Skip to content
Snippets Groups Projects
Select Git revision
  • e6e160d624ab6722ec7db1a217ced0a7463cb0eb
  • master default protected
  • cyrielle
  • vinayak
  • ujwal_21_08_2024
  • dev_mm_torchSCRU
  • dev_mm_pf
  • debug_mm_pf
  • newStructureNonLocal
  • Mohamed_stochasticDMN
  • dev_mm_bench
  • stochdmn
  • revert-351ff7aa
  • ujwal_29April2024
  • dev_mm_ann
  • mohamed_vevp
  • ujwal_debug
  • ujwal_2ndApril2024
  • ujwal_October_2023
  • gabriel
  • SFEM
  • v4.0
  • v3.2.3_multiplePhase
  • v3.5
  • v3.3.2
  • v3.4
  • v3.3
  • ver3.2
  • verJulienWork
  • ver3.1
  • ver2
  • ver1.1.2
  • ver1.1.1
  • ver1.1
34 results

model.py

Blame
  • meshGFace.cpp 62.13 KiB
    // Gmsh - Copyright (C) 1997-2010 C. Geuzaine, J.-F. Remacle
    //
    // See the LICENSE.txt file for license information. Please report all
    // bugs and problems to <gmsh@geuz.org>.
    
    #include <sstream>
    #include <stdlib.h>
    #include <map>
    #include "meshGFace.h"
    #include "meshGFaceBDS.h"
    #include "meshGFaceDelaunayInsertion.h"
    #include "meshGFaceBamg.h"
    #include "meshGFaceQuadrilateralize.h"
    #include "meshGFaceOptimize.h"
    #include "DivideAndConquer.h"
    #include "BackgroundMesh.h"
    #include "GVertex.h"
    #include "GEdge.h"
    #include "GEdgeCompound.h"
    #include "GFace.h"
    #include "GModel.h"
    #include "MVertex.h"
    #include "MLine.h"
    #include "MTriangle.h"
    #include "MQuadrangle.h"
    #include "Context.h"
    #include "GPoint.h"
    #include "GmshMessage.h"
    #include "Numeric.h"
    #include "BDS.h"
    #include "qualityMeasures.h"
    #include "Field.h"
    #include "OS.h"
    #include "MElementOctree.h"
    #include "HighOrder.h"
    #include "meshGEdge.h"
    #include "meshPartitionOptions.h"
    #include "meshPartition.h"
    #include "CreateFile.h"
    #include "Context.h"
    #include "multiscalePartition.h"
    #include "meshGFaceLloyd.h"
    
    static void copyMesh (GFace *source, GFace *target)
    {
      std::map<MVertex*,MVertex*> vs2vt;
      std::list<GEdge*> edges   = target->edges();
      {
        std::list<GEdge*>::iterator it = edges.begin();
        for (; it!=edges.end(); ++it){
          int sign = 1;
          std::map<int,int>::iterator adnksd = target->edgeCounterparts.find((*it)->tag());
          int source_e;
          if ( adnksd != target->edgeCounterparts.end())
    	 source_e= adnksd->second;
          else{
    	sign = -1;
    	source_e = target->edgeCounterparts[-(*it)->tag()];
          }
    
          GEdge *se = source->model()->getEdgeByTag(abs(source_e));
          GEdge *te = *it;
          if (source_e * sign > 0){
    	vs2vt[se->getBeginVertex()->mesh_vertices[0]] = te->getBeginVertex()->mesh_vertices[0];
    	vs2vt[se->getEndVertex()->mesh_vertices[0]] = te->getEndVertex()->mesh_vertices[0];
    	for (unsigned i=0;i<se->mesh_vertices.size();i++){
    	  MVertex *vs = se->mesh_vertices[i];
    	  MVertex *vt = te->mesh_vertices[i];
    	  vs2vt[vs] = vt;
    	}
          }
          else {
    	vs2vt[se->getBeginVertex()->mesh_vertices[0]] = te->getEndVertex()->mesh_vertices[0];
    	vs2vt[se->getEndVertex()->mesh_vertices[0]] = te->getBeginVertex()->mesh_vertices[0];
    	for (unsigned i=0;i<se->mesh_vertices.size();i++){
    	  MVertex *vs = se->mesh_vertices[i];
    	  MVertex *vt = te->mesh_vertices[se->mesh_vertices.size() - i - 1];
    	  vs2vt[vs] = vt;
    	}
          }
        }
      }
    
      std::map<MVertex*,MVertex*>::iterator it = vs2vt.begin();
      
      SPoint2 param_source[2],param_target[2];
      int count = 0;
      for (; it != vs2vt.end() ; ++it){
        MVertex *vs = it->first;
        MVertex *vt = it->second;
        if (vs->onWhat()->dim() == 1){
          bool success1 = reparamMeshVertexOnFace(vs, source, param_source[count]);
          bool success2 = reparamMeshVertexOnFace(vt, target, param_target[count++]);
          if (count == 2) break;
        }
      }
    
      if (count < 2) return;
      
      const double t1u = param_target[0].x();
      const double t1v = param_target[0].y();
      const double t2u = param_target[1].x();
      const double t2v = param_target[1].y();
      const double s1u = param_source[0].x();
      const double s1v = param_source[0].y();
      const double s2u = param_source[1].x();
      const double s2v = param_source[1].y();
    
      SVector3 _a(s2u-s1u,s2v-s1v,0);
      SVector3 _b(t2u-t1u,t2v-t1v,0);
      SVector3 _c = crossprod(_a,_b);
      double sinA = _c.z();
      double cosA = dot(_a,_b);
      const double theta = atan2(sinA, cosA);
      const double c = cos(theta);
      const double s = sin(theta);
    
      for(unsigned int i = 0; i < source->mesh_vertices.size(); i++){
        MVertex *vs = source->mesh_vertices[i];
        double u,v;
        vs->getParameter(0,u);
        vs->getParameter(1,v);
        // apply transformation
        const double U =   c * (u-s1u) + s * (v-s1v) + t1u;
        const double V =  -s * (u-s1u) + c * (v-s1v) + t1v;
        GPoint gp = target->point(SPoint2(U,V));
        MVertex *vt = new MFaceVertex(gp.x(), gp.y(), gp.z(), target,U,V);
        target->mesh_vertices.push_back(vt);
        vs2vt[vs] = vt;    
      }
    
      for (unsigned i=0;i<source->triangles.size();i++){
        MVertex *vt[3];
        for (int j = 0; j < 3; j++){
          MVertex *vs = source->triangles[i]->getVertex(j); 
          
          vt[j] = vs2vt[vs];
          if (!vt[j]){
    	SPoint2 p;
    	bool success = reparamMeshVertexOnFace(vs, source, p);
    	const double U =   c * (p.x()-s1u) + s * (p.y()-s1v) + t1u;
    	const double V =  -s * (p.x()-s1u) + c * (p.y()-s1v) + t1v;
    	for (std::list<GEdge*>::iterator it = edges.begin(); it!=edges.end(); ++it){
    	  GEdge *te = *it;
    	  for (unsigned k=0;k<te->lines.size();k++){
    	    MVertex *gotcha = te->lines[k]->getVertex(0);
    	    bool success2 = reparamMeshVertexOnFace(gotcha, target, p);
    	    const double D = sqrt((U-p.x())*(U-p.x())+(V-p.y())*(V-p.y()));
    	    if (D < 1.e-9){
    	      vt[j] = gotcha;
    	      break;
    	    }
    	  }
    	}
          }
        }
        if (!vt[0] || !vt[1] ||!vt[2]){
          Msg::Fatal("yet another error in the copymesh procedure %p %p %p %d %d %d",
    		 vt[0],vt[1],vt[2],source->triangles[i]->getVertex(0)->onWhat()->dim(),
    		 source->triangles[i]->getVertex(1)->onWhat()->dim(),
    		 source->triangles[i]->getVertex(2)->onWhat()->dim());
        }
        target->triangles.push_back(new MTriangle(vt[0],vt[1],vt[2]));
      }
    
      for (unsigned i=0;i<source->quadrangles.size();i++){
        MVertex *v1 = vs2vt[source->quadrangles[i]->getVertex(0)];
        MVertex *v2 = vs2vt[source->quadrangles[i]->getVertex(1)];
        MVertex *v3 = vs2vt[source->quadrangles[i]->getVertex(2)];
        MVertex *v4 = vs2vt[source->quadrangles[i]->getVertex(3)];
        target->quadrangles.push_back(new MQuadrangle(v1,v2,v3,v4));
      }
    }
    
    void fourthPoint(double *p1, double *p2, double *p3, double *p4)
    {
      double c[3];
      circumCenterXYZ(p1, p2, p3, c);
      double vx[3] = {p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2]};
      double vy[3] = {p3[0] - p1[0], p3[1] - p1[1], p3[2] - p1[2]};
      double vz[3]; prodve(vx, vy, vz);
      norme(vz);
      double R = sqrt((p1[0] - c[0]) * (p1[0] - c[0]) +
                      (p1[1] - c[1]) * (p1[1] - c[1]) +
                      (p1[2] - c[2]) * (p1[2] - c[2]));
      p4[0] = c[0] + R * vz[0];
      p4[1] = c[1] + R * vz[1];
      p4[2] = c[2] + R * vz[2];
    }
    
    static bool noSeam(GFace *gf)
    {
      std::list<GEdge*> edges = gf->edges();
      std::list<GEdge*>::iterator it = edges.begin();
      while (it != edges.end()){
        GEdge *ge = *it ;
        bool seam = ge->isSeam(gf);
        if(seam) return false;
        ++it;
      }
      return true;
    }
    
    static void remeshUnrecoveredEdges(std::map<MVertex*, BDS_Point*> &recoverMapInv,
                                       std::set<EdgeToRecover> &edgesNotRecovered, 
                                       std::list<GFace*> &facesToRemesh)
    {
      facesToRemesh.clear();
      deMeshGFace dem;
    
      std::set<EdgeToRecover>::iterator itr = edgesNotRecovered.begin();
      for(; itr != edgesNotRecovered.end(); ++itr){
        std::list<GFace*> l_faces = itr->ge->faces();
        // un-mesh model faces adjacent to the model edge
        for(std::list<GFace*>::iterator it = l_faces.begin(); it != l_faces.end(); ++it){
          if((*it)->triangles.size() || (*it)->quadrangles.size()){
            facesToRemesh.push_back(*it);
            dem(*it);
          }
        }
        
        // add a new point in the middle of the intersecting segment
        int p1 = itr->p1;
        int p2 = itr->p2;
        int N = itr->ge->lines.size();
        GVertex *g1 = itr->ge->getBeginVertex();
        GVertex *g2 = itr->ge->getEndVertex();
        Range<double> bb = itr->ge->parBounds(0);
    
        std::vector<MLine*> newLines;
    
        for(int i = 0; i < N; i++){
          MVertex *v1 = itr->ge->lines[i]->getVertex(0);
          MVertex *v2 = itr->ge->lines[i]->getVertex(1);
          std::map<MVertex*, BDS_Point*>::iterator itp1 = recoverMapInv.find(v1);
          std::map<MVertex*, BDS_Point*>::iterator itp2 = recoverMapInv.find(v2);
          if(itp1 != recoverMapInv.end() && itp2 != recoverMapInv.end()){
            BDS_Point *pp1 = itp1->second;
            BDS_Point *pp2 = itp2->second;
            if((pp1->iD == p1 && pp2->iD == p2) || (pp1->iD == p2 && pp2->iD == p1)){
              double t1;
              double lc1 = -1;
              if(v1->onWhat() == g1) t1 = bb.low();
              else if(v1->onWhat() == g2) t1 = bb.high();
              else {
                MEdgeVertex *ev1 = (MEdgeVertex*)v1;
                lc1 = ev1->getLc();
                v1->getParameter(0, t1);
              }
              double t2;
              double lc2 = -1;
              if(v2->onWhat() == g1) t2 = bb.low();
              else if(v2->onWhat() == g2) t2 = bb.high();
              else {
                MEdgeVertex *ev2 = (MEdgeVertex*)v2;
                lc2 = ev2->getLc();
                v2->getParameter(0, t2);
              }
              
              // periodic
              if(v1->onWhat() == g1 && v1->onWhat() == g2)
                t1 = fabs(t2-bb.low()) < fabs(t2-bb.high()) ? bb.low() : bb.high();
              if(v2->onWhat() == g1 && v2->onWhat() == g2)
                t2 = fabs(t1-bb.low()) < fabs(t1-bb.high()) ? bb.low() : bb.high();
              
              if(lc1 == -1)
                lc1 = BGM_MeshSize(v1->onWhat(), 0, 0, v1->x(), v1->y(), v1->z());
              if(lc2 == -1)
                lc2 = BGM_MeshSize(v2->onWhat(), 0, 0, v2->x(), v2->y(), v2->z());
              // should be better, i.e. equidistant
              double t = 0.5 * (t2 + t1);
              double lc = 0.5 * (lc1 + lc2);
              GPoint V = itr->ge->point(t);
              MEdgeVertex * newv = new MEdgeVertex(V.x(), V.y(), V.z(), itr->ge, t, lc);
              newLines.push_back(new MLine(v1, newv));
              newLines.push_back(new MLine(newv, v2));
              delete itr->ge->lines[i];
            }
            else{
              newLines.push_back(itr->ge->lines[i]);
            }
          }
          else {
            newLines.push_back(itr->ge->lines[i]);
          }
        }
    
        itr->ge->lines = newLines;
        itr->ge->mesh_vertices.clear();
        N = itr->ge->lines.size();
        for(int i = 1; i < N; i++){
          itr->ge->mesh_vertices.push_back(itr->ge->lines[i]->getVertex(0));
        }
      }
    }
    
    static bool algoDelaunay2D(GFace *gf)
    {
      if(noSeam(gf) && (CTX::instance()->mesh.algo2d == ALGO_2D_DELAUNAY ||
    		    CTX::instance()->mesh.algo2d == ALGO_2D_BAMG || 
                        CTX::instance()->mesh.algo2d == ALGO_2D_FRONTAL))
        return true;
      return false;
    }
    
    static void computeElementShapes(GFace *gf, double &worst, double &avg, 
                                     double &best, int &nT, int &greaterThan)
    {
      worst = 1.e22;
      avg = 0.0;
      best = 0.0;
      nT = 0;
      greaterThan = 0;
      for(unsigned int i = 0; i < gf->triangles.size(); i++){
        double q = qmTriangle(gf->triangles[i], QMTRI_RHO);
        if(q > .9) greaterThan++;
        avg += q;
        worst = std::min(worst, q);
        best  = std::max(best, q);
        nT++;
      }
      avg /= nT;
    }
    
    static bool recoverEdge(BDS_Mesh *m, GEdge *ge, 
                            std::map<MVertex*, BDS_Point*> &recoverMapInv,
                            std::set<EdgeToRecover> *e2r,
                            std::set<EdgeToRecover> *notRecovered, int pass)
    {
      BDS_GeomEntity *g = 0;
      if(pass == 2){
        m->add_geom(ge->tag(), 1);
        g = m->get_geom(ge->tag(), 1);
      }
      
      for(unsigned int i = 0; i < ge->lines.size(); i++){
        MVertex *vstart = ge->lines[i]->getVertex(0);
        MVertex *vend = ge->lines[i]->getVertex(1);
        std::map<MVertex*, BDS_Point*>::iterator itpstart = recoverMapInv.find(vstart);
        std::map<MVertex*, BDS_Point*>::iterator itpend = recoverMapInv.find(vend);
        if(itpstart != recoverMapInv.end() && itpend != recoverMapInv.end()){
          BDS_Point *pstart = itpstart->second;
          BDS_Point *pend = itpend->second;
          if(pass == 1) 
            e2r->insert(EdgeToRecover(pstart->iD, pend->iD, ge));
          else{
            BDS_Edge *e = m->recover_edge(pstart->iD, pend->iD, e2r, notRecovered);
            if(e) e->g = g;
            //else {
            //   Msg::Error("Unable to recover an edge %g %g && %g %g (%d/%d)",
            //              vstart->x(), vstart->y(), vend->x(), vend->y(), i, 
            //              ge->mesh_vertices.size());
            //   return false;
            // }
          }
        }
      }
    
      if(pass == 2 && ge->getBeginVertex()){
        MVertex *vstart = *(ge->getBeginVertex()->mesh_vertices.begin());
        MVertex *vend = *(ge->getEndVertex()->mesh_vertices.begin());    
        std::map<MVertex*, BDS_Point*>::iterator itpstart = recoverMapInv.find(vstart);
        std::map<MVertex*, BDS_Point*>::iterator itpend = recoverMapInv.find(vend);
        if(itpstart != recoverMapInv.end() && itpend != recoverMapInv.end()){
          BDS_Point *pstart = itpstart->second;
          BDS_Point *pend = itpend->second;
          if(!pstart->g){
            m->add_geom(pstart->iD, 0);
            BDS_GeomEntity *g0 = m->get_geom(pstart->iD, 0);
            pstart->g = g0;
          }
          if(!pend->g){
            m->add_geom(pend->iD, 0);
            BDS_GeomEntity *g0 = m->get_geom(pend->iD, 0);
            pend->g = g0;
          }
        }
      }
    
      return true;
    }
    
    // Builds An initial triangular mesh that respects the boundaries of
    // the domain, including embedded points and surfaces
    static bool meshGenerator(GFace *gf, int RECUR_ITER, 
                              bool repairSelfIntersecting1dMesh,
                              bool debug = true)
    {
      BDS_GeomEntity CLASS_F(1, 2);
      BDS_GeomEntity CLASS_EXTERIOR(1, 3);
      std::map<BDS_Point*, MVertex*> recoverMap;
      std::map<MVertex*, BDS_Point*> recoverMapInv;
      std::list<GEdge*> edges = gf->edges();
      std::list<int> dir = gf->edgeOrientations();
    
      // replace edges by their compounds
      // if necessary split compound and remesh parts
      bool isMeshed = false;
      if(gf->geomType() == GEntity::CompoundSurface){
        isMeshed = checkMeshCompound((GFaceCompound*) gf, edges);
        if (isMeshed) return true;
      }
    
      // build a set with all points of the boundaries
      std::set<MVertex*> all_vertices;
      std::list<GEdge*>::iterator ite = edges.begin();
      while(ite != edges.end()){
        if((*ite)->isSeam(gf)) return false;
        if(!(*ite)->isMeshDegenerated()){
          for(unsigned int i = 0; i< (*ite)->lines.size(); i++){
    	MVertex *v1 = (*ite)->lines[i]->getVertex(0);
    	MVertex *v2 = (*ite)->lines[i]->getVertex(1);
            all_vertices.insert(v1);
            all_vertices.insert(v2);
          }
        }
        else
          printf("edge %d degenerated mesh \n", (*ite)->tag());
        ++ite;   
      }
    
      std::list<GEdge*> emb_edges = gf->embeddedEdges();
      ite = emb_edges.begin();
      while(ite != emb_edges.end()){
        if(!(*ite)->isMeshDegenerated()){
          all_vertices.insert((*ite)->mesh_vertices.begin(),
                              (*ite)->mesh_vertices.end() );      
          all_vertices.insert((*ite)->getBeginVertex()->mesh_vertices.begin(),
                              (*ite)->getBeginVertex()->mesh_vertices.end());
          all_vertices.insert((*ite)->getEndVertex()->mesh_vertices.begin(),
                              (*ite)->getEndVertex()->mesh_vertices.end());
        }
        ++ite;
      }
     
      // add embedded vertices
      std::list<GVertex*> emb_vertx = gf->embeddedVertices();
      std::list<GVertex*>::iterator itvx = emb_vertx.begin();
      while(itvx != emb_vertx.end()){
        all_vertices.insert((*itvx)->mesh_vertices.begin(),
                            (*itvx)->mesh_vertices.end());
        ++itvx;
      }
     
      // add _additional_vertices 
      all_vertices.insert(gf->_additional_vertices.begin(),
                          gf->_additional_vertices.end());
    
    
      if(all_vertices.size() < 3){
        Msg::Warning("Mesh Generation of Model Face %d Skipped: "
                     "Only %d Mesh Vertices on The Contours",
                     gf->tag(), all_vertices.size());
        gf->meshStatistics.status = GFace::DONE;
        return true;
      }
    
      // Buid a BDS_Mesh structure that is convenient for doing the actual
      // meshing procedure
      BDS_Mesh *m = new BDS_Mesh;
      m->scalingU = 1;
      m->scalingV = 1;
    
      std::vector<BDS_Point*> points(all_vertices.size());
      SBoundingBox3d bbox;
      int count = 0;
      for(std::set<MVertex*>::iterator it = all_vertices.begin(); 
          it != all_vertices.end(); it++){
        MVertex *here = *it;
        GEntity *ge = here->onWhat();
        SPoint2 param;
        reparamMeshVertexOnFace(here, gf, param);
        BDS_Point *pp = m->add_point(count, param[0], param[1], gf);
        m->add_geom(ge->tag(), ge->dim());
        BDS_GeomEntity *g = m->get_geom(ge->tag(), ge->dim());
        pp->g = g;
        recoverMap[pp] = here;
        recoverMapInv[here] = pp;
        points[count] = pp;
        bbox += SPoint3(param[0], param[1], 0);
        count++;
      }
      all_vertices.clear();
    
      // compute the bounding box in parametric space
      SVector3 dd(bbox.max(), bbox.min());
      double LC2D = norm(dd);
    
      // use a divide & conquer type algorithm to create a triangulation.
      // We add to the triangulation a box with 4 points that encloses the
      // domain.
      DocRecord doc(points.size() + 4);
      {
        for(unsigned int i = 0; i < points.size(); i++){
          double XX = CTX::instance()->mesh.randFactor * LC2D * (double)rand() / 
            (double)RAND_MAX;
          double YY = CTX::instance()->mesh.randFactor * LC2D * (double)rand() / 
            (double)RAND_MAX;
          doc.points[i].where.h = points[i]->u + XX;
          doc.points[i].where.v = points[i]->v + YY;
          doc.points[i].data = points[i];
          doc.points[i].adjacent = NULL;
    
        }
        
        // increase the size of the bounding box
        bbox *= 2.5;
    
        // add 4 points than encloses the domain (use negative number to
        // distinguish those fake vertices)
        double bb[4][2] = {{bbox.min().x(), bbox.min().y()},
                           {bbox.min().x(), bbox.max().y()},
                           {bbox.max().x(), bbox.min().y()},
                           {bbox.max().x(), bbox.max().y()}};
        for(int ip = 0; ip < 4; ip++){
          BDS_Point *pp = m->add_point(-ip - 1, bb[ip][0], bb[ip][1], gf);
          m->add_geom(gf->tag(), 2);
          BDS_GeomEntity *g = m->get_geom(gf->tag(), 2);
          pp->g = g;
          doc.points[points.size() + ip].where.h = bb[ip][0];
          doc.points[points.size() + ip].where.v = bb[ip][1];
          doc.points[points.size() + ip].adjacent = 0;
          doc.points[points.size() + ip].data = pp;
        }
        
        // Use "fast" inhouse recursive algo to generate the triangulation.
        // At this stage the triangulation is not what we need
        //   -) It does not necessary recover the boundaries
        //   -) It contains triangles outside the domain (the first edge
        //      loop is the outer one)
        Msg::Debug("Meshing of the convex hull (%d points)", points.size());
        doc.MakeMeshWithPoints();
        Msg::Debug("Meshing of the convex hull (%d points) done", points.size());
        
        for(int i = 0; i < doc.numTriangles; i++) {
          BDS_Point *p1 = (BDS_Point*)doc.points[doc.triangles[i].a].data;
          BDS_Point *p2 = (BDS_Point*)doc.points[doc.triangles[i].b].data;
          BDS_Point *p3 = (BDS_Point*)doc.points[doc.triangles[i].c].data;
          m->add_triangle(p1->iD, p2->iD, p3->iD);
        }
    
        if(debug && RECUR_ITER == 0){
          char name[245];
          sprintf(name, "surface%d-initial-real.pos", gf->tag());
          outputScalarField(m->triangles, name, 0);
          sprintf(name, "surface%d-initial-param.pos", gf->tag());
          outputScalarField(m->triangles, name, 1);
        }
    
        // Recover the boundary edges and compute characteristic lenghts
        // using mesh edge spacing. If two of these edges intersect, then
        // the 1D mesh have to be densified
        Msg::Debug("Recovering %d model Edges", edges.size());
        std::set<EdgeToRecover> edgesToRecover;
        std::set<EdgeToRecover> edgesNotRecovered;
        ite = edges.begin();
        while(ite != edges.end()){
          if(!(*ite)->isMeshDegenerated())
            recoverEdge(m, *ite, recoverMapInv, &edgesToRecover, &edgesNotRecovered, 1);
          ++ite;
        }
        ite = emb_edges.begin();
        while(ite != emb_edges.end()){
          if(!(*ite)->isMeshDegenerated())
            recoverEdge(m, *ite, recoverMapInv, &edgesToRecover, &edgesNotRecovered, 1);
          ++ite;
        }
        
        Msg::Debug("Recovering %d mesh Edges (%d not recovered)", edgesToRecover.size(),
                   edgesNotRecovered.size());
       
        // effectively recover the medge
        ite = edges.begin();
        while(ite != edges.end()){
          if(!(*ite)->isMeshDegenerated()){
            recoverEdge(m, *ite, recoverMapInv, &edgesToRecover, &edgesNotRecovered, 2);
          }
          ++ite;
        }
        
        if(edgesNotRecovered.size()){
          std::ostringstream sstream;
          for(std::set<EdgeToRecover>::iterator itr = edgesNotRecovered.begin();
              itr != edgesNotRecovered.end(); ++itr)
            sstream << " " << itr->ge->tag();
          Msg::Warning(":-( There are %d intersections in the 1D mesh (curves%s)",
                       edgesNotRecovered.size(), sstream.str().c_str());
          Msg::Warning("8-| Gmsh splits those edges and tries again");
        
          if(debug){
            char name[245];
            sprintf(name, "surface%d-not_yet_recovered-real-%d.msh", gf->tag(), 
                    RECUR_ITER);
            gf->model()->writeMSH(name);
          }
          
          std::list<GFace *> facesToRemesh;
          if(repairSelfIntersecting1dMesh) 
            remeshUnrecoveredEdges(recoverMapInv, edgesNotRecovered, facesToRemesh);
          else{
            std::set<EdgeToRecover>::iterator itr = edgesNotRecovered.begin();
            int *_error = new int[3 * edgesNotRecovered.size()];
            int I = 0;
            for(; itr != edgesNotRecovered.end(); ++itr){
              int p1 = itr->p1;
              int p2 = itr->p2;
              int tag = itr->ge->tag();
              _error[3 * I + 0] = p1;
              _error[3 * I + 1] = p2;
              _error[3 * I + 2] = tag;
              I++;
            }
            throw _error;
          }
    
          // delete the mesh
          delete m;
          if(RECUR_ITER < 10 && facesToRemesh.size() == 0)
            return meshGenerator
              (gf, RECUR_ITER + 1, repairSelfIntersecting1dMesh, debug);
          return false;
        }
    
        if(RECUR_ITER > 0)
          Msg::Warning(":-) Gmsh was able to recover all edges after %d iterations",
                       RECUR_ITER);    
        
        Msg::Debug("Boundary Edges recovered for surface %d", gf->tag());
        
        // look for a triangle that has a negative node and recursively
        // tag all exterior triangles
        {
          std::list<BDS_Face*>::iterator itt = m->triangles.begin();
          while (itt != m->triangles.end()){
    	(*itt)->g = 0;
    	++itt;
          }
          itt = m->triangles.begin();
          while (itt != m->triangles.end()){
            BDS_Face *t = *itt;
    	BDS_Point *n[4];
    	t->getNodes(n);
    	if (n[0]->iD < 0 || n[1]->iD < 0 || 
    	    n[2]->iD < 0 ) {
    	  recur_tag(t, &CLASS_EXTERIOR);
    	  break;
    	}
    	++itt;
          }
        }
        
        // now find an edge that has belongs to one of the exterior
        // triangles
        {
          std::list<BDS_Edge*>::iterator ite = m->edges.begin();
          while (ite != m->edges.end()){
            BDS_Edge *e = *ite;
            if(e->g  && e->numfaces() == 2){
              if(e->faces(0)->g == &CLASS_EXTERIOR){
                recur_tag(e->faces(1), &CLASS_F);
                break;
              }
              else if(e->faces(1)->g == &CLASS_EXTERIOR){
                recur_tag(e->faces(0), &CLASS_F);
                break;
              }
            }
            ++ite;
          }
          std::list<BDS_Face*>::iterator itt = m->triangles.begin();
          while (itt != m->triangles.end()){
    	if ((*itt)->g == &CLASS_EXTERIOR) (*itt)->g = 0;
    	++itt;
          }
        }
    
        {
          std::list<BDS_Edge*>::iterator ite = m->edges.begin();
          while (ite != m->edges.end()){
            BDS_Edge *e = *ite;
            if(e->g  && e->numfaces() == 2){
              BDS_Point *oface[2];
              e->oppositeof(oface);
              if(oface[0]->iD < 0){
                recur_tag(e->faces(1), &CLASS_F);
                break;
              }
              else if(oface[1]->iD < 0){
                recur_tag(e->faces(0), &CLASS_F);
                break;
              }
            }
            ++ite;
          }
        }
        
        ite = emb_edges.begin();
        while(ite != emb_edges.end()){
          if(!(*ite)->isMeshDegenerated())
            recoverEdge(m, *ite, recoverMapInv, &edgesToRecover, &edgesNotRecovered, 2);
          ++ite;
        }
    
        // compute characteristic lengths at vertices    
        Msg::Debug("Computing mesh size field at mesh vertices %d", 
                   edgesToRecover.size());
        for(int i = 0; i < doc.numPoints; i++){
          BDS_Point *pp = (BDS_Point*)doc.points[i].data;
          std::map<BDS_Point*, MVertex*>::iterator itv = recoverMap.find(pp);
          if(itv != recoverMap.end()){
            MVertex *here = itv->second;
            GEntity *ge = here->onWhat();
            if(ge->dim() == 0){
              pp->lcBGM() = BGM_MeshSize(ge, 0, 0, here->x(), here->y(), here->z());
            }
            else if(ge->dim() == 1){
              double u;
              here->getParameter(0, u);
              pp->lcBGM() = BGM_MeshSize(ge, u, 0, here->x(), here->y(), here->z());
            }
            else
              pp->lcBGM() = MAX_LC;      
            pp->lc() = pp->lcBGM();
          }
        }
      }
    
      // delete useless stuff
      std::list<BDS_Face*>::iterator itt = m->triangles.begin();
      while (itt != m->triangles.end()){
        BDS_Face *t = *itt;
        if(!t->g) m->del_face(t);
        ++itt;
      }
      m->cleanup();
    
      {
        std::list<BDS_Edge*>::iterator ite = m->edges.begin();
        while (ite != m->edges.end()){
          BDS_Edge *e = *ite;
          if(e->numfaces() == 0)
            m->del_edge(e);
          else{
            if(!e->g) 
              e->g = &CLASS_F;
            if(!e->p1->g || e->p1->g->classif_degree > e->g->classif_degree) 
              e->p1->g = e->g;
            if(!e->p2->g || e->p2->g->classif_degree > e->g->classif_degree) 
              e->p2->g = e->g;
          }
          ++ite;
        }
      }
      m->cleanup();
      m->del_point(m->find_point(-1));
      m->del_point(m->find_point(-2));
      m->del_point(m->find_point(-3));
      m->del_point(m->find_point(-4));
    
      if(debug){
        char name[245];
        sprintf(name, "surface%d-recovered-real.pos", gf->tag());
        outputScalarField(m->triangles, name, 0);
        sprintf(name, "surface%d-recovered-param.pos", gf->tag());
        outputScalarField(m->triangles, name, 1);
      }
    
      {
        std::list<BDS_Face*>::iterator itt = m->triangles.begin();
        while (itt != m->triangles.end()){
          BDS_Face *t = *itt;
          if(!t->deleted){
            BDS_Point *n[4];
            t->getNodes(n);
            MVertex *v1 = recoverMap[n[0]];
            MVertex *v2 = recoverMap[n[1]];
            MVertex *v3 = recoverMap[n[2]];
            if(!n[3]){
              if(v1 != v2 && v1 != v3 && v2 != v3)
                gf->triangles.push_back(new MTriangle(v1, v2, v3));
            }
            else{
              MVertex *v4 = recoverMap[n[3]];
              gf->quadrangles.push_back(new MQuadrangle(v1, v2, v3, v4));
            }
          }
          ++itt;
        }
      }
    
      if (Msg::GetVerbosity() == 10){
        MElementOctree octree(gf->model());
        doc.Voronoi();
        doc.makePosView("voronoi.pos", gf);
        doc.printMedialAxis(octree.getInternalOctree(), "skeleton.pos", gf);
      }
    
      gf->triangles.clear();
      gf->quadrangles.clear();
    
      int nb_swap;
      //outputScalarField(m->triangles, "beforeswop.pos",1);
      Msg::Debug("Delaunizing the initial mesh");
      delaunayizeBDS(gf, *m, nb_swap);
      //outputScalarField(m->triangles, "afterswop.pos",0);
      Msg::Debug("Starting to add internal points");
    
      // start mesh generation
      if(!algoDelaunay2D(gf)){
        refineMeshBDS(gf, *m, CTX::instance()->mesh.refineSteps, true,
                      &recoverMapInv);
        optimizeMeshBDS(gf, *m, 2);
        refineMeshBDS(gf, *m, CTX::instance()->mesh.refineSteps, false,
                      &recoverMapInv);
        optimizeMeshBDS(gf, *m, 2);
      }
      computeMeshSizeFieldAccuracy(gf, *m, gf->meshStatistics.efficiency_index,
                                   gf->meshStatistics.longest_edge_length,
                                   gf->meshStatistics.smallest_edge_length,
                                   gf->meshStatistics.nbEdge,
                                   gf->meshStatistics.nbGoodLength);
      gf->meshStatistics.status = GFace::DONE;
    
      // fill the small gmsh structures
      {
        std::set<BDS_Point*,PointLessThan>::iterator itp = m->points.begin();
        while (itp != m->points.end()){
          BDS_Point *p = *itp;
          if(recoverMap.find(p) == recoverMap.end()){
            MVertex *v = new MFaceVertex
              (p->X, p->Y, p->Z, gf, m->scalingU * p->u, m->scalingV * p->v);
            recoverMap[p] = v;
            gf->mesh_vertices.push_back(v);
          }
          ++itp;
        }
      }
      {
        std::list<BDS_Face*>::iterator itt = m->triangles.begin();
        while (itt != m->triangles.end()){
          BDS_Face *t = *itt;
          if(!t->deleted){
            BDS_Point *n[4];
            t->getNodes(n);
            MVertex *v1 = recoverMap[n[0]];
            MVertex *v2 = recoverMap[n[1]];
            MVertex *v3 = recoverMap[n[2]];
            if(!n[3]){
              // when a singular point is present, degenerated triangles
              // may be created, for example on a sphere that contains one
              // pole
              if(v1 != v2 && v1 != v3 && v2 != v3)
                gf->triangles.push_back(new MTriangle(v1, v2, v3));
            }
            else{
              MVertex *v4 = recoverMap[n[3]];
              gf->quadrangles.push_back(new MQuadrangle(v1, v2, v3, v4));
            }
          }
          ++itt;
        }
      }
    
      // the delaunay algo is based directly on internal gmsh structures
      // BDS mesh is passed in order not to recompute local coordinates of
      // vertices
      if(algoDelaunay2D(gf)){
        if(CTX::instance()->mesh.algo2d == ALGO_2D_FRONTAL)
          bowyerWatsonFrontal(gf);
        else if(CTX::instance()->mesh.algo2d == ALGO_2D_DELAUNAY)
          bowyerWatson(gf);
        else {
          bowyerWatson(gf);
          meshGFaceBamg(gf);
        }
        for(int i = 0; i < CTX::instance()->mesh.nbSmoothing; i++) 
          laplaceSmoothing(gf);
      }
      else if(debug){
        char name[256];
        sprintf(name, "real%d.pos", gf->tag());
        outputScalarField(m->triangles, name, 0, gf);
        sprintf(name, "param%d.pos", gf->tag());
        outputScalarField(m->triangles, name,1);
      }
      if(CTX::instance()->mesh.remove4triangles)
        removeFourTrianglesNodes(gf,false); 
    
      // delete the mesh
      delete m;
    
      if(gf->meshAttributes.recombine && !CTX::instance()->mesh.optimizeLloyd)
        recombineIntoQuads(gf);
    
      computeElementShapes(gf, gf->meshStatistics.worst_element_shape,
                           gf->meshStatistics.average_element_shape,
                           gf->meshStatistics.best_element_shape,
                           gf->meshStatistics.nbTriangle,
                           gf->meshStatistics.nbGoodQuality);
    
      return true;
    }
    
    // this function buils a list of vertices (BDS) that are consecutive
    // in one given edge loop. We take care of periodic surfaces. In the
    // case of periodicty, some curves are present 2 times in the wire
    // (seams). Those must be meshed separately
    
    static inline double dist2(const SPoint2 &p1, const SPoint2 &p2)
    {
      const double dx = p1.x() - p2.x();
      const double dy = p1.y() - p2.y();
      return dx * dx + dy * dy;
    }
    
    static void printMesh1d(int iEdge, int seam, std::vector<SPoint2> &m)
    {
      printf("Mesh1D for edge %d seam %d\n", iEdge, seam);
      for(unsigned int i = 0; i < m.size(); i++){
        printf("%12.5E %12.5E\n", m[i].x(), m[i].y());
      }
    }
    
    static bool buildConsecutiveListOfVertices(GFace *gf, GEdgeLoop &gel,
                                               std::vector<BDS_Point*> &result,
                                               SBoundingBox3d &bbox, BDS_Mesh *m,
                                               std::map<BDS_Point*, MVertex*> &recoverMap,
                                               int &count, int countTot, double tol,
                                               bool seam_the_first = false)
    {
      // for each edge, we build a list of points that are the mapping of
      // the edge points on the face for seams, we build the list for
      // every side for closed loops, we build it on both senses
    
      std::map<GEntity*, std::vector<SPoint2> > meshes;
      std::map<GEntity*, std::vector<SPoint2> > meshes_seam;
    
      const int MYDEBUG = false;
    
      std::map<BDS_Point*, MVertex*> recoverMapLocal;
    
      result.clear();
      count = 0;
    
      GEdgeLoop::iter it = gel.begin();
    
      if(MYDEBUG) 
        printf("face %d with %d edges case %d\n", gf->tag(), 
               (int)gf->edges().size(), seam_the_first);
    
      while (it != gel.end()){
        GEdgeSigned ges = *it ;
        std::vector<SPoint2> mesh1d;
        std::vector<SPoint2> mesh1d_seam;
        
        bool seam = ges.ge->isSeam(gf);
    
        if (seam)printf("face %d has seam %d\n",gf->tag(),ges.ge->tag());
        
        Range<double> range = ges.ge->parBounds(0);
        
        MVertex *here = ges.ge->getBeginVertex()->mesh_vertices[0];
        mesh1d.push_back(ges.ge->reparamOnFace(gf, range.low(), 1));
        if(seam) mesh1d_seam.push_back(ges.ge->reparamOnFace(gf, range.low(), -1));
        for(unsigned int i = 0; i < ges.ge->mesh_vertices.size(); i++){
          double u;
          here = ges.ge->mesh_vertices[i];
          here->getParameter(0, u);
          mesh1d.push_back(ges.ge->reparamOnFace(gf, u, 1));
          if(seam) mesh1d_seam.push_back(ges.ge->reparamOnFace(gf, u, -1));
        }
        here = ges.ge->getEndVertex()->mesh_vertices[0];
        mesh1d.push_back(ges.ge->reparamOnFace(gf, range.high(), 1));
        if(seam) mesh1d_seam.push_back(ges.ge->reparamOnFace(gf, range.high(), -1));
        meshes.insert(std::pair<GEntity*,std::vector<SPoint2> >(ges.ge, mesh1d));
        if(seam) meshes_seam.insert(std::pair<GEntity*,std::vector<SPoint2> > 
                                    (ges.ge, mesh1d_seam));
        // printMesh1d(ges.ge->tag(), seam, mesh1d);
        // if(seam) printMesh1d (ges.ge->tag(), seam, mesh1d_seam);
        it++;
      }
    
      std::list<GEdgeSigned> unordered;
      unordered.insert(unordered.begin(), gel.begin(), gel.end());
    
      GEdgeSigned found(0, 0);
      SPoint2 last_coord(0, 0);
      int counter = 0;
    
      while (unordered.size()){
        if(MYDEBUG)
          printf("unordered.size() = %d\n", (int)unordered.size());
        std::list<GEdgeSigned>::iterator it = unordered.begin();
        std::vector<SPoint2>  coords;
    
        while (it != unordered.end()){
          std::vector<SPoint2> mesh1d;
          std::vector<SPoint2> mesh1d_seam;
          std::vector<SPoint2> mesh1d_reversed;
          std::vector<SPoint2> mesh1d_seam_reversed;
          GEdge *ge = (*it).ge;
          bool seam = ge->isSeam(gf);
          mesh1d = meshes[ge];
          if(seam){ mesh1d_seam = meshes_seam[ge]; }
          mesh1d_reversed.insert(mesh1d_reversed.begin(), mesh1d.rbegin(), mesh1d.rend());
          if(seam) mesh1d_seam_reversed.insert(mesh1d_seam_reversed.begin(),
                                               mesh1d_seam.rbegin(),mesh1d_seam.rend());
          if(!counter){
            counter++;
            if(seam && seam_the_first){
              coords = ((*it)._sign == 1) ? mesh1d_seam : mesh1d_seam_reversed;
              found = (*it);
              Msg::Info("This test case would have failed in previous Gmsh versions ;-)");
            }
            else{
              coords = ((*it)._sign == 1) ? mesh1d : mesh1d_reversed;
              found = (*it);
            }
            unordered.erase(it);
            if(MYDEBUG)
              printf("Starting with edge = %d seam %d\n", (*it).ge->tag(), seam);
            break;
          }
          else{
            if(MYDEBUG)
              printf("Followed by edge = %d\n", (*it).ge->tag());
            SPoint2 first_coord = mesh1d[0];
            double d = -1, d_reversed = -1, d_seam = -1, d_seam_reversed = -1;
            d = dist2(last_coord, first_coord);
            if(MYDEBUG)
              printf("%g %g dist = %12.5E\n", first_coord.x(), first_coord.y(), d);
            if(d < tol){
              coords.clear();
              coords = mesh1d;
              found = GEdgeSigned(1,ge);
              unordered.erase(it);
              goto Finalize;
            }
            SPoint2 first_coord_reversed = mesh1d_reversed[0];
            d_reversed = dist2(last_coord, first_coord_reversed);
            if(MYDEBUG)
              printf("%g %g dist_reversed = %12.5E\n", 
                     first_coord_reversed.x(), first_coord_reversed.y(), d_reversed);
            if(d_reversed < tol){
              coords.clear();
              coords = mesh1d_reversed;
              found = (GEdgeSigned(-1,ge));
              unordered.erase(it);
              goto Finalize;
            }
            if(seam){
              SPoint2 first_coord_seam = mesh1d_seam[0];
              SPoint2 first_coord_seam_reversed = mesh1d_seam_reversed[0];
              d_seam = dist2(last_coord,first_coord_seam);
              if(MYDEBUG) printf("dist_seam = %12.5E\n", d_seam);
              if(d_seam < tol){
                coords.clear();
                coords = mesh1d_seam;
                found = (GEdgeSigned(1,ge));
                unordered.erase(it);
                goto Finalize;
              }
              d_seam_reversed = dist2(last_coord, first_coord_seam_reversed);
              if(MYDEBUG) printf("dist_seam_reversed = %12.5E\n", d_seam_reversed);
              if(d_seam_reversed < tol){
                coords.clear();
                coords = mesh1d_seam_reversed;
                found = GEdgeSigned(-1, ge);
                unordered.erase(it);
                break;
                goto Finalize;
              }
            }
          }
          ++it;
        }
      Finalize:
        if(MYDEBUG) printf("Finalize, found %d points\n", (int)coords.size());
        if(coords.size() == 0){
          // It has not worked : either tolerance is wrong or the first seam edge
          // has to be taken with the other parametric coordinates (because it is
          // only present once in the closure of the domain).
          for(std::map<BDS_Point*, MVertex*>::iterator it = recoverMapLocal.begin();
              it != recoverMapLocal.end(); ++it){
            m->del_point(it->first);
          }
          return false;
        }
         
        std::vector<MVertex*> edgeLoop;
        if(found._sign == 1){
          edgeLoop.push_back(found.ge->getBeginVertex()->mesh_vertices[0]);
          for(unsigned int i = 0; i <found.ge->mesh_vertices.size(); i++)
            edgeLoop.push_back(found.ge->mesh_vertices[i]);
        }
        else{
          edgeLoop.push_back(found.ge->getEndVertex()->mesh_vertices[0]);
          for(int i = found.ge->mesh_vertices.size() - 1; i >= 0; i--)
            edgeLoop.push_back(found.ge->mesh_vertices[i]);
        }
         
        if(MYDEBUG)
          printf("edge %d size %d size %d\n",
                 found.ge->tag(), (int)edgeLoop.size(), (int)coords.size());
         
        std::vector<BDS_Point*> edgeLoop_BDS;
        for(unsigned int i = 0; i < edgeLoop.size(); i++){
          MVertex *here = edgeLoop[i];
          GEntity *ge = here->onWhat();
          double U, V;
          SPoint2 param = coords[i];
          U = param.x() / m->scalingU ;
          V = param.y() / m->scalingV;
          BDS_Point *pp = m->add_point(count + countTot, U, V, gf);
          if(ge->dim() == 0){
            pp->lcBGM() = BGM_MeshSize(ge, 0, 0, here->x(), here->y(), here->z());
          }
          else if(ge->dim() == 1){
            double u;
            here->getParameter(0, u);
            pp->lcBGM() = BGM_MeshSize(ge, u, 0,here->x(), here->y(), here->z());
          }
          else
            pp->lcBGM() = MAX_LC;
           
          pp->lc() = pp->lcBGM();
          m->add_geom (ge->tag(), ge->dim());
          BDS_GeomEntity *g = m->get_geom(ge->tag(), ge->dim());
          pp->g = g;
          if(MYDEBUG)
            printf("point %3d (%8.5f %8.5f : %8.5f %8.5f) (%2d,%2d)\n",
                   count, pp->u, pp->v, param.x(), param.y(), pp->g->classif_tag,
                   pp->g->classif_degree);
          bbox += SPoint3(U, V, 0);
          edgeLoop_BDS.push_back(pp);
          recoverMapLocal[pp] = here;
          count++;
        }
        last_coord = coords[coords.size() - 1];
        if(MYDEBUG) printf("last coord %g %g\n", last_coord.x(), last_coord.y());
        result.insert(result.end(), edgeLoop_BDS.begin(), edgeLoop_BDS.end());
      }
      
      // It has worked, so we add all the points to the recover map
      recoverMap.insert(recoverMapLocal.begin(), recoverMapLocal.end());
    
      return true;
    }
    
    static bool meshGeneratorPeriodic(GFace *gf, bool debug = true)
    {
      std::map<BDS_Point*, MVertex*> recoverMap;
    
      Range<double> rangeU = gf->parBounds(0);
      Range<double> rangeV = gf->parBounds(1);
    
      double du = rangeU.high() - rangeU.low();
      double dv = rangeV.high() - rangeV.low();
    
      const double LC2D = sqrt(du * du + dv * dv);
    
      // Buid a BDS_Mesh structure that is convenient for doing the actual
      // meshing procedure
      BDS_Mesh *m = new BDS_Mesh;
      m->scalingU = 1;
      m->scalingV = 1;
    
      std::vector<std::vector<BDS_Point*> > edgeLoops_BDS;
      SBoundingBox3d bbox;
      int nbPointsTotal = 0;
      {
        for(std::list<GEdgeLoop>::iterator it = gf->edgeLoops.begin(); 
            it != gf->edgeLoops.end(); it++){
          std::vector<BDS_Point* > edgeLoop_BDS;
          int nbPointsLocal;
          const double fact[4] = {1.e-12, 1.e-7, 1.e-5, 1.e-3};
          bool ok = false;
          for(int i = 0; i < 4; i++){
            if(buildConsecutiveListOfVertices(gf, *it, edgeLoop_BDS, bbox, m, 
                                              recoverMap, nbPointsLocal, 
                                              nbPointsTotal, fact[i] * LC2D)){
              ok = true;
              break;
            }
            if(buildConsecutiveListOfVertices(gf, *it, edgeLoop_BDS, bbox, m, 
                                              recoverMap, nbPointsLocal,
                                              nbPointsTotal, fact[i] * LC2D, true)){
              ok = true;
              break;
            }
          }
          if(!ok){
            gf->meshStatistics.status = GFace::FAILED;
            Msg::Error("The 1D Mesh seems not to be forming a closed loop");
            m->scalingU = m->scalingV = 1.0;
            return false;
          }
          nbPointsTotal += nbPointsLocal;
          edgeLoops_BDS.push_back(edgeLoop_BDS);
        }
      }
    
      // Use a divide & conquer type algorithm to create a triangulation.
      // We add to the triangulation a box with 4 points that encloses the
      // domain.
      {
        DocRecord doc(nbPointsTotal + 4);
        int count = 0;
        for(unsigned int i = 0; i < edgeLoops_BDS.size(); i++){
          std::vector<BDS_Point*> &edgeLoop_BDS = edgeLoops_BDS[i];
          for(unsigned int j = 0; j < edgeLoop_BDS.size(); j++){
            BDS_Point *pp = edgeLoop_BDS[j];
            double XX = CTX::instance()->mesh.randFactor * LC2D * (double)rand() / 
              (double)RAND_MAX;
            double YY = CTX::instance()->mesh.randFactor * LC2D * (double)rand() / 
              (double)RAND_MAX;
            doc.points[count].where.h = pp->u + XX;
            doc.points[count].where.v = pp->v + YY;
            doc.points[count].adjacent = NULL;
            doc.points[count].data = pp;
            count++;
          }
        }
    
        // Increase the size of the bounding box, add 4 points that enclose
        // the domain, use negative number to distinguish those fake
        // vertices
        bbox *= 3.5;
        MVertex *bb[4];
        bb[0] = new MVertex(bbox.min().x(), bbox.min().y(), 0, 0, -1);
        bb[1] = new MVertex(bbox.min().x(), bbox.max().y(), 0, 0, -2);
        bb[2] = new MVertex(bbox.max().x(), bbox.min().y(), 0, 0, -3);
        bb[3] = new MVertex(bbox.max().x(), bbox.max().y(), 0, 0, -4);    
        for(int ip = 0; ip < 4; ip++){
          BDS_Point *pp = m->add_point(-ip - 1, bb[ip]->x(), bb[ip]->y(), gf);
          m->add_geom(gf->tag(), 2);
          BDS_GeomEntity *g = m->get_geom(gf->tag(), 2);
          pp->g = g;
          doc.points[nbPointsTotal+ip].where.h = bb[ip]->x();
          doc.points[nbPointsTotal+ip].where.v = bb[ip]->y();
          doc.points[nbPointsTotal+ip].adjacent = 0;
          doc.points[nbPointsTotal+ip].data = pp;
        }
        for(int ip = 0; ip < 4; ip++) delete bb[ip];
        
        // Use "fast" inhouse recursive algo to generate the triangulation
        // At this stage the triangulation is not what we need
        //   -) It does not necessary recover the boundaries
        //   -) It contains triangles outside the domain (the first edge
        //      loop is the outer one)
        Msg::Debug("Meshing of the convex hull (%d points)", nbPointsTotal);
        doc.MakeMeshWithPoints();
        
        for(int i = 0; i < doc.numTriangles; i++){
          BDS_Point *p1 = (BDS_Point*)doc.points[doc.triangles[i].a].data;
          BDS_Point *p2 = (BDS_Point*)doc.points[doc.triangles[i].b].data;
          BDS_Point *p3 = (BDS_Point*)doc.points[doc.triangles[i].c].data;
          m->add_triangle(p1->iD, p2->iD, p3->iD);
        }
      }
    
      // Recover the boundary edges and compute characteristic lenghts
      // using mesh edge spacing
      BDS_GeomEntity CLASS_F(1, 2);
      BDS_GeomEntity CLASS_E(1, 1);
      BDS_GeomEntity CLASS_EXTERIOR(3, 2);
    
      if(debug){
        char name[245];
        sprintf(name, "surface%d-initial-real.pos", gf->tag());
        outputScalarField(m->triangles, name, 0);
        sprintf(name, "surface%d-initial-param.pos", gf->tag());
        outputScalarField(m->triangles, name, 1);
      }
    
      for(unsigned int i = 0; i < edgeLoops_BDS.size(); i++){
        std::vector<BDS_Point*> &edgeLoop_BDS = edgeLoops_BDS[i];
        for(unsigned int j = 0; j < edgeLoop_BDS.size(); j++){
          BDS_Edge * e = m->recover_edge
            (edgeLoop_BDS[j]->iD, edgeLoop_BDS[(j + 1) % edgeLoop_BDS.size()]->iD);
          if(!e){
            Msg::Error("Impossible to recover the edge %d %d", edgeLoop_BDS[j]->iD,
                       edgeLoop_BDS[(j + 1) % edgeLoop_BDS.size()]->iD);
            gf->meshStatistics.status = GFace::FAILED;
            return false;
          }
          else e->g = &CLASS_E;
        }
      }
    
      // look for a triangle that has a negative node and recursively
      // tag all exterior triangles
      {
        std::list<BDS_Face*>::iterator itt = m->triangles.begin();
        while (itt != m->triangles.end()){
          (*itt)->g = 0;
          ++itt;
        }
        itt = m->triangles.begin();
        while (itt != m->triangles.end()){
          BDS_Face *t = *itt;
          BDS_Point *n[4];
          t->getNodes(n);
          if (n[0]->iD < 0 || n[1]->iD < 0 || 
              n[2]->iD < 0 ) {
            recur_tag(t, &CLASS_EXTERIOR);
            break;
          }
          ++itt;
        }
      }
      
      // now find an edge that has belongs to one of the exterior
      // triangles
      {
        std::list<BDS_Edge*>::iterator ite = m->edges.begin();
        while (ite != m->edges.end()){
          BDS_Edge *e = *ite;
          if(e->g  && e->numfaces() == 2){
            if(e->faces(0)->g == &CLASS_EXTERIOR){
              recur_tag(e->faces(1), &CLASS_F);
              break;
            }
            else if(e->faces(1)->g == &CLASS_EXTERIOR){
              recur_tag(e->faces(0), &CLASS_F);
              break;
            }
          }
          ++ite;
        }
        std::list<BDS_Face*>::iterator itt = m->triangles.begin();
        while (itt != m->triangles.end()){
          if ((*itt)->g == &CLASS_EXTERIOR) (*itt)->g = 0;
          ++itt;
        }
      }
    
      // delete useless stuff
      {
        std::list<BDS_Face*>::iterator itt = m->triangles.begin();
        while (itt != m->triangles.end()){
          BDS_Face *t = *itt;
          if(!t->g){
            m->del_face (t);
          }
          ++itt;
        }
      }
      
      m->cleanup();
      
      {
        std::list<BDS_Edge*>::iterator ite = m->edges.begin();
        while (ite != m->edges.end()){
          BDS_Edge *e = *ite;
          if(e->numfaces() == 0)
            m->del_edge(e);
          else{
            if(!e->g)
              e->g = &CLASS_F;
            if(!e->p1->g || e->p1->g->classif_degree > e->g->classif_degree)
              e->p1->g = e->g;
            if(!e->p2->g || e->p2->g->classif_degree > e->g->classif_degree)
              e->p2->g = e->g;
          }
          ++ite;
        }
      }
      m->cleanup();
      m->del_point(m->find_point(-1));
      m->del_point(m->find_point(-2));
      m->del_point(m->find_point(-3));
      m->del_point(m->find_point(-4));
    
      if(debug){
        char name[245];
        sprintf(name, "surface%d-recovered-real.pos", gf->tag());
        outputScalarField(m->triangles, name, 0);
        sprintf(name, "surface%d-recovered-param.pos", gf->tag());
        outputScalarField(m->triangles, name, 1);
      }
    
      // start mesh generation
      if(!algoDelaunay2D(gf)){
        refineMeshBDS(gf, *m, CTX::instance()->mesh.refineSteps, true);
        optimizeMeshBDS(gf, *m, 2);
        refineMeshBDS(gf, *m, -CTX::instance()->mesh.refineSteps, false);
        optimizeMeshBDS(gf, *m, 2, &recoverMap);
        // compute mesh statistics
        computeMeshSizeFieldAccuracy(gf, *m, gf->meshStatistics.efficiency_index,
                                     gf->meshStatistics.longest_edge_length,
                                     gf->meshStatistics.smallest_edge_length,
                                     gf->meshStatistics.nbEdge,
                                     gf->meshStatistics.nbGoodLength);
        gf->meshStatistics.status = GFace::DONE;
      }
      
      // fill the small gmsh structures
      {
        std::set<BDS_Point*, PointLessThan>::iterator itp = m->points.begin();
        while (itp != m->points.end()){
          BDS_Point *p = *itp;
          if(recoverMap.find(p) == recoverMap.end()){
            MVertex *v = new MFaceVertex
              (p->X, p->Y, p->Z, gf, m->scalingU * p->u, m->scalingV * p->v);
            recoverMap[p] = v;
            gf->mesh_vertices.push_back(v);
          }
          ++itp;
        }
      }
      
      {
        std::list<BDS_Face*>::iterator itt = m->triangles.begin();
        while (itt != m->triangles.end()){
          BDS_Face *t = *itt;
          if(!t->deleted){
            BDS_Point *n[4];
            t->getNodes(n);
            MVertex *v1 = recoverMap[n[0]];
            MVertex *v2 = recoverMap[n[1]];
            MVertex *v3 = recoverMap[n[2]];
            if(!n[3]){
              // when a singular point is present, degenerated triangles
              // may be created, for example on a sphere that contains one
              // pole
              if(v1 != v2 && v1 != v3 && v2 != v3)
                gf->triangles.push_back(new MTriangle(v1, v2, v3));
            }
            else{
              MVertex *v4 = recoverMap[n[3]];
              gf->quadrangles.push_back(new MQuadrangle(v1, v2, v3, v4));
            }
          }
          ++itt;
        }
      }
      
      if(debug){
        char name[245];
        sprintf(name, "surface%d-final-real.pos", gf->tag());
        outputScalarField(m->triangles, name, 0, gf);
        sprintf(name, "surface%d-final-param.pos", gf->tag());
        outputScalarField(m->triangles, name, 1);
      }
      
      if(algoDelaunay2D(gf)){
        if(CTX::instance()->mesh.algo2d == ALGO_2D_FRONTAL)
          bowyerWatsonFrontal(gf);
        else if(CTX::instance()->mesh.algo2d == ALGO_2D_DELAUNAY)
          bowyerWatson(gf);
        else 
          meshGFaceBamg(gf);
        for(int i = 0; i < CTX::instance()->mesh.nbSmoothing; i++) 
          laplaceSmoothing(gf);
      }
      
      // delete the mesh  
      delete m;
    
     if(gf->meshAttributes.recombine && !CTX::instance()->mesh.optimizeLloyd)
        recombineIntoQuads(gf);
     
      computeElementShapes(gf, gf->meshStatistics.worst_element_shape,
                           gf->meshStatistics.average_element_shape,
                           gf->meshStatistics.best_element_shape,
                           gf->meshStatistics.nbTriangle,
                           gf->meshStatistics.nbGoodQuality);
      return true;
    }
    
    void deMeshGFace::operator() (GFace *gf)
    {
      if(gf->geomType() == GEntity::DiscreteSurface) return;
      gf->deleteMesh();
      gf->meshStatistics.status = GFace::PENDING;
      gf->meshStatistics.nbTriangle = gf->meshStatistics.nbEdge = 0;
    }
    
    // for debugging, change value from -1 to -100;
    int debugSurface = -1; 
    
    void meshGFace::operator() (GFace *gf)
    {
      gf->model()->setCurrentMeshEntity(gf);
    
      if(debugSurface >= 0 && gf->tag() != debugSurface){
        gf->meshStatistics.status = GFace::DONE;
        return;
      }
    
      if(gf->geomType() == GEntity::DiscreteSurface) return;
      if(gf->geomType() == GEntity::BoundaryLayerSurface) return;
      if(gf->geomType() == GEntity::ProjectionFace) return;
      if(gf->meshAttributes.Method == MESH_NONE) return;
      if(CTX::instance()->mesh.meshOnlyVisible && !gf->getVisibility()) return;
    
      // destroy the mesh if it exists
      deMeshGFace dem;
      dem(gf);
    
      if(MeshTransfiniteSurface(gf)) return;
      if(MeshExtrudedSurface(gf)) return;
      if(gf->meshMaster() != gf->tag()){
        GFace *gff = gf->model()->getFaceByTag(abs(gf->meshMaster()));
        if (gff->meshStatistics.status != GFace::DONE){
          gf->meshStatistics.status = GFace::PENDING;
          return;
        }
        Msg::Info("Meshing face %d (%s) as a copy of %d", gf->tag(), 
                  gf->getTypeString().c_str(), gf->meshMaster());
        copyMesh(gff, gf);
        gf->meshStatistics.status = GFace::DONE;
        return;    
      }
    
      const char *algo = "Unknown";
      if(CTX::instance()->mesh.algo2d == ALGO_2D_FRONTAL)
        algo = "Frontal";
      else if(CTX::instance()->mesh.algo2d == ALGO_2D_DELAUNAY)
        algo = "Delaunay";
      else if(CTX::instance()->mesh.algo2d == ALGO_2D_MESHADAPT_OLD)
        algo = "MeshAdapt (old)";
      else if(CTX::instance()->mesh.algo2d == ALGO_2D_BAMG)
        algo = "Bamg";
      else 
        algo = "MeshAdapt";
    
      Msg::StatusBar(2, true, "Meshing surface %d (%s, %s)", 
                     gf->tag(), gf->getTypeString().c_str(), algo);
    
      // compute loops on the fly (indices indicate start and end points
      // of a loop; loops are not yet oriented)
      Msg::Debug("Computing edge loops");
    
      Msg::Debug("Generating the mesh");
      if ((gf->getNativeType() != GEntity::AcisModel ||
           (!gf->periodic(0) && !gf->periodic(1))) &&
          (noSeam(gf) || gf->getNativeType() == GEntity::GmshModel || 
           gf->edgeLoops.empty())){
        meshGenerator(gf, 0, repairSelfIntersecting1dMesh,
    		  debugSurface >= 0 || debugSurface == -100);
      }
      else {
        if(!meshGeneratorPeriodic
           (gf, debugSurface >= 0 || debugSurface == -100))
          Msg::Error("Impossible to mesh face %d", gf->tag());
      }
      
      Msg::Debug("Type %d %d triangles generated, %d internal vertices",
                 gf->geomType(), gf->triangles.size(), gf->mesh_vertices.size());
    
      // test : recompute the background mesh using a PDE
      /*
        if (backgroundMesh::current()){
        backgroundMesh::unset();
        }    
        else{
        backgroundMesh::set(gf);
        char name[256];
        sprintf(name,"bgm-%d.pos",gf->tag());
        backgroundMesh::current()->print(name,gf);
        (*this)(gf);
        }
      */
    }
    
    bool checkMeshCompound(GFaceCompound *gf, std::list<GEdge*> &edges)
    {
      bool isMeshed = false;
    #if defined(HAVE_SOLVER)  
    
      bool correctTopo = gf->checkTopology();
      if (!correctTopo && gf->allowPartition()){
        partitionAndRemesh((GFaceCompound*) gf);
        isMeshed = true;
        return isMeshed;
      }
      
      bool correctParam = gf->parametrize();
      
      if (!correctParam &&  gf->allowPartition()){
       partitionAndRemesh((GFaceCompound*) gf);
       isMeshed = true;
       return isMeshed;
      }
      
      //Replace edges by their compounds
      std::set<GEdge*> mySet;
      std::list<GEdge*>::iterator it = edges.begin();
      while(it != edges.end()){
        if((*it)->getCompound()){
          mySet.insert((*it)->getCompound());
        }
        else{ 
          mySet.insert(*it);
        }
        ++it;
      }
      edges.clear();
      edges.insert(edges.begin(), mySet.begin(), mySet.end());
    #endif
      return isMeshed;
    }
    
    void partitionAndRemesh(GFaceCompound *gf)
    {
    #if defined(HAVE_SOLVER) && (defined(HAVE_CHACO) || defined(HAVE_METIS))
    
      //Partition the mesh and createTopology for new faces
      //-----------------------------------------------------
      double tbegin = Cpu();
      std::list<GFace*> cFaces = gf->getCompounds();
      std::vector<MElement *> elements;
      for (std::list<GFace*>::iterator it = cFaces.begin(); it != cFaces.end(); it++)
        for(unsigned int j = 0; j < (*it)->getNumMeshElements(); j++)
          elements.push_back((*it)->getMeshElement(j));
    
      typeOfPartition method;
      if(gf->nbSplit > 0) method = MULTILEVEL;
      else method = LAPLACIAN;
        
      multiscalePartition *msp = new multiscalePartition(elements, abs(gf->nbSplit), method);
    
      //gf->partitionFaceCM(); 
    
      int NF = msp->getNumberOfParts();
      int numv = gf->model()->getMaxElementaryNumber(0) + 1;
      int nume = gf->model()->getMaxElementaryNumber(1) + 1;
      int numf = gf->model()->getMaxElementaryNumber(2) + 1;
      std::vector<discreteFace*> pFaces;
      createPartitionFaces(gf->model(), gf, NF, pFaces); 
      
      gf->model()->createTopologyFromFaces(pFaces);
       
      double tmult = Cpu();
      Msg::Info("Multiscale Partition SUCCESSFULLY PERFORMED : %d parts (%g s)", 
                NF, tmult - tbegin);
      gf->model()->writeMSH("multiscalePARTS.msh", 2.2, false, true);
     
      //Remesh new faces (Compound Lines and Compound Surfaces)
      //-----------------------------------------------------
      Msg::Info("*** Starting parametrize compounds:");
      double t0 = Cpu();
    
      //Parametrize Compound Lines
      int NE = gf->model()->getMaxElementaryNumber(1) - nume + 1;
      for (int i=0; i < NE; i++){
        std::vector<GEdge*>e_compound;
        GEdge *pe = gf->model()->getEdgeByTag(nume+i);//partition edge
        e_compound.push_back(pe); 
        int num_gec = nume + NE + i ;
        Msg::Info("Parametrize Compound Line (%d) = %d discrete edge", 
                  num_gec, pe->tag());
        GEdgeCompound *gec = new GEdgeCompound(gf->model(), num_gec, e_compound);
        gf->model()->add(gec);
    
        gec->parametrize();
      }
    
      //Parametrize Compound surfaces
      std::list<GEdge*> b[4];
      std::set<MVertex*> allNod; 
      for (int i=0; i < NF; i++){
        std::list<GFace*> f_compound;
        GFace *pf =  gf->model()->getFaceByTag(numf+i);//partition face 
        int num_gfc = numf + NF + i ;
        f_compound.push_back(pf);     
        Msg::Info("Parametrize Compound Surface (%d) = %d discrete face",
                  num_gfc, pf->tag());
        GFaceCompound *gfc = new GFaceCompound(gf->model(), num_gfc, f_compound,
                                               b[0], b[1], b[2], b[3], 0,
                                               gf->getTypeOfMapping());
        gfc->meshAttributes.recombine =  gf->meshAttributes.recombine;
        gf->model()->add(gfc);
    
        gfc->parametrize();
      }
    
      double t1 = Cpu();
      Msg::Info("*** Parametrize compounds done (%g s)", t1-t0);
     
      Msg::Info("*** Starting meshing 1D edges ...:");
      for (int i = 0; i < NE; i++){
        GEdge *gec = gf->model()->getEdgeByTag(nume + NE + i);
         meshGEdge mge;
         mge(gec);
      }
      double t2 = Cpu();
      Msg::Info("*** Meshing 1D edges done (%gs)", t2-t1);
    
      Msg::Info("*** Starting Mesh of surface %d ...", gf->tag());
    
      //lloydAlgorithm
      for (int i=0; i < NF; i++){
        GFace *gfc =  gf->model()->getFaceByTag(numf + NF + i );
        meshGFace mgf;
        mgf(gfc);
        //gfc->lloyd(20,0);
    
        for(unsigned int j = 0; j < gfc->triangles.size(); ++j){
          MTriangle *t = gfc->triangles[j];
          std::vector<MVertex *> v(3);
          for(int k = 0; k < 3; k++){
            v[k] = t->getVertex(k); 
            allNod.insert(v[k]);
          }
          gf->triangles.push_back(new MTriangle(v[0], v[1], v[2]));
        }  
     
      }
    
      //Removing discrete Vertices - Edges - Faces
      int NV = gf->model()->getMaxElementaryNumber(0) - numv + 1;
      for (int i=0; i < NV; i++){
        GVertex *pv = gf->model()->getVertexByTag(numv+i);
        gf->model()->remove(pv);
      }
      for (int i=0; i < NE; i++){
        GEdge *gec = gf->model()->getEdgeByTag(nume+NE+i);
        GEdge *pe = gf->model()->getEdgeByTag(nume+i);
        gf->model()->remove(pe); 
        gf->model()->remove(gec);
      }
      for (int i=0; i < NF; i++){
        GFace *gfc = gf->model()->getFaceByTag(numf+NF+i);
        GFace *pf  = gf->model()->getFaceByTag(numf+i);
        gf->model()->remove(pf); 
        gf->model()->remove(gfc);
      }
    
      //Put new mesh in a new discreteFace
      //-----------------------------------------------------
      for(std::set<MVertex*>::iterator it = allNod.begin(); it != allNod.end(); ++it){
        gf->mesh_vertices.push_back(*it);
      }
    
      //Remove mesh_vertices that belong to l_edges
      //-----------------------------------------------------
      std::list<GEdge*> l_edges = gf->edges();
      for(std::list<GEdge*>::iterator it = l_edges.begin(); it != l_edges.end(); it++){
        std::vector<MVertex*> edge_vertices = (*it)->mesh_vertices;
        std::vector<MVertex*>::const_iterator itv = edge_vertices.begin();
        for(; itv != edge_vertices.end(); itv++){
          std::vector<MVertex*>::iterator itve = std::find
            (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), *itv);
          if (itve != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itve);
        }
        MVertex *vB = (*it)->getBeginVertex()->mesh_vertices[0];
        std::vector<MVertex*>::iterator itvB = std::find
          (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), vB);
        if (itvB != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itvB);
        MVertex *vE = (*it)->getEndVertex()->mesh_vertices[0];
        std::vector<MVertex*>::iterator itvE = std::find
          (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), vE);
        if (itvE != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itvE);
    
        //if l_edge is a compond
        if((*it)->getCompound()){
          GEdgeCompound *gec = (*it)->getCompound();
          std::vector<MVertex*> edge_vertices = gec->mesh_vertices;
          std::vector<MVertex*>::const_iterator itv = edge_vertices.begin();
          for(; itv != edge_vertices.end(); itv++){
            std::vector<MVertex*>::iterator itve = std::find
              (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), *itv);
            if (itve != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itve);
          }
          MVertex *vB = (*it)->getBeginVertex()->mesh_vertices[0];
          std::vector<MVertex*>::iterator itvB = std::find
            (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), vB);
          if (itvB != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itvB);
          MVertex *vE = (*it)->getEndVertex()->mesh_vertices[0];
          std::vector<MVertex*>::iterator itvE = std::find
            (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), vE);
          if (itvE != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itvE);
        }
      }
    
      double t3 = Cpu();
      Msg::Info("*** Mesh of surface %d done by assembly remeshed faces (%g s)",
                gf->tag(), t3-t2);
      Msg::Info("-----------------------------------------------------------");
     
      gf->coherenceNormals();
      gf->meshStatistics.status = GFace::DONE; 
    
      //CreateOutputFile("toto.msh", CTX::instance()->mesh.fileFormat);
      //Msg::Exit(1);
    #endif
    }
    
    template<class T>
    static bool shouldRevert(MEdge &reference, std::vector<T*> &elements)
    {
      for(unsigned int i = 0; i < elements.size(); i++){
        for(int j = 0; j < elements[i]->getNumEdges(); j++){
          MEdge e = elements[i]->getEdge(j);
          if(e.getVertex(0) == reference.getVertex(0) &&
             e.getVertex(1) == reference.getVertex(1)){
            return false;
          }
          else if(e.getVertex(1) == reference.getVertex(0) &&
                  e.getVertex(0) == reference.getVertex(1)){
            return true;
          }
        }
      }
      return false;
    }
    
    void orientMeshGFace::operator()(GFace *gf)
    {
      gf->model()->setCurrentMeshEntity(gf);
    
      if(gf->geomType() == GEntity::ProjectionFace) return;
      if(gf->geomType() == GEntity::CompoundSurface)return;
      // in old versions we did not reorient transfinite surface meshes;
      // we could add the following to provide backward compatibility:
      // if(gf->meshAttributes.Method == MESH_TRANSFINITE) return;
    
      if(gf->getNativeType() == GEntity::OpenCascadeModel){
        // surface orientions in OCC do not seem to be consistent with the
        // orientation of the bounding edges, so we compare the normals
        // pointwise in an element
        for(unsigned int i = 0; i < gf->getNumMeshElements(); i++){
          MElement *e = gf->getMeshElement(i);
          for(int j = 0; j < e->getNumVertices(); j++){
            MVertex *v = e->getVertex(j);
            SPoint2 param;
            if(reparamMeshVertexOnFace(v, gf, param)){
              SVector3 ne = e->getFace(0).normal();
              SVector3 nf = gf->normal(param); 
              if(dot(ne, nf) < 0){
                Msg::Debug("Reverting orientation of mesh in face %d", gf->tag());
                for(unsigned int k = 0; k < gf->getNumMeshElements(); k++)
                  gf->getMeshElement(k)->revert();
              }
              return;
            }
          }
        }
        Msg::Warning("Could not orient mesh in face %d", gf->tag());
      }
      else{
        // orient the mesh to match the orientation of the first edge
        std::list<GEdge*> edges = gf->edges();
        std::list<int> ori = gf->orientations();
        if(edges.empty() || ori.empty()) return;
        GEdge *ge = *edges.begin();
        GVertex *beg = ge->getBeginVertex();
        GVertex *end = ge->getEndVertex();
        if(!beg || beg->mesh_vertices.empty() || !end || end->mesh_vertices.empty())
          return;
        MVertex *v1 = beg->mesh_vertices[0];
        MVertex *v2 = ge->mesh_vertices.empty() ? end->mesh_vertices[0] : 
          ge->mesh_vertices[0];
        int sign = *ori.begin();
        MEdge ref(sign > 0 ? v1 : v2, sign > 0 ? v2 : v1);
        if(shouldRevert(ref, gf->triangles) || shouldRevert(ref, gf->quadrangles)){
          Msg::Debug("Reverting orientation of mesh in face %d", gf->tag());
          for(unsigned int i = 0; i < gf->triangles.size(); i++)
            gf->triangles[i]->revert();
          for(unsigned int i = 0; i < gf->quadrangles.size(); i++)
            gf->quadrangles[i]->revert();
        }
      }
    }