC Field
      List_T *lcPoints = List_Create(10, 10, sizeof(IntPoint));
    
      // compute bounds
      Range<double> bounds = ge->parBounds(0);
      double t_begin = bounds.low();
      double t_end = bounds.high();
      
      // first compute the length of the curve by integrating one
      double length = Integration(ge, t_begin, t_end, F_One, Points, 1.e-8);
      ge->setLength(length);
    
      List_Reset(Points);
        
      // Integrate detJ/lc du 
      double a;
      int N;
      if(ge->meshAttributes.Method == TRANSFINI){
        a = Integration(ge, t_begin, t_end, F_Transfinite, Points, 1.e-8);
        N = ge->meshAttributes.nbPointsTransfinite;
      }
      else{
        if(CTX.mesh.lc_integration_precision > 1.e-8){
          Integration(ge, t_begin, t_end, F_Lc_usingInterpLcBis, lcPoints, 
    		  CTX.mesh.lc_integration_precision);
          buildInterpLc(lcPoints);
          printInterpLc("toto1.dat");
          smoothInterpLc(ge->periodic(), 20);
          printInterpLc("toto2.dat");
          a = Integration(ge, t_begin, t_end, F_Lc_usingInterpLc, Points, 1.e-8);
        }
        else{
          a = Integration(ge, t_begin, t_end, F_Lc, Points, 1.e-8);
        }
        N = std::max(ge->minimumMeshSegments() + 1, (int)(a + 1.));
      }
    
      // if the curve is periodic and if the begin vertex is identical to
      // the end vertex and if this vertex has only one model curve
      // adjacent to it, then the vertex is not connecting any other
      // curve. So, the mesh vertex and its associated geom vertex are not
      // necessary at the same location
      GPoint beg_p, end_p;
      if(ge->getBeginVertex() == ge->getEndVertex() && 
         ge->getBeginVertex()->edges().size() == 1){
        end_p = beg_p = ge->point(t_begin);
      }
      else{
        MVertex *v0 = ge->getBeginVertex()->mesh_vertices[0];
        MVertex *v1 = ge->getEndVertex()->mesh_vertices[0];
        beg_p = GPoint(v0->x(), v0->y(), v0->z());
        end_p = GPoint(v1->x(), v1->y(), v1->z());
      }
    
      // do not consider the first and the last vertex (those are not
      // classified on this mesh edge)
      if(N > 1){
        const double b = a / (double)(N - 1);
        int count = 1, NUMP = 1;
        IntPoint P1, P2;
        ge->mesh_vertices.resize(N - 2);
        while(NUMP < N - 1) {
          List_Read(Points, count - 1, &P1);
          List_Read(Points, count, &P2);
          const double d = (double)NUMP * b;
          if((fabs(P2.p) >= fabs(d)) && (fabs(P1.p) < fabs(d))) {
            double dt = P2.t - P1.t;
    	double dlc = P2.lc - P1.lc;
            double dp = P2.p - P1.p;
            double t   = P1.t + dt / dp * (d - P1.p);
    	SVector3 der = ge->firstDer(t);
    	const double d = norm(der);  
            double lc  = d/(P1.lc + dlc / dp * (d - P1.p));
            GPoint V = ge->point(t);
    	ge->mesh_vertices[NUMP - 1] = new MEdgeVertex(V.x(), V.y(), V.z(), ge, t, lc);
    	//	printf("lc = %12.5E %12.5E \n",lc,P1.lc,P2.lc);
            NUMP++;
          }
          else {
            count++;
          }
        }
        ge->mesh_vertices.resize(NUMP - 1);
      }
      List_Delete(Points);
      List_Delete(lcPoints);
    
      for(unsigned int i = 0; i < ge->mesh_vertices.size() + 1; i++){
        MVertex *v0 = (i == 0) ? 
          ge->getBeginVertex()->mesh_vertices[0] : ge->mesh_vertices[i - 1];
        MVertex *v1 = (i == ge->mesh_vertices.size()) ? 
          ge->getEndVertex()->mesh_vertices[0] : ge->mesh_vertices[i];
        ge->lines.push_back(new MLine(v0, v1));
      }
    
      if(ge->getBeginVertex() == ge->getEndVertex() && 
         ge->getBeginVertex()->edges().size() == 1){
        MVertex *v0 = ge->getBeginVertex()->mesh_vertices[0];
        v0->x() = beg_p.x();
        v0->y() = beg_p.y();
        v0->z() = beg_p.z();
      }
    }