Skip to content
Snippets Groups Projects
Commit 344b7fc8 authored by Christophe Geuzaine's avatar Christophe Geuzaine
Browse files

up

parent 504fb5ef
No related branches found
No related tags found
No related merge requests found
Pipeline #2476 passed
...@@ -5,7 +5,7 @@ ...@@ -5,7 +5,7 @@
<title>OPTLAB</title> <title>OPTLAB</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="keywords" content="free, finite element, fem, interface, gmsh, getdp"> <meta name="keywords" content="free, finite element, fem, interface, gmsh, getdp">
<meta name="viewport" content="width=device-width"> <meta name="viewport" content="width=device-width">
<meta name="apple-itunes-app" content="app-id=845930897"> <meta name="apple-itunes-app" content="app-id=845930897">
...@@ -20,31 +20,89 @@ ...@@ -20,31 +20,89 @@
<body> <body>
<h1 class="short">OPTLAB</h1> <h1 class="short">OPTLAB</h1>
<h1>Nonlinear Optimization LABoratory</h1>
<div><span style="white-space:nowrap"><!-- <div id="banner">
--><img width="35%" src="pmsm_shapeTopo.png"></a><!-- <img src="pmsm_shapeTopo.png" alt="">
--><img width="35%" src="mbb.png"></a><!-- <img src="busbar.png" alt="">
--><img width="35%" src="busbar.png"></a><!-- <img src="mbb.png" alt="">
--></span></div> </div>
<h1>Large-Scale Nonlinear Constrained Optimization Library</h1>
<p>
OPTLAB (OPTimization LABoratory) is a framework for formulating and solving
large-scale, nonlinear constrained optimization problems in an efficient and
portable manner. The default algorithm provided by OPTLAB is the method of
moving asymptotes (MMA)<a href="#1"><sup>1</sup></a>, implemented for both
shared and distributed (MPI) memory architectures
using <a href="http://www.mcs.anl.gov/petsc">PETSc</a>.
</p>
<p> <p>
OPTLAB is a fully parallel package for solving large-scale and nonlinear constrained OPTLAB is Copyright (c) 2018, E. Kuci, C. Geuzaine and P. Duysinx, University
optimization problems in an efficient </a> and portable manner. of Li&egrave;ge.
The package is distributed as a Software Development Kit (SDK) callable
from C, C++, Python, and Julia.
</p> </p>
<h2>Quick start</h2> <h2>Quick start</h2>
<p>
OPTLAB is distributed as part of the ONELAB bundle to solve large scale finite
element shape or topology optimization
problems<a href="#2"><sup>2</sup></a>. To test OPTLAB:
</p>
<ol> <ol>
<li>Download the Software Development Kit (SDK) for <li>Dowload the <a href="http://onelab.info">ONELAB software bundle</a>
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Windows64.zip">Windows</a>, <li>Launch the app <img src="http://geuz.org/gmsh/gallery/icon.png" height=20px>
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Linux64.zip">Linux </a> or <li>Open <code>tutorials/optlab/shape.py</code>
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-MacOSX.zip">MacOS </a>. <li>Press <code>Run</code>
<li>... then learn how to use it by exploring
<a href="https://gitlab.onelab.info/optlab/tutorials">the tutorials</a>
</ol> </ol>
<p>
This assumes that you have a working Python installation on your computer,
including the <code>numpy</code> package.
</p>
<h2>OPTLAB Software Development Kit</h2>
<p>
A Software Development Kit (SDK) is also available for integrating OPTLAB with
your own C, C++, Python or Julia code.
</p>
<p>
Download the SDK for
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Windows64.zip">Windows 64-bit</a>,
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Windows32.zip">Windows 32-bit</a>,
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Linux64.zip">Linux 64-bit</a>,
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Linux32.zip">Linux 32-bit</a> or
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-MacOSX.zip">MacOS</a>.
</p>
<h2>References</h2>
<div class="small">
<ol class="small">
<li><a name="1"></a> K. Svanberg. <em>The method of moving asymptotes - a
new method for structural optimization</em>. International journal for
numerical methods in engineering, 24 (2):359–373, 1987.
<li><a name="2"></a>E. Kuci, F. Henrotte, P. Duysinx, and C. Geuzaine.
<em>Design sensitivity analysis for shape optimization based on the Lie
derivative</em>. Computer Methods in Applied Mechanics and Engineering 317
(2017), pp. 702 –722.
</ol>
</div>
<h2>Sponsors</h2>
<p>
OPTLAB development was funded in part by the Walloon Region under
<a href="https://recherche-technologie.wallonie.be/projets/index.html?IDD=22338">WBGreen
grant No 1217703 (FEDO)</a> and the <a href="http://www.belspo.be">the Belgian
Science Policy</a> under grant IAP P7/02.
</p>
<center style="margin-top:4ex;margin-bottom:4ex">
<a href="http://www.ulg.ac.be"><img src="http://onelab.info/logo_uliege.jpg" height="68px"></a>&nbsp;
<a href="http://www.wallonie.be"><img src="http://onelab.info/logo_rw.jpg" height="68px"></a>&nbsp;
<a href="http://www.belspo.be"><img src="http://onelab.info/logo_belspo.jpg" height="68px"></a>
</center>
</body> </body>
</html> </html>
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment