Newer
Older
#include "gmshLevelset.h"
#include <queue>
#include <stack>
Emilie Marchandise
committed
#include "fullMatrix.h"
inline double det3(double d11, double d12, double d13, double d21, double d22, double d23, double d31, double d32, double d33) {
return d11 * (d22 * d33 - d23 * d32) - d21 * (d12 * d33 - d13 * d32) + d31 * (d12 * d23 - d13 * d22);
inline void norm(const double *vec, double *norm) {
double n = sqrt(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
norm[0] = vec[0] / n;
norm[1] = vec[1] / n;
norm[2] = vec[2] / n;
inline void cross(const double *pt0, const double *pt1, const double *pt2, double *cross) {
double v1[3] = {pt1[0] - pt0[0], pt1[1] - pt0[1], pt1[2] - pt0[2]};
double v2[3] = {pt2[0] - pt0[0], pt2[1] - pt0[1], pt2[2] - pt0[2]};
cross[0] = v1[1] * v2[2] - v2[1] * v1[2];
cross[1] = v2[0] * v1[2] - v1[0] * v2[2];
cross[2] = v1[0] * v2[1] - v2[0] * v1[1];
inline bool isPlanar(const double *pt1, const double *pt2, const double *pt3, const double *pt4) {
double c1[3]; cross(pt1, pt2, pt3, c1);
double c2[3]; cross(pt1, pt2, pt4, c2);
double n1[3]; norm(c1, n1);
double n2[3]; norm(c2, n2);
return (n1[0] == n2[0] && n1[1] == n2[1] && n1[2] == n2[2]);
Emilie Marchandise
committed
inline double evalRadialFnDer (int p, int index, double dx, double dy, double dz, double ep){
double r2 = dx*dx+dy*dy+dz*dz; //r^2
switch (index) {
case 0 : // GA
switch (p) {
case 0: return exp(-ep*ep*r2);
case 1: return -2*ep*ep*dx*exp(-ep*ep*r2); // _x
case 2: return -2*ep*ep*dy*exp(-ep*ep*r2); // _y
case 3: return -2*ep*ep*dz*exp(-ep*ep*r2); // _z
}
case 1 : //MQ
switch (p) {
case 0: return sqrt(1+ep*ep*r2);
case 1: return ep*ep*dx/sqrt(1+ep*ep*r2);
case 2: return ep*ep*dy/sqrt(1+ep*ep*r2);
case 3: return ep*ep*dz/sqrt(1+ep*ep*r2);
}
}
}
inline void printNodes(fullMatrix<double> &myNodes, fullMatrix<double> &surf){
FILE * xyz = fopen("myNodes.pos","w");
fprintf(xyz,"View \"\"{\n");
for(int itv = 1; itv !=myNodes.size1() ; ++itv){
fprintf(xyz,"SP(%g,%g,%g){%g};\n", myNodes(itv,0),myNodes(itv,1),myNodes(itv,2),surf(itv,0));
}
fprintf(xyz,"};\n");
fclose(xyz);
}
// extrude a list of the primitive levelsets with a "Level-order traversal sequence"
void gLevelset::getPrimitives(std::vector<gLevelset *> &gLsPrimitives) {
std::queue<gLevelset *> Q;
Q.push(this);
while(!Q.empty()){
gLevelset *p = Q.front();
std::vector<gLevelset *> pp;
pp = p->getChildren();
if(pp.empty())
gLsPrimitives.push_back(p);
Q.pop();
if(!pp.empty()){
for(int i = 0; i < (int)pp.size(); i++)
Q.push(pp[i]);
}
}
}
// extrude a list of the primitive levelsets with a "post-order traversal sequence"
void gLevelset::getPrimitivesPO(std::vector<gLevelset *> &gLsPrimitives) {
std::stack<gLevelset *> S;
std::stack<gLevelset *> Sc; // levelset checked
gLevelset *p = S.top();
std::vector<gLevelset *> pp;
pp = p->getChildren();
if(pp.empty()) {
gLsPrimitives.push_back(p);
S.pop();
}
else {
if(Sc.empty() || p != Sc.top()) {
for(int i = 1; i < (int)pp.size(); i++) Sc.push(p);
for(int i = (int)pp.size() - 1; i >= 0; i--) {
S.push(pp[i]);
if(i > 1) S.push(p);
}
}
else { // levelset has been checked
S.pop();
Sc.pop();
}
}
}
}
// return a list with the levelsets in a "Reverse Polish Notation"
void gLevelset::getRPN(std::vector<gLevelset *> &gLsRPN) {
std::stack<gLevelset *> S;
std::stack<gLevelset *> Sc; // levelset checked
S.push(this);
while(!S.empty()){
gLevelset *p = S.top();
std::vector<gLevelset *> pp;
pp = p->getChildren();
if(pp.empty()) {
gLsRPN.push_back(p);
S.pop();
}
else {
if(Sc.empty() || p != Sc.top()) {
for(int i = 1; i < (int)pp.size(); i++) Sc.push(p);
for(int i = (int)pp.size() - 1; i >= 0; i--) {
S.push(pp[i]);
}
}
else { // levelset has been checked
S.pop();
Sc.pop();
gLsRPN.push_back(p);
}
}
}
}
gLevelset::gLevelset(const gLevelset &lv)
{
gLevelsetPlane::gLevelsetPlane(const double * pt, const double *norm, int tag) : gLevelsetPrimitive(tag) {
a = norm[0];
b = norm[1];
c = norm[2];
d = -a * pt[0] - b * pt[1] - c * pt[2];
gLevelsetPlane::gLevelsetPlane(const double * pt1, const double *pt2, const double *pt3, int tag) : gLevelsetPrimitive(tag) {
a = det3(1., pt1[1], pt1[2], 1., pt2[1], pt2[2], 1., pt3[1], pt3[2]);
b = det3(pt1[0], 1., pt1[2], pt2[0], 1., pt2[2], pt3[0], 1., pt3[2]);
c = det3(pt1[0], pt1[1], 1., pt2[0], pt2[1], 1., pt3[0], pt3[1], 1.);
d = -det3(pt1[0], pt1[1], pt1[2], pt2[0], pt2[1], pt2[2], pt3[0], pt3[1], pt3[2]);
gLevelsetPlane::gLevelsetPlane(const gLevelsetPlane &lv) : gLevelsetPrimitive(lv) {
a = lv.a;
b = lv.b;
c = lv.c;
d = lv.d;
}
Emilie Marchandise
committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//level set defined by points (RBF interpolation)
fullMatrix<double> gLevelsetPoints::generateRbfMat(int p, int index,
const fullMatrix<double> &nodes1,
const fullMatrix<double> &nodes2) const {
int m = nodes2.size1();
int n = nodes1.size1();
fullMatrix<double> rbfMat(m,n);
double eps =0.5/delta;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
double dx = nodes2(i,0)-nodes1(j,0);
double dy = nodes2(i,1)-nodes1(j,1);
double dz = nodes2(i,2)-nodes1(j,2);
rbfMat(i,j) = evalRadialFnDer(p, index, dx,dy,dz,eps);
}
}
return rbfMat;
}
void gLevelsetPoints::RbfOp(int p, int index,
const fullMatrix<double> &cntrs,
const fullMatrix<double> &nodes,
fullMatrix<double> &D,
bool isLocal) const {
fullMatrix<double> rbfMatB = generateRbfMat(p,index, cntrs,nodes);
//printf("size=%d %d \n", rbfMatB.size1(), rbfMatB.size2());
//rbfMatB.print("MatB");
fullMatrix<double> rbfInvA;
if (isLocal){
rbfInvA = generateRbfMat(0,index, cntrs,cntrs);
