diff --git a/Common/CommandLine.cpp b/Common/CommandLine.cpp
index 39873e7f8948fbf66ae067d6505c9deb27962ef3..657db5ce90ef3398c7e21561c533e79f63772f76 100644
--- a/Common/CommandLine.cpp
+++ b/Common/CommandLine.cpp
@@ -1129,10 +1129,6 @@ void GetOptions(int argc, char *argv[])
         else
           Msg::Fatal("Missing argument");
       }
-      else if(!strcmp(argv[i] + 1, "showCompounds")) {
-        CTX::instance()->geom.hideCompounds = 0;
-        i++;
-      }
 #endif
 #if defined(__APPLE__)
       else if(!strncmp(argv[i] + 1, "psn", 3)) {
diff --git a/Common/Context.cpp b/Common/Context.cpp
index 2fbfe7d5b762d5e770c5791b295402134278acb7..3b149fb555a1c02b5388f08b8893c8e356044de8 100644
--- a/Common/Context.cpp
+++ b/Common/Context.cpp
@@ -79,7 +79,6 @@ CTX::CTX() : gamepad(0)
 
   // need to initialize these too, since the corresponding opt_XXX routines use
   // the current value to detect changes
-  geom.hideCompounds = 1;
   mesh.changed = 0;
   mesh.qualityInf = mesh.qualitySup = mesh.qualityType = 0;
   mesh.radiusInf = mesh.radiusSup = 0;
diff --git a/Common/Context.h b/Common/Context.h
index b34a23fb508980450620d25193ba7b2ae15b0f7b..c5c361aebb8d519c56f0eac3fa43161c1c74135b 100644
--- a/Common/Context.h
+++ b/Common/Context.h
@@ -80,7 +80,7 @@ struct contextGeometryOptions {
   double occScaling;
   int copyMeshingMethod, exactExtrusion;
   int matchGeomAndMesh;
-  int hideCompounds, orientedPhysicals, doubleClickedEntityTag;
+  int orientedPhysicals, doubleClickedEntityTag;
   int reparamOnFaceRobust;
   std::string doubleClickedPointCommand, doubleClickedLineCommand;
   std::string doubleClickedSurfaceCommand, doubleClickedVolumeCommand;
diff --git a/Common/DefaultOptions.h b/Common/DefaultOptions.h
index b46b59db529f3aa31221a8e84b5ae2ea5eda32e3..ffe67a003ff4b06ed14ef47627538b7fd9ae7b29 100644
--- a/Common/DefaultOptions.h
+++ b/Common/DefaultOptions.h
@@ -836,8 +836,6 @@ StringXNumber GeometryOptions_Number[] = {
   { F|O, "ExtrudeSplinePoints" , opt_geometry_extrude_spline_points, 5. ,
     "Number of control points for splines created during extrusion" },
 
-  { F|O, "HideCompounds" , opt_geometry_hide_compounds, 1. ,
-    "Hide entities that make up compound entities?" },
   { F|O, "HighlightOrphans" , opt_geometry_highlight_orphans, 0. ,
     "Highlight orphan entities (lines connected to a single surface, etc.)?" },
 
diff --git a/Common/OpenFile.cpp b/Common/OpenFile.cpp
index 3d27cbcc645ea550eef605924efaf45dbedd6d93..1be10f3bc3dc6967047b213f261770738a877d8a 100644
--- a/Common/OpenFile.cpp
+++ b/Common/OpenFile.cpp
@@ -745,7 +745,6 @@ void OpenProject(const std::string &fileName)
     FlGui::instance()->updateViews(true, false);
     FlGui::instance()->updateFields();
     GModel::current()->setSelection(0);
-    GModel::current()->setCompoundVisibility();
   }
 #endif
 }
diff --git a/Common/Options.cpp b/Common/Options.cpp
index 0dad09c0637618c86705c0bf2311bc22563bddb0..a99ba9bdec715dec004cb7d33e4e380f4f8bbfcb 100644
--- a/Common/Options.cpp
+++ b/Common/Options.cpp
@@ -4399,28 +4399,6 @@ double opt_geometry_auto_coherence(OPT_ARGS_NUM)
   return CTX::instance()->geom.autoCoherence;
 }
 
-double opt_geometry_hide_compounds(OPT_ARGS_NUM)
-{
-  if(action & GMSH_SET){
-    int old = CTX::instance()->geom.hideCompounds;
-    CTX::instance()->geom.hideCompounds = (int)val;
-    if(old != (int)val){
-      GModel::current()->setCompoundVisibility();
-      CTX::instance()->mesh.changed = ENT_ALL;
-#if defined(HAVE_FLTK)
-      if(FlGui::available()) FlGui::instance()->resetVisibility();
-#endif
-    }
-  }
-#if defined(HAVE_FLTK)
-  if(FlGui::available() && (action & GMSH_GUI)){
-    FlGui::instance()->options->geo.butt[17]->value
-      (CTX::instance()->geom.hideCompounds);
-  }
-#endif
-  return CTX::instance()->geom.hideCompounds;
-}
-
 double opt_geometry_oriented_physicals(OPT_ARGS_NUM)
 {
   if(action & GMSH_SET)
diff --git a/Common/Options.h b/Common/Options.h
index 95436360dd5dc95b2be5e4345f81d84e16db041a..5cb13d5a000c53e076a3003fc84248fa5721898a 100644
--- a/Common/Options.h
+++ b/Common/Options.h
@@ -360,7 +360,6 @@ double opt_geometry_offset0(OPT_ARGS_NUM);
 double opt_geometry_offset1(OPT_ARGS_NUM);
 double opt_geometry_offset2(OPT_ARGS_NUM);
 double opt_geometry_auto_coherence(OPT_ARGS_NUM);
-double opt_geometry_hide_compounds(OPT_ARGS_NUM);
 double opt_geometry_oriented_physicals(OPT_ARGS_NUM);
 double opt_geometry_highlight_orphans(OPT_ARGS_NUM);
 double opt_geometry_tolerance(OPT_ARGS_NUM);
diff --git a/Fltk/optionWindow.cpp b/Fltk/optionWindow.cpp
index e2358c070dbbf896caa71cdb692e4f854238cacb..7c0d6e920567ad62e2adab546f0cd5caad74419a 100644
--- a/Fltk/optionWindow.cpp
+++ b/Fltk/optionWindow.cpp
@@ -429,7 +429,6 @@ static void geometry_options_ok_cb(Fl_Widget *w, void *data)
   opt_geometry_occ_scaling(0, GMSH_SET, o->geo.value[20]->value());
 
   opt_geometry_light_two_side(0, GMSH_SET, o->geo.butt[14]->value());
-  opt_geometry_hide_compounds(0, GMSH_SET, o->geo.butt[17]->value());
 
   opt_geometry_normals(0, GMSH_SET, o->geo.value[0]->value());
   opt_geometry_tangents(0, GMSH_SET, o->geo.value[1]->value());
diff --git a/Geo/CMakeLists.txt b/Geo/CMakeLists.txt
index 2dff8ae7b53c33b1854a6afcbc1985e42f738224..d627e60f8a97f0b8c7ff86f540806b5891a7932d 100644
--- a/Geo/CMakeLists.txt
+++ b/Geo/CMakeLists.txt
@@ -9,17 +9,14 @@ set(SRC
   intersectCurveSurface.cpp
   GEntity.cpp STensor3.cpp
     GVertex.cpp GEdge.cpp GFace.cpp GRegion.cpp
-    GEdgeLoop.cpp GEdgeCompound.cpp GFaceCompound.cpp
-  GRegionCompound.cpp GRbf.cpp
+    GEdgeLoop.cpp
     gmshVertex.cpp gmshEdge.cpp gmshFace.cpp gmshRegion.cpp
-   gmshSurface.cpp
-   OCCVertex.cpp OCCEdge.cpp OCCFace.cpp OCCRegion.cpp
-   GenericVertex.cpp GenericEdge.cpp GenericFace.cpp GenericRegion.cpp
+    gmshSurface.cpp
+    OCCVertex.cpp OCCEdge.cpp OCCFace.cpp OCCRegion.cpp
+    GenericVertex.cpp GenericEdge.cpp GenericFace.cpp GenericRegion.cpp
     discreteEdge.cpp discreteFace.cpp discreteDiskFace.cpp discreteRegion.cpp
     fourierEdge.cpp fourierFace.cpp fourierProjectionFace.cpp
-  ACISVertex.cpp
-  ACISEdge.cpp
-  ACISFace.cpp
+    ACISVertex.cpp ACISEdge.cpp ACISFace.cpp
   GModel.cpp
   GModelCreateTopologyFromMesh.cpp
     GModelVertexArrays.cpp
@@ -46,7 +43,6 @@ set(SRC
     MHexahedron.cpp MPrism.cpp MPyramid.cpp MTrihedron.cpp MElementCut.cpp MSubElement.cpp
   MZone.cpp MZoneBoundary.cpp
   Cell.cpp CellComplex.cpp ChainComplex.cpp Homology.cpp Chain.cpp
-  Curvature.cpp
   MVertexBoundaryLayerData.cpp
 )
 
diff --git a/Geo/Curvature.cpp b/Geo/Curvature.cpp
deleted file mode 100644
index 3607cf1416908824f3cb14af3243358791a55a6a..0000000000000000000000000000000000000000
--- a/Geo/Curvature.cpp
+++ /dev/null
@@ -1,1987 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-
-#include "Curvature.h"
-#include "MElement.h"
-#include "MTriangle.h"
-#include "GEntity.h"
-#include "GFaceCompound.h"
-#include "MLine.h"
-#include "GRbf.h"
-#include "OS.h"
-#include "SBoundingBox3d.h"
-#include "discreteEdge.h"
-
-#include<iostream>
-#include<fstream>
-#include<cmath>
-
-#define NEXT(i) ((i)<2 ? (i)+1 : (i)-2)
-#define PREV(i) ((i)>0 ? (i)-1 : (i)+2)
-//========================================================================================================
-
-//Initialization of the static variables:
-Curvature* Curvature::_instance = 0;
-bool Curvature::_destroyed = false;
-bool Curvature::_alreadyComputedCurvature = false;
-
-//========================================================================================================
-
-//CONSTRUCTOR
-Curvature::Curvature() : _isMapInitialized(false)
-{
-}
-
-// Curvature::Curvature(std::list<GFace*> &myFaces){
-
-//   std::list<GFace*>::const_iterator it = myFaces.begin();
-//   for( ; it != myFaces.end() ; ++it){
-//          _ptFinalEntityList.push_back(*it);
-//   }
-
-// }
-
-//========================================================================================================
-
-Curvature::~Curvature()
-{
-   _instance = 0;
-  _destroyed = true;
-
-}
-//========================================================================================================
-void Curvature::onDeadReference()
-{
-  std::cout << "Dead reference of Curvature detected" << std::endl;
-}
-//========================================================================================================
-
-Curvature& Curvature::getInstance()
-{
-  if (!_instance)  {
-    if(_destroyed){
-      onDeadReference();
-    }
-    else{
-      create();
-    }
-  }
-  return *_instance;
-}
-//========================================================================================================
-  bool Curvature::valueAlreadyComputed()
-  {
-    return _alreadyComputedCurvature;
-  }
-
-//========================================================================================================
-
- void Curvature::create()
- {
-   static Curvature instance;
-   _instance = & instance;
- }
-
- //========================================================================================================
- void Curvature::retrieveCompounds()  {
-#if defined(HAVE_SOLVER)
-
-   /// -------------------------------------------------------------------------------------------
-   // Loop over all faces. Check if the face is a compound. If it is, store all of its discrete
-   // faces in _EntityArray
-   
-   std::list<GFace*> global_face_list;
-
-   for(GModel::fiter face_iter = _model->firstFace(); face_iter != _model->lastFace(); ++face_iter)
-   {
-     if ( (*face_iter)->geomType() != GEntity::CompoundSurface ){
-       if (!(*face_iter)->getCompound()){
-	 global_face_list.push_back(*face_iter);	 
-       }       
-     }
-     else if ( (*face_iter)->geomType() == GEntity::CompoundSurface )
-     {
-       GFaceCompound* compound = dynamic_cast<GFaceCompound*>(*face_iter);
-       std::list<GFace*> tempcompounds = compound->getCompounds();
-       std::list<GFace*>::iterator surfIterator;
-
-       for(surfIterator = tempcompounds.begin(); surfIterator != tempcompounds.end(); ++surfIterator)
-       {
-         if ((*surfIterator)->geomType() == GEntity::DiscreteSurface)
-         {
-           global_face_list.push_back(*surfIterator);
-         }
-       }
-     }
-
-   } // Loop over faces of the model
-
-   global_face_list.sort();
-   global_face_list.unique();
-   _EntityArray.resize(global_face_list.size());
-   std::copy(global_face_list.begin(),global_face_list.end(),_EntityArray.begin());
-#endif
- }
-
- //========================================================================================================
-
- // Method to detect boundary edges of the mesh. We want to find which edges are on the boundary in order
- // to correct the curvature field close to boundaries
-
- void Curvature::correctOnEdges()
- {
-#if defined(HAVE_SOLVER)
-
-   if (! _alreadyComputedCurvature )
-   {
-     Msg::Error("Cannot correct the curvature values at the edges because the curvatures weren't computed yet");
-     return;
-   }
-   // Remark: this can only be used after the call to initializeMap() !
-
-  buildEdgeList();
-
-  std::list<MeshEdgeInfo>::iterator VertToEdgeListIter;
-
-   _isOnBoundary.resize(_VertexToInt.size());
-   for (unsigned int i = 0; i < _VertexToInt.size(); ++i)
-   {
-     _isOnBoundary[i] = 0;
-   }
-
-   // To detect the nodes on the egdes of a geometry, we create a list of all edges on the mesh. The
-   // edges which are shared by only one mesh element are boundary edges. Their nodes are tagged by 1
-   for (unsigned int i = 0; i < _VertexToInt.size(); ++i)
-   {
-     for (VertToEdgeListIter = _VertexToEdgeList[i].begin(); VertToEdgeListIter != _VertexToEdgeList[i].end();
-                                                                                    ++VertToEdgeListIter)
-     {
-       if ((*VertToEdgeListIter).NbElemNeighbour == 1)
-       {
-         _isOnBoundary[(*VertToEdgeListIter).StartV] = 1;
-         _isOnBoundary[(*VertToEdgeListIter).EndV] = 1;
-       }
-     }
-
-   }
-
-   // We want to find the nodes that are the immediate neighbours of the boundary nodes. Those nodes are
-   // considered nodes with 'level 2'. The neighbours of neighbours have 'level 3' etc.
-   // We want to construct levels 1,2,3. Nodes with level 0 are internal nodes of the mesh
-   //Loop over the vector of edgelist
-   for (int level = 1; level < 3; ++level)
-   {
-     for (unsigned int i = 0; i < _VertexToEdgeList.size(); ++i)
-     {
-       for (VertToEdgeListIter = _VertexToEdgeList[i].begin(); VertToEdgeListIter != _VertexToEdgeList[i].end();
-                                                                                ++VertToEdgeListIter)
-       {
-         if (_isOnBoundary[(*VertToEdgeListIter).StartV] == level && _isOnBoundary[(*VertToEdgeListIter).EndV] == 0)
-         {
-          _isOnBoundary[(*VertToEdgeListIter).EndV] = level+1;
-         }
-         if (_isOnBoundary[(*VertToEdgeListIter).EndV] == level && _isOnBoundary[(*VertToEdgeListIter).StartV] == 0)
-         {
-           _isOnBoundary[(*VertToEdgeListIter).StartV] = level+1;
-         }
-       }
-     }
-   }//Loop over the level of the ring
-
-
-   // Check test to see the tag of the nodes on the boundary:
-//   for (int i = 0; i< _EntityArray.size(); ++i)
-//   {
-//     GFace* face = _EntityArray[i]; //List of all the discrete face on which we compute the curvature
-
-//     for (int iElem = 0; iElem < face->getNumMeshElements(); iElem++)
-//     {
-//       MElement *e = face->getMeshElement(iElem);
-
-//       // The NEW tag of the corresponding element
-//       const int E = _ElementToInt[e->getNum()];
-
-//       // Pointers to vertices of triangle
-//       MVertex* A = e->getVertex(0);
-//       MVertex* B = e->getVertex(1);
-//       MVertex* C = e->getVertex(2);
-
-//       V[0] = _VertexToInt[A->getNum()];  //The new number of the vertex
-//       V[1] = _VertexToInt[B->getNum()];
-//       V[2] = _VertexToInt[C->getNum()];
-
-//       if (_isOnBoundary[V[0]] == 3)
-//       {
-//         std::cout << "Vertex: " << A->getNum() << " -- " << A->x() << "; " << A->y() << "; " << A->z() << std::endl;
-//       }
-//       if (_isOnBoundary[V[1]] == 3)
-//       {
-//         std::cout << "Vertex: " << B->getNum() << " -- " << B->x() << "; " << B->y() << "; " << B->z() << std::endl;
-//       }
-//       if (_isOnBoundary[V[2]] == 3)
-//       {
-//         std::cout << "Vertex: " << C->getNum() << " -- " << C->x() << "; " << C->y() << "; " << C->z() << std::endl;
-//       }
-//     }
-//   }
-
-
-   // Now we'll propagate the cuvature values from inside nodes with level = 3 close to the boundary - first
-   // to nodes with level 2, then from nodes with level 2 to nodes with level 1 (on the boundary)
-   _NbNeighbour.resize(_VertexToInt.size());
-   for(unsigned int i = 0; i < _NbNeighbour.size(); ++i)
-   {
-     _NbNeighbour[i] = 0;
-   }
-
-   for (int level = 2; level > 0 ; --level)
-   {
-
-     for (unsigned int i = 0; i< _NbNeighbour.size(); ++i)
-     {
-       _NbNeighbour[i] = 0;
-       if (_isOnBoundary[i] == level)
-       {
-        _VertexCurve[i] = 0.0;
-       }
-     }
-
-
-     for (unsigned int i = 0; i < _VertexToEdgeList.size(); ++i)
-     {
-       for (VertToEdgeListIter = _VertexToEdgeList[i].begin(); VertToEdgeListIter != _VertexToEdgeList[i].end();
-                                                                                ++VertToEdgeListIter)
-       {
-
-         if (_isOnBoundary[(*VertToEdgeListIter).StartV] == level && _isOnBoundary[(*VertToEdgeListIter).EndV] == level+1)
-         {
-            _VertexCurve[(*VertToEdgeListIter).StartV] += _VertexCurve[(*VertToEdgeListIter).EndV];
-            _NbNeighbour[(*VertToEdgeListIter).StartV] ++;
-
-         }
-         if (_isOnBoundary[(*VertToEdgeListIter).EndV] == level && _isOnBoundary[(*VertToEdgeListIter).StartV] == level+1)
-         {
-            _VertexCurve[(*VertToEdgeListIter).EndV] += _VertexCurve[(*VertToEdgeListIter).StartV];
-            _NbNeighbour[(*VertToEdgeListIter).EndV] ++;
-         }
-
-       }
-     }
-
-     // Correction for a degenerate case when a node has neighbours with the same or lower level, but zero
-     // neighbours with level+1
-
-     for (unsigned int i = 0; i < _VertexToEdgeList.size(); ++i)
-     {
-       for (VertToEdgeListIter = _VertexToEdgeList[i].begin(); VertToEdgeListIter != _VertexToEdgeList[i].end();
-                                                                                ++VertToEdgeListIter)
-       {
-
-         if (_isOnBoundary[(*VertToEdgeListIter).StartV] == level
-             && _isOnBoundary[(*VertToEdgeListIter).EndV] == level
-             && _NbNeighbour[(*VertToEdgeListIter).StartV] == 0)
-         {
-           _VertexCurve[(*VertToEdgeListIter).StartV] += _VertexCurve[(*VertToEdgeListIter).EndV];
-           _NbNeighbour[(*VertToEdgeListIter).StartV] = _NbNeighbour[(*VertToEdgeListIter).EndV];
-         }
-         if (_isOnBoundary[(*VertToEdgeListIter).EndV] == level
-             && _isOnBoundary[(*VertToEdgeListIter).StartV] == level
-             && _NbNeighbour[(*VertToEdgeListIter).EndV] == 0)
-         {
-           _VertexCurve[(*VertToEdgeListIter).EndV] += _VertexCurve[(*VertToEdgeListIter).StartV];
-           _NbNeighbour[(*VertToEdgeListIter).EndV] = _NbNeighbour[(*VertToEdgeListIter).StartV];
-         }
-       }
-     }
-
-     for (unsigned int i = 0; i < _isOnBoundary.size(); ++i)
-     {
-       if (_isOnBoundary[i] == level)
-       {
-         if (_NbNeighbour[i] == 0)
-         {
-           std::cout << "ERROR: VERTEX " << i << " WITH LEVEL " << level << " HAS 0 NEIGHBOURS" << std::endl;
-         }
-         _VertexCurve[i] = _VertexCurve[i]/_NbNeighbour[i];
-       }
-     }
-
-   }//Loop over the levels of the ring
-
-//   for (int i = 0; i < _isOnBoundary.size(); ++i)
-//   {
-//     _VertexCurve[i] = _isOnBoundary[i];
-//   }
-
-#endif
- }
-
-//========================================================================================================
-
-//INITIALIZATION OF THE MAP  AND  RENUMBERING OF THE SELECTED ENTITIES:
-
-void Curvature::initializeMap()
-{
-  if (! _isMapInitialized)
-  {
-    for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-    {
-      GFace* face = _EntityArray[i];
-
-      for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++)
-      {
-        MElement *e = face->getMeshElement(iElem);
-        const int E = e->getNum();
-        _ElementToInt[E] = 1;
-
-        const int A = e->getVertex(0)->getNum();   //Pointer to 1st vertex of the triangle
-        const int B = e->getVertex(1)->getNum();
-        const int C = e->getVertex(2)->getNum();
-
-        _VertexToInt[A] = 1;
-        _VertexToInt[B] = 1;
-        _VertexToInt[C] = 1;
-      }
-    }
-
-    /// Set up a new numbering of chosen vertices and triangles
-    int idx = 0;
-
-    // map between the pointer to vertex and the new numbering of the vertex
-    std::map<int,int>::iterator vertex_iterator;
-    // map between the pointer to element and the new numbering of the element
-    std::map<int,int>::iterator element_iterator;
-
-    for (vertex_iterator = _VertexToInt.begin() ; vertex_iterator !=_VertexToInt.end() ; ++ vertex_iterator, ++idx)
-      (*vertex_iterator).second = idx;
-
-    idx = 0;
-
-    for (element_iterator = _ElementToInt.begin() ; element_iterator !=_ElementToInt.end() ; ++ element_iterator, ++idx)
-      (*element_iterator).second = idx;
-
-   _isMapInitialized = true;
-
-  }
-
-}
-
-//========================================================================================================
-
-//COMPUTE THE NORMAL AT THE VERTEX AND THE AREA AROUND
-
-void Curvature::computeVertexNormals()
-{
-  SVector3 vector_AB;
-  SVector3 vector_AC;
-
-  _TriangleArea.resize(_ElementToInt.size() );
-  _VertexArea.resize(_ElementToInt.size() );
-  _VertexNormal.resize(_VertexToInt.size());
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    // face is a pointer to one surface of the group "FinalEntityList"
-    GFace* face = _EntityArray[i];
-
-    //Loop over the element all the element of the "myTag"-surface
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++)
-    {
-      // Pointer to one element
-      MElement *e = face->getMeshElement(iElem);
-      // The NEW tag of the corresponding element
-      const int E = _ElementToInt[e->getNum()];
-      // std::cout << "We are now looking at element Nr: " << E << std::endl;
-
-      // Pointers to vertices of triangle
-      MVertex* A = e->getVertex(0);
-      MVertex* B = e->getVertex(1);
-      MVertex* C = e->getVertex(2);
-
-      const int V0 = _VertexToInt[A->getNum()];  //The new number of the vertex
-      const int V1 = _VertexToInt[B->getNum()];
-      const int V2 = _VertexToInt[C->getNum()];
-
-      vector_AB = SVector3(B->x() - A->x(), B->y() - A->y(), B->z() - A->z() );
-      vector_AC = SVector3(C->x() - A->x(), C->y() - A->y(), C->z() - A->z() );
-
-      const SVector3 cross = crossprod(vector_AB, vector_AC);
-
-      // Area of the triangles:
-      _TriangleArea[E] = 0.5*cross.norm();
-      // std::cout << "The area of the triangle nr: " << e->getNum() << " is: "<< TriangleArea[E] << std::endl;
-
-      _VertexArea[V0] += _TriangleArea[E];
-      _VertexArea[V1] += _TriangleArea[E];
-      _VertexArea[V2] += _TriangleArea[E];
-
-      _VertexNormal[V0] += cross;  //here we are actually computing the unit normal vector per vertex
-      _VertexNormal[V1] += cross;
-      _VertexNormal[V2] += cross;
-
-    } // end of loop over elements of one face
-
-  } //Loop over _ptFinalEntityList
-
-    ///////Normalize the vertex-normals.
-    for (unsigned int n = 0; n < _VertexToInt.size(); ++ n)
-    {
-      _VertexNormal[n].normalize();
-    }
-}
-
-//========================================================================================================
-
-SVector3 Curvature::vertexNormal (MVertex* A)
-{
-  const int V0 = _VertexToInt[A->getNum()];  //The new number of the vertex
-  return _VertexNormal[V0];
-}
-
-//========================================================================================================
-
-void Curvature::curvatureTensor()
-{
-
-  STensor3 TempTensor;
-  STensor3 TijABTensorProduct;
-  SVector3 TijAB;
-  SVector3 vector_AB;
-
-  _CurveTensor.resize(_VertexToInt.size());
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    GFace* face = _EntityArray[i]; //face is a pointer to one surface of the group "FinalEntityList"
-
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++) //Loop over the element all the element of the "myTag"-surface
-    {
-      MElement *e = face->getMeshElement(iElem);  //Pointer to one element
-      const int E = _ElementToInt[e->getNum()]; //The NEW tag of the corresponding element
-
-      for (unsigned int i = 0; i<3; ++i)  // Loop over the 3 edges of each element
-      {
-
-        MVertex* A = e->getVertex(i);                   //Pointer to 1st vertex of the edge A-to-B
-        MVertex* B = e->getVertex((i+1)%3);             //Pointer to 2nd vertex of the edge A-to-B
-
-        const int V0 = _VertexToInt[A->getNum()];       //Tag of the 1st vertex of the edge A-to-B
-        const int V1 = _VertexToInt[B->getNum()];       //Tag of the 2nd vertex of the edge A-to-B
-
-        //Weight for triangle-i-th's contribution to the shape tensor:
-        const double Wij0 = _TriangleArea[E] / (2 * _VertexArea[V0]);
-        const double Wij1 = _TriangleArea[E] / (2 * _VertexArea[V1]);
-
-        //Approximate Curvature "kappa" along some tangential vector T:
-        vector_AB = SVector3(B->x() - A->x(), B->y() - A->y(), B->z() - A->z() );
-        const double k_nominator0 =  dot(_VertexNormal[V0], vector_AB); //Dot-product of the 2 vectors
-        const double k_nominator1 = -dot(_VertexNormal[V1], vector_AB);
-
-        const double coeff   = 2.0/vector_AB.normSq(); //normSq is the norm to the power 2
-        const double KijAB_0 = coeff*k_nominator0;
-        const double KijAB_1 = coeff*k_nominator1;
-
-        //Projection of the edge vector AB on the tangential plane:
-        //** For Vertex 0
-        tensprod(_VertexNormal[V0], _VertexNormal[V0], TempTensor);
-        TempTensor      *= -1.0; //-N*Nt
-        TempTensor(0,0) +=  1.0; //I-N*Nt
-        TempTensor(1,1) +=  1.0;
-        TempTensor(2,2) +=  1.0;
-
-        for (int m = 0; m<3; ++m)
-        {
-          TijAB(m) = 0.0;
-          for (int n = 0; n<3; ++n)
-          {
-            TijAB(m) += TempTensor(m,n) * vector_AB(n);
-          }
-        }
-
-        TijAB.normalize();
-        tensprod(TijAB, TijAB, TijABTensorProduct);
-        _CurveTensor[V0] += Wij0*KijAB_0*TijABTensorProduct;
-
-        //** For Vertex 1
-        tensprod(_VertexNormal[V1], _VertexNormal[V1], TempTensor);
-        TempTensor      *= -1.0; //-N*Nt
-        TempTensor(0,0) +=  1.0; //I-N*Nt
-        TempTensor(1,1) +=  1.0;
-        TempTensor(2,2) +=  1.0;
-
-         for (int m = 0; m<3; ++m)
-        {
-          TijAB(m) = 0.0;
-          for (int n = 0; n<3; ++n)
-          {
-            TijAB(m) += TempTensor(m,n) * vector_AB(n);
-          }
-        }
-
-        TijAB.normalize();
-        tensprod(TijAB, TijAB, TijABTensorProduct);
-        _CurveTensor[V1] += Wij1*KijAB_1*TijABTensorProduct;
-
-      }//end of loop over the edges
-
-    }//end of loop over all elements of one GFace
-
-  }//End of loop over ptFinalEntityList
-
-}//End of method
-
-//========================================================================================================
-
-void Curvature::computeCurvature_Simple()
-{
-  SVector3 vector_E;
-  SVector3 vector_A;
-  SVector3 vector_B;
-  SVector3 vector_Wvi;
-  STensor3 Qvi;
-  STensor3 QviT;
-  STensor3 Holder;
-
-  initializeMap();
-  computeVertexNormals();
-  curvatureTensor();
-
-  _VertexCurve.resize(_VertexToInt.size());
-
-  for (unsigned int n = 0; n < _VertexToInt.size(); ++ n) //Loop over the vertex
-  {
-    vector_E = SVector3(1,0,0);
-    vector_A = vector_E + _VertexNormal[n];
-    vector_B = vector_E - _VertexNormal[n];
-
-    const double MagA = vector_A.norm();
-    const double MagB = vector_B.norm();
-
-    if (MagB > MagA)
-    {
-      vector_Wvi = vector_B;
-    }
-    else
-    {
-      vector_Wvi = vector_A;
-    }
-
-    vector_Wvi.normalize();
-    //to obtain the Qvi = Id -2*Wvi*Wvi^t
-    tensprod(vector_Wvi, vector_Wvi, Qvi); //Qvi = Wvi*Wvi^t
-    Qvi      *= -2.0;                      //-2*Wvi*Wvi^t
-    Qvi(0,0) +=  1.0;                      //I - 2*Wvi*Wvi^t  ==> Householder transformation
-    Qvi(1,1) +=  1.0;
-    Qvi(2,2) +=  1.0;
-
-    //Transpose the matrix:
-    for (int i = 0; i<3; ++i)
-    {
-      for (int j = 0; j<3; ++j)
-      {
-        QviT(i,j) = Qvi(j,i);
-       }
-     }
-
-     QviT *= _CurveTensor[n];
-     QviT *=Qvi;
-     Holder = QviT;
-
-     //Eigenvalues of the 2*2 minor from the Householder matrix
-     const double A = 1.0;
-     const double B = -(Holder(1,1) + Holder(2,2));
-     const double C = Holder(1,1)*Holder(2,2) - Holder(1,2)*Holder(2,1);
-     const double Delta = std::sqrt(B*B-4*A*C);
-
-     if((B*B-4.*A*C) < 0.0)
-     {
-       std::cout << "WARNING: negative discriminant: " << B*B-4.*A*C << std::endl;
-     }
-
-     const double m11 = (-B + Delta)/(2*A);  //Eigenvalue of Householder submatrix
-     const double m22 = (-B - Delta)/(2*A);
-
-     //_VertexCurve[n] = (3*m11-m22)*(3*m22-m11);  //Gaussian Curvature
-     _VertexCurve[n] = ((3*m11-m22) + (3*m22-m11))*0.5; //Mean Curvature
-
-  }
-}
-
-//========================================================================================================
-
-//COMPUTE THE NORMAL AT THE VERTEX AND THE AREA AROUND
-
-void Curvature::computeRusinkiewiczNormals()
-{
-  SVector3 vector_AB;
-  SVector3 vector_AC;
-  SVector3 vector_BC;
-
-  _TriangleArea.resize(_ElementToInt.size() );
-  _VertexNormal.resize(_VertexToInt.size());
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    // face is a pointer to one surface of the group "FinalEntityList"
-    GFace* face = _EntityArray[i];
-
-    //Loop over the element all the element of the "myTag"-surface
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++)
-    {
-      // Pointer to one element
-      MElement *e = face->getMeshElement(iElem);
-      const int E = _ElementToInt[e->getNum()];
-
-      // Pointers to vertices of triangle
-      MVertex* A = e->getVertex(0);
-      MVertex* B = e->getVertex(1);
-      MVertex* C = e->getVertex(2);
-
-      const int V0 = _VertexToInt[A->getNum()];  //The new number of the vertex
-      const int V1 = _VertexToInt[B->getNum()];
-      const int V2 = _VertexToInt[C->getNum()];
-
-      vector_AB = SVector3(B->x() - A->x(), B->y() - A->y(), B->z() - A->z() );
-      vector_AC = SVector3(C->x() - A->x(), C->y() - A->y(), C->z() - A->z() );
-      vector_BC = SVector3(C->x() - B->x(), C->y() - B->y(), C->z() - B->z() );
-
-      const SVector3 cross = crossprod(vector_AB, vector_AC);
-
-      // Area of the triangles:
-      _TriangleArea[E] = 0.5*cross.norm();
-
-      const double l_AB = vector_AB.normSq();
-      const double l_AC = vector_AC.normSq();
-      const double l_BC = vector_BC.normSq();
-
-      _VertexNormal[V0] += cross * (1.0/ (l_AB*l_AC));
-      _VertexNormal[V1] += cross * (1.0/ (l_AB*l_BC));
-      _VertexNormal[V2] += cross * (1.0/ (l_AC*l_BC));
-
-    } // end of loop over elements of one face
-
-  } //Loop over _ptFinalEntityList
-
-    ///////Normalize the vertex-normals.
-    for (unsigned int n = 0; n < _VertexToInt.size(); ++ n)
-    {
-      _VertexNormal[n].normalize();
-    }
-}
-
-//========================================================================================================
-// Compute per-vertex point areas
-void Curvature::computePointareas(){
-
-  SVector3 e[3];
-  SVector3 l2;
-  SVector3 ew;
-  double factor[3];
-
-  _pointareas.resize(_VertexToInt.size());
-  _cornerareas.resize(_ElementToInt.size());
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    GFace* face = _EntityArray[i]; //face is a pointer to one surface of the group "FinalEntityList"
-
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++) //Loop over the element all the element of the "myTag"-surface
-    {
-      MElement *E = face->getMeshElement(iElem);  //Pointer to one element
-      // The NEW tag of the corresponding element
-      const int EIdx = _ElementToInt[E->getNum()];
-
-      MVertex* A = E->getVertex(0);  //Pointers to vertices of triangle
-      MVertex* B = E->getVertex(1);
-      MVertex* C = E->getVertex(2);
-
-      const int V0 = _VertexToInt[A->getNum()];
-      const int V1 = _VertexToInt[B->getNum()];
-      const int V2 = _VertexToInt[C->getNum()];
-
-      factor[0] = 1.0;
-      factor[1] = 1.0;
-      factor[2] = 1.0;
-      // if (_isOnBoundary[V0])
-      // {
-      //     factor[0] = 1.0;
-      // }
-      // else {factor[0] = 1.0;}
-      // if (_isOnBoundary[V1])
-      // {
-      //     factor[1] = 1.0;
-      // }
-      // else {factor[1] = 1.0;}
-      // if (_isOnBoundary[V2])
-      // {
-      //     factor[2] = 1.0;
-      // }
-      // else {factor[2] = 1.0;}
-      
-//Edges
-      e[0] = SVector3(C->x() - B->x(), C->y() - B->y(), C->z() - B->z()); //vector side of a triangular element
-      e[1] = SVector3(A->x() - C->x(), A->y() - C->y(), A->z() - C->z());
-      e[2] = SVector3(B->x() - A->x(), B->y() - A->y(), B->z() - A->z());
-
-      // Compute corner weights
-      //SVector3 len = crossprod(e[0], e[1]);
-      //len = norm
-      //len2 = normSq
-      double area = 0.5 * norm(crossprod(e[0], e[1])); //area of a triangle
-      l2 = SVector3( normSq(e[0]), normSq(e[1]), normSq(e[2]) );
-      ew = SVector3( l2[0] * (l2[1] + l2[2] - l2[0]),
-                     l2[1] * (l2[2] + l2[0] - l2[1]),
-                     l2[2] * (l2[0] + l2[1] - l2[2]) );
-
-      if (ew[0] <= 0.0)
-      {
-        _cornerareas[EIdx][1] = -0.25 * l2[2] * area / dot(e[0], e[2]);
-        _cornerareas[EIdx][2] = -0.25 * l2[1] * area / dot(e[0], e[1]);
-        _cornerareas[EIdx][0] = area - _cornerareas[EIdx][1] - _cornerareas[EIdx][2];
-      }
-      else if (ew[1] <= 0.0)
-      {
-        _cornerareas[EIdx][2] = -0.25 * l2[0] * area / dot(e[1], e[0]);
-        _cornerareas[EIdx][0] = -0.25 * l2[2] * area / dot(e[1], e[2]);
-        _cornerareas[EIdx][1] = area - _cornerareas[EIdx][2] - _cornerareas[EIdx][0];
-      }
-      else if (ew[2] <= 0.0)
-      {
-        _cornerareas[EIdx][0] = -0.25 * l2[1] * area / dot(e[2], e[1]);
-        _cornerareas[EIdx][1] = -0.25 * l2[0] * area / dot(e[2], e[0]);
-        _cornerareas[EIdx][2] = area - _cornerareas[EIdx][0] - _cornerareas[EIdx][1];
-      }
-      else
-      {
-        float ewscale = 0.5 * area / (ew[0] + ew[1] + ew[2]);
-        for (int j = 0; j < 3; j++)
-          _cornerareas[EIdx][j] = ewscale * (ew[(j+1)%3] + ew[(j+2)%3]);
-      }
-
-      _pointareas[V0] += _cornerareas[EIdx][0];
-
-      _pointareas[V1] += _cornerareas[EIdx][1];
-
-      _pointareas[V2] += _cornerareas[EIdx][2];
-
-      for (int j = 0; j < 3; j++)
-      {
-          _cornerareas[EIdx][j] = factor[j]*_cornerareas[EIdx][j];
-      }
-
-
-    } //End of loop over iElem
-
-//      std::cout << "_pointareas.size = " << _pointareas.size() << std::endl;
-//      std::cout << "_cornerareas.size = " << _cornerareas.size() << std::endl;
-
-  } //End of loop over _ptFinalEntityList
-
-} //End of the method "computePointareas"
-
-
-//========================================================================================================
-//Rotate a coordinate system to be perpendicular to the given normal
-void Curvature::rot_coord_sys(const SVector3 &old_u, const SVector3 &old_v, const SVector3 &new_norm, SVector3 &new_u, SVector3 &new_v){
-
-  new_u = old_u;
-  new_v = old_v;
-  SVector3 old_norm = crossprod(old_u, old_v);
-  double ndot = dot(old_norm, new_norm);
-//  if (unlikely(ndot <= -1.0f))
-  if (ndot <= -1.0f)
-  {
-    new_u = -1.0*new_u;
-    new_v = -1.0*new_v;
-    return;
-  }
-
-  SVector3 perp_old = new_norm - ndot*old_norm;
-  SVector3 dperp = 1.0f/(1 + ndot) * (old_norm + new_norm);
-  new_u -= dperp*dot(new_u, perp_old);
-  new_v -= dperp*dot(new_v, perp_old);
-}
-
-//========================================================================================================
-
-//Project a curvature tensor from the basis spanned by old_u and old_v
-//(which are assumed to be unit-length and perpendicular) to the new_u
-//and new_v basis
-
-void Curvature::proj_curv( const SVector3 &old_u, const SVector3 &old_v,
-                          double old_ku, double old_kuv, double old_kv,
-                          const SVector3  &new_u, const SVector3 &new_v,
-                          double &new_ku, double &new_kuv, double &new_kv){
-  SVector3 r_new_u;
-  SVector3 r_new_v;
-  rot_coord_sys(new_u, new_v, crossprod(old_u,old_v), r_new_u, r_new_v);
-
-  const double u1 = dot(r_new_u, old_u);
-  const double v1 = dot(r_new_u, old_v);
-  const double u2 = dot(r_new_v, old_u);
-  const double v2 = dot(r_new_v, old_v);
-
-  new_ku  =   old_ku*u1*u1 + old_kuv*(2.0f * u1*v1)   + old_kv*v1*v1;
-  new_kuv  =  old_ku*u1*u2 + old_kuv*(u1*v2 * u2*v1)  + old_kv*v1*v2;
-  new_kv  =   old_ku*u2*u2 + old_kuv*(2.0f * u2*v2)   + old_kv*v2*v2;
-}
-
-
-//========================================================================================================
-
-//Given a curvature tensor, find principal directions and curvatures
-//Makes sure that pdir1 and pdir2 are perpendicular to normal
-
-void Curvature::diagonalize_curv(const SVector3 &old_u, const SVector3 &old_v,
-                      double ku, double kuv, double kv,
-                      const SVector3 &new_norm,
-                      SVector3 &pdir1, SVector3 &pdir2, double &k1, double &k2){
-  SVector3 r_old_u;
-  SVector3 r_old_v;
-
-  double c = 1.0;
-  double s = 0.0;
-  double tt = 0.0;
-
-  rot_coord_sys(old_u, old_v, new_norm, r_old_u, r_old_v);
-
-//  if(unlikely(kuv !=0.0f))
-  if(kuv !=0.0)  {
-    //Jacobi rotation to diagonalize
-    double h= 0.5*(kv -ku)/ kuv;
-    tt = (h<0.0) ?
-          1.0 / (h - std::sqrt(1.0 + h*h)):
-          1.0 / (h + std::sqrt(1.0 + h*h));
-    c = 1.0 / std::sqrt(1.0 + tt*tt);
-    s = tt*c;
-  }
-
-  k1 = ku - tt *kuv;
-  k2 = kv + tt *kuv;
-
-  if(std::abs(k1) >= std::abs(k2))  {
-    pdir1 = c*r_old_u - s*r_old_v;
-  }
-  else  {
-    std::swap(k1,k2);
-    pdir1 = s*r_old_u + c*r_old_v;
-  }
-  pdir2 = crossprod(new_norm, pdir1);
-}
-
-//========================================================================================================
-void Curvature::computeCurvature(GModel* model, typeOfCurvature typ)
-{
-
-  _model = model;
-
-  double t0 = Cpu();
-  Msg::StatusBar(true, "(C) Computing Curvature");
-  if (typ == RUSIN)
-    computeCurvature_Rusinkiewicz(0);
-  else if (typ == RBF)
-    computeCurvature_RBF();
-  else if (typ == SIMPLE)
-    computeCurvature_Simple();
-
-  double t1 = Cpu();
-  Msg::StatusBar(true, "(C) Done Computing Curvature (%g s)", t1-t0);
-
-  //writeToMshFile("curvature.msh");
-  //writeToPosFile("curvature.pos");
-  //writeToVtkFile("curvature.vtk");
-
-}
-
-//========================================================================================================
-
-void Curvature::buildEdgeList()
-{
-
-  int V[3];
-  bool edgefound;
-
-  _VertexToEdgeList.clear();
-
-  std::list<MeshEdgeInfo>::iterator VertToEdgeListIter;
-  MeshEdgeInfo TempEdge;
-
-  _VertexToEdgeList.resize(_VertexToInt.size());
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    GFace* face = _EntityArray[i]; //List of all the discrete face on which we compute the curvature
-
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++)
-    {
-      MElement *e = face->getMeshElement(iElem);
-
-      // Pointers to vertices of triangle
-      MVertex* A = e->getVertex(0);
-      MVertex* B = e->getVertex(1);
-      MVertex* C = e->getVertex(2);
-
-      V[0] = _VertexToInt[A->getNum()];  //The new number of the vertex
-      V[1] = _VertexToInt[B->getNum()];
-      V[2] = _VertexToInt[C->getNum()];
-
-      // Try to add edge [V0,V1] to the global list
-      for (int j = 0; j < 3; ++j)
-      {
-          const int StartV = std::min(V[j], V[(j+1)%3]);
-          const int EndV = std::max(V[j], V[(j+1)%3]);
-
-          edgefound = false;
-          for (VertToEdgeListIter = _VertexToEdgeList[StartV].begin(); VertToEdgeListIter != _VertexToEdgeList[StartV].end();
-                                                                                   ++VertToEdgeListIter)
-          {
-            if(StartV == (*VertToEdgeListIter).StartV && EndV == (*VertToEdgeListIter).EndV)
-            {
-              (*VertToEdgeListIter).NbElemNeighbour ++;
-              edgefound = true;
-            }
-
-          }
-          if (false == edgefound)
-          {
-            TempEdge.StartV = StartV;
-            TempEdge.EndV = EndV;
-            TempEdge.NbElemNeighbour = 1;
-            _VertexToEdgeList[StartV].push_back(TempEdge);
-          }
-
-
-      } // Loop over j
-
-
-    } // Loop over the elements (triangles) of the face
-  }
-
-  int NbEdges = 0;
-  for(unsigned int i = 0; i < _VertexToEdgeList.size(); ++i)
-  {
-    NbEdges += _VertexToEdgeList[i].size();
-  }
-
-  //std::cout << "Euler formula:" << std::endl;
-  //std::cout << "Edges + 2 =        " << NbEdges + 2 << std::endl;
-  //std::cout << "Elements + Nodes = " << _VertexToInt.size() + _ElementToInt.size() << std::endl;
-
-}
-
-//========================================================================================================
-
-
-void Curvature::smoothCurvatureField(const int NbIter)
-{
-  if ( _VertexToEdgeList.size() == 0 ) { buildEdgeList(); }
-
-  std::vector<double> smoothedCurvature;
-  smoothedCurvature.resize( _VertexToInt.size() );
-
-
-  // Smoothed curvature directions
-  std::vector<SVector3> smoothedDir1;
-  std::vector<SVector3> smoothedDir2;
-  smoothedDir1.resize(_VertexToInt.size());
-  smoothedDir2.resize(_VertexToInt.size());
-
-  _NbNeighbour.resize(_VertexToInt.size());
-  for(unsigned int i = 0; i < _VertexToInt.size(); ++i)
-  {
-    _NbNeighbour[i] = 0;
-  }
-
-
-  // Smoothing iterations
-  for(int iter = 0; iter < NbIter; ++iter)
-  {
-
-    for(unsigned int i = 0; i < smoothedCurvature.size(); ++i)
-    {
-      smoothedCurvature[i] = 0.0;
-      smoothedDir1[i] = SVector3();
-      smoothedDir2[i] = SVector3();
-    }
-
-    std::list<MeshEdgeInfo>::const_iterator edgeIterator;
-
-
-    for(unsigned int i = 0; i < _VertexToEdgeList.size(); ++i)
-    {
-      for(edgeIterator = _VertexToEdgeList[i].begin(); edgeIterator != _VertexToEdgeList[i].end(); ++edgeIterator)
-      {
-
-        const int V0 = (*edgeIterator).StartV;
-        const int V1 = (*edgeIterator).EndV;
-
-        smoothedCurvature[V0] += _VertexCurve[V1];
-        smoothedCurvature[V1] += _VertexCurve[V0];
-
-        smoothedDir1[V0] += _pdir1[V1];
-        smoothedDir1[V1] += _pdir1[V0];
-
-        smoothedDir2[V0] += _pdir2[V1];
-        smoothedDir2[V1] += _pdir2[V0];
-
-        _NbNeighbour[V0]++;
-        _NbNeighbour[V1]++;
-      }
-    }
-
-
-
-    const double Lambda = 0.3;
-    for(unsigned int i = 0; i < _VertexCurve.size(); ++i)
-    {
-      _VertexCurve[i] = Lambda*_VertexCurve[i] + (1-Lambda)*smoothedCurvature[i] / _NbNeighbour[i];
-      _pdir1[i] = Lambda * _pdir1[i] + (1.-Lambda)/_NbNeighbour[i] * smoothedDir1[i];
-      _pdir2[i] = Lambda * _pdir2[i] + (1.-Lambda)/_NbNeighbour[i] * smoothedDir2[i];
-    }
-  }
-
-}
-
-
-//========================================================================================================
-
-
-
-void Curvature::computeCurvature_Rusinkiewicz(int isMax)
-{
-  
-  retrieveCompounds();
-  initializeMap();
-
-  computeRusinkiewiczNormals();
-  computePointareas();
-
-  SVector3 e[3];
-  STensor3 w;
-  SVector3 t;
-  SVector3 n;
-  SVector3 b;
-  SVector3 m;
-  SVector3 dn;
-
-  double u;
-  double v;
-  double dnu;
-  double dnv;
-  double c1;
-  double c2;
-  double c12;
-  double wt;
-
-  _pdir1.resize(_VertexToInt.size());
-  _pdir2.resize(_VertexToInt.size());
-
-  _curv1.resize(_VertexToInt.size());
-  _curv2.resize(_VertexToInt.size());
-  _curv12.resize(_VertexToInt.size());
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    GFace* face = _EntityArray[i]; //face is a pointer to one surface of the group "FinalEntityList"
-
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++) //Loop over the element all the element of the "myTag"-surface
-    {
-      MElement *E = face->getMeshElement(iElem);  //Pointer to one element
-
-      MVertex* A = E->getVertex(0);  //Pointers to vertices of triangle
-      MVertex* B = E->getVertex(1);
-      MVertex* C = E->getVertex(2);
-
-      const int V0 = _VertexToInt[A->getNum()];  //Tag of the 1st vertex of the triangle
-      const int V1 = _VertexToInt[B->getNum()];
-      const int V2 = _VertexToInt[C->getNum()];
-
-      ///Set up an initial coordinate system per vertex:
-      _pdir1[V0] = SVector3(B->x() - A->x(), B->y() - A->y(), B->z() - A->z());
-      _pdir1[V1] = SVector3(C->x() - B->x(), C->y() - B->y(), C->z() - B->z());
-      _pdir1[V2] = SVector3(A->x() - C->x(), A->y() - C->y(), A->z() - C->z());
-    }
-  }
-
-  for (unsigned int ivertex = 0; ivertex < _VertexToInt.size(); ++ivertex)
-  {
-    _pdir1[ivertex] = crossprod(_pdir1[ivertex], _VertexNormal[ivertex]);
-    _pdir1[ivertex].normalize();
-    _pdir2[ivertex] = crossprod(_VertexNormal[ivertex], _pdir1[ivertex]);
-  }
-
-  // Compute curvature per face:
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    //face is a pointer to one surface of the group "FinalEntityList"
-    GFace* face = _EntityArray[i];
-
-    //Loop over all elements of this face:
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++)
-    {
-      MElement *E = face->getMeshElement(iElem);  //Pointer to one element
-      // The NEW tag of the corresponding element
-      const int EIdx = _ElementToInt[E->getNum()];
-
-      MVertex* A = E->getVertex(0);  //Pointers to vertices of triangle
-      MVertex* B = E->getVertex(1);
-      MVertex* C = E->getVertex(2);
-
-      e[0] = SVector3(C->x() - B->x(), C->y() - B->y(), C->z() - B->z());
-      e[1] = SVector3(A->x() - C->x(), A->y() - C->y(), A->z() - C->z());
-      e[2] = SVector3(B->x() - A->x(), B->y() - A->y(), B->z() - A->z());
-
-      //N-T-B coordinate system per face
-      t = e[0];
-      t.normalize();
-      n = crossprod( e[0], e[1]);
-      b = crossprod(n, t);
-      b.normalize();
-
-      //Estimate curvature based on variations of normals along edges:
-      //intialization:
-      m = SVector3(0.0, 0.0, 0.0);
-       for (int i = 0; i< 3; ++i)
-	 for (int j = 0; j< 3; ++j)
-	   w(i,j) = 0.0;
-
-      //filling:
-      for (int j = 0; j< 3; ++j)
-      {
-        u = dot(e[j], t);
-        v = dot(e[j], b);
-
-        w(0,0) += u*u;
-        w(0,1) += u*v;
-        w(2,2) += v*v;
-
-        MVertex* U = E->getVertex(PREV(j));
-        MVertex* V = E->getVertex(NEXT(j));
-
-        const int UIdx = _VertexToInt[U->getNum()];
-        const int VIdx = _VertexToInt[V->getNum()];
-
-        dn = _VertexNormal[UIdx] - _VertexNormal[VIdx];
-
-        dnu = dot(dn, t);
-        dnv = dot(dn, b);
-
-        m[0] += dnu*u;
-        m[1] += dnu*v + dnv*u;
-        m[2] += dnv*v;
-      }
-
-      w(1,1) = w(0,0) + w(2,2);
-      w(1,2) = w(0,1);
-
-      //Least Squares Solution
-      double diag[3];
-      if (!ldltdc(w, diag))
-      {
-        std::cout << "ldltdc failed" << std::endl;
-        continue;
-      }
-      ldltsl(w, diag, m, m);
-
-      //Push it back out to the vertices
-      for (int j = 0; j< 3; ++j)
-      {
-        const int old_vj = E->getVertex(j)->getNum();
-        const int vj = _VertexToInt[old_vj];
-        proj_curv(t, b, m[0], m[1], m[2], _pdir1[vj], _pdir2[vj], c1, c12, c2);
-        wt = _cornerareas[EIdx][j]/_pointareas[vj];
-
-        _curv1[vj]  += wt*c1;
-        _curv12[vj] += wt*c12;
-        _curv2[vj]  += wt*c2;
-      }
-
-    } //End of loop over the element (iElem)
-
-  } //End of loop over "_EntityArray"
-
-
-  //Compute principal directions and curvatures at each vertex
-  for (unsigned int ivertex = 0; ivertex < _VertexToInt.size(); ++ivertex)  {
-    diagonalize_curv(_pdir1[ivertex], _pdir2[ivertex], _curv1[ivertex], _curv12[ivertex], _curv2[ivertex],
-                     _VertexNormal[ivertex], _pdir1[ivertex], _pdir2[ivertex], _curv1[ivertex], _curv2[ivertex]);
-  }
-
-
-  _VertexCurve.resize( _VertexToInt.size() );
-
-  for (unsigned int ivertex = 0; ivertex < _VertexToInt.size(); ++ivertex){
-
-    if (isMax){
-      _VertexCurve[ivertex] = std::max(fabs(_curv1[ivertex]), fabs(_curv2[ivertex]));
-    }
-    else{
-    //_VertexCurve[ivertex] = (_curv1[ivertex]+_curv2[ivertex])*0.5; //Mean curvature
-    //_VertexCurve[ivertex] = _curv1[ivertex]*_curv2[ivertex]; //Gaussian
-    _VertexCurve[ivertex] = _curv1[ivertex]; //Maximal Curvature
-    }
-
-  }
-
-//   smoothCurvatureField(1);
-  _alreadyComputedCurvature = true;
-
-// Propagate the value of curvature from nodes close the edges of the geometry onto the edges
-  correctOnEdges();
-  //  throw;
-
-} //End of the "computeCurvature_Rusinkiewicz" method
-
- //========================================================================================================
-
-void Curvature::computeCurvature_RBF()
-{
-  retrieveCompounds();
-  initializeMap();
-
-  //fill set of MVertex
-  std::set<MVertex*> allNodes;
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)  {
-    GFaceCompound* face = (GFaceCompound*)_EntityArray[i];
-    for (unsigned iElem = 0; iElem < face->getNumMeshElements(); iElem++) {
-      MElement *e = face->getMeshElement(iElem);
-      for(int j = 0; j < e->getNumVertices(); j++){
-        allNodes.insert(e->getVertex(j));
-      }
-    }
-  }
-
-  //bounding box
-  SBoundingBox3d bb;
-  std::vector<SPoint3> vertices;
-  for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
-    SPoint3 pt((*itv)->x(),(*itv)->y(), (*itv)->z());
-    vertices.push_back(pt);
-    bb +=pt;
-  }
-  double sizeBox = norm(SVector3(bb.max(), bb.min()));
-
-  //compure curvature RBF
-  std::map<MVertex*, SVector3> _normals;
-  std::vector<MVertex*> _ordered;
-  std::map<MVertex*, double> curvRBF;
-  //GLOBAL
-  //GRbf *_rbf = new GRbf(sizeBox, 0, 1, _normals, allNodes, _ordered);
-  //_rbf->computeCurvature(_rbf->getXYZ(),curvRBF);
-  //LOCAL FD
-  GRbf *_rbf = new GRbf(sizeBox, 0, 1, _normals, allNodes, _ordered, true);
-  _rbf->computeLocalCurvature(_rbf->getXYZ(),curvRBF);
-
-  //fill vertex curve
-  _VertexCurve.resize( _VertexToInt.size() );
-  for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
-    MVertex *v = *itv;
-    std::map<int,int>::iterator vertexIterator;
-    int V0 = 0;
-    vertexIterator = _VertexToInt.find( v->getNum() );
-    if ( vertexIterator != _VertexToInt.end() )  V0 = (*vertexIterator).second;
-    _VertexCurve[V0] = curvRBF[v];
-   }
-
- _alreadyComputedCurvature = true;
-
-} //End of the "computeCurvature_RBF" method
-
-
- //========================================================================================================
-
-void Curvature::triangleNodalValues(MTriangle* triangle, double& c0, double& c1, double& c2, int isAbs)
-  {
-    MVertex* A = triangle->getVertex(0);
-    MVertex* B = triangle->getVertex(1);
-    MVertex* C = triangle->getVertex(2);
-
-    int V0 = 0;
-    int V1 = 0;
-    int V2 = 0;
-
-    std::map<int,int>::iterator vertexIterator;
-    vertexIterator = _VertexToInt.find( A->getNum() );
-    if ( vertexIterator != _VertexToInt.end() )  V0 = (*vertexIterator).second;
-    else
-      std::cout << "Didn't find vertex with number " << A->getNum() << " in _VertextToInt !" << std::endl;
-
-    vertexIterator = _VertexToInt.find( B->getNum() );
-    if ( vertexIterator != _VertexToInt.end() )   V1 = (*vertexIterator).second;
-    else
-      std::cout << "Didn't find vertex with number " << B->getNum() << " in _VertextToInt !" << std::endl;
-
-    vertexIterator = _VertexToInt.find( C->getNum() );
-    if ( vertexIterator != _VertexToInt.end() )  V2 = (*vertexIterator).second;
-    else
-      std::cout << "Didn't find vertex with number " << C->getNum() << " in _VertextToInt !" << std::endl;
-
-    if (isAbs){
-      c0 = std::abs(_VertexCurve[V0]); //Mean curvature in vertex 0
-      c1 = std::abs(_VertexCurve[V1]); //Mean curvature in vertex 1
-      c2 = std::abs(_VertexCurve[V2]); //Mean curvature in vertex 2
-    }
-    else{
-      c0 = _VertexCurve[V0]; //Mean curvature in vertex 0
-      c1 = _VertexCurve[V1]; //Mean curvature in vertex 1
-      c2 = _VertexCurve[V2]; //Mean curvature in vertex 2
-    }
-
-  }
-
-//========================================================================================================
-
-void Curvature::triangleNodalValuesAndDirections(MTriangle* triangle, SVector3* dMax, SVector3* dMin, double* cMax, double* cMin, int isAbs)
-{
-  MVertex* A = triangle->getVertex(0);
-  MVertex* B = triangle->getVertex(1);
-  MVertex* C = triangle->getVertex(2);
-
-  int V0 = 0;
-  int V1 = 0;
-  int V2 = 0;
-
-  std::map<int,int>::iterator vertexIterator;
-  vertexIterator = _VertexToInt.find( A->getNum() );
-  if ( vertexIterator != _VertexToInt.end() )  V0 = (*vertexIterator).second;
-  else
-    std::cout << "Didn't find vertex with number " << A->getNum() << " in _VertextToInt !" << std::endl;
-
-  vertexIterator = _VertexToInt.find( B->getNum() );
-  if ( vertexIterator != _VertexToInt.end() )  V1 = (*vertexIterator).second;
-  else
-    std::cout << "Didn't find vertex with number " << B->getNum() << " in _VertextToInt !" << std::endl;
-
-  vertexIterator = _VertexToInt.find( C->getNum() );
-  if ( vertexIterator != _VertexToInt.end() )  V2 = (*vertexIterator).second;
-  else
-    std::cout << "Didn't find vertex with number " << C->getNum() << " in _VertextToInt !" << std::endl;
-
-  if (isAbs){
-    dMax[0] = _pdir1[V0];
-    dMax[1] = _pdir1[V1];
-    dMax[2] = _pdir1[V2];
-
-    dMin[0] = _pdir2[V0];
-    dMin[1] = _pdir2[V1];
-    dMin[2] = _pdir2[V2];
-
-    cMax[0]  = std::abs(_curv1[V0]);
-    cMax[1]  = std::abs(_curv1[V1]);
-    cMax[2]  = std::abs(_curv1[V2]);
-
-    cMin[0]  = std::abs(_curv2[V0]);
-    cMin[1]  = std::abs(_curv2[V1]);
-    cMin[2]  = std::abs(_curv2[V2]);
-
-  }
-  else{
-
-    dMax[0] = _pdir1[V0];
-    dMax[1] = _pdir1[V1];
-    dMax[2] = _pdir1[V2];
-
-    dMin[0] = _pdir2[V0];
-    dMin[1] = _pdir2[V1];
-    dMin[2] = _pdir2[V2];
-
-    cMax[0]  = _curv1[V0];
-    cMax[1]  = _curv1[V1];
-    cMax[2]  = _curv1[V2];
-
-    cMin[0]  = _curv2[V0];
-    cMin[1]  = _curv2[V1];
-    cMin[2]  = _curv2[V2];
-  }
-}
-
-  //========================================================================================================
-
-void Curvature::edgeNodalValues(MLine* edge, double& c0, double& c1, int isAbs)
-   {
-     MVertex* A = edge->getVertex(0);
-     MVertex* B = edge->getVertex(1);
-
-     int V0 = 0;
-     int V1 = 0;
-
-     std::map<int,int>::iterator vertexIterator;
-
-     vertexIterator = _VertexToInt.find( A->getNum() );
-     if ( vertexIterator != _VertexToInt.end() )  V0 = (*vertexIterator).second;
-     else  std::cout << "Didn't find vertex with number " << A->getNum() << " in _VertextToInt !" << std::endl;
-
-     vertexIterator = _VertexToInt.find( B->getNum() );
-     if ( vertexIterator != _VertexToInt.end() ) V1 = (*vertexIterator).second;
-     else std::cout << "Didn't find vertex with number " << B->getNum() << " in _VertextToInt !" << std::endl;
-
-     if (isAbs){
-       c0 = std::abs(_VertexCurve[V0]); //Mean curvature in vertex 0
-       c1 = std::abs(_VertexCurve[V1]); //Mean curvature in vertex 1
-     }
-     else{
-       c0 = _VertexCurve[V0]; //Mean curvature in vertex 0
-       c1 = _VertexCurve[V1]; //Mean curvature in vertex 1
-     }
-
-   }
-
-//========================================================================================================
-
-void Curvature::edgeNodalValuesAndDirections(MLine* edge, SVector3* dMax, SVector3* dMin, double* cMax, double* cMin, int isAbs)
-{
-    std::vector<MVertex*> LineVertices;
-    //LineVertices.resize(2);
-    edge->getEdgeVertices(0,LineVertices);//triangle->getVertex(0);
-
-    int V0 = 0;
-    int V1 = 0;
-
-    std::map<int,int>::iterator vertexIterator;
-    vertexIterator = _VertexToInt.find( LineVertices[0]->getNum() );
-    if ( vertexIterator != _VertexToInt.end() )  V0 = (*vertexIterator).second;
-    else
-      std::cout << "Didn't find vertex with number " << LineVertices[0]->getNum() << " in _VertextToInt !" << std::endl;
-
-    vertexIterator = _VertexToInt.find( LineVertices[1]->getNum() );
-    if ( vertexIterator != _VertexToInt.end() )  V1 = (*vertexIterator).second;
-    else
-      std::cout << "Didn't find vertex with number " << LineVertices[1]->getNum() << " in _VertextToInt !" << std::endl;
-
-
-    if (isAbs){
-      dMax[0] = _pdir1[V0];
-      dMax[1] = _pdir1[V1];
-
-      dMin[0] = _pdir2[V0];
-      dMin[1] = _pdir2[V1];
-
-      cMax[0]  = std::abs(_curv1[V0]);
-      cMax[1]  = std::abs(_curv1[V1]);
-
-      cMin[0]  = std::abs(_curv2[V0]);
-      cMin[1]  = std::abs(_curv2[V1]);
-
-    }
-    else{
-
-      dMax[0] = _pdir1[V0];
-      dMax[1] = _pdir1[V1];
-
-      dMin[0] = _pdir2[V0];
-      dMin[1] = _pdir2[V1];
-
-      cMax[0]  = _curv1[V0];
-      cMax[1]  = _curv1[V1];
-
-      cMin[0]  = _curv2[V0];
-      cMin[1]  = _curv2[V1];
-    }
-}
-  //========================================================================================================
-
-void Curvature::vertexNodalValues(MVertex* A, double& c0, int isAbs)
-   {
-     int V0 = 0;
-
-     std::map<int,int>::iterator vertexIterator;
-
-     vertexIterator = _VertexToInt.find( A->getNum() );
-     if ( vertexIterator != _VertexToInt.end() )  V0 = (*vertexIterator).second;
-     else  std::cout << "Didn't find vertex with number " << A->getNum() << " in _VertextToInt !" << std::endl;
-
-
-     if (isAbs){
-       c0 = std::abs(_VertexCurve[V0]); //Mean curvature in vertex 0
-      }
-     else{
-       c0 = _VertexCurve[V0]; //Mean curvature in vertex 0
-      }
-
-   }
-
-void Curvature::vertexNodalValuesAndDirections(MVertex *A, SVector3* dMax, SVector3* dMin, double* cMax, double* cMin, int isAbs)
-{
-
-    int V0 = 0;
-
-    std::map<int,int>::iterator vertexIterator;
-    vertexIterator = _VertexToInt.find( A->getNum() );
-    if ( vertexIterator != _VertexToInt.end() )  V0 = (*vertexIterator).second;
-    else
-      std::cout << "Didn't find vertex with number " << A->getNum() << " in _VertextToInt !" << std::endl;
-
-    if (isAbs){
-      dMax[0] = _pdir1[V0];
-      dMin[0] = _pdir2[V0];
-      cMax[0]  = std::abs(_curv1[V0]);
-      cMin[0]  = std::abs(_curv2[V0]);
-    }
-    else{
-      dMax[0] = _pdir1[V0];
-      dMin[0] = _pdir2[V0];
-      cMax[0]  = _curv1[V0];
-      cMin[0]  = _curv2[V0];
-    }
-}
-
-
-//========================================================================================================
-
-double Curvature::getAtVertex(const MVertex *v) const {
-  std::map<int,int>::const_iterator it = _VertexToInt.find(v->getNum());
-  if (it == _VertexToInt.end()) {
-    Msg::Error("curvature has not been computed for vertex %i (%i)", v->getNum(), _VertexToInt.size());
-    return 1;
-  }
-  return _VertexCurve[it->second];
-}
-
-//========================================================================================================
-
-void Curvature::writeToMshFile(const std::string &filename)
-{
-  std::ofstream outfile;
-  outfile.precision(18);
-  outfile.open(filename.c_str());
-
-  /// Write the values of curvature 1 (max)
-  outfile << "$MeshFormat"    << std::endl;
-  outfile << "2.1 0 8"        << std::endl;
-  outfile << "$EndMeshFormat" << std::endl;
-  outfile << "$NodeData" << std::endl;
-  outfile << "1" << std::endl;                 // One string tag
-  outfile << "\"Curvature 1 (max)\"" << std::endl;     // The name of the view
-  outfile << "1"             << std::endl;     // One real tag
-  outfile << "0.0"           << std::endl;     // The time value
-  outfile << "3"             << std::endl;     // Three integer tags
-  outfile << "0"             << std::endl;     // The time step (time steps always start at 0)
-  outfile << "1"             << std::endl;     // 1-component (scalar) field
-  outfile << _VertexToInt.size() << std::endl; // How many associated nodal values
-
-  std::map<int,int>::const_iterator vertex_iterator;
-  for(vertex_iterator = _VertexToInt.begin(); vertex_iterator != _VertexToInt.end(); ++vertex_iterator)
-  {
-    outfile << vertex_iterator->first << " " << _curv1[vertex_iterator->second] << std::endl;
-  }
-
-  outfile << "$EndNodeData" << std::endl;
-
-
-  /// Write the values of curvature 2 (min)
-  outfile << "$MeshFormat"    << std::endl;
-  outfile << "2.1 0 8"        << std::endl;
-  outfile << "$EndMeshFormat" << std::endl;
-  outfile << "$NodeData" << std::endl;
-  outfile << "1" << std::endl;                 // One string tag
-  outfile << "\"Curvature 2 (min)\"" << std::endl;     // The name of the view
-  outfile << "1"             << std::endl;     // One real tag
-  outfile << "0.0"           << std::endl;     // The time value
-  outfile << "3"             << std::endl;     // Three integer tags
-  outfile << "0"             << std::endl;     // The time step (time steps always start at 0)
-  outfile << "1"             << std::endl;     // 1-component (scalar) field
-  outfile << _VertexToInt.size() << std::endl; // How many associated nodal values
-
-
-  for(vertex_iterator = _VertexToInt.begin(); vertex_iterator != _VertexToInt.end(); ++vertex_iterator)
-  {
-    outfile << vertex_iterator->first << " " << _curv2[vertex_iterator->second] << std::endl;
-  }
-
-  outfile << "$EndNodeData" << std::endl;
-
-
-  /// Write the values of characteristic length
-
-  double lc;
-
-  outfile << "$MeshFormat"    << std::endl;
-  outfile << "2.1 0 8"        << std::endl;
-  outfile << "$EndMeshFormat" << std::endl;
-  outfile << "$NodeData" << std::endl;
-  outfile << "1" << std::endl;                 // One string tag
-  outfile << "\"Characteristic mesh length\"" << std::endl;     // The name of the view
-  outfile << "1"             << std::endl;     // One real tag
-  outfile << "0.0"           << std::endl;     // The time value
-  outfile << "3"             << std::endl;     // Three integer tags
-  outfile << "0"             << std::endl;     // The time step (time steps always start at 0)
-  outfile << "1"             << std::endl;     // 1-component (scalar) field
-  outfile << _VertexToInt.size() << std::endl; // How many associated nodal values
-
-  for(vertex_iterator = _VertexToInt.begin(); vertex_iterator != _VertexToInt.end(); ++vertex_iterator)
-  {
-    lc = 2.0*M_PI/( fabs(_VertexCurve[vertex_iterator->second]) * CTX::instance()->mesh.minCircPoints );
-    lc = std::max(lc, CTX::instance()->mesh.lcMin);
-    lc = std::min(lc, CTX::instance()->mesh.lcMax);
-    //outfile << vertex_iterator->first << " " << 1.0/(lc*lc) << std::endl;
-    outfile << vertex_iterator->first << " " << lc << std::endl;
-  }
-
-  outfile << "$EndNodeData" << std::endl;
-
-  /// Write the values of curvature direction - principal direction 1
-  outfile << "$NodeData" << std::endl;
-  outfile << "1" << std::endl;                 // One string tag
-  outfile << "\"Principal curvature direction 1\"" << std::endl;     // The name of the view
-  outfile << "1"             << std::endl;     // One real tag
-  outfile << "0.0"           << std::endl;     // The time value
-  outfile << "3"             << std::endl;     // Three integer tags
-  outfile << "0"             << std::endl;     // The time step (time steps always start at 0)
-  outfile << "3"             << std::endl;     // 3-component (vector) field
-  outfile << _VertexToInt.size() << std::endl; // How many associated nodal values
-
-  for(vertex_iterator = _VertexToInt.begin(); vertex_iterator != _VertexToInt.end(); ++vertex_iterator)
-  {
-    outfile << vertex_iterator->first << " " << _pdir1[vertex_iterator->second].x() << " "
-                                             << _pdir1[vertex_iterator->second].y() << " "
-                                             << _pdir1[vertex_iterator->second].z() << std::endl;
-  }
-
-  outfile << "$EndNodeData" << std::endl;
-
-
-  /// Write the values of curvature direction - principal direction 2
-  outfile << "$NodeData" << std::endl;
-  outfile << "1" << std::endl;                 // One string tag
-  outfile << "\"Principal curvature direction 2\"" << std::endl;     // The name of the view
-  outfile << "1"             << std::endl;     // One real tag
-  outfile << "0.0"           << std::endl;     // The time value
-  outfile << "3"             << std::endl;     // Three integer tags
-  outfile << "0"             << std::endl;     // The time step (time steps always start at 0)
-  outfile << "3"             << std::endl;     // 3-component (vector) field
-  outfile << _VertexToInt.size() << std::endl; // How many associated nodal values
-
-  for(vertex_iterator = _VertexToInt.begin(); vertex_iterator != _VertexToInt.end(); ++vertex_iterator)
-  {
-    outfile << vertex_iterator->first << " " << _pdir2[vertex_iterator->second].x() << " "
-                                             << _pdir2[vertex_iterator->second].y() << " "
-                                             << _pdir2[vertex_iterator->second].z() << std::endl;
-  }
-
-  outfile << "$EndNodeData" << std::endl;
-
-  outfile.close();
-
-
-}
-
-//========================================================================================================
-
-void Curvature::writeToPosFile( const std::string & filename)
-{
-  std::ofstream outfile;
-  outfile.precision(18);
-  outfile.open(filename.c_str());
-  outfile << "View \"Curvature \"{" << std::endl;
-
-  int idxelem = 0;
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i) {
-    GFace* face = _EntityArray[i];
-
-    for (unsigned iElem = 0; iElem < face->getNumMeshElements(); iElem++){
-      MElement *e = face->getMeshElement(iElem);
-      //const int E = _ElementToInt[e->getNum()];
-      //std::cout << "We are now looking at element Nr: " << E << std::endl;
-
-      MVertex* A = e->getVertex(0);  //Pointers to vertices of triangle
-      MVertex* B = e->getVertex(1);
-      MVertex* C = e->getVertex(2);
-
-      const int V1 = _VertexToInt[A->getNum()];                //Tag of the 1st vertex of the triangle
-      const int V2 = _VertexToInt[B->getNum()];                //Tag of the 2nd vertex of the triangle
-      const int V3 = _VertexToInt[C->getNum()];                //Tag of the 3rd vertex of the triangle
-
-      //Here is printing the triplet X-Y-Z of each vertex:
-      //*************************************************
-
-      outfile << "ST("; //VT = vector triangles   //ST = scalar triangle
-      outfile << A->x() << ","<< A->y() << "," << A->z()<< ",";
-      outfile << B->x() << ","<< B->y() << "," << B->z()<< ",";
-      outfile << C->x() << ","<< C->y() << "," << C->z();
-
-      outfile << ")";
-      outfile <<"{";
-
-      //Here is printing the 3 components of the normal vector for each vertex:
-      //**********************************************************************
-
-//      outfile << _VertexNormal[V1].x() << ","<< _VertexNormal[V1].y() << ","<< _VertexNormal[V1].z() << ",";
-//      outfile << _VertexNormal[V2].x() << ","<< _VertexNormal[V2].y() << ","<< _VertexNormal[V2].z() << ",";
-//      outfile << _VertexNormal[V3].x() << ","<< _VertexNormal[V3].y() << ","<< _VertexNormal[V3].z();
-
-      outfile << _VertexCurve[V1] << "," << _VertexCurve[V2] << "," << _VertexCurve[V3];
-
-      outfile << "};" << std::endl;
-
-      idxelem++;
-
-  } //Loop over elements
-
-} // Loop over ptFinalEntityList
-
-outfile << "};" << std::endl;
-
-outfile.close();
-}
-
-//========================================================================================================
-
-void Curvature::writeToVtkFile( const std::string & filename)
-{
-
-  std::ofstream outfile;
-  outfile.precision(18);
-  outfile.open(filename.c_str());
-  outfile << "# vtk DataFile Version 2.0" << std::endl;
-  outfile << "Surface curvature computed by Gmsh" << std::endl;
-  outfile << "ASCII" << std::endl;
-  outfile << "DATASET UNSTRUCTURED_GRID" << std::endl;
-
-  const int npoints = _VertexToInt.size();
-
-  outfile << "POINTS " << npoints << " double" << std::endl;
-
-  /// Build a table of coordinates
-  /// Loop over all elements and look at the 'old' (not necessarily continuous) numbers of vertices
-  /// Get the 'new' index of each vertex through _VertexToInt and the [x,y,z] coordinates of this vertex
-  /// Store them in coordx,coordy and coordz
-
-
-  std::vector<VtkPoint> coord;
-
-  coord.resize(npoints);
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    GFace* face = _EntityArray[i];
-
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++)
-    {
-      MElement *e = face->getMeshElement(iElem);
-
-      MVertex* A = e->getVertex(0);  //Pointers to vertices of triangle
-      MVertex* B = e->getVertex(1);
-      MVertex* C = e->getVertex(2);
-
-      const int oldIdxA = A->getNum();
-      const int oldIdxB = B->getNum();
-      const int oldIdxC = C->getNum();
-
-      const int newIdxA = _VertexToInt[oldIdxA];
-      const int newIdxB = _VertexToInt[oldIdxB];
-      const int newIdxC = _VertexToInt[oldIdxC];
-
-      coord[newIdxA].x = A->x();
-      coord[newIdxA].y = A->y();
-      coord[newIdxA].z = A->z();
-
-      coord[newIdxB].x = B->x();
-      coord[newIdxB].y = B->y();
-      coord[newIdxB].z = B->z();
-
-      coord[newIdxC].x = C->x();
-      coord[newIdxC].y = C->y();
-      coord[newIdxC].z = C->z();
-    }
-  }
-
-  for (int v = 0; v < npoints; ++v)
-  {
-    outfile << coord[v].x << " " << coord[v].y << " " << coord[v].z << std::endl;
-  }
-
-  /// Empty the array 'coord' to free the memory
-  /// Point coordinates will not be needed anymore
-  coord.clear();
-
-  /// Write the cell connectivity
-
-  outfile << std::endl << "CELLS " << _ElementToInt.size() << " " << 4*_ElementToInt.size() << std::endl;
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    GFace* face = _EntityArray[i];
-
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++)
-    {
-      MElement *e = face->getMeshElement(iElem);
-
-      MVertex* A = e->getVertex(0);  //Pointers to vertices of triangle
-      MVertex* B = e->getVertex(1);
-      MVertex* C = e->getVertex(2);
-
-      const int oldIdxA = A->getNum();
-      const int oldIdxB = B->getNum();
-      const int oldIdxC = C->getNum();
-
-      const int newIdxA = _VertexToInt[oldIdxA];
-      const int newIdxB = _VertexToInt[oldIdxB];
-      const int newIdxC = _VertexToInt[oldIdxC];
-
-      outfile << "3 " << newIdxA << " " << newIdxB << " " << newIdxC << std::endl;
-    }
-  }
-
-  outfile << std::endl << "CELL_TYPES " << _ElementToInt.size() << std::endl;
-  for(unsigned int ie = 0; ie < _ElementToInt.size(); ++ie)
-  {
-    outfile << "5" << std::endl; //Triangle is element type 5 in vtk
-
-  }
-
-  /// Write the curvature values as vtk 'point data'
-
-  outfile << std::endl << "POINT_DATA " << npoints << std::endl;
-  outfile << "SCALARS Curvature float 1" << std::endl;
-  outfile << "LOOKUP_TABLE default" << std::endl;
-
-  for (int iv = 0; iv < npoints; ++iv)
-  {
-    outfile << _VertexCurve[iv] << std::endl;
-  }
-
-  outfile << "SCALARS CharacteristicMeshLength float 1" << std::endl;
-  outfile << "LOOKUP_TABLE default" << std::endl;
-
-  double lc;
-
-  for (int iv = 0; iv < npoints; ++iv)
-  {
-    lc = 2.0*M_PI / ( fabs(_VertexCurve[iv]) * CTX::instance()->mesh.minCircPoints );
-    lc = std::max(lc, CTX::instance()->mesh.lcMin);
-    lc = std::min(lc, CTX::instance()->mesh.lcMax);
-    //outfile << 1.0/(lc*lc) << std::endl;
-    outfile << lc << std::endl;
-  }
-
-  outfile << "VECTORS CurvatureDir1 float" << std::endl;
-  for (int iv = 0; iv < npoints; ++iv)
-  {
-    outfile << _pdir1[iv].x() << " " << _pdir1[iv].y() << " " << _pdir1[iv].z() << std::endl;
-  }
-
-  outfile << "VECTORS CurvatureDir2 float" << std::endl;
-  for (int iv = 0; iv < npoints; ++iv)
-  {
-    outfile << _pdir2[iv].x() << " " << _pdir2[iv].y() << " " << _pdir2[iv].z() << std::endl;
-  }
-
-  outfile.close();
-
-}
-
-//========================================================================================================
-
-void Curvature::writeDirectionsToPosFile( const std::string & filename)
-{
-  std::ofstream outfile;
-  outfile.precision(18);
-  outfile.open(filename.c_str());
-  outfile << "View \"Curvature_DirMax \"{" << std::endl;
-
-  for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-  {
-    GFace* face = _EntityArray[i]; //face is a pointer to one surface of the group "FinalEntityList"
-
-    for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++) //Loop over the element all the element of the "myTag"-surface
-    {
-      MElement *e = face->getMeshElement(iElem);  //Pointer to one element
-
-      //const int E = _ElementToInt[e->getNum()]; //The NEW tag of the corresponding element
-      //std::cout << "We are now looking at element Nr: " << E << std::endl;
-
-      MVertex* A = e->getVertex(0);  //Pointers to vertices of triangle
-      MVertex* B = e->getVertex(1);
-      MVertex* C = e->getVertex(2);
-
-      const int V1 = _VertexToInt[A->getNum()];                //Tag of the 1st vertex of the triangle
-      const int V2 = _VertexToInt[B->getNum()];                //Tag of the 2nd vertex of the triangle
-      const int V3 = _VertexToInt[C->getNum()];                //Tag of the 3rd vertex of the triangle
-
-      //Here is printing the triplet X-Y-Z of each vertex:
-      //*************************************************
-
-      outfile << "VT("; //VT = vector triangles   //ST = scalar triangle
-      outfile << A->x() << ","<< A->y() << "," << A->z()<< ",";
-      outfile << B->x() << ","<< B->y() << "," << B->z()<< ",";
-      outfile << C->x() << ","<< C->y() << "," << C->z();
-
-      outfile << ")";
-      outfile <<"{";
-
-      //Here is printing the 3 components of the curvature max direction for each vertex:
-      //*********************************************************************************
-
-         outfile << _pdir1[V1].x() << ","<< _pdir1[V1].y() << ","<< _pdir1[V1].z() << ",";
-         outfile << _pdir1[V2].x() << ","<< _pdir1[V2].y() << ","<< _pdir1[V2].z() << ",";
-         outfile << _pdir1[V3].x() << ","<< _pdir1[V3].y() << ","<< _pdir1[V3].z();
-
-
-      outfile << "};" << std::endl;
-
-  } //Loop over elements
-
-} // Loop over ptFinalEntityList
-
-outfile << "};" << std::endl;
-
-
-//----------------------------------------------------------------------------------------------
-
-outfile << "View \"Curvature_DirMin \"{" << std::endl;
-
-for (unsigned int i = 0; i< _EntityArray.size(); ++i)
-{
-  GFace* face = _EntityArray[i]; //face is a pointer to one surface of the group "FinalEntityList"
-
-  for (unsigned int iElem = 0; iElem < face->getNumMeshElements(); iElem++) //Loop over the element all the element of the "myTag"-surface
-  {
-    MElement *e = face->getMeshElement(iElem);  //Pointer to one element
-
-    //const int E = _ElementToInt[e->getNum()]; //The NEW tag of the corresponding element
-    //std::cout << "We are now looking at element Nr: " << E << std::endl;
-
-    MVertex* A = e->getVertex(0);  //Pointers to vertices of triangle
-    MVertex* B = e->getVertex(1);
-    MVertex* C = e->getVertex(2);
-
-    const int V1 = _VertexToInt[A->getNum()];                //Tag of the 1st vertex of the triangle
-    const int V2 = _VertexToInt[B->getNum()];                //Tag of the 2nd vertex of the triangle
-    const int V3 = _VertexToInt[C->getNum()];                //Tag of the 3rd vertex of the triangle
-
-    //Here is printing the triplet X-Y-Z of each vertex:
-    //*************************************************
-
-    outfile << "VT("; //VT = vector triangles   //ST = scalar triangle
-    outfile << A->x() << ","<< A->y() << "," << A->z()<< ",";
-    outfile << B->x() << ","<< B->y() << "," << B->z()<< ",";
-    outfile << C->x() << ","<< C->y() << "," << C->z();
-
-    outfile << ")";
-    outfile <<"{";
-
-    //Here is printing the 3 components of the curvature min direction for each vertex:
-    //*********************************************************************************
-
-       outfile << _pdir2[V1].x() << ","<< _pdir2[V1].y() << ","<< _pdir2[V1].z() << ",";
-       outfile << _pdir2[V2].x() << ","<< _pdir2[V2].y() << ","<< _pdir2[V2].z() << ",";
-       outfile << _pdir2[V3].x() << ","<< _pdir2[V3].y() << ","<< _pdir2[V3].z();
-
-
-    outfile << "};" << std::endl;
-
-} //Loop over elements
-
-} // Loop over ptFinalEntityList
-
-outfile << "};" << std::endl;
-
-outfile.close();
-}
-//========================================================================================================
-
-
-
diff --git a/Geo/Curvature.h b/Geo/Curvature.h
deleted file mode 100644
index 133a9090f9d93ce828f37db68a1564783d350b65..0000000000000000000000000000000000000000
--- a/Geo/Curvature.h
+++ /dev/null
@@ -1,230 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-
-#ifndef _CURVATURE_H_
-#define _CURVATURE_H_
-
-#include "GModel.h"
-#include "STensor3.h"
-
-#include<map>
-#include<vector>
-#include<list>
-
-class Curvature {
-
-private:
-    //----------------------------------------
-    //TYPEDEFS:
-
-    typedef std::vector<GFace*> GFaceList;
-    //typedef std::map<int, GEntityList >::iterator GEntityIter;
-    typedef std::map<int, GFaceList >::iterator GFaceIter;
-
-    //-----------------------------------------
-    // HELPER TYPE FOR WRITING TO VTK FILES
-    struct VtkPoint
-    {
-      double x;
-      double y;
-      double z;
-    };
-
-    //-----------------------------------------
-    // HELPER TYPE FOR DETECTING BOUNDARY NODES
-    struct MeshEdgeInfo
-    {
-      int StartV;
-      int EndV;
-      int NbElemNeighbour;
-    };
-
-    //-----------------------------------------
-    // MEMBER VARIABLES
-
-    //Static member variable to implement the class curvature as a Singleton
-    static Curvature *_instance;
-    static bool _destroyed;
-
-    //Boolean to check if the curvature has already been computed
-    static bool _alreadyComputedCurvature;
-
-    //Map definition
-    std::map<int, int> _VertexToInt;
-    std::map<int, int> _ElementToInt;
-
-    bool _isMapInitialized;
-
-    //Model and list of selected entities with give physical tag:
-    GModel* _model;
-    GFaceList _EntityArray;
-
-    //Averaged vertex normals
-    std::vector<SVector3> _VertexNormal;
-
-    // Vector of principal directions
-    std::vector<SVector3> _pdir1;
-    std::vector<SVector3> _pdir2;
-
-    // Vector of principal curvature
-    std::vector<double> _curv1;
-    std::vector<double> _curv2;
-    std::vector<double> _curv12;
-
-    // Area around point
-    std::vector<double> _pointareas;
-    std::vector<SVector3> _cornerareas;
-
-    //Curvature Tensor per mesh vertex
-    std::vector<STensor3> _CurveTensor;
-
-    //Area of a triangle element:
-    std::vector<double> _TriangleArea;
-
-    //Area around a mesh vertex:
-    std::vector<double> _VertexArea;
-    std::vector<double> _VertexCurve;
-
-
-    //Number of neighbour for each vertices in the mesh:
-    std::vector<int> _NbNeighbour;
-
-    //Vector of 0/1 to check which nodes are on the boundary:
-    std::vector<int> _isOnBoundary;
-
-    std::vector<std::list<MeshEdgeInfo> > _VertexToEdgeList;
-    //-----------------------------------------
-    // PRIVATE METHODS
-
-    //Constructor and destructor
-    Curvature();
-    ~Curvature();
-
-    static void create();
-    static void onDeadReference();
-
-    void initializeMap();
-    void computeVertexNormals();
-    void curvatureTensor();
-    static void rot_coord_sys(const SVector3 &old_u, const SVector3 &old_v,
-                              const SVector3 &new_norm, SVector3 &new_u, SVector3 &new_v);
-    void proj_curv( const SVector3 &old_u, const SVector3 &old_v, double old_ku, double old_kuv,
-                              double old_kv, const SVector3  &new_u, const SVector3 &new_v,
-                              double &new_ku, double &new_kuv, double &new_kv);
-    void diagonalize_curv(const SVector3 &old_u, const SVector3 &old_v,
-                          double ku, double kuv, double kv,
-                          const SVector3 &new_norm,
-                          SVector3 &pdir1, SVector3 &pdir2, double &k1, double &k2);
-    void computePointareas();
-    void computeRusinkiewiczNormals();
-
-    // Perform LDL^T decomposition of a symmetric positive definite matrix.
-    // Like Cholesky, but no square roots.  Overwrites lower triangle of matrix.
-    static inline bool ldltdc(STensor3& A, double rdiag[3])
-    {
-      double v[2];
-      for (int i = 0; i < 3; i++)
-      {
-        for (int k = 0; k < i; k++)
-          v[k] = A(i,k) * rdiag[k];
-        for (int j = i; j < 3; j++)
-        {
-          double sum = A(i,j);
-          for (int k = 0; k < i; k++)
-            sum -= v[k] * A(j,k);
-          if (i == j)
-          {
-            //if (unlikely(sum <= T(0)))
-            if (sum <= 0.0)
-              return false;
-            rdiag[i] = 1.0 / sum;
-          }
-          else
-          {
-            A(j,i) = sum;
-          }
-        }
-      }
-
-      return true;
-    }
-    // Solve Ax=B after ldltdc
-    static inline void ldltsl(STensor3& A, double rdiag[3], double B[3], double x[3])
-    {
-      int i;
-      for (i = 0; i < 3; i++)
-      {
-        double sum = B[i];
-        for (int k = 0; k < i; k++)
-          sum -= A(i,k) * x[k];
-        x[i] = sum * rdiag[i];
-      }
-      for (i = 3 - 1; i >= 0; i--)
-      {
-        double sum = 0;
-        for (int k = i + 1; k < 3; k++)
-          sum += A(k,i) * x[k];
-        x[i] -= sum * rdiag[i];
-      }
-    }
-
-    //Build the list of all edges:
-    void buildEdgeList();
-
-    //Smooth the computed curvature field via Laplacian smoothing method:
-    void smoothCurvatureField(const int NbIter);
-
-public:
-
-  typedef enum {RUSIN=1,RBF=2, SIMPLE=3} typeOfCurvature;
-  static Curvature& getInstance();
-  static bool valueAlreadyComputed();
-
-  inline void setGModel(GModel* model)
-  {
-    _model = model;
-  }
-
-  void retrieveCompounds();
-  void correctOnEdges();
-  double getAtVertex(const MVertex *v) const;
-  //void retrievePhysicalSurfaces(const std::string & face_tag);
-
-  void computeCurvature(GModel* model, typeOfCurvature typ);
-
-  /// The following function implements algorithm from:
-  /// Implementation of an Algorithm for Approximating the Curvature Tensor
-  /// on a Triangular Surface Mesh in the Vish Environment
-  /// Edwin Matthews, Werner Benger, Marcel Ritter
-  void computeCurvature_Simple();
-
-  /// The following function implements algorithm from:
-  /// Estimating Curvatures and Their Derivatives on Triangle Meshes
-  /// Szymon Rusinkiewicz, Princeton University
-  /// Code taken from Rusinkiewicz' 'trimesh2' library
-  void computeCurvature_Rusinkiewicz(int isMax=0);
-
-  void computeCurvature_RBF();
-
-  void triangleNodalValues(MTriangle* triangle, double& c0, double& c1, double& c2, int isAbs=0);
-  void triangleNodalValuesAndDirections(MTriangle* triangle, SVector3* dMax, SVector3* dMin, double* cMax, double* cMin, int isAbs=0);
-
-  void edgeNodalValues(MLine* edge, double& c0, double& c1, int isAbs=0);
-  void edgeNodalValuesAndDirections(MLine* edge, SVector3* dMax, SVector3* dMin, double* cMax, double* cMin, int isAbs=0);
-
-  void vertexNodalValues(MVertex* A, double& c0, int isAbs=0);
-  void vertexNodalValuesAndDirections(MVertex *A, SVector3* dMax, SVector3* dMin, double* cMax, double* cMin, int isAbs=0);
-  SVector3 vertexNormal (MVertex* A) ;
-
-  void writeToMshFile( const std::string & filename);
-
-  void writeToPosFile( const std::string & filename);
-
-  void writeToVtkFile( const std::string & filename);
-
-  void writeDirectionsToPosFile( const std::string & filename);
-};
-
-#endif
diff --git a/Geo/GEdge.cpp b/Geo/GEdge.cpp
index 13c8d5708b012f0b2778316db3b3028f497e83b2..66ca5b4660ae8dab3137a10e1528d52f4a1a221f 100644
--- a/Geo/GEdge.cpp
+++ b/Geo/GEdge.cpp
@@ -21,7 +21,7 @@
 
