Select Git revision
TriNodeBasis.cpp
Forked from
gmsh / gmsh
Source project has a limited visibility.
-
Nicolas Marsic authored
-- Add Point Mapping from ABC space to XYZ space -- Handle Elements with no Face ** LineBasis: -- Works again ** Jacobian and GroupOfJacobian: -- Computes Good Jacobian from Basis ReferenceSpace ** Formulation: -- Addapted for good Jacobian ** TermProjection: -- Addapted to compute function to project at good point (see ReferenceSpace ABCtoXYZ mapping) ** Laplace, Poisson, SteadyWave: -- Passed with all basis ** WARNING: -- Tet Basis NOT Retested (but seems to work) -- FunctionSpace::getDof doesn't work if wrong element type (because of basis implication) -- SystemAbstract::fixCoef doesn't work anymore (see above) -- Problem with cureved Element (getTypeForMSH gives HO element for FunctionSpace::getDof)
Nicolas Marsic authored-- Add Point Mapping from ABC space to XYZ space -- Handle Elements with no Face ** LineBasis: -- Works again ** Jacobian and GroupOfJacobian: -- Computes Good Jacobian from Basis ReferenceSpace ** Formulation: -- Addapted for good Jacobian ** TermProjection: -- Addapted to compute function to project at good point (see ReferenceSpace ABCtoXYZ mapping) ** Laplace, Poisson, SteadyWave: -- Passed with all basis ** WARNING: -- Tet Basis NOT Retested (but seems to work) -- FunctionSpace::getDof doesn't work if wrong element type (because of basis implication) -- SystemAbstract::fixCoef doesn't work anymore (see above) -- Problem with cureved Element (getTypeForMSH gives HO element for FunctionSpace::getDof)
polynomialBasis.h 2.39 KiB
// Gmsh - Copyright (C) 1997-2013 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.
#ifndef _POLYNOMIAL_BASIS_H_
#define _POLYNOMIAL_BASIS_H_
#include <math.h>
#include <map>
#include <vector>
#include "fullMatrix.h"
#include "nodalBasis.h"
#include <iostream>
#define SQU(a) ((a)*(a))
inline double pow_int(const double &a, const int &n)
{
switch (n) {
case 0 : return 1.0;
case 1 : return a;
case 2 : return a*a;
case 3 : return a*a*a;
case 4 :
{
const double a2 = a*a;
return a2*a2;
}
case 5 :
{
const double a2 = a*a;
return a2*a2*a;
}
case 6 :
{
const double a3 = a*a*a;
return a3*a3;
}
case 7 :
{
const double a3 = a*a*a;
return a3*a3*a;
}
case 8 :
{
const double a2 = a*a;
const double a4 = a2*a2;
return a4*a4;
}
case 9 :
{
const double a3 = a*a*a;
return a3*a3*a3;
}
case 10 :
{
const double a2 = a*a;
const double a4 = a2*a2;
return a4*a4*a2;
}
default :
return pow_int(a,n-1)*a;
}
}
class polynomialBasis : public nodalBasis
{
public:
// for now the only implemented polynomial basis are nodal poly
// basis, we use the type of the corresponding gmsh element as type
fullMatrix<double> monomials;
fullMatrix<double> coefficients;
polynomialBasis(int tag);
~polynomialBasis();
int compareNewAlgoPointsWithOld() const;
virtual inline int getNumShapeFunctions() const {return coefficients.size1();}
virtual void f(double u, double v, double w, double *sf) const;
virtual void f(const fullMatrix<double> &coord, fullMatrix<double> &sf) const;
virtual void df(const fullMatrix<double> &coord, fullMatrix<double> &dfm) const;
virtual void df(double u, double v, double w, double grads[][3]) const;
virtual void ddf(double u, double v, double w, double hess[][3][3]) const;
virtual void dddf(double u, double v, double w, double third[][3][3][3]) const;
inline void evaluateMonomials(double u, double v, double w, double p[]) const {
for (int j = 0; j < monomials.size1(); j++) {
p[j] = pow_int(u, (int)monomials(j, 0));
if (monomials.size2() > 1) p[j] *= pow_int(v, (int)monomials(j, 1));
if (monomials.size2() > 2) p[j] *= pow_int(w, (int)monomials(j, 2));
}
}
};
#endif