rbfInvA.invertInPlace();
//printf("size=%d %d \n", rbfInvA.size1(), rbfInvA.size2());
//rbfInvA.print("invA");
}
else {
rbfInvA = matAInv;
}
D.resize(nodes.size1(), cntrs.size1());
D.gemm(rbfMatB, rbfInvA, 1.0, 0.0);
}
void gLevelsetPoints::evalRbfDer(int p, int index,
const fullMatrix<double> &cntrs,
const fullMatrix<double> &nodes,
const fullMatrix<double> &fValues,
fullMatrix<double> &fApprox, bool isLocal) const {
fApprox.resize(nodes.size1(),fValues.size2());
fullMatrix<double> D;
RbfOp(p,index, cntrs,nodes,D,isLocal);
//D.print("D");
fApprox.gemm(D,fValues, 1.0, 0.0);
}
void gLevelsetPoints::setup_level_set(const fullMatrix<double> &cntrs,
fullMatrix<double> &level_set_nodes,
fullMatrix<double> &level_set_funvals){
int numNodes = cntrs.size1();
int nTot = 3*numNodes;
double normFactor;
level_set_nodes.resize(nTot,3);
level_set_funvals.resize(nTot,1);
fullMatrix<double> ONES(numNodes+1,1),sx(numNodes,1),sy(numNodes,1),sz(numNodes,1),norms(numNodes,3), cntrsPlus(numNodes+1,3);
//Computes the normal vectors to the surface at each node
double dist_min = 1.e6;
double dist_max = 1.e-6;
for (int i=0;i<numNodes ; ++i){
ONES(i,0)=1.0;
cntrsPlus(i,0) = cntrs(i,0);
cntrsPlus(i,1) = cntrs(i,1);
cntrsPlus(i,2) = cntrs(i,2);
for(int j = i+1; j < numNodes; j++){
double dist = sqrt((cntrs(i,0)-cntrs(j,0))*(cntrs(i,0)-cntrs(j,0))+
(cntrs(i,1)-cntrs(j,1))*(cntrs(i,1)-cntrs(j,1))+
(cntrs(i,2)-cntrs(j,2))*(cntrs(i,2)-cntrs(j,2)));
if (dist<dist_min) dist_min = dist;
if (dist>dist_max) dist_max = dist;
}
}
ONES(numNodes,0) = -1.0;
cntrsPlus(numNodes,0) = cntrs(0,0)+dist_max;
cntrsPlus(numNodes,1) = cntrs(0,1)+dist_max;
cntrsPlus(numNodes,2) = cntrs(0,2)+dist_max;
delta = 0.23*dist_min;
evalRbfDer(1, 1, cntrsPlus,cntrs,ONES,sx, true);
evalRbfDer(2, 1, cntrsPlus,cntrs,ONES,sy, true);
evalRbfDer(3, 1, cntrsPlus,cntrs,ONES,sz, true);
for (int i=0;i<numNodes ; ++i){
normFactor = sqrt(sx(i,0)*sx(i,0)+sy(i,0)*sy(i,0)+sz(i,0)*sz(i,0));
sx(i,0) = sx(i,0)/normFactor;
sy(i,0) = sy(i,0)/normFactor;
sz(i,0) = sz(i,0)/normFactor;
norms(i,0) = sx(i,0);norms(i,1) = sy(i,0);norms(i,2) = sz(i,0);
}
for (int i=0;i<numNodes ; ++i){
for (int j=0;j<3 ; ++j){
level_set_nodes(i,j) = cntrs(i,j);
level_set_nodes(i+numNodes,j) = cntrs(i,j)-delta*norms(i,j);
level_set_nodes(i+2*numNodes,j) = cntrs(i,j)+delta*norms(i,j);
}
level_set_funvals(i,0) = 0.0;
level_set_funvals(i+numNodes,0) = -1;
level_set_funvals(i+2*numNodes,0) = 1;
}
}
gLevelsetPoints::gLevelsetPoints(fullMatrix<double> ¢ers, int tag) : gLevelsetPrimitive(tag) {
Emilie Marchandise
committed
int nbNodes = 3*centers.size1();
setup_level_set(centers, points, surf);
printNodes(points, surf);
//build invA matrix for 3*n points
int indexRBF = 1;
matAInv.resize(nbNodes, nbNodes);
