Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
cim
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
getdp
cim
Commits
c60cc5e4
Commit
c60cc5e4
authored
7 years ago
by
Nicolas Marsic
Browse files
Options
Downloads
Patches
Plain Diff
compute A0 and A1 in a single run
parent
6cc18295
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bin/beyn.py
+35
-55
35 additions, 55 deletions
bin/beyn.py
with
35 additions
and
55 deletions
bin/beyn.py
+
35
−
55
View file @
c60cc5e4
...
...
@@ -13,14 +13,14 @@ import numpy as np
import
numpy.matlib
def
simple
(
operator
,
origin
,
radius
,
node
s
=
100
,
maxIt
=
10
,
lStart
=
1
,
lStep
=
1
,
rankTol
=
1e-4
,
verbose
=
True
):
n
N
ode
=
100
,
maxIt
=
10
,
lStart
=
1
,
lStep
=
1
,
rankTol
=
1e-4
,
verbose
=
True
):
"""
Solves an eigenvalue problem using Beyn
'
s algorithm (simple version)
Keyword arguments:
operator -- the solver defining the operator to use
origin -- the origin (in the complex plane) of the above circular contour
radius -- the radius of the circular contour used to search the eigenvalues
node
s
-- the number of nodes for the trapezoidal integration rule (optional)
n
N
ode -- the number of nodes for the trapezoidal integration rule (optional)
maxIt -- the maximal number of iteration for constructing A0 (optional)
lStart -- the number of columns used for A0 when algorithm starts (optional)
lStep -- the step used for increasing the number of columns of A0 (optional)
...
...
@@ -32,15 +32,14 @@ def simple(operator, origin, radius,
"""
# Display the parameter used
if
(
verbose
):
display
(
node
s
,
maxIt
,
lStart
,
lStep
,
rankTol
,
origin
,
radius
)
if
(
verbose
):
display
(
n
N
ode
,
maxIt
,
lStart
,
lStep
,
rankTol
,
origin
,
radius
)
# Initialise A0 search
myPath
=
path
(
nodes
,
origin
,
radius
)
hasK
=
False
it
=
0
m
=
operator
.
size
()
l
=
lStart
k
=
-
1
hasK
=
False
it
=
0
m
=
operator
.
size
()
l
=
lStart
k
=
-
1
# Search A0
if
(
verbose
):
print
"
Searching A0...
"
...
...
@@ -48,8 +47,9 @@ def simple(operator, origin, radius,
if
(
verbose
):
print
"
# Iteration
"
+
str
(
it
+
1
)
+
"
:
"
,
if
(
verbose
):
sys
.
stdout
.
flush
()
vHat
=
randomMatrix
(
m
,
l
)
# Take a random VHat
A0
=
integrate
(
operator
,
myPath
,
0
,
vHat
)
# Compute A0
vHat
=
randomMatrix
(
m
,
l
)
# Take a random VHat
A0
,
A1
=
integrate
(
operator
,
vHat
,
# Compute A_0 and A_1
nNode
,
radius
,
origin
)
k
,
sMax
,
sMin
=
rank
(
A0
,
rankTol
)
# Rank
if
(
verbose
):
print
format
(
sMax
,
"
.2e
"
)
+
"
|
"
,
...
...
@@ -84,9 +84,8 @@ def simple(operator, origin, radius,
W0
=
np
.
delete
(
Wh
,
l
-
1
,
0
).
H
S0Inv
=
np
.
matrix
(
np
.
diag
(
1
/
np
.
delete
(
S
,
l
-
1
,
0
)))
# Compute A1 and B
A1
=
integrate
(
operator
,
myPath
,
1
,
vHat
)
B
=
V0
.
H
*
A1
*
W0
*
S0Inv
# Compute B
B
=
V0
.
H
*
A1
*
W0
*
S0Inv
# Eigenvalues & eigenvectors (by projecting QHat onto V0)
if
(
verbose
):
print
"
Solving linear EVP...
"
...
...
