Newer
Older
// $Id: meshGEdge.cpp,v 1.21 2006-11-27 22:22:17 geuzaine Exp $
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to <gmsh@geuz.org>.
#include "meshGEdge.h"
#include "GEdge.h"
#include "Context.h"
#include "Message.h"
static double _myGEdgeLength, t_begin, t_end, lc_begin, lc_end;
static Range<double> _myGEdgeBounds;
double F_LC_ANALY (double xx, double yy, double zz)
{
// return 0.005 + 0.05*fabs (sin(5*xx) + sin(15*yy) + sin(15*zz));
// return 0.02;
// return 0.002 + 0.04*fabs (sin(6*xx) + sin(6*yy) + sin(6*zz));
return 0.003 + 0.05*fabs(sin(8*xx) + sin(8*yy) + sin(8*zz));
return 0.02 + 0.1*fabs(sin(3*xx) + sin(3*yy) + sin(3*zz));
return 0.01 + 0.1*fabs(sin((xx*xx+(zz-0.7)*(zz-0.7)-.25)));
return 0.05 + 0.1*fabs(xx*yy);
// const double nb_points_per_radius_of_curv = 2;
GPoint point = _myGEdge->point(t) ;
const double fact = (t - t_begin) / (t_end - t_begin);
double lc_here = lc_begin + fact * (lc_end - lc_begin);
SVector3 der = _myGEdge->firstDer(t) ;
const double d = norm(der);
const double Lc = BGMXYZ(point.x(), point.y(), point.z());
if(CTX.mesh.constrained_bgmesh)
return std::max(d / Lc, d / lc_here);
else
return d / Lc;
}
else
return d/lc_here;
}
double coef = _myGEdge->meshAttributes.coeffTransfinite;
int type = _myGEdge->meshAttributes.typeTransfinite;
int nbpt = _myGEdge->meshAttributes.nbPointsTransfinite;
if(coef <= 0.0 || coef == 1.0) {
// coef < 0 should never happen
val = d * coef / _myGEdgeLength;
}
else {
switch (abs(type)) {
case 1: // Geometric progression ar^i; Sum of n terms = THEC->l = a (r^n-1)/(r-1)
{
if(sign(type) >= 0)
r = coef;
else
r = 1. / coef;
double a = _myGEdgeLength * (r - 1.) / (pow(r, nbpt - 1.) - 1.);
int i = (int)(log(t * _myGEdgeLength / a * (r - 1.) + 1.) / log(r));
val = d / (a * pow(r, (double)i));
}
if(coef > 1.0) {
a = -4. * sqrt(coef - 1.) *
atan2(1., sqrt(coef - 1.)) /
((double)nbpt * _myGEdgeLength);
}
else {
a = 2. * sqrt(1. - coef) *
log(fabs((1. + 1. / sqrt(1. - coef))
/ (1. - 1. / sqrt(1. - coef))))
/ ((double)nbpt * _myGEdgeLength);
}
double b = -a * _myGEdgeLength * _myGEdgeLength / (4. * (coef - 1.));
val = d / (-a * DSQR(t * _myGEdgeLength - (_myGEdgeLength) * 0.5) + b);
default:
Msg(WARNING, "Unknown case in Transfinite Line mesh");
val = 1.;
}
}
return val;
}
typedef struct{
int Num;
double t, lc, p;
}IntPoint;
{
return (0.5 * (P1->lc + P2->lc) * (P2->t - P1->t));
}
void RecursiveIntegration(IntPoint * from, IntPoint * to,
double (*f) (double X), List_T * pPoints,
double Prec, int *depth)
{
IntPoint P, p1;
double err, val1, val2, val3;
(*depth)++;
P.t = 0.5 * (from->t + to->t);
P.lc = f(P.t);
val1 = trapezoidal(from, to);
val2 = trapezoidal(from, &P);
val3 = trapezoidal(&P, to);
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
err = fabs(val1 - val2 - val3);
// Msg(INFO,"Int %22.15 E %22.15 E %22.15 E\n", val1,val2,val3);