matAInv = generateRbfMat(0, indexRBF, points,points);
matAInv.invertInPlace();
//printf("End init levelset points %d \n", points.size1());
Emilie Marchandise
committed
}
gLevelsetPoints::gLevelsetPoints(const gLevelsetPoints &lv) : gLevelsetPrimitive(lv) {
points = lv.points;
}
double gLevelsetPoints::operator()(const double x, const double y, const double z) const{
Emilie Marchandise
committed
if(mapP.empty()) printf("Levelset Points : call computeLS() before calling operator()\n");
Emilie Marchandise
committed
SPoint3 sp(x,y,z);
std::map<SPoint3,double>::const_iterator it = mapP.find(sp);
if(it != mapP.end())
return it->second;
printf("Levelset Points : Point not found\n");
return 0;
Emilie Marchandise
committed
// fullMatrix<double> xyz_eval(1, 3), surf_eval(1,1);
// xyz_eval(0,0) = x;
// xyz_eval(0,1) = y;
// xyz_eval(0,2) = z;
// evalRbfDer(0, 1, points, xyz_eval, surf, surf_eval);
// return surf_eval(0,0);
}
void gLevelsetPoints::computeLS(std::vector<MVertex*> &vert){
Emilie Marchandise
committed
fullMatrix<double> xyz_eval(vert.size(), 3), surf_eval(vert.size(), 1);
for (int i = 0; i< vert.size(); i++){
xyz_eval(i,0) = vert[i]->x();
xyz_eval(i,1) = vert[i]->y();
xyz_eval(i,2) = vert[i]->z();
}
evalRbfDer(0, 1, points, xyz_eval, surf, surf_eval);
for (int i = 0; i< vert.size(); i++){
mapP[SPoint3(vert[i]->x(), vert[i]->y(),vert[i]->z())] = surf_eval(i,0);
}
}
/*
assume a quadric
x^T A x + b^T x + c = 0
typically, we add a rotation x -> R x
x^T (R^T A R) x + b^T R x + c = 0
and a translation x -> x - t
x^T A x + [b^T - 2 A t] x + [c - b^T t + t^T A t ] = 0
*/
gLevelsetQuadric::gLevelsetQuadric(const gLevelsetQuadric &lv) : gLevelsetPrimitive(lv){
for(int i = 0; i < 3; i++){
B[i] = lv.B[i];
for(int j = 0; j < 3; j++)
A[i][j] = lv.A[i][j];
}
C = lv.C;
void gLevelsetQuadric::Ax(const double x[3], double res[3], double fact){
for(int i = 0; i < 3; i++){
res[i] = 0.;
for(int j = 0; j < 3; j++){
res[i] += A[i][j] * x[j] * fact;
}
}
}
void gLevelsetQuadric::xAx(const double x[3], double &res, double fact){
res= fact * (A[0][0] * x[0] * x[0] + A[1][1] * x[1] * x[1] + A[2][2] * x[2] * x[2]
+ A[1][0] * x[1] * x[0] * 2. + A[2][0] * x[2] * x[0] * 2. + A[1][2] * x[1] * x[2] * 2.);
void gLevelsetQuadric::translate(const double transl[3]){
double b;
xAx(transl, b, 1.0);
C += (-B[0] * transl[0] - B[1] * transl[1] - B[2] * transl[2] + b);
double x[3];
B[0] += -x[0];
B[1] += -x[1];
B[2] += -x[2];
}
void gLevelsetQuadric::rotate(const double rotate[3][3]){
double a11 = 0., a12 = 0., a13 = 0., a22 = 0., a23 = 0., a33 = 0., b1 = 0., b2 = 0., b3 = 0.;
for(int i = 0; i < 3; i++){
b1 += B[i] * rotate[i][0];
b2 += B[i] * rotate[i][1];
b3 += B[i] * rotate[i][2];
for(int j = 0; j < 3; j++){
a11 += rotate[i][0] * A[i][j] * rotate[j][0];