 GEdge::GEdge(GModel *model, int tag, GVertex *_v0, GVertex *_v1)
   : GEntity(model, tag), _length(0.), _tooSmall(false), _cp(0),
-    v0(_v0), v1(_v1), compound(0), masterOrientation(0)
+    v0(_v0), v1(_v1), masterOrientation(0)
 {
   if(v0) v0->addEdge(this);
   if(v1 && v1 != v0) v1->addEdge(this);
diff --git a/Geo/GEdge.h b/Geo/GEdge.h
index 4538a95d80af0914523a647c87a428ddee9e7eec..b715ce0f89ec8309d00fa215884931175f017896 100644
--- a/Geo/GEdge.h
+++ b/Geo/GEdge.h
@@ -21,7 +21,6 @@
 class MElement;
 class MLine;
 class ExtrudeParams;
-class GEdgeCompound;
 class closestPointFinder;
 
 // A model edge.
@@ -35,7 +34,6 @@ class GEdge : public GEntity {
   // FIXME: normals need to be mutable at the moment, because thay can
   // be created in const member functions
   mutable std::map<MVertex*, SVector3, std::less<MVertex*> > _normals;
-  GEdgeCompound *compound; // this model edge belongs to a compound
   std::list<GFace *> l_faces;
   // for specific solid modelers that need to re-do the internal curve
   // if a topological change ending points is done (glueing)
@@ -191,10 +189,6 @@ class GEdge : public GEntity {
   virtual bool XYZToU(const double X, const double Y, const double Z,
                       double &U, const double relax=1) const;
 
-  // compound
-  void setCompound(GEdgeCompound *gec) { compound = gec; }
-  GEdgeCompound *getCompound() const { return compound; }
-
   // gluing
   void replaceEndingPoints(GVertex *, GVertex *);
 
@@ -224,7 +218,7 @@ class GEdge : public GEntity {
 
   virtual void discretize(double tol, std::vector<SPoint3> &dpts, std::vector<double> &ts);
   SPoint3 closestPoint (SPoint3 &p, double tolerance);
-  virtual void mesh(bool) ;
+  virtual void mesh(bool verbose) ;
 };
 
 #endif
diff --git a/Geo/GEdgeCompound.cpp b/Geo/GEdgeCompound.cpp
deleted file mode 100644
index 58f93ad36f677047b66c8088f4095767642fe74f..0000000000000000000000000000000000000000
--- a/Geo/GEdgeCompound.cpp
+++ /dev/null
@@ -1,359 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-//
-// Contributor(s):
-//   Emilie Marchandise
-//
-
-#include <stdlib.h>
-#include "GmshConfig.h"
-#include "GEdgeCompound.h"
-#include "discreteEdge.h"
-#include "Numeric.h"
-#include "Curvature.h"
-
-static bool looksOk(int tag, std::vector<GEdge*> &compound)
-{
-  if(compound.empty()){
-    Msg::Error("Empty edge compound %d", tag);
-    return false;
-  }
-  for(unsigned int i = 0; i < compound.size(); i++){
-    if(!compound[i]->getBeginVertex() || !compound[i]->getEndVertex()){
-      Msg::Error("Edge compound %d with missing begin/end vertex", tag);
-      return false;
-    }
-    if(compound.size() > 1 && compound[i]->getBeginVertex() == compound[i]->getEndVertex()){
-      Msg::Warning("Edge compound %d with subloop", tag);
-      return true;
-    }
-  }
-  return true;
-}
-
-GEdgeCompound::GEdgeCompound(GModel *m, int tag, std::vector<GEdge*> &compound,
-                             std::vector<int> &orientation)
-  : GEdge(m, tag, 0, 0), _compound(compound), _orientation(orientation)
-{
-  if(!looksOk(tag, compound)) return;
-
-  int N = _compound.size();
-  if(N == (int)_orientation.size()){
-    v0 = _orientation[0] ? _compound[0]->getBeginVertex() : _compound[0]->getEndVertex();
-    v1 = _orientation[N-1] ? _compound[N-1]->getEndVertex() : _compound[N-1]->getBeginVertex();
-    v0->addEdge(this);
-    v1->addEdge(this);
-  }
-  else{
-    Msg::Error("Wrong input data for compound edge %d", tag);
-    return;
-  }
-
-  for (unsigned int i = 0; i < _compound.size(); i++){
-    _compound[i]->setCompound(this);
-    discreteEdge *de = dynamic_cast<discreteEdge*> (_compound[i]);
-    if(de) de->createGeometry();
-  }
-
-  for(std::vector<GEdge*>::iterator it = _compound.begin(); it != _compound.end(); ++it){
-    if(!(*it)){
-      Msg::Error("Incorrect edge in compound edge %d", tag);
-      return;
-    }
-  }
-
-  parametrize();
-}
-
-GEdgeCompound::GEdgeCompound(GModel *m, int tag, std::vector<GEdge*> &compound)
-  : GEdge(m, tag, 0 , 0), _compound(compound)
-{
-  if(!looksOk(tag, compound)) return;
-
-  orderEdges();
-  int N = _compound.size();
-  if(N == (int)_orientation.size()){
-    v0 = _orientation[0] ? _compound[0]->getBeginVertex() : _compound[0]->getEndVertex();
-    v1 = _orientation[N-1] ? _compound[N-1]->getEndVertex() : _compound[N-1]->getBeginVertex();
-    v0->addEdge(this);
-    v1->addEdge(this);
-  }
-  else{
-    Msg::Error("Wrong input data for compound edge %d", tag);
-    return;
-  }
-
-  for (unsigned int i = 0; i < _compound.size(); i++){
-    _compound[i]->setCompound(this);
-    discreteEdge *de = dynamic_cast<discreteEdge*> (_compound[i]);
-    if(de) de->createGeometry();
-  }
-  parametrize();
-}
-
-void GEdgeCompound::orderEdges()
-{
-  std::vector<GEdge*> _c ;
-  std::list<GEdge*> edges ;
-
-  for (unsigned int i = 0; i < _compound.size(); i++){
-    edges.push_back(_compound[i]);
-  }
-
-  // find a lonely edge
-  std::map<GVertex*, GEdge*> tempv;
-  for (std::list<GEdge*>::iterator it = edges.begin() ; it != edges.end() ; ++it){
-    GVertex *v1 = (*it)->getBeginVertex();
-    GVertex *v2 = (*it)->getEndVertex();
-    if(!v1 || !v2){
-      Msg::Error("Compounds don't support curves without two bounding vertices");
-      return;
-    }
-    std::map<GVertex*, GEdge*>::iterator it1 = tempv.find(v1);
-    if (it1 == tempv.end()) {
-      tempv.insert(std::make_pair(v1, *it));
-    }
-    else tempv.erase(it1);
-    std::map<GVertex*, GEdge*>::iterator it2 = tempv.find(v2);
-    if (it2 == tempv.end()){
-      tempv.insert(std::make_pair(v2, *it));
-    }
-    else tempv.erase(it2);
-  }
-
-  // find the first GEdge and erase it from the list edges
-  GEdge *firstEdge;
-  if (tempv.size() == 2){ // non periodic
-    firstEdge = (tempv.begin())->second;
-    for (std::list<GEdge*>::iterator it = edges.begin() ; it != edges.end() ; ++it){
-      if (*it == firstEdge){
-        edges.erase(it);
-        break;
-      }
-    }
-  }
-  else if (tempv.size() == 0){ // periodic
-    firstEdge = *(edges.begin());
-    edges.erase(edges.begin());
-  }
-  else{
-    Msg::Error("EdgeCompound %d is wrong (it has %d end points)", tag(), tempv.size());
-    return;
-  }
-
-  // loop over all segments to order segments and store it in the list _c
-  _c.push_back(firstEdge);
-  _orientation.push_back(1);
-  GVertex *first = _c[0]->getBeginVertex();
-  GVertex *last = _c[0]->getEndVertex();
-
-  while (first != last){
-    if (edges.empty())break;
-    bool found = false;
-    for (std::list<GEdge*>::iterator it = edges.begin() ; it != edges.end() ; ++it){
-      GEdge *e = *it;
-      std::list<GEdge*>::iterator itp;
-     if (e->getBeginVertex() == last){
-        _c.push_back(e);
-        itp = it;
-        it++;
-        edges.erase(itp);
-        _orientation.push_back(1);
-        last = e->getEndVertex();
-        found = true;
-        break;
-      }
-      else if (e->getEndVertex() == last){
-        _c.push_back(e);
-        itp = it;
-        it++;
-        edges.erase(itp);
-        _orientation.push_back(0);
-        last = e->getBeginVertex();
-        found = true;
-        break;
-      }
-    }
-    if (!found){
-      if (_c.size() == 1 && _orientation[0]){
-        GVertex *temp = first;
-        first = last;
-        last = temp;
-        _orientation[0] = 0;
-      }
-      else {
-        Msg::Error("Compound Edge %d is wrong", tag());
-        return;
-      }
-    }
-  }
-
-  //edges is now a list of ordered GEdges
-  _compound = _c;
-
-  // special case reverse orientation
-  if (_compound.size() < 2) return;
-  if (_orientation[0] && _compound[0]->getEndVertex() != _compound[1]->getEndVertex()
-      && _compound[0]->getEndVertex() != _compound[1]->getBeginVertex()){
-    for (unsigned int i = 0; i < _compound.size(); i++){
-      _orientation[i] = !_orientation[i] ;
-    }
-  }
-}
-
-int GEdgeCompound::minimumMeshSegments() const
-{
-  // int N = 0;
-  // for (unsigned int i = 0; i < _compound.size(); i++)
-  //   N += _compound[i]->minimumMeshSegments();
-  return 3;
-}
-
-int GEdgeCompound::minimumDrawSegments() const
-{
-  int N = 0;
-  for (unsigned int i = 0; i < _compound.size(); i++)
-    N += _compound[i]->minimumDrawSegments();
-  return N;
-}
-
-GEdgeCompound::~GEdgeCompound()
-{
-}
-
-Range<double> GEdgeCompound::parBounds(int i) const
-{
-  if(_pars.empty()){
-    Msg::Error("Edge compound has no parametrization");
-    return Range<double>(0, 1);
-  }
-  return Range<double>(0, _pars[_compound.size()]);
-}
-
-/*
-  +--------+-----------+----------- ... ----+
-  0      _pars[1]     _pars[2]              _pars[N-1]
-
-*/
-
-bool GEdgeCompound::getLocalParameter(const double &t,
-                                      int &iEdge,
-                                      double &tLoc) const
-{
-  if(_pars.empty()){
-    Msg::Error("Edge compound has no parametrization");
-    return false;
-  }
-  for (iEdge = 0; iEdge < (int)_compound.size(); iEdge++){
-    double tmin = _pars[iEdge];
-    double tmax = _pars[iEdge+1];
-    if (t >= tmin && t <= tmax){
-      Range<double> b = _compound[iEdge]->parBounds(0);
-      tLoc = _orientation[iEdge] ?
-        b.low()  + (t-tmin)/(tmax-tmin) * (b.high()-b.low()) :
-        b.high() - (t-tmin)/(tmax-tmin) * (b.high()-b.low()) ;
-      return true;
-    }
-  }
-  return false;
-}
-
-void GEdgeCompound::parametrize()
-{
-  _pars.clear();
-  _pars.push_back(0.0);
-  for (unsigned int i = 0; i < _compound.size(); i++){
-    Range<double> b = _compound[i]->parBounds(0);
-    _pars.push_back(_pars[_pars.size()-1] + (b.high() - b.low()));
-  }
-}
-
-double GEdgeCompound::curvature(double par) const
-{
-  double tLoc;
-  int iEdge;
-  if(!getLocalParameter(par, iEdge, tLoc))
-    return 0.;
-  return _compound[iEdge]->curvature(tLoc);
-}
-
-double GEdgeCompound::curvatures(const double par, SVector3 *dirMax, SVector3 *dirMin,
-                                 double *curvMax, double *curvMin) const
-{
-  double tLoc = -1.0;
-  int iEdge;
-  if(!getLocalParameter(par, iEdge, tLoc))
-    return 0;
-
-  if( _compound[iEdge]->geomType() == GEntity::DiscreteCurve){
-    Curvature& curvature = Curvature::getInstance();
-    if( !Curvature::valueAlreadyComputed() ){
-      Msg::Info("Need to compute discrete curvature for anisotropic remesh (in GFace)");
-      Curvature::typeOfCurvature type = Curvature::RUSIN; //RBF
-      curvature.computeCurvature(model(), type);
-    }
-    double tLocMLine;
-    int iMLine;
-    discreteEdge* ptrEdge = dynamic_cast<discreteEdge*>(_compound[iEdge]);
-    ptrEdge->getLocalParameter(tLoc, iMLine, tLocMLine);
-
-    //vector of MLines
-    MLine* mline = ptrEdge->lines[iMLine];
-
-    double cMin[2];
-    double cMax[2];
-    SVector3 dMin[2];
-    SVector3 dMax[2];
-    curvature.edgeNodalValuesAndDirections(mline, dMax, dMin, cMax, cMin, 1);
-
-    *dirMax = (1-tLocMLine)*dMax[0] + tLocMLine*dMax[1];
-    *dirMin = (1-tLocMLine)*dMin[0] + tLocMLine*dMin[1];
-    *curvMax = (1-tLocMLine)*cMax[0] + tLocMLine*cMax[1];
-    *curvMin = (1-tLocMLine)*cMin[0] + tLocMLine*cMin[1];
-
-    return *curvMax;
-  }
-  else{
-    Msg::Error("Case of CAD Geometry, don't know what to do here...");
-  }
-  return 0.0;
-}
-
-GPoint GEdgeCompound::point(double par) const
-{
-  double tLoc;
-  int iEdge;
-  if(!getLocalParameter(par, iEdge, tLoc))
-    return GPoint();
-  return _compound[iEdge]->point(tLoc);
-}
-
-SVector3 GEdgeCompound::firstDer(double par) const
-{
-  double tLoc;
-  int iEdge;
-  if(!getLocalParameter(par, iEdge, tLoc))
-    return SVector3();
-  return _compound[iEdge]->firstDer(tLoc);
-}
-
-void replaceMeshCompound(GFace *gf, std::list<GEdge*> &edges)
-{
-  std::list<GEdge*> e = gf->edges();
-  // replace edges by their compounds
-  std::set<GEdge*> mySet;
-  std::list<GEdge*>::iterator it = e.begin();
-  while(it != e.end()){
-    if((*it)->getCompound()){
-      mySet.insert((*it)->getCompound());
-    }
-    else{
-      mySet.insert(*it);
-    }
-    ++it;
-  }
-  edges.clear();
-  edges.insert(edges.begin(), mySet.begin(), mySet.end());
-}
diff --git a/Geo/GEdgeCompound.h b/Geo/GEdgeCompound.h
deleted file mode 100644
index 036f021f20093233c119654ce01ef290df546714..0000000000000000000000000000000000000000
--- a/Geo/GEdgeCompound.h
+++ /dev/null
@@ -1,43 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-
-#ifndef _GEDGE_COMPOUND_H_
-#define _GEDGE_COMPOUND_H_
-
-#include "GFace.h"
-#include "GEdge.h"
-
-// A GEdgeCompound is a model edge that is the compound of model edges.
-
-class GEdgeCompound : public GEdge {
- protected:
-  std::vector<GEdge*> _compound;
-  std::vector<int> _orientation;
-  std::vector<double> _pars;
-  void orderEdges();
- public:
-  void parametrize();
-  bool getLocalParameter(const double &t, int &iEdge, double & tLoc) const;
-  GEdgeCompound(GModel *m, int tag, std::vector<GEdge*> &compound);
-  GEdgeCompound(GModel *m, int tag, std::vector<GEdge*> &compound,
-                std::vector<int> &orientation); // confidence in the input
-  virtual ~GEdgeCompound();
-  Range<double> parBounds(int i) const;
-  virtual GPoint point(double par) const;
-  virtual SVector3 firstDer(double par) const;
-  virtual GEntity::GeomType geomType() const { return CompoundCurve;  }
-  ModelType getNativeType() const { return GmshModel; }
-  void * getNativePtr() const { return 0; }
-  virtual double curvature(double t) const;
-  virtual double curvatures(const double par, SVector3 *dirMax, SVector3 *dirMin,
-   double *curvMax, double *curvMin) const;
-  virtual int minimumMeshSegments() const;
-  virtual int minimumDrawSegments() const;
-  std::vector<GEdge*>  getCompounds() const { return _compound; }
-};
-
-void replaceMeshCompound(GFace*, std::list<GEdge*>&);
-
-#endif
diff --git a/Geo/GFace.cpp b/Geo/GFace.cpp
index 34349160a57790910e28de77b14ab496c6e6c758..3420f7af1b706c0a775dd13d9b6bfec05f637b73 100644
--- a/Geo/GFace.cpp
+++ b/Geo/GFace.cpp
@@ -35,7 +35,7 @@
 #define SQU(a)      ((a)*(a))
 
 GFace::GFace(GModel *model, int tag)
-  : GEntity(model, tag), r1(0), r2(0), compound(0), va_geom_triangles(0)
+  : GEntity(model, tag), r1(0), r2(0), va_geom_triangles(0)
 {
   meshStatistics.status = GFace::PENDING;
   resetMeshAttributes();
@@ -1101,7 +1101,7 @@ GPoint GFace::closestPoint(const SPoint3 &queryPoint, const double initialGuess[
 #endif
 }
 
-bool GFace::containsParam(const SPoint2 &pt) 
+bool GFace::containsParam(const SPoint2 &pt)
 {
   Range<double> uu = parBounds(0);
   Range<double> vv = parBounds(1);
@@ -1344,13 +1344,13 @@ bool GFace::fillPointCloud(double maxDist,
 #if defined(HAVE_MESH)
 static void meshCompound(GFace* gf, bool verbose)
 {
-  discreteFace *df = new discreteFace (gf->model(), gf->tag() + 100000);
-
+  discreteFace *df = new discreteFace(gf->model(), gf->tag() + 100000, true);
   std::set<int> ec;
-  for (unsigned int i=0;i<gf->_compound.size();i++){
+
+  for (unsigned int i = 0; i < gf->_compound.size(); i++){
     GFace *c = (GFace*)gf->_compound[i];
     std::list<GEdge*> edges = c->edges();
-    for (std::list<GEdge*> :: iterator it = edges.begin() ; it != edges.end(); ++it){
+    for (std::list<GEdge*>::iterator it = edges.begin() ; it != edges.end(); ++it){
       std::set<int>::iterator found = ec.find((*it)->tag());
       if (found == ec.end())ec.insert((*it)->tag());
       else ec.erase(found);
@@ -1359,10 +1359,12 @@ static void meshCompound(GFace* gf, bool verbose)
                          c->triangles.end());
     df->mesh_vertices.insert(df->mesh_vertices.end(), c->mesh_vertices.begin(),
                              c->mesh_vertices.end());
-    for (unsigned int j=0;j<c->triangles.size();j++)df->_CAD.push_back(c);
+    for (unsigned int j = 0; j < c->triangles.size(); j++)
+      df->_CAD.push_back(c);
     c->triangles.clear();
     c->mesh_vertices.clear();
   }
+
   std::vector<int> cedges;
   cedges.insert(cedges.begin(), ec.begin(), ec.end());
   df->setBoundEdges(cedges);
@@ -1377,15 +1379,17 @@ void GFace::mesh(bool verbose)
 #if defined(HAVE_MESH)
   meshGFace mesher;
   mesher(this, verbose);
-  if (!_compound.empty()){ // Some faces are meshed together
-    if (_compound[0] == this){ //  I'm the one that makes the compound job
+  if(_compound.size()){ // Some faces are meshed together
+    if(_compound[0] == this){ //  I'm the one that makes the compound job
       bool ok = true;
-      for (unsigned int i = 0; i < _compound.size(); i++){
+      for(unsigned int i = 0; i < _compound.size(); i++){
 	GFace *gf = (GFace*)_compound[i];
 	ok &= (gf->meshStatistics.status == GFace::DONE);
       }
-      if (!ok)meshStatistics.status = GFace::PENDING;
-      else {
+      if(!ok){
+        meshStatistics.status = GFace::PENDING;
+      }
+      else{
 	meshCompound(this, verbose);
 	return;
       }
@@ -1399,8 +1403,8 @@ void GFace::lloyd(int nbiter, int infn)
 #if defined(HAVE_MESH) && defined(HAVE_BFGS)
   smoothing s = smoothing(nbiter,infn);
   s.optimize_face(this);
-  //lloydAlgorithm algo(nbiter, infn);
-  //algo(this);
+  // lloydAlgorithm algo(nbiter, infn);
+  // algo(this);
 #endif
 }
 
diff --git a/Geo/GFace.h b/Geo/GFace.h
index b55a4b71382452b1c63bb7ce005c25c21d69685c..5e3cd5d1a753b5e15b718d0564c5da16bb20a2a4 100644
--- a/Geo/GFace.h
+++ b/Geo/GFace.h
@@ -24,7 +24,6 @@ class MTriangle;
 class MQuadrangle;
 class MPolygon;
 class ExtrudeParams;
-class GFaceCompound;
 
 class GRegion;
 
@@ -39,7 +38,6 @@ class GFace : public GEntity {
   mean_plane meanPlane;
   std::list<GEdge *> embedded_edges;
   std::list<GVertex *> embedded_vertices;
-  GFaceCompound *compound; // this model face belongs to a compound
 
   BoundaryLayerColumns _columns;
 
@@ -254,10 +252,6 @@ class GFace : public GEntity {
   void computeMeshSizeFieldAccuracy(double &avg,double &max_e, double &min_e,
 				    int &nE, int &GS);
 
-  // compound
-  void setCompound(GFaceCompound *gfc) { compound = gfc; }
-  GFaceCompound *getCompound() const { return compound; }
-
   // add points (and optionally normals) in vectors so that two
   // points are at most maxDist apart
   bool fillPointCloud(double maxDist,
diff --git a/Geo/GFaceCompound.cpp b/Geo/GFaceCompound.cpp
deleted file mode 100644
index 46170ba73490387b30e98d6d97da57701dfdbae2..0000000000000000000000000000000000000000
--- a/Geo/GFaceCompound.cpp
+++ /dev/null
@@ -1,3083 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-//
-// Contributor(s):
-//   Emilie Marchandise
-//
-
-#include "GmshConfig.h"
-#include "GmshDefines.h"
-#include "GFaceCompound.h"
-#include "GEdgeCompound.h"
-#include "intersectCurveSurface.h"
-#include "OS.h"
-
-#if defined(HAVE_SOLVER) && defined(HAVE_ANN)
-
-#include "Options.h"
-#include "MLine.h"
-#include "MTriangle.h"
-#include "Numeric.h"
-#include "Octree.h"
-#include "SBoundingBox3d.h"
-#include "SPoint3.h"
-#include "polynomialBasis.h"
-#include "robustPredicates.h"
-#include "MElementCut.h"
-#include "dofManager.h"
-#include "laplaceTerm.h"
-#include "crossConfTerm.h"
-#include "convexCombinationTerm.h"
-#include "diagBCTerm.h"
-#include "linearSystemGMM.h"
-#include "linearSystemCSR.h"
-#include "linearSystemFull.h"
-#include "linearSystemPETSc.h"
-#include "CreateFile.h"
-#include "Context.h"
-#include "discreteFace.h"
-#include "eigenSolver.h"
-#include "multiscaleLaplace.h"
-#include "GRbf.h"
-#include "Curvature.h"
-#include "MPoint.h"
-#include "Numeric.h"
-#include "meshGFace.h"
-#include "ANN/ANN.h"
-
-static void fixEdgeToValue(GEdge *ed, double value, dofManager<double> &myAssembler)
-{
-  myAssembler.fixVertex(ed->getBeginVertex()->mesh_vertices[0], 0, 1, value);
-  myAssembler.fixVertex(ed->getEndVertex()->mesh_vertices[0], 0, 1, value);
-  for(unsigned int i = 0; i < ed->mesh_vertices.size(); i++){
-    myAssembler.fixVertex(ed->mesh_vertices[i], 0, 1, value);
-  }
-}
-
-static std::vector<MVertex*> getBlob(unsigned int minNbPt, v2t_cont::iterator it,
-                                     v2t_cont &adj)
-{
-  std::vector<MVertex*> vv(1,it->first), bvv = vv;
-  // Vector of vertices in blob and in boundary of blob
-  do {
-    std::set<MVertex*> nbvv;
-    // Set of vertices in new boundary
-    for (std::vector<MVertex*>::iterator itBV = bvv.begin(); itBV != bvv.end(); itBV++) {
-      // For each boundary vertex...
-      std::vector<MElement*> &adjBV = adj[*itBV];
-      for (std::vector<MElement*>::iterator itBVEl = adjBV.begin(); itBVEl != adjBV.end();
-           itBVEl++) {
-        for (int iV=0; iV<(*itBVEl)->getNumVertices(); iV++){
-          // ... look for adjacent vertices...
-          MVertex *v = (*itBVEl)->getVertex(iV);
-          if (find(vv.begin(),vv.end(),v) == vv.end()) nbvv.insert(v);
-          // ... and add them in the new boundary if they are not already in the blob
-        }
-      }
-    }
-    if (nbvv.empty()) bvv.clear();
-    else {
-      bvv.assign(nbvv.begin(),nbvv.end());
-      vv.insert(vv.end(),nbvv.begin(),nbvv.end());
-    }
-//  } while (!bvv.empty());
-  } while (vv.size() < minNbPt);
-  // Repeat until min. number of points is reached
-
-  return vv;
-}
-
-static bool orderVertices(const std::list<GEdge*> &e, std::vector<MVertex*> &l,
-                          std::vector<double> &coord)
-{
-  l.clear();
-  coord.clear();
-
-  std::list<GEdge*>::const_iterator it = e.begin();
-  std::list<MLine*> temp;
-  double tot_length = 0;
-  for( ; it != e.end(); ++it ){
-    for(unsigned int i = 0; i < (*it)->lines.size(); i++ ){
-      temp.push_back((*it)->lines[i]);
-      MVertex *v0 = (*it)->lines[i]->getVertex(0);
-      MVertex *v1 = (*it)->lines[i]->getVertex(1);
-      const double length = sqrt((v0->x() - v1->x()) * (v0->x() - v1->x()) +
-                                 (v0->y() - v1->y()) * (v0->y() - v1->y()) +
-                                 (v0->z() - v1->z()) * (v0->z() - v1->z()));
-      tot_length += length;
-    }
-  }
-
-  MVertex *first_v = (*temp.begin())->getVertex(0);
-  MVertex *current_v = (*temp.begin())->getVertex(1);
-
-  l.push_back(first_v);
-  coord.push_back(0.0);
-  temp.erase(temp.begin());
-
-  while(temp.size()){
-    bool found = false;
-    for(std::list<MLine*>::iterator itl = temp.begin(); itl != temp.end(); ++itl){
-      MLine *ll = *itl;
-      MVertex *v0 = ll->getVertex(0);
-      MVertex *v1 = ll->getVertex(1);
-      if(v0 == current_v){
-        found = true;
-        l.push_back(current_v);
-        current_v = v1;
-        temp.erase(itl);
-        const double length = sqrt((v0->x() - v1->x()) * (v0->x() - v1->x()) +
-                                   (v0->y() - v1->y()) * (v0->y() - v1->y()) +
-                                   (v0->z() - v1->z()) * (v0->z() - v1->z()));
-        coord.push_back(coord[coord.size()-1] + length / tot_length);
-        break;
-      }
-      else if(v1 == current_v){
-        found = true;
-        l.push_back(current_v);
-        current_v = v0;
-        temp.erase(itl);
-        const double length = sqrt((v0->x() - v1->x()) * (v0->x() - v1->x()) +
-                                   (v0->y() - v1->y()) * (v0->y() - v1->y()) +
-                                   (v0->z() - v1->z()) * (v0->z() - v1->z()));
-        coord.push_back(coord[coord.size()-1] + length / tot_length);
-        break;
-      }
-    }
-    if(!found) return false;
-  }
-
-  return true;
-}
-
-static bool computeCGKernelPolygon(std::map<MVertex*,SPoint3> &coordinates,
-                                   std::vector<MVertex*> &cavV,
-                                   double &ucg, double &vcg)
-{
-  ucg = 0.0;
-  vcg = 0.0;
-
-  // place at CG KERNEL polygon
-
-  int nbPts = cavV.size();
-  fullMatrix<double> u(100,2);
-  int ipt = 0;
-  for(std::vector<MVertex*>::iterator it = cavV.begin(); it != cavV.end(); it++){
-    SPoint3 vsp = coordinates[*it];
-    u(ipt,0) = vsp[0];
-    u(ipt,1) = vsp[1];
-    ucg += u(ipt,0);
-    vcg += u(ipt,1);
-    ipt++;
-  }
-  ucg /= ipt;
-  vcg /= ipt;
-
-  double eps = -5.e-7;
-  int N = nbPts;
-
-  std::set<int> setP;
-  for(int k = 0; k < nbPts; k++) setP.insert(k);
-
-  if(nbPts > 3){
-    for(int i = 0; i < nbPts - 2; i++){
-      int next = i + 1;
-      double x1, x2, y1, y2;
-      x1 = u(i, 0); y1 = u(i, 1);
-      x2 = u(next, 0); y2 = u(next, 1);
-      for(int j = i + 2; j < nbPts; j++){
-        int jnext = j + 1;
-        if(j == nbPts - 1) jnext = 0;
-        double x3, x4, y3, y4, x,y;
-        double a, b, c, d;
-        x3 = u(j, 0); y3 = u(j, 1);
-        x4 = u(jnext, 0); y4 = u(jnext, 1);
-        a = (y2 - y1) / (x2 - x1);
-        c = (y4 - y3) / (x4 - x3);
-        b = y1 - a * x1;
-        d = y3 - c * x3;
-        if(fabs(a - c) > 1.e-5 && x2 !=x1 && x4 != x3 && jnext != i){
-          x = (d - b) / (a - c);
-          y = a * x + b;
-          bool exist= false;
-          for(unsigned int k = 1; k < setP.size(); k++){
-            if(x == u(k, 0) && y == u(k, 1)) exist = true;
-          }
-          if(!exist){
-            u(N, 0) = x; u(N, 1) = y;
-            setP.insert(N);
-            N++;
-          }
-        }
-      }
-    }
-
-    int nbAll = setP.size();
-    for(int i = 0; i <nbPts; i++){
-      int next = i + 1;
-      if(next == nbPts) next = 0;
-      double p1[2] = {u(next, 0) - u(i, 0), u(next, 1) - u(i, 1)};
-      for(int k = 0; k < nbAll; k++){
-        double p2[2] = {u(k, 0) - u(i, 0), u(k, 1) - u(i, 1)};
-        double crossProd = p1[0] * p2[1] - p2[0] * p1[1];
-        if(crossProd <  eps){
-          setP.erase(k);
-        }
-      }
-    }
-  }
-
-  int nbFinal = setP.size();
-  if(nbFinal > 0){
-    ucg = 0.0;
-    vcg = 0.0;
-    for(std::set<int>::iterator it =setP.begin(); it != setP.end(); it++){
-      ucg += u(*it,0);
-      vcg += u(*it,1);
-    }
-    ucg /= nbFinal;
-    vcg /= nbFinal;
-    return true;
-  }
-  else{
-    return false;
-  }
-}
-
-static void myPolygon(std::vector<MElement*> &vTri, std::vector<MVertex*> &vPoly)
-{
-  std::vector<MEdge> ePoly;
-  for(unsigned int i = 0; i  < vTri.size() ; i++) {
-    MTriangle *t = (MTriangle*) vTri[i];
-    for(int iEdge = 0; iEdge < 3; iEdge++) {
-      MEdge tmp_edge =  t->getEdge(iEdge);
-      if(std::find(ePoly.begin(), ePoly.end(), tmp_edge) == ePoly.end())
-        ePoly.push_back(tmp_edge);
-      else
-        ePoly.erase(std::find(ePoly.begin(), ePoly.end(),tmp_edge));
-    }
-  }
-
-  std::vector<MEdge>::iterator ite= ePoly.begin() ;
-  MVertex *vINIT = ite->getVertex(0);
-  vPoly.push_back(vINIT);
-  vPoly.push_back(ite->getVertex(1));
-  ePoly.erase(ite);
-
-  while(!ePoly.empty()){
-    ite = ePoly.begin() ;
-    while(ite != ePoly.end()){
-      MVertex *vB = ite->getVertex(0);
-      MVertex *vE = ite->getVertex(1);
-      if(vB == vPoly.back()){
-	if(vE != vINIT) vPoly.push_back(vE);
-	ePoly.erase(ite);
-      }
-      else if(vE == vPoly.back()){
-	if(vB != vINIT) vPoly.push_back(vB);
-	ePoly.erase(ite);
-      }
-      else ite++;
-    }
-  }
-}
-
-static double normalUV(MTriangle *t, std::map<MVertex*, SPoint3> &vCoord)
-{
-  SPoint3 v0 = vCoord[t->getVertex(0)];
-  SPoint3 v1 = vCoord[t->getVertex(1)];
-  SPoint3 v2 = vCoord[t->getVertex(2)];
-  double p0[2] = {v0[0], v0[1]};
-  double p1[2] = {v1[0], v1[1]};
-  double p2[2] = {v2[0], v2[1]};
-  double normal =  robustPredicates::orient2d(p0, p1, p2);
-
-  // SVector3 P0 (v0.x(),v0.y(), 0.0);
-  // SVector3 P1 (v1.x(),v1.y(), 0.0);
-  // SVector3 P2 (v2.x(),v2.y(), 0.0);
-  // double normal2 = crossprod(P1-P0,P2-P1).z();
-  // if (normal != 0.0) normal /= std::abs(normal);
-
-  return normal;
-}
-
-static bool checkCavity(std::vector<MElement*> &vTri, std::map<MVertex*, SPoint3> &vCoord)
-{
-  bool badCavity = false;
-
-  unsigned int nbV = vTri.size();
-  double a_old = 0.0, a_new;
-  for(unsigned int i = 0; i < nbV; ++i){
-    a_new = normalUV((MTriangle*) vTri[i], vCoord);
-    if(i == 0) a_old=a_new;
-    if(a_new*a_old < 0.0) badCavity = true;
-  }
-  return badCavity;
-}
-
-static bool closedCavity(MVertex *v, std::vector<MElement*> &vTri)
-{
-  std::set<MVertex *> vs;
-  for (unsigned int i = 0; i < vTri.size(); i++){
-    MElement *t = vTri[i];
-    for (int j = 0; j < t->getNumVertices(); j++){
-      MVertex *vv = t->getVertex(j);
-      if (vv != v){
-        if (vs.find(vv) == vs.end())vs.insert(vv);
-        else vs.erase(vv);
-      }
-    }
-  }
-  return vs.empty();
-}
-
-static MVertex* findVertexInTri(v2t_cont &adjv, MVertex *v0, MVertex *v1,
-				std::map<MVertex*, SPoint3> &vCoord, double nTot,
-				bool &inverted)
-{
-  MVertex *v2 = 0;
-  v2t_cont :: iterator it0 = adjv.find(v0);
-  std::vector<MElement*> vTri0 = it0->second;
-  MElement *myTri = 0;
-  for (unsigned int j = 0; j < vTri0.size(); j++){
-    MVertex *vt0  = vTri0[j]->getVertex(0);
-    MVertex *vt1  = vTri0[j]->getVertex(1);
-    MVertex *vt2  = vTri0[j]->getVertex(2);
-    bool found0 = (vt0==v0 || vt1 ==v0 || vt2 ==v0) ? true: false;
-    bool found1 = (vt0==v1 || vt1 ==v1 || vt2 ==v1) ? true: false;
-    if (found0 && found1) { myTri = vTri0[j]; break; }
-  }
-  if(!myTri) return 0;
-  for (unsigned int j = 0; j < 3; j++){
-    MVertex *vj = myTri->getVertex(j);
-    if (vj!=v0 && vj!=v1) { v2 = vj; break;}
-  }
-  double normTri = normalUV((MTriangle*)myTri, vCoord);
-  if (nTot*normTri < 0.0) inverted = true;
-  else inverted = false;
-
-  return v2;
-}
-
-static MTriangle* findInvertedTri(v2t_cont &adjv, MVertex*v0, MVertex*v1, MVertex*v2,
-                                  std::map<MVertex*, SPoint3> &vCoord, double nTot)
-{
-  v2t_cont::iterator it = adjv.find(v1);
-  std::vector<MElement*> vTri = it->second;
-  MTriangle *myTri=NULL;
-  for (unsigned int j = 0; j < vTri.size(); j++){
-    double normTri = normalUV((MTriangle*)vTri[j], vCoord);
-    if (nTot * normTri < 0.0) {
-      MVertex *vt0  = vTri[j]->getVertex(0);
-      MVertex *vt1  = vTri[j]->getVertex(1);
-      MVertex *vt2  = vTri[j]->getVertex(2);
-      bool found0 = (vt0==v0 || vt1 ==v0 || vt2 ==v0) ? true: false;
-      bool found2 = (vt0==v2 || vt1 ==v2 || vt2 ==v2) ? true: false;
-      if (!found0 && !found2) { myTri = (MTriangle*)vTri[j]; break; }
-    }
-  }
-
-  return myTri;
-}
-
-void GFaceCompound::orientFillTris(std::list<MTriangle*> loopfillTris) const
-{
-  // check normal orientations of loopfillTris
-  bool invertTris = false;
-  std::map<MEdge, std::set<MTriangle*>, Less_Edge > edge2tris;
-  for(std::list<MTriangle*>::iterator t = loopfillTris.begin();
-      t != loopfillTris.end(); t++){
-    for (int j = 0; j < 3; j++){
-      MEdge me = (*t)->getEdge(j);
-      std::map<MEdge, std::set<MTriangle*, std::less<MTriangle*> >,
-	       Less_Edge >::iterator it = edge2tris.find(me);
-      if (it == edge2tris.end()) {
-	std::set<MTriangle*, std::less<MTriangle*> > mySet;
-	mySet.insert(*t);
-	edge2tris.insert(std::make_pair(me, mySet));
-      }
-      else{
-	std::set<MTriangle*, std::less<MTriangle*> > mySet = it->second;
-	mySet.insert(*t);
-	it->second = mySet;
-      }
-    }
-  }
-
-  int iE, si, iE2, si2;
-  std::list<GFace*>::const_iterator itf = _compound.begin();
-  for( ; itf != _compound.end(); ++itf){
-    for(unsigned int i = 0; i < (*itf)->triangles.size(); ++i){
-      MTriangle *t = (*itf)->triangles[i];
-      for (int j = 0; j < 3; j++){
-	MEdge me = t->getEdge(j);
-	std::map<MEdge, std::set<MTriangle*>, Less_Edge >::iterator it =
-	  edge2tris.find(me);
-	if(it != edge2tris.end()){
-	  t->getEdgeInfo(me, iE,si);
-	  MTriangle* t2 = *((it->second).begin());
-	  t2->getEdgeInfo(me,iE2,si2);
-	  if(si == si2) {
-	    invertTris = true;
-	    break;
-	  }
-	}
-      }
-    }
-  }
-  if (invertTris){
-    for (std::list<MTriangle*>::iterator it = loopfillTris.begin();
-           it != loopfillTris.end(); it++ )
-	(*it)->reverse();
-  }
-
-  fillTris.insert(fillTris.begin(),loopfillTris.begin(),loopfillTris.end());
-}
-
-void GFaceCompound::printFillTris() const
-{
-  if(!CTX::instance()->mesh.saveAll) return;
-
-  if (fillTris.size() > 0){
-    char name[256];
-    //std::list<GFace*>::const_iterator itf = _compound.begin();
-    sprintf(name, "fillTris-%d.pos", tag());
-    FILE * ftri = Fopen(name,"w");
-    if(ftri){
-      fprintf(ftri,"View \"\"{\n");
-      for (std::list<MTriangle*>::iterator it2 = fillTris.begin();
-           it2 !=fillTris.end(); it2++ ){
-        MTriangle *t = (*it2);
-        fprintf(ftri,"ST(%g,%g,%g,%g,%g,%g,%g,%g,%g){%g,%g,%g};\n",
-                t->getVertex(0)->x(), t->getVertex(0)->y(), t->getVertex(0)->z(),
-                t->getVertex(1)->x(), t->getVertex(1)->y(), t->getVertex(1)->z(),
-                t->getVertex(2)->x(), t->getVertex(2)->y(), t->getVertex(2)->z(),
-                1., 1., 1.);
-      }
-      fprintf(ftri,"};\n");
-      fclose(ftri);
-    }
-  }
-}
-
-void GFaceCompound::fillNeumannBCS_Plane() const
-{
-#if 0
-//#if defined(HAVE_MESH)
-
-  Msg::Debug("Meshing %d interior holes with planes ", _interior_loops.size()-1);
-
-  fillTris.clear();
-  fillNodes.clear();
-
-  if (_interior_loops.size()==1 && _type != SQUARE) return;
-
-  GModel::current()->setFactory("Gmsh");
-  //GModel::current()->setFactory("OpenCASCADE");
-  std::vector<std::vector<GFace *> > myFaceLoops;
-  std::vector<GFace *> myFaces;
-  for(std::list<std::list<GEdge*> >::const_iterator iloop = _interior_loops.begin();
-      iloop != _interior_loops.end(); iloop++){
-    std::list<MTriangle*> loopfillTris;
-    std::list<GEdge*> loop = *iloop;
-    if (loop != _U0 ){
-      std::vector<std::vector<GEdge *> > myEdgeLoops;
-      std::vector<GEdge*> myEdges;
-      myEdgeLoops.clear();
-      myEdges.clear();
-      for (std::list<GEdge*>::iterator itl = loop.begin(); itl != loop.end(); itl++){
-	myEdges.push_back(*itl);
-      }
-      myEdgeLoops.push_back(myEdges);
-      GFace *newFace =  GModel::current()->addPlanarFace(myEdgeLoops);
-      fillFaces.push_back(newFace);
-      int meshingAlgo = CTX::instance()->mesh.algo2d;
-      int recombine = CTX::instance()->mesh.recombineAll;
-      opt_mesh_algo2d(0, GMSH_SET, 1.0); //mesh adapt
-      opt_mesh_recombine_all(0, GMSH_SET, 0.0); //no recombination
-      meshGFace mgf;
-      mgf(newFace,false);
-      opt_mesh_algo2d(0, GMSH_SET, meshingAlgo);
-      opt_mesh_recombine_all(0, GMSH_SET, recombine);
-      for(unsigned int i = 0; i < newFace->triangles.size(); ++i){
-	loopfillTris.push_back(newFace->triangles[i]);
-	fillNodes.insert(newFace->triangles[i]->getVertex(0));
-	fillNodes.insert(newFace->triangles[i]->getVertex(1));
-	fillNodes.insert(newFace->triangles[i]->getVertex(2));
-      }
-      orientFillTris(loopfillTris);
-    }
-  }
-
-  printFillTris();
-#endif
-}
-
-void GFaceCompound::fillNeumannBCS() const
-{
-  fillTris.clear();
-  fillNodes.clear();
-
-  // closed interior loops
-  for(std::list<std::list<GEdge*> >::const_iterator iloop = _interior_loops.begin();
-      iloop != _interior_loops.end(); iloop++){
-    std::list<MTriangle*> loopfillTris;
-    std::list<GEdge*> loop = *iloop;
-    if (loop != _U0 ){
-      std::vector<MVertex*> orderedLoop;
-      std::vector<double> coordsLoop;
-      orderVertices(*iloop, orderedLoop, coordsLoop);
-      int nbLoop = orderedLoop.size();
-
-      //--- center of Neumann interior loop
-      int nb = 0;
-      double x=0.;
-      double y=0.;
-      double z=0.;
-      // EMI- TODO FIND KERNEL OF POLYGON AND PLACE AT CG KERNEL !
-      // IF NO KERNEL -> DO NOT FILL TRIS
-      for(int i = 0; i < nbLoop; ++i){
-	MVertex *v0 = orderedLoop[i];
-	MVertex *v1 = (i==nbLoop-1) ? orderedLoop[0]: orderedLoop[i+1];
-	x += .5*(v0->x() + v1->x());
-	y += .5*(v0->y() + v1->y());
-	z += .5*(v0->z() + v1->z());
-	nb++;
-      }
-      x/=nb; y/=nb;  z/=nb;
-      MVertex *c = new MVertex(x, y, z);
-
-      //--- create new triangles
-      for(int i = 0; i < nbLoop; ++i){
-	MVertex *v0 = orderedLoop[i];
-	MVertex *v1 = (i==nbLoop-1) ? orderedLoop[0]: orderedLoop[i+1];
-
-	double k = 1. / 3.; double kk = 2. / 3.;
-	MVertex *v2 = new MVertex(kk * v0->x() + k * c->x(),
-                                  kk * v0->y() + k * c->y(),
-                                  kk * v0->z() + k * c->z());
-	MVertex *v3 = new MVertex(kk * v1->x() + k * c->x(),
-                                  kk * v1->y() + k * c->y(),
-                                  kk * v1->z() + k * c->z());
-	MVertex *v4 = new MVertex(k * v0->x() + kk * c->x(),
-                                  k * v0->y() + kk * c->y(),
-                                  k * v0->z() + kk * c->z());
-	MVertex *v5 = new MVertex(k * v1->x() + kk * c->x(),
-                                  k * v1->y() + kk * c->y(),
-                                  k * v1->z() + kk * c->z());
-	fillNodes.insert(c); fillNodes.insert(v2); fillNodes.insert(v3);
-	fillNodes.insert(v4); fillNodes.insert(v5);
-	loopfillTris.push_back(new MTriangle(v0, v2, v3));
-	loopfillTris.push_back(new MTriangle(v2, v5, v3));
-	loopfillTris.push_back(new MTriangle(v2, v4, v5));
-	loopfillTris.push_back(new MTriangle(v4, c, v5));
-	loopfillTris.push_back(new MTriangle(v0, v3, v1));
-      }
-    }
-    orientFillTris(loopfillTris);
-  }
-
-  printFillTris();
-}
-
-bool GFaceCompound::trivial() const
-{
-  return false;
-  if(_compound.size() == 1 &&
-     (*(_compound.begin()))->getNativeType() == GEntity::OpenCascadeModel &&
-     (*(_compound.begin()))->geomType() != GEntity::DiscreteSurface &&
-     _mapping != CONFORMAL){
-    if ((*(_compound.begin()))->periodic(0) ||
-	(*(_compound.begin()))->periodic(1) ) return false;
-    return true;
-  }
-  return false;
-}
-
-// For the conformal map the linear system cannot guarantee there is
-// no overlapping of triangles
-bool GFaceCompound::checkOverlap(std::vector<MVertex *> &vert) const
-{
-
-  vert.clear();
-  bool has_overlap = false;
-  double EPS = 1.e-2;
-  for(std::list<std::list<GEdge*> >::const_iterator iloop = _interior_loops.begin();
-      iloop != _interior_loops.end(); iloop++){
-    std::list<GEdge*> loop = *iloop;
-    std::vector<MVertex*> orderedLoop;
-    if (loop != _U0 ){
-      std::vector<double> coordsLoop;
-      orderVertices(*iloop, orderedLoop, coordsLoop);
-    }
-    else orderedLoop = _ordered;
-    int nbLoop = orderedLoop.size();
-
-    for(int i = 0; i < nbLoop-1; ++i){
-      SPoint3 p1 = coordinates[orderedLoop[i]];
-      SPoint3 p2 = coordinates[orderedLoop[i+1]];
-      int maxSize = (i==0) ? nbLoop-2: nbLoop-1;
-      for(int k = i+2; k < maxSize; ++k){
-	SPoint3 q1 = coordinates[orderedLoop[k]];
-	SPoint3 q2 = coordinates[orderedLoop[k+1]];
-	double x[2];
-	int inters = intersection_segments (p1,p2,q1,q2,x);
-	if (inters && x[1] > EPS && x[1] < 1.-EPS){
-	  has_overlap = true;
-	  MVertex *v1 = orderedLoop[i];
-	  MVertex *v2 = orderedLoop[k];
-	  //std::set<MVertex *>::iterator it1 = ov.find(v1);
-	  //std::set<MVertex *>::iterator it2 = ov.find(v2);
-	  vert.push_back(v1);
-	  vert.push_back(v2);
-	  Msg::Info("=== Overlap");
-	  return has_overlap;
-	}
-      }
-    }
-
-  }
-
-  return has_overlap;
-}
-
-// check if the discrete harmonic map is correct by checking that all
-// the mapped triangles have the same normal orientation
-bool GFaceCompound::checkOrientation(int iter, bool moveBoundaries) const
-{
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  double a_old = 0.0, a_new=0.0;
-  bool oriented = true;
-  int count = 0;
-  double nTot = 0.0;
-  for( ; it != _compound.end(); ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      a_new = normalUV((*it)->triangles[i], coordinates);
-      if(count == 0) a_old=a_new;
-      nTot += a_new;
-      if(a_new*a_old < 0.0){
-        oriented = false;
-        break;
-      }
-      count++;
-    }
-  }
-
-  int iterMax = 15;
-  if(!oriented && iter < iterMax){
-    if (moveBoundaries){
-      if (iter ==0) Msg::Info("--- Flipping : moving boundaries.");
-      Msg::Debug("--- Moving Boundary - iter %d -",iter);
-      convexBoundary(nTot/fabs(nTot));
-      printStuff(iter);
-      return checkOrientation(iter+1, moveBoundaries);
-    }
-    else if (!moveBoundaries){
-      if (iter ==0) Msg::Info("--- Flipping : applying cavity checks.");
-      Msg::Debug("--- Cavity Check - iter %d -",iter);
-      oriented = one2OneMap();
-      printStuff(iter);
-      iter++;
-      if (!oriented) return checkOrientation(iter);
-    }
-  }
-
-  if (iter > 0 && iter < iterMax){
-    Msg::Info("--- Flipping : no more flips (%d iter)", iter);
-  }
-
-  return oriented;
-}
-
-void GFaceCompound::convexBoundary(double nTot) const
-{
-#if defined(HAVE_MESH)
-  if(adjv.size() == 0){
-    std::vector<MTriangle*> allTri;
-    std::list<GFace*>::const_iterator it = _compound.begin();
-    for( ; it != _compound.end(); ++it){
-      allTri.insert(allTri.end(), (*it)->triangles.begin(), (*it)->triangles.end() );
-    }
-    buildVertexToTriangle(allTri, adjv);
-  }
-
-  for(std::list<std::list<GEdge*> >::const_iterator it = _interior_loops.begin();
-      it != _interior_loops.end(); it++){
-
-    double s = 1.0;
-    std::vector<MVertex*> oVert;
-    std::vector<double> coords;
-    if (*it == _U0){
-      oVert = _ordered;
-    }
-    else {
-      s = -1.0;
-      orderVertices(*it, oVert,coords);
-    }
-
-    // find normal of ordered loop
-    MVertex *v0 = oVert[0];
-    MVertex *v1 = oVert[1];
-    bool inverted;
-    MVertex *v2 = findVertexInTri(adjv, v0,v1,coordinates, nTot, inverted);
-    if (inverted) s *= -1.0 ;
-    SPoint3 uv0 = coordinates[v0];
-    SPoint3 uv1 = coordinates[v1];
-    SPoint3 uv2 = coordinates[v2];
-    SVector3 P0 (uv0.x(),uv0.y(), 0.0);
-    SVector3 P1 (uv1.x(),uv1.y(), 0.0);
-    SVector3 P2 (uv2.x(),uv2.y(), 0.0);
-    double myN = s*crossprod(P1-P0,P2-P1).z();
-    SVector3 N (0,0,myN/fabs(myN));
-
-    // start the loop
-    int nbInv = 0;
-    int nbInvTri = 0;
-    for(unsigned int i = 0; i < oVert.size(); i++){
-
-      MVertex *v0 = oVert[i];
-      MVertex *v1, *v2;
-      if (i == oVert.size()-2){
-	v1 = oVert[i+1];
-	v2 = oVert[0];
-      }
-      else if (i == oVert.size()-1){
-	v1= oVert[0];
-	v2= oVert[1];
-      }
-      else{
-	v1 = oVert[i+1];
-	v2 = oVert[i+2];
-      }
-
-      SPoint3 uv0 = coordinates[v0];
-      SPoint3 uv1 = coordinates[v1];
-      SPoint3 uv2 = coordinates[v2];
-      SVector3 P0 (uv0.x(),uv0.y(), uv0.z());
-      SVector3 P1 (uv1.x(),uv1.y(), uv1.z());
-      SVector3 P2 (uv2.x(),uv2.y(), uv2.z());
-
-      SVector3 dir1 = P1-P0;
-      SVector3 dir2 = P2-P1;
-      SVector3 dir3 = crossprod(dir1,dir2);
-      double rot = dot(N, (1./norm(dir3))*dir3);
-
-      bool inverted;
-      MVertex *v2t = findVertexInTri(adjv, v0,v1, coordinates, nTot, inverted);
-
-      if (rot < 0.0 && inverted){
-	SVector3 a = P1-P0;
-	SVector3 b = P2-P0;
-	double a_para = dot(a,b)/norm(b);
-	SVector3 P3,P1b;
-	P3= P0 + (a_para/norm(b))*b;
-	P1b = P1 + 1.2*(P3-P1);
-	SPoint3 uv1_new(P1b.x(),P1b.y(),P1b.z());
-	coordinates[v1] = uv1_new;
-      }
-      else if (rot > 0.0 && inverted){
-	nbInv++;
-	SPoint3 uv2t = coordinates[v2t];
-	SVector3 P2t (uv2t.x(),uv2t.y(), uv2t.z());
-	SVector3 a = P1-P0;
-	SVector3 b = P2t-P0;
-	double b_para = dot(a,b)/norm(a);
-	SVector3 P3,P2b;
-	P3= P0 + (b_para/norm(a))*a;
-	P2b = P2t + 1.3*(P3-P2t);
-	SPoint3 uv2_new(P2b.x(),P2b.y(),P2b.z());
-	coordinates[v2t] = uv2_new;
-      }
-
-      MTriangle *tinv = findInvertedTri(adjv, v0,v1,v2, coordinates, nTot);
-      if (tinv){
-	nbInvTri++;
-	MVertex *i0 = NULL;
-	MVertex *i1 = NULL;
-	for (unsigned int j = 0; j < 3; j++){
-	  MVertex *vj = tinv->getVertex(j);
-	  if (vj!=v1 && i0 == NULL) i0 = vj;
-	  else if (vj!=v1 && i1 ==NULL ) i1 = vj;
-	}
-	MVertex *i2 = v1;
-	SPoint3 uv0 = coordinates[i0];
-	SPoint3 uv1 = coordinates[i1];
-	SPoint3 uv2 = coordinates[i2];
-	SVector3 P0 (uv0.x(),uv0.y(), uv0.z());
-	SVector3 P1 (uv1.x(),uv1.y(), uv1.z());
-	SVector3 P2 (uv2.x(),uv2.y(), uv2.z());
-	SVector3 a = P1-P0;
-	SVector3 b = P2-P0;
-	double b_para = dot(a,b)/norm(a);
-	SVector3 P3,P2b;
-	P3= P0 + (b_para/norm(a))*a;
-	P2b = P2 + 1.2*(P3-P2);
-	SPoint3 uv2_new(P2b.x(),P2b.y(),P2b.z());
-	coordinates[i2] = uv2_new;
-      }
-
-    }
-  }
-#endif
-}
-
-bool GFaceCompound::one2OneMap() const
-{
-#if defined(HAVE_MESH)
-  if(adjv.size() == 0){
-    std::vector<MTriangle*> allTri;
-    std::list<GFace*>::const_iterator it = _compound.begin();
-    for( ; it != _compound.end(); ++it){
-      allTri.insert(allTri.end(), (*it)->triangles.begin(), (*it)->triangles.end() );
-    }
-    buildVertexToTriangle(allTri, adjv);
-  }
-
-  int nbRepair = 0;
-  int nbCav = 0;
-  for(v2t_cont::iterator it = adjv.begin(); it!= adjv.end(); ++it){
-    MVertex *v = it->first;
-    SPoint2 p = getCoordinates(v);
-    std::vector<MElement*> vTri = it->second;
-    std::map<MVertex*,SPoint3> vCoord;
-    for (unsigned int j = 0; j < vTri.size(); j++){
-      for (int k = 0; k < vTri[j]->getNumVertices(); k++){
-        MVertex *vk = vTri[j]->getVertex(k);
-        SPoint2 pt2 =  getCoordinates(vk);
-	vCoord[vk] = SPoint3(pt2[0], pt2[1], 0.0);
-      }
-    }
-    bool badCavity = checkCavity(vTri, vCoord);
-    bool innerCavity = closedCavity(v,vTri);
-
-    if( badCavity && innerCavity ){
-      nbCav++;
-      double u_cg, v_cg;
-      std::vector<MVertex*> cavV;
-      myPolygon(vTri, cavV);
-      //bool success =
-         computeCGKernelPolygon(coordinates, cavV, u_cg, v_cg);
-      //if (success){ //if not succes compute with CG polygon
-	nbRepair++;
-	SPoint3 p_cg(u_cg,v_cg,0.0);
-	coordinates[v] = p_cg;
-      //}
-    }
-  }
-  if (nbRepair == 0) return false;
-  else return true;
-#endif
-}
-
-bool GFaceCompound::parametrize() const
-{
-  if (_compound.size() > 1) coherencePatches();
-
-  bool paramOK = true;
-  if(oct) return paramOK;
-  if(trivial()) return paramOK;
-
-  if (_mapping != RBF)
-    coordinates.clear();
-
-  computeNormals();
-
-  if(allNodes.empty()) buildAllNodes();
-
-  if (_type != SQUARE){
-    bool success = orderVertices(_U0, _ordered, _coords);
-    if(!success) {
-      Msg::Error("Could not order vertices on boundary");
-      return false;
-    }
-  }
-
-  //fillNeumannBCS_Plane();
-  fillNeumannBCS();
-
-  // Convex parametrization
-  if (_mapping == CONVEX){
-    Msg::Info("Parametrizing surface %d with 'convex map'", tag());
-    parametrize(ITERU,CONVEX);
-    parametrize(ITERV,CONVEX);
-    if (_type==MEANPLANE){
-      checkOrientation(0, true);
-    }
-  }
-  // Laplace parametrization
-  else if (_mapping == HARMONIC){
-    Msg::Info("Parametrizing surface %d with 'harmonic map'", tag());
-    parametrize(ITERU,HARMONIC);
-    parametrize(ITERV,HARMONIC);
-    if (_type == MEANPLANE) checkOrientation(0, true);
-  }
-  // Conformal map parametrization
-  else if (_mapping == CONFORMAL){
-    std::vector<MVertex *> vert;
-    bool oriented, overlap;
-    if (_type == SPECTRAL){
-      Msg::Info("Parametrizing surface %d with 'spectral conformal map'", tag());
-      overlap = parametrize_conformal_spectral();
-    }
-    else {
-      Msg::Info("Parametrizing surface %d with 'FE conformal map'", tag());
-      overlap = parametrize_conformal(0, NULL, NULL);
-    }
-    //printStuff(55);
-    oriented = checkOrientation(0);
-    //printStuff(77);
-    if (_type==SPECTRAL &&  (!oriented || overlap) ){
-      Msg::Warning("Parametrization switched to 'FE conformal' map");
-      overlap = parametrize_conformal(0, NULL, NULL);
-      oriented = checkOrientation(0);
-    }
-    if (!oriented || overlap){
-      Msg::Warning("Parametrization switched to 'convex' map");
-      _type  = UNITCIRCLE;
-      parametrize(ITERU,CONVEX);
-      parametrize(ITERV,CONVEX);
-    }
-  }
-  // Radial-Basis Function parametrization
-  else if (_mapping == RBF){
-    Msg::Debug("Parametrizing surface %d with 'RBF' ", tag());
-    int variableEps = 0;
-    int radFunInd = 1; // 1 MQ RBF , 0 GA
-    double sizeBox = getSizeH();
-    /*
-    fullMatrix<double> Oper(3*allNodes.size(),3*allNodes.size());
-    _rbf = new GRbf(sizeBox, variableEps, radFunInd, _normals, allNodes, _ordered);
-    _rbf->RbfLapSurface_local_CPM(false,_rbf->getXYZ(), _rbf->getN(), Oper);
-    _rbf->solveHarmonicMap(Oper, _ordered, _coords, coordinates);
-    */
-    fullMatrix<double> Oper(3*allNodes.size(),3*allNodes.size());
-
-    _rbf = new GRbf(sizeBox, variableEps, radFunInd, _normals, allNodes, _ordered);
-
-    linearSystemPETSc<double> sys;
-
-    #if 1
-    _rbf->RbfLapSurface_local_CPM_sparse(_ordered, false, _rbf->getXYZ(), _rbf->getN(), sys);
-    _rbf->solveHarmonicMap_sparse(sys, _rbf->getXYZ().size1()* 3,_ordered, _coords, coordinates);
-    #else
-    _rbf->RbfLapSurface_local_CPM(false, _rbf->getXYZ(), _rbf->getN(), Oper);
-    _rbf->solveHarmonicMap(Oper,_ordered, _coords, coordinates);
-    #endif
-  }
-
-  buildOct();
-
-  if (_mapping != RBF){
-    if (!checkOrientation(0)){
-      printStuff(22);
-      Msg::Info("### parametrization switched to 'convex map' onto circle");
-      printStuff(33);
-      _type = UNITCIRCLE;
-      coordinates.clear();
-      Octree_Delete(oct);
-      parametrize(ITERU, CONVEX);
-      parametrize(ITERV, CONVEX);
-      checkOrientation(0);
-      buildOct();
-    }
-  }
-
-  for (unsigned int i= 0; i< fillFaces.size(); i++){
-    GModel::current()->remove(fillFaces[i]);
-  }
-
-  return paramOK;
-}
-
-void GFaceCompound::getBoundingEdges()
-{
-  for(std::list<GFace*>::iterator it = _compound.begin(); it != _compound.end(); ++it){
-    (*it)->setCompound(this);
-  }
-
-  std::set<GEdge*> _unique;
-  getUniqueEdges(_unique);
-
-  l_edges.clear();
-  l_dirs.clear();    // added by Trevor Strickler
-
-
-  if(_U0.size()){
-    // in case the bounding edges are explicitely given
-    std::list<GEdge*>::const_iterator it = _U0.begin();
-    for( ; it != _U0.end() ; ++it){
-      l_edges.push_back(*it);
-      (*it)->addFace(this);
-    }
-    if (_V0.size() && _U1.size() && _V1.size()){
-      it = _V0.begin();
-      for( ; it != _V0.end() ; ++it){
-	l_edges.push_back(*it);
-	(*it)->addFace(this);
-      }
-      it = _U1.begin();
-      for( ; it != _U1.end() ; ++it){
-	l_edges.push_back(*it);
-	(*it)->addFace(this);
-      }
-      it = _V1.begin();
-      for( ; it != _V1.end() ; ++it){
-	l_edges.push_back(*it);
-	(*it)->addFace(this);
-      }
-    }
-    std::list<GEdge*> loop;
-    computeALoop(_unique, loop);
-    while(!_unique.empty())  computeALoop(_unique,loop);
-  }
-  else{
-    // in case the bounding edges are NOT explicitely given
-    std::set<GEdge*>::iterator itf = _unique.begin();
-    for( ; itf != _unique.end(); ++itf){
-      l_edges.push_back(*itf);
-      (*itf)->addFace(this);
-    }
-
-    std::list<GEdge*> loop;
-    computeALoop(_unique,loop);
-    while(!_unique.empty())  computeALoop(_unique, loop);
-
-    // assign Derichlet BC (_U0) to boundary with largest size
-    double maxSize = 0.0;
-    for(std::list<std::list<GEdge*> >::iterator it = _interior_loops.begin();
-        it != _interior_loops.end(); it++){
-      double size = getSizeBB(*it);
-      if (size > maxSize) {
-	_U0 = *it;
-	maxSize = size;
-      }
-    }
-  }
-
-    // Added by Trevor Strickler (fill in the l_dirs)
-  std::list<GEdge*>::iterator it_loop;
-  std::list<std::list<GEdge*> >::iterator it_interior;
-  l_edges.clear();
-
-  for( it_interior = _interior_loops.begin(); it_interior != _interior_loops.end(); it_interior++ ){
-    for( it_loop = it_interior->begin(); it_loop != it_interior->end(); it_loop++ ){
-      l_edges.push_back( (*it_loop) );
-      std::list<GEdge*>::iterator it_loop_next = it_loop;
-      it_loop_next++;
-      if( it_loop_next == it_interior->end() )
-        it_loop_next = it_interior->begin();
-      GVertex *vB = (*it_loop)->getBeginVertex();
-      GVertex *vE = (*it_loop)->getEndVertex();
-      GVertex *vB_next = (*it_loop_next)->getBeginVertex();
-      GVertex *vE_next = (*it_loop_next)->getEndVertex();
-      if( vB == vB_next || vB == vE_next )
-        l_dirs.push_back(-1);
-      else if( vE == vB_next || vE == vE_next )
-        l_dirs.push_back(1);
-      else{
-       l_dirs.push_back(0);
-      }
-    }
-  }
-
-}
-
-
-double GFaceCompound::getSizeH() const
-{
-  SBoundingBox3d bb;
-  for(std::set<MVertex *>::iterator itv = allNodes.begin();
-      itv != allNodes.end() ; ++itv){
-    SPoint3 pt((*itv)->x(),(*itv)->y(), (*itv)->z());
-    bb +=pt;
-  }
-
-  double H = norm(SVector3(bb.max(), bb.min()));
-
-  return H;
-}
-
-double GFaceCompound::getSizeBB(const std::list<GEdge* > &elist) const
-{
-  SBoundingBox3d bboxD;
-  std::list<GEdge*>::const_iterator it = elist.begin();
-  for(; it != elist.end(); it++){
-    bboxD += (*it)->bounds();
-  }
-  double D = norm(SVector3(bboxD.max(), bboxD.min()));
-
-  return D;
-}
-
-void GFaceCompound::getUniqueEdges(std::set<GEdge*> &_unique)
-{
-  _unique.clear();
-
-  // in case the bounding edges are not given Boundary { {} };
-  std::multiset<GEdge*> _touched;
-  std::list<GFace*>::iterator it = _compound.begin();
-  for( ; it != _compound.end(); ++it){
-    std::list<GEdge*> ed = (*it)->edges();
-    std::list<GEdge*>::iterator ite = ed.begin();
-    for( ; ite != ed.end(); ++ite){
-      _touched.insert(*ite);
-    }
-  }
-  it = _compound.begin();
-  for( ; it != _compound.end(); ++it){
-    std::list<GEdge*> ed = (*it)->edges();
-    std::list<GEdge*>::iterator ite = ed.begin();
-    for( ; ite != ed.end() ; ++ite){
-      if(!(*ite)->degenerate(0) && _touched.count(*ite) == 1){
-        _unique.insert(*ite);
-      }
-    }
-  }
-}
-
-void GFaceCompound::computeALoop(std::set<GEdge*> &_unique, std::list<GEdge*> &loop)
-{
-  std::list<GEdge*> _loop;
-
-  if (_unique.empty()) return;
-
-  while(!_unique.empty()) {
-    std::set<GEdge*>::iterator it = _unique.begin();
-    GVertex *vB = (*it)->getBeginVertex();
-    GVertex *vE = (*it)->getEndVertex();
-    _loop.push_back(*it);
-    _unique.erase(it);
-
-    bool found = false;
-/* Mod by Trevor Strickler: In the old implementation, the iterator
-    itx was incremented twice per loop and _loops was not set up correctly.
-    The While Loop below replaces the old for loop.
-*/
-    for(int i = 0; i < 2; i++) {
-      std::set<GEdge*>::iterator itx = _unique.begin();
-      while (itx != _unique.end() ){
-        GVertex *v1 = (*itx)->getBeginVertex();
-        GVertex *v2 = (*itx)->getEndVertex();
-
-        std::set<GEdge*>::iterator itp = itx;
-        itx++;
-
-        if(v1 == vE ){
-          _loop.push_back(*itp);
-          vE = v2;
-          i = -1;
-          _unique.erase(itp);
-        }
-        else if(v2 == vE){
-          _loop.push_back(*itp);
-          vE = v1;
-          i=-1;
-          _unique.erase(itp);
-        }
-      }
-
-      if(vB == vE) {
-        found = true;
-        break;
-      }
-
-      if(_unique.empty())  break;
-
-      // Mod by Trevor Strickler: had to wrap this in an if
-      //  or else it was executed when i == -1, which is not good.
-      if( i != -1 ){
-        GVertex *temp = vB;
-        vB = vE;
-        vE = temp;
-      }
-    }
-    /* This is the old version of above nested loops before modified by Trevor Strickler
-    for(int i = 0; i < 2; i++) {
-      for(std::set<GEdge*>::iterator itx = _unique.begin();
-          itx != _unique.end(); ++itx){
-        GVertex *v1 = (*itx)->getBeginVertex();
-        GVertex *v2 = (*itx)->getEndVertex();
-
-        std::set<GEdge*>::iterator itp;
-        if(v1 == vE){
-          _loop.push_back(*itx);
-          itp = itx;
-          itx++;
-          _unique.erase(itp);
-          vE = v2;
-          i = -1;
-        }
-        else if(v2 == vE){
-          _loop.push_back(*itx);
-          itp = itx;
-          itx++;
-          _unique.erase(itp);
-          vE = v1;
-          i=-1;
-        }
-        if(itx == _unique.end()) break;
-      }
-
-      if(vB == vE) {
-        found = true;
-        break;
-      }
-
-      if(_unique.empty())  break;
-
-      GVertex *temp = vB;
-      vB = vE;
-      vE = temp;
-    }*/
-
-    if(found == true) break;
-
-    it++;
-  }
-
-  loop = _loop;
-  _interior_loops.push_back(loop);
-}
-
-GFaceCompound::GFaceCompound(GModel *m, int tag, std::list<GFace*> &compound,
-			     std::list<GEdge*> &U0, typeOfCompound toc,
-                             int allowPartition)
-  : GFace(m, tag), _compound(compound), _U0(U0), oct(0), octNew(0),
-    _toc(toc), _allowPartition(allowPartition)
-{
-  ONE = new simpleFunction<double>(1.0);
-  MONE = new simpleFunction<double>(-1.0);
-
-  for(std::list<GFace*>::iterator it = _compound.begin(); it != _compound.end(); ++it){
-    if(!(*it)){
-      Msg::Error("Incorrect face in compound surface %d\n", tag);
-      return;
-    }
-  }
-
-  getBoundingEdges();
-
-  _mapping = HARMONIC;
-  _type = UNITCIRCLE;
-  if(toc == RADIAL_BASIS)   _mapping = RBF;
-  else if (toc == HARMONIC_PLANE) _type = MEANPLANE;
-  else if (toc == CONVEX_CIRCLE)  _mapping = CONVEX;
-  else if (toc == CONVEX_PLANE){
-    _mapping = CONVEX;
-    _type = MEANPLANE;
-  }
-  else if(toc == CONFORMAL_SPECTRAL) {
-    _mapping = CONFORMAL;
-    _type = SPECTRAL;
-  }
-  else if(toc == CONFORMAL_FE) {
-    _mapping = CONFORMAL;
-    _type = FE;
-  }
-
-  nbSplit = 0;
-  fillTris.clear();
-
-  kdtree = NULL;
-  uv_kdtree = NULL;
-}
-
-GFaceCompound::GFaceCompound(GModel *m, int tag, std::list<GFace*> &compound,
-			     std::list<GEdge*> &U0, std::list<GEdge*> &V0,
-			     std::list<GEdge*> &U1, std::list<GEdge*> &V1,
-			     typeOfCompound toc,
-			     int allowPartition)
-  : GFace(m, tag), _compound(compound), _U0(U0), _V0(V0), _U1(U1), _V1(V1),
-    oct(0), octNew(0), _toc(toc), _allowPartition(allowPartition)
-{
-  ONE = new simpleFunction<double>(1.0);
-  MONE = new simpleFunction<double>(-1.0);
-
-  for(std::list<GFace*>::iterator it = _compound.begin(); it != _compound.end(); ++it){
-    if(!(*it)){
-      Msg::Error("Incorrect face in compound surface %d\n", tag);
-      return;
-    }
-  }
-
-  getBoundingEdges();
-
-  _mapping = HARMONIC;
-  _type = UNITCIRCLE;
-  if(toc == RADIAL_BASIS)   _mapping = RBF;
-  else if (toc == HARMONIC_PLANE) _type = MEANPLANE;
-  else if (toc == CONVEX_CIRCLE)  _mapping = CONVEX;
-  else if (toc == CONVEX_PLANE){
-    _mapping = CONVEX;
-    _type = MEANPLANE;
-  }
-  if(toc == CONFORMAL_SPECTRAL) {
-    _mapping = CONFORMAL;
-    _type = SPECTRAL;
-  }
-  else if(toc == CONFORMAL_FE) {
-    _mapping = CONFORMAL;
-    _type = FE;
-  }
-  else if(toc == HARMONIC_SQUARE && _U0.size() && _V0.size() && _U1.size() && _V1.size()) {
-    _type = SQUARE;
-  }
-
-  nbSplit = 0;
-  fillTris.clear();
-
-  uv_kdtree = NULL;
-  kdtree = NULL;
-}
-
-GFaceCompound::~GFaceCompound()
-{
-  delete ONE;
-  delete MONE;
- _deleteInternals();
-}
-
-void GFaceCompound::deleteInternals(){
-  _deleteInternals();
-}
-
-void GFaceCompound::_deleteInternals()
-{
-  for (unsigned int i = 0; i < myParamVert.size(); i++)
-    delete myParamVert[i];
-  myParamVert.clear();
-  for (unsigned int i = 0; i < myParamElems.size(); i++)
-    delete myParamElems[i];
-  myParamElems.clear();
-  _3Dto2D.clear();
-  _2Dto3D.clear();
-  XYZoct.clear();
-  allNodes.clear();
-  adjv.clear();
-  coordinates.clear();
-  firstDerivatives.clear();
-  xuu.clear();
-  xvv.clear();
-  xuv.clear();
-  xu.clear();
-  xv.clear();
-  _coordPoints.clear();
-  _normals.clear();
-  fillTris.clear();
-  fillNodes.clear();
-  fillFaces.clear();
-  _ordered.clear();
-  _coords.clear();
-  _mapV.clear();
-
-  if(oct){
-    Octree_Delete(oct);
-    delete [] _gfct;
-    oct = 0;
-  }
-  if(octNew){
-    delete octNew;
-    octNew = 0;
-  }
-  if(uv_kdtree) {
-    ANNpointArray uv_nodes = uv_kdtree->thePoints();
-    if(uv_nodes) annDeallocPts(uv_nodes);
-    delete uv_kdtree;
-    uv_kdtree = 0;
-  }
-  if(kdtree){
-    ANNpointArray nodes = kdtree->thePoints();
-    if(nodes) annDeallocPts(nodes);
-    delete kdtree;
-    kdtree = 0;
-  }
-}
-
-
-void GFaceCompound::deleteMesh()
-{
-  _deleteInternals();
-  GFace::deleteMesh();
-}
-
-SPoint2 GFaceCompound::getCoordinates(MVertex *v) const
-{
-  if(trivial()){
-    SPoint2 param;
-    reparamMeshVertexOnFace(v, (*(_compound.begin())),param);
-    return param;
-  }
-
-  std::map<MVertex*,SPoint3>::iterator it = coordinates.find(v);
-
-  if(it != coordinates.end()){
-    return SPoint2(it->second.x(),it->second.y());
-  }
-  else{
-
-    //if(v->onWhat()->dim() == 1){
-      double tGlob, tLoc;
-      double tL, tR;
-      int iEdge;
-
-      // getParameter Point
-      v->getParameter(0, tGlob);
-
-      //find compound Edge
-      GEdgeCompound *gec = dynamic_cast<GEdgeCompound*>(v->onWhat());
-
-      if(gec){
-	// compute local parameter on Edge
-	gec->getLocalParameter(tGlob,iEdge,tLoc);
-	std::vector<GEdge*> gev = gec->getCompounds();
-	GEdge *ge = gev[iEdge];
-        std::map<MVertex*,SPoint3>::iterator itL;
-        std::map<MVertex*,SPoint3>::iterator itR;
-
-        if(ge->geomType() == GEntity::DiscreteCurve){
-          discreteEdge *de = dynamic_cast<discreteEdge*>(ge);
-          int i = (int)tLoc;
-          MLine *l = de->lines[i];
-          MVertex *vL = l->getVertex(0);
-          MVertex *vR = l->getVertex(1);
-          itL = coordinates.find(vL);
-          if(itL == coordinates.end()){
-            Msg::Error("Vertex %p (%g %g %g) not found", vL, vL->x(), vL->y(), vL->z());
-            return SPoint2(0, 0);
-          }
-          itR = coordinates.find(vR);
-          if(itR == coordinates.end()){
-            Msg::Error("Vertex %p (%g %g %g) not found", vR, vR->x(), vR->y(), vR->z());
-            return SPoint2(0, 0);
-          }
-          double xi, uloc, vloc;
-          xi = tLoc - i;
-          uloc = (1 - xi) * itL->second.x() + xi * itR->second.x();
-          vloc = (1 - xi) * itL->second.y() + xi * itR->second.y();
-          return SPoint2(uloc,vloc);
-        }
-        else{
-          // left and right vertex of the Edge
-          MVertex *v0 = ge->getBeginVertex()->mesh_vertices[0];
-          MVertex *v1 = ge->getEndVertex()->mesh_vertices[0];
-          itL = coordinates.find(v0);
-          itR = coordinates.find(v1);
-          // for the Edge, find the left and right vertices of the initial
-          // 1D mesh and interpolate to find (u,v)
-          //MVertex *vL = v0;
-          MVertex *vR = v1;
-          double tB = ge->parBounds(0).low();
-          double tE = ge->parBounds(0).high();
-          int j = 0;
-          tL=tB;
-          bool found = false;
-          while(j < (int)ge->mesh_vertices.size()){
-            vR = ge->mesh_vertices[j];
-            if(vR->getPolynomialOrder() > 1){ j++; continue; }
-            vR->getParameter(0, tR);
-            if(!vR->getParameter(0, tR)) {
-              Msg::Error("Vertex vr %p not an MEdgeVertex", vR);
-              return SPoint2();
-            }
-            if(tLoc > tL && tLoc < tR){
-              found = true;
-              itR = coordinates.find(vR);
-              if(itR == coordinates.end()){
-                Msg::Error("Vertex %p (%g %g %g) not found", vR, vR->x(), vR->y(), vR->z());
-                return SPoint2(0, 0);
-              }
-              break;
-            }
-            else{
-              itL = coordinates.find(vR);
-              //vL = vR;
-              tL = tR;
-            }
-            j++;
-          }
-          if(!found) {
-            vR = v1;
-            tR = tE;
-          }
-          // linear interpolation between tL and tR
-          double uloc, vloc;
-          uloc = itL->second.x() + (tLoc-tL)/(tR-tL) * (itR->second.x()-itL->second.x());
-          vloc = itL->second.y() + (tLoc-tL)/(tR-tL) * (itR->second.y()-itL->second.y());
-          return SPoint2(uloc,vloc);
-        }
-      }
-
-  }
-
-  // never here
-  return SPoint2(0, 0);
-}
-
-void GFaceCompound::parametrize(iterationStep step, typeOfMapping tom) const
-{
-  linearSystem<double> *lsys;
-
-  if (tom==HARMONIC){
-#if defined(HAVE_TAUCS)
-    lsys = new linearSystemCSRTaucs<double>;
-#elif defined(HAVE_PETSC)
-    lsys = new linearSystemPETSc<double>;
-#elif defined(HAVE_GMM)
-    linearSystemGmm<double> *lsysb = new linearSystemGmm<double>;
-    lsysb->setGmres(1);
-    lsys = lsysb;
-#else
-    lsys = new linearSystemFull<double>;
-#endif
-  }
-  else{
-#if defined(HAVE_PETSC)
-    lsys = new linearSystemPETSc<double>;
-    lsys->setParameter("petscOptions",
-    "-pc_type ilu -ksp_rtol 1.e-12 -pc_factor_levels 10");
-
-    //    lsys->setParameter("petscOptions",
-    //    		       "-ksp_type preonly -pc_type lu -pc_factor_mat_solver_package umfpack");
-#elif defined(HAVE_GMM)
-    linearSystemGmm<double> *lsysb = new linearSystemGmm<double>;
-    lsysb->setGmres(1);
-    lsys = lsysb;
-#else
-    lsys = new linearSystemFull<double>;
-#endif
-  }
-
-  dofManager<double> myAssembler(lsys);
-
-  if(_type == UNITCIRCLE){
-    for(unsigned int i = 0; i < _ordered.size(); i++){
-      MVertex *v = _ordered[i];
-      const double theta = 2 * M_PI * _coords[i];
-      if(step == ITERU) myAssembler.fixVertex(v, 0, 1, cos(theta));
-      else if(step == ITERV) myAssembler.fixVertex(v, 0, 1, sin(theta));
-    }
-  }
-  else if(_type == SQUARE){
-    if(step == ITERU){
-      std::list<GEdge*>::const_iterator it = _U0.begin();
-      for( ; it != _U0.end(); ++it){
-	fixEdgeToValue(*it, 0.0, myAssembler);
-      }
-      it = _U1.begin();
-      for( ; it != _U1.end(); ++it){
-	fixEdgeToValue(*it, 1.0, myAssembler);
-      }
-    }
-    else if(step == ITERV){
-      std::list<GEdge*>::const_iterator it = _V0.begin();
-      for( ; it != _V0.end(); ++it){
-	fixEdgeToValue(*it, 0.0, myAssembler);
-      }
-      it = _V1.begin();
-      for( ; it != _V1.end(); ++it){
-	fixEdgeToValue(*it, 1.0, myAssembler);
-      }
-    }
-  }
-  else if (_type == MEANPLANE){
-    std::vector<SPoint3> points, pointsProj, pointsUV;
-    SPoint3 ptCG(0.0, 0.0, 0.0);
-    for(unsigned int i = 0; i < _ordered.size(); i++){
-      MVertex *v = _ordered[i];
-      points.push_back(SPoint3(v->x(), v->y(), v->z()));
-      ptCG[0] += v->x();
-      ptCG[1] += v->y();
-      ptCG[2] += v->z();
-    }
-
-    ptCG /= points.size();
-    mean_plane meanPlane;
-    computeMeanPlaneSimple(points, meanPlane);
-    projectPointsToPlane(points, pointsProj, meanPlane);
-    transformPointsIntoOrthoBasis(pointsProj, pointsUV, ptCG, meanPlane);
-
-    for(unsigned int i = 0; i < pointsUV.size(); i++){
-      MVertex *v = _ordered[i];
-      if(step == ITERU) myAssembler.fixVertex(v, 0, 1, pointsUV[i][0]);
-      else if(step == ITERV) myAssembler.fixVertex(v, 0, 1, pointsUV[i][1]);
-    }
-  }
-  else if (_type == ALREADYFIXED){
-    for(unsigned int i = 0; i < _ordered.size(); i++){
-      MVertex *v = _ordered[i];
-      SPoint3 uv = coordinates[v];
-      if(step == ITERU) myAssembler.fixVertex(v, 0, 1, uv[0]);
-      else if(step == ITERV) myAssembler.fixVertex(v, 0, 1, uv[1]);
-    }
-  }
-  else{
-    Msg::Error("Unknown type of parametrization");
-    return;
-  }
-
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  for( ; it != _compound.end(); ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      MTriangle *t = (*it)->triangles[i];
-      myAssembler.numberVertex(t->getVertex(0), 0, 1);
-      myAssembler.numberVertex(t->getVertex(1), 0, 1);
-      myAssembler.numberVertex(t->getVertex(2), 0, 1);
-    }
-  }
-
-  for (std::list<MTriangle*>::iterator it2 = fillTris.begin(); it2 !=fillTris.end(); it2++ ){
-    MTriangle *t = (*it2);
-    myAssembler.numberVertex(t->getVertex(0), 0, 1);
-    myAssembler.numberVertex(t->getVertex(1), 0, 1);
-    myAssembler.numberVertex(t->getVertex(2), 0, 1);
-  }
-
-  Msg::Debug("Creating term %d dofs numbered %d fixed",
-             myAssembler.sizeOfR(), myAssembler.sizeOfF());
-
-  double t1 = Cpu();
-
-  femTerm<double> *mapping;
-  if (tom == HARMONIC)
-    mapping = new laplaceTerm(0, 1, ONE);
-  else
-    mapping = new convexCombinationTerm(0, 1, ONE);
-
-  it = _compound.begin();
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      SElement se((*it)->triangles[i]);
-      mapping->addToMatrix(myAssembler, &se);
-    }
-  }
-
-  for (std::list<MTriangle*>::iterator it2 = fillTris.begin(); it2 !=fillTris.end(); it2++ ){
-    SElement se((*it2));
-    mapping->addToMatrix(myAssembler, &se);
-  }
-
-  double t2 = Cpu();
-  Msg::Debug("Assembly done in %8.3f seconds", t2 - t1);
-  lsys->systemSolve();
-  Msg::Debug("System solved");
-
-  for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
-    MVertex *v = *itv;
-    double value;
-    myAssembler.getDofValue(v, 0, 1, value);
-    std::map<MVertex*,SPoint3>::iterator itf = coordinates.find(v);
-    if(itf == coordinates.end()){
-      SPoint3 p(0, 0, 0);
-      p[step] = value;
-      coordinates[v] = p;
-    }
-    else{
-      itf->second[step]= value;
-    }
-  }
-
-  delete mapping;
-  delete lsys;
-}
-
-bool GFaceCompound::parametrize_conformal_spectral() const
-{
-#if !defined(HAVE_PETSC) && !defined(HAVE_SLEPC)
-  Msg::Warning("Slepc not installed: parametrization switched to 'FE conformal' map");
-  return parametrize_conformal(0, NULL, NULL);
-#else
-
-  linearSystem <double> *lsysA = new linearSystemPETSc<double>;
-  linearSystem <double> *lsysB = new linearSystemPETSc<double>;
-  dofManager<double> myAssembler(lsysA, lsysB);
-
-  myAssembler.setCurrentMatrix("A");
-  for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
-    MVertex *v = *itv;
-    myAssembler.numberVertex(v, 0, 1);
-    myAssembler.numberVertex(v, 0, 2);
-  }
-
-  for(std::set<MVertex *>::iterator itv = fillNodes.begin(); itv !=fillNodes.end() ; ++itv){
-    MVertex *v = *itv;
-    myAssembler.numberVertex(v, 0, 1);
-    myAssembler.numberVertex(v, 0, 2);
-  }
-
-  laplaceTerm laplace1(model(), 1, ONE);
-  laplaceTerm laplace2(model(), 2, ONE);
-  crossConfTerm cross12(model(), 1, 2, ONE);
-  crossConfTerm cross21(model(), 2, 1, MONE);
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      SElement se((*it)->triangles[i]);
-      laplace1.addToMatrix(myAssembler, &se);
-      laplace2.addToMatrix(myAssembler, &se);
-      cross12.addToMatrix(myAssembler, &se);
-      cross21.addToMatrix(myAssembler, &se);
-    }
-  }
-
-  for (std::list<MTriangle*>::iterator it2 = fillTris.begin(); it2 != fillTris.end(); it2++){
-    SElement se((*it2));
-    laplace1.addToMatrix(myAssembler, &se);
-    laplace2.addToMatrix(myAssembler, &se);
-    cross12.addToMatrix(myAssembler, &se);
-    cross21.addToMatrix(myAssembler, &se);
-  }
-
-  double epsilon = 1.e-6;
-  for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
-    MVertex *v = *itv;
-    if (std::find(_ordered.begin(), _ordered.end(), v) == _ordered.end() ){
-      myAssembler.assemble(v, 0, 1, v, 0, 1,  epsilon);
-      myAssembler.assemble(v, 0, 2, v, 0, 2,  epsilon);
-    }
-  }
-  for(std::set<MVertex *>::iterator itv = fillNodes.begin(); itv !=fillNodes.end() ; ++itv){
-    MVertex *v = *itv;
-    if (std::find(_ordered.begin(), _ordered.end(), v) == _ordered.end() ){
-      myAssembler.assemble(v, 0, 1, v, 0, 1,  epsilon);
-      myAssembler.assemble(v, 0, 2, v, 0, 2,  epsilon);
-    }
-  }
-
-  myAssembler.setCurrentMatrix("B");
-
-  // mettre max NC contraintes par bord
-  int NB = _ordered.size();
-  int NC = std::min(30,NB);
-  int jump = (int) NB/NC;
-  int nbLoop = (int) NB/jump ;
-  for (int i = 0; i< nbLoop; i++){
-    MVertex *v1 = _ordered[i*jump];
-    myAssembler.assemble(v1, 0, 1, v1, 0, 1,  1.0);
-    myAssembler.assemble(v1, 0, 2, v1, 0, 2,  1.0);
-    for (int j = 0; j< nbLoop; j++){
-      MVertex *v2 = _ordered[j*jump];
-      myAssembler.assemble(v1, 0, 1, v2, 0, 1,  -1./NC);
-      myAssembler.assemble(v1, 0, 2, v2, 0, 2,  -1./NC);
-    }
-  }
-
-  // FIXME: force non-hermitian. For some reason (roundoff errors?)
-  // on some machines and for some meshes slepc complains about bad IP
-  // norm otherwise
-  eigenSolver eig(&myAssembler, "B" , "A", false);
-
-  bool converged = eig.solve(1, "largest");
-
-  if(converged) {
-    double Linfty = 0.0;
-    int k = 0;
-    std::vector<std::complex<double> > &ev = eig.getEigenVector(0);
-    for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
-      double paramu = ev[k].real();
