Forked from
gmsh / gmsh
16874 commits behind the upstream repository.
-
Jean-François Remacle authoredJean-François Remacle authored
meshGEdge.cpp 11.03 KiB
// $Id: meshGEdge.cpp,v 1.45 2007-10-11 08:59:22 remacle Exp $
//
// Copyright (C) 1997-2007 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to <gmsh@geuz.org>.
#include "Gmsh.h"
#include "meshGEdge.h"
#include "GEdge.h"
#include "GFace.h"
#include "BackgroundMesh.h"
#include "Message.h"
typedef struct{
int Num;
double t, lc, p;
}IntPoint;
struct xi2lc
{
double xi, lc;
xi2lc(const double &_xi,const double _lc)
: xi(_xi), lc(_lc)
{
}
bool operator < (const xi2lc &other)
{
return xi < other.xi;
}
};
static std::vector<xi2lc> interpLc;
void smoothInterpLc(bool periodic, int nbSmooth)
{
if(periodic){
for(int i = 0; i < (int)interpLc.size() * nbSmooth; i++){
xi2lc &left = interpLc[(i - 1) % interpLc.size()];
xi2lc &mid = interpLc[i % interpLc.size()];
xi2lc &right = interpLc[(i + 1) % interpLc.size()];
if(1. / mid.lc > 1.1 * 1. / left.lc) mid.lc = left.lc/ 1.1;
if(1. / mid.lc > 1.1 * 1. / right.lc) mid.lc = right.lc/ 1.1;
}
}
else{
for(int j = 0; j < nbSmooth; j++){
for(int i = 0 ; i < (int)interpLc.size(); i++){
xi2lc &left = (i == 0) ? interpLc[0] : interpLc[i - 1];
xi2lc &mid = interpLc[i];
xi2lc &right = (i == (int)interpLc.size() - 1) ?
interpLc[interpLc.size() - 1] : interpLc[i+1];
if(1. / mid.lc > 1.1 * 1. / left.lc) mid.lc = left.lc / 1.1;
if(1. / mid.lc > 1.1 * 1. / right.lc) mid.lc = right.lc / 1.1;
}
}
}
}
void printInterpLc(const char *name)
{
FILE *f = fopen(name,"w");
for(unsigned int i = 0; i < interpLc.size(); i++){
xi2lc &interp = interpLc[i];
fprintf(f,"%12.5E %12.5E\n", interp.xi, 1 / interp.lc);
}
fclose(f);
}
void buildInterpLc(List_T *lcPoints)
{
IntPoint p;
interpLc.clear();
for(int i = 0; i < List_Nbr(lcPoints); i++){
List_Read(lcPoints, i, &p);
interpLc.push_back(xi2lc( p.t, p.lc));
}
}
double F_Lc_usingInterpLc(GEdge *ge, double t)
{
std::vector<xi2lc>::iterator it = std::lower_bound(interpLc.begin(),
interpLc.end(), xi2lc(t, 0));
double t1 = it->xi;
double l1 = it->lc;
it++;
SVector3 der = ge->firstDer(t);
const double d = norm(der);
if(it == interpLc.end()) return d * l1;
double t2 = it->xi;
double l2 = it->lc;
double l = l1 + ((t - t1) / (t2 - t1)) * (l2 - l1);
return d * l;
}
double F_Lc_usingInterpLcBis(GEdge *ge, double t)
{
GPoint p = ge->point(t);
double lc_here;
Range<double> bounds = ge->parBounds(0);
double t_begin = bounds.low();
double t_end = bounds.high();
if(t == t_begin)
lc_here = BGM_MeshSize(ge->getBeginVertex(), t, 0, p.x(), p.y(), p.z());
else if(t == t_end)
lc_here = BGM_MeshSize(ge->getEndVertex(), t, 0, p.x(), p.y(), p.z());
else
lc_here = BGM_MeshSize(ge, t, 0, p.x(), p.y(), p.z());
return 1 / lc_here;
}
double F_Lc(GEdge *ge, double t)
{
GPoint p = ge->point(t);
double lc_here;
Range<double> bounds = ge->parBounds(0);
double t_begin = bounds.low();
double t_end = bounds.high();
if(t == t_begin)
lc_here = BGM_MeshSize(ge->getBeginVertex(), t, 0, p.x(), p.y(), p.z());
else if(t == t_end)
lc_here = BGM_MeshSize(ge->getEndVertex(), t, 0, p.x(), p.y(), p.z());
else
lc_here = BGM_MeshSize(ge, t, 0, p.x(), p.y(), p.z());
SVector3 der = ge->firstDer(t);
const double d = norm(der);