a12 += rotate[i][0] * A[i][j] * rotate[j][1];
a13 += rotate[i][0] * A[i][j] * rotate[j][2];
a22 += rotate[i][1] * A[i][j] * rotate[j][1];
a23 += rotate[i][1] * A[i][j] * rotate[j][2];
a33 += rotate[i][2] * A[i][j] * rotate[j][2];
A[0][0] = a11;
A[0][1] = A[1][0] = a12;
A[0][2] = A[2][0] = a13;
A[1][1] = a22;
A[1][2] = A[2][1] = a23;
A[2][2] = a33;
B[0] = b1;
B[1] = b2;
B[2] = b3;
}
// computes the rotation matrix of the rotation of the vector (0,0,1) to dir
void gLevelsetQuadric::computeRotationMatrix(const double dir[3], double t[3][3]){
double norm = sqrt(dir[0] * dir[0] + dir[1] * dir[1]);
double n[3] = {1., 0., 0.};
double ct = 1., st = 0.;
if(norm != 0.) {
double theta = atan(norm / dir[2]);
n[0] = dir[1] / norm; n[1] = -dir[0] / norm;
ct = cos(theta);
st = sin(theta);
}
t[0][0] = n[0] * n[0] * (1. - ct) + ct;
t[0][1] = n[0] * n[1] * (1. - ct) - n[2] * st;
t[0][2] = n[0] * n[2] * (1. - ct) + n[1] * st;
t[1][0] = n[1] * n[0] * (1. - ct) + n[2] * st;
t[1][1] = n[1] * n[1] * (1. - ct) + ct;
t[1][2] = n[1] * n[2] * (1. - ct) - n[0] * st;
t[2][0] = n[2] * n[0] * (1. - ct) - n[1] * st;
t[2][1] = n[2] * n[1] * (1. - ct) + n[0] * st;
t[2][2] = n[2] * n[2] * (1. - ct) + ct;
void gLevelsetQuadric::computeRotationMatrix(const double dir1[3], const double dir2[3], double t[3][3]){
double norm = sqrt((dir1[1] * dir2[2] - dir1[2] * dir2[1]) * (dir1[1] * dir2[2] - dir1[2] * dir2[1])
+ (dir1[2] * dir2[0] - dir1[0] * dir2[2]) * (dir1[2] * dir2[0] - dir1[0] * dir2[2])
+ (dir1[0] * dir2[1] - dir1[1] * dir2[0]) * (dir1[0] * dir2[1] - dir1[1] * dir2[0]));
double n[3] = {1., 0., 0.};
double ct = 1., st = 0.;
if(norm != 0.) {
st = norm / ((dir1[0] * dir1[0] + dir1[1] * dir1[1] + dir1[2] * dir1[2]) *
(dir2[0] * dir2[0] + dir2[1] * dir2[1] + dir2[2] * dir2[2]));
n[0] = (dir1[1] * dir2[2] - dir1[2] * dir2[1]) / norm;
n[1] = (dir1[2] * dir2[0] - dir1[0] * dir2[2]) / norm;
n[2] = (dir1[0] * dir2[1] - dir1[1] * dir2[0]) / norm;
ct = cos(asin(st));
}
t[0][0] = n[0] * n[0] * (1. - ct) + ct;
t[0][1] = n[0] * n[1] * (1. - ct) - n[2] * st;
t[0][2] = n[0] * n[2] * (1. - ct) + n[1] * st;
t[1][0] = n[1] * n[0] * (1. - ct) + n[2] * st;
t[1][1] = n[1] * n[1] * (1. - ct) + ct;
t[1][2] = n[1] * n[2] * (1. - ct) - n[0] * st;
t[2][0] = n[2] * n[0] * (1. - ct) - n[1] * st;
t[2][1] = n[2] * n[1] * (1. - ct) + n[0] * st;
t[2][2] = n[2] * n[2] * (1. - ct) + ct;
}
void gLevelsetQuadric::init(){
B[i] = 0.;
for(int j = 0; j < 3; j++) A[i][j] = 0.;
}
C = 0.;
}
double gLevelsetQuadric::operator()(const double x, const double y, const double z) const{
return(A[0][0] * x * x + 2. * A[0][1] * x * y + 2. * A[0][2] * x * z + A[1][1] * y * y
+ 2. * A[1][2] * y * z + A[2][2] * z * z + B[0] * x + B[1] * y + B[2] * z + C);
gLevelsetMathEval::gLevelsetMathEval(std::string f, int tag) : gLevelsetPrimitive(tag) {
std::vector<std::string> expressions(1, f);
std::vector<std::string> variables(3);
variables[0] = "x";
variables[1] = "y";
variables[2] = "z";
_expr = new mathEvaluator(expressions, variables);
}
double gLevelsetMathEval::operator() (const double x, const double y, const double z) const {
std::vector<double> values(3), res(1);
values[0] = x;
values[1] = y;
values[2] = z;
if(_expr->eval(values, res)) return res[0];
return 1.;
}
#if defined (HAVE_POST)
gLevelsetPostView::gLevelsetPostView(int index, int tag) : gLevelsetPrimitive(tag), _viewIndex(index){
if(_viewIndex >= 0 && _viewIndex < (int)PView::list.size()){
PView *view = PView::list[_viewIndex];
_octree = new OctreePost(view);
}
else{
Msg::Error("Unknown View[%d] in PostView levelset", _viewIndex);
_octree = 0;
}
}
double gLevelsetPostView::operator () (const double x, const double y, const double z) const {
if(!_octree) return 1.;
double val = 1.;
_octree->searchScalar(x, y, z, &val, 0);
return val;
}
gLevelsetGenCylinder::gLevelsetGenCylinder(const double *pt, const double *dir, const double &R,
A[0][0] = 1.;
A[1][1] = 1.;
double rot[3][3];
computeRotationMatrix(dir, rot);
rotate(rot);
gLevelsetGenCylinder::gLevelsetGenCylinder (const gLevelsetGenCylinder& lv) : gLevelsetQuadric(lv){}
gLevelsetEllipsoid::gLevelsetEllipsoid(const double *pt, const double *dir, const double &a,
const double &b, const double &c, int tag) : gLevelsetQuadric(tag) {
A[0][0] = 1. / (a * a);
A[1][1] = 1. / (b * b);
A[2][2] = 1. / (c * c);
C = -1.;
double rot[3][3];
computeRotationMatrix(dir, rot);
rotate(rot);
translate(pt);
}
gLevelsetEllipsoid::gLevelsetEllipsoid (const gLevelsetEllipsoid& lv) : gLevelsetQuadric(lv){}
gLevelsetCone::gLevelsetCone(const double *pt, const double *dir, const double &angle, int tag) : gLevelsetQuadric(tag) {
A[0][0] = 1.;
A[1][1] = 1.;
A[2][2] = -tan(angle) * tan(angle);
double rot[3][3];
computeRotationMatrix(dir, rot);
rotate(rot);
translate(pt);
}
gLevelsetCone::gLevelsetCone (const gLevelsetCone& lv) : gLevelsetQuadric(lv)
gLevelsetGeneralQuadric::gLevelsetGeneralQuadric(const double *pt, const double *dir, const double &x2, const double &y2, const double &z2,
const double &z, const double &c, int tag) : gLevelsetQuadric(tag) {
A[0][0] = x2;
A[1][1] = y2;
A[2][2] = z2;
B[2] = z;
C = c;
double rot[3][3];
computeRotationMatrix(dir, rot);
rotate(rot);
translate(pt);
}
gLevelsetGeneralQuadric::gLevelsetGeneralQuadric (const gLevelsetGeneralQuadric& lv) : gLevelsetQuadric(lv)
gLevelsetTools::gLevelsetTools(const gLevelsetTools &lv) : gLevelset(lv)
std::vector<gLevelset *> _children=lv.getChildren();
unsigned siz = _children.size();
children.resize(siz);
for(unsigned i = 0; i < siz; ++i)
children[i] = _children[i]->clone();
gLevelsetImproved::gLevelsetImproved(const gLevelsetImproved &lv) : gLevelset(lv){
Ls = lv.Ls->clone();
gLevelsetBox::gLevelsetBox(const double *pt, const double *dir1, const double *dir2, const double *dir3,
const double &a, const double &b, const double &c, int tag) : gLevelsetImproved() {
double dir1m[3] = {-dir1[0], -dir1[1], -dir1[2]};
double dir2m[3] = {-dir2[0], -dir2[1], -dir2[2]};
double dir3m[3] = {-dir3[0], -dir3[1], -dir3[2]};
double n1[3]; norm(dir1, n1);
double n2[3]; norm(dir2, n2);
double n3[3]; norm(dir3, n3);
double pt2[3] = {pt[0] + a * n1[0] + b * n2[0] + c * n3[0], pt[1] + a * n1[1] + b * n2[1] + c * n3[1],
pt[2] + a * n1[2] + b * n2[2] + c * n3[2]};
std::vector<gLevelset *> p;
p.push_back(new gLevelsetPlane(pt2, dir3, tag++));
p.push_back(new gLevelsetPlane(pt, dir3m, tag++));
p.push_back(new gLevelsetPlane(pt, dir2m, tag++));
p.push_back(new gLevelsetPlane(pt2, dir2, tag++));
p.push_back(new gLevelsetPlane(pt2, dir1, tag++));
p.push_back(new gLevelsetPlane(pt, dir1m, tag));
Ls = new gLevelsetIntersection(p);
}
gLevelsetBox::gLevelsetBox(const double *pt1, const double *pt2, const double *pt3, const double *pt4,
const double *pt5, const double *pt6, const double *pt7, const double *pt8, int tag) : gLevelsetImproved() {
if(!isPlanar(pt1, pt2, pt3, pt4) || !isPlanar(pt5, pt6, pt7, pt8) || !isPlanar(pt1, pt2, pt5, pt6) ||
!isPlanar(pt3, pt4, pt7, pt8) || !isPlanar(pt1, pt4, pt5, pt8) || !isPlanar(pt2, pt3, pt6, pt7))
printf("WARNING : faces of the box are not planar! %d, %d, %d, %d, %d, %d\n",
isPlanar(pt1, pt2, pt3, pt4), isPlanar(pt5, pt6, pt7, pt8), isPlanar(pt1, pt2, pt5, pt6),
isPlanar(pt3, pt4, pt7, pt8), isPlanar(pt1, pt4, pt5, pt8), isPlanar(pt2, pt3, pt6, pt7));
std::vector<gLevelset *> p;
p.push_back(new gLevelsetPlane(pt5, pt6, pt8, tag++));
p.push_back(new gLevelsetPlane(pt1, pt4, pt2, tag++));
p.push_back(new gLevelsetPlane(pt1, pt2, pt5, tag++));
p.push_back(new gLevelsetPlane(pt3, pt4, pt7, tag++));
p.push_back(new gLevelsetPlane(pt2, pt3, pt6, tag++));
p.push_back(new gLevelsetPlane(pt1, pt5, pt4, tag));
Ls = new gLevelsetIntersection(p);
}
gLevelsetBox::gLevelsetBox(const gLevelsetBox &lv) : gLevelsetImproved(lv){}
gLevelsetCylinder::gLevelsetCylinder(const double *pt, const double *dir, const double &R, const double &H, int tag) : gLevelsetImproved() {
double dir2[3] = {-dir[0], -dir[1], -dir[2]};
double n[3]; norm(dir, n);
double pt2[3] = {pt[0] + H * n[0], pt[1] + H * n[1], pt[2] + H * n[2]};
std::vector<gLevelset *> p;
p.push_back(new gLevelsetGenCylinder(pt, dir, R, tag++));
p.push_back(new gLevelsetPlane(pt, dir2, tag++));
p.push_back(new gLevelsetPlane(pt2, dir, tag));
Ls = new gLevelsetIntersection(p);
}
gLevelsetCylinder::gLevelsetCylinder(const double * pt, const double *dir, const double &R, const double &r, const double &H, int tag) : gLevelsetImproved() {
double dir2[3] = {-dir[0], -dir[1], -dir[2]};
double n[3]; norm(dir, n);
double pt2[3] = {pt[0] + H * n[0], pt[1] + H * n[1], pt[2] + H * n[2]};
std::vector<gLevelset *> p1;
p1.push_back(new gLevelsetGenCylinder(pt, dir, R, tag++));
p1.push_back(new gLevelsetPlane(pt, dir2, tag++));
p1.push_back(new gLevelsetPlane(pt2, dir, tag++));
std::vector<gLevelset *> p2;
p2.push_back(new gLevelsetIntersection(p1));
p2.push_back(new gLevelsetGenCylinder(pt, dir, r, tag));
Ls = new gLevelsetCut(p2);
}
gLevelsetCylinder::gLevelsetCylinder(const gLevelsetCylinder &lv) : gLevelsetImproved(lv){}
gLevelsetConrod::gLevelsetConrod(const double *pt, const double *dir1, const double *dir2,
const double &H1, const double &H2, const double &H3,
const double &R1, const double &r1, const double &R2, const double &r2,
const double &L1, const double &L2, const double &E, int tag) : gLevelsetImproved() {
double n1[3]; norm(dir1, n1);
double n2[3]; norm(dir2, n2);
double pt1[3] = {pt[0] - n2[0] * H1 / 2., pt[1] - n2[1] * H1 / 2., pt[2] - n2[2] * H1 / 2.};
double pt2[3] = {pt[0] + n1[0] * E - n2[0] * H2 / 2., pt[1] + n1[1] * E - n2[1] * H2 / 2.,
pt[2] + n1[2] * E - n2[2] * H2 / 2.};
double dir3[3]; cross(pt1, pt2, pt, dir3);
double n3[3]; norm(dir3, n3);
double pt31[3] = {pt[0] - n2[0] * H3 / 2. + n3[0] * L1 / 2., pt[1] - n2[1] * H3 / 2. + n3[1] * L1 / 2.,
pt[2] - n2[2] * H3 / 2. + n3[2] * L1 / 2.};
double pt32[3] = {pt31[0] - n3[0] * L1, pt31[1] - n3[1] * L1, pt31[2] - n3[2] * L1};
double pt33[3] = {pt32[0] + n2[0] * H3, pt32[1] + n2[1] * H3, pt32[2] + n2[2] * H3};
double pt34[3] = {pt33[0] + n3[0] * L1, pt33[1] + n3[1] * L1, pt33[2] + n3[2] * L1};
double pt35[3] = {pt[0] + n1[0] * E - n2[0] * H3 / 2. + n3[0] * L2 / 2.,
pt[1] + n1[1] * E - n2[1] * H3 / 2. + n3[1] * L2 / 2.,
pt[2] + n1[2] * E - n2[2] * H3 / 2. + n3[2] * L2 / 2.};
double pt36[3] = {pt35[0] - n3[0] * L2, pt35[1] - n3[1] * L2, pt35[2] - n3[2] * L2};
double pt37[3] = {pt36[0] + n2[0] * H3, pt36[1] + n2[1] * H3, pt36[2] + n2[2] * H3};
double pt38[3] = {pt37[0] + n3[0] * L2, pt37[1] + n3[1] * L2, pt37[2] + n3[2] * L2};
std::vector<gLevelset *> p1;
p1.push_back(new gLevelsetBox(pt31, pt32, pt33, pt34, pt35, pt36, pt37, pt38, tag));
p1.push_back(new gLevelsetCylinder(pt1, dir2, R1, H1, tag+6));
p1.push_back(new gLevelsetCylinder(pt2, dir2, R2, H2, tag+9));
std::vector<gLevelset *> p2;
p2.push_back(new gLevelsetUnion(p1));
p2.push_back(new gLevelsetGenCylinder(pt1, dir2, r1, tag+12));
p2.push_back(new gLevelsetGenCylinder(pt2, dir2, r2, tag+13));
Ls = new gLevelsetCut(p2);
}
gLevelsetConrod::gLevelsetConrod(const gLevelsetConrod &lv) : gLevelsetImproved(lv){}