@@ -129,56 +128,37 @@ def rank(A, tol):
return
k
,
S
[
0
].
tolist
(),
S
[
nSV
-
1
].
tolist
()
def
path
(
nodes
,
origin
,
radius
):
"""
Returns a list with the coordinates of a circular contour
def
integrate
(
operator
,
vHat
,
nNode
,
radius
,
origin
):
"""
Computes the two first countour integrals of Beyn
'
s method (A_0 and A_1)
over a circular contour.
Keyword arguments:
nodes -- the number of nodes used to discretise the contour
operator -- the solver defining the operator to use
vHat -- the RHS matrix defing Beyn
'
s integrals
nNode -- the number of nodes used to discretise the circular contour
radius -- the radius of the circular contour
origin -- the origin (in the complex plane) of the circular contour
The returned list contains nodes+1 elements,
such that the first and the last are identical (up the machine precision)
"""
step
=
1.0
/
nodes
nodesPlusOne
=
nodes
+
1
path
=
list
()
for
i
in
range
(
nodesPlusOne
):
path
.
append
(
origin
+
radius
*
np
.
exp
(
1j
*
2
*
np
.
pi
*
i
*
step
))
return
path
def
integrate
(
operator
,
path
,
order
,
vHat
):
"""
Computes the countour integral of Beyn
'
s method, that is matrix A_p
Keyword arguments:
operator -- the solver defining the operator to use
path -- the path to integrate on
order -- the order of Beyn
'
s integral (that is the
'
p
'
defining matrix A_p)
vHat -- the RHS matrix defing Beyn
'
s integral
"""
# Initialise I
I
=
np
.
matlib
.
zeros
(
vHat
.
shape
,
dtype
=
complex
)
# Initialise integrals
A0
=
np
.
matlib
.
zeros
(
vHat
.
shape
,
dtype
=
complex
)
A1
=
np
.
matlib
.
zeros
(
vHat
.
shape
,
dtype
=
complex
)
# Initialise integration loop
F1
=
multiSolve
(
operator
,
vHat
,
path
[
0
])
F1
*=
np
.
power
(
path
[
0
],
order
)
# Loop over integation points and integrate
for
i
in
range
(
nNode
):
t
=
2
*
np
.
pi
*
i
/
nNode
;
phi
=
origin
+
radius
*
np
.
exp
(
1j
*
t
)
tmp
=
multiSolve
(
operator
,
vHat
,
phi
)
# Integration loop
pathSizeMinus
=
len
(
path
)
-
1
;
for
i
in
range
(
pathSizeMinus
):
F2
=
multiSolve
(
operator
,
vHat
,
path
[
i
+
1
])
F2
*=
np
.
power
(
path
[
i
+
1
],
order
)
A0
+=
tmp
*
np
.
power
(
phi
,
0
)
*
np
.
exp
(
1j
*
t
)
A1
+=
tmp
*
np
.
power
(
phi
,
1
)
*
np
.
exp
(
1j
*
t
)
I
+=
(
F1
+
F2
)
*
(
path
[
i
+
1
]
-
path
[
i
])
F1
=
F2
# Final scale
A0
*=
radius
/
nNode
A1
*=
radius
/
nNode
# Done
return
I
return
A0
,
A1
def
multiSolve
(
solver
,
B
,
w
):
...
...
@@ -212,10 +192,10 @@ def randomMatrix(n, m):
return
np
.
matlib
.
rand
(
n
,
m
)
+
np
.
matlib
.
rand
(
n
,
m
)
*
1j
def
display
(
node
s
,
maxIt
,
lStart
,
lStep
,
rankTol
,
origin
,
radius
):
def
display
(
n
N
ode
,
maxIt
,
lStart
,
lStep
,
rankTol
,
origin
,
radius
):
print
"
Beyn
'
s contour integral method (simple)
"
print
"
---------------------------------------
"
print
"
# Nodes used for the trapezoidal rule:
"
+
"
"
+
str
(
node
s
)
print
"
# Nodes used for the trapezoidal rule:
"
+
"
"
+
str
(
n
N
ode
)
print
"
# Maximum number of iterations:
"
+
"
"
+
str
(
maxIt
)
print
"
# Initial size of col(A0):
"
+
"
"
+
str
(
lStart
)
print
"
# Step size for increasing col(A0):
"
+
"
"
+
str
(
lStep
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment