Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
#if defined(HAVE_GMSH_EMBEDDED)
return 0.;
#else
double vol;
return qmTet(this, QMTET_3, &vol);
#endif
}
double MTetrahedron::getVolume()
{
double mat[3][3];
getMat(mat);
return det3x3(mat) / 6.;
}
void MTetrahedron::xyz2uvw(double xyz[3], double uvw[3])
{
double mat[3][3], b[3], det;
getMat(mat);
b[0] = xyz[0] - getVertex(0)->x();
b[1] = xyz[1] - getVertex(0)->y();
b[2] = xyz[2] - getVertex(0)->z();
sys3x3(mat, b, uvw, &det);
}
const gmshFunctionSpace* MTetrahedron::getFunctionSpace(int o) const
{
int order = (o == -1) ? getPolynomialOrder() : o;
int nv = getNumVolumeVertices();
if ((nv == 0) && (o == -1)) {
switch (order) {
case 1: return &gmshFunctionSpaces::find(MSH_TET_4);
case 2: return &gmshFunctionSpaces::find(MSH_TET_10);
case 3: return &gmshFunctionSpaces::find(MSH_TET_20);
case 4: return &gmshFunctionSpaces::find(MSH_TET_34);
case 5: return &gmshFunctionSpaces::find(MSH_TET_52);
default: Msg::Error("Order %d tetrahedron function space not implemented", order);
}
}
else {
switch (order) {
case 1: return &gmshFunctionSpaces::find(MSH_TET_4);
case 2: return &gmshFunctionSpaces::find(MSH_TET_10);
case 3: return &gmshFunctionSpaces::find(MSH_TET_20);
case 4: return &gmshFunctionSpaces::find(MSH_TET_35);
case 5: return &gmshFunctionSpaces::find(MSH_TET_56);
default: Msg::Error("Order %d tetrahedron function space not implemented", order);
}
}
return 0;
}
int MTetrahedron10::getNumEdgesRep(){ return 6 * CTX.mesh.num_sub_edges; }
int MTetrahedronN::getNumEdgesRep(){ return 6 * CTX.mesh.num_sub_edges; }
static void _myGetEdgeRep(MTetrahedron *tet, int num, double *x, double *y, double *z,
SVector3 *n, int numSubEdges)
{
static double pp[4][3] = {{0,0,0},{1,0,0},{0,1,0},{0,0,1}};
static int ed [6][2] = {{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}};
int iEdge = num / numSubEdges;
int iSubEdge = num % numSubEdges;
int iVertex1 = ed [iEdge][0];
int iVertex2 = ed [iEdge][1];

Jean-François Remacle
committed
double t1 = (double) iSubEdge / (double) numSubEdges;
double u1 = pp[iVertex1][0] * (1.-t1) + pp[iVertex2][0] * t1;
double v1 = pp[iVertex1][1] * (1.-t1) + pp[iVertex2][1] * t1;
double w1 = pp[iVertex1][2] * (1.-t1) + pp[iVertex2][2] * t1;

Jean-François Remacle
committed
double t2 = (double) (iSubEdge+1) / (double) numSubEdges;
double u2 = pp[iVertex1][0] * (1.-t2) + pp[iVertex2][0] * t2;
double v2 = pp[iVertex1][1] * (1.-t2) + pp[iVertex2][1] * t2;
double w2 = pp[iVertex1][2] * (1.-t2) + pp[iVertex2][2] * t2;

Jean-François Remacle
committed
tet->pnt(u1,v1,w1,pnt1);
tet->pnt(u2,v2,w2,pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
// not great, but better than nothing
static const int f[6] = {0, 0, 0, 1, 2, 3};
n[0] = n[1] = tet->getFace(f[iEdge]).normal();

Jean-François Remacle
committed
void MTetrahedron10::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
{
_myGetEdgeRep(this, num, x, y, z, n, CTX.mesh.num_sub_edges);

Jean-François Remacle
committed
}

Jean-François Remacle
committed
void MTetrahedronN::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
_myGetEdgeRep(this, num, x, y, z, n, CTX.mesh.num_sub_edges);

Jean-François Remacle
committed
}
int MTetrahedronN::getNumFacesRep(){ return 4 * SQU(CTX.mesh.num_sub_edges); }
int MTetrahedron10::getNumFacesRep(){ return 4 * SQU(CTX.mesh.num_sub_edges); }

Jean-François Remacle
committed
static void _myGetFaceRep(MTetrahedron *tet, int num, double *x, double *y, double *z,
SVector3 *n, int numSubEdges)

Jean-François Remacle
committed
{
static double pp[4][3] = {{0,0,0},{1,0,0},{0,1,0},{0,0,1}};
static int fak [4][3] = {{0,1,2},{0,1,3},{0,2,3},{1,2,3}};
int iFace = num / (numSubEdges * numSubEdges);
int iSubFace = num % (numSubEdges * numSubEdges);
int iVertex1 = fak[iFace][0];
int iVertex2 = fak[iFace][1];
int iVertex3 = fak[iFace][2];
/*
0
0 1
0 1 2
0 1 2 3
0 1 2 3 4
0 1 2 3 4 5
// on the first layer, we have (numSubEdges-1) * 2 + 1 triangles
// on the second layer, we have (numSubEdges-2) * 2 + 1 triangles
// on the ith layer, we have (numSubEdges-1-i) * 2 + 1 triangles
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
int ix = 0, iy = 0;
int nbt = 0;
for (int i = 0; i < numSubEdges; i++){
int nbl = (numSubEdges - i - 1) * 2 + 1;
nbt += nbl;
if (nbt > iSubFace){
iy = i;
ix = nbl - (nbt - iSubFace);
break;
}
}
const double d = 1. / numSubEdges;
SPoint3 pnt1, pnt2, pnt3;
double J1[2][3], J2[2][3], J3[2][3];
double u1,v1,u2,v2,u3,v3;
if (ix % 2 == 0){
u1 = ix / 2 * d; v1= iy*d;
u2 = (ix / 2 + 1) * d ; v2 = iy * d;
u3 = ix / 2 * d ; v3 = (iy+1) * d;
}
else{
u1 = (ix / 2 + 1) * d; v1= iy * d;
u2 = (ix / 2 + 1) * d; v2= (iy + 1) * d;
u3 = ix / 2 * d ; v3 = (iy + 1) * d;
}
double U1 = pp[iVertex1][0] * (1.-u1-v1) + pp[iVertex2][0] * u1 + pp[iVertex3][0] * v1;
double U2 = pp[iVertex1][0] * (1.-u2-v2) + pp[iVertex2][0] * u2 + pp[iVertex3][0] * v2;
double U3 = pp[iVertex1][0] * (1.-u3-v3) + pp[iVertex2][0] * u3 + pp[iVertex3][0] * v3;
double V1 = pp[iVertex1][1] * (1.-u1-v1) + pp[iVertex2][1] * u1 + pp[iVertex3][1] * v1;
double V2 = pp[iVertex1][1] * (1.-u2-v2) + pp[iVertex2][1] * u2 + pp[iVertex3][1] * v2;
double V3 = pp[iVertex1][1] * (1.-u3-v3) + pp[iVertex2][1] * u3 + pp[iVertex3][1] * v3;
double W1 = pp[iVertex1][2] * (1.-u1-v1) + pp[iVertex2][2] * u1 + pp[iVertex3][2] * v1;
double W2 = pp[iVertex1][2] * (1.-u2-v2) + pp[iVertex2][2] * u2 + pp[iVertex3][2] * v2;
double W3 = pp[iVertex1][2] * (1.-u3-v3) + pp[iVertex2][2] * u3 + pp[iVertex3][2] * v3;

Jean-François Remacle
committed
tet->pnt(U1,V1,W1,pnt1);
tet->pnt(U2,V2,W2,pnt2);
tet->pnt(U3,V3,W3,pnt3);
x[0] = pnt1.x(); x[1] = pnt2.x(); x[2] = pnt3.x();
y[0] = pnt1.y(); y[1] = pnt2.y(); y[2] = pnt3.y();
z[0] = pnt1.z(); z[1] = pnt2.z(); z[2] = pnt3.z();
SVector3 d1(x[1]-x[0],y[1]-y[0],z[1]-z[0]);
SVector3 d2(x[2]-x[0],y[2]-y[0],z[2]-z[0]);
n[0] = crossprod(d1, d2);
n[0].normalize();
n[1] = n[0];
n[2] = n[0];
}

Jean-François Remacle
committed
void MTetrahedronN::getFaceRep(int num, double *x, double *y, double *z, SVector3 *n)
{
_myGetFaceRep(this, num, x, y, z, n, CTX.mesh.num_sub_edges);

Jean-François Remacle
committed
}
void MTetrahedron10::getFaceRep(int num, double *x, double *y, double *z, SVector3 *n)
{
_myGetFaceRep(this, num, x, y, z, n, CTX.mesh.num_sub_edges);

Jean-François Remacle
committed
}
void MTetrahedron::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)

Jean-François Remacle
committed
*npts = getNGQTetPts(pOrder);
#endif

Jean-François Remacle
committed
}
int MHexahedron::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
void MHexahedron::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)

Jean-François Remacle
committed
*npts = getNGQHPts(pOrder);
#endif

Jean-François Remacle
committed
}
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
int MPrism::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[2]->x() - _v[0]->x();
mat[0][2] = _v[3]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[2]->y() - _v[0]->y();
mat[1][2] = _v[3]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[2]->z() - _v[0]->z();
mat[2][2] = _v[3]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPyramid::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));