if(((err < Prec) && (*depth > 1)) || (*depth > 25)) {
List_Read(pPoints, List_Nbr(pPoints) - 1, &p1);
P.p = p1.p + val2;
List_Add(pPoints, &P);
List_Read(pPoints, List_Nbr(pPoints) - 1, &p1);
to->p = p1.p + val3;
List_Add(pPoints, to);
}
else {
RecursiveIntegration(from, &P, f, pPoints, Prec, depth);
RecursiveIntegration(&P, to, f, pPoints, Prec, depth);
}
(*depth)--;
}
double Integration(double t1, double t2, double (*f) (double X),
List_T * pPoints, double Prec)
{
int depth;
IntPoint from, to;
depth = 0;
from.t = t1;
from.lc = f(from.t);
from.p = 0.0;
List_Add(pPoints, &from);
to.t = t2;
to.lc = f(to.t);
RecursiveIntegration(&from, &to, f, pPoints, Prec, &depth);
List_Read(pPoints, List_Nbr(pPoints) - 1, &to);
return (to.p);
}
void deMeshGEdge :: operator() (GEdge *ge)
{
for (unsigned int i=0;i<ge->mesh_vertices.size();i++) delete ge->mesh_vertices[i];
for (unsigned int i=0;i<ge->lines.size();i++) delete ge->lines[i];
ge->lines.clear();
}
void meshGEdge :: operator() (GEdge *ge)
{
if(ge->geomType() == GEntity::DiscreteCurve) return;
// Send a messsage to the GMSH environment
Msg(INFO, "Meshing curve %d", ge->tag());
// Create a list of integration points
List_T *Points = List_Create(10, 10, sizeof(IntPoint));
// For avoiding the global variable :
// We have to change the Integration function in order
// to pass an extra argument...
_myGEdge = ge;
// first compute the length of the curve by integrating one
_myGEdgeLength = Integration(_myGEdgeBounds.low(), _myGEdgeBounds.high(),
lc_begin = _myGEdge->getBeginVertex()->prescribedMeshSizeAtVertex();
lc_end = _myGEdge->getEndVertex()->prescribedMeshSizeAtVertex();
if(ge->meshAttributes.Method == TRANSFINI){
a = Integration(_myGEdgeBounds.low(), _myGEdgeBounds.high(),
N = ge->meshAttributes.nbPointsTransfinite;
}
else{
a = Integration(_myGEdgeBounds.low(), _myGEdgeBounds.high(),
N = std::max(ge->minimumMeshSegments() + 1, (int)(a + 1.));
const double b = a / (double)(N - 1);
int count = 1, NUMP = 1;
// do not consider the first and the last vertex
// those are not classified on this mesh edge
if(N > 2){
ge->mesh_vertices.resize(N - 2);
while(NUMP < N - 1) {
List_Read(Points, count - 1, &P1);
List_Read(Points, count, &P2);
const double d = (double)NUMP *b;
if((fabs(P2.p) >= fabs(d)) && (fabs(P1.p) < fabs(d))) {
double dt = P2.t - P1.t;
double dp = P2.p - P1.p;
double t = P1.t + dt / dp * (d - P1.p);
GPoint V = ge->point(t);
ge->mesh_vertices[NUMP - 1] = new MEdgeVertex(V.x(), V.y(), V.z(), ge, t);
NUMP++;
}
else {
count++;
for(unsigned int i = 0; i < ge->mesh_vertices.size() + 1; i++){
MVertex *v0 = (i == 0) ?
ge->getBeginVertex()->mesh_vertices[0] : ge->mesh_vertices[i - 1];
MVertex *v1 = (i == ge->mesh_vertices.size()) ?
ge->getEndVertex()->mesh_vertices[0] : ge->mesh_vertices[i];
ge->lines.push_back(new MLine(v0, v1));
}
}