Newer
Older
-- Resonant cavity test. See Pozar, section 6.3 for theory.
-----------------------
--[[ Problem setup ]]--
sim.name = "test_maxwell_resonator" -- simulation name
sim.dt = 1e-11 -- timestep size
sim.timesteps = 11 -- num of iterations
sim.gmsh_model = "resonator.geo" -- gmsh model filename
sim.use_gpu = 0 -- 0: cpu, 1: gpu
sim.approx_order = 2 -- approximation order
sim.time_integrator = "leapfrog"
postpro.silo_output_rate = 100
postpro.cycle_print_rate = 10 -- console print rate
postpro["E"].silo_mode = "zonal"
postpro["H"].silo_mode = "none"
postpro["J"].silo_mode = "none"
local epsr = 1.0
local mur = 1.0
materials.epsilon = function(tag, x, y, z)
return epsr;
end
materials.mu = function(tag, x, y, z)
return mur;
end
materials.sigma = function(tag, x, y, z)
return 0.0;
end
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
function electric_initial_condition(x, y, z)
local Ex = 0
local Ey = math.sin(math.pi*x) * math.sin(math.pi*z)
local Ez = 0
return Ex, Ey, Ez
end
--------------------------
--[[ Validation stuff ]]--
debug = {}
-- determine if we should do I/O
local do_IO = (not parallel) or (parallel and parallel.comm_rank == 0)
local c0 = 1/math.sqrt(const.eps0*const.mu0)
-- Mode
local m = 1 -- along x
local n = 0 -- along y
local l = 1 -- along z
-- Cavity dimensions (must match sim.gmsh_model)
local a = 1 -- along x
local b = 0.1 -- along y
local d = 1 -- along z
local u = m*math.pi/a
local v = n*math.pi/b
local w = l*math.pi/d
-- Compute resonant frequency
local omega = c0*math.sqrt(u*u + v*v + w*w)/math.sqrt(epsr*mur)
local resonance_f = omega/(2*math.pi)
local resonance_MHz = resonance_f/1e6
local cycle_timesteps = 1/(resonance_f*sim.dt)
-- Compute impedance
local eps = epsr * const.eps0
local mu = mur * const.mu0
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
local k_sq = (omega*mu)*(omega*eps)
local kc_sq = u*u + v*v
local beta = math.sqrt(k_sq - kc_sq)
local Zte = omega*mu/beta
local We = eps*a*b*d/16
if ( do_IO ) then
print("\x1b[1mANALYTICAL SOLUTION DATA:")
print(" Resonance frequency: " .. resonance_MHz .. " Mhz")
print(" Cavity impedance: " .. Zte .. " Ohm")
print(" Timesteps for 1 cycle: " .. cycle_timesteps)
print(" Expected energy " .. 2*We .. " J \x1b[0m")
end
function ansol(tag, x, y, z, t)
local Ex = 0.0
local Ey = math.cos(omega*t)*math.sin(math.pi*x)*math.sin(math.pi*z)
local Ez = 0.0
local Hx = math.sin(omega*t)*math.sin(math.pi*x)*math.cos(math.pi*z)/Zte
local Hy = 0.0
local Hz = -math.sin(omega*t)*math.cos(math.pi*x)*math.sin(math.pi*z)/Zte
return Ex, Ey, Ez, Hx, Hy, Hz
end
debug.analytical_solution = ansol
--debug.dump_cell_ranks = true
function on_timestepping_finished()
err = compute_error()
if ( do_IO ) then
print("\x1b[32m*** GMSH-FEM COMPARISON DATA ***\x1b[0m")
print("Error on Ey: " .. err.Ey)
compare_at_gauss_points() -- NOT MPI SAFE