return d / lc_here;
}
double F_Transfinite(GEdge *ge, double t)
{
double val, r;
SVector3 der = ge->firstDer(t) ;
double d = norm(der);
double coef = ge->meshAttributes.coeffTransfinite;
int type = ge->meshAttributes.typeTransfinite;
int nbpt = ge->meshAttributes.nbPointsTransfinite;
if(coef <= 0.0 || coef == 1.0) {
// coef < 0 should never happen
val = d * coef / ge->length();
}
else {
switch (abs(type)) {
case 1: // Geometric progression ar^i; Sum of n terms = length = a (r^n-1)/(r-1)
{
if(sign(type) >= 0)
r = coef;
else
r = 1. / coef;
double a = ge->length() * (r - 1.) / (pow(r, nbpt - 1.) - 1.);
int i = (int)(log(t * ge->length() / a * (r - 1.) + 1.) / log(r));
val = d / (a * pow(r, (double)i));
}
break;
case 2: // Bump
{
double a;
if(coef > 1.0) {
a = -4. * sqrt(coef - 1.) *
atan2(1., sqrt(coef - 1.)) /
((double)nbpt * ge->length());
}
else {
a = 2. * sqrt(1. - coef) *
log(fabs((1. + 1. / sqrt(1. - coef))
/ (1. - 1. / sqrt(1. - coef))))
/ ((double)nbpt * ge->length());
}
double b = -a * ge->length() * ge->length() / (4. * (coef - 1.));
val = d / (-a * DSQR(t * ge->length() - (ge->length()) * 0.5) + b);
}
break;
default:
Msg(WARNING, "Unknown case in Transfinite Line mesh");
val = 1.;
break;
}
}
return val;
}
double F_One(GEdge *ge, double t)
{
SVector3 der = ge->firstDer(t) ;
return norm(der);
}
double trapezoidal(IntPoint * P1, IntPoint * P2)
{
return (0.5 * (P1->lc + P2->lc) * (P2->t - P1->t));
}
void RecursiveIntegration(GEdge *ge, IntPoint * from, IntPoint * to,
double (*f) (GEdge *e, double X), List_T * pPoints,
double Prec, int *depth)
{
IntPoint P, p1;
(*depth)++;
P.t = 0.5 * (from->t + to->t);
P.lc = f(ge, P.t);
double val1 = trapezoidal(from, to);
double val2 = trapezoidal(from, &P);
double val3 = trapezoidal(&P, to);
double err = fabs(val1 - val2 - val3);
if(((err < Prec) && (*depth > 1)) || (*depth > 25)) {
List_Read(pPoints, List_Nbr(pPoints) - 1, &p1);
P.p = p1.p + val2;
List_Add(pPoints, &P);
List_Read(pPoints, List_Nbr(pPoints) - 1, &p1);
to->p = p1.p + val3;
List_Add(pPoints, to);
}
else {
RecursiveIntegration(ge, from, &P, f, pPoints, Prec, depth);
RecursiveIntegration(ge, &P, to, f, pPoints, Prec, depth);
}
(*depth)--;
}
double Integration(GEdge *ge, double t1, double t2,
double (*f) (GEdge *e, double X),
List_T * pPoints, double Prec)
{
IntPoint from, to;
int depth = 0;
from.t = t1;
from.lc = f(ge, from.t);
from.p = 0.0;
List_Add(pPoints, &from);
to.t = t2;
to.lc = f(ge, to.t);
RecursiveIntegration(ge, &from, &to, f, pPoints, Prec, &depth);
List_Read(pPoints, List_Nbr(pPoints) - 1, &to);
return to.p;
}
void deMeshGEdge::operator() (GEdge *ge)
{
if(ge->geomType() == GEntity::DiscreteCurve) return;
for (unsigned int i = 0; i < ge->mesh_vertices.size(); i++)
delete ge->mesh_vertices[i];
ge->mesh_vertices.clear();
for (unsigned int i = 0; i < ge->lines.size(); i++)
delete ge->lines[i];
ge->lines.clear();
ge->deleteVertexArrays();
}
void meshGEdge::operator() (GEdge *ge)
{
if(ge->geomType() == GEntity::DiscreteCurve) return;
if(ge->geomType() == GEntity::BoundaryLayerCurve) return;
// Send a messsage to the GMSH environment
Msg(INFO, "Meshing curve %d", ge->tag());
deMeshGEdge dem;
dem(ge);
if(MeshExtrudedCurve(ge)) return;
// Create a list of integration points
List_T *Points = List_Create(10, 10, sizeof(IntPoint));
// Create a list of points for interpolating the LC Field
List_T *lcPoints = List_Create(10, 10, sizeof(IntPoint));
// compute bounds
Range<double> bounds = ge->parBounds(0);
double t_begin = bounds.low();
double t_end = bounds.high();
// first compute the length of the curve by integrating one
double length = Integration(ge, t_begin, t_end, F_One, Points, 1.e-8);
ge->setLength(length);
List_Reset(Points);
// Integrate detJ/lc du
double a;
int N;
if(ge->meshAttributes.Method == TRANSFINI){
a = Integration(ge, t_begin, t_end, F_Transfinite, Points, 1.e-8);
N = ge->meshAttributes.nbPointsTransfinite;
}
else{
if(CTX.mesh.lc_integration_precision > 1.e-8){
Integration(ge, t_begin, t_end, F_Lc_usingInterpLcBis, lcPoints,
CTX.mesh.lc_integration_precision);
buildInterpLc(lcPoints);
printInterpLc("toto1.dat");
smoothInterpLc(ge->periodic(), 20);
printInterpLc("toto2.dat");
a = Integration(ge, t_begin, t_end, F_Lc_usingInterpLc, Points, 1.e-8);
}
else{
a = Integration(ge, t_begin, t_end, F_Lc, Points, 1.e-8);
}
N = std::max(ge->minimumMeshSegments() + 1, (int)(a + 1.));
}
// if the curve is periodic and if the begin vertex is identical to
// the end vertex and if this vertex has only one model curve
// adjacent to it, then the vertex is not connecting any other
// curve. So, the mesh vertex and its associated geom vertex are not
// necessary at the same location
GPoint beg_p, end_p;
if(ge->getBeginVertex() == ge->getEndVertex() &&
ge->getBeginVertex()->edges().size() == 1){
end_p = beg_p = ge->point(t_begin);
}
else{
MVertex *v0 = ge->getBeginVertex()->mesh_vertices[0];
MVertex *v1 = ge->getEndVertex()->mesh_vertices[0];
beg_p = GPoint(v0->x(), v0->y(), v0->z());
end_p = GPoint(v1->x(), v1->y(), v1->z());
}
// do not consider the first and the last vertex (those are not
// classified on this mesh edge)
if(N > 1){
const double b = a / (double)(N - 1);
int count = 1, NUMP = 1;
IntPoint P1, P2;
ge->mesh_vertices.resize(N - 2);
while(NUMP < N - 1) {
List_Read(Points, count - 1, &P1);
List_Read(Points, count, &P2);
const double d = (double)NUMP * b;
if((fabs(P2.p) >= fabs(d)) && (fabs(P1.p) < fabs(d))) {
double dt = P2.t - P1.t;
double dlc = P2.lc - P1.lc;
double dp = P2.p - P1.p;
double t = P1.t + dt / dp * (d - P1.p);
SVector3 der = ge->firstDer(t);
const double d = norm(der);
double lc = d/(P1.lc + dlc / dp * (d - P1.p));
GPoint V = ge->point(t);
ge->mesh_vertices[NUMP - 1] = new MEdgeVertex(V.x(), V.y(), V.z(), ge, t, lc);
// printf("lc = %12.5E %12.5E \n",lc,P1.lc,P2.lc);
NUMP++;
}
else {
count++;
}
}
ge->mesh_vertices.resize(NUMP - 1);
}
List_Delete(Points);
List_Delete(lcPoints);
for(unsigned int i = 0; i < ge->mesh_vertices.size() + 1; i++){
MVertex *v0 = (i == 0) ?
ge->getBeginVertex()->mesh_vertices[0] : ge->mesh_vertices[i - 1];
MVertex *v1 = (i == ge->mesh_vertices.size()) ?
ge->getEndVertex()->mesh_vertices[0] : ge->mesh_vertices[i];
ge->lines.push_back(new MLine(v0, v1));
}
if(ge->getBeginVertex() == ge->getEndVertex() &&
ge->getBeginVertex()->edges().size() == 1){
MVertex *v0 = ge->getBeginVertex()->mesh_vertices[0];
v0->x() = beg_p.x();
v0->y() = beg_p.y();
v0->z() = beg_p.z();
}
}