Newer
Older
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>OPTLAB</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="keywords" content="free, finite element, fem, interface, gmsh, getdp">
<meta name="viewport" content="width=device-width">
<meta name="apple-itunes-app" content="app-id=845930897">
<link href="http://onelab.info/onelab.css" rel="stylesheet" type="text/css">
<style type="text/css"><!--
div.small { font-size:80%; }
ul.small { margin-top:1ex; margin-bottom:1ex; }
--></style>
</head>
<body>
<h1 class="short">OPTLAB</h1>
<img src="pmsm_shapeTopo.png" alt="">
<img src="mbb.png" alt="">
<p>
OPTLAB (OPTimization LABoratory) is a framework for formulating and solving
large-scale nonlinear constrained optimization problems in an efficient and
portable manner. The default algorithm provided by OPTLAB is the method of
moving asymptotes (MMA)<a href="#1"><sup>1</sup></a>, implemented for both
shared and distributed (MPI) memory architectures
using <a href="http://www.mcs.anl.gov/petsc">PETSc</a>.
</p>
OPTLAB is Copyright (c) 2018, E. Kuci, C. Geuzaine and P. Duysinx, University
of Liège.
OPTLAB is distributed as part of the ONELAB software bundle to solve large
scale finite element shape or topology optimization problems, using both
direct and adjoint formulations<a href="#2"><sup>2</sup></a>. To test OPTLAB:
<li>Download the <a href="http://onelab.info">ONELAB software bundle</a>
<li>Launch the app <img src="http://geuz.org/gmsh/gallery/icon.png" height=20px>
<li>Open <code>tutorials/optlab/Team25/shape.py</code> or <code>tutorials/optlab/Lbracket/topo.py</code>
<p>
This assumes that you have a working Python installation on your computer,
including the <code>numpy</code> package.
</p>
<h2>OPTLAB Software Development Kit</h2>
<p>
A Software Development Kit (SDK) is also available for integrating OPTLAB with
your own C, C++, Python or Julia code.
</p>
<p>
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Windows64.zip">Windows 64-bit</a>,
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Windows32.zip">Windows 32-bit</a>,
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Linux64.zip">Linux 64-bit</a>,
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-Linux32.zip">Linux 32-bit</a> or
<a href="http://onelab.info/optlab/bin/optlab-1.0.0-MacOSX.zip">MacOS</a>.
</p>
<p>
The OPTLAB source code is currently not publicly available: contact the
authors for further information.
</p>
<h2>References</h2>
<div class="small">
<ol class="small">
<li><a name="1"></a> K. Svanberg. <em>The method of moving asymptotes - a
new method for structural optimization</em>. International journal for
numerical methods in engineering, 24 (2):359–373, 1987.
<li><a name="2"></a>E. Kuci, F. Henrotte, P. Duysinx, and C. Geuzaine.
<em><a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/preprint_sensitivity_lie.pdf">Design
sensitivity analysis for shape optimization based on the Lie
derivative</a></em>. Computer Methods in Applied Mechanics and Engineering
317 (2017), pp. 702 –722.
</ol>
</div>
<h2>Sponsors</h2>
<p>
OPTLAB development was funded in part by the Walloon Region under
<a href="https://recherche-technologie.wallonie.be/projets/index.html?IDD=22338">WBGreen
grant No 1217703 (FEDO)</a> and the <a href="http://www.belspo.be">the Belgian
Science Policy</a> under grant IAP P7/02.
</p>
<center style="margin-top:4ex;margin-bottom:4ex">
<a href="http://www.ulg.ac.be"><img src="http://onelab.info/logo_uliege.jpg" height="68px"></a>
<a href="http://www.wallonie.be"><img src="http://onelab.info/logo_rw.jpg" height="68px"></a>
<a href="http://www.belspo.be"><img src="http://onelab.info/logo_belspo.jpg" height="68px"></a>
</center>