Select Git revision
maxwell_common.h
-
Matteo Cicuttin authoredMatteo Cicuttin authored
MElement.h 17.32 KiB
// Gmsh - Copyright (C) 1997-2015 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.
#ifndef _MELEMENT_H_
#define _MELEMENT_H_
#include <stdio.h>
#include <algorithm>
#include <string>
#include "GmshMessage.h"
#include "MVertex.h"
#include "MEdge.h"
#include "MFace.h"
#include "nodalBasis.h"
#include "polynomialBasis.h"
#include "JacobianBasis.h"
#include "MetricBasis.h"
#include "GaussIntegration.h"
class GModel;
// A mesh element.
class MElement
{
private:
// the id number of the element (this number is unique and is
// guaranteed never to change once a mesh has been generated)
int _num;
// the number of the mesh partition the element belongs to
short _partition;
// a visibility flag
char _visible;
protected:
// the tolerance used to determine if a point is inside an element,
// in parametric coordinates
static double _isInsideTolerance;
void _getEdgeRep(MVertex *v0, MVertex *v1,
double *x, double *y, double *z, SVector3 *n,
int faceIndex=-1);
void _getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2,
double *x, double *y, double *z, SVector3 *n);
public :
MElement(int num=0, int part=0);
virtual ~MElement(){}
// Create an element from tag
static MElement* createElement(int tag, const std::vector<MVertex*>&,
int num=0, int part=0);
// set/get the tolerance for isInside() test
static void setTolerance(const double tol){ _isInsideTolerance = tol; }
static double getTolerance() { return _isInsideTolerance; }
// return the tag of the element
virtual int getNum() const { return _num; }
// return the geometrical dimension of the element
virtual int getDim() const = 0;
// return the polynomial order the element
virtual int getPolynomialOrder() const { return 1; }
// return true if the element can be considered as a serendipity element
virtual bool getIsAssimilatedSerendipity() const {
return ElementType::SerendipityFromTag(getTypeForMSH()) > 0;
}
// return true if the element has to be considered as a serendipity element
virtual bool getIsOnlySerendipity() const {
return ElementType::SerendipityFromTag(getTypeForMSH()) > 1;
}
// get/set the partition to which the element belongs
virtual int getPartition() const { return _partition; }
virtual void setPartition(int num){ _partition = (short)num; }
// get/set the visibility flag
virtual char getVisibility() const;
virtual void setVisibility(char val){ _visible = val; }
// get & set the vertices
virtual int getNumVertices() const = 0;
virtual const MVertex *getVertex(int num) const= 0;
virtual MVertex *getVertex(int num) = 0;
void getVertices(std::vector<MVertex*> &verts)
{
int N = getNumVertices();
verts.resize(N);
for(int i = 0; i < N; i++) verts[i] = getVertex(i);
}
virtual void setVertex(int num, MVertex *v)
{
Msg::Error("Vertex set not supported for this element");
}
// give an MVertex as input and get its local number
virtual void getVertexInfo(const MVertex *vertex, int &ithVertex) const
{
Msg::Error("Vertex information not available for this element");
}
// get the vertex using the I-deas UNV ordering
virtual MVertex *getVertexUNV(int num){ return getVertex(num); }
// get the vertex using the VTK ordering
virtual MVertex *getVertexVTK(int num){ return getVertex(num); }
// get the vertex using the Nastran BDF ordering
virtual MVertex *getVertexBDF(int num){ return getVertex(num); }
// get the vertex using DIFF ordering
virtual MVertex *getVertexDIFF(int num){ return getVertex(num); }
// get the vertex using INP ordering
virtual MVertex *getVertexINP(int num){ return getVertex(num); }
// get the number of vertices associated with edges, faces and
// volumes (nonzero only for higher order elements, polygons or
// polyhedra)
virtual int getNumEdgeVertices() const { return 0; }
virtual int getNumFaceVertices() const { return 0; }
virtual int getNumVolumeVertices() const { return 0; }
// get the number of primary vertices (first-order element)
int getNumPrimaryVertices() const
{
return getNumVertices() - getNumEdgeVertices() - getNumFaceVertices() -
getNumVolumeVertices();
}
// get the edges
virtual int getNumEdges() const = 0;
virtual MEdge getEdge(int num) const= 0;
// give an MEdge as input and get its local number and sign
virtual void getEdgeInfo(const MEdge & edge, int &ithEdge, int &sign) const
{
Msg::Error("Edge information not available for this element");
}
// get an edge representation for drawing
virtual int getNumEdgesRep(bool curved) = 0;
virtual void getEdgeRep(bool curved, int num, double *x, double *y, double *z,
SVector3 *n) = 0;
// get the faces
virtual int getNumFaces() = 0;
virtual MFace getFace(int num) = 0;
// give an MFace as input and get its local number, sign and rotation
virtual void getFaceInfo(const MFace & face, int &ithFace, int &sign,
int &rot) const
{
Msg::Error("Face information not available for this element");
}
// get a face representation for drawing
virtual int getNumFacesRep(bool curved) = 0;
virtual void getFaceRep(bool curved, int num, double *x, double *y, double *z,
SVector3 *n) = 0;
// get all the vertices on a edge or a face
virtual void getEdgeVertices(const int num, std::vector<MVertex*> &v) const
{
v.resize(0);
}
virtual void getFaceVertices(const int num, std::vector<MVertex*> &v) const
{
v.resize(0);
}
// get and set parent and children for hierarchial grids
virtual MElement *getParent() const { return NULL; }
virtual void setParent(MElement *p, bool owner = false) {}
virtual int getNumChildren() const { return 0; }
virtual MElement *getChild(int i) const { return NULL; }
virtual bool ownsParent() const { return false; }
// get base element in case of MSubElement
virtual const MElement *getBaseElement() const { return this; }
virtual MElement *getBaseElement() { return this; }
// get and set domain for borders
virtual MElement *getDomain(int i) const { return NULL; }
virtual void setDomain (MElement *e, int i) { }
// get the type of the element
virtual int getType() const = 0;
// get the max/min edge length
virtual double maxEdge();
virtual double minEdge();
// max. distance between curved and straight element among all high-order nodes
double maxDistToStraight() const;
// get the quality measures
double skewness();
virtual double rhoShapeMeasure();
virtual double gammaShapeMeasure(){ return 0.; }
virtual double etaShapeMeasure(){ return 0.; }
double distoShapeMeasure()
{
double jmin, jmax;
scaledJacRange(jmin, jmax);
return jmin;
}
double minSICNShapeMeasure()
{
double sICNMin, sICNMax;
signedInvCondNumRange(sICNMin, sICNMax);
return sICNMin;
}
virtual double angleShapeMeasure() { return 1.0; }
virtual void scaledJacRange(double &jmin, double &jmax, GEntity *ge = 0) const;
virtual void idealJacRange(double &jmin, double &jmax, GEntity *ge = 0);
virtual void signedInvCondNumRange(double &iCNMin, double &iCNMax, GEntity *ge = 0);
virtual double metricShapeMeasure();
virtual double metricShapeMeasure2();
// get the radius of the inscribed circle/sphere if it exists,
// otherwise get the minimum radius of all the circles/spheres
// tangent to the most boundaries of the element.
virtual double getInnerRadius(){ return 0.; }
// get the radius of the circumscribed circle/sphere if it exists,
// otherwise get the maximum radius of all the circles/spheres
// tangent to the most boundaries of the element.
virtual double getOuterRadius(){ return 0.; }
// compute the barycenter
virtual SPoint3 barycenter(bool primary = false) const;
virtual SPoint3 barycenterUVW() const;
// compute the barycenter in infinity norm
virtual SPoint3 barycenter_infty() const;
// reverse the orientation of the element
virtual void reverse(){}
// get volume of element
virtual double getVolume();
// return sign of volume (+1 or -1) for 3D elements (or 0 if element
// has zero volume)
virtual int getVolumeSign();
// compute and change the orientation of 3D elements to get positive
// volume (return false if element has zero volume)
virtual bool setVolumePositive();
// return an information string for the element
virtual std::string getInfoString();
// get the function space for the element
virtual const nodalBasis* getFunctionSpace(int order=-1, bool serendip=false) const;
// get the function space for the jacobian of the element
virtual const JacobianBasis* getJacobianFuncSpace(int order=-1) const { return 0; }
// return parametric coordinates (u,v,w) of a vertex
virtual void getNode(int num, double &u, double &v, double &w) const;
// return the interpolating nodal shape functions evaluated at point
// (u,v,w) in parametric coordinates (if order == -1, use the
// polynomial order of the element)
virtual void getShapeFunctions(double u, double v, double w, double s[],
int order=-1) const;
// return the gradient of the nodal shape functions evaluated at
// point (u,v,w) in parametric coordinates (if order == -1, use the
// polynomial order of the element)
virtual void getGradShapeFunctions(double u, double v, double w, double s[][3],
int order=-1) const;
virtual void getHessShapeFunctions(double u, double v, double w, double s[][3][3],
int order=-1) const;
virtual void getThirdDerivativeShapeFunctions(double u, double v, double w,
double s[][3][3][3], int order=-1) const;
// return the Jacobian of the element evaluated at point (u,v,w) in
// parametric coordinates
virtual double getJacobian(const fullMatrix<double> &gsf, double jac[3][3]) const;
// To be compatible with _vgrads of functionSpace without having to put under
// fullMatrix form
virtual double getJacobian(const std::vector<SVector3> &gsf, double jac[3][3])const ;
virtual double getJacobian(double u, double v, double w, double jac[3][3]) const;
inline double getJacobian(double u, double v, double w, fullMatrix<double> &j) const{
double JAC[3][3];
const double detJ = getJacobian (u,v,w,JAC);
for (int i=0;i<3;i++){
j(i,0) = JAC[i][0];
j(i,1) = JAC[i][1];
j(i,2) = JAC[i][2];
}
return detJ;
}
virtual double getPrimaryJacobian(double u, double v, double w, double jac[3][3]) const;
double getJacobianDeterminant(double u, double v, double w) const
{
double jac[3][3]; return getJacobian(u, v, w, jac);
}
void getSignedJacobian(fullVector<double> &jacobian, int o = -1) const;
void getNodesCoord(fullMatrix<double> &nodesXYZ) const;
virtual int getNumShapeFunctions() const { return getNumVertices(); }
virtual int getNumPrimaryShapeFunctions() const { return getNumPrimaryVertices(); }
virtual const MVertex *getShapeFunctionNode(int i) const { return getVertex(i); }
virtual MVertex *getShapeFunctionNode(int i) { return getVertex(i); }
// return the eigenvalues of the metric evaluated at point (u,v,w) in
// parametric coordinates
virtual double getEigenvaluesMetric(double u, double v, double w, double values[3]) const;
// get the point in cartesian coordinates corresponding to the point
// (u,v,w) in parametric coordinates
virtual void pnt(double u, double v, double w, SPoint3 &p) const;
// To be compatible with functionSpace without changing form
virtual void pnt(const std::vector<double> &sf,SPoint3 &p) const;
virtual void primaryPnt(double u, double v, double w, SPoint3 &p);
// invert the parametrisation
virtual void xyz2uvw(double xyz[3], double uvw[3]) const;
// move point between parent and element parametric spaces
virtual void movePointFromParentSpaceToElementSpace(double &u, double &v,
double &w) const;
virtual void movePointFromElementSpaceToParentSpace(double &u, double &v,
double &w) const;
// test if a point, given in parametric coordinates, belongs to the
// element
virtual bool isInside(double u, double v, double w) const = 0;
// interpolate the given nodal data (resp. its gradient, curl and
// divergence) at point (u,v,w) in parametric coordinates
double interpolate(double val[], double u, double v, double w, int stride=1,
int order=-1);
void interpolateGrad(double val[], double u, double v, double w, double f[],
int stride=1, double invjac[3][3]=0, int order=-1);
void interpolateCurl(double val[], double u, double v, double w, double f[],
int stride=3, int order=-1);
double interpolateDiv(double val[], double u, double v, double w, int stride=3,
int order=-1);
// integration routines
virtual void getIntegrationPoints(int pOrder, int *npts, IntPt **pts)
{
Msg::Error("No integration points defined for this type of element: %d",
this->getType());
}
double integrate(double val[], int pOrder, int stride=1, int order=-1);
// val[] must contain interpolation data for face/edge vertices of given edge/face
double integrateCirc(double val[], int edge, int pOrder, int order=-1);
double integrateFlux(double val[], int face, int pOrder, int order=-1);
// IO routines
virtual void writeMSH(FILE *fp, bool binary=false, int elementary=1,
std::vector<short> *ghosts=0);
virtual void writeMSH2(FILE *fp, double version=1.0, bool binary=false,
int num=0, int elementary=1, int physical=1,
int parentNum=0, int dom1Num = 0, int dom2Num = 0,
std::vector<short> *ghosts=0);
virtual void writePOS(FILE *fp, bool printElementary, bool printElementNumber,
bool printSICN, bool printGamma, bool printRho,
bool printDisto,double scalingFactor=1.0, int elementary=1);
virtual void writeSTL(FILE *fp, bool binary=false, double scalingFactor=1.0);
virtual void writeVRML(FILE *fp);
virtual void writePLY2(FILE *fp);
virtual void writeUNV(FILE *fp, int num=0, int elementary=1, int physical=1);
virtual void writeVTK(FILE *fp, bool binary=false, bool bigEndian=false);
virtual void writeMESH(FILE *fp, int elementTagType=1, int elementary=1,
int physical=0);
virtual void writeIR3(FILE *fp, int elementTagType, int num, int elementary,
int physical);
virtual void writeBDF(FILE *fp, int format=0, int elementTagType=1,
int elementary=1, int physical=0);
virtual void writeDIFF(FILE *fp, int num, bool binary=false,
int physical_property=1);
virtual void writeINP(FILE *fp, int num);
virtual void writeSU2(FILE *fp, int num);
// info for specific IO formats (returning 0 means that the element
// is not implemented in that format)
virtual int getTypeForMSH() const { return 0; }
virtual int getTypeForUNV() const { return 0; }
virtual int getTypeForVTK() const { return 0; }
virtual const char *getStringForPOS() const { return 0; }
virtual const char *getStringForBDF() const { return 0; }
virtual const char *getStringForDIFF() const { return 0; }
virtual const char *getStringForINP() const { return 0; }
// return the number of vertices, as well as the element name if
// 'name' != 0
static int getInfoMSH(const int typeMSH, const char **const name=0);
virtual int getNumVerticesForMSH() { return getNumVertices(); }
virtual void getVerticesIdForMSH(std::vector<int> &verts);
// copy element and parent if any, vertexMap contains the new vertices
virtual MElement *copy(std::map<int, MVertex*> &vertexMap,
std::map<MElement*, MElement*> &newParents,
std::map<MElement*, MElement*> &newDomains);
};
class MElementFactory{
public:
MElement *create(int type, std::vector<MVertex*> &v, int num=0, int part=0,
bool owner=false, MElement *parent=0, MElement *d1=0, MElement *d2=0);
MElement *create(int num, int type, const std::vector<int> &data, GModel *model);
};
// Traits of various elements based on the dimension. These generally define
// the faces of 2-D elements as MEdge and 3-D elements as MFace.
template <unsigned DIM> struct DimTr;
template <> struct DimTr<2>
{
typedef MEdge FaceT;
static int getNumFace(MElement *const element)
{
return element->getNumEdges();
}
static MEdge getFace(MElement *const element, const int iFace)
{
return element->getEdge(iFace);
}
static void getAllFaceVertices(MElement *const element, const int iFace,
std::vector<MVertex*> &v)
{
element->getEdgeVertices(iFace, v);
}
};
template <> struct DimTr<3>
{
typedef MFace FaceT;
static int getNumFace(MElement *const element)
{
return element->getNumFaces();
}
static MFace getFace(MElement *const element, const int iFace)
{
return element->getFace(iFace);
}
static void getAllFaceVertices(MElement *const element, const int iFace,
std::vector<MVertex*> &v)
{
element->getFaceVertices(iFace, v);
}
};
#endif