-      double paramv = ev[k+1].real();
-      Linfty=std::max(Linfty, sqrt(paramu*paramu+paramv*paramv));
-      k = k+2;
-    }
-    k = 0;
-    for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
-      MVertex *v = *itv;
-      double paramu = ev[k].real()/Linfty;
-      double paramv = ev[k+1].real()/Linfty;
-      coordinates[v] = SPoint3(paramu,paramv,0.0);
-      k = k+2;
-    }
-    delete lsysA;
-    delete lsysB;
-  }
-  else{
-    Msg::Warning("Slepc not converged: parametrization switched to 'FE conformal' map");
-    return parametrize_conformal(0,NULL,NULL);
-  }
-
-  std::vector<MVertex *> vert;
-  return checkOverlap(vert);
-#endif
-}
-
-bool GFaceCompound::parametrize_conformal(int iter, MVertex *v1, MVertex *v2) const
-{
-  linearSystem<double> *lsys;
-#if defined(HAVE_TAUCS)
-  lsys = new linearSystemCSRTaucs<double>;
-#elif defined(HAVE_PETSC)
-  lsys = new linearSystemPETSc<double>;
-#elif defined(HAVE_GMM)
-  linearSystemGmm<double> *lsysb = new linearSystemGmm<double>;
-  lsysb->setGmres(1);
-  lsys = lsysb;
-#else
-  lsys = new linearSystemFull<double>;
-#endif
-
-  dofManager<double> myAssembler(lsys);
-
-  if(!v1) v1 = _ordered[0];
-  if(!v2) v2 = _ordered[(int)ceil((double)_ordered.size()/2.)];
-  myAssembler.fixVertex(v1, 0, 1, 1.);
-  myAssembler.fixVertex(v1, 0, 2, 0.);
-  myAssembler.fixVertex(v2, 0, 1, -1.);
-  myAssembler.fixVertex(v2, 0, 2, 0.);
-
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  for( ; it != _compound.end(); ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      MTriangle *t = (*it)->triangles[i];
-      myAssembler.numberVertex(t->getVertex(0), 0, 1);
-      myAssembler.numberVertex(t->getVertex(1), 0, 1);
-      myAssembler.numberVertex(t->getVertex(2), 0, 1);
-      myAssembler.numberVertex(t->getVertex(0), 0, 2);
-      myAssembler.numberVertex(t->getVertex(1), 0, 2);
-      myAssembler.numberVertex(t->getVertex(2), 0, 2);
-    }
-  }
-  for (std::list<MTriangle*>::iterator it2 = fillTris.begin();
-       it2 !=fillTris.end(); it2++){
-    MTriangle *t = (*it2);
-    myAssembler.numberVertex(t->getVertex(0), 0, 1);
-    myAssembler.numberVertex(t->getVertex(1), 0, 1);
-    myAssembler.numberVertex(t->getVertex(2), 0, 1);
-    myAssembler.numberVertex(t->getVertex(0), 0, 2);
-    myAssembler.numberVertex(t->getVertex(1), 0, 2);
-    myAssembler.numberVertex(t->getVertex(2), 0, 2);
-  }
-
-  laplaceTerm laplace1(model(), 1, ONE);
-  laplaceTerm laplace2(model(), 2, ONE);
-  crossConfTerm cross12(model(), 1, 2, ONE);
-  crossConfTerm cross21(model(), 2, 1, MONE);
-  it = _compound.begin();
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      SElement se((*it)->triangles[i]);
-      laplace1.addToMatrix(myAssembler, &se);
-      laplace2.addToMatrix(myAssembler, &se);
-      cross12.addToMatrix(myAssembler, &se);
-      cross21.addToMatrix(myAssembler, &se);
-    }
-  }
-  for (std::list<MTriangle*>::iterator it2 = fillTris.begin();
-       it2 != fillTris.end(); it2++ ){
-    SElement se((*it2));
-    laplace1.addToMatrix(myAssembler, &se);
-    laplace2.addToMatrix(myAssembler, &se);
-    cross12.addToMatrix(myAssembler, &se);
-    cross21.addToMatrix(myAssembler, &se);
-  }
-
-  Msg::Debug("Assembly done");
-  lsys->systemSolve();
-  Msg::Debug("System solved");
-
-  for(std::set<MVertex *>::iterator itv = allNodes.begin();
-      itv != allNodes.end() ; ++itv){
-    MVertex *v = *itv;
-    double value1, value2;
-    myAssembler.getDofValue(v, 0, 1, value1);
-    myAssembler.getDofValue(v, 0, 2, value2);
-    coordinates[v] = SPoint3(value1,value2,0.0);
-  }
-
-  delete lsys;
-
-  // check for overlap and compute new mapping with new pinned
-  // vertices
-  std::vector<MVertex *> vert;
-  bool hasOverlap = checkOverlap(vert);
-  return hasOverlap;
-  // if ( hasOverlap && iter < 3){
-  //   Msg::Info("Loop FE conformal iter (%d) v1=%d v2=%d", iter,
-  //             vert[0]->getNum(), vert[1]->getNum());
-  //   printStuff(100+iter);
-  //   return hasOverlap = parametrize_conformal(iter+1, vert[0],vert[1]);
-  // }
-  // else{
-  //   return hasOverlap;
-  // }
-}
-
-void GFaceCompound::computeNormals(std::map<MVertex*,SVector3> &normals) const
-{
-  computeNormals ();
-  normals = _normals;
-}
-
-void GFaceCompound::computeNormals() const
-{
-  _normals.clear();
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  double J[3][3];
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      MTriangle *t = (*it)->triangles[i];
-      t->getJacobian(0, 0, 0, J);
-      SVector3 n (J[2][0], J[2][1], J[2][2]);
-      n.normalize();
-      for(int j = 0; j < 3; j++){
-        std::map<MVertex*, SVector3>::iterator itn = _normals.find(t->getVertex(j));
-        if(itn == _normals.end())_normals[t->getVertex(j)] = n;
-        else itn->second += n;
-      }
-    }
-  }
-  std::map<MVertex*,SVector3>::iterator itn = _normals.begin();
-  for( ; itn != _normals.end() ; ++itn) itn->second.normalize();
-}
-
-double GFaceCompound::curvatureMax(const SPoint2 &param) const
-{
-  if(!oct) parametrize();
-  if(trivial()) {
-    return (*(_compound.begin()))->curvatureMax(param);
-  }
-
-  double U, V;
-  GFaceCompoundTriangle *lt;
-  getTriangle(param.x(), param.y(), &lt, U,V);
-
-  if(!lt) return 0.0;
-
-  if(lt->gf && lt->gf->geomType() != GEntity::DiscreteSurface) {
-    SPoint2 pv = lt->gfp1*(1.-U-V) + lt->gfp2*U + lt->gfp3*V;
-    return lt->gf->curvatureMax(pv);
-  }
-  else if (lt->gf->geomType() == GEntity::DiscreteSurface) {
-    Curvature& curvature = Curvature::getInstance();
-    if( !Curvature::valueAlreadyComputed() ) {
-      Msg::Info("Need to compute discrete curvature for isotropic remesh (in GFace)");
-      Curvature::typeOfCurvature type = Curvature::RUSIN;
-      curvature.computeCurvature(model(), type);
-    }
-    double c0,c1,c2;
-    curvature.triangleNodalValues(lt->tri,c0, c1, c2, 1);
-    double cv = (1-U-V)*c0 + U*c1 + V*c2;
-    return cv;
-  }
-
-  return 0.;
-}
-
-double GFaceCompound::curvatures(const SPoint2 &param, SVector3 *dirMax, SVector3 *dirMin,
-                                 double *curvMax, double *curvMin) const
-{
-  if(!oct) parametrize();
-  if(trivial()) {
-    return (*(_compound.begin()))->curvatures(param, dirMax,dirMin, curvMax, curvMin);
-  }
-
-  double U, V;
-  GFaceCompoundTriangle *lt;
-  getTriangle(param.x(), param.y(), &lt, U,V);
-
-  if(!lt) return 0.0;
-
-  if(lt->gf && lt->gf->geomType() != GEntity::DiscreteSurface){
-    SPoint2 pv = lt->gfp1*(1.-U-V) + lt->gfp2*U + lt->gfp3*V;
-    return lt->gf->curvatures(pv, dirMax,dirMin, curvMax, curvMin);
-  }
-  else if (lt->gf->geomType() == GEntity::DiscreteSurface){
-    Curvature& curvature = Curvature::getInstance();
-    if( !Curvature::valueAlreadyComputed() ) {
-      Msg::Info("Need to compute discrete curvature for anisotropic remesh (in GFace)");
-      Curvature::typeOfCurvature type = Curvature::RUSIN; //RBF
-      curvature.computeCurvature(model(), type);
-    }
-
-    double cMin[3];
-    double cMax[3];
-    SVector3 dMin[3];
-    SVector3 dMax[3];
-    curvature.triangleNodalValuesAndDirections(lt->tri, dMax, dMin, cMax, cMin, 0);
-    //curvature.triangleNodalValuesAndDirections(lt->tri, dMax, dMin, cMax, cMin, 1);
-
-    *dirMax = (1-U-V)*dMax[0] + U*dMax[1] + V*dMax[2];
-    *dirMin = (1-U-V)*dMin[0] + U*dMin[1] + V*dMin[2];
-    *curvMax = (1-U-V)*cMax[0] + U*cMax[1] + V*cMax[2];
-    *curvMin = (1-U-V)*cMin[0] + U*cMin[1] + V*cMin[2];
-
-    return *curvMax;
-  }
-  return 0.;
-}
-
-double GFaceCompound::locCurvature(MTriangle *t, double u, double v) const
-{
-  SVector3 n1 = _normals[t->getVertex(0)];
-  SVector3 n2 = _normals[t->getVertex(1)];
-  SVector3 n3 = _normals[t->getVertex(2)];
-  double val[9] = {n1.x(), n2.x(), n3.x(),
-                   n1.y(), n2.y(), n3.y(),
-                   n1.z(), n2.z(), n3.z()};
-  return fabs(t->interpolateDiv(val, u, v, 3));
-}
-
-SPoint2 GFaceCompound::parFromVertex(MVertex *v) const
-{
-  double U=0.0,V=0.0;
-  if(v->onWhat()->dim()==2){
-    v->getParameter(0, U);
-    v->getParameter(1, V);
-  }
-  if (v->onWhat()->dim()==1 ||
-     (v->onWhat()->dim()==2 &&
-      U == -1 && V==-1)){ //if MFaceVertex created on edge in bunin
-    SPoint2 sp = getCoordinates(v);
-    U = sp.x();
-    V = sp.y();
-  }
-  if (v->onWhat()->dim()==0){
-    SPoint2 sp = parFromPoint(SPoint3(v->x(), v->y(), v->z()));
-    U = sp.x();
-    V = sp.y();
-  }
-  return SPoint2(U,V);
-
-}
-SPoint2 GFaceCompound::parFromPoint(const SPoint3 &p, bool onSurface) const
-{
-  if(!oct) parametrize();
-
-  std::map<SPoint3,SPoint3>::const_iterator it = _coordPoints.find(p);
-  SPoint3 sp = it->second;
-
-  return SPoint2(sp.x(), sp.y());
-}
-
-GPoint GFaceCompound::pointInRemeshedOctree(double par1, double par2) const
-{
-
-  //create new octree with new mesh elements
-  if(!octNew){
-    std::vector<MElement *> myElems;
-    for (unsigned int i = 0; i < triangles.size(); i++) myElems.push_back(triangles[i]);
-    for (unsigned int i = 0; i < quadrangles.size(); i++) myElems.push_back(quadrangles[i]);
-
-    std::set<SPoint2> myBCNodes;
-    for (unsigned int i = 0; i < myElems.size(); i++){
-      MElement *e = myElems[i];
-      MVertex *news[4];
-      for (int j = 0; j < e->getNumVertices(); j++){
-	MVertex *v = e->getVertex(j);
-	std::map<MVertex*,MVertex*>::iterator it = _3Dto2D.find(v);
-	MVertex *newv =0;
-	if (it == _3Dto2D.end()){
-	  SPoint2 p = parFromVertex(v);
-	  newv = new MVertex (p.x(), p.y(), 0.0);
-	  myParamVert.push_back(newv);
-	  _3Dto2D[v] = newv;
-	  _2Dto3D[newv] = v;
-	  if(v->onWhat()->dim()<2) myBCNodes.insert(p);
-	}
-	else newv = it->second;
-	news[j] = newv;
-      }
-
-      if(e->getType() == TYPE_TRI)
-  	myParamElems.push_back(new MTriangle(news[0],news[1],news[2],e->getNum()));
-      else if (e->getType() == TYPE_QUA) {
-  	myParamElems.push_back(new MQuadrangle(news[0],news[1],news[2],news[3],e->getNum()));
-      }
-    }
-
-    octNew = new MElementOctree(myParamElems);
-
-    //build kdtree boundary nodes in parametric space
-    int nbBCNodes  = myBCNodes.size();
-    ANNpointArray uv_nodes = annAllocPts(nbBCNodes, 3);
-    std::set<SPoint2>::iterator itp = myBCNodes.begin();
-    int ind = 0;
-    while (itp != myBCNodes.end()){
-      SPoint2 pt = *itp;
-      uv_nodes[ind][0] = pt.x();
-      uv_nodes[ind][1] = pt.y();
-      uv_nodes[ind][2] = 0.0;
-      itp++; ind++;
-    }
-    uv_kdtree = new ANNkd_tree(uv_nodes, nbBCNodes, 3);
-  }
-
-  //now use new octree to find point
-  double uvw[3]={par1,par2, 0.0};
-  double UV[3];
-  MElement *e = octNew->find(par1,par2, 0.0,-1,false);
-  if (e){
-    e->xyz2uvw(uvw,UV);
-    double valX[8], valY[8], valZ[8];
-    for (int i=0;i<e->getNumPrimaryVertices();i++){
-      MVertex *v = _2Dto3D[e->getVertex(i)];
-      valX[i] = v->x();
-      valY[i] = v->y();
-      valZ[i] = v->z();
-    }
-    GPoint gp;
-    gp.x() = e->interpolate(valX,UV[0],UV[1],UV[2]);
-    gp.y() = e->interpolate(valY,UV[0],UV[1],UV[2]);
-    gp.z() = e->interpolate(valZ,UV[0],UV[1],UV[2]);
-    return gp;
-  }
-  //if element not found in new octree find closest point
-  else{
-    GPoint gp(50,50,50);
-    double pt[3] = {par1,par2,0.0};
-    ANNidx index[2];
-    ANNdist dist[2];
-    uv_kdtree->annkSearch(pt, 2, index, dist);
-    ANNpointArray uv_nodes = uv_kdtree->thePoints();
-    SPoint3  p1(uv_nodes[index[0]][0], uv_nodes[index[0]][1], uv_nodes[index[0]][2]);
-    SPoint3  p2(uv_nodes[index[1]][0], uv_nodes[index[1]][1], uv_nodes[index[1]][2]);
-    SPoint3 pnew; double d;
-    signedDistancePointLine(p1,p2, SPoint3(par1,par2,0.0), d, pnew);
-
-    double uvw[3]={pnew.x(),pnew.y(), 0.0};
-    double UV[3];
-    MElement *e = octNew->find(pnew.x(), pnew.y(), 0.0,-1,true);
-    if(!e)    e = octNew->find(p1.x(), p1.y(), 0.0,-1,true);
-    if( e){
-      e->xyz2uvw(uvw,UV);
-      double valX[8], valY[8], valZ[8];
-      for (int i=0;i<e->getNumPrimaryVertices();i++){
-	MVertex *v = _2Dto3D[e->getVertex(i)];
-	valX[i] = v->x();
-	valY[i] = v->y();
-	valZ[i] = v->z();
-      }
-      gp.x() = e->interpolate(valX,UV[0],UV[1],UV[2]);
-      gp.y() = e->interpolate(valY,UV[0],UV[1],UV[2]);
-      gp.z() = e->interpolate(valZ,UV[0],UV[1],UV[2]);
-    }
-    else{
-      gp.setNoSuccess();
-    }
-
-    if (gp.succeeded()) return gp;
-    else{
-      Msg::Error("NOT found point with ANN %g %g", par1, par2);
-      GPoint gp (30,30,30,this);
-      gp.setNoSuccess();
-      return gp;
-    }
-  }
-}
-
-GPoint GFaceCompound::point(double par1, double par2) const
-{
-  if(trivial()){
-    return (*(_compound.begin()))->point(par1,par2);
-  }
-
-  if(!oct) parametrize();
-
-  double U,V;
-  double par[2] = {par1,par2};
-  GFaceCompoundTriangle *lt;
-  getTriangle(par1, par2, &lt, U,V);
-  if(!lt){
-    if (meshStatistics.status == GFace::DONE && triangles.size()+quadrangles.size() != 0) {
-      GPoint gp = pointInRemeshedOctree(par1,par2);
-      gp.setNoSuccess();
-      return gp;
-    }
-    else{
-      double pt[3] = {par1,par2, 0.0};
-      ANNidx index[2];
-      ANNdist dist[2];
-      kdtree->annkSearch(pt, 1, index, dist);
-      lt = &(_gfct[index[0]]);
-
-      SPoint3 pnew_a, pnew_b, pnew_c; double d_a, d_b, d_c;
-      signedDistancePointLine(lt->p1,lt->p2, SPoint3(par1,par2,0.0), d_a, pnew_a);
-      signedDistancePointLine(lt->p1,lt->p3, SPoint3(par1,par2,0.0), d_b, pnew_b);
-      signedDistancePointLine(lt->p2,lt->p3, SPoint3(par1,par2,0.0), d_c, pnew_c);
-      double u,v;
-      if (d_a <= d_b && d_a <= d_c)      {  u = pnew_a.x(); v= pnew_a.y();}
-      else if (d_b <= d_a && d_b <= d_c) {  u = pnew_b.x(); v= pnew_b.y();}
-      else                               {  u = pnew_c.x(); v= pnew_c.y();}
-      double M[2][2],X[2],R[2];
-      const SPoint3 p0 = (lt)->p1;
-      const SPoint3 p1 = (lt)->p2;
-      const SPoint3 p2 = (lt)->p3;
-      M[0][0] = p1.x() - p0.x();
-      M[0][1] = p2.x() - p0.x();
-      M[1][0] = p1.y() - p0.y();
-      M[1][1] = p2.y() - p0.y();
-      R[0] = (u - p0.x());
-      R[1] = (v - p0.y());
-      sys2x2(M, R, X);
-      U = X[0];
-      V = X[1];
-    }
-  }
-
-  if (lt->gf->geomType() != GEntity::DiscreteSurface){
-    SPoint2 pParam = lt->gfp1*(1.-U-V) + lt->gfp2*U + lt->gfp3*V;
-    GPoint pp = lt->gf->point(pParam);
-    return GPoint(pp.x(),pp.y(),pp.z(),this,par);
-  }
-
-  const bool LINEARMESH = true; //false
-  if(LINEARMESH){
-    // linear Lagrange mesh
-    SPoint3 p = lt->v1*(1.-U-V) + lt->v2*U + lt->v3*V;
-    return GPoint(p.x(),p.y(),p.z(),this,par);
-  }
-  else{
-    // curved PN triangle
-    const SVector3 n1 = _normals[lt->tri->getVertex(0)];
-    const SVector3 n2 = _normals[lt->tri->getVertex(1)];
-    const SVector3 n3 = _normals[lt->tri->getVertex(2)];
-
-    SVector3 b300, b030, b003;
-    SVector3 b210, b120, b021, b012, b102, b201, E, VV, b111;
-    b300 = lt->v1;
-    b030 = lt->v2;
-    b003 = lt->v3;
-
-    // tagged PN triangles (sigma=1)
-    double theta = 0.0;
-    SVector3 d1 = lt->v1+.33*(1-theta)*(lt->v2-lt->v1);
-    SVector3 d2 = lt->v2+.33*(1-theta)*(lt->v1-lt->v2);
-    SVector3 X1 = 1/norm(n1)*n1;
-    SVector3 X2 = 1/norm(n2)*n2;
-    b210 = d1 - dot(X1,d1-lt->v1)*X1;
-    b120 = d2 - dot(X2,d2-lt->v2)*X2;
-    SVector3 d3 = lt->v2+.33*(1-theta)*(lt->v3-lt->v2);
-    SVector3 d4 = lt->v3+.33*(1-theta)*(lt->v2-lt->v3);
-    SVector3 X3 = 1/norm(n2)*n2;
-    SVector3 X4 = 1/norm(n3)*n3;
-    b021 = d3 - dot(X3,d3-lt->v2)*X3;
-    b012 = d4 - dot(X4,d4-lt->v3)*X4;
-    SVector3 d5 = lt->v3+.33*(1-theta)*(lt->v1-lt->v3);
-    SVector3 d6 = lt->v1+.33*(1-theta)*(lt->v3-lt->v1);
-    SVector3 X5 = 1/norm(n3)*n3;
-    SVector3 X6 = 1/norm(n1)*n1;
-    b102 = d5 - dot(X5,d5-lt->v3)*X5;
-    b201 = d6 - dot(X6,d6-lt->v1)*X6;
-
-    E=(b210+b120+b021+b012+b102+b201)*0.16667;
-    VV=(lt->v1+lt->v2+lt->v3)*0.333;
-    b111=E+(E-VV)*0.5;
-
-    double W = 1-U-V;
-    SVector3 point = b300*W*W*W+b030*U*U*U+b003*V*V*V+
-      b210*3.*W*W*U+b120*3.*W*U*U+b201*3.*W*W*V+
-      b021*3.*U*U*V+b102*3.*W*V*V+b012*3.*U*V*V+
-      b111*6.*W*U*V;
-
-    SPoint3 PP(point.x(), point.y(), point.z());
-    return GPoint(PP.x(),PP.y(),PP.z(),this,par);
-  }
-}
-
-Pair<SVector3,SVector3> GFaceCompound::firstDer(const SPoint2 &param) const
-{
-
-  if(!oct) parametrize();
-
-  if(trivial())
-    return (*(_compound.begin()))->firstDer(param);
-
-  double U,V;
-  GFaceCompoundTriangle *lt;
-  getTriangle(param.x(), param.y(), &lt, U,V);
-  MTriangle *tri=NULL;
-  if (lt) tri = lt->tri;
-  else {
-    double pt[3] = {param.x(), param.y(), 0.0};
-    ANNidx index[2];
-    ANNdist dist[2];
-    kdtree->annkSearch(pt, 1, index, dist);
-    tri = (&_gfct[index[0]])->tri;
-  }
-
-  SVector3 dXdu1 = firstDerivatives[tri->getVertex(0)].first();
-  SVector3 dXdu2 = firstDerivatives[tri->getVertex(1)].first();
-  SVector3 dXdu3 = firstDerivatives[tri->getVertex(2)].first();
-  SVector3 dXdv1 = firstDerivatives[tri->getVertex(0)].second();
-  SVector3 dXdv2 = firstDerivatives[tri->getVertex(1)].second();
-  SVector3 dXdv3 = firstDerivatives[tri->getVertex(2)].second();
-  SVector3 dXdu = dXdu1*(1.-U-V) + dXdu2*U + dXdu3*V;
-  SVector3 dXdv = dXdv1*(1.-U-V) + dXdv2*U + dXdv3*V;
-  return Pair<SVector3, SVector3>(dXdu,dXdv);
-}
-
-void GFaceCompound::secondDer(const SPoint2 &param,
-                              SVector3 *dudu, SVector3 *dvdv, SVector3 *dudv) const
-{
-#if defined(HAVE_MESH)
-
-  if(!oct) parametrize();
-
-  if(adjv.size() == 0){
-    std::vector<MTriangle*> allTri;
-    std::list<GFace*>::const_iterator it = _compound.begin();
-    for( ; it != _compound.end(); ++it){
-      allTri.insert(allTri.end(), (*it)->triangles.begin(), (*it)->triangles.end() );
-    }
-    buildVertexToTriangle(allTri, adjv);
-  }
-
-  if (xuu.size() == 0) computeHessianMapping();
-
-  double U, V;
-  GFaceCompoundTriangle *lt;
-  getTriangle(param.x(), param.y(), &lt, U,V);
-  if(!lt) return;
-
-  MVertex* v0 = lt->tri->getVertex(0);
-  MVertex* v1 = lt->tri->getVertex(1);
-  MVertex* v2 = lt->tri->getVertex(2);
-
-  *dudu = (1-U-V)*xuu[v0] + U*xuu[v1] + V*xuu[v2];
-  *dvdv = (1-U-V)*xvv[v0] + U*xvv[v1] + V*xvv[v2];
-  *dudv = (1-U-V)*xuv[v0] + U*xuv[v1] + V*xuv[v2];
-
-#endif
-  //Msg::Debug("Computation of the second derivatives is not implemented for compound faces");
-}
-
-void GFaceCompound::computeHessianMapping() const
-{
-#if defined(HAVE_MESH)
-  unsigned int sysDim = 6; //for 2D
-  unsigned int minNbPtBlob = 3*sysDim;
-  for (v2t_cont::iterator it = adjv.begin(); it != adjv.end(); it++) {
-    MVertex *ver = it->first;
-    std::vector<MVertex*> vv = getBlob(minNbPtBlob, it, adjv);
-    fullMatrix<double> A(vv.size(),sysDim), ATAx(sysDim,sysDim);
-    fullMatrix<double> ATAy(sysDim,sysDim), ATAz(sysDim,sysDim);
-    fullVector<double> bx(vv.size()), ATbx(sysDim), coeffsx(sysDim);
-    fullVector<double> by(vv.size()), ATby(sysDim), coeffsy(sysDim);
-    fullVector<double> bz(vv.size()), ATbz(sysDim), coeffsz(sysDim);
-    for(unsigned int i=0; i<vv.size(); i++) {
-      SPoint3 uv = coordinates[vv[i]];
-      A(i,0) = uv.x()*uv.x(); A(i,1) = uv.x()*uv.y(); A(i,2) = uv.y()*uv.y();
-      A(i,3) = uv.x(); A(i,4) = uv.y(); A(i,5) = 1.;
-      bx(i) = vv[i]->x();
-      by(i) = vv[i]->y();
-      bz(i) = vv[i]->z();
-    }
-    ATAx.gemm(A,A,1.,0., true, false);
-    ATAy = ATAx; ATAz = ATAx;
-    A.multWithATranspose(bx,1.,0.,ATbx);
-    A.multWithATranspose(by,1.,0.,ATby);
-    A.multWithATranspose(bz,1.,0.,ATbz);
-    ATAx.luSolve(ATbx,coeffsx);
-    ATAy.luSolve(ATby,coeffsy);
-    ATAz.luSolve(ATbz,coeffsz);
-    SPoint3 uv = coordinates[ver];
-    xuu[ver] = SVector3(2.*coeffsx(0),2.*coeffsy(0),2.*coeffsz(0)) ;
-    xvv[ver] = SVector3(2.*coeffsx(2),2.*coeffsy(2),2.*coeffsz(2)) ;
-    xuv[ver] = SVector3(coeffsx(1), coeffsy(1),coeffsz(1));
-    xu[ver]  = SVector3(2.*coeffsx(0)*uv.x()+coeffsx(1)*uv.y()+coeffsx(3),
-			2.*coeffsy(0)*uv.x()+coeffsy(1)*uv.y()+coeffsy(3),
-			2.*coeffsz(0)*uv.x()+coeffsz(1)*uv.y()+coeffsz(3));
-    xv[ver] = SVector3(coeffsx(1)*uv.x()+2.*coeffsx(2)*uv.y()+coeffsx(4),
-		       coeffsy(1)*uv.x()+2.*coeffsy(2)*uv.y()+coeffsy(4),
-		       coeffsz(1)*uv.x()+2.*coeffsz(2)*uv.y()+coeffsz(4));
-  }
-
-#endif
-}
-
-static void GFaceCompoundBB(void *a, double*mmin, double*mmax)
-{
-  GFaceCompoundTriangle *t = (GFaceCompoundTriangle *)a;
-  mmin[0] = std::min(std::min(t->p1.x(), t->p2.x()), t->p3.x());
-  mmin[1] = std::min(std::min(t->p1.y(), t->p2.y()), t->p3.y());
-  mmax[0] = std::max(std::max(t->p1.x(), t->p2.x()), t->p3.x());
-  mmax[1] = std::max(std::max(t->p1.y(), t->p2.y()), t->p3.y());
-  mmin[2] = -1;
-  mmax[2] = 1;
-
-  const double dx = mmax[0] - mmin[0];
-  const double dy = mmax[1] - mmin[1];
-  const double eps = 0.0;//1.e-12;
-  mmin[0] -= eps*dx;
-  mmin[1] -= eps*dy;
-  mmax[0] += eps*dx;
-  mmax[1] += eps*dy;
-}
-
-static void GFaceCompoundCentroid(void *a, double*c)
-{
-  GFaceCompoundTriangle *t = (GFaceCompoundTriangle *)a;
-  c[0] = (t->p1.x() + t->p2.x() + t->p3.x()) / 3.0;
-  c[1] = (t->p1.y() + t->p2.y() + t->p3.y()) / 3.0;
-  c[2] = 0.0;
-}
-
-static int GFaceCompoundInEle(void *a, double*c)
-{
-  GFaceCompoundTriangle *t = (GFaceCompoundTriangle *)a;
-  double M[2][2], R[2], X[2];
-  const double eps = 1.e-8;
-  const SPoint3 p0 = t->p1;
-  const SPoint3 p1 = t->p2;
-  const SPoint3 p2 = t->p3;
-  M[0][0] = p1.x() - p0.x();
-  M[0][1] = p2.x() - p0.x();
-  M[1][0] = p1.y() - p0.y();
-  M[1][1] = p2.y() - p0.y();
-  R[0] = (c[0] - p0.x());
-  R[1] = (c[1] - p0.y());
-  sys2x2(M, R, X);
-  if(X[0] > -eps && X[1] > -eps && 1. - X[0] - X[1] > -eps){
-    return 1;
-  }
-  return 0;
-}
-
-void GFaceCompound::getTriangle(double u, double v,
-                                GFaceCompoundTriangle **lt,
-                                double &_u, double &_v) const
-{
-  double uv[3] = {u, v, 0};
-  *lt = (GFaceCompoundTriangle*)Octree_Search(uv, oct);
-
-  if(!(*lt)){
-    _u = 0.0; _v = 0.0;
-    return;
-  }
-
-  double M[2][2],X[2],R[2];
-  const SPoint3 p0 = (*lt)->p1;
-  const SPoint3 p1 = (*lt)->p2;
-  const SPoint3 p2 = (*lt)->p3;
-  M[0][0] = p1.x() - p0.x();
-  M[0][1] = p2.x() - p0.x();
-  M[1][0] = p1.y() - p0.y();
-  M[1][1] = p2.y() - p0.y();
-  R[0] = (u - p0.x());
-  R[1] = (v - p0.y());
-  sys2x2(M, R, X);
-  _u = X[0];
-  _v = X[1];
-}
-
-void GFaceCompound::buildOct() const
-{
-#if defined(HAVE_MESH)
-  SBoundingBox3d bb;
-  int count = 0;
-  std::list<GFace*>::const_iterator it = _compound.begin();
-
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      MTriangle *t = (*it)->triangles[i];
-      //create bounding box
-      for(int j = 0; j < 3; j++){
-        std::map<MVertex*,SPoint3>::const_iterator itj = coordinates.find(t->getVertex(j));
-        _coordPoints.insert(std::make_pair(t->getVertex(j)->point(), itj->second));
-        bb += SPoint3(itj->second.x(),itj->second.y(),0.0);
-      }
-      count++;
-    }
-  }
-
-  //ANN octree
-  std::set<MVertex*> allVS;
-  ANNpointArray nodes = annAllocPts(count, 3);
-
-  // make bounding box
-  SPoint3 bbmin = bb.min(), bbmax = bb.max();
-  double origin[3] = {bbmin.x(), bbmin.y(), bbmin.z()};
-  double ssize[3] = {bbmax.x() - bbmin.x(),
-                     bbmax.y() - bbmin.y(),
-                     bbmax.z() - bbmin.z()};
-
-  _gfct = new GFaceCompoundTriangle[count];
-  const int maxElePerBucket = 15;
-  oct = Octree_Create(maxElePerBucket, origin, ssize, GFaceCompoundBB,
-                      GFaceCompoundCentroid, GFaceCompoundInEle);
-  std::map<MElement*, Pair<SVector3,SVector3> > firstElemDerivatives;
-
-  it = _compound.begin();
-  count = 0;
-
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      MTriangle *t = (*it)->triangles[i];
-      std::map<MVertex*,SPoint3>::const_iterator it0 =
-        coordinates.find(t->getVertex(0));
-      std::map<MVertex*,SPoint3>::const_iterator it1 =
-        coordinates.find(t->getVertex(1));
-      std::map<MVertex*,SPoint3>::const_iterator it2 =
-        coordinates.find(t->getVertex(2));
-      _gfct[count].p1 = it0->second;
-      _gfct[count].p2 = it1->second;
-      _gfct[count].p3 = it2->second;
-       if((*it)->geomType() != GEntity::DiscreteSurface){
-	// take care of the seam !!!!
-	if (t->getVertex(0)->onWhat()->dim() == 2){
-	  reparamMeshEdgeOnFace(t->getVertex(0), t->getVertex(1), *it,
-                                _gfct[count].gfp1, _gfct[count].gfp2);
-	  reparamMeshEdgeOnFace(t->getVertex(0), t->getVertex(2), *it,
-                                _gfct[count].gfp1, _gfct[count].gfp3);
-	}
-	else if (t->getVertex(1)->onWhat()->dim() == 2){
-	  reparamMeshEdgeOnFace(t->getVertex(1), t->getVertex(0), *it,
-                                _gfct[count].gfp2, _gfct[count].gfp1);
-	  reparamMeshEdgeOnFace(t->getVertex(1), t->getVertex(2), *it,
-                                _gfct[count].gfp2, _gfct[count].gfp3);
-	}
-	else if (t->getVertex(2)->onWhat()->dim() == 2){
-	  reparamMeshEdgeOnFace(t->getVertex(2), t->getVertex(0), *it,
-                                _gfct[count].gfp3, _gfct[count].gfp1);
-	  reparamMeshEdgeOnFace(t->getVertex(2), t->getVertex(1), *it,
-                                _gfct[count].gfp3, _gfct[count].gfp2);
-	}
-	else {
-	  reparamMeshVertexOnFace(t->getVertex(0), *it, _gfct[count].gfp1);
-	  reparamMeshVertexOnFace(t->getVertex(1), *it, _gfct[count].gfp2);
-	  reparamMeshVertexOnFace(t->getVertex(2), *it, _gfct[count].gfp3);
-	}
-      }
-      _gfct[count].v1 = SPoint3(t->getVertex(0)->x(), t->getVertex(0)->y(),
-                                t->getVertex(0)->z());
-      _gfct[count].v2 = SPoint3(t->getVertex(1)->x(), t->getVertex(1)->y(),
-                                t->getVertex(1)->z());
-      _gfct[count].v3 = SPoint3(t->getVertex(2)->x(), t->getVertex(2)->y(),
-                                t->getVertex(2)->z());
-      _gfct[count].gf = *it;
-      _gfct[count].tri = t;
-
-      //compute first derivatives for every triangle
-      double mat[2][2] = {{_gfct[count].p2.x() - _gfct[count].p1.x(),
-			   _gfct[count].p3.x() - _gfct[count].p1.x()},
-			  {_gfct[count].p2.y() - _gfct[count].p1.y(),
-			   _gfct[count].p3.y() - _gfct[count].p1.y()}};
-      double inv[2][2];
-      inv2x2(mat, inv);
-      SVector3 dXdxi (_gfct[count].v2 - _gfct[count].v1);
-      SVector3 dXdeta(_gfct[count].v3 - _gfct[count].v1);
-      SVector3 dXdu(dXdxi * inv[0][0] + dXdeta * inv[1][0]);
-      SVector3 dXdv(dXdxi * inv[0][1] + dXdeta * inv[1][1]);
-      firstElemDerivatives[(MElement*)t] = Pair<SVector3,SVector3>(dXdu,dXdv);
-
-      // build ANN kdtree
-      nodes[count][0] = (it0->second.x() + it1->second.x() + it2->second.x())/3.0 ;
-      nodes[count][1] = (it0->second.y() + it1->second.y() + it2->second.y())/3.0 ;
-      nodes[count][2] = 0.0;
-
-      Octree_Insert(&_gfct[count], oct);
-      count++;
-    }
-  }
-  nbT = count;
-  Octree_Arrange(oct);
-
-  //smooth first derivatives at vertices
-  if(adjv.size() == 0){
-    std::vector<MTriangle*> allTri;
-    std::list<GFace*>::const_iterator it = _compound.begin();
-    for( ; it != _compound.end(); ++it){
-      allTri.insert(allTri.end(), (*it)->triangles.begin(), (*it)->triangles.end() );
-    }
-    buildVertexToTriangle(allTri, adjv);
-  }
-  for(v2t_cont::iterator it = adjv.begin(); it!= adjv.end(); ++it){
-    MVertex *v = it->first;
-    std::vector<MElement*> vTri = it->second;
-    SVector3 dXdu(0.0), dXdv(0.0);
-    int nbTri = vTri.size();
-    for (int j = 0; j < nbTri; j++){
-      dXdu += firstElemDerivatives[vTri[j]].first();
-      dXdv += firstElemDerivatives[vTri[j]].second();
-    }
-    dXdu*= 1./nbTri;
-    dXdv*= 1./nbTri;
-    firstDerivatives[v] = Pair<SVector3, SVector3>(dXdu, dXdv);
-  }
-
-  //build ANN kdtree
-  kdtree = new ANNkd_tree(nodes, count, 3);
-
-  printStuff();
-#endif
-}
-
-bool GFaceCompound::checkTopology() const
-{
-  if (_mapping == RBF) return true;
-
-  bool correctTopo = true;
-  if(allNodes.empty()) buildAllNodes();
-
-  int Nb = _interior_loops.size();
-  int G  = genusGeom() ;
-
-  double H = getSizeH();
-  double D = H;
-  if (_interior_loops.size() > 0)    D =  getSizeBB(_U0);
-  int AR1 = (int) checkAspectRatio();
-  int AR2 = (int) floor(H/D+0.5);
-  int AR = std::max(AR1, AR2);
-
-  if (G != 0 || Nb < 1){
-    correctTopo = false;
-    nbSplit = std::max(G+2, 2);
-    Msg::Info("Wrong topology: Genus=%d, Nb boundaries=%d, AR=%g", G, Nb, H/D);
-    if (_allowPartition){
-      Msg::Info("-----------------------------------------------------------");
-      Msg::Info("--- Split surface %d in %d parts with Multilevel Mesh partitioner",
-                tag(), nbSplit);
-    }
-    else{
-      Msg::Fatal("For remeshing your geometry, you should enable the automatic "
-                 "remeshing algorithm. Add 'Mesh.RemeshAlgorithm=1;' in your "
-                 "geo file or through the Fltk window (Options > Mesh > General)");
-    }
-  }
-  else if (G == 0 && AR > AR_MAX){
-    correctTopo = false;
-    Msg::Info("Wrong topology: Aspect ratio is too high AR=%d (AR1=%d AR2=%d)",
-              AR, AR1, AR2);
-    if (_allowPartition == 1){
-      nbSplit = -2;
-      Msg::Info("-----------------------------------------------------------");
-      Msg::Info("--- Split surface %d in 2 parts with Laplacian Mesh partitioner",
-                tag());
-    }
-    else if (_allowPartition == 2){
-      nbSplit = 2;
-      Msg::Info("-----------------------------------------------------------");
-      Msg::Info("--- Split surface %d in %d parts with Multilevel Mesh partitioner",
-                tag(), nbSplit);
-    }
-    else if (_allowPartition == 0){
-      Msg::Debug("The geometrical aspect ratio of your geometry is quite high.\n "
-		 "You should enable partitioning of the mesh by activating the\n"
-		 "automatic remeshing algorithm. Add 'Mesh.RemeshAlgorithm=1;'\n "
-		 "in your geo file or through the Fltk window (Options > Mesh >\n "
-		 "General)");
-    }
-  }
-  else{
-    Msg::Debug("Correct topology: Genus=%d and Nb boundaries=%d, AR=%g", G, Nb, H/D);
-  }
-
-  return correctTopo;
-}
-
-double GFaceCompound::checkAspectRatio() const
-{
-  if(allNodes.empty()) buildAllNodes();
-
-  double limit =  1.e-20;
-  double areaMin = 1.e20;
-  double area3D = 0.0;
-  int nb = 0;
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      MTriangle *t = (*it)->triangles[i];
-      std::vector<MVertex *> v(3);
-      for(int k = 0; k < 3; k++){
-        v[k] = t->getVertex(k);
-      }
-      double p0[3] = {v[0]->x(), v[0]->y(), v[0]->z()};
-      double p1[3] = {v[1]->x(), v[1]->y(), v[1]->z()};
-      double p2[3] = {v[2]->x(), v[2]->y(), v[2]->z()};
-      double a_3D = fabs(triangle_area(p0, p1, p2));
-      area3D += a_3D;
-      std::map<MVertex*,SPoint3>::const_iterator it0 = coordinates.find(v[0]);
-      std::map<MVertex*,SPoint3>::const_iterator it1 = coordinates.find(v[1]);
-      std::map<MVertex*,SPoint3>::const_iterator it2 = coordinates.find(v[2]);
-      if(it0 != coordinates.end() &&
-         it1 != coordinates.end() &&
-         it2 != coordinates.end()){
-        double q0[3] = {it0->second.x(), it0->second.y(), 0.0};
-        double q1[3] = {it1->second.x(), it1->second.y(), 0.0};
-        double q2[3] = {it2->second.x(), it2->second.y(), 0.0};
-        double a_2D = fabs(triangle_area(q0, q1, q2));
-        if (a_2D > limit) nb++;
-        areaMin = std::min(areaMin, a_2D);
-      }
-    }
-  }
-
-  std::list<GEdge*>::const_iterator it0 = _U0.begin();
-  double tot_length = 0.0;
-  for( ; it0 != _U0.end(); ++it0 )
-    for(unsigned int i = 0; i < (*it0)->lines.size(); i++ )
-      tot_length += (*it0)->lines[i]->getLength();
-
-  double AR = M_PI*area3D/(tot_length*tot_length);
-
-  if (nb > 3 && areaMin > 0 && areaMin < limit) {
-    Msg::Warning("Too small triangles in mapping (a_2D=%g)", areaMin);
-  }
-  else {
-    Msg::Debug("Geometrical aspect ratio is OK :-)");
-  }
-
-  return AR;
-}
-
-void GFaceCompound::coherencePatches() const
-{
-  if (_mapping == RBF) return;
-  Msg::Info("Re-orient all %d compound patches normals coherently",
-            _compound.size());
-
-  std::map<MEdge, std::set<MElement*>, Less_Edge > edge2elems;
-  std::vector<MElement*> allElems;
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->getNumMeshElements(); ++i){
-      MElement *t =  (*it)->getMeshElement(i);
-      allElems.push_back(t);
-      for (int j = 0; j <  t->getNumEdges(); j++){
-	MEdge me = t->getEdge(j);
-	std::map<MEdge, std::set<MElement*, std::less<MElement*> >,
-		 Less_Edge >::iterator it = edge2elems.find(me);
-	if (it == edge2elems.end()) {
-	  std::set<MElement*, std::less<MElement*> > mySet;
-	  mySet.insert(t);
-	  edge2elems.insert(std::make_pair(me, mySet));
-	}
-	else{
-	  std::set<MElement*, std::less<MElement*> > mySet = it->second;
-	  mySet.insert(t);
-	  it->second = mySet;
-	}
-      }
-    }
-  }
-
-  std::set<MElement* , std::less<MElement*> > touched;
-  int iE, si, iE2, si2;
-  touched.insert(allElems[0]);
-  while(touched.size() != allElems.size()){
-    for(unsigned int i = 0; i < allElems.size(); i++){
-      MElement *t = allElems[i];
-      std::set<MElement*, std::less<MElement*> >::iterator it2 = touched.find(t);
-      if(it2 != touched.end()){
-	for (int j = 0; j <  t->getNumEdges(); j++){
-	  MEdge me = t->getEdge(j);
-	  t->getEdgeInfo(me, iE,si);
-	  std::map<MEdge, std::set<MElement*>, Less_Edge >::iterator it =
-	    edge2elems.find(me);
-	  std::set<MElement*, std::less<MElement*> > mySet = it->second;
-	  for(std::set<MElement*, std::less<MElement*> >::iterator itt = mySet.begin();
-	      itt != mySet.end(); itt++){
-	    if (*itt != t){
-	      (*itt)->getEdgeInfo(me,iE2,si2);
-	      if(si == si2) { (*itt)->reverse();}
-	      touched.insert(*itt);
-	    }
-	  }
-	}
-      }
-    }
-  }
-}
-
-void GFaceCompound::coherenceNormals()
-{
-  if(!getNumMeshElements()) return;
-  Msg::Info("Re-orient all %d face normals coherently", getNumMeshElements());
-
-  std::map<MEdge, std::set<MElement*>, Less_Edge > edge2elems;
-  for(unsigned int i = 0; i <  getNumMeshElements(); i++){
-    MElement *t =  getMeshElement(i);
-    for (int j = 0; j <  t->getNumEdges(); j++){
-      MEdge me = t->getEdge(j);
-      std::map<MEdge, std::set<MElement*, std::less<MElement*> >,
-        Less_Edge >::iterator it = edge2elems.find(me);
-      if (it == edge2elems.end()) {
-        std::set<MElement*, std::less<MElement*> > mySet;
-        mySet.insert(t);
-        edge2elems.insert(std::make_pair(me, mySet));
-      }
-      else{
-        std::set<MElement*, std::less<MElement*> > mySet = it->second;
-        mySet.insert(t);
-        it->second = mySet;
-      }
-    }
-  }
-
-  std::set<MElement* , std::less<MElement*> > touched;
-  int iE, si, iE2, si2;
-  touched.insert(getMeshElement(0));
-  while(touched.size() != getNumMeshElements()){
-    for(unsigned int i = 0; i < getNumMeshElements(); i++){
-      MElement *t = getMeshElement(i);
-      std::set<MElement*, std::less<MElement*> >::iterator it2 = touched.find(t);
-      if(it2 != touched.end()){
-        for (int j = 0; j <  t->getNumEdges(); j++){
-          MEdge me = t->getEdge(j);
-          t->getEdgeInfo(me, iE,si);
-          std::map<MEdge, std::set<MElement*>, Less_Edge >::iterator it =
-            edge2elems.find(me);
-          std::set<MElement*, std::less<MElement*> > mySet = it->second;
-          for(std::set<MElement*, std::less<MElement*> >::iterator itt = mySet.begin();
-              itt != mySet.end(); itt++){
-            if (*itt != t){
-              (*itt)->getEdgeInfo(me,iE2,si2);
-              if(si == si2)  (*itt)->reverse();
-              touched.insert(*itt);
-            }
-          }
-        }
-      }
-    }
-  }
-}
-
-void GFaceCompound::buildAllNodes() const
-{
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      MTriangle *t = (*it)->triangles[i];
-      for(int j = 0; j < 3; j++){
-        allNodes.insert(t->getVertex(j));
-      }
-    }
-  }
-}
-
-int GFaceCompound::genusGeom() const
-{
-  std::list<GFace*>::const_iterator it = _compound.begin();
-  std::set<MEdge, Less_Edge> es;
-  std::set<MVertex*> vs;
-  int N = 0;
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      N++;
-      MTriangle *e = (*it)->triangles[i];
-      for(int j = 0; j < e->getNumVertices(); j++){
-	vs.insert(e->getVertex(j));
-      }
-      for(int j = 0; j < e->getNumEdges(); j++){
-	es.insert(e->getEdge(j));
-      }
-    }
-  }
-  int poincare = vs.size() - es.size() + N;
-
-  return (int)(-poincare + 2 - _interior_loops.size())/2;
-}
-
-void GFaceCompound::printStuff(int iNewton) const
-{
-  if(!CTX::instance()->mesh.saveAll) return;
-
-  std::list<GFace*>::const_iterator it = _compound.begin();
-
-  char name0[256], name1[256], name2[256], name3[256];
-  char name4[256], name5[256], name6[256];
-  char name7[256];
-  sprintf(name0, "UVAREA-%d.pos", tag()); //(*it)->tag()
-  sprintf(name1, "UVX-%d_%d.pos", tag(), iNewton);
-  sprintf(name2, "UVY-%d_%d.pos", tag(), iNewton);
-  sprintf(name3, "UVZ-%d_%d.pos", tag(), iNewton);
-  sprintf(name4, "XYZU-%d_%d.pos", tag(), iNewton);
-  sprintf(name5, "XYZV-%d_%d.pos", tag(), iNewton);
-  sprintf(name6, "XYZC-%d.pos", tag());
-
-  sprintf(name7, "UVM-%d.pos", (*it)->tag());
-
-  FILE * uvx = Fopen(name1,"w");
-  if(!uvx){
-    Msg::Error("Could not open file '%s'", name1);
-    return;
-  }
-  FILE * uvy = Fopen(name2,"w");
-  if(!uvy){
-    fclose(uvx);
-    Msg::Error("Could not open file '%s'", name2);
-    return;
-  }
-  FILE * uvz = Fopen(name3,"w");
-  if(!uvz){
-    fclose(uvx);
-    fclose(uvy);
-    Msg::Error("Could not open file '%s'", name3);
-    return;
-  }
-  FILE * xyzu = Fopen(name4,"w");
-  if(!xyzu){
-    fclose(uvx);
-    fclose(uvy);
-    fclose(uvz);
-    Msg::Error("Could not open file '%s'", name4);
-    return;
-  }
-  FILE * xyzv = Fopen(name5,"w");
-  if(!xyzv){
-    fclose(uvx);
-    fclose(uvy);
-    fclose(uvz);
-    fclose(xyzu);
-    Msg::Error("Could not open file '%s'", name5);
-    return;
-  }
-
-  fprintf(uvx, "View \"\"{\n");
-  fprintf(uvy, "View \"\"{\n");
-  fprintf(uvz, "View \"\"{\n");
-  fprintf(xyzu, "View \"\"{\n");
-  fprintf(xyzv, "View \"\"{\n");
-
-  for( ; it != _compound.end() ; ++it){
-    for(unsigned int i = 0; i < (*it)->triangles.size(); ++i){
-      MTriangle *t = (*it)->triangles[i];
-      std::map<MVertex*,SPoint3>::const_iterator it0 =
-        coordinates.find(t->getVertex(0));
-      std::map<MVertex*,SPoint3>::const_iterator it1 =
-        coordinates.find(t->getVertex(1));
-      std::map<MVertex*,SPoint3>::const_iterator it2 =
-        coordinates.find(t->getVertex(2));
-      fprintf(xyzv, "ST(%g,%g,%g,%g,%g,%g,%g,%g,%g){%g,%g,%g};\n",
-              t->getVertex(0)->x(), t->getVertex(0)->y(), t->getVertex(0)->z(),
-              t->getVertex(1)->x(), t->getVertex(1)->y(), t->getVertex(1)->z(),
-              t->getVertex(2)->x(), t->getVertex(2)->y(), t->getVertex(2)->z(),
-              it0->second.y(),it1->second.y(),it2->second.y());
-      fprintf(xyzu, "ST(%22.15E,%22.15E,%22.15E,%22.15E,%22.15E,%22.15E,%22.15E,"
-              "%22.15E,%22.15E){%22.15E,%22.15E,%22.15E};\n",
-              t->getVertex(0)->x(), t->getVertex(0)->y(), t->getVertex(0)->z(),
-              t->getVertex(1)->x(), t->getVertex(1)->y(), t->getVertex(1)->z(),
-              t->getVertex(2)->x(), t->getVertex(2)->y(), t->getVertex(2)->z(),
-              it0->second.x(),it1->second.x(),it2->second.x());
-      fprintf(uvx, "ST(%22.15E,%22.15E,%22.15E,%22.15E,%22.15E,%22.15E,%22.15E,"
-              "%22.15E,%22.15E){%22.15E,%22.15E,%22.15E};\n",
-              it0->second.x(), it0->second.y(), 0.0,
-              it1->second.x(), it1->second.y(), 0.0,
-              it2->second.x(), it2->second.y(), 0.0,
-              t->getVertex(0)->x(), t->getVertex(1)->x(), t->getVertex(2)->x());
-      fprintf(uvy, "ST(%g,%g,%g,%g,%g,%g,%g,%g,%g){%g,%g,%g};\n",
-              it0->second.x(), it0->second.y(), 0.0,
-              it1->second.x(), it1->second.y(), 0.0,
-              it2->second.x(), it2->second.y(), 0.0,
-              t->getVertex(0)->y(), t->getVertex(1)->y(), t->getVertex(2)->y());
-      fprintf(uvz, "ST(%g,%g,%g,%g,%g,%g,%g,%g,%g){%g,%g,%g};\n",
-              it0->second.x(), it0->second.y(), 0.0,
-              it1->second.x(), it1->second.y(), 0.0,
-              it2->second.x(), it2->second.y(), 0.0,
-              t->getVertex(0)->z(), t->getVertex(1)->z(), t->getVertex(2)->z());
-    }
-  }
-  fprintf(uvx,"};\n");
-  fclose(uvx);
-  fprintf(uvy,"};\n");
-  fclose(uvy);
-  fprintf(uvz,"};\n");
-  fclose(uvz);
-  fprintf(xyzu,"};\n");
-  fclose(xyzu);
-  fprintf(xyzv,"};\n");
-  fclose(xyzv);
-}
-
-// useful for mesh generators ----------------------------------------
-// Intersection of a circle and a plane
-GPoint GFaceCompound::intersectionWithCircle(const SVector3 &n1, const SVector3 &n2,
-                                             const SVector3 &p, const double &d,
-                                             double uv[2]) const
-{
-  SVector3 n = crossprod(n1,n2);
-  n.normalize();
-  for (int i=-1;i<nbT;i++){
-    GFaceCompoundTriangle *ct;
-    double U,V;
-    if (i == -1) getTriangle(uv[0],uv[1], &ct, U,V);
-    else ct = &_gfct[i];
-    if (!ct) continue;
-    // we have two planes, defined with n1,n2 and t1,t2
-    // we have then a direction m = (n1 x n2) x (t1 x t2)
-    // and a point p that defines a straight line
-    // the point is situated in the half plane defined
-    // by direction n1 and point p (exclude the one on the
-    // other side)
-
-    SVector3 t1  = ct->v2 - ct->v1;
-    SVector3 t2  = ct->v3 - ct->v1;
-
-    // let us first compute point q to be the intersection
-    // of the plane of the triangle with the line L = p + t n1
-    // Compute w = t1 x t2 = (a,b,c) and write a point of the plabe as
-    // X(x,y,z) = ax + by + cz - (v1_x a + v1_y b + v1_z * c) = 0
-    // Then
-    // a (p_x + t n1_x) + a (p_y + t n1_y) + c (p_z + t n1_z) -
-    //    (v1_x a + v1_y b + v1_z * c) = 0
-    // gives t
-
-    SVector3 w = crossprod(t1,t2);
-    double t = dot(ct->v1-p,w)/dot(n1,w);
-    SVector3 q = p + n1*t;
-
-    // consider the line that intersects both planes in its
-    // parametric form
-    // X(x,y,z) = q + t m
-    // We have now to intersect that line with the sphere
-    // (x-p_x)^2 + (y-p_y)^2 + (z-p_z)^2 = d^2
-    // Inserting the parametric form of the line into the sphere gives
-    // (t m_x + q_x - p_x)^2 + (t m_y + q_y - p_y)^2  + (t m_z + q_z - p_z)^2  = d^2
-    //  t^2 (m_x^2 + m_y^2 + m_z^2) + 2 t (m_x (q_x - p_x) + m_y (q_y - p_z) +
-    //   m_z (q_z - p_z)) + ((q_x - p_x)^2 + (q_y - p_y)^2 + (q_z - p_z)^2 - d^2) = 0
-    // t^2 m^2 + 2 t (m . (q-p)) + ((q-p)^2 - d^2) = 0
-    // Let us call ta and tb the two roots
-    // they correspond to two points s_1 = q + ta m and s_2 = q + tb m
-    // we choose the one that corresponds to (s_i - p) . n1 > 0
-    SVector3 m = crossprod(w,n);
-    const double a = dot(m,m);
-    const double b = 2*dot(m,q-p);
-    const double c = dot(q-p,q-p) - d*d;
-    const double delta = b*b-4*a*c;
-
-    if (delta >= 0){
-      const double ta = (-b + sqrt(delta)) / (2.*a);
-      const double tb = (-b - sqrt(delta)) / (2.*a);
-      SVector3 s1 = q + m * ta;
-      SVector3 s2 = q + m * tb;
-      SVector3 s;
-      if (dot(s1-p,n1) > 0){
-	s = s1;
-      }
-      else if (dot(s2-p,n1) > 0){
-	s = s2;
-      }
-      else continue;
-
-      // we have now to look if the point is inside the triangle
-      // s = v1 + u t1 + v t2
-      // we know the system has a solution because s is in the plane
-      // defined by v1 and v2 we solve then
-      // (s - v1) . t1 = u t1^2    + v t2 . t1
-      // (s - v1) . t2 = u t1 . t2 + v t2^2
-
-      double mat[2][2], b[2],uv[2];
-      mat[0][0] = dot(t1,t1);
-      mat[1][1] = dot(t2,t2);
-      mat[0][1] = mat[1][0] = dot(t1,t2);
-      b[0] = dot(s-ct->v1,t1) ;
-      b[1] = dot(s-ct->v1,t2) ;
-      sys2x2(mat,b,uv);
-      // check now if the point is inside the triangle
-      if (uv[0] >= -1.e-6 && uv[1] >= -1.e-6 &&
-	  1.-uv[0]-uv[1] >= -1.e-6 ) {
-	SVector3 pp =
-	  ct->p1 * ( 1.-uv[0]-uv[1] ) +
-	  ct->p2 *uv[0] +
-	  ct->p3 *uv[1] ;
-	return GPoint(s.x(),s.y(),s.z(),this,pp);
-      }
-    }
-  }
-  GPoint pp(0);
-  pp.setNoSuccess();
-  Msg::Debug("ARGG no success intersection circle");
-  return pp;
-}
-
-#endif
diff --git a/Geo/GFaceCompound.h b/Geo/GFaceCompound.h
deleted file mode 100644
index 38f61dbd24735f660a34a61970a570b5dbeac392..0000000000000000000000000000000000000000
--- a/Geo/GFaceCompound.h
+++ /dev/null
@@ -1,240 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-
-#ifndef _GFACE_COMPOUND_H_
-#define _GFACE_COMPOUND_H_
-
-#include <list>
-#include <map>
-#include "GmshConfig.h"
-#include "GmshMessage.h"
-#include "GFace.h"
-template <class scalar> class simpleFunction;
-
-#if defined(HAVE_SOLVER) && defined(HAVE_ANN)
-
-#include "GEdge.h"
-#include "GEdgeCompound.h"
-#include "meshGFaceOptimize.h"
-#include "linearSystem.h"
-#include "GRbf.h"
-#include "MElementOctree.h"
-class ANNkd_tree;
-
-#define AR_MAX 5 //maximal geometrical aspect ratio
-
-/*
-  A GFaceCompound is a model face that is the compound of model faces.
-
-  It is assumed that all the faces of the compound have been meshed
-  first. We use this discretization to solve elliptic problems on the
-  compound. Those problems enable to compute the parametric
-  coordinates of the mesh points. The parametrization of the compound
-  consist in a triangulation in the (u,v) space with parameter values at
-  nodes.
-
-  The compound can therefore be (re)-meshed using any surface mesh
-  generator of gmsh!
-*/
-
-class  GFaceCompoundTriangle {
- public:
-  SPoint3 p1, p2, p3;
-  SPoint2 gfp1, gfp2, gfp3;
-  SPoint3 v1, v2, v3;
-  GFace *gf;
-  MTriangle *tri;
-  GFaceCompoundTriangle() : gf(0), tri(0) {}
-};
-
-class Octree;
-class GRbf;
-
-class GFaceCompound : public GFace {
- public:
-  typedef enum {ITERU=0,ITERV=1,ITERD=2} iterationStep;
-  typedef enum {HARMONIC_CIRCLE=0, CONFORMAL_SPECTRAL=1, RADIAL_BASIS=2, HARMONIC_PLANE=3,
-		CONVEX_CIRCLE=4,CONVEX_PLANE=5, HARMONIC_SQUARE=6, CONFORMAL_FE=7} typeOfCompound;
-  typedef enum {HARMONIC=0,CONFORMAL=1, RBF=2, CONVEX=3} typeOfMapping;
-  typedef enum {UNITCIRCLE, MEANPLANE, SQUARE, ALREADYFIXED,SPECTRAL, FE} typeOfIsomorphism;
-  mutable int nbSplit;
-
- protected:
-  mutable std::set<MVertex *> ov;
-  mutable GRbf *_rbf;
-  simpleFunction<double> *ONE;
-  simpleFunction<double> *MONE;
-  std::list<GFace*> _compound;
-  std::list<GEdge*> _U0, _V0, _U1, _V1;
-  std::list<std::list<GEdge*> > _interior_loops;
-  mutable int nbT;
-  mutable GFaceCompoundTriangle *_gfct;
-  mutable Octree *oct;
-  mutable MElementOctree *octNew;
-  mutable std::vector<MVertex*> myParamVert;
-  mutable std::vector<MElement*> myParamElems;
-  mutable std::map<MVertex*,MVertex*> _3Dto2D;
-  mutable std::map<MVertex*,MVertex*> _2Dto3D;
-  mutable std::map<int,SPoint3> XYZoct;
-  mutable std::set<MVertex*> allNodes;
-  mutable v2t_cont adjv;
-  mutable std::map<MVertex*, SPoint3> coordinates;
-  mutable std::map<MVertex*, Pair<SVector3,SVector3> > firstDerivatives;
-  mutable std::map<MVertex*, SVector3> xuu;
-  mutable std::map<MVertex*, SVector3> xvv;
-  mutable std::map<MVertex*, SVector3> xuv;
-  mutable std::map<MVertex*, SVector3> xu;
-  mutable std::map<MVertex*, SVector3> xv;
-  mutable std::map<SPoint3,SPoint3 > _coordPoints;
-  mutable std::map<MVertex*, SVector3> _normals;
-  mutable std::list<MTriangle*> fillTris;
-  mutable std::set<MVertex*> fillNodes;
-  mutable std::vector<GFace*> fillFaces;
-  mutable std::vector<MVertex*> _ordered;
-  mutable std::vector<double> _coords;
-  mutable std::map<MVertex*, int> _mapV;
-  mutable ANNkd_tree *uv_kdtree;
-  mutable ANNkd_tree *kdtree;
-  void buildOct() const ;
-  void buildAllNodes() const;
-
-  //different type of parametrizations
-  void parametrize(iterationStep, typeOfMapping) const;
-  bool parametrize_conformal(int iter, MVertex *v1, MVertex *v2) const;
-  bool parametrize_conformal_spectral() const;
-
-  //check for parametrizations
-  bool checkOrientation(int iter, bool moveBoundaries=false) const;
-  bool checkOverlap(std::vector<MVertex *> &vert) const;
-  bool one2OneMap() const;
-  void convexBoundary(double nTot) const;
-  double checkAspectRatio() const;
-
-  //tools for filling interior holes of surfaces
-  void fillNeumannBCS() const;
-  void fillNeumannBCS_Plane() const;
-  void orientFillTris(std::list<MTriangle*> loopfillTris)const;
-  void printFillTris()const;
-
-  void computeNormals () const;
-  void getBoundingEdges();
-  void getUniqueEdges(std::set<GEdge*> &_unique);
-  void computeALoop(std::set<GEdge*> &_unique, std::list<GEdge*> &);
-
-  virtual double locCurvature(MTriangle *t, double u, double v) const;
-
-  double getSizeH() const;
-  double getSizeBB(const std::list<GEdge* > &elist) const;
-  bool trivial() const;
-  void printStuff(int iNewton=0) const;
-  void computeHessianMapping() const;
-
- public:
-  GFaceCompound(GModel *m, int tag, std::list<GFace*> &compound,
-		std::list<GEdge*> &U0, typeOfCompound typ = HARMONIC_CIRCLE,
-		int allowPartition=1);
-  GFaceCompound(GModel *m, int tag, std::list<GFace*> &compound,
-                std::list<GEdge*> &U0, std::list<GEdge*> &V0,
-                std::list<GEdge*> &U1, std::list<GEdge*> &V1,
-                typeOfCompound typ = HARMONIC_CIRCLE,
-                int allowPartition=1);
- ~GFaceCompound();
-  virtual void deleteMesh();
-
-  Range<double> parBounds(int i) const
-  { return trivial() ? (*(_compound.begin()))->parBounds(i) : Range<double>(-1, 1); }
-
-  using GFace::point;
-  GPoint point(double par1, double par2) const;
-  GPoint pointInRemeshedOctree(double par1, double par2) const;
-  SPoint2 parFromPoint(const SPoint3 &p, bool onSurface=true) const;
-  SPoint2 parFromVertex(MVertex *v) const;
-  virtual Pair<SVector3,SVector3> firstDer(const SPoint2 &param) const;
-  virtual void secondDer(const SPoint2 &, SVector3 *, SVector3 *, SVector3 *) const;
-  virtual GEntity::GeomType geomType() const { return CompoundSurface; }
-  ModelType getNativeType() const { return GmshModel; }
-  void * getNativePtr() const { return 0; }
-  void getTriangle(double u, double v, GFaceCompoundTriangle **lt,
-                   double &_u, double &_v) const;
-  virtual SPoint2 getCoordinates(MVertex *v) const;
-  virtual double curvatureMax(const SPoint2 &param) const;
-  virtual double curvatures(const SPoint2 &param, SVector3 *dirMax, SVector3 *dirMin,
-			    double *curvMax, double *curvMin) const;
-  bool parametrize() const;
-  void computeNormals(std::map<MVertex*, SVector3> &normals) const;
-  void coherenceNormals();
-  void coherencePatches() const;
-  virtual int genusGeom () const;
-  virtual bool checkTopology() const;
-
-  virtual std::list<GFace*> getCompounds() const { return _compound; }
-  typeOfCompound getTypeOfCompound() { return _toc;}
-  int getNbSplit() const { return nbSplit; }
-  int allowPartition() const{ return _allowPartition; }
-  void setType(typeOfIsomorphism type){ _type=type;}
-
-  // useful for mesh generators
-  GPoint intersectionWithCircle (const SVector3 &n1, const SVector3 &n2, const SVector3 &p,
-				 const double &d, double uv[2]) const;
-
-  void deleteInternals();
-	
- private:
-  void _deleteInternals();
-  mutable typeOfCompound _toc;
-  mutable typeOfMapping _mapping;
-  mutable typeOfIsomorphism _type;
-  int _allowPartition;
-};
-
-#else
-
-template<class scalar> class linearSystem;
-class GFaceCompound : public GFace {
- public:
-  typedef enum {ITERU=0,ITERV=1,ITERD=2} iterationStep;
-  typedef enum {HARMONIC_CIRCLE=0, CONFORMAL_SPECTRAL=1, RADIAL_BASIS=2, HARMONIC_PLANE=3,
-		CONVEX_CIRCLE=4,CONVEX_PLANE=5, HARMONIC_SQUARE=6, CONFORMAL_FE=7} typeOfCompound;
-  typedef enum {HARMONIC=0,CONFORMAL=1, RBF=2, CONVEX=3} typeOfMapping;
-  typedef enum {UNITCIRCLE, MEANPLANE, SQUARE, ALREADYFIXED,SPECTRAL, FE} typeOfIsomorphism;
-  GFaceCompound(GModel *m, int tag, std::list<GFace*> &compound,
-                std::list<GEdge*> &U0, typeOfCompound typ = HARMONIC_CIRCLE,
-                int allowPartition=1)
-    : GFace(m, tag)
-  {
-    Msg::Error("Gmsh has to be compiled with Solver and ANN support to use GFaceCompounds");
-  }
-  GFaceCompound(GModel *m, int tag, std::list<GFace*> &compound,
-                std::list<GEdge*> &U0, std::list<GEdge*> &V0,
-                std::list<GEdge*> &U1, std::list<GEdge*> &V1,
-                typeOfCompound typ = HARMONIC_CIRCLE,
-                int allowPartition=1)
-    : GFace(m, tag)
-  {
-    Msg::Error("Gmsh has to be compiled with Solver and ANN support to use GFaceCompounds");
-  }
-  virtual ~GFaceCompound() {}
-  virtual void deleteMesh() {}
-  using GFace::point;
-  GPoint point(double par1, double par2) const { return GPoint(); }
-  Pair<SVector3, SVector3> firstDer(const SPoint2 &param) const
-  {
-    return Pair<SVector3, SVector3>(SVector3(0, 0, 0), SVector3(0, 0, 0));
-  }
-  SPoint2 parFromVertex(MVertex *v) const { return SPoint2(); }
-  void secondDer(const SPoint2 &param,
-                         SVector3 *dudu, SVector3 *dvdv, SVector3 *dudv) const{}
-  virtual SPoint2 getCoordinates(MVertex *v) const { return SPoint2(); }
-  bool parametrize() const {return false;}
-  virtual std::list<GFace*> getCompounds() const { return std::list<GFace*>(); }
-  GPoint intersectionWithCircle (const SVector3 &n1, const SVector3 &n2, const SVector3 &p,
-				 const double &d, double uv[2]) const { return GPoint(); }
-  int allowPartition() const{ return 1; }
-  void deleteInternals(){}
-};
-
-#endif
-
-#endif
diff --git a/Geo/GModel.cpp b/Geo/GModel.cpp
index eaf83e780824c6d8935ff8f99897e3fcfb398cab..e898cfe9c936740602b96705a09c0a0e32de892d 100644
--- a/Geo/GModel.cpp
+++ b/Geo/GModel.cpp
@@ -12,8 +12,6 @@
 #include "GModel.h"
 #include "GModelIO_GEO.h"
 #include "GModelIO_OCC.h"
-#include "GFaceCompound.h"
-#include "GEdgeCompound.h"
 #include "MPoint.h"
 #include "MLine.h"
 #include "MTriangle.h"
@@ -1552,8 +1550,8 @@ static void _associateEntityWithElementVertices(GEntity *ge, std::vector<T*> &el
 
 void GModel::_createGeometryOfDiscreteEntities(bool force)
 {
-  if (CTX::instance()->meshDiscrete){
-    createTopologyFromMeshNew ();
+  if(CTX::instance()->meshDiscrete){
+    createTopologyFromMeshNew();
     exportDiscreteGEOInternals();
   }
   if (force || CTX::instance()->meshDiscrete){
@@ -2052,7 +2050,6 @@ int GModel::removeDuplicateMeshVertices(double tolerance)
   return num;
 }
 
-
 static void recurConnectMElementsByMFace(const MFace &f,
                                          std::multimap<MFace, MElement*, Less_Face> &e2f,
                                          std::set<MElement*> &group,
@@ -2077,29 +2074,8 @@ static void recurConnectMElementsByMFace(const MFace &f,
       }
     }
   }
-  //printf("group pf %d elements found\n",(int)group.size());
 }
 
-/*
-static void recurConnectMElementsByMFaceOld(const MFace &f,
-                                         std::multimap<MFace, MElement*, Less_Face> &e2f,
-                                         std::set<MElement*> &group,
-                                         std::set<MFace, Less_Face> &touched,
-                                         int recur_level)
-{
-  if (touched.find(f) != touched.end()) return;
-  touched.insert(f);
-  for (std::multimap<MFace, MElement*, Less_Face>::iterator it = e2f.lower_bound(f);
-       it != e2f.upper_bound(f); ++it){
-    group.insert(it->second);
-    for (int i = 0; i < it->second->getNumFaces(); ++i){
-      recurConnectMElementsByMFace(it->second->getFace(i), e2f, group, touched,
-                                   recur_level+1);
-    }
-  }
-}
-*/
-
 static int connectedVolumes(std::vector<MElement*> &elements,
                             std::vector<std::vector<MElement*> > &regs)
 {
@@ -2152,7 +2128,6 @@ static int connectedSurfaces(std::vector<MElement*> &elements,
     std::set<MElement*> group;
     std::set<MEdge, Less_Edge> touched;
     recurConnectMElementsByMEdge(e2e.begin()->first, e2e, group, touched);
-    //printf("group pe %d elements found\n",(int)group.size());
     std::vector<MElement*> temp;
     temp.insert(temp.begin(), group.begin(), group.end());
     faces.push_back(temp);
@@ -2500,495 +2475,19 @@ void GModel::makeDiscreteFacesSimplyConnected()
   Msg::Debug("Done making discrete faces simply connected");
 }
 
-void GModel::createTopologyFromMesh(int ignoreHoles)
+void GModel::createTopologyFromMesh()
 {
   Msg::StatusBar(true, "Creating topology from mesh...");
   double t1 = Cpu();
   removeDuplicateMeshVertices(CTX::instance()->geom.tolerance);
   makeDiscreteRegionsSimplyConnected();
   makeDiscreteFacesSimplyConnected();
-
-  // TEST !!!!!!!!
-  if (CTX::instance()->meshDiscrete){
-    createTopologyFromMeshNew ();
-    exportDiscreteGEOInternals();
-    double t2 = Cpu();
-    Msg::StatusBar(true, "Done creating topology from mesh (%g s)", t2 - t1);
-    return;
-  }
-
-  // create topology for all discrete regions
-  std::vector<discreteRegion*> discRegions;
-  for(riter it = firstRegion(); it != lastRegion(); it++)
-    if((*it)->geomType() == GEntity::DiscreteVolume)
-      discRegions.push_back((discreteRegion*) *it);
-  createTopologyFromRegions(discRegions);
-
-  // create topology for all discrete faces
-  std::vector<discreteFace*> discFaces;
-  for(fiter it = firstFace(); it != lastFace(); it++)
-    if((*it)->geomType() == GEntity::DiscreteSurface)
-      discFaces.push_back((discreteFace*) *it);
-  createTopologyFromFaces(discFaces, ignoreHoles);
-
-  //create old format (necessary e.g. for old-style extruded boundary layers)
+  createTopologyFromMeshNew();
   exportDiscreteGEOInternals();
-
-  // FIXME: this whole thing will disappear, but for now we need this to make
-  // old compounds work:
-  if(!CTX::instance()->meshDiscrete)
-    _createGeometryOfDiscreteEntities(true);
-
   double t2 = Cpu();
-
   Msg::StatusBar(true, "Done creating topology from mesh (%g s)", t2 - t1);
 }
 
-void GModel::createTopologyFromRegions(std::vector<discreteRegion*> &discRegions)
-{
-  Msg::Debug("Creating topology from regions...");
-
-  // find boundary mesh faces of each discrete region and put them in
-  // map_faces, which associates each MFace with the tags of the
-  // adjacent regions
-  std::map<MFace, std::vector<int>, Less_Face > map_faces;
-  for (std::vector<discreteRegion*>::iterator it = discRegions.begin();
-       it != discRegions.end(); it++)
-    (*it)->findFaces(map_faces);
-
-  // get currently defined discrete faces
-  std::vector<discreteFace*> discFaces;
-  for(fiter it = firstFace(); it != lastFace(); it++)
-    if((*it)->geomType() == GEntity::DiscreteSurface)
-      discFaces.push_back((discreteFace*) *it);
-
-  // create reverse map storing for each discrete region the list of
-  // discrete faces on its boundary
-  std::map<int, std::set<int> > region2Faces;
-  std::set<MVertex*> touched;
-
-  while (!map_faces.empty()){
-
-    Msg::Debug("... %d mesh faces left to process", map_faces.size());
-
-    // get mesh faces with identical region connections (i.e., a part
-    // of region boundaries that can be later defined as a discrete
-    // face)
-    std::set<MFace, Less_Face> myFaces;
-    std::vector<int> tagRegions = map_faces.begin()->second;
-    myFaces.insert(map_faces.begin()->first);
-    map_faces.erase(map_faces.begin());
-    std::map<MFace, std::vector<int>, Less_Face>::iterator itmap = map_faces.begin();
-    while (itmap != map_faces.end()){
-      std::vector<int> tagRegions2 = itmap->second;
-      if (tagRegions2 == tagRegions){
-        myFaces.insert(itmap->first);
-        map_faces.erase(itmap++);
-      }
-      else
-        itmap++;
-    }
-
-    // if the mesh already contains discrete faces, check if the
-    // candidate discrete face does contain any of those; if not,
-    // create a new discreteFace. Then create populate the
-    // region2Faces map that associates for each region the (old or
-    // new) boundary discrete faces
-    for (std::vector<discreteFace*>::iterator itF = discFaces.begin();
-         itF != discFaces.end(); itF++){
-
-      bool candidate = true;
-      for (unsigned int i = 0; i < (*itF)->getNumMeshElements(); i++){
-        MFace mf = (*itF)->getMeshElement(i)->getFace(0);
-        std::set<MFace, Less_Face>::iterator itset = myFaces.find(mf);
-        if (itset == myFaces.end()){
-          candidate = false;
-          break;
-        }
-      }
-
-      if(candidate){
-        std::set<int> tagFaces;
-        tagFaces.insert((*itF)->tag());
-        for (unsigned int i = 0; i < (*itF)->getNumMeshElements(); i++){
-          MFace mf = (*itF)->getMeshElement(i)->getFace(0);
-          std::set<MFace, Less_Face>::iterator itset = myFaces.find(mf);
-          myFaces.erase(itset);
-        }
-        for(std::vector<int>::iterator itReg = tagRegions.begin();
-            itReg != tagRegions.end(); itReg++) {
-          std::map<int, std::set<int> >::iterator it = region2Faces.find(*itReg);
-          if (it == region2Faces.end())
-            region2Faces.insert(std::make_pair(*itReg, tagFaces));
-          else{
-            std::set<int> allFaces = it->second;
-            allFaces.insert(tagFaces.begin(), tagFaces.end());
-            it->second = allFaces;
-          }
-        }
-      }
-    }
-
-    // create new discrete face
-    if(myFaces.size()){
-      int numF = getMaxElementaryNumber(2) + 1;
-      discreteFace *f = new discreteFace(this, numF);
-      add(f);
-      discFaces.push_back(f);
-      std::set<MVertex*> myVertices;
-      for(std::set<MFace, Less_Face>::iterator it = myFaces.begin();
-          it != myFaces.end(); it++){
-        std::vector<MVertex*> verts(it->getNumVertices());
-        for(int i = 0; i < it->getNumVertices(); i++){
-          verts[i] = it->getVertex(i);
-          if(verts[i]->onWhat() && verts[i]->onWhat()->dim() == 3){
-            if(touched.find(verts[i]) != touched.end()){
-              myVertices.insert(verts[i]);
-              verts[i]->setEntity(f);
-              touched.insert(verts[i]);
-            }
-          }
-        }
-        if(verts.size() == 4)
-          f->quadrangles.push_back(new MQuadrangle(verts));
-        else
-          f->triangles.push_back(new MTriangle(verts));
-      }
-      f->mesh_vertices.insert(f->mesh_vertices.begin(),
-                              myVertices.begin(), myVertices.end());
-
-      for (std::vector<int>::iterator itReg = tagRegions.begin();
-           itReg != tagRegions.end(); itReg++) {
-
-        // delete mesh vertices of new edge from adjacent regions
-        GRegion *dReg = getRegionByTag(*itReg);
-        for (std::set<MVertex*>::iterator itv = myVertices.begin();
-             itv != myVertices.end(); itv++) {
-          std::vector<MVertex*>::iterator itve =
-            std::find(dReg->mesh_vertices.begin(), dReg->mesh_vertices.end(), *itv);
-          if (itve != dReg->mesh_vertices.end()) dReg->mesh_vertices.erase(itve);
-        }
-
-        // fill region2Faces with the new face
-        std::map<int, std::set<int> >::iterator r2f = region2Faces.find(*itReg);
-        if (r2f == region2Faces.end()){
-          std::set<int> tagFaces;
-          tagFaces.insert(numF);
-          region2Faces.insert(std::make_pair(*itReg, tagFaces));
-        }
-        else{
-          std::set<int> tagFaces = r2f->second;
-          tagFaces.insert(numF);
-          r2f->second = tagFaces;
-        }
-      }
-    }
-  }
-
-  // set boundary faces for each region
-  for (std::vector<discreteRegion*>::iterator it = discRegions.begin();
-       it != discRegions.end(); it++){
-    std::map<int, std::set<int> >::iterator itr = region2Faces.find((*it)->tag());
-    if (itr != region2Faces.end()){
-      std::set<int> bcFaces = itr->second;
-      (*it)->setBoundFaces(bcFaces);
-    }
-  }
-
-  Msg::Debug("Done creating topology from regions");
-}
-
-void GModel::createTopologyFromFaces(std::vector<discreteFace*> &discFaces, int ignoreHoles)
-{
-  Msg::Debug("Creating topology from faces...");
-
-  // find boundary mesh edges of each discrete face and put them in
-  // map_edges, which associates each MEdge with the tags of the
-  // adjacent faces
-  std::map<MEdge, std::vector<int>, Less_Edge > map_edges;
-  for (std::vector<discreteFace*>::iterator it = discFaces.begin();
-       it != discFaces.end(); it++)
-    (*it)->findEdges(map_edges);
-
-  // return if no boundary edges (torus, sphere, ...)
-  if (map_edges.empty()) return;
-
-  // get currently defined discrete edges
-  std::vector<discreteEdge*> discEdges;
-  for(eiter it = firstEdge(); it != lastEdge(); it++){
-    if((*it)->geomType() == GEntity::DiscreteCurve)
-      discEdges.push_back((discreteEdge*) *it);
-  }
-
-  // create reverse map storing for each discrete face the list of
-  // discrete edges on its boundary
-  std::map<int, std::vector<int> > face2Edges;
-
-  while (!map_edges.empty()){
-
-    Msg::Debug("... %d mesh edges left to process", map_edges.size());
-
-    // get mesh edges with identical face connections (i.e., a part of
-    // face boundaries that can be later defined as a discrete edge)
-    std::set<MEdge, Less_Edge> myEdges;
-    std::vector<int> tagFaces = map_edges.begin()->second;
-    myEdges.insert(map_edges.begin()->first);
-    map_edges.erase(map_edges.begin());
-    std::map<MEdge, std::vector<int>, Less_Edge>::iterator itmap = map_edges.begin();
-    while (itmap != map_edges.end()){
-      std::vector<int> tagFaces2 = itmap->second;
-      if (tagFaces2 == tagFaces){
-        myEdges.insert(itmap->first);
-        map_edges.erase(itmap++);
-      }
-      else
-        itmap++;
-    }
-
-    // if the mesh already contains discrete edges, check if the
-    // candidate discrete edge does contain any of those; if not,
-    // create a discreteEdge. Then populate the face2Edges map that
-    // associates for each face its boundary discrete edges
-    for (std::vector<discreteEdge*>::iterator itE = discEdges.begin();
-         itE != discEdges.end(); itE++){
-
-      bool candidate = true;
-      for (unsigned int i = 0; i < (*itE)->getNumMeshElements(); i++){
-        MEdge me = (*itE)->getMeshElement(i)->getEdge(0);
-        std::set<MEdge, Less_Edge >::iterator itset = myEdges.find(me);
-        if (itset == myEdges.end()){
-          candidate = false;
-          break;
-        }
-      }
-
-      if (candidate){
-        std::vector<int> tagEdges;
-        tagEdges.push_back((*itE)->tag());
-        for (unsigned int i = 0; i < (*itE)->getNumMeshElements(); i++){
-          MEdge me = (*itE)->getMeshElement(i)->getEdge(0);
-          std::set<MEdge, Less_Edge >::iterator itset = myEdges.find(me);
-          if (itset != myEdges.end()) myEdges.erase(itset);
-        }
-        for (std::vector<int>::iterator itFace = tagFaces.begin();
-             itFace != tagFaces.end(); itFace++) {
-          std::map<int, std::vector<int> >::iterator it = face2Edges.find(*itFace);
-          if (it == face2Edges.end())
-            face2Edges.insert(std::make_pair(*itFace, tagEdges));
-          else{
-            std::vector<int> allEdges = it->second;
-            allEdges.insert(allEdges.begin(), tagEdges.begin(), tagEdges.end());
-            it->second = allEdges;
-          }
-        }
-      }
-    }
-
-    std::vector<std::vector<MEdge> > boundaries;
-    int nbBounds = connectedSurfaceBoundaries(myEdges, boundaries);
-
-    //EMI RBF fix
-    if (ignoreHoles && nbBounds > 0){
-      int index = 0;
-      unsigned boundSize = 0;
-      for (int ib = 0; ib < nbBounds; ib++){
-        if (boundaries[ib].size() > boundSize){
-          boundSize = boundaries[ib].size() ;
-          index = ib;
-        }
-      }
-      std::vector<std::vector<MEdge> > new_boundaries;
-      new_boundaries.push_back(boundaries[index]);
-      boundaries = new_boundaries;
-    }
-
-    // create new discrete edges
-    for (unsigned ib = 0; ib < boundaries.size(); ib++){
-      int numE = getMaxElementaryNumber(1) + 1;
-      discreteEdge *e = new discreteEdge(this, numE, 0, 0);
-      add(e);
-      discEdges.push_back(e);
-      std::set<MVertex*> allV;
-      for(unsigned int i = 0; i < boundaries[ib].size(); i++) {
-        MVertex *v0 = boundaries[ib][i].getVertex(0);
-        MVertex *v1 = boundaries[ib][i].getVertex(1);
-        e->lines.push_back(new MLine(v0, v1));
-        allV.insert(v0);
-        allV.insert(v1);
-        v0->setEntity(e);
-        v1->setEntity(e);
-      }
-      e->mesh_vertices.insert(e->mesh_vertices.begin(), allV.begin(), allV.end());
-      for (std::vector<int>::iterator itFace = tagFaces.begin();
-           itFace != tagFaces.end(); itFace++) {
-        // delete mesh vertices of new edge from adjacent faces
-        GFace *dFace = getFaceByTag(*itFace);
-        for (std::set<MVertex*>::iterator itv = allV.begin(); itv != allV.end(); itv++) {
-          std::vector<MVertex*>::iterator itve =
-            std::find(dFace->mesh_vertices.begin(), dFace->mesh_vertices.end(), *itv);
-          if (itve != dFace->mesh_vertices.end()) dFace->mesh_vertices.erase(itve);
-        }
-        // fill face2Edges with the new edge
-        std::map<int, std::vector<int> >::iterator f2e = face2Edges.find(*itFace);
-        if (f2e == face2Edges.end()){
-          std::vector<int> tagEdges;
-          tagEdges.push_back(numE);
-          face2Edges.insert(std::make_pair(*itFace, tagEdges));
-        }
-        else{
-          std::vector<int> tagEdges = f2e->second;
-          tagEdges.push_back(numE);
-          f2e->second = tagEdges;
-        }
-      }
-    }
-
-  }
-
-  // set boundary edges for each face
-  for (std::vector<discreteFace*>::iterator it = discFaces.begin();
-       it != discFaces.end(); it++){
-    std::map<int, std::vector<int> >::iterator ite = face2Edges.find((*it)->tag());
-    if (ite != face2Edges.end()){
-      std::vector<int> bcEdges = ite->second;
-      (*it)->setBoundEdges(bcEdges);
-    }
-  }
-
-  Msg::Debug("Done creating topology from faces");
-
-  Msg::Debug("Creating topology for %d edges...", discEdges.size());
-
-  // for each discreteEdge, create topology
-  //KH std::map<GFace*, std::map<MVertex*, MVertex*, std::less<MVertex*> > > face2Vert;
-  //KH std::map<GRegion*, std::map<MVertex*, MVertex*, std::less<MVertex*> > > region2Vert;
-  //KH face2Vert.clear();
-  //KH region2Vert.clear();
-
-  std::map<MVertex*,MVertex*> old2new;
-  for (std::vector<discreteEdge*>::iterator it = discEdges.begin();
-       it != discEdges.end(); it++){
-    (*it)->createTopo();
-    //KH (*it)->parametrize(face2Vert, region2Vert,old2new);
-    (*it)->parametrize(old2new);
-  }
-
-  // fill edgeLoops of Faces or correct sign of l_edges
-  // for (std::vector<discreteFace*>::iterator itF = discFaces.begin();
-  //       itF != discFaces.end(); itF++){
-  //    //EMI, TODO
-  //    std::list<GEdgeLoop> edgeLoops = (*itF)->edgeLoops;
-  //    edgeLoops.clear();
-  //    GEdgeLoop el((*itF)->edges());
-  //    edgeLoops.push_back(el);
-  //  }
-
-  // we need to recreate all mesh elements because some mesh vertices
-  // might have been changed during the parametrization process
-  // (MVertices became MEdgeVertices)
-
-  //KH for (std::map<GFace*, std::map<MVertex*, MVertex*, std::less<MVertex*> > >::iterator
-  //KH        iFace = face2Vert.begin(); iFace != face2Vert.end(); iFace++){
-  //KH   std::map<MVertex*, MVertex*, std::less<MVertex*> > old2new = iFace->second;
-  //KH    GFace *gf = iFace->first;
-
-  std::set<GFace*,GEntityLessThan>::iterator fIter = faces.begin();
-  for (;fIter!=faces.end();++fIter) {
-
-    GFace* gf = *fIter;
-
-    std::vector<MTriangle*> newTriangles;
-    std::vector<MQuadrangle*> newQuadrangles;
-    for (unsigned int i = 0; i < gf->getNumMeshElements(); ++i){
-      MElement *e = gf->getMeshElement(i);
-      std::vector<MVertex *> v;
-      e->getVertices(v);
-      for (unsigned int j = 0; j < v.size(); j++){
-        // std::map<MVertex*, MVertex*, std::less<MVertex*> >::iterator
-        //   itmap = old2new.find(v[j]);
-        std::map<MVertex*,MVertex*>::iterator itmap = old2new.find(v[j]);
-        if (itmap != old2new.end()) v[j] = itmap->second;
-      }
-      MElementFactory factory;
-      MElement *e2 = factory.create(e->getTypeForMSH(), v, e->getNum(),
-                                    e->getPartition());
-      switch(e2->getType()){
-      case TYPE_TRI: newTriangles.push_back((MTriangle*)e2); break;
-      case TYPE_QUA: newQuadrangles.push_back((MQuadrangle*)e2); break;
-      }
-    }
-    gf->deleteVertexArrays();
-    for(unsigned int i = 0; i < gf->triangles.size(); i++) delete gf->triangles[i];
-    for(unsigned int i = 0; i < gf->quadrangles.size(); i++) delete gf->quadrangles[i];
-    gf->triangles = newTriangles;
-    gf->quadrangles = newQuadrangles;
-  }
-
-  // for (std::map<GRegion*, std::map<MVertex*, MVertex*, std::less<MVertex*> > >::iterator
-  //        iRegion = region2Vert.begin(); iRegion != region2Vert.end(); iRegion++){
-  //   std::map<MVertex*, MVertex*, std::less<MVertex*> > old2new = iRegion->second;
-  //   GRegion *gr = iRegion->first;
-  for (std::set<GRegion*,GEntityLessThan>::iterator rIter = regions.begin();
-       rIter!=regions.end();++rIter) {
-
-    GRegion* gr = *rIter;
-
-    std::vector<MTetrahedron*> newTetrahedra;
-    std::vector<MHexahedron*> newHexahedra;
-    std::vector<MPrism*> newPrisms;
-    std::vector<MPyramid*> newPyramids;
-    std::vector<MTrihedron*> newTrihedra;
-    for (unsigned int i = 0; i < gr->getNumMeshElements(); ++i){
-      MElement *e = gr->getMeshElement(i);
-      std::vector<MVertex *> v;
-      e->getVertices(v);
-      for (unsigned int j = 0; j < v.size(); j++){
-        // std::map<MVertex*, MVertex*, std::less<MVertex*> >::iterator
-        //   itmap = old2new.find(v[j]);
-        // if (itmap != old2new.end())
-        //   v[j] = itmap->second;
-        std::map<MVertex*,MVertex*>::iterator itmap = old2new.find(v[j]);
-        if (itmap != old2new.end()) v[j] = itmap->second;
-
-      }
-      MElementFactory factory;
-      MElement *e2 = factory.create(e->getTypeForMSH(), v, e->getNum(),
-                                    e->getPartition());
-      switch(e2->getType()){
-      case TYPE_TET: newTetrahedra.push_back((MTetrahedron*)e2); break;
-      case TYPE_HEX: newHexahedra.push_back((MHexahedron*)e2); break;
-      case TYPE_PRI: newPrisms.push_back((MPrism*)e2); break;
-      case TYPE_PYR: newPyramids.push_back((MPyramid*)e2); break;
-      case TYPE_TRIH: newTrihedra.push_back((MTrihedron*)e2); break;
-      }
-    }
-    gr->deleteVertexArrays();
-    for(unsigned int i = 0; i < gr->tetrahedra.size(); i++) delete gr->tetrahedra[i];
-    for(unsigned int i = 0; i < gr->hexahedra.size(); i++) delete gr->hexahedra[i];
-    for(unsigned int i = 0; i < gr->prisms.size(); i++) delete gr->prisms[i];
-    for(unsigned int i = 0; i < gr->pyramids.size(); i++) delete gr->pyramids[i];
-    for(unsigned int i = 0; i < gr->trihedra.size(); i++) delete gr->trihedra[i];
-    gr->tetrahedra = newTetrahedra;
-    gr->hexahedra = newHexahedra;
-    gr->prisms = newPrisms;
-    gr->pyramids = newPyramids;
-    gr->trihedra = newTrihedra;
-  }
-
-  // -- now correct periodicity information
-
-  std::set<GFace*,GEntityLessThan>::iterator gfIter = faces.begin();
-  for (;gfIter!=faces.end();++gfIter) (*gfIter)->updateVertices(old2new);
-
-  std::set<GEdge*,GEntityLessThan>::iterator geIter = edges.begin();
-  for (;geIter!=edges.end();++geIter) (*geIter)->updateVertices(old2new);
-
-  std::set<GVertex*,GEntityLessThan>::iterator gvIter = vertices.begin();
-  for (;gvIter!=vertices.end();++gvIter) (*gvIter)->updateVertices(old2new);
-
-  Msg::Debug("Done creating topology for edges");
-}
-
 void makeSimplyConnected(std::map<int, std::vector<MElement*> > elements[11])
 {
   //only for tetras and triangles
@@ -3152,7 +2651,6 @@ void makeSimplyConnected(std::map<int, std::vector<MElement*> > elements[11])
 
 GModel *GModel::buildCutGModel(gLevelset *ls, bool cutElem, bool saveTri)
 {
-
   if (saveTri)
     CTX::instance()->mesh.saveTri = 1;
   else
@@ -3222,36 +2720,6 @@ int GModel::readGEO(const std::string &name)
   return true;
 }
 
-GEdge* GModel::addCompoundEdge(std::vector<GEdge*> edges, int num)
-{
-  if (num < 0) num = getMaxElementaryNumber(1) + 1;
-  GEdgeCompound *gec = new GEdgeCompound(this, num, edges);
-  add(gec);
-  return gec;
-}
-
-GFace* GModel::addCompoundFace(std::vector<GFace*> faces, int param, int split, int num)
-{
-#if defined(HAVE_SOLVER)
-  if (num < 0) num = getMaxElementaryNumber(2) + 1;
-  std::list<GFace*> faces_comp(faces.begin(), faces.end());
-  std::list<GEdge*> U0;
-  GFaceCompound::typeOfCompound typ = GFaceCompound::HARMONIC_CIRCLE;
-  if (param == 1) typ =  GFaceCompound::CONFORMAL_SPECTRAL;
-  if (param == 2) typ =  GFaceCompound::RADIAL_BASIS;
-  if (param == 3) typ =  GFaceCompound::HARMONIC_PLANE;
-  if (param == 4) typ =  GFaceCompound::CONVEX_CIRCLE;
-  if (param == 5) typ =  GFaceCompound::CONVEX_PLANE;
-  if (param == 6) typ =  GFaceCompound::HARMONIC_SQUARE;
-  if (param == 7) typ =  GFaceCompound::CONFORMAL_FE;
-  GFaceCompound *gfc = new GFaceCompound(this, num, faces_comp, U0, typ, split);
-  add(gfc);
-  return gfc;
-#else
-  return 0;
-#endif
-}
-
 void GModel::setPhysicalNumToEntitiesInBox(int EntityDimension, int PhysicalNumber,
                                            SBoundingBox3d box)
 {
@@ -3701,47 +3169,3 @@ void GModel::computeHomology()
 #endif
 }
 
-void GModel::setCompoundVisibility()
-{
-  // force visibility status of compound entities
-
-  for(eiter eit = firstEdge(); eit != lastEdge(); eit++){
-    GEdge *ge = *eit;
-    if (ge->getCompound()){
-      if(CTX::instance()->geom.hideCompounds) {
-        // use visibility info of compound edge if this edge belongs to it
-        ge->setVisibility(0, true);
-        bool val2 = ge->getCompound()->getVisibility();
-        if(ge->getCompound()->getBeginVertex())
-          ge->getCompound()->getBeginVertex()->setVisibility(val2);
-        if(ge->getCompound()->getEndVertex())
-          ge->getCompound()->getEndVertex()->setVisibility(val2);
-      }
-      else {
-        ge->setVisibility(1, true);
-      }
-    }
-  }
-
-  for(fiter fit = firstFace(); fit != lastFace(); fit++){
-    GFace *gf = *fit;
-    if (gf->getCompound()){
-      if(CTX::instance()->geom.hideCompounds) {
-        gf->setVisibility(0, true);
-        std::list<GEdge*> edgesComp = gf->getCompound()->edges();
-        bool val2 = gf->getCompound()->getVisibility();
-        // show edges of the compound surface
-        for (std::list<GEdge*>::iterator it = edgesComp.begin(); it != edgesComp.end(); ++it) {
-          if((*it)->getCompound())
-            (*it)->getCompound()->setVisibility(val2, true);
-          else
-            (*it)->setVisibility(val2, true);
-        }
-      }
-      else {
-        gf->setVisibility(1, true);
-      }
-    }
-  }
-
-}
diff --git a/Geo/GModel.h b/Geo/GModel.h
index d14b5ea8fab51a9afd6aa67f8925bece978fc693..45a7b0077986d3cd3c0a6735bdeb7db2f7784821 100644
--- a/Geo/GModel.h
+++ b/Geo/GModel.h
@@ -231,9 +231,6 @@ class GModel {
   char getVisibility(){ return _visible; }
   void setVisibility(char val){ _visible = val; }
 
-  // set the visibility of compound entities
-  void setCompoundVisibility();
-
   // get the number of entities in this model
   int getNumRegions() const { return regions.size(); }
   int getNumFaces() const { return faces.size(); }
@@ -279,9 +276,6 @@ class GModel {
   void remove(int dim, int tag, bool recursive=false);
   void remove(const std::vector<std::pair<int, int> > &dimTags, bool recursive=false);
 
-  GEdge *addCompoundEdge(std::vector<GEdge*> edges, int num=-1);
-  GFace *addCompoundFace(std::vector<GFace*> faces, int type, int split, int num=-1);
-
   // snap vertices on model edges by using geometry tolerance
   void snapVertices();
 
@@ -446,9 +440,7 @@ class GModel {
 
   // create topology from mesh
   void createTopologyFromMeshNew();
-  void createTopologyFromMesh(int ignoreHoles=0);
-  void createTopologyFromRegions(std::vector<discreteRegion*> &discRegions);
-  void createTopologyFromFaces(std::vector<discreteFace*> &pFaces, int ignoreHoles=0);
+  void createTopologyFromMesh();
   void makeDiscreteRegionsSimplyConnected();
   void makeDiscreteFacesSimplyConnected();
 
diff --git a/Geo/GModelIO_GEO.cpp b/Geo/GModelIO_GEO.cpp
index 003a2ef796a4356954087a70844ab1c38935af2c..be3e5cc6a3b698c19cc978aef5e6a6e2a3317053 100644
--- a/Geo/GModelIO_GEO.cpp
+++ b/Geo/GModelIO_GEO.cpp
@@ -16,9 +16,6 @@
 #include "ListUtils.h"
 #include "gmshVertex.h"
 #include "gmshFace.h"
-#include "GFaceCompound.h"
-#include "GEdgeCompound.h"
-#include "GRegionCompound.h"
 #include "gmshEdge.h"
 #include "gmshRegion.h"
 #include "Field.h"
@@ -308,22 +305,6 @@ bool GEO_Internals::addNurbs(int &tag, const std::vector<int> &vertexTags,
   return true;
 }
 
-bool GEO_Internals::addCompoundLine(int &tag, const std::vector<int> &edgeTags)
-{
-  if(tag >= 0 && FindCurve(tag)){
-    Msg::Error("GEO edge with tag %d already exists", tag);
-    return false;
-  }
-  if(tag < 0) tag = getMaxTag(1) + 1;
-  Curve *c = CreateCurve(tag, MSH_SEGM_COMPOUND, 1, NULL, NULL, -1, -1, 0., 1.);
-  c->compound = edgeTags;
-  EndCurve(c);
-  Tree_Add(Curves, &c);
-  CreateReversedCurve(c);
-  _changed = true;
-  return true;
-}
-
 bool GEO_Internals::addLineLoop(int &tag, const std::vector<int> &edgeTags)
 {
   if(tag >= 0 && FindEdgeLoop(tag)){
@@ -430,27 +411,6 @@ bool GEO_Internals::addSurfaceFilling(int &tag, const std::vector<int> &wireTags
   return true;
 }
 
-bool GEO_Internals::addCompoundSurface(int &tag, const std::vector<int> &faceTags,
-                                       std::vector<int> edgeTags[4])
-{
-  if(tag >= 0 && FindSurface(tag)){
-    Msg::Error("GEO face with tag %d already exists", tag);
-    return false;
-  }
-  if(tag < 0) tag = getMaxTag(2) + 1;
-
-  Surface *s = CreateSurface(tag, MSH_SURF_COMPOUND);
-  s->compound = faceTags;
-  if(edgeTags){
-    for(int i = 0; i < 4; i++)
-      s->compoundBoundary[i] = edgeTags[i];
-  }
-  SetSurfaceGeneratrices(s, 0);
-  Tree_Add(Surfaces, &s);
-  _changed = true;
-  return true;
-}
-
 bool GEO_Internals::addSurfaceLoop(int &tag, const std::vector<int> &faceTags)
 {
   if(tag >= 0 && FindSurfaceLoop(tag)){
@@ -492,21 +452,6 @@ bool GEO_Internals::addVolume(int &tag, const std::vector<int> &shellTags)
   return true;
 }
 
-bool GEO_Internals::addCompoundVolume(int &tag, const std::vector<int> &regionTags)
-{
-  if(tag >= 0 && FindVolume(tag)){
-    Msg::Error("GEO region with tag %d already exists", tag);
-    return false;
-  }
-  if(tag < 0) tag = getMaxTag(3) + 1;
-
-  Volume *v = CreateVolume(tag, MSH_VOLUME_COMPOUND);
-  v->compound = regionTags;
-  Tree_Add(Volumes, &v);
-  _changed = true;
-  return true;
-}
-
 bool GEO_Internals::_extrude(int mode,
                              const std::vector<std::pair<int, int> > &inDimTags,
                              double x, double y, double z,
@@ -1168,11 +1113,7 @@ void GEO_Internals::synchronize(GModel *model)
       List_Read(curves, i, &c);
       if(c->Num >= 0){
         GEdge *e = model->getEdgeByTag(c->Num);
-        if(!e && c->Typ == MSH_SEGM_COMPOUND){
-          Msg::Debug("Postpone creation of compound edge %d until all others "
-                     "have been created", c->Num);
-        }
-        else if(!e && c->beg && c->end){
+        if(!e && c->beg && c->end){
           e = new gmshEdge(model, c, model->getVertexByTag(c->beg->Num),
                            model->getVertexByTag(c->end->Num));
           model->add(e);
@@ -1182,8 +1123,7 @@ void GEO_Internals::synchronize(GModel *model)
           model->add(e);
         }
         else{
-          if(e->getNativeType() == GEntity::GmshModel &&
-             c->Typ != MSH_SEGM_COMPOUND){
+          if(e->getNativeType() == GEntity::GmshModel){
             if(c->beg && c->end)
               ((gmshEdge*)e)->resetNativePtr(c, model->getVertexByTag(c->beg->Num),
                                              model->getVertexByTag(c->end->Num));
@@ -1195,30 +1135,6 @@ void GEO_Internals::synchronize(GModel *model)
         if(c->degenerated) e->setTooSmall(true);
       }
     }
-    // now generate the compound curves
-    for(int i = 0; i < List_Nbr(curves); i++){
-      Curve *c;
-      List_Read(curves, i, &c);
-      if(c->Num >= 0){
-        GEdge *e = model->getEdgeByTag(c->Num);
-        if(!e && c->Typ == MSH_SEGM_COMPOUND){
-          std::vector<GEdge*> comp;
-          for(unsigned int j = 0; j < c->compound.size(); j++){
-            GEdge *ge = model->getEdgeByTag(c->compound[j]);
-            if(ge) comp.push_back(ge);
-          }
-          e = new GEdgeCompound(model, c->Num, comp);
-          e->meshAttributes.method = c->Method;
-          e->meshAttributes.nbPointsTransfinite = c->nbPointsTransfinite;
-          e->meshAttributes.typeTransfinite = c->typeTransfinite;
-          e->meshAttributes.coeffTransfinite = c->coeffTransfinite;
-          e->meshAttributes.extrude = c->Extrude;
-          e->meshAttributes.reverseMesh = c->ReverseMesh;
-          model->add(e);
-          if(c->degenerated) e->setTooSmall(true);
-        }
-      }
-    }
     List_Delete(curves);
   }
 
@@ -1228,55 +1144,12 @@ void GEO_Internals::synchronize(GModel *model)
       Surface *s;
       List_Read(surfaces, i, &s);
       GFace *f = model->getFaceByTag(s->Num);
-      if(!f && s->Typ == MSH_SURF_COMPOUND){
-        std::list<GFace*> comp;
-        for(unsigned int j = 0; j < s->compound.size(); j++){
-          GFace *gf = model->getFaceByTag(s->compound[j]);
-          if(gf)
-            comp.push_back(gf);
-        }
-        std::list<GEdge*> b[4];
-        for(int j = 0; j < 4; j++){
-          for(unsigned int k = 0; k < s->compoundBoundary[j].size(); k++){
-            GEdge *ge = model->getEdgeByTag(s->compoundBoundary[j][k]);
-            if(ge) b[j].push_back(ge);
-          }
-        }
-        int param = CTX::instance()->mesh.remeshParam;
-        GFaceCompound::typeOfCompound typ = GFaceCompound::HARMONIC_CIRCLE;
-        if (param == 1) typ = GFaceCompound::CONFORMAL_SPECTRAL;
-        if (param == 2) typ = GFaceCompound::RADIAL_BASIS;
-        if (param == 3) typ = GFaceCompound::HARMONIC_PLANE;
-        if (param == 4) typ = GFaceCompound::CONVEX_CIRCLE;
-        if (param == 5) typ = GFaceCompound::CONVEX_PLANE;
-        if (param == 6) typ = GFaceCompound::HARMONIC_SQUARE;
-        if (param == 7) typ = GFaceCompound::CONFORMAL_FE;
-        int algo = CTX::instance()->mesh.remeshAlgo;
-        f = new GFaceCompound(model, s->Num, comp, b[0], b[1], b[2], b[3], typ, algo);
-        f->meshAttributes.recombine = s->Recombine;
-        f->meshAttributes.recombineAngle = s->RecombineAngle;
-        f->meshAttributes.method = s->Method;
-        f->meshAttributes.extrude = s->Extrude;
-        f->meshAttributes.transfiniteArrangement = s->Recombine_Dir;
-        f->meshAttributes.corners.clear();
-        for(int j = 0; j < List_Nbr(s->TrsfPoints); j++){
-          Vertex *corn;
-          List_Read(s->TrsfPoints, j, &corn);
-          GVertex *gv = f->model()->getVertexByTag(corn->Num);
-          if(gv)
-            f->meshAttributes.corners.push_back(gv);
-          else
-            Msg::Error("Unknown vertex %d in transfinite attributes", corn->Num);
-        }
-        model->add(f);
-      }
-      else if(!f){
+      if(!f){
         f = new gmshFace(model, s);
         model->add(f);
       }
       else{
-        if(f->getNativeType() == GEntity::GmshModel &&
-           s->Typ != MSH_SURF_COMPOUND)
+        if(f->getNativeType() == GEntity::GmshModel)
           ((gmshFace*)f)->resetNativePtr(s);
         f->resetMeshAttributes();
       }
@@ -1290,22 +1163,12 @@ void GEO_Internals::synchronize(GModel *model)
       Volume *v;
       List_Read(volumes, i, &v);
       GRegion *r = model->getRegionByTag(v->Num);
-      if(!r && v->Typ == MSH_VOLUME_COMPOUND){
-        std::vector<GRegion*> comp;
-        for(unsigned int j = 0; j < v->compound.size(); j++){
-          GRegion *gr = model->getRegionByTag(v->compound[j]);
-          if(gr) comp.push_back(gr);
-        }
-        r = new GRegionCompound(model, v->Num, comp);
-        model->add(r);
-      }
-      else if(!r){
+      if(!r){
         r = new gmshRegion(model, v);
         model->add(r);
       }
       else{
-        if(r->getNativeType() == GEntity::GmshModel &&
-           v->Typ != MSH_VOLUME_COMPOUND)
+        if(r->getNativeType() == GEntity::GmshModel)
           ((gmshRegion*)r)->resetNativePtr(v);
         r->resetMeshAttributes();
       }
diff --git a/Geo/GModelIO_MSH2.cpp b/Geo/GModelIO_MSH2.cpp
index 55d08004615c88cfb7b9889d5c7a9a18045dc90d..8b51e51e68e20d0bc1057537888dced4d0be9307 100644
--- a/Geo/GModelIO_MSH2.cpp
+++ b/Geo/GModelIO_MSH2.cpp
@@ -693,7 +693,6 @@ int GModel::_readMSH2(const std::string &name)
 
   _createGeometryOfDiscreteEntities() ;
 
-
   // copying periodic information from the mesh
 
   rewind(fp);
diff --git a/Geo/GRbf.cpp b/Geo/GRbf.cpp
deleted file mode 100644
index 7e8dea77fc5e3ee99edd544db9ec1cae4d609cce..0000000000000000000000000000000000000000
--- a/Geo/GRbf.cpp
+++ /dev/null
@@ -1,1269 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-//
-// Contributed by Cecile Piret
-
-#include <math.h>
-#include <vector>
-#include "GmshConfig.h"
-#include "GRbf.h"
-#include "OS.h"
-#include "fullMatrix.h"
-#include "Octree.h"
-#include "SPoint3.h"
-#include "SVector3.h"
-#include "SBoundingBox3d.h"
-#include "OS.h"
-#include "MVertex.h"
-#include "MVertexRTree.h"
-
-#if defined(HAVE_SOLVER)
-#include "linearSystem.h"
-#endif
-
-#if defined(HAVE_ANN)
-#include "ANN/ANN.h"
-#endif
-
-static void SphereBB(void *a, double*mmin, double*mmax)
-{
-  Sphere *t = (Sphere *)a;
-  mmin[0] = t->center.x()-t->radius;
-  mmin[1] = t->center.y()-t->radius;
-  mmin[2] = t->center.z()-t->radius;
-  mmax[0] = t->center.x()+t->radius;
-  mmax[1] = t->center.y()+t->radius;
-  mmax[2] = t->center.z()+t->radius;
-}
-
-static void SphereCentroid(void *a, double*c)
-{
-  Sphere *t = (Sphere *)a;
-  c[0] = t->center.x();
-  c[1] = t->center.y();
-  c[2] = t->center.z();
-}
-
-static int SphereInEle(void *a, double*c)
-{
-  Sphere *t = (Sphere *)a;
-  double dist = sqrt((c[0]-t->center.x())*(c[0]-t->center.x())+
-		     (c[1]-t->center.y())*(c[1]-t->center.y())+
-		     (c[2]-t->center.z())*(c[2]-t->center.z()) );
-  if(dist < t->radius){
-    return 1;
-  }
-  return 0;
-}
-
-static void printNodes(std::set<MVertex *> myNodes)
-{
-  FILE * xyz = Fopen("myNodes.pos","w");
-  if(xyz){
-    fprintf(xyz,"View \"\"{\n");
-    for(std::set<MVertex *>::iterator itv = myNodes.begin(); itv !=myNodes.end(); ++itv){
-      MVertex *v = *itv;
-      fprintf(xyz,"SP(%g,%g,%g){%d};\n", v->x(), v->y(), v->z(), v->getNum());
-    }
-    fprintf(xyz,"};\n");
-    fclose(xyz);
-  }
-}
-
-static void exportParametrizedMesh(fullMatrix<double> &UV, int nbNodes)
-{
-  FILE *f = Fopen("UV.pos", "w");
-  if(f){
-    fprintf(f,"View  \" uv \" {\n");
-    Msg::Info("*** RBF exporting 'UV.pos' ");
-    for(int id = 0; id < nbNodes; id++){
-      fprintf(f,"SP(%g,%g,%g){%d};\n", UV(id,0), UV(id,1), 0.0, id);
-    }
-    fprintf(f,"};\n");
-    fclose(f);
-  }
-}
-
-GRbf::GRbf(double sizeBox, int variableEps, int rbfFun,
-           std::map<MVertex*, SVector3> _normals,
-           std::set<MVertex *> allNodes, std::vector<MVertex*> bcNodes, bool _isLocal)
-  :  isLocal(_isLocal), _inUV(0), sBox(sizeBox),
-     radialFunctionIndex (rbfFun)
-
-{
-#if defined (HAVE_ANN)
-  XYZkdtree = 0;
-#endif
-
-  allCenters.resize(allNodes.size(),3);
-  double tol =  4.e-2*sBox;
-  if (isLocal) tol = 1.e-15;
-
-  // remove duplicate vertices
-  // add bc nodes
-  for(unsigned int i = 0; i < bcNodes.size(); i++){
-    myNodes.insert(bcNodes[i]);
-    //if (bcNodes.size()  > 20) i+=2;
-  }
-
-  // then create Mvertex position
-  std::vector<MVertex*> vertices(allNodes.begin(), allNodes.end());
-  MVertexRTree pos(tol);
-  pos.insert(vertices);
-  for(unsigned int i = 0; i < vertices.size(); i++){
-    MVertex *v = vertices[i];
-    if(!pos.find(v->x(), v->y(), v->z()))
-      myNodes.insert(v); // keep only no duplicate vertices
-    allCenters(i,0) = v->x()/sBox;
-    allCenters(i,1) = v->y()/sBox;
-    allCenters(i,2) = v->z()/sBox;
-    _mapAllV.insert(std::make_pair(v, i));
-  }
-
-  // initialize with  points
-  nbNodes = myNodes.size();
-  centers.resize(nbNodes,3);
-  normals.resize(nbNodes,3);
-  int index = 0;
-  double dist_min = 1.e6;
-  for(std::set<MVertex *>::iterator itv = myNodes.begin(); itv !=myNodes.end(); ++itv){
-    MVertex *v1 = *itv;
-    centers(index,0) = v1->x()/sBox;
-    centers(index,1) = v1->y()/sBox;
-    centers(index,2) = v1->z()/sBox;
-    std::map<MVertex*, SVector3>::iterator itn = _normals.find(v1);
-    if (itn != _normals.end()){
-      normals(index,0) = itn->second.x();
-      normals(index,1) = itn->second.y();
-      normals(index,2) = itn->second.z();
-    }
-    _mapV.insert(std::make_pair(v1, index));
-    for(std::set<MVertex *>::iterator itv2 = myNodes.begin(); itv2 !=myNodes.end(); itv2++){
-      MVertex *v2 = *itv2;
-      double dist = sqrt((v1->x()-v2->x())*(v1->x()-v2->x())+
-                         (v1->y()-v2->y())*(v1->y()-v2->y())+
-                         (v1->z()-v2->z())*(v1->z()-v2->z()))/sBox;
-      if (dist < dist_min && *itv != *itv2 && dist > 1.e-5) dist_min = dist;
-    }
-    index++;
-  }
-
-  delta = dist_min/10.0;//0.33
-
-  //radius = 1.0/15.0 //curvature setting
-  radius= 1.0/6.0; //size 1 is non dim size
-
-  Msg::Info("*****************************************");
-  Msg::Info("*** RBF nbNodes=%d (all=%d) ", myNodes.size(), allNodes.size());
-  Msg::Info("*** RBF rad=%g dist_min =%g", radius, dist_min);
-  Msg::Info("*****************************************");
-
-  printNodes(myNodes);
-
-  if (!isLocal){
-    matAInv.resize(nbNodes, nbNodes);
-    matAInv = generateRbfMat(0,centers,centers);
-    matAInv.invertInPlace();
-  }
-
-  extendedX.resize(3*nbNodes,3);
-}
-
-GRbf::~GRbf()
-{
-#if defined (HAVE_ANN)
-  ANNpointArray XYZNodes = XYZkdtree->thePoints();
-  ANNpointArray UVNodes = UVkdtree->thePoints();
-  annDeallocPts(XYZNodes);
-  annDeallocPts(UVNodes);
-  delete XYZkdtree;
-  delete UVkdtree;
-#endif
-}
-
-void GRbf::buildXYZkdtree()
-{
-#if defined (HAVE_ANN)
-  ANNpointArray XYZnodes = annAllocPts(nbNodes, 3);
-  for(int i = 0; i < nbNodes; i++){
-    XYZnodes[i][0] = centers(i,0);
-    XYZnodes[i][1] = centers(i,1);
-    XYZnodes[i][2] = centers(i,2);
-  }
-  XYZkdtree = new ANNkd_tree(XYZnodes, nbNodes, 3);
-#endif
-}
-
-void GRbf::buildOctree(double radius)
-{
-  //printf("building octree radius = %g \n", radius);
-  SBoundingBox3d bb;
-  for (int i = 0; i < nbNodes; i++)
-    bb += SPoint3(centers(i,0),centers(i,1), centers(i,2));
-  double origin[3] = {bb.min().x(), bb.min().y(), bb.min().z()};
-  double ssize[3] = {bb.max().x() - bb.min().x(),
-                     bb.max().y() - bb.min().y(),
-                     bb.max().z() - bb.min().z()};
-  const int maxElePerBucket = 10;
-  Octree *oct = Octree_Create(maxElePerBucket, origin, ssize, SphereBB,
-			      SphereCentroid, SphereInEle);
-
-  Sphere *_sph = new Sphere[nbNodes];
-  for (int i = 0; i < nbNodes; i++){
-    _sph[i].index = i;
-    _sph[i].radius = radius;
-    _sph[i].center = SPoint3(centers(i,0),centers(i,1), centers(i,2));
-    Octree_Insert(&_sph[i], oct);
-  }
-  Octree_Arrange(oct);
-
-  for (int i = 0; i < nbNodes; i++){
-    std::vector<void*> l;
-    double P[3] = {centers(i,0),centers(i,1), centers(i,2)};
-    Octree_SearchAll(P, oct, &l);
-    nodesInSphere[i].push_back(i);
-    if (l.size() == 1) printf("*** WARNING: Found only %d sphere ! \n", (int)l.size());
-    for (std::vector<void*>::iterator it = l.begin(); it != l.end(); it++) {
-      Sphere *sph = (Sphere*) *it;
-      if (sph->index != i) nodesInSphere[i].push_back(sph->index);
-    }
-    //printf("size node i =%d = %d \n", i , nodesInSphere[i].size());
-  }
-
-  Octree_Delete(oct);
-  delete [] _sph;
-
-  buildXYZkdtree();
-}
-
-// compute curvature from level set
-void GRbf::curvatureRBF(const fullMatrix<double> &cntrs,
-			fullMatrix<double> &curvature)
-{
-
-
-  fullMatrix<double> extX, surf, sx,sy,sz, sxx,syy,szz, sxy,sxz,syz,sLap;
-  setup_level_set(cntrs,normals,extX, surf);
-
-  evalRbfDer(1,extX,cntrs,surf,sx);
-  evalRbfDer(2,extX,cntrs,surf,sy);
-  evalRbfDer(3,extX,cntrs,surf,sz);
-  evalRbfDer(222,extX,cntrs,surf,sLap);
-
-  for (int i = 0; i < cntrs.size1(); i++) {
-    double norm_grad_s = sqrt(sx(i,0)*sx(i,0)+sy(i,0)*sy(i,0)+sz(i,0)*sz(i,0));
-    double curv = -sLap(i,0)/norm_grad_s;
-    curvature(i,0) = 0.5*fabs(curv)/sBox;
-  }
-
-
-
-}
-
-void GRbf::computeCurvature(const fullMatrix<double> &cntrs,
-			    std::map<MVertex*, double> &rbf_curv)
-{
-  fullMatrix<double> extX, surf, sx,sy,sz, allsx,allsy,allsz;
-  setup_level_set(cntrs,normals,extX, surf);
-  // Find derivatives of the surface interpolant
-  evalRbfDer(1,extX,extX,surf,sx);
-  evalRbfDer(2,extX,extX,surf,sy);
-  evalRbfDer(3,extX,extX,surf,sz);
-
-  for (int i = 0; i < extX.size1(); i++) {
-    double norm_grad_s = sqrt(sx(i,0)*sx(i,0)+sy(i,0)*sy(i,0)+sz(i,0)*sz(i,0));
-    sx(i,0) = sx(i,0)/norm_grad_s;
-    sy(i,0) = sy(i,0)/norm_grad_s;
-    sz(i,0) = sz(i,0)/norm_grad_s;
-  }
-
-  fullMatrix<double> curvatureAll(allCenters.size1(), 1);
-  evalRbfDer(1,extX,allCenters,sx,allsx);
-  evalRbfDer(2,extX,allCenters,sy,allsy);
-  evalRbfDer(3,extX,allCenters,sz,allsz);
-
-  for (int i = 0; i < allCenters.size1(); i++) {
-    curvatureAll(i,0) = 0.5*(allsx(i,0)+allsy(i,0)+allsz(i,0))/sBox;
-  }
-
-  //fill rbf_curv
-  std::map<MVertex*, int>::iterator itm = _mapAllV.begin();
-  for (; itm != _mapAllV.end(); itm++){
-    int index = itm->second;
-    rbf_curv.insert(std::make_pair(itm->first,curvatureAll(index,0)));
-  }
-
-}
-
-void GRbf::computeLocalCurvature(const fullMatrix<double> &cntrs,
-				 std::map<MVertex*, double> &rbf_curv)
-{
-  fullMatrix<double> extX, surf;
-  int numNodes = cntrs.size1();
-  int numExtNodes = 3*numNodes;
-  setup_level_set(cntrs,normals,extX, surf);
-
-  if(nodesInSphere.size() == 0) buildOctree(radius);
-  fullMatrix<double> curvature(cntrs.size1(), 1);
-  fullMatrix<double> Dx(numExtNodes,numExtNodes),Dy(numExtNodes,numExtNodes),Dz(numExtNodes,numExtNodes),tempX,tempY,tempZ,sx(numExtNodes,1),sy(numExtNodes,1),sz(numExtNodes,1);
-  fullMatrix<double> cluster_center(3,3);
-  for (int i = 0; i < numNodes; ++i) {
-    std::vector<int> &pts = nodesInSphere[i];
-    int cluster_size = pts.size();
-    fullMatrix<double> nodes_in_sph(3*cluster_size,3);
-
-    cluster_center(0,0) = extX(i,0);
-    cluster_center(0,1) = extX(i,1);
-    cluster_center(0,2) = extX(i,2);
-
-    cluster_center(1,0) = extX(i+numNodes,0);
-    cluster_center(1,1) = extX(i+numNodes,1);
-    cluster_center(1,2) = extX(i+numNodes,2);
-
-    cluster_center(2,0) = extX(i+2*numNodes,0);
-    cluster_center(2,1) = extX(i+2*numNodes,1);
-    cluster_center(2,2) = extX(i+2*numNodes,2);
-
-    for (int k=0; k< cluster_size; k++){
-      nodes_in_sph(k,0) = extX(pts[k],0);
-      nodes_in_sph(k,1) = extX(pts[k],1);
-      nodes_in_sph(k,2) = extX(pts[k],2);
-
-      nodes_in_sph(k+cluster_size,0) = extX(pts[k]+numNodes,0);
-      nodes_in_sph(k+cluster_size,1) = extX(pts[k]+numNodes,1);
-      nodes_in_sph(k+cluster_size,2) = extX(pts[k]+numNodes,2);
-
-      nodes_in_sph(k+2*cluster_size,0) = extX(pts[k]+2*numNodes,0);
-      nodes_in_sph(k+2*cluster_size,1) = extX(pts[k]+2*numNodes,1);
-      nodes_in_sph(k+2*cluster_size,2) = extX(pts[k]+2*numNodes,2);
-    }
-
-    RbfOp(1,nodes_in_sph,cluster_center,tempX);
-    RbfOp(2,nodes_in_sph,cluster_center,tempY);
-    RbfOp(3,nodes_in_sph,cluster_center,tempZ);
-
-    for (int k=0; k< cluster_size; k++){
-      for (int j=0; j< 3; j++){
-	Dx(i+j*numNodes,pts[k]) = tempX(j,k);
-	Dy(i+j*numNodes,pts[k]) = tempY(j,k);
-	Dz(i+j*numNodes,pts[k]) = tempZ(j,k);
-
-	Dx(i+j*numNodes,pts[k]+numNodes) = tempX(j,k+cluster_size);
-	Dy(i+j*numNodes,pts[k]+numNodes) = tempY(j,k+cluster_size);
-	Dz(i+j*numNodes,pts[k]+numNodes) = tempZ(j,k+cluster_size);
-
-	Dx(i+j*numNodes,pts[k]+2*numNodes) = tempX(j,k+2*cluster_size);
-	Dy(i+j*numNodes,pts[k]+2*numNodes) = tempY(j,k+2*cluster_size);
-	Dz(i+j*numNodes,pts[k]+2*numNodes) = tempZ(j,k+2*cluster_size);
-      }
-    }
-  }
-
-    sx.gemm(Dx,surf, 1.0, 0.0);
-    sy.gemm(Dy,surf, 1.0, 0.0);
-    sz.gemm(Dz,surf, 1.0, 0.0);
-
-    for (int i = 0; i < numExtNodes; i++) {
-      double norm_grad_s = sqrt(sx(i,0)*sx(i,0)+sy(i,0)*sy(i,0)+sz(i,0)*sz(i,0));
-      sx(i,0) = sx(i,0)/norm_grad_s;
-      sy(i,0) = sy(i,0)/norm_grad_s;
-      sz(i,0) = sz(i,0)/norm_grad_s;
-    }
-    sx.gemm(Dx,sx, 1.0, 0.0);
-    sy.gemm(Dy,sy, 1.0, 0.0);
-    sz.gemm(Dz,sz, 1.0, 0.0);
-
-    printf("sBox = %g ",sBox);
-    for (int i = 0; i < numNodes; i++) {
-      curvature(i,0) = 0.5*(sx(i,0)+sy(i,0)+sz(i,0))/sBox;
-    }
-  std::map<MVertex*, int>::iterator itm = _mapAllV.begin();
-  for (; itm != _mapAllV.end(); itm++) {
-    int index = itm->second;
-    rbf_curv.insert(std::make_pair(itm->first, curvature(index,0)));
-  }
-}
-
-double GRbf::evalRadialFnDer (int p, double dx, double dy, double dz, double ep)
-{
-  double r2 = dx*dx+dy*dy+dz*dz; //r^2
-  switch (radialFunctionIndex) {
-  case 0 : // GA
-    switch (p) {
-    case 0: return exp(-ep*ep*r2);
-    case 1: return -2.0*ep*ep*dx*exp(-ep*ep*r2); // _x
-    case 2: return -2.0*ep*ep*dy*exp(-ep*ep*r2); // _y
-    case 3: return -2.0*ep*ep*dz*exp(-ep*ep*r2); // _z
-    case 11: return -2.0*ep*ep*(1.0-2.0*ep*ep*dx*dx)*exp(-ep*ep*r2); // _xx
-    case 12: return 4.0*ep*ep*ep*ep*dx*dy*exp(-ep*ep*r2); // _xy
-    case 13: return 4.0*ep*ep*ep*ep*dx*dz*exp(-ep*ep*r2); // ...
-    case 22: return -2.0*ep*ep*(1.0-2.0*ep*ep*dy*dy)*exp(-ep*ep*r2);
-    case 23: return 4.0*ep*ep*ep*ep*dy*dz*exp(-ep*ep*r2);
-    case 33: return -2.0*ep*ep*(1.0-2.0*ep*ep*dz*dz)*exp(-ep*ep*r2);
-    case 222: return -2.0*ep*ep*(3.0-2.0*ep*ep*r2)*exp(-ep*ep*r2); //Laplacian
-    }
-  case 1 : //MQ
-    switch (p) {
-    case 0: return sqrt(1.0+ep*ep*r2);
-    case 1: return ep*ep*dx/sqrt(1.0+ep*ep*r2);
-    case 2: return ep*ep*dy/sqrt(1.0+ep*ep*r2);
-    case 3: return ep*ep*dz/sqrt(1.0+ep*ep*r2);
-    case 11: return ep*ep*(1.0+ep*ep*dy*dy+ep*ep*dz*dz)/sqrt((1.0+ep*ep*r2)*(1.0+ep*ep*r2)*(1.0+ep*ep*r2)); // _xx
-    case 12: return -ep*ep*ep*ep*dx*dy/sqrt((1.0+ep*ep*r2)*(1.0+ep*ep*r2)*(1.0+ep*ep*r2)); // _xy
-    case 13: return -ep*ep*ep*ep*dx*dz/sqrt((1.0+ep*ep*r2)*(1.0+ep*ep*r2)*(1.0+ep*ep*r2)); // ...
-    case 22: return ep*ep*(1.0+ep*ep*dx*dx+ep*ep*dz*dz)/sqrt((1.0+ep*ep*r2)*(1.0+ep*ep*r2)*(1.0+ep*ep*r2));
-    case 23: return -ep*ep*ep*ep*dy*dz/sqrt((1.0+ep*ep*r2)*(1.0+ep*ep*r2)*(1.0+ep*ep*r2));
-    case 33: return ep*ep*(1.0+ep*ep*dx*dx+ep*ep*dy*dy)/sqrt((1.0+ep*ep*r2)*(1.0+ep*ep*r2)*(1.0+ep*ep*r2));
-    case 222: return ep*ep*(3.0+ep*ep*2.0*r2)/sqrt((1.0+ep*ep*r2)*(1.0+ep*ep*r2)*(1.0+ep*ep*r2));
-    }
-  }
-  return 0.;
-}
-
-fullMatrix<double> GRbf::generateRbfMat(int p,
-					const fullMatrix<double> &nodes1,
-					const fullMatrix<double> &nodes2)
-{
-  int m = nodes2.size1();
-  int n = nodes1.size1();
-  fullMatrix<double> rbfMat(m,n);
-
-  //curvature setting double eps = 0.1/delta;
-  double eps = 1.0/(delta*10);//2*sqrt(n/radius);////0.5/delta; //0.0677*(nbNodes^0.28)/min_dist; //0.5
-  //printf("Shape parameter = %g   ", eps);
-  //printf("delta = %g    ", delta);
-
-  if (_inUV) eps = 0.4/deltaUV;
-  for (int i = 0; i < m; i++) {
-    for (int j = 0; j < n; j++) {
-      double dx = nodes2(i,0)-nodes1(j,0);
-      double dy = nodes2(i,1)-nodes1(j,1);
-      double dz = nodes2(i,2)-nodes1(j,2);
-      rbfMat(i,j) = evalRadialFnDer(p,dx,dy,dz,eps);
-    }
-  }
-
-  return rbfMat;
-}
-
-//DL matrix (B*inv A)
-void GRbf::RbfOp(int p,
-		const fullMatrix<double> &cntrs,
-		const fullMatrix<double> &nodes,
-		 fullMatrix<double> &D)
-{
-  fullMatrix<double> rbfInvA, rbfMatB;
-
-  D.resize(nodes.size1(), cntrs.size1());
-
-  if (isLocal){
-    rbfInvA = generateRbfMat(0,cntrs,cntrs);
-    rbfInvA.invertInPlace();
-   }
-   else{
-     if (cntrs.size1() == nbNodes )
-       rbfInvA = matAInv;
-     else if (cntrs.size1() == 3*nbNodes )
-       rbfInvA  = matAInv_nn;
-     else{
-       rbfInvA = generateRbfMat(0,cntrs,cntrs);
-       rbfInvA.invertInPlace();
-     }
-   }
-  rbfMatB = generateRbfMat(p,cntrs,nodes);
-  D.gemm(rbfMatB, rbfInvA, 1.0, 0.0);
-}
-
-//U = DL * U
-void GRbf::evalRbfDer(int p,
-		     const fullMatrix<double> &cntrs,
-		     const fullMatrix<double> &nodes,
-		     const fullMatrix<double> &fValues,
-		      fullMatrix<double> &fApprox)
-{
-  fApprox.resize(nodes.size1(),fValues.size2());
-  fullMatrix<double> D;
-  RbfOp(p,cntrs,nodes,D);
-  fApprox.gemm(D,fValues, 1.0, 0.0);
-}
-
-void GRbf::setup_level_set(const fullMatrix<double> &cntrs,
-			   const fullMatrix<double> &normals,
-			   fullMatrix<double> &level_set_nodes,
-			   fullMatrix<double> &level_set_funvals)
-{
-  int numNodes = cntrs.size1();
-  int nTot = 3*numNodes;
-  double normFactor;
-  level_set_nodes.resize(nTot,3);
-  level_set_funvals.resize(nTot,1);
-  fullMatrix<double> ONES(numNodes+1,1), sx(numNodes,1), sy(numNodes,1);
-  fullMatrix<double> sz(numNodes,1),norms(numNodes,3), cntrsPlus(numNodes+1,3);
-
-  //Computes the normal vectors to the surface at each node
-  //Specifies the function values on the level set : 0 at all nodes (but add
-  //a node to make the problem non sigular)
-  for (int i=0;i<numNodes ; ++i){
-    ONES(i,0) = 0.0;
-    cntrsPlus(i,0) = cntrs(i,0);
-    cntrsPlus(i,1) = cntrs(i,1);
-    cntrsPlus(i,2) = cntrs(i,2);
-  }
-  //Specifies the additional node position and its function value
-  ONES(numNodes,0) = 1.0;
-  cntrsPlus(numNodes,0) = cntrs(0,0)+10.*sBox;
-  cntrsPlus(numNodes,1) = cntrs(0,1)+10.*sBox;
-  cntrsPlus(numNodes,2) = cntrs(0,2)+10.*sBox;
-
-  //printf("%g,%g,%g,%g;\n",sBox, cntrs(0,0), cntrs(0,1), cntrs(0,2));
-
-  evalRbfDer(1,cntrsPlus,cntrs,ONES,sx);
-  evalRbfDer(2,cntrsPlus,cntrs,ONES,sy);
-  evalRbfDer(3,cntrsPlus,cntrs,ONES,sz);
-
-  for (int i=0;i<numNodes ; ++i){
-
-    normFactor = sqrt(sx(i,0)*sx(i,0)+sy(i,0)*sy(i,0)+sz(i,0)*sz(i,0));
-    sx(i,0) = sx(i,0)/normFactor;
-    sy(i,0) = sy(i,0)/normFactor;
-    sz(i,0) = sz(i,0)/normFactor;
-    norms(i,0) = sx(i,0);norms(i,1) = sy(i,0);norms(i,2) = sz(i,0);
-
-    //GMSH NORMALS
-    // norms(i,0) = normals(i,0);
-    // norms(i,1) = normals(i,1);
-    // norms(i,2) = normals(i,2);
-    //END GMSH NORMALS
-  }
-
-  for (int i = 0; i < numNodes; ++i){
-    for (int j = 0; j < 3; ++j){
-      level_set_nodes(i,j) = cntrs(i,j);
-      level_set_nodes(i+numNodes,j) = cntrs(i,j)-delta*norms(i,j);
-      level_set_nodes(i+2*numNodes,j) = cntrs(i,j)+delta*norms(i,j);
-    }
-    level_set_funvals(i,0) = 0.0;
-    level_set_funvals(i+numNodes,0) = -1;
-    level_set_funvals(i+2*numNodes,0) = 1;
-  }
-
-  if (!isLocal)
-    {
-      matAInv_nn.resize(nTot, nTot);
-      matAInv_nn = generateRbfMat(0,level_set_nodes,level_set_nodes);
-      matAInv_nn.invertInPlace();
-    }
-}
-
-void GRbf::RbfLapSurface_local_projection(const fullMatrix<double> &cntrs,
-                                          const fullMatrix<double> &normals,
-                                          fullMatrix<double> &Oper)
-{
-  isLocal = true;
-  int numNodes = cntrs.size1();
-  Oper.resize(numNodes,numNodes);
-
-  if(nodesInSphere.size() == 0) buildOctree(radius);
-
-  for (int i = 0; i < numNodes; ++i){
-    std::vector<int> &pts = nodesInSphere[i];
-
-    fullMatrix<double> nodes_in_sph(pts.size(),3), local_normals(pts.size(),3);
-    fullMatrix<double> LocalOper;
-
-    LocalOper.setAll(0.0);
-
-    for (unsigned int k = 0; k < pts.size(); k++){
-      nodes_in_sph(k, 0) = cntrs(pts[k], 0);
-      nodes_in_sph(k, 1) = cntrs(pts[k], 1);
-      nodes_in_sph(k, 2) = cntrs(pts[k], 2);
-      local_normals(k, 0) = normals(pts[k], 0);
-      local_normals(k, 1) = normals(pts[k], 1);
-      local_normals(k, 2) = normals(pts[k], 2);
-    }
-
-    RbfLapSurface_global_projection(nodes_in_sph,local_normals, LocalOper);
-
-    for (unsigned int j = 0; j < pts.size(); j++)
-      Oper(i, pts[j]) = LocalOper(0, j);
-  }
-}
-
-void GRbf::RbfLapSurface_global_projection2(const fullMatrix<double> &cntrs,
-										const fullMatrix<double> &normals,
-										fullMatrix<double> &Oper) {
-
-	int numNodes = cntrs.size1();
-	int nnTot = 3*numNodes;
-	Oper.resize(numNodes,numNodes);
-
-	fullMatrix<double> Dx(numNodes,numNodes),Dy(numNodes,numNodes),Dz(numNodes,numNodes),
-    PDx(numNodes,numNodes),PDy(numNodes,numNodes),PDz(numNodes,numNodes),
-    PDxx(numNodes,numNodes),PDyy(numNodes,numNodes),PDzz(numNodes,numNodes);
-
-	fullMatrix<double> sx(nnTot,1),sy(nnTot,1),sz(nnTot,1);
-	fullMatrix<double> extX(nnTot,3), surf(nnTot,1);
-
-	//Stage 1 : The Arbitrary surface
-	setup_level_set(cntrs,normals,extX,surf);
-	if (!isLocal) extendedX = extX;
-	if (!isLocal) surfInterp = surf;
-
-	//Computes the normal vectors to the surface at each node
-	evalRbfDer(1,extX,extX,surf,sx);
-	evalRbfDer(2,extX,extX,surf,sy);
-	evalRbfDer(3,extX,extX,surf,sz);
-	for (int i=0;i<nnTot ; ++i){
-		double normFactor = sqrt(sx(i,0)*sx(i,0)+sy(i,0)*sy(i,0)+sz(i,0)*sz(i,0));
-		sx(i,0) = sx(i,0)/normFactor;
-		sy(i,0) = sy(i,0)/normFactor;
-		sz(i,0) = sz(i,0)/normFactor;
-	}
-	// Finds differentiation matrices
-	RbfOp(1,cntrs,cntrs,Dx);
-	RbfOp(2,cntrs,cntrs,Dy);
-	RbfOp(3,cntrs,cntrs,Dz);
-
-	// Fills up the operator matrix
-	for (int i=0;i<numNodes ; ++i){
-		for (int j=0;j<numNodes ; ++j){
-			PDx(i,j) = (1-sx(i,0)*sx(i,0))*Dx(i,j)-sx(i,0)*sy(i,0)*Dy(i,j)-sx(i,0)*sz(i,0)*Dz(i,j);
-			PDy(i,j) = -sx(i,0)*sy(i,0)*Dx(i,j)+(1-sy(i,0)*sy(i,0))*Dy(i,j)-sy(i,0)*sz(i,0)*Dz(i,j);
-			PDz(i,j) =  -sx(i,0)*sz(i,0)*Dx(i,j)-sy(i,0)*sz(i,0)*Dy(i,j)+(1-sz(i,0)*sz(i,0))*Dz(i,j);
-		}
-	}
-	PDx.mult(PDx,PDxx);
-	PDy.mult(PDy,PDyy);
-	PDz.mult(PDz,PDzz);
-	for (int i=0;i<numNodes ; ++i){
-		for (int j=0;j<numNodes ; ++j){
-			Oper(i,j) = PDxx(i,j)+PDyy(i,j)+PDzz(i,j);
-		}
-	}
-
-
-}
-
-
-void GRbf::RbfLapSurface_global_projection( const fullMatrix<double> &cntrs,
-					   const fullMatrix<double> &normals,
-					   fullMatrix<double> &Oper)
-{
-  int numNodes = cntrs.size1();
-  Oper.resize(numNodes,numNodes);
-
-  fullMatrix<double> sx(numNodes,1),sy(numNodes,1),sz(numNodes,1),
-    Dx(numNodes,numNodes),Dy(numNodes,numNodes),Dz(numNodes,numNodes),
-    PDx(numNodes,numNodes),PDy(numNodes,numNodes),PDz(numNodes,numNodes),
-    PDxx(numNodes,numNodes),PDyy(numNodes,numNodes),PDzz(numNodes,numNodes);
-
-  surfInterp.resize(numNodes,1);
-  surfInterp.setAll(1.0);
-  evalRbfDer(1,cntrs,cntrs,surfInterp,sx);
-  evalRbfDer(2,cntrs,cntrs,surfInterp,sy);
-  evalRbfDer(3,cntrs,cntrs,surfInterp,sz);
-
-  // Normalizes
-  double norm;
-  for (int i = 0; i < numNodes;i++){
-    norm = sqrt(sx(i,0)*sx(i,0)+sy(i,0)*sy(i,0)+sz(i,0)*sz(i,0));
-    sx(i,0) /= norm;
-    sy(i,0) /= norm;
-    sz(i,0) /= norm;
-  }
-
-  // Finds differentiation matrices
-  RbfOp(1,cntrs,cntrs,Dx);
-  RbfOp(2,cntrs,cntrs,Dy);
-  RbfOp(3,cntrs,cntrs,Dz);
-
-  // Fills up the operator matrix
-  for (int i = 0; i < numNodes; ++i){
-    for (int j = 0; j < numNodes; ++j){
-      PDx(i,j) = (1-sx(i,0)*sx(i,0))*Dx(i,j)-sx(i,0)*sy(i,0)*Dy(i,j)-sx(i,0)*sz(i,0)*Dz(i,j);
-      PDy(i,j) = -sx(i,0)*sy(i,0)*Dx(i,j)+(1-sy(i,0)*sy(i,0))*Dy(i,j)-sy(i,0)*sz(i,0)*Dz(i,j);
-      PDz(i,j) =  -sx(i,0)*sz(i,0)*Dx(i,j)-sy(i,0)*sz(i,0)*Dy(i,j)+(1-sz(i,0)*sz(i,0))*Dz(i,j);
-    }
-  }
-  PDx.mult(PDx,PDxx);
-  PDy.mult(PDy,PDyy);
-  PDz.mult(PDz,PDzz);
-  for (int i = 0; i < numNodes; ++i){
-    for (int j = 0; j < numNodes; ++j){
-      Oper(i,j) = PDxx(i,j)+PDyy(i,j)+PDzz(i,j);
-    }
-  }
-}
-
-void GRbf::RbfLapSurface_local_CPM(bool isLow,
-                                   const fullMatrix<double> &cntrs,
-                                   const fullMatrix<double> &normals,
-                                   fullMatrix<double> &Oper)
-{
-  isLocal = true;
-  int numNodes = cntrs.size1();
-  Oper.resize(3*numNodes,3*numNodes);
-
-  buildOctree(radius);
-  setup_level_set(cntrs,normals,extendedX,surfInterp);
-
-  for (int i = 0; i < numNodes; ++i){
-    std::vector<int> &pts = nodesInSphere[i];
-    int nbp = pts.size();
-    fullMatrix<double> nodes_in_sph(nbp,3), local_normals(nbp,3);
-    fullMatrix<double> LocalOper;
-
-    for (int k=0; k< nbp; k++){
-      nodes_in_sph(k,0) = cntrs(pts[k],0);
-      nodes_in_sph(k,1) = cntrs(pts[k],1);
-      nodes_in_sph(k,2) = cntrs(pts[k],2);
-      local_normals(k,0)=normals(pts[k],0);
-      local_normals(k,1)=normals(pts[k],1);
-      local_normals(k,2)=normals(pts[k],2);
-    }
-
-    LocalOper.setAll(0.0);
-    if (isLow) RbfLapSurface_global_CPM_low(nodes_in_sph,local_normals,LocalOper);
-    else       RbfLapSurface_global_CPM_high_2(nodes_in_sph,local_normals,LocalOper);
-
-    for (int j = 0; j < nbp; j++){
-      Oper(i,pts[j])=LocalOper(0,j);
-      Oper(i,pts[j]+numNodes)=LocalOper(0,j+nbp);
-      Oper(i,pts[j]+2*numNodes)=LocalOper(0,j+2*nbp);
-
-      Oper(i+numNodes,pts[j])=LocalOper(nbp,j);
-      Oper(i+numNodes,pts[j]+numNodes)=LocalOper(nbp,j+nbp);
-      Oper(i+numNodes,pts[j]+2*numNodes)=LocalOper(nbp,j+2*nbp);
-
-      Oper(i+2*numNodes,pts[j])=LocalOper(2*nbp,j);
-      Oper(i+2*numNodes,pts[j]+numNodes)=LocalOper(2*nbp,j+nbp);
-      Oper(i+2*numNodes,pts[j]+2*numNodes)=LocalOper(2*nbp,j+2*nbp);
-    }
-
-  }
-}
-
-void GRbf::RbfLapSurface_local_CPM_sparse(std::vector<MVertex*> &bndVertices, bool isLow,
-                                          const fullMatrix<double> &cntrs,
-                                          const fullMatrix<double> &normals,
-                                          linearSystem<double> &sys)
-{
-#if defined(HAVE_SOLVER)
-  std::set<int> bndIndices;
-  for (size_t i = 0; i < bndVertices.size(); ++i) {
-    bndIndices.insert(_mapV[bndVertices[i]]);
-  }
-  isLocal = true;
-  int numNodes = cntrs.size1();
-
-  sys.setParameter("matrix_reuse", "same_matrix");
-  sys.allocate(3 * numNodes);
-
-  buildOctree(radius);
-  //setup_level_set(cntrs,normals,extendedX,surfInterp);
-
-  for (int i = 0; i < numNodes; ++i) {
-    std::vector<int> &pts = nodesInSphere[i];
-    if (bndIndices.count(i) > 0) {
-      sys.insertInSparsityPattern(i, i);
-      for (unsigned int j = 0; j < pts.size(); ++j) {
-        sys.insertInSparsityPattern(i + numNodes, pts[j]);
-        sys.insertInSparsityPattern(i + 2 * numNodes, pts[j]);
-      }
-    }
-    else {
-      for (unsigned int j = 0; j < pts.size(); ++j) {
-        sys.insertInSparsityPattern(i, pts[j]);
-        sys.insertInSparsityPattern(i + numNodes, pts[j]);
-        sys.insertInSparsityPattern(i + 2 * numNodes, pts[j]);
-      }
-    }
-  }
-  for (int i = 0; i < numNodes; ++i){
-    std::vector<int> &pts = nodesInSphere[i];
-    int nbp = pts.size();
-    fullMatrix<double> nodes_in_sph(nbp,3), local_normals(nbp,3);
-    fullMatrix<double> LocalOper;
-
-    for (int k = 0; k < nbp; k++){
-      nodes_in_sph(k,0) = cntrs(pts[k],0);
-      nodes_in_sph(k,1) = cntrs(pts[k],1);
-      nodes_in_sph(k,2) = cntrs(pts[k],2);
-      local_normals(k,0)=normals(pts[k],0);
-      local_normals(k,1)=normals(pts[k],1);
-      local_normals(k,2)=normals(pts[k],2);
-    }
-
-    LocalOper.setAll(0.0);
-
-    if (isLow) RbfLapSurface_global_CPM_low(nodes_in_sph,local_normals,LocalOper);
-    else       RbfLapSurface_global_CPM_high_2(nodes_in_sph,local_normals,LocalOper);
-
-    bool isBnd = (bndIndices.count(i) > 0);
-    if (isBnd) {
-      sys.addToMatrix(i, i, 1.);
-    }
-    for (int j = 0; j < nbp; j++){
-      if (!isBnd) {
-        sys.addToMatrix(i, pts[j], LocalOper(0,j));
-        sys.addToMatrix(i, pts[j] + numNodes, LocalOper(0,j + nbp));
-        sys.addToMatrix(i, pts[j] + 2 * numNodes, LocalOper(0,j + 2 * nbp));
-      }
-
-      sys.addToMatrix(i + numNodes, pts[j], LocalOper(nbp,j));
-      sys.addToMatrix(i + numNodes, pts[j] + numNodes, LocalOper(nbp,j + nbp));
-      sys.addToMatrix(i + numNodes, pts[j] + 2 * numNodes, LocalOper(nbp,j + 2 * nbp));
-
-      sys.addToMatrix(i + 2 * numNodes, pts[j], LocalOper(2 * nbp,j));
-      sys.addToMatrix(i + 2 * numNodes, pts[j] + numNodes, LocalOper(2 * nbp,j + nbp));
-      sys.addToMatrix(i + 2 * numNodes, pts[j] + 2 * numNodes, LocalOper(2 * nbp,j + 2 * nbp));
-    }
-  }
-#endif
-}
-
-// NEW METHOD #1 CPM GLOBAL HIGH
-void GRbf::RbfLapSurface_global_CPM_high_2(const fullMatrix<double> &cntrs,
-					   const fullMatrix<double> &normals,
-					   fullMatrix<double> &Oper)
-{
-  Msg::Info("***Building Laplacian operator");
-  int numNodes = cntrs.size1();
-  int nnTot = 3*numNodes;
-  Oper.resize(nnTot,nnTot);
-
-  fullMatrix<double> sx, sy, sz, sxx, sxy, sxz,syy, syz, szz;
-  fullMatrix<double> A, Ax, Ay, Az, Axx, Axy, Axz, Ayy, Ayz, Azz, Alap, AOper, extX, surf;
-
-  setup_level_set(cntrs,normals,extX,surf);
-  if (!isLocal) extendedX = extX;
-  if (!isLocal) surfInterp = surf;
-
-  // Find derivatives of the surface interpolant
-  evalRbfDer(1,extX,cntrs,surf,sx);
-  evalRbfDer(2,extX,cntrs,surf,sy);
-  evalRbfDer(3,extX,cntrs,surf,sz);
-  evalRbfDer(11,extX,cntrs,surf,sxx);
-  evalRbfDer(12,extX,cntrs,surf,sxy);
-  evalRbfDer(13,extX,cntrs,surf,sxz);
-  evalRbfDer(22,extX,cntrs,surf,syy);
-  evalRbfDer(23,extX,cntrs,surf,syz);
-  evalRbfDer(33,extX,cntrs,surf,szz);
-
-   // Finds differentiation matrices
-  A=generateRbfMat(0,extX,extX);
-  Ax=generateRbfMat(1,extX,cntrs);
-  Ay=generateRbfMat(2,extX,cntrs);
-  Az=generateRbfMat(3,extX,cntrs);
-  Axx=generateRbfMat(11,extX,cntrs);
-  Axy=generateRbfMat(12,extX,cntrs);
-  Axz=generateRbfMat(13,extX,cntrs);
-  Ayy=generateRbfMat(22,extX,cntrs);
-  Ayz=generateRbfMat(23,extX,cntrs);
-  Azz=generateRbfMat(33,extX,cntrs);
-  Alap=generateRbfMat(222,extX,cntrs);
-
-  // Fills up the operator matrix
-  AOper.resize(nnTot, nnTot);
-  for (int i = 0; i < numNodes; ++i){
-    for (int j = 0; j < nnTot; ++j){
-      AOper(i,j) = Alap(i,j);
-      AOper(i+numNodes,j)=sx(i,0)*Ax(i,j)+sy(i,0)*Ay(i,j)+sz(i,0)*Az(i,j);
-      AOper(i+2*numNodes,j)=sx(i,0)*sx(i,0)*Axx(i,j)+sy(i,0)*sy(i,0)*Ayy(i,j)+sz(i,0)*sz(i,0)*Azz(i,j)+2*sx(i,0)*sy(i,0)*Axy(i,j)+2*sx(i,0)*sz(i,0)*Axz(i,j)+2*sy(i,0)*sz(i,0)*Ayz(i,j)+(sx(i,0)*sxx(i,0)+sy(i,0)*sxy(i,0)+sz(i,0)*sxz(i,0))*Ax(i,j)+(sx(i,0)*sxy(i,0)+sy(i,0)*syy(i,0)+sz(i,0)*syz(i,0))*Ay(i,j)+(sx(i,0)*sxz(i,0)+sy(i,0)*syz(i,0)+sz(i,0)*szz(i,0))*Az(i,j);
-    }
-  }
-  A.invertInPlace();
-  Oper.gemm(AOper, A, 1.0, 0.0);
-
-  Msg::Info("*** RBF built Laplacian operator");
-}
-
-//NEW METHOD #2 CPM GLOBAL HIGH
-//Produces a nxn differentiation matrix (like the projection method)
-//So the local method for this is the local projection method
-void GRbf::RbfLapSurface_global_CPM_high(const fullMatrix<double> &cntrs,
-					const fullMatrix<double> &normals,
-					fullMatrix<double> &Oper)
-{
-  Msg::Debug("*** RBF ... building Laplacian operator");
-  int numNodes = cntrs.size1();
-  int nnTot = 3*numNodes;
-  Oper.resize(numNodes,numNodes);
-
-  fullMatrix<double> sx(numNodes,1), sy(numNodes,1), sz(numNodes,1), sxx(numNodes,1), sxy(numNodes,1), sxz(numNodes,1),syy(numNodes,1), syz(numNodes,1), szz(numNodes,1);
-  fullMatrix<double> A(nnTot,nnTot), Ax(numNodes,nnTot), Ay(numNodes,nnTot), Az(numNodes,nnTot), Axx(numNodes,nnTot), Axy(numNodes,nnTot), Axz(numNodes,nnTot), Ayy(numNodes,nnTot), Ayz(numNodes,nnTot), Azz(numNodes,nnTot), Alap(numNodes,nnTot), AOper(nnTot,nnTot), Temp(numNodes,nnTot), extX(nnTot,3), surf(nnTot,1);
-
-  setup_level_set(cntrs,normals,extX,surf);
-  if (!isLocal) extendedX = extX;
-  if (!isLocal) surfInterp = surf;
-
-  // Find derivatives of the surface interpolant
-  evalRbfDer(1,extX,cntrs,surf,sx);
-  evalRbfDer(2,extX,cntrs,surf,sy);
-  evalRbfDer(3,extX,cntrs,surf,sz);
-  evalRbfDer(11,extX,cntrs,surf,sxx);
-  evalRbfDer(12,extX,cntrs,surf,sxy);
-  evalRbfDer(13,extX,cntrs,surf,sxz);
-  evalRbfDer(22,extX,cntrs,surf,syy);
-  evalRbfDer(23,extX,cntrs,surf,syz);
-  evalRbfDer(33,extX,cntrs,surf,szz);
-
-  // Finds differentiation matrices
-  A=generateRbfMat(0,extX,extX);
-  Ax=generateRbfMat(1,extX,cntrs);
-  Ay=generateRbfMat(2,extX,cntrs);
-  Az=generateRbfMat(3,extX,cntrs);
-  Axx=generateRbfMat(11,extX,cntrs);
-  Axy=generateRbfMat(12,extX,cntrs);
-  Axz=generateRbfMat(13,extX,cntrs);
-  Ayy=generateRbfMat(22,extX,cntrs);
-  Ayz=generateRbfMat(23,extX,cntrs);
-  Azz=generateRbfMat(33,extX,cntrs);
-  Alap=generateRbfMat(222,extX,cntrs);
-
-  // Fills up the operator matrix
-  for (int i = 0; i < numNodes; ++i){
-    for (int j = 0; j < nnTot; ++j){
-      AOper(i,j) = A(i,j);
-      AOper(i+numNodes,j)=sx(i,0)*Ax(i,j)+sy(i,0)*Ay(i,j)+sz(i,0)*Az(i,j);
-      AOper(i+2*numNodes,j)=sx(i,0)*sx(i,0)*Axx(i,j)+sy(i,0)*sy(i,0)*Ayy(i,j)+sz(i,0)*sz(i,0)*Azz(i,j)+2*sx(i,0)*sy(i,0)*Axy(i,j)+2*sx(i,0)*sz(i,0)*Axz(i,j)+2*sy(i,0)*sz(i,0)*Ayz(i,j)+(sx(i,0)*sxx(i,0)+sy(i,0)*sxy(i,0)+sz(i,0)*sxz(i,0))*Ax(i,j)+(sx(i,0)*sxy(i,0)+sy(i,0)*syy(i,0)+sz(i,0)*syz(i,0))*Ay(i,j)+(sx(i,0)*sxz(i,0)+sy(i,0)*syz(i,0)+sz(i,0)*szz(i,0))*Az(i,j);
-    }
-  }
-  AOper.invertInPlace();
-  Alap.mult(AOper,Temp);
-  for (int i = 0; i < numNodes; ++i){
-    for (int j = 0; j < numNodes; ++j){
-      Oper(i,j) = Temp(i,j);
-    }
-  }
-  Msg::Info("*** RBF built Laplacian operator");
-}
-
-void GRbf::RbfLapSurface_global_CPM_low(const fullMatrix<double> &cntrs,
-                                        const fullMatrix<double> &normals,
-                                        fullMatrix<double> &Oper)
-{
-  int numNodes = cntrs.size1();
-  int nnTot = 3*numNodes;
-  Oper.resize(nnTot,nnTot);
-
-  fullMatrix<double> sx(nnTot,1),sy(nnTot,1),sz(nnTot,1);
-  fullMatrix<double> PLap(numNodes,nnTot), extX(nnTot,3), surf(nnTot,1);
-  fullMatrix<double> norm(nnTot,3), extRBFX(2*numNodes,3), Ix2extX(2*numNodes,nnTot);
-
-  //Stage 1 : The Arbitrary surface
-  setup_level_set(cntrs,normals,extX,surf);
-  if (!isLocal) extendedX = extX;
-  if (!isLocal) surfInterp = surf;
-
-  //Computes the normal vectors to the surface at each node
-  evalRbfDer(1,extX,extX,surf,sx);
-  evalRbfDer(2,extX,extX,surf,sy);
-  evalRbfDer(3,extX,extX,surf,sz);
-  for (int i = 0; i < nnTot; ++i){
-    double normFactor = sqrt(sx(i,0)*sx(i,0)+sy(i,0)*sy(i,0)+sz(i,0)*sz(i,0));
-    sx(i,0) = sx(i,0)/normFactor;
-    sy(i,0) = sy(i,0)/normFactor;
-    sz(i,0) = sz(i,0)/normFactor;
-    norm(i,0) = sx(i,0);norm(i,1) = sy(i,0);norm(i,2) = sz(i,0);
-  }
-
-  //Computes the inside and outside layers nodes of the surface
-  for (int i = 0; i < numNodes; ++i){
-    for (int j = 0; j < 3; ++j){
-      extRBFX(i,j) = cntrs(i,j)-delta*norm(i,j);
-      extRBFX(i+numNodes,j) = cntrs(i,j)+delta*norm(i,j);
-    }
-  }
-
-  //Computes the gradient operators
-  RbfOp(0,extX,extRBFX,Ix2extX); //'0' for interpolation
-  RbfOp(222,extX,cntrs,PLap); //'222' for the Laplacian
-
-  // Fills up the operator matrix
-  for (int i = 0; i < numNodes; i++){
-    for (int j = 0; j < nnTot; ++j){
-      Oper(i,j) = PLap(i,j);
-      double del = (i == j) ? -1.0: 0.0;
-      //double pos1 = (i+numNodes == j) ? 1.0: 0.0;
-      //double pos2 = (i+2*numNodes == j) ? 1.0: 0.0;
-      Oper(i+numNodes,j) = del +Ix2extX(i,j);//+  pos1; //
-      Oper(i+2*numNodes,j) = del + Ix2extX(i+numNodes,j); //+ pos2; //
-    }
-  }
-
-}
-
-void GRbf::solveHarmonicMap_sparse(linearSystem<double> &sys, int numNodes,
-                                   const std::vector<MVertex*> &bcNodes,
-                                   const std::vector<double> &coords,
-                                   std::map<MVertex*, SPoint3> &rbf_param)
-{
-#if defined(HAVE_SOLVER)
-  Msg::Info("*** RBF ... solving map");
-	printf("system = %p\n", &sys);
-  int nb = numNodes * 3;
-  UV.resize(nb,2);
-  for (int j = 0; j < 2; ++j) {
-    sys.zeroRightHandSide();
-    //UNIT CIRCLE
-    for (unsigned int i = 0; i < bcNodes.size(); i++) {
-      std::set<MVertex *>::iterator itN = myNodes.find(bcNodes[i]);
-      if (itN != myNodes.end()){
-        std::map<MVertex*, int>::iterator itm = _mapV.find(bcNodes[i]);
-        double theta = 2 * M_PI * coords[i];
-        int iFix = itm->second;
-        sys.addToRightHandSide(iFix, ((j == 0) ? cos(theta) : sin(theta)));
-      }
-    }
-    sys.systemSolve();
-	for (int i = 0; i < nbNodes; ++i) {
-      sys.getFromSolution(i, UV(i, j));
-    }
-  }
-
-  //SQUARE
- // for(std::set<MVertex *>::iterator itv = myNodes.begin(); itv !=myNodes.end(); ++itv){
- //   MVertex *v = *itv;
- //   if (v->getNum() == 1){ //2900){
- //     std::map<MVertex*, int>::iterator itm = _mapV.find(v);
- //     int iFix = itm->second;
- //     for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
- //     Oper(iFix,iFix) = 1.0;
- //     F(iFix,0) = 0.0;
- //     F(iFix,1) = 0.0;
- //   }
- //   if (v->getNum() == 2){//1911){
- //     std::map<MVertex*, int>::iterator itm = _mapV.find(v);
- //     int iFix = itm->second;
- //     for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
- //     Oper(iFix,iFix) = 1.0;
- //     F(iFix,0) = 1.0;
- //     F(iFix,1) = 0.0;
- //   }
- //   if (v->getNum() == 3){//4844){
- //     std::map<MVertex*, int>::iterator itm = _mapV.find(v);
- //     int iFix = itm->second;
- //     for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
- //     Oper(iFix,iFix) = 1.0;
- //     F(iFix,0) = 1.0;
- //     F(iFix,1) = 1.0;
- //   }
- //   if (v->getNum() == 4){//3187){
- //     std::map<MVertex*, int>::iterator itm = _mapV.find(v);
- //     int iFix = itm->second;
- //     for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
- //     Oper(iFix,iFix) = 1.0;
- //     F(iFix,0) = 0.0;
- //     F(iFix,1) = 1.0;
- //   }
- // }
-
-  //ANN UVtree
-#if defined (HAVE_ANN)
-  double dist_min = 1.e6;
-  ANNpointArray UVnodes = annAllocPts(nbNodes, 3);
-  for(int i = 0; i < nbNodes; i++){
-    UVnodes[i][0] = UV(i,0);
-    UVnodes[i][1] = UV(i,1);
-    UVnodes[i][2] = 0.0;
-    for(int j = i+1; j < nbNodes; j++){
-      double dist = sqrt((UV(i,0)-UV(j,0))*(UV(i,0)-UV(j,0))+
-    			 (UV(i,1)-UV(j,1))*(UV(i,1)-UV(j,1)));
-      if (dist<dist_min) dist_min = dist;
-    }
-  }
-  deltaUV = 0.6*dist_min;
-  UVkdtree = new ANNkd_tree(UVnodes, nbNodes, 3);
-#endif
-
-  //interpolate
-  fullMatrix<double> UVall(allCenters.size1(), 3);
-  evalRbfDer(0,centers,allCenters,UV,UVall);
-
-  //fill rbf_param
-  std::map<MVertex*, int>::iterator itm = _mapAllV.begin();
-  for (; itm != _mapAllV.end(); itm++){
-    int index = itm->second;
-    SPoint3 coords(UVall(index,0), UVall(index,1), 0.0);
-    rbf_param.insert(std::make_pair(itm->first,coords));
-  }
-
-  Msg::Info("*** RBF solved map");
-  exportParametrizedMesh(UV, nbNodes);
-#endif
-}
-
-void GRbf::solveHarmonicMap(fullMatrix<double> Oper,
-			    std::vector<MVertex*> bcNodes,
-			    std::vector<double> coords,
-			    std::map<MVertex*, SPoint3> &rbf_param)
-{
-  Msg::Info("*** RBF ... solving map");
-  int nb = Oper.size2();
-  UV.resize(nb,2);
-
-  fullMatrix<double> F(nb,2);
-  F.scale(0.0);
-
-  //UNIT CIRCLE
-  for (unsigned int i = 0; i < bcNodes.size(); i++){
-     std::set<MVertex *>::iterator itN = myNodes.find(bcNodes[i]);
-      if (itN != myNodes.end()){
-  	std::map<MVertex*, int>::iterator itm = _mapV.find(bcNodes[i]);
-  	double theta = 2 * M_PI * coords[i];
-  	int iFix = itm->second;
-  	for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
-  	Oper(iFix,iFix) = 1.0;
-  	F(iFix,0) = cos(theta);
-  	F(iFix,1) = sin(theta);
-    }
-  }
-
-  //SQUARE
- // for(std::set<MVertex *>::iterator itv = myNodes.begin(); itv !=myNodes.end(); ++itv){
- //   MVertex *v = *itv;
- //   if (v->getNum() == 1){ //2900){
- //     std::map<MVertex*, int>::iterator itm = _mapV.find(v);
- //     int iFix = itm->second;
- //     for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
- //     Oper(iFix,iFix) = 1.0;
- //     F(iFix,0) = 0.0;
- //     F(iFix,1) = 0.0;
- //   }
- //   if (v->getNum() == 2){//1911){
- //     std::map<MVertex*, int>::iterator itm = _mapV.find(v);
- //     int iFix = itm->second;
- //     for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
- //     Oper(iFix,iFix) = 1.0;
- //     F(iFix,0) = 1.0;
- //     F(iFix,1) = 0.0;
- //   }
- //   if (v->getNum() == 3){//4844){
- //     std::map<MVertex*, int>::iterator itm = _mapV.find(v);
- //     int iFix = itm->second;
- //     for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
- //     Oper(iFix,iFix) = 1.0;
- //     F(iFix,0) = 1.0;
- //     F(iFix,1) = 1.0;
- //   }
- //   if (v->getNum() == 4){//3187){
- //     std::map<MVertex*, int>::iterator itm = _mapV.find(v);
- //     int iFix = itm->second;
- //     for (int j = 0; j < nb; ++j) Oper(iFix,j) = 0.0;
- //     Oper(iFix,iFix) = 1.0;
- //     F(iFix,0) = 0.0;
- //     F(iFix,1) = 1.0;
- //   }
- // }
-
-  Oper.invertInPlace();
-  Oper.mult(F, UV);
-
-  //ANN UVtree
-#if defined (HAVE_ANN)
-  double dist_min = 1.e6;
-  ANNpointArray UVnodes = annAllocPts(nbNodes, 3);
-  for(int i = 0; i < nbNodes; i++){
-    UVnodes[i][0] = UV(i,0);
-    UVnodes[i][1] = UV(i,1);
-    UVnodes[i][2] = 0.0;
-    for(int j = i+1; j < nbNodes; j++){
-      double dist = sqrt((UV(i,0)-UV(j,0))*(UV(i,0)-UV(j,0))+
-    			 (UV(i,1)-UV(j,1))*(UV(i,1)-UV(j,1)));
-      if (dist<dist_min) dist_min = dist;
-    }
-  }
-  deltaUV = 0.6*dist_min;
-  UVkdtree = new ANNkd_tree(UVnodes, nbNodes, 3);
-#endif
-
-  //interpolate
-  fullMatrix<double> UVall(allCenters.size1(), 3);
-  evalRbfDer(0,centers,allCenters,UV,UVall);
-
-  //fill rbf_param
-  std::map<MVertex*, int>::iterator itm = _mapAllV.begin();
-  for (; itm != _mapAllV.end(); itm++){
-    int index = itm->second;
-    SPoint3 coords(UVall(index,0), UVall(index,1), 0.0);
-    rbf_param.insert(std::make_pair(itm->first,coords));
-  }
-
-  Msg::Info("*** RBF solved map");
-  exportParametrizedMesh(UV, nbNodes);
-}
-
-bool GRbf::UVStoXYZ(const double  u_eval, const double v_eval,
-		    double &XX, double &YY, double &ZZ,
-		    SVector3 &dXdu, SVector3& dXdv, int num_neighbours)
-{
-  if (u_eval == lastU && v_eval == lastV){
-    XX = lastX;
-    YY = lastY;
-    ZZ = lastZ;
-    dXdu = lastDXDU;
-    dXdv = lastDXDV;
-    return true;
-  }
-
-  num_neighbours = std::min(num_neighbours, nbNodes);
-  fullMatrix<double> u_vec(num_neighbours,3), xyz_local(num_neighbours,3);
-  fullMatrix<double> u_vec_eval(1, 3), nodes_eval(1,3), xu(1,3), xv(1,3);
-  u_vec_eval(0,0) = u_eval;
-  u_vec_eval(0,1) = v_eval;
-  u_vec_eval(0,2) = 0.0;
-
-  double dist_min  = 1.e6;
-
-#if defined (HAVE_ANN)
-  double uvw[3] = { u_eval, v_eval, 0.0 };
-  ANNidxArray index = new ANNidx[num_neighbours];
-  ANNdistArray dist = new ANNdist[num_neighbours];
-  UVkdtree->annkSearch(uvw, num_neighbours, index, dist);
-
-  for (int i = 0; i < num_neighbours; i++){
-
-    u_vec(i,0) = UV(index[i],0);
-    u_vec(i,1) = UV(index[i],1);
-    u_vec(i,2) = 0.0;
-
-    xyz_local(i,0) = extendedX(index[i],0);
-    xyz_local(i,1) = extendedX(index[i],1);
-    xyz_local(i,2) = extendedX(index[i],2);
-
-    for (int j = i+1; j < num_neighbours; j++){
-      double dist = sqrt((UV(index[i],0)-UV(index[j],0))*(UV(index[i],0)-UV(index[j],0))+
-    			 (UV(index[i],1)-UV(index[j],1))*(UV(index[i],1)-UV(index[j],1)));
-      if (dist<dist_min && dist > 1.e-5) dist_min = dist;
-    }
-  }
-  delete [] index;
-  delete [] dist;
-#endif
-
-  _inUV = 1;
-  deltaUV = 0.3*dist_min;
-  evalRbfDer(0, u_vec, u_vec_eval,xyz_local, nodes_eval);
-  evalRbfDer(1, u_vec, u_vec_eval,xyz_local, xu);
-  evalRbfDer(2, u_vec, u_vec_eval,xyz_local, xv);
-  _inUV= 0;
-
-  XX = nodes_eval(0,0)*sBox;
-  YY = nodes_eval(0,1)*sBox;
-  ZZ = nodes_eval(0,2)*sBox;
-  dXdu = SVector3(xu(0,0)*sBox, xu(0,1)*sBox, xu(0,2)*sBox);
-  dXdv = SVector3(xv(0,0)*sBox, xv(0,1)*sBox, xv(0,2)*sBox);
-
-  //store last computation
-  lastU = u_eval;
-  lastV = v_eval;
-  lastX = XX;
-  lastY = YY;
-  lastZ = ZZ;
-  lastDXDU = dXdu;
-  lastDXDV = dXdv;
-  return true;
-}
diff --git a/Geo/GRbf.h b/Geo/GRbf.h
deleted file mode 100644
index de1db4e5397f230caa456336d6c779f94b67c81e..0000000000000000000000000000000000000000
--- a/Geo/GRbf.h
+++ /dev/null
@@ -1,183 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-//
-// Contributed by FIXME
-
-#ifndef _RBF_H_
-#define _RBF_H_
-
-#include <math.h>
-#include <vector>
-#include "fullMatrix.h"
-#include "SPoint3.h"
-#include "SVector3.h"
-#include "MVertex.h"
-#include "Context.h"
-
-template <class t> class linearSystem;
-
-#if defined(HAVE_ANN)
-class ANNkd_tree;
-#endif
-
-class Sphere{
- public:
-  int index;
-  SPoint3 center;
-  double radius;
-};
-
-class GRbf {
-  std::map<MVertex*, int> _mapV;
-  std::map<MVertex*, int> _mapAllV;
-  std::map<int, std::vector<int> > nodesInSphere;
-
-  fullMatrix<double> matA, matAInv;
-  fullMatrix<double> matA_nn, matAInv_nn;
-
-  int nbNodes; //initial nodes
-  bool isLocal;
-
-  int _inUV;
-  double delta; //offset level set
-  double deltaUV; //offset level set
-  double radius;
-  double sBox;
-
-  SVector3 lastDXDU, lastDXDV;
-  double lastX, lastY, lastZ, lastU, lastV;
-
-  int radialFunctionIndex; // Index for the radial function used (0 - GA,1 - MQ, ... )
-
-  std::set<MVertex *> myNodes; //Used mesh vertices for light rbf
-  fullMatrix<double> centers; // Data centers (without duplicates)
-  fullMatrix<double> allCenters; // Data centers
-  fullMatrix<double> normals; // Data normals(without Duplicates)
-  fullMatrix<double> surfInterp;//level set
-  fullMatrix<double> extendedX;//X values extend in and out
-  fullMatrix<double> UV;//solution harmonic map laplu=0 and laplV=0
-
-#if defined (HAVE_ANN)
-  ANNkd_tree *XYZkdtree;
-  ANNkd_tree *UVkdtree;
-#endif
-
- public:
-
-  GRbf (double sizeBox, int variableEps, int rbfFun,
-	std::map<MVertex*, SVector3> normals,
-	std::set<MVertex *> allNodes, std::vector<MVertex*> bcNodes, bool isLocal = false);
-  ~GRbf();
-
-  //build octree
-  void buildOctree(double radius);
-  void buildXYZkdtree();
-
-  // Sets up the surface generation problem as suggested by Beatson et
-  // al. Introduction of 2 extra points per node. The function values
-  // at the nodes on the surface are set to 0 while the function
-  // values inside are set to -1 and outside to 1.
-  void setup_level_set(const fullMatrix<double> &cntrs,
-		       const fullMatrix<double> &normals,
-		       fullMatrix<double> &level_set_nodes,
-		       fullMatrix<double> &level_set_funvals);
-
-  // Evaluates the (p)th derivative of the radial function w.r.t. r^2 (not w.r.t. r)
-  // This is to avoid the introduction of removable singularities at r=0.
-  double evalRadialFnDer (int p, double dx, double dy, double dz, double ep);
-
-  // Generates the RBF collocation matrix for data in d-dimensions, associated with the
-  //(p)th derivative of the radial function w.r.t. the (q)th variable
-  fullMatrix<double> generateRbfMat(int p,
-				    const fullMatrix<double> &nodes1,
-				    const fullMatrix<double> &nodes2);
-
-  // Computes the interpolation(p==0) or the derivative (p!=0)
-  // operator(mxn) (n:number of centers, m: number of evaluation
-  // nodes)
-  void RbfOp(int p, // (p)th derivatives
-	     const fullMatrix<double> &cntrs,
-	     const fullMatrix<double> &nodes,
-	     fullMatrix<double> &D);
-
-  // Computes the interpolant(p==0) or the derivative (p!=0) of the
-  // function values entered and evaluates it at the new nodes
-  void evalRbfDer(int p, // (p)th derivatives
-		  const fullMatrix<double> &cntrs,
-		  const fullMatrix<double> &nodes,
-		  const fullMatrix<double> &fValues,
-		  fullMatrix<double> &fApprox);
-
-  // Finds surface differentiation matrix using the LOCAL projection method
-  void RbfLapSurface_local_projection(const fullMatrix<double> &cntrs,
-				      const fullMatrix<double> &normals,
-				      fullMatrix<double> &Oper);
-
-  // Finds global surface differentiation matrix using the projection method
-  void RbfLapSurface_global_projection2(const fullMatrix<double> &cntrs,
-		const fullMatrix<double> &normals,
-		fullMatrix<double> &Oper);
-
-  // Finds global surface differentiation matrix using the projection method
-  void RbfLapSurface_global_projection(const fullMatrix<double> &cntrs,
-				       const fullMatrix<double> &normals,
-				       fullMatrix<double> &Oper);
-
-  // Finds surface differentiation matrix (method CPML LOCAL)
-  void RbfLapSurface_local_CPM(bool isLow,
-			       const fullMatrix<double> &cntrs,
-			       const fullMatrix<double> &normals,
-			       fullMatrix<double> &Oper);
-
-  void RbfLapSurface_local_CPM_sparse(std::vector<MVertex*> &bndVertices, bool isLow,
-                                      const fullMatrix<double> &cntrs,
-                                      const fullMatrix<double> &normals,
-                                      linearSystem<double> &sys);
-
-  // Finds global surface differentiation matrix (method CPML)
-  void RbfLapSurface_global_CPM_low(const fullMatrix<double> &cntrs,
-				    const fullMatrix<double> &normals,
-				    fullMatrix<double> &D);
-
-  // Finds global surface differentiation matrix (method CPMH)
-  void RbfLapSurface_global_CPM_high(const fullMatrix<double> &cntrs,
-				     const fullMatrix<double> &normals,
-				     fullMatrix<double> &D);
-
-  // Second method that Finds global surface differentiation matrix (method CPMH)
-  void RbfLapSurface_global_CPM_high_2(const fullMatrix<double> &cntrs,
-				     const fullMatrix<double> &normals,
-				     fullMatrix<double> &D);
-
-  // Calculates the curvature of a surface at centers
-  void curvatureRBF(const fullMatrix<double> &cntrs,
-		    fullMatrix<double> &curvature);
-  void computeCurvature(const fullMatrix<double> &cntrs,
-			std::map<MVertex*, double>&rbf_curv);
-  void computeLocalCurvature(const fullMatrix<double> &cntrs,
-		       std::map<MVertex*, double>&rbf_curv);
-
-  //Finds the U,V,S (in the 0-level set) that are the 'num_neighbours'
-  //closest to u_eval and v_eval.  Thus in total, we're working with
-  //'3*num_neighbours' nodes Say that the vector 'index' gives us the
-  //indices of the closest points
-  bool UVStoXYZ(const double u_eval, const double v_eval,
-                double &XX, double &YY, double &ZZ,
-                SVector3 &dXdu, SVector3& dxdv, int num_neighbours=100);
-
-  void solveHarmonicMap(fullMatrix<double> Oper, std::vector<MVertex*> ordered,
-                        std::vector<double> coords, std::map<MVertex*, SPoint3> &rbf_param);
-  void solveHarmonicMap_sparse(linearSystem<double> &sys, int numNodes,
-                               const std::vector<MVertex*> &ordered,
-                               const std::vector<double> &coords,
-                               std::map<MVertex*, SPoint3> &rbf_param);
-
- inline const fullMatrix<double> getUV() {return UV;};
- inline const fullMatrix<double> getXYZ() {return centers;};
- inline const fullMatrix<double> getN() {return normals;};
-
-};
-
-#endif
diff --git a/Geo/GRegion.cpp b/Geo/GRegion.cpp
index bca79da37c3d5c455e800b8e7f92b6af8d15784b..e6cd748a64e74e6ca419e7e6dc2b9b8be0420bfb 100644
--- a/Geo/GRegion.cpp
+++ b/Geo/GRegion.cpp
@@ -19,7 +19,7 @@
 #include "GmshDefines.h"
 
 GRegion::GRegion(GModel *model, int tag)
-  : GEntity (model, tag), compound(0)
+  : GEntity (model, tag)
 {
   resetMeshAttributes();
 }
@@ -309,13 +309,6 @@ std::list<GEdge*> GRegion::edges() const
     std::list<GEdge*>::const_iterator it2 = e2.begin();
     while (it2 != e2.end()){
       GEdge *edge = *it2;
-
-      // FIXME: we need to fix the compound design and decide what to do; same
-      // thing for faces() (either store or compute the entities, either use
-      // original or compound entities, etc.)
-      if(edge->getCompound())
-        edge = (GEdge*)edge->getCompound();
-
       if(std::find(e.begin(), e.end(), edge) == e.end())
         e.push_back(edge);
       ++it2;
diff --git a/Geo/GRegion.h b/Geo/GRegion.h
index b9810d558720652f4476d80fc1a2e6894f505cf3..4679ab1b521e92d7f632c8375bf1e0603c350c97 100644
--- a/Geo/GRegion.h
+++ b/Geo/GRegion.h
@@ -21,7 +21,6 @@ class MPyramid;
 class MPolyhedron;
 class MTrihedron;
 class ExtrudeParams;
-class GRegionCompound;
 class BoundaryLayerColumns;
 
 // A model region.
@@ -32,7 +31,6 @@ class GRegion : public GEntity {
   std::list<GFace *> embedded_faces;
   std::list<GEdge *> embedded_edges;
   std::list<int> l_dirs;
-  GRegionCompound *compound; // this model ede belongs to a compound
 
   // replace faces (for gluing) for specific modelers, we have to
   // re-create internal data ...
@@ -118,10 +116,6 @@ class GRegion : public GEntity {
   // reset the mesh attributes to default values
   virtual void resetMeshAttributes();
 
-  // compound
-  void setCompound(GRegionCompound *grc) { compound = grc; }
-  GRegionCompound *getCompound() const { return compound; }
-
   struct {
     // do we recombine the tetrahedra of the mesh into hex?
     int recombine3D;
diff --git a/Geo/GRegionCompound.cpp b/Geo/GRegionCompound.cpp
deleted file mode 100644
index 0a7d8dcd46578ad756d4719380b6a68410fd12f6..0000000000000000000000000000000000000000
--- a/Geo/GRegionCompound.cpp
+++ /dev/null
@@ -1,88 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-//
-// Contributor(s):
-//   Emilie Marchandise
-//
-
-#include <stdlib.h>
-#include "GmshConfig.h"
-#include "GRegionCompound.h"
-#include "Numeric.h"
-
-GRegionCompound::GRegionCompound(GModel *m, int tag, std::vector<GRegion*> &compound)
-  : GRegion(m, tag), _compound(compound)
-{
-
-  for (unsigned int i = 0; i < _compound.size(); i++){
-    if(!_compound[i]){
-      Msg::Error("Incorrect region in compound region %d", tag);
-      return;
-    }
-  }
-  for (unsigned int i = 0; i < _compound.size(); i++)
-    _compound[i]->setCompound(this);
-  getBoundingFaces();
-}
-
-GRegionCompound::~GRegionCompound()
-{
-}
-
-void GRegionCompound::getBoundingFaces()
-{
-  std::set<GFace*> _unique;
-  std::multiset<GFace*> _touched;
-  std::vector<GRegion*>::iterator it = _compound.begin();
-  for ( ; it != _compound.end(); ++it){
-    std::list<GFace*> ed = (*it)->faces();
-    std::list<GFace*> :: iterator ite = ed.begin();
-    for ( ; ite != ed.end(); ++ite){
-      _touched.insert(*ite);
-    }
-  }
-  it = _compound.begin();
-  for ( ; it != _compound.end(); ++it){
-    std::list<GFace*> ed = (*it)->faces();
-    std::list<GFace*> :: iterator ite = ed.begin();
-    for ( ; ite != ed.end() ; ++ite){
-      if (!(*ite)->degenerate(0) && _touched.count(*ite) == 1) {
-        _unique.insert(*ite);
-      }
-    }
-  }
-
-  std::set<GFace*>::iterator itf = _unique.begin();
-  for ( ; itf != _unique.end(); ++itf){
-    printf("Compound Volume %d face %d \n", tag(), (*itf)->tag());
-    l_faces.push_back(*itf);
-    (*itf)->addRegion(this);
-  }
-}
-
-SBoundingBox3d  GRegionCompound::bounds() const
-{
-  Msg::Error("Cannot evaluate bounds on GRegion Compound");
-  return SBoundingBox3d(SPoint3());
-}
-
-double GRegionCompound::curvature(double par) const
-{
-  double k = 0.0;
-  Msg::Error("Cannot evaluate curvature on GRegionCompound");
-  return k;
-}
-
-GPoint GRegionCompound::point(double par) const
-{
-  Msg::Error("Cannot evaluate point on GRegionCompound");
-  return GPoint();
-}
-
-SVector3 GRegionCompound::firstDer(double par) const
-{
-  Msg::Error("Cannot evaluate firstDeriv on GRegionCompound");
-  return SVector3();
-}
diff --git a/Geo/GRegionCompound.h b/Geo/GRegionCompound.h
deleted file mode 100644
index bd7578c9f28e9367a159759431b89e6f69074db4..0000000000000000000000000000000000000000
--- a/Geo/GRegionCompound.h
+++ /dev/null
@@ -1,43 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-
-#ifndef _GREGION_COMPOUND_H_
-#define _GREGION_COMPOUND_H_
-
-#include <list>
-#include <map>
-#include "GRegion.h"
-#include "GFace.h"
-#include "GFaceCompound.h"
-
-/*
-A GRegionCompound is a model region that is the compound of model regions.
-
-It is assumed that all the regions of the compound have been meshed
-first and that all the faces of the compound region are compound surfaces.
-
-The compound can therefore be re-meshed using any volume mesh
-generator of gmsh!
-*/
-
-class GRegionCompound : public GRegion {
- public:
-  GRegionCompound(GModel *m, int tag, std::vector<GRegion*> &compound);
-  virtual ~GRegionCompound();
-  virtual SBoundingBox3d bounds() const;
-  virtual double curvature(double t) const;
-  virtual GPoint point(double par) const; 
-  virtual SVector3 firstDer(double par) const; 
-  virtual GEntity::GeomType geomType() const { return CompoundVolume; }
-  ModelType getNativeType() const { return GmshModel; }
-  void * getNativePtr() const { return 0; }
-
- protected:
-  std::vector<GRegion*> _compound;
-  void getBoundingFaces();
-};
-
-#endif
-
diff --git a/Geo/MVertex.cpp b/Geo/MVertex.cpp
index cd1535f1d86152f204593e1963c6472f9c11bcb9..b7588f2bb0375d1aa0d3f53f279ffe12e88bd430 100644
--- a/Geo/MVertex.cpp
+++ b/Geo/MVertex.cpp
@@ -10,7 +10,6 @@
 #include "GVertex.h"
 #include "GEdge.h"
 #include "GFace.h"
-#include "GFaceCompound.h"
 #include "discreteDiskFace.h"
 #include "GmshMessage.h"
 #include "StringUtils.h"
@@ -399,12 +398,6 @@ static void getAllParameters(MVertex *v, GFace *gf, std::vector<SPoint2> &params
 {
   params.clear();
 
-  if (gf->geomType() == GEntity::CompoundSurface ){
-    GFaceCompound *gfc = (GFaceCompound*) gf;
-    params.push_back(gfc->parFromVertex(v));
-    return;
-  }
-
 #if defined(HAVE_ANN) && defined(HAVE_SOLVER)
   if (gf->geomType() == GEntity::DiscreteDiskSurface ){
     discreteDiskFace *gfc = (discreteDiskFace*) gf;
@@ -510,12 +503,6 @@ bool reparamMeshEdgeOnFace(MVertex *v1, MVertex *v2, GFace *gf,
 bool reparamMeshVertexOnFace(MVertex *v, const GFace *gf, SPoint2 &param,
                              bool onSurface)
 {
-  if(gf->geomType() == GEntity::CompoundSurface){
-    GFaceCompound *gfc = (GFaceCompound*) gf;
-    param = gfc->parFromVertex(v);
-    return true;
-  }
-
 #if defined(HAVE_ANN) && defined(HAVE_SOLVER)
   if (gf->geomType() == GEntity::DiscreteDiskSurface ){
     discreteDiskFace *gfc = (discreteDiskFace*) gf;
diff --git a/Geo/discreteDiskFace.cpp b/Geo/discreteDiskFace.cpp
index e1a196f52132d363e9921d652e562df16521bc84..eff590d77ee18f76474cff015e5057ce9fab9308 100644
--- a/Geo/discreteDiskFace.cpp
+++ b/Geo/discreteDiskFace.cpp
@@ -180,7 +180,7 @@ static void discreteDiskFaceCentroid(void *a, double*c)
   c[2] = 0.0;
 }
 
-static int discreteDiskFaceInEle(void *a, double*c)// # mark
+static int discreteDiskFaceInEle(void *a, double*c)
 {
   discreteDiskFaceTriangle *t = (discreteDiskFaceTriangle *)a;
   double Xi[2];
@@ -196,55 +196,48 @@ static int discreteDiskFaceInEle(void *a, double*c)// # mark
 
 static bool orderVertices(const double &tot_length, const std::vector<MVertex*> &l,
                           std::vector<double> &coord)
-{ // called once by constructor ; organize the vertices for the linear system
+{
+  // called once by constructor ; organize the vertices for the linear system
   // expressing the mapping
   coord.clear();
   coord.push_back(0.);
-
   MVertex* first = l[0];
-
   for(unsigned int i=1; i < l.size(); i++){
-
     MVertex* next = l[i];
-
     const double length = sqrt( (next->x() - first->x()) * (next->x() - first->x()) +
 				(next->y() - first->y()) * (next->y() - first->y()) +
 				(next->z() - first->z()) * (next->z() - first->z()) );
-
     coord.push_back(coord[coord.size()-1] + length / tot_length);
-
     first = next;
-
   }
   return true;
 }
 
-/*BUILDER*/
 discreteDiskFace::discreteDiskFace(GFace *gf, triangulation* diskTriangulation,
-                                   int p, std::vector<GFace*> *CAD) :
-  GFace(gf->model(),diskTriangulation->idNum), _parent (gf), _ddft(NULL), oct(NULL)
+                                   int p, std::vector<GFace*> *CAD)
+  : GFace(gf->model(), diskTriangulation->idNum), _parent (gf), _ddft(NULL), oct(NULL)
 {
   initialTriangulation = diskTriangulation;
   std::vector<MElement*> mesh = diskTriangulation->tri;
   _order = p;
   _n = (p+1)*(p+2)/2;
   discrete_triangles.resize(mesh.size());
-  std::map<MVertex*,MVertex*> v2v;// mesh vertex |-> face vertex
+  std::map<MVertex*,MVertex*> v2v; // mesh vertex |-> face vertex
   std::map<MEdge,MVertex*,Less_Edge> ed2nodes; // edge to interior node(s)
   for (unsigned int i=0;i<mesh.size();i++){ // triangle by triangle
     std::vector<MVertex*> vs; // MTriangle vertices
-    for (unsigned int j=0; j<3; j++){ // loop over vertices AND edges of the current triangle
-      MVertex *v = mesh[i]->getVertex(j);// firstly, edge vertices
+    // loop over vertices AND edges of the current triangle
+    for (unsigned int j = 0; j < 3; j++){
+      MVertex *v = mesh[i]->getVertex(j); // firstly, edge vertices
       if (v->onWhat()->dim() == 2) {
-	std::map<MVertex*,MVertex*> :: iterator it = v2v.find(v);
+	std::map<MVertex*,MVertex*>::iterator it = v2v.find(v);
 	if (it == v2v.end()){
 	  MFaceVertex *vv;
-	  if (!CAD) vv  = new MFaceVertex ( v->x(),  v->y(),  v->z(), v->onWhat(), 0, 0);
+	  if(!CAD || (*CAD)[i] != v->onWhat()){
+            vv  = new MFaceVertex(v->x(), v->y(), v->z(), v->onWhat(), 0, 0);
+          }
 	  else{
-	    GFace *cad = (*CAD)[i];
-	    if(cad != v->onWhat())
-              Msg::Fatal("Line %d FILE %s : erroneous cad list",__LINE__,__FILE__);
-	    double pu,pv; v->getParameter(0,pu);v->getParameter(1,pv);
+	    double pu, pv; v->getParameter(0, pu); v->getParameter(1, pv);
 	    vv  = new MFaceVertex ( v->x(),  v->y(),  v->z(), v->onWhat(), pu, pv);
 	  }
 	  v2v[v] = vv;
@@ -293,7 +286,6 @@ discreteDiskFace::discreteDiskFace(GFace *gf, triangulation* diskTriangulation,
   //putOnView(gf->tag(),diskTriangulation->idNum,true,true);
   //printParamMesh();
 }
-/*end BUILDER*/
 
 discreteDiskFace::~discreteDiskFace()
 {
@@ -338,7 +330,6 @@ bool discreteDiskFace::parametrize() const
 
   linearSystem<double> * lsys_u, *lsys_v;
 
-
 #ifdef HAVE_MUMPS
   lsys_u = new linearSystemMUMPS<double>;
   lsys_v = new linearSystemMUMPS<double>;
@@ -389,7 +380,8 @@ bool discreteDiskFace::parametrize() const
   lsys_u->systemSolve();
   lsys_v->systemSolve();
   Msg::Debug("Systems solved");
-  for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
+  for(std::set<MVertex *>::iterator itv = allNodes.begin();
+      itv !=allNodes.end() ; ++itv){
     MVertex *v = *itv;
     double value_U, value_V;
     myAssemblerU.getDofValue(v, 0, 1, value_U);
@@ -415,15 +407,15 @@ bool discreteDiskFace::parametrize() const
   return true;
 }
 
-
-
 void discreteDiskFace::getTriangleUV(const double u,const double v,
 				     discreteDiskFaceTriangle **mt,
-				     double &_xi, double &_eta)const{
+				     double &_xi, double &_eta)const
+{
   double uv[3] = {u,v,0.};
   *mt = (discreteDiskFaceTriangle*) Octree_Search(uv,oct);
   if (!(*mt)) {
-    for (unsigned int i=0; i<discrete_triangles.size()-geoTriangulation->fillingHoles.size(); i++){
+    for (unsigned int i = 0; i < discrete_triangles.size() -
+           geoTriangulation->fillingHoles.size(); i++){
       discreteDiskFaceTriangle *ct = &_ddft[i];
       double Xi[2];
       int xxx = discreteDiskFaceInEle(ct, Xi);
@@ -434,7 +426,9 @@ void discreteDiskFace::getTriangleUV(const double u,const double v,
 	return;
       }
     }
-    Msg::Debug("discreteDiskFace::getTriangleUV(), didn't find the reference coordinate (xi;eta) for (u;v)=(%f;%f) among %d triangles",u,v,discrete_triangles.size()-geoTriangulation->fillingHoles.size());
+    Msg::Debug("discreteDiskFace::getTriangleUV(), didn't find the reference "
+               "coordinate (xi;eta) for (u;v)=(%f;%f) among %d triangles",
+               u,v,discrete_triangles.size()-geoTriangulation->fillingHoles.size());
     return;
   }
 
@@ -442,7 +436,8 @@ void discreteDiskFace::getTriangleUV(const double u,const double v,
   double U[2] = {u,v};
   bool pass = uv2xi(*mt,U,Xi);
   if (!pass){
-    Msg::Error("discreteDiskFace::getTriangleUV(), didn't find the reference coordinate (xi;eta) for (u;v)=(%f;%f)",u,v);
+    Msg::Error("discreteDiskFace::getTriangleUV(), didn't find the reference "
+               "coordinate (xi;eta) for (u;v)=(%f;%f)", u, v);
     return;
   }
   _xi = Xi[0];
@@ -453,7 +448,7 @@ bool discreteDiskFace::checkOrientationUV()
 {
   discreteDiskFaceTriangle *ct;
 
-  if(_order==1){
+  if(_order == 1){
     double current; // initial and current orientation
     ct = &_ddft[0];
     double p1[2] = {ct->p[0].x(), ct->p[0].y()};
@@ -471,7 +466,8 @@ bool discreteDiskFace::checkOrientationUV()
       else nbP++;
     }
     if (nbP*nbM){
-      Msg::Info("Map %d of the atlas : Triangles have different orientations (%d + / %d -)",tag(),nbP,nbM);
+      Msg::Info("Map %d of the atlas: triangles have different orientations (%d + / %d -)",
+                tag(), nbP, nbM);
       return false;
     }
     return true;
@@ -481,7 +477,8 @@ bool discreteDiskFace::checkOrientationUV()
     double min, max;
     std::vector<MVertex*> localVertices;
     localVertices.resize(_n);
-    for(unsigned int i=0; i<discrete_triangles.size()-geoTriangulation->fillingHoles.size(); i++){
+    for(unsigned int i=0; i<discrete_triangles.size() -
+          geoTriangulation->fillingHoles.size(); i++){
       ct = &_ddft[i];
       for(int j=0; j<_n; j++)
 	localVertices[j] = new MVertex(ct->p[j].x(),ct->p[j].y(),0.);
@@ -524,11 +521,14 @@ void discreteDiskFace::optimize()
   // -- generation of parametric nodes
   std::map<SPoint3,MVertex*> sp2mv;
   std::vector<MElement*> paramTriangles;
-  for(std::map<MVertex*,SPoint3>::iterator it=coordinates.begin(); it!= coordinates.end(); ++it)
+  for(std::map<MVertex*,SPoint3>::iterator it=coordinates.begin();
+      it != coordinates.end(); ++it)
     sp2mv[it->second] = new MVertex(it->second.x(),it->second.y(),0.);
   // -- generation of parametric triangles
-  paramTriangles.resize(discrete_triangles.size() - geoTriangulation->fillingHoles.size());
-  for(unsigned int i=0; i<discrete_triangles.size() -geoTriangulation->fillingHoles.size(); i++){
+  paramTriangles.resize(discrete_triangles.size() -
+                        geoTriangulation->fillingHoles.size());
+  for(unsigned int i = 0; i < discrete_triangles.size() -
+        geoTriangulation->fillingHoles.size(); i++){
     discreteDiskFaceTriangle* ct = &_ddft[i];
     std::vector<MVertex*> mv;
     mv.resize(ct->tri->getNumVertices());
@@ -551,36 +551,35 @@ void discreteDiskFace::optimize()
   // ---- discrete vertex
   std::set<GFace*, GEntityLessThan>::iterator it = paramDisk->firstFace();
   GFace *dgf = *it;
-  discreteVertex *dv = new discreteVertex(paramDisk,paramDisk->getMaxElementaryNumber(0)+1);
+  discreteVertex *dv = new discreteVertex(paramDisk,
+                                          paramDisk->getMaxElementaryNumber(0) + 1);
   sp2mv[coordinates[_U0[0]]]->setEntity(dv);
   dv->mesh_vertices.push_back(sp2mv[coordinates[_U0[0]]]);
   todelete.insert(sp2mv[coordinates[_U0[0]]]);
   paramDisk->add(dv);
   // ---- discrete edge
-  discreteEdge *de = new discreteEdge(paramDisk,paramDisk->getMaxElementaryNumber(1)+1,dv,dv);
+  discreteEdge *de = new discreteEdge(paramDisk,
+                                      paramDisk->getMaxElementaryNumber(1)+1, dv, dv);
   paramDisk->add(de);
   std::vector<MLine*> lines;
   for(unsigned int i=1; i<_U0.size(); i++){
     sp2mv[coordinates[_U0[i]]]->setEntity(de);
     de->mesh_vertices.push_back(sp2mv[coordinates[_U0[i]]]);
     todelete.insert(sp2mv[coordinates[_U0[i]]]);
-    lines.push_back(new MLine(sp2mv[coordinates[_U0[i-1]]],sp2mv[coordinates[_U0[i]]]));
+    lines.push_back(new MLine(sp2mv[coordinates[_U0[i-1]]],
+                              sp2mv[coordinates[_U0[i]]]));
   }
-  lines.push_back(new MLine(sp2mv[coordinates[_U0[_U0.size()-1]]],sp2mv[coordinates[_U0[0]]]));
+  lines.push_back(new MLine(sp2mv[coordinates[_U0[_U0.size()-1]]],
+                            sp2mv[coordinates[_U0[0]]]));
   de->setTopo(lines);
   de->createGeometry();// !!!! setTopo ... MLine's
 
-
-
   // optimization
   if(_order >1)
     HighOrderMeshOptimizer(paramDisk, optParams);
   else
     MeshQualityOptimizer(paramDisk,opt);
 
-
-
-
   // update the parametrization
   paramTriangles = e2e[0];
   for(unsigned int i=0; i< paramTriangles.size(); i++){
@@ -606,7 +605,6 @@ void discreteDiskFace::optimize()
 
   // cleaning
   delete paramDisk;
-
 #endif
 }
 
@@ -647,27 +645,24 @@ SPoint2 discreteDiskFace::parFromVertex(MVertex *v) const
   std::map<MVertex*,SPoint3>::iterator it = coordinates.find(v);
   if(it != coordinates.end()) return SPoint2(it->second.x(),it->second.y());
   // The 1D mesh has been re-done
-  if (v->onWhat()->dim()==1){
+  if (v->onWhat()->dim() == 1){
     if (v->onWhat()->geomType() == DiscreteCurve){
       discreteEdge *de = dynamic_cast<discreteEdge*> (v->onWhat());
-      if (de){
+      if(de){
 	MVertex *v1,*v2;
 	double xi;
 	de->interpolateInGeometry (v,&v1,&v2,xi); // modify
 	std::map<MVertex*,SPoint3>::iterator it1 = coordinates.find(v1);
 	std::map<MVertex*,SPoint3>::iterator it2 = coordinates.find(v2);
-	if(it1 == coordinates.end()) Msg::Fatal("FIXME TO DO %d %s",__LINE__,__FILE__);
-	if(it2 == coordinates.end()) Msg::Fatal("FIXME TO DO %d %s",__LINE__,__FILE__);
-	return SPoint2(it1->second.x(),it1->second.y()) * (1.-xi) +
-	  SPoint2(it2->second.x(),it2->second.y()) * xi; // modify
+	if(it1 != coordinates.end() && it2 != coordinates.end()){
+          return SPoint2(it1->second.x(),it1->second.y()) * (1.-xi) +
+            SPoint2(it2->second.x(),it2->second.y()) * xi; // modify
+        }
       }
     }
-    Msg::Fatal("FIXME TO DO %d %s",__LINE__,__FILE__);
   }
-  else if (v->onWhat()->dim()==0)
-    Msg::Fatal("discreteDiskFace::parFromVertex vertex classified on a model "
-               "vertex that is not part of the face");
 
+  Msg::Error("discreteDiskFace::parFromVertex failed");
   return SPoint2(0,0);
 }
 
@@ -678,15 +673,13 @@ SVector3 discreteDiskFace::normal(const SPoint2 &param) const
 
 double discreteDiskFace::curvatureMax(const SPoint2 &param) const
 {
-  throw;
-  return false;
+  return 0;
 }
 
 double discreteDiskFace::curvatures(const SPoint2 &param, SVector3 *dirMax, SVector3 *dirMin,
 				    double *curvMax, double *curvMin) const
 {
-  throw;
-  return false;
+  return 0;
 }
 
 Pair<SVector3, SVector3> discreteDiskFace::firstDer(const SPoint2 &param) const
@@ -709,8 +702,7 @@ Pair<SVector3, SVector3> discreteDiskFace::firstDer(const SPoint2 &param) const
 
   double dudxi[2][2] = {{0.,0.},{0.,0.}};
 
-  for (int io=0; io<_n; io++){
-
+  for (int io = 0; io < _n; io++){
     double X = tri->getVertex(io)->x();
     double Y = tri->getVertex(io)->y();
     double Z = tri->getVertex(io)->z();
@@ -732,7 +724,6 @@ Pair<SVector3, SVector3> discreteDiskFace::firstDer(const SPoint2 &param) const
 
     dudxi[1][0] += V*df[io][0];
     dudxi[1][1] += V*df[io][1];
-
   }
 
   double dxidu[2][2];
@@ -755,19 +746,18 @@ Pair<SVector3, SVector3> discreteDiskFace::firstDer(const SPoint2 &param) const
 
 void discreteDiskFace::secondDer(const SPoint2 &param,
 				 SVector3 *dudu, SVector3 *dvdv, SVector3 *dudv) const
-{ // cf Sauvage's thesis
-  return;
+{
+  // cf Sauvage's thesis
 }
 
 void discreteDiskFace::putOnView(int iFace, int iMap, bool Xu, bool Ux)
-{// #improveme  using built-in methods
+{
+  // FIXME using built-in methods
 
   char mybuffer [64];
 
   FILE *view_u=NULL, *view_v=NULL, *UVx=NULL, *UVy=NULL, *UVz=NULL;
 
-
-
   if(Xu){
     sprintf(mybuffer, "param_u_gface%d_part%d_order%d.pos",
 	    iFace, iMap,_order);
@@ -803,7 +793,8 @@ void discreteDiskFace::putOnView(int iFace, int iMap, bool Xu, bool Ux)
       fprintf(UVy,"View \"y(U)\"{\n");
       fprintf(UVz,"View \"z(U)\"{\n");
     }
-    for (unsigned int i=0; i<discrete_triangles.size()-geoTriangulation->fillingHoles.size(); i++){
+    for (unsigned int i = 0; i < discrete_triangles.size() -
+           geoTriangulation->fillingHoles.size(); i++){
       discreteDiskFaceTriangle* my_ddft = &_ddft[i];
       if (_order == 1){
 	if(Xu){
@@ -893,26 +884,13 @@ void discreteDiskFace::putOnView(int iFace, int iMap, bool Xu, bool Ux)
   }
 }
 
-// useful for mesh generators
-// Intersection of a circle and a plane
-//FILE *allProblems = NULL;
-//void openProblemsON(void){
-//  allProblems = fopen ("op.pos","w");
-//}
-//void openProblemsOFF(void){
-//  fclose(allProblems);
-//  allProblems = NULL;
-//}
-
 GPoint discreteDiskFace::intersectionWithCircle(const SVector3 &n1, const SVector3 &n2,
 						const SVector3 &p, const double &R,
 						double uv[2]) const
 {
-
-
   SVector3 n = crossprod(n1,n2);
   n.normalize();
-  //  printf("n %g %g %g\n",n.x(), n.y(), n.z());
+
   const int N = (int)(discrete_triangles.size()-geoTriangulation->fillingHoles.size());
   for (int i=-1;i<N;i++){
     discreteDiskFaceTriangle *ct = NULL;
@@ -1001,32 +979,18 @@ GPoint discreteDiskFace::intersectionWithCircle(const SVector3 &n1, const SVecto
   GPoint pp(0);
   pp.setNoSuccess();
   Msg::Debug("ARGG no success intersection circle");
-  //  Msg::Info("ARGG no success intersection circle");
-  //  printf("Point(1) = {%g,%g,%g};\n",p.x(),p.y(),p.z());
-  //  printf("Point(2) = {%g,%g,%g};\n",p.x()+d*n1.x(),p.y()+d*n1.y(),p.z()+d*n1.z());
-  //  printf("Point(3) = {%g,%g,%g};\n",p.x()+d*n2.x(),p.y()+d*n2.y(),p.z()+d*n2.z());
-
-  //  //  printf("Circle(4) = {2,1,3};\n");
-  //  printf("{%g,%g,%g};\n",n1.x(),n1.y(),n1.z());
-  //  printf("{%g,%g,%g};\n",n2.x(),n2.y(),n2.z());
-  //  printf("coucou --> \n");
-  //  if (allProblems){
-  //    fprintf(allProblems,"VP(%g,%g,%g){%g,%g,%g};\n",p.x(),p.y(),p.z(),R*n2.x(),R*n2.y(),R*n2.z());
-  //  }
-  //  getchar();
   return pp;
 }
 
-
 GPoint discreteDiskFace::intersectionWithCircle2(const SVector3 &n1, const SVector3 &n2,
 						const SVector3 &p, const double &d,
 						double uv[2]) const
 {
-
   // n2 is exterior
   SVector3 n = crossprod(n1,n2);
   n.normalize();
-  for (int i=-1;i<(int)(discrete_triangles.size()-geoTriangulation->fillingHoles.size());i++){
+  for (int i = -1; i < (int)(discrete_triangles.size() -
+                             geoTriangulation->fillingHoles.size()); i++){
     discreteDiskFaceTriangle *ct = NULL;
     double U,V;
     if (i == -1) getTriangleUV(uv[0],uv[1], &ct, U,V);
@@ -1118,7 +1082,8 @@ GPoint discreteDiskFace::intersectionWithCircle2(const SVector3 &n1, const SVect
   //  printf("{%g,%g,%g};\n",n2.x(),n2.y(),n2.z());
   //  printf("coucou --> \n");
     //  if (allProblems){
-    //    fprintf(allProblems,"VP(%g,%g,%g){%g,%g,%g};\n",p.x(),p.y(),p.z(),d*n2.x(),d*n2.y(),d*n2.z());
+    //    fprintf(allProblems,"VP(%g,%g,%g){%g,%g,%g};\n",
+    //            p.x(),p.y(),p.z(),d*n2.x(),d*n2.y(),d*n2.z());
     //  }
   //  getchar();
   return pp;
@@ -1126,7 +1091,8 @@ GPoint discreteDiskFace::intersectionWithCircle2(const SVector3 &n1, const SVect
 
 // computes some kind of maximal distance in a mesh
 
-static void addTo (std::map<MVertex*, std::vector<MElement*> > &v2t, MVertex *v, MElement *t)
+static void addTo(std::map<MVertex*, std::vector<MElement*> > &v2t,
+                  MVertex *v, MElement *t)
 {
   std::map<MVertex*, std::vector<MElement*> > :: iterator it = v2t.find(v);
   if (it == v2t.end()){
@@ -1145,26 +1111,16 @@ static void update(std::map<MVertex*,double> &Close, MVertex *v2, double d)
 
 }
 
-static MEdge getEdge (MElement *t, MVertex *v)
+static MEdge getEdge(MElement *t, MVertex *v)
 {
   for (int i=0;i<3;i++)
     if (t->getVertex(i) == v) return t->getEdge((i+1)%3);
   return MEdge();
 }
 
-/* #warning
-static double computeDistanceLinePoint (MVertex *v1, MVertex *v2, MVertex *v){
-
-  SVector3 U  = v2->point() - v1->point();
-  SVector3 BA = v2->point() - v->point();
-
-  SVector3 xx = crossprod(U,BA);
-  return xx.norm() / U.norm();
-
-}
-*/
-inline double computeDistance (MVertex *v1, double d1, MVertex *v2, double d2, MVertex *v){
-
+inline double computeDistance(MVertex *v1, double d1, MVertex *v2, double d2,
+                              MVertex *v)
+{
   //       o------------a
   //
   //
@@ -1179,9 +1135,6 @@ inline double computeDistance (MVertex *v1, double d1, MVertex *v2, double d2, M
 
   return std::min(d2+v2->distance(v),d1+v1->distance(v));
 
-
-
-
   double a = v2->distance(v1);
 
   // center (seed) to compute the distance (put it down)
@@ -1276,12 +1229,14 @@ double triangulation::geodesicDistance ()
       std::map<MVertex*,double>::iterator it1 = Fixed.find(ed.getVertex(1));
       //      printf("coucou %p %p\n",ed.getVertex(0),ed.getVertex(1));
       if (it0 != Fixed.end() && it1 == Fixed.end()){
-	double d = computeDistance (it->first,it->second,it0->first,it0->second,ed.getVertex(1));
+	double d = computeDistance (it->first,it->second,it0->first,it0->second,
+                                    ed.getVertex(1));
 	//	printf("neigh %d fixed 0 --> d = %g\n",i,d);
 	update(Close, ed.getVertex(1), d);
       }
       else if (it1 != Fixed.end() && it0 == Fixed.end()){
-	double d = computeDistance (it->first,it->second,it1->first,it1->second,ed.getVertex(0));
+	double d = computeDistance(it->first,it->second,it1->first,it1->second,
+                                   ed.getVertex(0));
 	//	printf("neigh %d fixed 1 --> d = %g\n",i,d);
 	update(Close, ed.getVertex(0), d);
       }
@@ -1290,7 +1245,7 @@ double triangulation::geodesicDistance ()
     if (Fixed.size() == v2t.size())break;
   }
 
-
+  /*
   char name[256];
   sprintf(name,"geodesicDistance%d.pos",iter);
   FILE *f = fopen(name,"w");
@@ -1302,13 +1257,12 @@ double triangulation::geodesicDistance ()
     fprintf(f,"ST(%g,%g,%g,%g,%g,%g,%g,%g,%g){%g,%g,%g};\n",
 	    tri[i]->getVertex(0)->x(),tri[i]->getVertex(0)->y(),tri[i]->getVertex(0)->z(),
 	    tri[i]->getVertex(1)->x(),tri[i]->getVertex(1)->y(),tri[i]->getVertex(1)->z(),
-	    tri[i]->getVertex(2)->x(),tri[i]->getVertex(2)->y(),tri[i]->getVertex(2)->z(),d0,d1,d2);
-
+	    tri[i]->getVertex(2)->x(),tri[i]->getVertex(2)->y(),tri[i]->getVertex(2)->z(),
+            d0,d1,d2);
   }
   fprintf(f,"};\n");
   fclose(f);
-
-
+  */
   return CLOSEST;
 }
 
@@ -1367,7 +1321,8 @@ void discreteDiskFace::printParamMesh()
   sprintf(buffer,"param_mesh%d.msh",tag());
   FILE* pmesh = fopen(buffer,"w");
   int count = 1;
-  fprintf(pmesh,"$MeshFormat\n2.2 0 8\n$EndMeshFormat\n$Nodes\n%u\n",(unsigned int)allNodes.size());
+  fprintf(pmesh,"$MeshFormat\n2.2 0 8\n$EndMeshFormat\n$Nodes\n%u\n",
+          (unsigned int)allNodes.size());
   for(std::set<MVertex*>::iterator it = allNodes.begin(); it!=allNodes.end(); ++it){
     fprintf(pmesh,"%d %f %f 0\n",count,(coordinates[(*it)]).x(),(coordinates[(*it)]).y());
     mv2int[*it] = count;
diff --git a/Geo/discreteEdge.cpp b/Geo/discreteEdge.cpp
index 29b53f1bab4ae0226e7bf5b6a91fb6b825f2ae90..81863528f0332d95650c443069aab2fc4c962e4b 100644
--- a/Geo/discreteEdge.cpp
+++ b/Geo/discreteEdge.cpp
@@ -20,8 +20,6 @@
 #include "GModelIO_GEO.h"
 #include "Geo.h"
 #include "OS.h"
-#include "Curvature.h"
-#include "GEdgeCompound.h"
 
 #if defined(HAVE_MESH)
 #include "meshGEdge.h"
@@ -489,34 +487,15 @@ SVector3 discreteEdge::firstDer(double par) const
 
 double discreteEdge::curvature(double par) const
 {
-  double tLoc;
-  int iEdge;
-  if(!getLocalParameter(par, iEdge, tLoc)) return MAX_LC;
-
-  double c0, c1;
-  Curvature& curvature  = Curvature::getInstance();
-  if( !Curvature::valueAlreadyComputed() ) {
-    Msg::Warning("Need to compute discrete curvature (in discreteEdge)");
-    Curvature::typeOfCurvature type = Curvature::RUSIN; //RUSIN; //RBF
-    curvature.computeCurvature(model(), type);
-  }
-
-  curvature.edgeNodalValues(lines[iEdge],c0, c1, 1);
-  double cv = (1-tLoc)*c0 + tLoc*c1;
-
-  return cv;
+  Msg::Error("Curvature for discrete edge not implemented yet");
+  return 0.;
 }
 
 double discreteEdge::curvatures(const double par, SVector3 *dirMax, SVector3 *dirMin,
                                 double *curvMax, double *curvMin) const
 {
-  if (getCompound()){
-    return getCompound()->curvatures(par, dirMax, dirMin, curvMax, curvMin);
-  }
-  else{
-    Msg::Error("Cannot evaluate curvatures and curvature directions on discrete edge");
-    return false;
-  }
+  Msg::Error("Cannot evaluate curvatures and curvature directions on discrete edge");
+  return false;
 }
 
 Range<double> discreteEdge::parBounds(int i) const
diff --git a/Geo/discreteEdge.h b/Geo/discreteEdge.h
index 179ed6204016b165e2d0babca96782bd13f5c84e..f76789d5a4ad804629a59ec0796ca57153d702ed 100644
--- a/Geo/discreteEdge.h
+++ b/Geo/discreteEdge.h
@@ -32,20 +32,20 @@ class discreteEdge : public GEdge {
   virtual Range<double> parBounds(int) const;
 
   bool getLocalParameter(const double &t, int &iEdge, double &tLoc) const;
-  void interpolateInGeometry (MVertex *v, MVertex **v1, MVertex **v2, double &xi) const; 
+  void interpolateInGeometry (MVertex *v, MVertex **v1, MVertex **v2, double &xi) const;
   void parametrize(std::map<GFace*, std::map<MVertex*, MVertex*,
                    std::less<MVertex*> > > &face2Verts,
                    std::map<GRegion*, std::map<MVertex*, MVertex*,
                    std::less<MVertex*> > > &region2Vert);
   void parametrize(std::map<MVertex*,MVertex*>& old2New);
-  
+
   void orderMLines();
   void setBoundVertices();
   void setTopo(std::vector<MLine*>);
   void createTopo();
   void createGeometry();
   void computeNormals () const;
-  virtual void mesh(bool) ;
+  virtual void mesh(bool verbose) ;
   void writeGEO(FILE *fp);
   int minimumDrawSegments() const {return 2*_pars.size();}
   MVertex * getGeometricalVertex (MVertex *v);
diff --git a/Geo/discreteFace.cpp b/Geo/discreteFace.cpp
index dc82256177f5b1b1f8c4536945d5b7004176c0d3..adfe66b9b2d62c6f159a289eeb84a11f4adb4bf5 100644
--- a/Geo/discreteFace.cpp
+++ b/Geo/discreteFace.cpp
@@ -13,7 +13,6 @@
 #include "discreteDiskFace.h"
 #include "GModelIO_GEO.h"
 #include "Geo.h"
-#include "GFaceCompound.h"
 #include "Context.h"
 #include "OS.h"
 #include "meshPartitionObjects.h"
@@ -75,7 +74,8 @@ static inline void crouzeixRaviart(const std::vector<double> &U,std::vector<doub
     F[i] =  U[0] * (1.-2.*eta[i]) + U[1] * (2.*(xsi[i]+eta[i])-1.) + U[2] * (1-2.*xsi[i]);
 }
 
-discreteFace::discreteFace(GModel *model, int num) : GFace(model, num)
+discreteFace::discreteFace(GModel *model, int num, bool meshable)
+  : GFace(model, num), _meshable(meshable)
 {
   Surface *s = CreateSurface(num, MSH_SURF_DISCRETE);
   Tree_Add(model->getGEOInternals()->Surfaces, &s);
@@ -189,18 +189,13 @@ void discreteFace::secondDer(const SPoint2 &param,
 
 void discreteFace::createGeometry()
 {
-
   checkAndFixOrientation();
 
-
 #if defined(HAVE_SOLVER) && defined(HAVE_ANN)
-
-
-
   int order = 1;
   int nPart = 2;
   double eta = .5*5/(2.*3.14);
-  if (!_atlas.empty())return;
+  if (!_atlas.empty()) return;
 
   double dtSplit = 0.0;
 
@@ -213,12 +208,12 @@ void discreteFace::createGeometry()
   init->iter = iter++;
   allEdg2Tri = init->ed2tri;
   toSplit.push(init);
-  //  printf("%12.5E\n",(toSplit.top())->aspectRatio() );
+
   if((toSplit.top())->genus()!=0 ||
      (toSplit.top())->aspectRatio() > eta ||
      (toSplit.top())->seamPoint){
 
-    while( !toSplit.empty()){
+    while(!toSplit.empty()){
       std::vector<triangulation*> part;
       triangulation* tosplit = toSplit.top();
       toSplit.pop();
@@ -237,33 +232,26 @@ void discreteFace::createGeometry()
 	  toParam.push_back(part[i]);
 	  part[i]->idNum=id++;
 	}
-      }// end for i
-    }// !.empty()
-  }// end if it is not disk-like
+      }
+    }
+  }
   else{
     toParam.push_back(toSplit.top());
     toSplit.top()->idNum=id++;
   }
   updateTopology(toParam);
 
-
   /*
   FILE* debug = Fopen("tralala-init.pos","w");
   fprintf(debug,"View \"discreteEdges\"{\n");
   for(unsigned int j=0; j<toParam.size(); j++){
-
     std::list<GEdge*> ge = toParam[j]->my_GEdges;
     for(std::list<GEdge*>::iterator it = ge.begin(); it!=ge.end(); ++it){
       if((*it)->tag()==112 ){
-
 	std::vector<MLine*> ml = (*it)->lines;
-	printf("___(init) map %d, ge %d___ (%p)\n",j+1,(*it)->tag(),(*it));
 	for(unsigned int i=0; i<ml.size(); i++){
 	  ml[i]->writePOS(debug,true,false,false,false,false,false,1.,(*it)->tag());
-	  printf("%d[%d;%d]--",ml[i]->getNum(),ml[i]->getVertex(0)->getNum(),ml[i]->getVertex(1)->getNum());
 	}
-	printf("\n");
-
       }
 
     }
@@ -273,22 +261,21 @@ void discreteFace::createGeometry()
   */
 
   for(unsigned int i=0; i<toParam.size(); i++){
-
     fillHoles(toParam[i]);
-    //sprintf(name,"mapFilled%d.pos",i);
+    //sprintf(name, "mapFilled%d.pos",i);
     //toParam[i]->print(name, toParam[i]->idNum);
   }
 
-
   for(unsigned int i=0; i<toParam.size(); i++){
-    discreteDiskFace *df = new discreteDiskFace (this,toParam[i], order,(_CAD.empty() ? NULL : &_CAD));
-    df->printAtlasMesh();
-    df->printParamMesh();
+    discreteDiskFace *df = new discreteDiskFace
+      (this, toParam[i], order, (_CAD.empty() ? NULL : &_CAD));
+    //df->printAtlasMesh();
+    //df->printParamMesh();
     //df->putOnView(tag(), i, true,true);
     df->replaceEdges(toParam[i]->my_GEdges);
     _atlas.push_back(df);
   }
-  complex_crossField();
+  //complex_crossField();
 #endif
 }
 
@@ -315,7 +302,9 @@ void discreteFace::gatherMeshes()
       else {
 	if (_CAD.empty())triangles.push_back(t);
 	else
-	  Msg::Warning ("FILE %s LINE %d Triangle from atlas part %u has no classification for (u;v)=(%f;%f)",__FILE__,__LINE__,i+1,pc.x(),pc.y());
+	  Msg::Warning("FILE %s LINE %d Triangle from atlas part %u has no "
+                       "classification for (u;v)=(%f;%f)",__FILE__,
+                       __LINE__, i+1, pc.x(), pc.y());
       }
     }
     _atlas[i]->triangles.clear();
@@ -331,7 +320,9 @@ void discreteFace::gatherMeshes()
 	// here we should recompute on the CAD if necessary
 	mt->gf->mesh_vertices.push_back(v);
       }
-      else Msg::Warning ("FILE %s LINE %d Vertex has no classification",__FILE__,__LINE__);
+      else
+        Msg::Warning("FILE %s LINE %d Vertex has no classification",
+                     __FILE__, __LINE__);
     }
     _atlas[i]->mesh_vertices.clear();
   }
@@ -341,59 +332,36 @@ void discreteFace::gatherMeshes()
 void discreteFace::mesh(bool verbose)
 {
 #if defined(HAVE_ANN) && defined(HAVE_SOLVER) && defined(HAVE_MESH)
+  /*
   for(unsigned int j=0; j<_atlas.size(); j++){
-
     std::list<GEdge*> ge = _atlas[j]->edges();
     for(std::list<GEdge*>::iterator it = ge.begin(); it!=ge.end(); ++it){
-
       char myname[256];
       sprintf(myname,"tralala%d_%d.pos",(*it)->tag(),j+1);
       FILE* debug = Fopen(myname,"w");
       fprintf(debug,"View \"discreteEdges\"{\n");
       std::vector<MLine*> ml = (*it)->lines;
-
-      //printf("___map %d (%d), ge %d___ (%p)\n",j+1,_atlas[j]->tag(),(*it)->tag(),(*it));
       for(unsigned int i=0; i<ml.size(); i++){
 	ml[i]->writePOS(debug,false,true,false,false,false,false,1.,(*it)->tag());
-	//printf("%d[%d;%d]--",ml[i]->getNum(),ml[i]->getVertex(0)->getNum(),ml[i]->getVertex(1)->getNum());
       }
-      //printf("\n");
-
       fprintf(debug,"};");
       fclose(debug);
     }
   }
+  */
 
-  if (!CTX::instance()->meshDiscrete) return;
+  if(!_meshable && !CTX::instance()->meshDiscrete) return;
 
-  //Msg::Info("Discrete Face %d is going to be meshed",tag());
   for (unsigned int i=0;i<_atlas.size();i++){
-    //    {
-      //      void openProblemsON(void);
-      //      if (tag() == 3) openProblemsON();
-      //    }
     _atlas[i]->mesh(verbose);
-    //    {
-    //      void openProblemsOFF(void);
-    //      if (tag()==3) openProblemsOFF();
-    //    }
-    /*
-      const char *name = "atlas%d";
-      char filename[256];
-      sprintf(filename,name,i);t0
-      _atlas[i]->printPhysicalMesh(filename);*/
   }
-
   gatherMeshes();
   meshStatistics.status = GFace::DONE;
 #endif
 }
 
-
-
 void discreteFace::checkAndFixOrientation()
 {
-
   // first of all, all the triangles have to be oriented in the same way
   std::map<MEdge,std::vector<MElement*>,Less_Edge> ed2tri; // edge to 1 or 2 triangle(s)
 
@@ -409,7 +377,8 @@ void discreteFace::checkAndFixOrientation()
   std::map<MElement*,std::vector<MElement*> > neighbors;
   for (unsigned int i=0; i<triangles.size(); ++i){
     MElement* e = triangles[i];
-    for(int j=0; j<e->getNumEdges(); j++){ // #improveme: efficiency could be improved by setting neighbors mutually
+    for(int j = 0; j < e->getNumEdges(); j++){
+      // #improveme: efficiency could be improved by setting neighbors mutually
       std::vector<MElement*> my_mt = ed2tri[e->getEdge(j)];
       if (my_mt.size() > 1){// my_mt.size() = {1;2}
 	MElement* neighTri  = my_mt[0] == e ? my_mt[1] : my_mt[0];
@@ -418,11 +387,14 @@ void discreteFace::checkAndFixOrientation()
     }
   }
 
-  // queue: first in, first out
-  std::queue<MElement*> checkList; // element for reference orientation
-  std::queue< std::vector<MElement*> > checkLists; // corresponding neighbor element to be checked for its orientation
-  std::queue<MElement*> my_todo; // todo list
-  std::map<MElement*,bool> check_todo; // help to complete todo list
+  // element for reference orientation
+  std::queue<MElement*> checkList;
+  // corresponding neighbor element to be checked for its orientation
+  std::queue< std::vector<MElement*> > checkLists;
+  // todo list
+  std::queue<MElement*> my_todo;
+  // help to complete todo list
+  std::map<MElement*,bool> check_todo;
 
   my_todo.push(triangles[0]);
 
@@ -458,10 +430,13 @@ void discreteFace::checkAndFixOrientation()
 	for (unsigned int j=0; j<3; j++){
 	  if (current->getVertex(k) == neigs[i]->getVertex(j)){
 	    myCond = true;
-	    if (!(current->getVertex(k!=2 ?k+1 : 0 ) == neigs[i]->getVertex(j!=0 ? j-1 : 2) ||
-		  current->getVertex(k!=0 ?k-1 : 2 ) == neigs[i]->getVertex(j!=2 ? j+1 : 0))){
+	    if (!(current->getVertex(k!=2 ?k+1 : 0 ) ==
+                  neigs[i]->getVertex(j!=0 ? j-1 : 2) ||
+		  current->getVertex(k!=0 ?k-1 : 2 ) ==
+                  neigs[i]->getVertex(j!=2 ? j+1 : 0))){
 	      neigs[i]->reverse();
-	      //Msg::Info("discreteFace: triangle %d has been reoriented.",neigs[i]->getNum());
+	      //Msg::Info("discreteFace: triangle %d has been reoriented.",
+              //          neigs[i]->getNum());
 	    }
 	    break;
 	  }
@@ -469,12 +444,13 @@ void discreteFace::checkAndFixOrientation()
 	if (myCond)
 	  break;
       }
-    } // end for unsigned int i
-  } // end while
+    }
+  }
 }
 
-
-void discreteFace::setupDiscreteVertex(GVertex*dv,MVertex*mv,std::set<MVertex*>*trash){
+void discreteFace::setupDiscreteVertex(GVertex*dv, MVertex*mv,
+                                       std::set<MVertex*>*trash)
+{
   mv->setEntity(dv);
   dv->mesh_vertices.push_back(mv);
   this->model()->add(dv);
@@ -487,7 +463,8 @@ void discreteFace::setupDiscreteEdge(discreteEdge*de,std::vector<MLine*>mlines,
 {
   this->model()->add(de);// new GEdge
   de->setTopo(mlines);// associated MLine's
-  for(unsigned int i=1; i<mlines.size(); i++){//not the first vertex of the GEdge (neither the last one)
+  for(unsigned int i=1; i<mlines.size(); i++){
+    //not the first vertex of the GEdge (neither the last one)
     mlines[i]->getVertex(0)->setEntity(de);
     de->mesh_vertices.push_back(mlines[i]->getVertex(0));
     if(trash) trash->insert(mlines[i]->getVertex(0));
@@ -495,13 +472,11 @@ void discreteFace::setupDiscreteEdge(discreteEdge*de,std::vector<MLine*>mlines,
   de->createGeometry();
   de->getBeginVertex()->addEdge(de);
   de->getEndVertex()->addEdge(de);
-
 }
 
 // split old GEdge's
 void discreteFace::splitDiscreteEdge(GEdge *de , GVertex *gv, discreteEdge* newE[2])
 {
-
   MVertex *vend = de->getEndVertex()->mesh_vertices[0];
 
   int mytag = this->model()->getMaxElementaryNumber(1) + 1;
@@ -561,7 +536,8 @@ void discreteFace::split(triangulation* trian,std::vector<triangulation*> &parti
 #if defined(HAVE_SOLVER) && defined(HAVE_ANN) && defined(HAVE_METIS)
 
   int nVertex = trian->tri.size(); // number of elements
-  int nEdge = trian->ed2tri.size() - trian->borderEdg.size();// number of edges, (without the boundary ones)
+  // number of edges, (without the boundary ones)
+  int nEdge = trian->ed2tri.size() - trian->borderEdg.size();
 
   std::vector<int> idx;
   idx.resize(nVertex+1);
@@ -592,7 +568,8 @@ void discreteFace::split(triangulation* trian,std::vector<triangulation*> &parti
   std::vector<int> part;
   part.resize(nVertex);
   int zero = 0;
-  METIS_PartGraphRecursive(&nVertex,&(idx[0]),&(nbh[0]),NULL,NULL,&zero,&zero,&nPartitions,&zero,&edgeCut,&(part[0]));
+  METIS_PartGraphRecursive(&nVertex, &(idx[0]), &(nbh[0]), NULL, NULL,
+                           &zero, &zero, &nPartitions, &zero, &edgeCut, &(part[0]));
 
   std::map<MElement*,int> el2part;
   std::vector<std::vector<MElement*> > elem;
@@ -604,14 +581,18 @@ void discreteFace::split(triangulation* trian,std::vector<triangulation*> &parti
 
   //check connectivity
   for(int p=0; p<nPartitions; p++){// part by part
-    std::set<MElement*> celem(elem[p].begin(),elem[p].end());// current elements of the p-th part
-    std::queue<MElement*> my_todo; // todo list, for adjacency check - in order to check the connectivity of the part
-    std::map<MElement*,bool> check_todo; // help to complete todo list
+    // current elements of the p-th part
+    std::set<MElement*> celem(elem[p].begin(),elem[p].end());
+    // todo list, for adjacency check - in order to check the connectivity of the part
+    std::queue<MElement*> my_todo;
+    // help to complete todo list
+    std::map<MElement*,bool> check_todo;
     std::vector<MElement*> temp = elem[p];
     MElement* starter = temp[0];
     my_todo.push(starter);
     check_todo[starter] = true;
-    celem.erase(starter);// if the element is connected to the previous ones, it is removed from the set
+    // if the element is connected to the previous ones, it is removed from the set
+    celem.erase(starter);
     while(!my_todo.empty()){
       MElement* current = my_todo.front();
       my_todo.pop();
@@ -620,32 +601,35 @@ void discreteFace::split(triangulation* trian,std::vector<triangulation*> &parti
 	if(trian->ed2tri[ed].size()>1){
 	  const std::vector<int> &oldnums = trian->ed2tri[ed];
 	  int on = trian->tri[oldnums[0]] == current ? oldnums[1] : oldnums[0];
-	  if(check_todo.find(trian->tri[on])==check_todo.end() && el2part[trian->tri[on]]==p){
+	  if(check_todo.find(trian->tri[on])==check_todo.end() &&
+             el2part[trian->tri[on]]==p){
 	    my_todo.push(trian->tri[on]);
 	    check_todo[trian->tri[on]] = true;
 	    celem.erase(trian->tri[on]);
 	  }
 	}
-      }// end for j
-    }// end while
-    if(!celem.empty()){// if the set is empty, it means that the part was connected
-      //Msg::Info("discreteFace::split(), a partition (%d) is not connected: it is going to be fixed.",p);
+      }
+    }
+    // if the set is empty, it means that the part was connected
+    if(!celem.empty()){
       std::vector<MElement*> relem(celem.begin(),celem.end());// new part
-      for(unsigned int ie=0; ie<relem.size(); ie++)// updating the id part of the element belonging to the new part
+      // updating the id part of the element belonging to the new part
+      for(unsigned int ie=0; ie<relem.size(); ie++)
 	el2part[relem[ie]] = nPartitions;
       nPartitions++;
       elem.push_back(relem);
-      std::set<MElement*> _elem(elem[p].begin(),elem[p].end());// updating the elements of the current part
-      for(std::set<MElement*>::iterator its=celem.begin(); its!=celem.end(); ++its)
+      // updating the elements of the current part
+      std::set<MElement*> _elem(elem[p].begin(),elem[p].end());
+      for(std::set<MElement*>::iterator its = celem.begin(); its != celem.end(); ++its)
 	_elem.erase(*its);
       elem[p].clear();
       std::vector<MElement*> upe(_elem.begin(),_elem.end());
       elem[p] = upe;
     }
-  }// end for p
-  for(int i=0; i<nPartitions; i++)// new triangulation of the connected parts
+  }
+  // new triangulation of the connected parts
+  for(int i=0; i<nPartitions; i++)
     partition.push_back(new triangulation(i, elem[i],this));
-
 #endif
 }
 
@@ -656,19 +640,30 @@ void discreteFace::updateTopology(std::vector<triangulation*>&partition)
   //---- setting topology, i.e. GEdge's and GVertex's ----//
   //------------------------------------------------------//
   int nPartitions = partition.size();
-  std::set<MVertex*> todelete; // vertices that do not belong to the GFace anymore
-  std::set<GEdge*> gGEdges(l_edges.begin(),l_edges.end());// initial GEdges of the GFace (to be updated)
-
-  for(int i=0; i<nPartitions; i++){// each part is going to be compared with the other ones
-    const std::set<MEdge,Less_Edge> &bordi = partition[i]->borderEdg;// edges defining the border(s) of the i-th new triangulation
-    for(int ii=i+1; ii<nPartitions; ii++){// compare to the ii-th partitions, with ii > i since ii < i have already been compared
-      std::map<MVertex*,MLine*> v02edg;//first vertex of the MLine
+  // vertices that do not belong to the GFace anymore
+  std::set<MVertex*> todelete;
+  // initial GEdges of the GFace (to be updated)
+  std::set<GEdge*> gGEdges(l_edges.begin(),l_edges.end());
+
+  // each part is going to be compared with the other ones
+  for(int i = 0; i < nPartitions; i++){
+    // edges defining the border(s) of the i-th new triangulation
+    const std::set<MEdge,Less_Edge> &bordi = partition[i]->borderEdg;
+    // compare to the ii-th partitions, with ii > i since ii < i have already
+    // been compared
+    for(int ii=i+1; ii<nPartitions; ii++){
+      std::map<MVertex*,MLine*> v02edg; //first vertex of the MLine
       std::set<MVertex*> first, last;
-      const std::set<MEdge,Less_Edge> &bii = partition[ii]->borderEdg;// edges defining the border(s) of the ii-th new triangulation
-      for(std::set<MEdge,Less_Edge>::iterator ie = bordi.begin(); ie != bordi.end(); ++ie){// MEdge by MEdge of the i-th triangulation border(s)
-	if(bii.find(*ie)!=bii.end()){// if the border edge is common to both triangulations, then it is a future GEdge - composed of MLine's
-	  v02edg[ie->getVertex(0)] = new MLine(ie->getVertex(0),ie->getVertex(1));// a new MLine is created
-
+      // edges defining the border(s) of the ii-th new triangulation
+      const std::set<MEdge,Less_Edge> &bii = partition[ii]->borderEdg;
+      // MEdge by MEdge of the i-th triangulation border(s)
+      for(std::set<MEdge,Less_Edge>::iterator ie = bordi.begin();
+          ie != bordi.end(); ++ie){
+        // if the border edge is common to both triangulations, then it is a
+        // future GEdge - composed of MLine's
+	if(bii.find(*ie)!=bii.end()){
+	  v02edg[ie->getVertex(0)] = new MLine(ie->getVertex(0),
+                                               ie->getVertex(1));
 	  // identifying first and last vertices of the future GEdge's, if any
 	  if( first.find(ie->getVertex(1)) != first.end() )
 	    first.erase(ie->getVertex(1));
@@ -678,19 +673,19 @@ void discreteFace::updateTopology(std::vector<triangulation*>&partition)
 	    last.erase(ie->getVertex(0));
 	  else
 	    first.insert(ie->getVertex(0));
-	}// end bii.find
-      }//end for ie
+	}
+      }
 
-      //---- creation of the GEdge's from new MLine's ----//
+      // creation of the GEdge's from new MLine's
       while(!first.empty()){// starting with nonloop GEdge's
-	GVertex *v[2];// a GEdge is defined by two GVertex
-	std::vector<MLine*> myLines;// MLine's of the current nonloop GEdge
+	GVertex *v[2]; // a GEdge is defined by two GVertex
+	std::vector<MLine*> myLines; // MLine's of the current nonloop GEdge
 	std::set<MVertex*>::iterator itf = first.begin();
-	MVertex* cv0 = *itf;// starting with a first vertex
-	while(last.find(cv0) == last.end()){// until reaching the corresponding last vertex
-	  myLines.push_back(v02edg[cv0]);// push the correspong MLine
-	  v02edg.erase(cv0);// and erasing it from the map
-	  cv0 = myLines.back()->getVertex(1);// next vertex
+	MVertex* cv0 = *itf; // starting with a first vertex
+	while(last.find(cv0) == last.end()){ // until reaching the corresponding last vertex
+	  myLines.push_back(v02edg[cv0]); // push the correspong MLine
+	  v02edg.erase(cv0); // and erasing it from the map
+	  cv0 = myLines.back()->getVertex(1); // next vertex
 	}// end last
 	std::vector<MVertex*> mvt;
 	mvt.resize(2);
@@ -698,39 +693,47 @@ void discreteFace::updateTopology(std::vector<triangulation*>&partition)
 	mvt[1] = cv0;
 	// creation of the GVertex, for new nonloop GEdge's
 	for(int imvt=0; imvt<2; imvt++){
-	  std::set<GEdge*>::iterator oe=gGEdges.begin();// find the old GEdge that has the current new GVertex
-	  while(oe !=gGEdges.end() && mvt[imvt]->onWhat() != *oe && mvt[imvt]->onWhat() != (*oe)->getBeginVertex() && mvt[imvt]->onWhat() != (*oe)->getEndVertex())
+          // find the old GEdge that has the current new GVertex
+	  std::set<GEdge*>::iterator oe = gGEdges.begin();
+	  while(oe !=gGEdges.end() && mvt[imvt]->onWhat() != *oe &&
+                mvt[imvt]->onWhat() != (*oe)->getBeginVertex() &&
+                mvt[imvt]->onWhat() != (*oe)->getEndVertex())
 	    ++oe;
 
-
-	  if (oe == gGEdges.end()){// not on an existing GEdge: new internal GVertex
-	    v[imvt] = new discreteVertex (this->model(),model()->getMaxElementaryNumber(0) + 1);
+          // not on an existing GEdge: new internal GVertex
+	  if (oe == gGEdges.end()){
+	    v[imvt] = new discreteVertex (this->model(),
+                                          model()->getMaxElementaryNumber(0) + 1);
 	    setupDiscreteVertex(v[imvt],mvt[imvt],&todelete);
 	  }
 	  else{// on an existing GEdge
-	    GEdge* onit = *oe;// the new GVertex can already exist; if it is the case, there is no need to create a new one
+            // the new GVertex can already exist; if it is the case, there is no
+            // need to create a new one
+	    GEdge* onit = *oe;
 	    if(mvt[imvt] == onit->getBeginVertex()->mesh_vertices[0])
 	      v[imvt] = onit->getBeginVertex();
 	    else if (mvt[imvt] == onit->getEndVertex()->mesh_vertices[0])
 	      v[imvt] = onit->getEndVertex();
 	    else{
-	      v[imvt] = new discreteVertex (this->model(),model()->getMaxElementaryNumber(0) + 1);
+	      v[imvt] = new discreteVertex (this->model(),
+                                            model()->getMaxElementaryNumber(0) + 1);
 	      setupDiscreteVertex(v[imvt],mvt[imvt],NULL);
 	      discreteEdge* de[2];
 	      splitDiscreteEdge(onit,v[imvt],de);
 	      gGEdges.erase(onit);
 	      gGEdges.insert(de[0]);
 	      gGEdges.insert(de[1]);
-	    }// end if-elseif-else
-	  }// end else oe==end()
-	}// end imvt
+	    }
+	  }
+	}
 	// the new GEdge can be created with its GVertex
-	discreteEdge* internalE = new discreteEdge (this->model(),this->model()->getMaxElementaryNumber(1) + 1,v[0],v[1]);
+	discreteEdge* internalE = new discreteEdge
+          (this->model(), this->model()->getMaxElementaryNumber(1) + 1,v[0],v[1]);
 	setupDiscreteEdge(internalE,myLines,&todelete);
 	gGEdges.insert(internalE);
 
 	first.erase(itf);// next first vertex of a nonloop GEdge
-      }//end while first.empty()
+      }
 
       // remaining MLines for 'loop'GEdge's
       while(!v02edg.empty()){
@@ -744,13 +747,13 @@ void discreteFace::updateTopology(std::vector<triangulation*>&partition)
 	}
 	v = new discreteVertex (this->model(),model()->getMaxElementaryNumber(0) + 1);
 	setupDiscreteVertex(v,cv0,&todelete);
-	discreteEdge* gloop = new discreteEdge (this->model(),this->model()->getMaxElementaryNumber(1) + 1,v,v);
+	discreteEdge* gloop = new discreteEdge
+          (this->model(),this->model()->getMaxElementaryNumber(1) + 1,v,v);
 	setupDiscreteEdge(gloop,my_MLines,&todelete);
 	gGEdges.insert(gloop);
-      }// end while v02edg.empty()
-    }//end for ii
-  }// end for i
-
+      }
+    }
+  }
 
   // adding old-updated bounding GEdge's to the corresponding partitions
   for(std::set<GEdge*>::iterator le=gGEdges.begin(); le!=gGEdges.end(); ++le){
@@ -778,7 +781,8 @@ void discreteFace::updateTopology(std::vector<triangulation*>&partition)
 }
 
 void discreteFace::fillHoles(triangulation* trian)
-{// #improveme moving the center
+{
+  // #improveme moving the center
 #if defined(HAVE_SOLVER) && defined(HAVE_ANN)
   std::map<double,std::vector<MVertex*> > bords = trian->bord;
   std::map<double,std::vector<MVertex*> >::reverse_iterator it = bords.rbegin();
@@ -818,18 +822,28 @@ void discreteFace::fillHoles(triangulation* trian)
     SVector3 nmean(0.,0.,0.);
     for(unsigned int j=1; j<mv.size(); j++){
       addTriangle(trian,new MTriangle(mv[j],mv[j-1],center));
-      SVector3 temp0(center->x()-mv[j]->x(),center->y()-mv[j]->y(),center->z()-mv[j]->z());
-      SVector3 temp1(center->x()-mv[j-1]->x(),center->y()-mv[j-1]->y(),center->z()-mv[j-1]->z());
+      SVector3 temp0(center->x()-mv[j]->x(),
+                     center->y()-mv[j]->y(),
+                     center->z()-mv[j]->z());
+      SVector3 temp1(center->x()-mv[j-1]->x(),
+                     center->y()-mv[j-1]->y(),
+                     center->z()-mv[j-1]->z());
       SVector3 temp(crossprod(temp0,temp1));
       nmean += temp;
     }
     addTriangle(trian,new MTriangle(mv[0],mv[mv.size()-1],center));
-    SVector3 temp0(center->x()-mv[0]->x(),center->y()-mv[0]->y(),center->z()-mv[0]->z());
-    SVector3 temp1(center->x()-mv[mv.size()-1]->x(),center->y()-mv[mv.size()-1]->y(),center->z()-mv[mv.size()-1]->z());
+    SVector3 temp0(center->x()-mv[0]->x(),
+                   center->y()-mv[0]->y(),
+                   center->z()-mv[0]->z());
+    SVector3 temp1(center->x()-mv[mv.size()-1]->x(),
+                   center->y()-mv[mv.size()-1]->y(),
+                   center->z()-mv[mv.size()-1]->z());
     SVector3 temp(crossprod(temp0,temp1));
     nmean += temp;
     nmean *= 1./(norm(nmean)*mv.size());
-    MVertex update(center->x()+nmean.x(),center->y()+nmean.y(),center->z()+nmean.z());
+    MVertex update(center->x()+nmean.x(),
+                   center->y()+nmean.y(),
+                   center->z()+nmean.z());
     *center = update;
     center->setEntity(this);
   }
@@ -849,19 +863,18 @@ void discreteFace::addTriangle(triangulation* trian, MTriangle* t)
 #endif
 }
 
-
-
 void discreteFace::complex_crossField()
 {
 #if defined(HAVE_SOLVER) && defined(HAVE_ANN)
-  // COMPLEX linear system
+  // complex linear system
   linearSystem<std::complex<double> > * lsys;
 
 #ifdef HAVE_PETSC
 #ifdef PETSC_USE_COMPLEX
   lsys = new linearSystemPETSc<std::complex<double> >;
 #else
-  Msg::Error("Petsc complex is required (we do need complex in discreteFace::complex_crossField())");
+  Msg::Error("Petsc complex is required (we do need complex in "
+             "discreteFace::complex_crossField())");
   return;
 #endif
 #else
@@ -890,9 +903,8 @@ void discreteFace::complex_crossField()
       triangles[mini]->getEdgeInfo(ed,num,s);
       myAssembler.numberDof(3*mini+num,0);
       ed2key[ed] = 3*mini+num;
-    }// end for j
-  }// end for unsigned int i
-
+    }
+  }
 
   double grad[3][3] = {{0.,-2.,0.},{2.,2.,0.},{-2.,0.,0.}};
   for (unsigned int i=0; i<triangles.size(); i++){
@@ -924,14 +936,12 @@ void discreteFace::complex_crossField()
 
 	Dof C(ed2key[tri->getEdge(k)],0);
 	myAssembler.assemble(R,C,K_jk);
-      }// end for k
-
-    }// end for j
-
-  }// end for unsigned int
-
+      }
+    }
+  }
 
   lsys->systemSolve();
+
   FILE* myfile = Fopen("crossField.pos","w");
   fprintf(myfile,"View \"cross\"{\n");
   for(unsigned int i=0; i<triangles.size(); i++){
@@ -958,7 +968,8 @@ void discreteFace::complex_crossField()
     std::vector<double> U; U.resize(3);
     std::vector<double> V; V.resize(3);
     for(int j=0; j<3; j++){
-      fprintf(myfile,"%f,%f,%f",tri->getVertex(j)->x(),tri->getVertex(j)->y(),tri->getVertex(j)->z());
+      fprintf(myfile,"%f,%f,%f",tri->getVertex(j)->x(),
+              tri->getVertex(j)->y(),tri->getVertex(j)->z());
       if (j<2) fprintf(myfile,",");
       MEdge ed = tri->getEdge(j);
       std::complex<double> fstar; // edge basis
@@ -976,7 +987,9 @@ void discreteFace::complex_crossField()
     fprintf(myfile,"{");
     for(int j=0; j<3; j++){
       double u = Fu[j], v = Fv[j]; double theta = std::atan2(v,u)/4.;
-      SVector3 cf(cos(theta)*e.x()+sin(theta)*d.x(),cos(theta)*e.y()+sin(theta)*d.y(),cos(theta)*e.z()+sin(theta)*d.z());
+      SVector3 cf(cos(theta)*e.x()+sin(theta)*d.x(),
+                  cos(theta)*e.y()+sin(theta)*d.y(),
+                  cos(theta)*e.z()+sin(theta)*d.z());
       cf = cf*sqrt(u*u+v*v);
       fprintf(myfile,"%f,%f,%f",cf.x(),cf.y(),cf.z());
       if (j<2) fprintf(myfile,",");
@@ -985,12 +998,10 @@ void discreteFace::complex_crossField()
   }
   fprintf(myfile,"};");
   fclose(myfile);
+
 #endif
 }
 
-
-
-
 void discreteFace::crossField()
 {
 #if defined(HAVE_SOLVER) && defined(HAVE_ANN)
@@ -1027,8 +1038,8 @@ void discreteFace::crossField()
       myAssembler.numberDof(3*mini+num,0); // u, not U
       myAssembler.numberDof(3*mini+num,1); // v, not V
       ed2key[ed] = 3*mini+num;
-    }// end for j
-  }// end for unsigned int i
+    }
+  }
 
   double grad[3][3] = {{0.,-2.,0.},{2.,2.,0.},{-2.,0.,0.}};
   for (unsigned int i=0; i<triangles.size(); i++){
@@ -1059,23 +1070,16 @@ void discreteFace::crossField()
 	    for(int kk=0; kk<3; kk++)
 	      K_jk += grad[j][jj] * invjac[l][jj] * invjac[l][kk] * grad[k][kk];
 	K_jk *= dJac/2.;
-	//printf("%f\t",K_jk);
-	//printf("%f \t %f \n %f \t %f \n",cos(4.*(alpha_j-alpha_k))*K_jk,sin(4.*(alpha_j-alpha_k))*K_jk,sin(4.*(alpha_k-alpha_j))*K_jk,cos(4.*(alpha_j-alpha_k))*K_jk);
-
-
 	myAssembler.assemble(Ru,Cu,cos(4.*(alpha_j-alpha_k))*K_jk);
 	myAssembler.assemble(Ru,Cv,sin(4.*(alpha_j-alpha_k))*K_jk);
 	myAssembler.assemble(Rv,Cu,sin(4.*(alpha_k-alpha_j))*K_jk);
 	myAssembler.assemble(Rv,Cv,cos(4.*(alpha_j-alpha_k))*K_jk);
-      }// end for k
-      //printf("\n");
-
-    }// end for j
-    //printf("\n");
-  }// end for unsigned int
-
+      }
+    }
+  }
 
   lsys->systemSolve();
+
   FILE* myfile = Fopen("crossField.pos","w");
   fprintf(myfile,"View \"cross\"{\n");
   for(unsigned int i=0; i<triangles.size(); i++){
@@ -1101,11 +1105,11 @@ void discreteFace::crossField()
     SVector3 d = crossprod(n,e); d.normalize();
     //printf("d=(%f %f)\n",d.x(),d.y());
 
-
     std::vector<double> U; U.resize(3);
     std::vector<double> V; V.resize(3);
     for(int j=0; j<3; j++){
-      fprintf(myfile,"%f,%f,%f",tri->getVertex(j)->x(),tri->getVertex(j)->y(),tri->getVertex(j)->z());
+      fprintf(myfile,"%f,%f,%f",tri->getVertex(j)->x(),tri->getVertex(j)->y(),
+              tri->getVertex(j)->z());
       if (j<2) fprintf(myfile,",");
       MEdge ed = tri->getEdge(j);
       double  u, v;// edge basis
@@ -1116,7 +1120,6 @@ void discreteFace::crossField()
       double alpha = getAlpha(tri,j);// triangle basis
       U[j] = cos(4.*alpha)*u - sin(4.*alpha)*v;// U, not u
       V[j] = sin(4.*alpha)*u + cos(4.*alpha)*v;// V, not v
-      //printf("sol: ed%d[%f,%f]--[%f,%f] \t Theta = %f (tri) ~ theta = %f (ed) ~ alpha = %f ~u=%f, v=%f VS U=%f, V=%f \n",j,ed.getSortedVertex(0)->x(),ed.getSortedVertex(0)->y(),ed.getSortedVertex(1)->x(),ed.getSortedVertex(1)->y(),std::atan2(V[j],U[j])*180./(4.*M_PI),std::atan2(v,u)*180./(4.*M_PI),alpha*180./M_PI,u,v,U[j],V[j]);
     }
     fprintf(myfile,")");
     std::vector<double> Fu, Fv;
@@ -1125,11 +1128,10 @@ void discreteFace::crossField()
     fprintf(myfile,"{");
     for(int j=0; j<3; j++){
       double u = Fu[j], v = Fv[j]; double theta = std::atan2(v,u)/4.;
-      //printf("theta_%d = %f\n",j,theta*180./M_PI);
-      SVector3 cf(cos(theta)*e.x()+sin(theta)*d.x(),cos(theta)*e.y()+sin(theta)*d.y(),cos(theta)*e.z()+sin(theta)*d.z());
-      //cf = cf*sqrt(u*u+v*v);
-      fprintf(myfile,"%f,%f,%f",cf.x(),cf.y(),cf.z());//cos(theta)*e.x()-sin(theta)*e.y(),sin(theta)*e.x()+cos(theta)*e.y(),e.z());
-
+      SVector3 cf(cos(theta)*e.x()+sin(theta)*d.x(),
+                  cos(theta)*e.y()+sin(theta)*d.y(),
+                  cos(theta)*e.z()+sin(theta)*d.z());
+      fprintf(myfile,"%f,%f,%f",cf.x(),cf.y(),cf.z());
       if( std::abs(dot(cf,n)) > 1e-12)
 	printf("/!\\ ---> warning orthogonality \t %f \n",dot(cf,n));
       if (j<2) fprintf(myfile,",");
@@ -1141,7 +1143,6 @@ void discreteFace::crossField()
 #endif
 }
 
-
 void discreteFace::writeGEO(FILE *fp)
 {
   fprintf(fp, "Discrete Face(%d) = {",tag());
diff --git a/Geo/discreteFace.h b/Geo/discreteFace.h
index 71a83fec6a15b8317e9f07325f230065fa2e8039..d8427947948983fef0c4f2ea60e64b5f93c1bebb 100644
--- a/Geo/discreteFace.h
+++ b/Geo/discreteFace.h
@@ -18,10 +18,10 @@ class discreteDiskFace;
 class triangulation;
 
 class discreteFace : public GFace {
-  // FIXME we should at the end use a mesh() function that is specific to
-  // discreteFace; we should also SAVE those data's
+ private:
+  bool _meshable;
  public:
-  discreteFace(GModel *model, int num);
+  discreteFace(GModel *model, int num, bool meshable=false);
   virtual ~discreteFace() {}
   void checkAndFixOrientation();
   void setupDiscreteVertex(GVertex*,MVertex*,std::set<MVertex*>*);
@@ -40,7 +40,6 @@ class discreteFace : public GFace {
   double curvatureMax(const SPoint2 &param) const;
   double curvatures(const SPoint2 &param, SVector3 *dirMax, SVector3 *dirMin,
                                   double *curvMax, double *curvMin) const;
-  virtual bool haveParametrization() { return getCompound(); }
   GEntity::GeomType geomType() const { return DiscreteSurface; }
   virtual Pair<SVector3, SVector3> firstDer(const SPoint2 &param) const;
   virtual void secondDer(const SPoint2 &param,
@@ -52,7 +51,7 @@ class discreteFace : public GFace {
   void writeGEO(FILE *fp);
   void createGeometry();
   void gatherMeshes();
-  virtual void mesh (bool verbose);
+  virtual void mesh(bool verbose);
   std::vector<discreteDiskFace*> _atlas;
   std::vector<GFace*> _CAD;
   std::map<MEdge,std::vector<int>,Less_Edge> allEdg2Tri;
diff --git a/Geo/gmshEdge.cpp b/Geo/gmshEdge.cpp
index 1283ce10c341a60cc4f96354103fe22d3722e265..0065e954a4bedcd0cccfe299ec070d844f348a51 100644
--- a/Geo/gmshEdge.cpp
+++ b/Geo/gmshEdge.cpp
@@ -6,7 +6,6 @@
 #include <sstream>
 #include "GModel.h"
 #include "GFace.h"
-#include "GFaceCompound.h"
 #include "gmshEdge.h"
 #include "Geo.h"
 #include "GeoInterpolation.h"
diff --git a/Geo/gmshLevelset.cpp b/Geo/gmshLevelset.cpp
index 24d6b01fa9629f2cc44827b04e1d643c6924eeea..f71f2d88364441047271f97ec4d20047a443f189 100644
--- a/Geo/gmshLevelset.cpp
+++ b/Geo/gmshLevelset.cpp
@@ -436,7 +436,6 @@ fullMatrix<double> gLevelsetPoints::generateRbfMat(int p, int index,
     }
   }
   return rbfMat;
-
 }
 
 void gLevelsetPoints::RbfOp(int p, int index,
diff --git a/Graphics/drawGeom.cpp b/Graphics/drawGeom.cpp
index 67cf4f25f125e2a3497678e4a77c0637c466e453..59b1eef9c0ee4f8814ce4cbc0f28779ef3772d38 100644
--- a/Graphics/drawGeom.cpp
+++ b/Graphics/drawGeom.cpp
@@ -11,8 +11,6 @@
 #include "GModel.h"
 #include "SBoundingBox3d.h"
 #include "GmshMessage.h"
-#include "GEdgeCompound.h"
-#include "GFaceCompound.h"
 
 static void drawEntityLabel(drawContext *ctx, GEntity *e,
                             double x, double y, double z, double offset)
@@ -124,7 +122,6 @@ class drawGEdge {
     if(e->geomType() == GEntity::DiscreteCurve) return;
     if(e->geomType() == GEntity::PartitionCurve) return;
     if(e->geomType() == GEntity::BoundaryLayerCurve) return;
-    // if(e->geomType() == GEntity::CompoundCurve) return;
 
     bool select = (_ctx->render_mode == drawContext::GMSH_SELECT &&
                    e->model() == GModel::current());
@@ -286,7 +283,7 @@ class drawGFace {
     if(CTX::instance()->geom.surfaces){
       if(CTX::instance()->geom.surfaceType > 0 && f->va_geom_triangles){
         bool selected = false;
-        if (f->getSelection() || (f->getCompound() && f->getCompound()->getSelection()))
+        if (f->getSelection())
           selected = true;
         _drawVertexArray
           (f->va_geom_triangles, CTX::instance()->geom.light,
@@ -365,8 +362,6 @@ class drawGFace {
 
     if(CTX::instance()->geom.surfaces) {
       //bool selected = false;
-      //if (f->getSelection() || (f->getCompound() && f->getCompound()->getSelection()))
-        //selected = true;
       if(CTX::instance()->geom.surfaceType > 0 && f->va_geom_triangles){
         _drawVertexArray(f->va_geom_triangles, CTX::instance()->geom.light,
                          f->getSelection(), CTX::instance()->color.geom.selection);
@@ -415,24 +410,6 @@ class drawGFace {
     }
   }
 
-  void _drawCompoundGFace(GFace *f, bool visible = false, bool selected = false)
-  {
-    GFaceCompound *fc = (GFaceCompound*) f;
-    std::list<GFace*> faces = fc->getCompounds();
-    for (std::list<GFace*>::iterator it = faces.begin(); it!=faces.end(); it++) {
-      if ((*it)->geomType() == GEntity::DiscreteSurface) continue;
-      if ((*it)->geomType() == GEntity::PartitionSurface) continue;
-      if ((*it)->geomType() == GEntity::BoundaryLayerSurface) continue;
-
-      if((*it)->geomType() == GEntity::CompoundSurface)
-        _drawCompoundGFace((*it));
-      else if ((*it)->geomType() == GEntity::Plane)
-        _drawPlaneGFace((*it));
-      else
-        _drawParametricGFace((*it));
-    }
-  }
-
  public :
   drawGFace(drawContext *ctx) : _ctx(ctx) {}
   void operator () (GFace *f)
@@ -467,9 +444,7 @@ class drawGFace {
     else
       glLightModelf(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);
 
-    if(f->geomType() == GEntity::CompoundSurface)
-      _drawCompoundGFace(f);
-    else if(f->geomType() == GEntity::Plane)
+    if(f->geomType() == GEntity::Plane)
       _drawPlaneGFace(f);
     else
       _drawParametricGFace(f);
diff --git a/Graphics/drawMesh.cpp b/Graphics/drawMesh.cpp
index 1240f3117024343a61d6782aa4d4b91833ca0369..41d34f3dd3a2263e9c3c70936c1a61277d63ae58 100644
--- a/Graphics/drawMesh.cpp
+++ b/Graphics/drawMesh.cpp
@@ -8,8 +8,6 @@
 #include "GmshMessage.h"
 #include "GmshDefines.h"
 #include "GModel.h"
-#include "GFaceCompound.h"
-#include "GEdgeCompound.h"
 #include "MLine.h"
 #include "MTriangle.h"
 #include "MQuadrangle.h"
@@ -147,12 +145,6 @@ static void drawVertexLabel(drawContext *ctx, GEntity *e, MVertex *v,
 
 static void drawVerticesPerEntity(drawContext *ctx, GEntity *e)
 {
-  //if(e->dim() == 2) {
-  //  if(e->cast2Edge()->getCompound()) {
-  //    if(e->cast2Edge()->getCompound()
-  //
-   // }
-  //}
   if(CTX::instance()->mesh.points) {
     if(CTX::instance()->mesh.pointType) {
       for(unsigned int i = 0; i < e->mesh_vertices.size(); i++){
@@ -442,11 +434,7 @@ class drawMeshGEdge {
   void operator () (GEdge *e)
   {
     if(!e->getVisibility()) {
-      if(e->getCompound()) {
-        if(!e->getCompound()->getVisibility()) return;
-      }
-      else
-        return;
+      return;
     }
 
     bool select = (_ctx->render_mode == drawContext::GMSH_SELECT &&
@@ -491,11 +479,7 @@ class drawMeshGFace {
   void operator () (GFace *f)
   {
     if(!f->getVisibility()) {
-      if(f->getCompound()) {
-        if(!f->getCompound()->getVisibility()) return;
-      }
-      else
-        return;
+      return;
     }
 
     bool select = (_ctx->render_mode == drawContext::GMSH_SELECT &&
diff --git a/Mesh/BackgroundMesh.cpp b/Mesh/BackgroundMesh.cpp
index b2cc9aa681a2e7274d63093523278bcac37e0d06..02f197233c45691a33a6996dce85547cf1d7bf22 100644
--- a/Mesh/BackgroundMesh.cpp
+++ b/Mesh/BackgroundMesh.cpp
@@ -9,9 +9,7 @@
 #include "Context.h"
 #include "GVertex.h"
 #include "GEdge.h"
-#include "GEdgeCompound.h"
 #include "GFace.h"
-#include "GFaceCompound.h"
 #include "GModel.h"
 #include "OS.h"
 #include "Field.h"
@@ -226,8 +224,7 @@ static void propagateValuesOnFace(GFace *_gf,
 
 void backgroundMesh::propagate1dMesh(GFace *_gf)
 {
-  std::list<GEdge*> e;// = _gf->edges();
-  replaceMeshCompound(_gf, e);
+  std::list<GEdge*> e = _gf->edges();
   std::list<GEdge*>::const_iterator it = e.begin();
   std::map<MVertex*,double> sizes;
 
@@ -281,9 +278,7 @@ crossField2d::crossField2d(MVertex* v, GEdge* ge)
 
 void backgroundMesh::propagateCrossFieldByDistance(GFace *_gf)
 {
-  std::list<GEdge*> e;
-  replaceMeshCompound(_gf, e);
-
+  std::list<GEdge*> e = _gf->edges();
   std::list<GEdge*>::const_iterator it = e.begin();
   std::map<MVertex*,double> _cosines4,_sines4;
   std::map<MVertex*,SPoint2> _param;
@@ -441,12 +436,8 @@ void backgroundMesh::propagateCrossFieldHJ(GFace *_gf)
 void backgroundMesh::propagateCrossField(GFace *_gf, simpleFunction<double> *ONE)
 {
   std::map<MVertex*,double> _cosines4,_sines4;
-
-  std::list<GEdge*> e;
-  replaceMeshCompound(_gf, e);
-
+  std::list<GEdge*> e = _gf->edges();
   std::list<GEdge*>::const_iterator it = e.begin();
-
   for( ; it != e.end(); ++it ){
     if (!(*it)->isSeam(_gf)){
       for(unsigned int i = 0; i < (*it)->lines.size(); i++ ){
@@ -486,7 +477,7 @@ void backgroundMesh::propagateCrossField(GFace *_gf, simpleFunction<double> *ONE
 
   //    print("cos4.pos",0,_cosines4,0);
   //    print("sin4.pos",0,_sines4,0);
-  
+
   std::map<MVertex*,MVertex*>::iterator itv2 = _2Dto3D.begin();
   for ( ; itv2 != _2Dto3D.end(); ++itv2){
     MVertex *v_2D = itv2->first;
diff --git a/Mesh/BackgroundMesh2D.cpp b/Mesh/BackgroundMesh2D.cpp
index f3ff9e3c775fe0baeb79dc4ddd89564c4a8a57d2..fbf195fff73eacfea607349e898bef0496bc6934 100644
--- a/Mesh/BackgroundMesh2D.cpp
+++ b/Mesh/BackgroundMesh2D.cpp
@@ -10,9 +10,7 @@
 #include "GModel.h"
 #include "GVertex.h"
 #include "GEdge.h"
-#include "GEdgeCompound.h"
 #include "GFace.h"
-#include "GFaceCompound.h"
 #include "MElement.h"
 #include "MElementOctree.h"
 #include "MTriangle.h"
@@ -290,8 +288,7 @@ void backgroundMesh2D::computeSizeField()
     return;
   }
 
-  list<GEdge*> e;
-  replaceMeshCompound(face, e);
+  list<GEdge*> e = face->edges();
   list<GEdge*>::const_iterator it = e.begin();
   DoubleStorageType sizes;
 
@@ -394,7 +391,8 @@ void backgroundMesh2D::updateSizes()
 
 
 
-frameFieldBackgroundMesh2D::frameFieldBackgroundMesh2D(GFace *_gf):backgroundMesh2D(_gf,false)
+frameFieldBackgroundMesh2D::frameFieldBackgroundMesh2D(GFace *_gf)
+  : backgroundMesh2D(_gf, false)
 {
   reset();
 
@@ -476,15 +474,12 @@ void frameFieldBackgroundMesh2D::computeCrossField(simpleFunction<double> &eval_
 
   DoubleStorageType _cosines4,_sines4;
 
-  list<GEdge*> e;
   GFace *face = dynamic_cast<GFace*>(gf);
   if(!face){
     Msg::Error("Entity is not a face in background mesh");
     return;
   }
-
-  replaceMeshCompound(face, e);
-
+  list<GEdge*> e = face->edges();
   list<GEdge*>::const_iterator it = e.begin();
 
   for( ; it != e.end(); ++it ){
diff --git a/Mesh/BackgroundMeshTools.cpp b/Mesh/BackgroundMeshTools.cpp
index 85dc609596df67087f840ec513a90996e3c39a46..e882aa3fd9933e766c7cd86f6818147b8eb9e24a 100644
--- a/Mesh/BackgroundMeshTools.cpp
+++ b/Mesh/BackgroundMeshTools.cpp
@@ -7,7 +7,6 @@
 #include "GFace.h"
 #include "GVertex.h"
 #include "GEdge.h"
-#include "GEdgeCompound.h"
 #include "GEntity.h"
 #include "Context.h"
 #include "Field.h"
@@ -19,12 +18,9 @@ static double max_surf_curvature(const GEdge *ge, double u)
   std::list<GFace *> faces = ge->faces();
   std::list<GFace *>::iterator it = faces.begin();
   while(it != faces.end()){
-    if ((*it)->geomType() != GEntity::CompoundSurface &&
-        (*it)->geomType() != GEntity::DiscreteSurface){
-      SPoint2 par = ge->reparamOnFace((*it), u, 1);
-      double cc = (*it)->curvature(par);
-      val = std::max(cc, val);
-    }
+    SPoint2 par = ge->reparamOnFace((*it), u, 1);
+    double cc = (*it)->curvature(par);
+    val = std::max(cc, val);
     ++it;
   }
   return val;
@@ -93,71 +89,24 @@ SMetric3 max_edge_curvature_metric(const GEdge *ge, double u)
 
 static SMetric3 metric_based_on_surface_curvature(const GEdge *ge, double u, bool iso_surf)
 {
-  const GEdgeCompound* ptrCompoundEdge = dynamic_cast<const GEdgeCompound*>(ge);
-  if (ptrCompoundEdge){
-    double cmax, cmin;
-    SVector3 dirMax,dirMin;
-    cmax = ptrCompoundEdge->curvatures(u,&dirMax, &dirMin, &cmax,&cmin);
-    if (cmin == 0)cmin =1.e-12;
-    if (cmax == 0)cmax =1.e-12;
-    double lambda2 =  ((2 * M_PI) /( fabs(cmax) *  CTX::instance()->mesh.minCircPoints ) );
-    double lambda1 =  ((2 * M_PI) /( fabs(cmin) *  CTX::instance()->mesh.minCircPoints ) );
-    SVector3 Z = crossprod(dirMax,dirMin);
-
-    lambda1 = std::max(lambda1, CTX::instance()->mesh.lcMin);
-    lambda2 = std::max(lambda2, CTX::instance()->mesh.lcMin);
-    lambda1 = std::min(lambda1, CTX::instance()->mesh.lcMax);
-    lambda2 = std::min(lambda2, CTX::instance()->mesh.lcMax);
-
-    SMetric3 curvMetric (1. / (lambda1 * lambda1), 1. / (lambda2 * lambda2),
-                         1.e-12, dirMin, dirMax, Z);
-    return curvMetric;
-  }
-  else{
-    SMetric3 mesh_size(1.e-12);
-    std::list<GFace *> faces = ge->faces();
-    std::list<GFace *>::iterator it = faces.begin();
-    // we choose the metric eigenvectors to be the ones
-    // related to the edge ...
-    SMetric3 curvMetric = max_edge_curvature_metric(ge, u);
-    while(it != faces.end()){
-      if (((*it)->geomType() != GEntity::CompoundSurface) &&
-          ((*it)->geomType() != GEntity::DiscreteSurface)){
-        SPoint2 par = ge->reparamOnFace((*it), u, 1);
-        SMetric3 m = metric_based_on_surface_curvature (*it, par.x(), par.y(), iso_surf);
-        curvMetric = intersection_conserveM1(curvMetric,m);
-      }
-      ++it;
-    }
-
-    return curvMetric;
+  SMetric3 mesh_size(1.e-12);
+  std::list<GFace *> faces = ge->faces();
+  std::list<GFace *>::iterator it = faces.begin();
+  // we choose the metric eigenvectors to be the ones
+  // related to the edge ...
+  SMetric3 curvMetric = max_edge_curvature_metric(ge, u);
+  while(it != faces.end()){
+    SPoint2 par = ge->reparamOnFace((*it), u, 1);
+    SMetric3 m = metric_based_on_surface_curvature (*it, par.x(), par.y(), iso_surf);
+    curvMetric = intersection_conserveM1(curvMetric,m);
+    ++it;
   }
+  return curvMetric;
 }
 
 static SMetric3 metric_based_on_surface_curvature(const GVertex *gv, bool iso_surf)
 {
   SMetric3 mesh_size(1.e-15);
-  std::list<GEdge*> l_edges = gv->edges();
-  for (std::list<GEdge*>::const_iterator ite = l_edges.begin();
-       ite != l_edges.end(); ++ite){
-    GEdge *_myGEdge = *ite;
-    Range<double> bounds = _myGEdge->parBounds(0);
-
-    // ES: Added extra if condition to use the code below only with compund curves
-    // This is because we want to call the function
-    // metric_based_on_surface_curvature(const GEdge *ge, double u) for the case when
-    // ge is a compound edge
-    if (_myGEdge->geomType() == GEntity::CompoundCurve){
-      if (gv == _myGEdge->getBeginVertex())
-        mesh_size = intersection
-          (mesh_size,
-           metric_based_on_surface_curvature(_myGEdge, bounds.low(), iso_surf));
-      else
-        mesh_size = intersection
-          (mesh_size,
-           metric_based_on_surface_curvature(_myGEdge, bounds.high(), iso_surf));
-    }
-  }
   return mesh_size;
 }
 
diff --git a/Mesh/BoundaryLayers.cpp b/Mesh/BoundaryLayers.cpp
index 41dc3860770106faafc73698b461743b27fed968..635e367440628e7a068413c8935503f892e5fef2 100644
--- a/Mesh/BoundaryLayers.cpp
+++ b/Mesh/BoundaryLayers.cpp
@@ -13,7 +13,6 @@
 #include "meshGFace.h"
 #include "GmshMessage.h"
 #include "Field.h"
-#include "GFaceCompound.h"
 
 #if defined(HAVE_POST)
 #include "PView.h"
@@ -250,20 +249,6 @@ static void checkDepends(GModel *m, GFace *f, std::set<GFace*> &dep)
     dep.insert(from);
     checkDepends(m, from, dep);
   }
-
-  if(f->geomType() == GEntity::CompoundSurface){
-    std::list<GFace*> compounds = ((GFaceCompound*)(f))->getCompounds();
-    std::list<GFace*>::iterator itgf = compounds.begin();
-    for( ; itgf != compounds.end(); itgf++ ){
-      if(!(*itgf)){
-        Msg::Error("Unknown compound face in boundary layer source face %d",
-                   f->tag());
-        return;
-      }
-      dep.insert(*itgf);
-      checkDepends(m, *itgf, dep);
-    }
-  }
 }
 
 static unsigned int FixErasedExtrScaleFlags(GModel *m,
diff --git a/Mesh/CMakeLists.txt b/Mesh/CMakeLists.txt
index a25131ee307a5c4e87540b3a8831a75180fddf36..2f5d07785a59ab0046a06ba1d994b2b8ff2576c8 100644
--- a/Mesh/CMakeLists.txt
+++ b/Mesh/CMakeLists.txt
@@ -35,7 +35,6 @@ set(SRC
     HighOrder.cpp 
     meshPartition.cpp
     meshRefine.cpp
-    multiscalePartition.cpp
     QuadTriUtils.cpp
       QuadTriExtruded2D.cpp QuadTriExtruded3D.cpp QuadTriTransfinite3D.cpp
     simple3D.cpp ThinLayer.cpp
diff --git a/Mesh/DivideAndConquer.cpp b/Mesh/DivideAndConquer.cpp
index 81c9d2874133e3ecf472413a5fdae4b421d0eb3a..274e643e436271affbf3233b00ad6c575d320f6a 100644
--- a/Mesh/DivideAndConquer.cpp
+++ b/Mesh/DivideAndConquer.cpp
@@ -23,7 +23,6 @@
 #include "OS.h"
 #include "GPoint.h"
 #include "GFace.h"
-#include "GEdgeCompound.h"
 #include "MLine.h"
 
 #define Pred(x) ((x)->prev)
@@ -1008,7 +1007,7 @@ void DocRecord::concave(double x,double y,GFace* gf)
   std::set<int>::iterator it2;
 
   list = gf->edges();
-  replaceMeshCompound(gf,list);
+
   for(it1 = list.begin(); it1 != list.end(); it1++){
     edge = *it1;
     for(unsigned int i = 0; i < edge->getNumMeshElements(); i++){
@@ -1142,7 +1141,7 @@ void DocRecord::clear_edges()
 bool DocRecord::delaunay_conformity(GFace* gf)
 {
   std::list<GEdge*> list = gf->edges();
-  replaceMeshCompound(gf,list);
+
   for(std::list<GEdge*>::iterator it = list.begin(); it!= list.end(); it++){
     GEdge *edge = *it;
     for(unsigned int i = 0; i < edge->getNumMeshElements(); i++){
diff --git a/Mesh/Generator.cpp b/Mesh/Generator.cpp
index 5a774d171d72cba44dbb6ffb2574838688296492..4155f72d25c06c8107d44fad19a2d2ca669e79cd 100644
--- a/Mesh/Generator.cpp
+++ b/Mesh/Generator.cpp
@@ -29,7 +29,6 @@
 #include "HighOrder.h"
 #include "Generator.h"
 #include "meshGFaceLloyd.h"
-#include "GFaceCompound.h"
 #include "Field.h"
 #include "Options.h"
 #include "simple3D.h"
@@ -447,12 +446,9 @@ static void Mesh2D(GModel *m)
   // meshes) is global as it depends on a smooth normal field generated from the
   // surface mesh of the source surfaces
   if(!Mesh2DWithBoundaryLayers(m)){
-    std::set<GFace*, GEntityLessThan> cf, f;
+    std::set<GFace*, GEntityLessThan> f;
     for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it)
-      if ((*it)->geomType() == GEntity::CompoundSurface)
-        cf.insert(*it);
-      else
-        f.insert(*it);
+      f.insert(*it);
 
     Msg::ResetProgressMeter();
 
@@ -467,28 +463,7 @@ static void Mesh2D(GModel *m)
       for(size_t K = 0 ; K < temp.size() ; K++){
         if (temp[K]->meshStatistics.status == GFace::PENDING){
           backgroundMesh::current()->unset();
-	  // meshGFace mesher(true);
           temp[K]->mesh(true);
-#if defined(HAVE_BFGS)
-          if(CTX::instance()->mesh.optimizeLloyd){
-            if (temp[K]->geomType()==GEntity::CompoundSurface ||
-                temp[K]->geomType()==GEntity::Plane ||
-                temp[K]->geomType()==GEntity::RuledSurface) {
-              if (temp[K]->meshAttributes.method != MESH_TRANSFINITE &&
-                  !temp[K]->meshAttributes.extrude) {
-                smoothing smm(CTX::instance()->mesh.optimizeLloyd, 6);
-                //m->writeMSH("beforeLLoyd.msh");
-                smm.optimize_face(temp[K]);
-                int rec = ((CTX::instance()->mesh.recombineAll ||
-                            temp[K]->meshAttributes.recombine) &&
-                           !CTX::instance()->mesh.recombine3DAll);
-                //m->writeMSH("afterLLoyd.msh");
-                if (rec) recombineIntoQuads(temp[K]);
-                //m->writeMSH("afterRecombine.msh");
-              }
-            }
-          }
-#endif
 #if defined(_OPENMP)
 #pragma omp critical
 #endif
@@ -501,36 +476,6 @@ static void Mesh2D(GModel *m)
 #if defined(_OPENMP)
 #pragma omp master
 #endif
-      for(std::set<GFace*, GEntityLessThan>::iterator it = cf.begin();
-          it != cf.end(); ++it){
-        if ((*it)->meshStatistics.status == GFace::PENDING){
-          backgroundMesh::current()->unset();
-	  //          meshGFace mesher(true);
-          (*it)->mesh(true);
-#if defined(HAVE_BFGS)
-          if(CTX::instance()->mesh.optimizeLloyd){
-            if ((*it)->geomType()==GEntity::CompoundSurface ||
-                (*it)->geomType()==GEntity::Plane ||
-                (*it)->geomType()==GEntity::RuledSurface) {
-              if ((*it)->meshAttributes.method != MESH_TRANSFINITE &&
-                  !(*it)->meshAttributes.extrude) {
-                smoothing smm(CTX::instance()->mesh.optimizeLloyd, 6);
-                //m->writeMSH("beforeLLoyd.msh");
-                smm.optimize_face(*it);
-                int rec = ((CTX::instance()->mesh.recombineAll ||
-                            (*it)->meshAttributes.recombine) &&
-                           !CTX::instance()->mesh.recombine3DAll);
-                //m->writeMSH("afterLLoyd.msh");
-                if (rec) recombineIntoQuads(*it);
-                //m->writeMSH("afterRecombine.msh");
-              }
-            }
-          }
-#endif
-          nPending++;
-        }
-        if(!nIter) Msg::ProgressMeter(nPending, nTot, false, "Meshing 2D...");
-      }
       if(!nPending) break;
       if(nIter++ > 10) break;
     }
diff --git a/Mesh/directions3D.cpp b/Mesh/directions3D.cpp
index 7145f30e509971b5a7a4f78162f06eca2f1fef2d..5c17379fa9679e5490a58dd671bfac18967690bd 100644
--- a/Mesh/directions3D.cpp
+++ b/Mesh/directions3D.cpp
@@ -13,7 +13,6 @@
 #include "MTetrahedron.h"
 #include "directions3D.h"
 #include "OS.h"
-#include "GFaceCompound.h"
 #include "cross3D.h"
 
 #if defined(HAVE_SOLVER)
@@ -509,21 +508,6 @@ void Frame_field::initFace(GFace* gf)
   // compute cumulative cross-data "vertices x elements" for the whole contour of gf
   std::list<GEdge*> edges = gf->edges();
   vertex_to_elements.clear();
-  //Replace edges by their compounds
-   std::set<GEdge*> mySet;
-   std::list<GEdge*>::iterator it = edges.begin();
-   while(it != edges.end()){
-    if((*it)->getCompound()){
-      GEdge *gec = (GEdge*)(*it)->getCompound();
-      mySet.insert(gec);
-    }
-    else{
-      mySet.insert(*it);
-    }
-    ++it;
-   }
-   edges.clear();
-   edges.insert(edges.begin(), mySet.begin(), mySet.end());
   for( std::list<GEdge*>::const_iterator it=edges.begin(); it!=edges.end(); it++){
     build_vertex_to_elements(*it,false);
   }
diff --git a/Mesh/meshGFace.cpp b/Mesh/meshGFace.cpp
index 6508a69dea59f6bc99ff8e86ddc14ca47b230a0f..e1ea164d64f394e3d207d14c937aea30c77751d5 100644
--- a/Mesh/meshGFace.cpp
+++ b/Mesh/meshGFace.cpp
@@ -16,7 +16,6 @@
 #include "BackgroundMesh.h"
 #include "GVertex.h"
 #include "GEdge.h"
-#include "GEdgeCompound.h"
 #include "robustPredicates.h"
 #include "discreteFace.h"
 #include "GFace.h"
@@ -41,7 +40,6 @@
 #include "meshPartition.h"
 #include "CreateFile.h"
 #include "Context.h"
-#include "multiscalePartition.h"
 #include "meshGFaceLloyd.h"
 #include "boundaryLayersData.h"
 #include "filterElements.h"
@@ -958,16 +956,7 @@ static void directions_storage(GFace* gf)
   gf->storage4.clear();
 
   for(it=vertices.begin();it!=vertices.end();it++){
-    ok = 0;
-
-    if(!gf->getCompound()){
-      if(gf->geomType()==GEntity::CompoundSurface){
-        ok = translate(gf,octree,*it,SPoint2(0.0,0.0),v1,v2);
-      }
-      else{
-        ok = improved_translate(gf,*it,v1,v2);
-      }
-    }
+    ok = improved_translate(gf,*it,v1,v2);
 
     if(ok){
       gf->storage1.push_back(SPoint3((*it)->x(),(*it)->y(),(*it)->z()));
@@ -998,16 +987,6 @@ bool meshGenerator(GFace *gf, int RECUR_ITER,
   std::list<int> dir = gf->edgeOrientations();
   std::vector<MEdge> medgesToRecover;
 
-  // replace edges by their compounds
-  // if necessary split compound and remesh parts
-  bool isMeshed = false;
-  if(gf->geomType() == GEntity::CompoundSurface  && !onlyInitialMesh){
-    isMeshed = checkMeshCompound((GFaceCompound*) gf, edges);
-    if (isMeshed) return true;
-  }
-
-  //  if (gf->degenerate(0))return 0;
-
   // build a set with all points of the boundaries
   std::set<MVertex*, MVertexLessThanNum> all_vertices, boundary;
   std::list<GEdge*>::iterator ite = edges.begin();
@@ -1507,9 +1486,7 @@ bool meshGenerator(GFace *gf, int RECUR_ITER,
   //gf->triangles.clear();
   //gf->quadrangles.clear();
 
-  // only delete the mesh data stored in the base GFace class (calling
-  // gf->deleteMesh() would also destroy e.g. the data in a compound face, which
-  // we should not do)
+  // only delete the mesh data stored in the base GFace class
   gf->GFace::deleteMesh();
 
   Msg::Debug("Starting to add internal points");
@@ -2523,247 +2500,6 @@ void meshGFace::operator() (GFace *gf, bool print)
   }
 }
 
-bool checkMeshCompound(GFaceCompound *gf, std::list<GEdge*> &edges)
-{
-  bool isMeshed = false;
-#if defined(HAVE_SOLVER)
-  bool correctTopo = gf->checkTopology();
-  if (!correctTopo && gf->allowPartition()){
-    partitionAndRemesh((GFaceCompound*) gf);
-    isMeshed = true;
-    return isMeshed;
-  }
-
-  bool correctParam = gf->parametrize();
-
-  if (!correctParam &&  gf->allowPartition()){
-   partitionAndRemesh((GFaceCompound*) gf);
-   isMeshed = true;
-   return isMeshed;
-  }
-
-  //Replace edges by their compounds
-  std::set<GEdge*> mySet;
-  std::list<GEdge*>::iterator it = edges.begin();
-  while(it != edges.end()){
-    if((*it)->getCompound()){
-      mySet.insert((*it)->getCompound());
-    }
-    else{
-      mySet.insert(*it);
-    }
-    ++it;
-  }
-  edges.clear();
-  edges.insert(edges.begin(), mySet.begin(), mySet.end());
-#endif
-  return isMeshed;
-}
-
-void partitionAndRemesh(GFaceCompound *gf)
-{
-#if defined(HAVE_SOLVER) && defined(HAVE_ANN) && (defined(HAVE_CHACO) || defined(HAVE_METIS))
-
-  // Partition the mesh and createTopology for new faces
-  double tbegin = Cpu();
-  std::list<GFace*> cFaces = gf->getCompounds();
-  std::vector<MElement *> elements;
-  for (std::list<GFace*>::iterator it = cFaces.begin(); it != cFaces.end(); it++)
-    for(unsigned int j = 0; j < (*it)->getNumMeshElements(); j++)
-      elements.push_back((*it)->getMeshElement(j));
-
-  typeOfPartition method;
-  if(gf->nbSplit > 0) method = MULTILEVEL;
-  else method = LAPLACIAN;
-
-  int allowType = gf->allowPartition();
-  multiscalePartition *msp = new multiscalePartition(elements, abs(gf->nbSplit),
-                                                     method, allowType);
-
-  int NF = msp->getNumberOfParts();
-  int numv = gf->model()->getMaxElementaryNumber(0) + 1;
-  int nume = gf->model()->getMaxElementaryNumber(1) + 1;
-  int numf = gf->model()->getMaxElementaryNumber(2) + 1;
-  std::vector<discreteFace*> pFaces;
-  createPartitionFaces(gf->model(), elements, NF, pFaces);
-
-  gf->model()->createTopologyFromFaces(pFaces);
-
-  double tmult = Cpu();
-  Msg::Info("Multiscale Partition SUCCESSFULLY PERFORMED : %d parts (%g s)",
-            NF, tmult - tbegin);
-  gf->model()->writeMSH("multiscalePARTS.msh", 2.2, false, true);
-
-  // Remesh new faces (Compound Lines and Compound Surfaces)
-  Msg::Info("*** Starting parametrize compounds:");
-  double t0 = Cpu();
-
-  //Parametrize Compound Lines
-  int NE = gf->model()->getMaxElementaryNumber(1) - nume + 1;
-  for (int i=0; i < NE; i++){
-    std::vector<GEdge*>e_compound;
-    GEdge *pe = gf->model()->getEdgeByTag(nume+i);//partition edge
-    e_compound.push_back(pe);
-    int num_gec = nume + NE + i ;
-    Msg::Info("Parametrize Compound Line (%d) = %d discrete edge",
-              num_gec, pe->tag());
-    GEdgeCompound *gec = new GEdgeCompound(gf->model(), num_gec, e_compound);
-    gf->model()->add(gec);
-  }
-
-  // Parametrize Compound surfaces
-  std::set<MVertex*> allNod;
-  std::list<GEdge*> U0;
-  for (int i=0; i < NF; i++){
-    std::list<GFace*> f_compound;
-    GFace *pf =  gf->model()->getFaceByTag(numf+i);//partition face
-    int num_gfc = numf + NF + i ;
-    f_compound.push_back(pf);
-    Msg::Info("Parametrize Compound Surface (%d) = %d discrete face",
-              num_gfc, pf->tag());
-
-    GFaceCompound *gfc = new GFaceCompound(gf->model(), num_gfc, f_compound, U0,
-                                           gf->getTypeOfCompound());
-
-    gfc->meshAttributes.recombine = gf->meshAttributes.recombine;
-    gf->model()->add(gfc);
-
-    gfc->parametrize();
-  }
-
-  double t1 = Cpu();
-  Msg::Info("*** Parametrize compounds done (%g s)", t1-t0);
-  Msg::Info("*** Starting meshing 1D edges ...:");
-  for (int i = 0; i < NE; i++){
-    GEdge *gec = gf->model()->getEdgeByTag(nume + NE + i);
-    meshGEdge mge;
-    mge(gec);
-  }
-  double t2 = Cpu();
-  Msg::Info("*** Meshing 1D edges done (%gs)", t2-t1);
-
-  Msg::Info("*** Starting Mesh of surface %d ...", gf->tag());
-
-  for (int i=0; i < NF; i++){
-    GFace *gfc =  gf->model()->getFaceByTag(numf + NF + i );
-    meshGFace mgf;
-    mgf(gfc);
-
-    for(unsigned int j = 0; j < gfc->triangles.size(); ++j){
-      MTriangle *t = gfc->triangles[j];
-      std::vector<MVertex *> v(3);
-      for(int k = 0; k < 3; k++){
-        v[k] = t->getVertex(k);
-        allNod.insert(v[k]);
-      }
-      gf->triangles.push_back(new MTriangle(v[0], v[1], v[2]));
-    }
-    for(unsigned int j = 0; j < gfc->quadrangles.size(); ++j){
-      MQuadrangle *q = gfc->quadrangles[j];
-      std::vector<MVertex *> v(4);
-      for(int k = 0; k < 4; k++){
-        v[k] = q->getVertex(k);
-        allNod.insert(v[k]);
-      }
-      gf->quadrangles.push_back(new MQuadrangle(v[0], v[1], v[2], v[3]));
-    }
-
-    //update mesh statistics
-    gf->meshStatistics.efficiency_index += gfc->meshStatistics.efficiency_index;
-    gf->meshStatistics.longest_edge_length = std::max(gf->meshStatistics.longest_edge_length,
-                                                     gfc->meshStatistics.longest_edge_length);
-    gf->meshStatistics.smallest_edge_length= std::min(gf->meshStatistics.smallest_edge_length,
-                                                      gfc->meshStatistics.smallest_edge_length);
-    gf->meshStatistics.nbGoodLength  += gfc->meshStatistics.nbGoodLength;
-    gf->meshStatistics.nbGoodQuality += gfc->meshStatistics.nbGoodQuality;
-    gf->meshStatistics.nbEdge += gfc->meshStatistics.nbEdge;
-
-  }
-
-  // Removing discrete Vertices - Edges - Faces
-  int NV = gf->model()->getMaxElementaryNumber(0) - numv + 1;
-  for (int i=0; i < NV; i++){
-    GVertex *pv = gf->model()->getVertexByTag(numv+i);
-    gf->model()->remove(pv);
-  }
-  for (int i=0; i < NE; i++){
-    GEdge *gec = gf->model()->getEdgeByTag(nume+NE+i);
-    GEdge *pe = gf->model()->getEdgeByTag(nume+i);
-    gf->model()->remove(pe);
-    gf->model()->remove(gec);
-  }
-  for (int i=0; i < NF; i++){
-    GFace *gfc = gf->model()->getFaceByTag(numf+NF+i);
-    GFace *pf  = gf->model()->getFaceByTag(numf+i);
-    gf->model()->remove(pf);
-    gf->model()->remove(gfc);
-  }
-
-  // Put new mesh in a new discreteFace
-  for(std::set<MVertex*>::iterator it = allNod.begin(); it != allNod.end(); ++it){
-    gf->mesh_vertices.push_back(*it);
-  }
-
-  // FIXME: This horrible hack is necessary to remove vertices that might belong
-  // to a GVertex.  The true fix is rewrite this part of the code: it's far too
-  // complex and error prone.
-  for(GModel::viter it = gf->model()->firstVertex(); it != gf->model()->lastVertex(); it++){
-    std::vector<MVertex*>::iterator itve = std::find
-      (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), (*it)->mesh_vertices[0]);
-    if(itve != gf->mesh_vertices.end())
-      gf->mesh_vertices.erase(itve);
-  }
-
-  // Remove mesh_vertices that belong to l_edges
-  std::list<GEdge*> l_edges = gf->edges();
-  for(std::list<GEdge*>::iterator it = l_edges.begin(); it != l_edges.end(); it++){
-    std::vector<MVertex*> edge_vertices = (*it)->mesh_vertices;
-    std::vector<MVertex*>::const_iterator itv = edge_vertices.begin();
-    for(; itv != edge_vertices.end(); itv++){
-      std::vector<MVertex*>::iterator itve = std::find
-        (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), *itv);
-      if (itve != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itve);
-    }
-    MVertex *vB = (*it)->getBeginVertex()->mesh_vertices[0];
-    std::vector<MVertex*>::iterator itvB = std::find
-      (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), vB);
-    if (itvB != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itvB);
-    MVertex *vE = (*it)->getEndVertex()->mesh_vertices[0];
-    std::vector<MVertex*>::iterator itvE = std::find
-      (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), vE);
-    if (itvE != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itvE);
-
-    //if l_edge is a compond
-    if((*it)->getCompound()){
-      GEdgeCompound *gec = (*it)->getCompound();
-      std::vector<MVertex*> edge_vertices = gec->mesh_vertices;
-      std::vector<MVertex*>::const_iterator itv = edge_vertices.begin();
-      for(; itv != edge_vertices.end(); itv++){
-        std::vector<MVertex*>::iterator itve = std::find
-          (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), *itv);
-        if (itve != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itve);
-      }
-      MVertex *vB = (*it)->getBeginVertex()->mesh_vertices[0];
-      std::vector<MVertex*>::iterator itvB = std::find
-        (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), vB);
-      if (itvB != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itvB);
-      MVertex *vE = (*it)->getEndVertex()->mesh_vertices[0];
-      std::vector<MVertex*>::iterator itvE = std::find
-        (gf->mesh_vertices.begin(), gf->mesh_vertices.end(), vE);
-      if (itvE != gf->mesh_vertices.end()) gf->mesh_vertices.erase(itvE);
-    }
-  }
-
-  double t3 = Cpu();
-  Msg::Info("*** Mesh of surface %d done by assembly %d remeshed faces (%g s)",
-            gf->tag(), NF, t3-t2);
-  Msg::Info("-----------------------------------------------------------");
-
-  gf->coherenceNormals();
-  gf->meshStatistics.status = GFace::DONE;
-#endif
-}
-
 static bool getGFaceNormalFromVert(GFace *gf, MElement *el, SVector3 &nf)
 {
   bool found = false;
@@ -2832,8 +2568,7 @@ void orientMeshGFace::operator()(GFace *gf)
   gf->model()->setCurrentMeshEntity(gf);
 
   if(gf->geomType() == GEntity::DiscreteSurface ||
-     gf->geomType() == GEntity::BoundaryLayerSurface ||
-     gf->geomType() == GEntity::CompoundSurface){
+     gf->geomType() == GEntity::BoundaryLayerSurface){
     // don't do anything
   }
   else {
diff --git a/Mesh/meshGFaceBamg.cpp b/Mesh/meshGFaceBamg.cpp
index 7cf9ae6b0778ca3f3696f5b5ff086f2182aacf03..9803db2da32546864c56af4e9f65c1a09c23e427 100644
--- a/Mesh/meshGFaceBamg.cpp
+++ b/Mesh/meshGFaceBamg.cpp
@@ -20,7 +20,6 @@
 #include "meshGFaceDelaunayInsertion.h"
 #include "Options.h"
 #include "meshGFace.h"
-#include "GFaceCompound.h"
 #include "MElementOctree.h"
 
 #if defined(HAVE_BAMG)
@@ -71,29 +70,11 @@ static void computeMeshMetricsForBamg(GFace *gf, int numV,
 }
 
 
-void meshGFaceBamg(GFace *gf){
-
-   std::list<GEdge*> edges = gf->edges();
-   bool hasCompounds  = false;
-
-  //Replace edges by their compounds
-   std::set<GEdge*> mySet;
-   std::list<GEdge*>::iterator it = edges.begin();
-   while(it != edges.end()){
-    if((*it)->getCompound()){
-      hasCompounds = true;
-      GEdge *gec = (GEdge*)(*it)->getCompound();
-      mySet.insert(gec);
-    }
-    else{
-      mySet.insert(*it);
-    }
-    ++it;
-   }
-   edges.clear();
-   edges.insert(edges.begin(), mySet.begin(), mySet.end());
-   std::set<MVertex*> bcVertex;
-   for (std::list<GEdge*>::iterator it = edges.begin(); it != edges.end(); it++){
+void meshGFaceBamg(GFace *gf)
+{
+  std::list<GEdge*> edges = gf->edges();
+  std::set<MVertex*> bcVertex;
+  for (std::list<GEdge*>::iterator it = edges.begin(); it != edges.end(); it++){
     for (unsigned int i = 0; i < (*it)->lines.size(); i++){
       bcVertex.insert((*it)->lines[i]->getVertex(0));
       bcVertex.insert((*it)->lines[i]->getVertex(1));
@@ -149,16 +130,6 @@ void meshGFaceBamg(GFace *gf){
     double v1(bamgVertices[nodes[0]][1]);
     double v2(bamgVertices[nodes[1]][1]);
     double v3(bamgVertices[nodes[2]][1]);
-    if (hasCompounds){
-      MVertex *vv1 = new MVertex(u1,v1,0.0);
-      MVertex *vv2 = new MVertex(u2,v2,0.0);
-      MVertex *vv3 = new MVertex(u3,v3,0.0);
-      newVert.push_back(vv1);
-      newVert.push_back(vv2);
-      newVert.push_back(vv3);
-      MTriangle *tri = new MTriangle(vv1,vv2,vv3, i);
-      myParamElems.push_back(tri);
-    }
     double sign = (u2-u1)*(v3-v1) - (u3-u1)*(v2-v1);
     if (sign < 0){
       int temp = nodes[0];
@@ -189,9 +160,6 @@ void meshGFaceBamg(GFace *gf){
 			       bamgVertices, bamgTriangles, bamgBoundary);
 
   MElementOctree *_octree = NULL;
-  if (hasCompounds){
-    _octree = new MElementOctree(myParamElems);
-  }
 
   Mesh2 *refinedBamgMesh = 0;
   int iterMax = 41;
@@ -239,27 +207,6 @@ void meshGFaceBamg(GFace *gf){
       // }
       //If point not found because compound edges have been remeshed and boundary triangles have changed
       //then we call our new octree
-      if ( !gp.succeeded() && hasCompounds){
-	double uvw[3] = {v[0],v[1], 0.0};
-	double UV[3];
-	double initialTol = MElement::getTolerance();
-	MElement::setTolerance(1.e-2);
-	MElement *e = _octree->find(v[0],v[1], 0.0, -1);
-	MElement::setTolerance(initialTol);
-	if (e){
-	  e->xyz2uvw(uvw,UV);
-	  double valX[8], valY[8], valZ[8];
-	  for (int i=0;i<e->getNumPrimaryVertices();i++){
-	    int numTri = e->getNum();
-	    valX[i] = gf->triangles[numTri]->getVertex(i)->x();
-	    valY[i] = gf->triangles[numTri]->getVertex(i)->y();
-	    valZ[i] = gf->triangles[numTri]->getVertex(i)->z();
-	  }
-	  gp.x() = e->interpolate(valX,UV[0],UV[1],UV[2]);
-	  gp.y() = e->interpolate(valY,UV[0],UV[1],UV[2]);
-	  gp.z() = e->interpolate(valZ,UV[0],UV[1],UV[2]);
-	}
-      }
       MFaceVertex *x = new MFaceVertex(gp.x(), gp.y(), gp.z(), gf, v[0], v[1]);
       yetAnother[i] = x;
       gf->mesh_vertices.push_back(x);
diff --git a/Mesh/meshGFaceDelaunayInsertion.cpp b/Mesh/meshGFaceDelaunayInsertion.cpp
index 37b7e568916088dadc7dd90b9ee8ef052cac24ec..5e5afb43d6993079fa072ae18313ba19718333ac 100644
--- a/Mesh/meshGFaceDelaunayInsertion.cpp
+++ b/Mesh/meshGFaceDelaunayInsertion.cpp
@@ -23,7 +23,6 @@
 #include "MQuadrangle.h"
 #include "Field.h"
 #include "GModel.h"
-#include "GFaceCompound.h"
 #include "discreteDiskFace.h"
 #include "intersectCurveSurface.h"
 #include "HilbertCurve.h"
@@ -1327,18 +1326,6 @@ bool optimalPointFrontalB (GFace *gf,
   }
 #endif
 
-  if (gf->geomType() == GEntity::CompoundSurface){
-    GFaceCompound *gfc = dynamic_cast<GFaceCompound*> (gf);
-    if (gfc){
-      GPoint gp = gfc->intersectionWithCircle(n2,n1,middle,d,newPoint);
-      if (gp.succeeded()){
-	newPoint[0] = gp.u();
-	newPoint[1] = gp.v();
-	return true;
-      }
-    }
-  }
-
   double uvt[3] = {newPoint[0],newPoint[1],0.0};
   curveFunctorCircle cc (n2,n1,middle,d);
   surfaceFunctorGFace ss (gf);
diff --git a/Mesh/meshGFaceLloyd.cpp b/Mesh/meshGFaceLloyd.cpp
index eb265729fddc3a2ad3844996c922ea3c9c4d4fef..a29c83aa6f293993537d6696e0af0087778273f0 100644
--- a/Mesh/meshGFaceLloyd.cpp
+++ b/Mesh/meshGFaceLloyd.cpp
@@ -413,8 +413,9 @@ smoothing::smoothing(int param1,int param2){
   NORM = param2;
 }
 
-void smoothing::optimize_face(GFace* gf){
-  if(gf->getNumMeshElements()==0 || gf->getCompound()) return;
+void smoothing::optimize_face(GFace* gf)
+{
+  if(gf->getNumMeshElements()==0) return;
 
   std::set<MVertex*> all;
 
@@ -600,10 +601,10 @@ void smoothing::optimize_model(){
   for(it=model->firstFace();it!=model->lastFace();it++)
   {
     gf = *it;
-	if(gf->getNumMeshElements()>0 && !gf->getCompound() /*&& gf->geomType()==GEntity::CompoundSurface*/){
-	  optimize_face(gf);
-	  //recombineIntoQuads(gf,1,1);
-	}
+    if(gf->getNumMeshElements()>0){
+      optimize_face(gf);
+      //recombineIntoQuads(gf,1,1);
+    }
   }
 }
 
diff --git a/Mesh/meshGFaceOptimize.cpp b/Mesh/meshGFaceOptimize.cpp
index bb9715703edcb45713c594e240fdb8a681d588ea..5a9b0dadc032c65e731fdac442a9d74be33f2a0c 100644
--- a/Mesh/meshGFaceOptimize.cpp
+++ b/Mesh/meshGFaceOptimize.cpp
@@ -1173,7 +1173,6 @@ int edgeSwapPass2(GFace *gf, std::set<MTri3*, compareTri3Ptr> &allTris,
 static int _recombineIntoQuads(GFace *gf, double minqual, bool cubicGraph = 1)
 {
   // never recombine a face that is part of a compound!
-  if(gf->getCompound()) return 0;
   if(gf->triangles.size() == 0) return 1;
 
   int success = 1;
@@ -1444,7 +1443,7 @@ void recombineIntoQuads(GFace *gf,
 
   bool haveParam = true;
   bool saveAll = CTX::instance()->mesh.saveAll;
-  if(gf->geomType() == GEntity::DiscreteSurface && !gf->getCompound())
+  if(gf->geomType() == GEntity::DiscreteSurface)
     haveParam = false;
 
   if (saveAll) gf->model()->writeMSH("before.msh");
diff --git a/Mesh/meshGRegion.cpp b/Mesh/meshGRegion.cpp
index 7f2864c378d9de09b329a61794d50846f6b8acb1..c30c609351679ac0443ff173b00ed9deeb6a6dae 100644
--- a/Mesh/meshGRegion.cpp
+++ b/Mesh/meshGRegion.cpp
@@ -30,7 +30,6 @@
 #include "BDS.h"
 #include "OS.h"
 #include "Context.h"
-#include "GFaceCompound.h"
 #include "meshGRegionMMG3D.h"
 #include "simple3D.h"
 #include "directions3D.h"
@@ -1076,22 +1075,6 @@ void meshGRegion::operator() (GRegion *gr)
     }
   }
 
-  // replace discreteFaces by their compounds
-  {
-    std::set<GFace*, GEntityLessThan> mySet;
-    std::list<GFace*>::iterator it = faces.begin();
-    while(it != faces.end()){
-      if((*it)->getCompound())
-        mySet.insert((*it)->getCompound());
-      else
-        mySet.insert(*it);
-      ++it;
-    }
-    faces.clear();
-    faces.insert(faces.begin(), mySet.begin(), mySet.end());
-    gr->set(faces);
-  }
-
   if(CTX::instance()->mesh.algo3d != ALGO_3D_FRONTAL){
     delaunay.push_back(gr);
   }
diff --git a/Mesh/meshPartition.cpp b/Mesh/meshPartition.cpp
index 62ed7f260bdf6e6b53d37bc1ef0acca251f6e7bf..951852d94496783527285c90cc3897043d05878e 100644
--- a/Mesh/meshPartition.cpp
+++ b/Mesh/meshPartition.cpp
@@ -28,7 +28,6 @@
 #include "discreteEdge.h"
 #include "discreteFace.h"
 #include "discreteRegion.h"
-#include "GFaceCompound.h"
 
 //--Prototype for Chaco interface
 
diff --git a/Mesh/meshPartition.h b/Mesh/meshPartition.h
index fcc593b492b16e4c7a991fd9211dfce8aa89f25e..6da2a9a9b1ee567e452719e7b303b0bb4333c4df 100644
--- a/Mesh/meshPartition.h
+++ b/Mesh/meshPartition.h
@@ -8,7 +8,6 @@
 
 #include <vector>
 #include "partitionEdge.h"
-#include "GFaceCompound.h"
 #include "GFace.h"
 
 class GModel;
@@ -27,7 +26,7 @@ int RenumberGraph(Graph &graph, meshPartitionOptions &options);
 int PartitionMesh(GModel *const model, meshPartitionOptions &options);
 int RenumberMesh(GModel *const model, meshPartitionOptions &options);
 int PartitionMeshFace(std::list<GFace*> &cFaces, meshPartitionOptions &options);
-int PartitionMeshElements(std::vector<MElement*> &elements, 
+int PartitionMeshElements(std::vector<MElement*> &elements,
                           meshPartitionOptions &options);
 int CreatePartitionBoundaries(GModel *model, bool createGhostCells, bool createAllDims = false);
 
diff --git a/Mesh/multiscalePartition.cpp b/Mesh/multiscalePartition.cpp
deleted file mode 100644
index 0bd30710b28ccda54ecf74fe47defb4ba4202be6..0000000000000000000000000000000000000000
--- a/Mesh/multiscalePartition.cpp
+++ /dev/null
@@ -1,428 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-//
-// Contributor(s):
-//   Emilie Marchandise
-
-#include "multiscalePartition.h"
-#include "GmshConfig.h"
-#include "GmshDefines.h"
-#include "meshPartition.h"
-#include "MEdge.h"
-#include "MElement.h"
-#include "multiscaleLaplace.h"
-#include "GFaceCompound.h"
-#include "Numeric.h"
-#include "Context.h"
-#include "OS.h"
-
-static void recur_connect(MVertex *v,
-                          std::multimap<MVertex*,MEdge> &v2e,
-                          std::set<MEdge,Less_Edge> &group,
-                          std::set<MVertex*> &touched)
-{
-  if (touched.find(v) != touched.end())return;
-
-  touched.insert(v);
-  for (std::multimap <MVertex*,MEdge>::iterator it = v2e.lower_bound(v);
-       it != v2e.upper_bound(v) ; ++it){
-    group.insert(it->second);
-    for (int i=0;i<it->second.getNumVertices();++i){
-      recur_connect (it->second.getVertex(i),v2e,group,touched);
-    }
-  }
-
-}
-
-
-// starting form a list of elements, returns
-// lists of lists that are all simply connected
-static void recur_connect_e (const MEdge &e,
-                             std::multimap<MEdge,MElement*,Less_Edge> &e2e,
-                             std::set<MElement*> &group,
-                             std::set<MEdge,Less_Edge> &touched){
-  if (touched.find(e) != touched.end())return;
-  touched.insert(e);
-  for (std::multimap <MEdge,MElement*,Less_Edge>::iterator it = e2e.lower_bound(e);
-         it != e2e.upper_bound(e) ; ++it){
-    group.insert(it->second);
-    for (int i=0;i<it->second->getNumEdges();++i){
-      recur_connect_e (it->second->getEdge(i),e2e,group,touched);
-    }
-  }
-}
-
-
-static int connected_bounds (std::vector<MEdge> &edges,  std::vector<std::vector<MEdge> > &boundaries)
-{
-  std::multimap<MVertex*,MEdge> v2e;
-  for (unsigned i = 0; i < edges.size(); ++i){
-    for (int j=0;j<edges[i].getNumVertices();j++){
-      v2e.insert(std::make_pair(edges[i].getVertex(j),edges[i]));
-    }
-  }
-  while (!v2e.empty()){
-    std::set<MEdge, Less_Edge> group;
-    std::set<MVertex*> touched;
-    recur_connect (v2e.begin()->first,v2e,group,touched);
-    std::vector<MEdge> temp;
-    temp.insert(temp.begin(), group.begin(), group.end());
-    boundaries.push_back(temp);
-    for (std::set<MVertex*>::iterator it = touched.begin() ; it != touched.end();++it)
-      v2e.erase(*it);
-  }
-
-  return boundaries.size();
-}
-
-//--------------------------------------------------------------
-static void connectedRegions (std::vector<MElement*> &elements,
-                              std::vector<std::vector<MElement*> > &regions)
-{
-  std::multimap<MEdge,MElement*,Less_Edge> e2e;
-  for (unsigned int i = 0; i < elements.size(); ++i){
-    for (int j = 0; j < elements[i]->getNumEdges(); j++){
-      e2e.insert(std::make_pair(elements[i]->getEdge(j),elements[i]));
-    }
-  }
-  while (!e2e.empty()){
-    std::set<MElement*> group;
-    std::set<MEdge,Less_Edge> touched;
-    recur_connect_e (e2e.begin()->first,e2e,group,touched);
-    std::vector<MElement*> temp;
-    temp.insert(temp.begin(), group.begin(), group.end());
-    regions.push_back(temp);
-    for ( std::set<MEdge,Less_Edge>::iterator it = touched.begin() ; it != touched.end();++it)
-      e2e.erase(*it);
-  }
-}
-
-static int getGenus (std::vector<MElement *> &elements,
-                     std::vector<std::vector<MEdge> > &boundaries)
-{
-
-  //We suppose MElements are simply connected
-
-  std::set<MEdge, Less_Edge> es;
-  std::set<MVertex*> vs;
-  int N = 0;
-  for(unsigned int i = 0; i < elements.size(); i++){
-    N++;
-    MElement *e = elements[i];
-    for(int j = 0; j < e->getNumVertices(); j++){
-      vs.insert(e->getVertex(j));
-    }
-    for(int j = 0; j < e->getNumEdges(); j++){
-      es.insert(e->getEdge(j));
-    }
-  }
-
-  int poincare = vs.size() - es.size() + N;
-
-  //compute connected boundaries
-  int nbBounds = 0;
-  std::vector<MEdge> bEdges;
-  for(unsigned int i = 0; i < elements.size(); i++){
-    for(int j = 0; j < elements[i]->getNumEdges(); j++){
-      MEdge me =  elements[i]->getEdge(j);
-      if(std::find(bEdges.begin(), bEdges.end(), me) == bEdges.end())
-         bEdges.push_back(me);
-      else
-         bEdges.erase(std::find(bEdges.begin(), bEdges.end(),me));
-    }
-  }
-  nbBounds = connected_bounds(bEdges, boundaries);
-  int genus = (int)(-poincare + 2 - nbBounds)/2;
-
-  //printf("************** partition has %d boundaries and genus =%d \n", nbBounds, genus);
-
-  return genus;
-
-}
-
-static int getAspectRatio(std::vector<MElement *> &elements,
-                          std::vector<std::vector<MEdge> > &boundaries)
-{
-
-  double area3D = 0.0;
-  for(unsigned int i = 0; i <elements.size(); ++i){
-    MElement *t = elements[i];
-    std::vector<MVertex *> v(3);
-    for(int k = 0; k < 3; k++) v[k] = t->getVertex(k);
-    double p0[3] = {v[0]->x(), v[0]->y(), v[0]->z()};
-    double p1[3] = {v[1]->x(), v[1]->y(), v[1]->z()};
-    double p2[3] = {v[2]->x(), v[2]->y(), v[2]->z()};
-    double a_3D = fabs(triangle_area(p0, p1, p2));
-    area3D += a_3D;
-  }
-
-  double tot_length = 0.0;
-  for(unsigned int i = 0; i <boundaries.size(); ++i){
-    std::vector<MEdge> iBound = boundaries[i];
-    double iLength = 0.0;
-    for( unsigned int j = 0; j <iBound.size(); ++j){
-      MVertex *v0 = iBound[j].getVertex(0);
-      MVertex *v1 = iBound[j].getVertex(1);
-      const double length = sqrt((v0->x() - v1->x()) * (v0->x() - v1->x()) +
-                                 (v0->y() - v1->y()) * (v0->y() - v1->y()) +
-                                 (v0->z() - v1->z()) * (v0->z() - v1->z()));
-      iLength += length;
-    }
-    tot_length += iLength;
-  }
-  int AR = 1;
-  if (boundaries.size() > 0){
-    tot_length /= boundaries.size();
-    AR = (int) ceil(2*3.14*area3D/(tot_length*tot_length));
-  }
-
-  //compute AR also with Bounding box
-  std::set<MVertex*> vs;
-  for(unsigned int i = 0; i < elements.size(); i++){
-    MElement *e = elements[i];
-    for(int j = 0; j < e->getNumVertices(); j++){
-      vs.insert(e->getVertex(j));
-    }
-  }
-  SBoundingBox3d bb;
-  std::vector<SPoint3> vertices;
-  for (std::set<MVertex* >::iterator it = vs.begin(); it != vs.end(); it++){
-    SPoint3 pt((*it)->x(),(*it)->y(), (*it)->z());
-    vertices.push_back(pt);
-    bb += pt;
-  }
-  double H = norm(SVector3(bb.max(), bb.min()));
-
-  //SOrientedBoundingBox obbox =  SOrientedBoundingBox::buildOBB(vertices);
-  //double H = obbox.getMaxSize();
-
-  double D = H;
-  if (boundaries.size()  > 0 ) D = 10e4;
-  for (unsigned int i = 0; i < boundaries.size(); i++){
-    std::set<MVertex*> vb;
-    std::vector<MEdge> iBound = boundaries[i];
-    for (unsigned int j = 0; j < iBound.size(); j++){
-      MEdge e = iBound[j];
-      vb.insert(e.getVertex(0));
-      vb.insert(e.getVertex(1));
-    }
-    std::vector<SPoint3> vBounds;
-    SBoundingBox3d bb;
-    for (std::set<MVertex* >::iterator it = vb.begin(); it != vb.end(); it++){
-      SPoint3 pt((*it)->x(),(*it)->y(), (*it)->z());
-      vBounds.push_back(pt);
-      bb +=pt;
-    }
-    double iD = norm(SVector3(bb.max(), bb.min()));
-    D = std::min(D, iD);
-
-    //SOrientedBoundingBox obboxD = SOrientedBoundingBox::buildOBB(vBounds);
-    //D = std::max(D, obboxD.getMaxSize());
-  }
-  int AR2 = (int)ceil(H/D);
-
-  return std::max(AR, AR2);
-}
-
-static void getGenusAndRatio(std::vector<MElement *> &elements, int & genus, int &AR, int &NB)
-{
-  std::vector<std::vector<MEdge> > boundaries;
-  boundaries.clear();
-  genus = getGenus(elements, boundaries);
-  NB = boundaries.size();
-  AR = getAspectRatio(elements, boundaries);
-
-}
-static void partitionRegions(std::vector<MElement*> &elements,
-                             std::vector<std::vector<MElement*> > &regions)
-{
-
-  for (unsigned int i = 0; i < elements.size(); ++i){
-    MElement *e = elements[i];
-    int part = e->getPartition();
-    regions[part-1].push_back(e);
-  }
-
-  std::vector<std::vector<MElement*> > allRegions;
-  for (unsigned int k = 0; k < regions.size(); ++k){
-    std::vector<std::vector<MElement*> >  conRegions;
-    conRegions.clear();
-    connectedRegions (regions[k], conRegions);
-    for (unsigned int j = 0; j < conRegions.size(); j++)
-      allRegions.push_back(conRegions[j]);
-  }
-  regions.clear();
-  regions.resize(allRegions.size());
-  regions = allRegions;
-
-}
-
-/*
-static void printLevel(std::vector<MElement *> &elements, int recur, int region)
-{
-  char fn[256];
-  sprintf(fn, "part_%d_%d.msh", recur, region);
-  double version = 2.2;
-
-  std::set<MVertex*> vs;
-  for (unsigned int i = 0; i < elements.size(); i++){
-    for (int j = 0; j < elements[i]->getNumVertices(); j++){
-      vs.insert(elements[i]->getVertex(j));
-    }
-  }
-
-  bool binary = false;
-  FILE *fp = Fopen (fn, "w");
-  if(fp){
-    fprintf(fp, "$MeshFormat\n");
-    fprintf(fp, "%g %d %d\n", version, binary ? 1 : 0, (int)sizeof(double));
-    fprintf(fp, "$EndMeshFormat\n");
-
-    fprintf(fp,"$Nodes\n%d\n", (int)vs.size());
-    std::set<MVertex*> :: iterator it = vs.begin();
-    int index = 1;
-    for (; it != vs.end() ; ++it){
-      (*it)->setIndex(index++);
-      fprintf(fp,"%d %g %g %g\n",(*it)->getIndex(),
-              (*it)->x(),(*it)->y(),(*it)->z());
-    }
-    fprintf(fp,"$EndNodes\n");
-
-    fprintf(fp,"$Elements\n%d\n", (int)elements.size());
-    for (unsigned int i = 0; i < elements.size(); i++){
-      elements[i]->writeMSH(fp, version);
-    }
-    fprintf(fp,"$EndElements\n%d\n", (int)elements.size());
-
-    fclose(fp);
-  }
-}
-*/
-
-multiscalePartition::multiscalePartition(std::vector<MElement *> &elements,
-                                         int nbParts, typeOfPartition method,
-					 int allowPartition)
-{
-  options = CTX::instance()->partitionOptions;
-  options.num_partitions = nbParts;
-  options.partitioner = 1; //1 CHACO, 2 METIS
-  if (options.partitioner == 1){
-    options.global_method = 1;// 1 Multilevel-KL, 2 Spectral
-    options.mesh_dims[0] = nbParts;
-  }
-  else if (options.partitioner == 2){
-    options.algorithm = 2;//1 recursive, 2=kway, 3=nodal weights
-    options.refine_algorithm=2;
-    options.edge_matching = 3;
-  }
-
-  partitionLevel *level = new partitionLevel;
-  level->elements.insert(level->elements.begin(),elements.begin(),elements.end());
-  level->recur = 0;
-  level->region = 0;
-
-  levels.push_back(level);
-  onlyMultilevel = false;
-  if (allowPartition == 2)  onlyMultilevel = true;
-
-  partition(*level, nbParts, method);
-
-  totalParts = assembleAllPartitions(elements);
-
-}
-
-void multiscalePartition::setNumberOfPartitions(int &nbParts)
-{
-  options.num_partitions = nbParts;
-   if (options.partitioner == 1){
-     options.mesh_dims[0] = nbParts;
-   }
-}
-
-void multiscalePartition::partition(partitionLevel & level, int nbParts,
-                                    typeOfPartition method)
-{
-#if defined(HAVE_SOLVER) && defined(HAVE_ANN) && (defined(HAVE_METIS) || defined(HAVE_CHACO))
-
-  if (method == LAPLACIAN){
-    std::map<MVertex*, SPoint3> coordinates;
-    multiscaleLaplace multiLaplace(level.elements, coordinates);
-  }
-  else if (method == MULTILEVEL){
-    setNumberOfPartitions(nbParts);
-    PartitionMeshElements(level.elements, options);
-  }
-
-  std::vector<std::vector<MElement*> > regions(nbParts);
-  partitionRegions(level.elements, regions);
-  level.elements.clear();
-
-  for (unsigned i=0;i< regions.size() ; i++){
-
-    partitionLevel *nextLevel = new partitionLevel;
-    nextLevel->elements = regions[i];
-    nextLevel->recur = level.recur+1;
-    nextLevel->region = i;
-
-    levels.push_back(nextLevel);
-    int genus, AR, NB;
-    getGenusAndRatio(regions[i], genus, AR, NB);
-
-    if (genus < 0) {
-      Msg::Error("Genus partition is negative G=%d!", genus);
-      return;
-    }
-
-    if (genus != 0 ){
-      int nbParts = std::max(genus+2,2);
-      Msg::Info("Mesh partition: level (%d-%d)  is %d-GENUS (AR=%d) "
-                "---> MULTILEVEL partition %d parts",
-                nextLevel->recur,nextLevel->region, genus, AR, nbParts);
-      partition(*nextLevel, nbParts, MULTILEVEL);
-    }
-    else if ((genus == 0  &&  AR > AR_MAX) || (genus == 0  &&  NB > 1)){
-      int nbParts = 2;
-      if(!onlyMultilevel){
-	Msg::Info("Mesh partition: level (%d-%d)  is ZERO-GENUS (AR=%d NB=%d) "
-                  "---> LAPLACIAN partition %d parts",
-		  nextLevel->recur,nextLevel->region, AR, NB, nbParts);
-	partition(*nextLevel, nbParts, LAPLACIAN);
-      }
-      else {
-        Msg::Info("Mesh partition: level (%d-%d)  is ZERO-GENUS (AR=%d NB=%d) "
-                  "---> MULTILEVEL partition %d parts",
-                  nextLevel->recur,nextLevel->region, AR, NB, nbParts);
-        partition(*nextLevel, nbParts, MULTILEVEL);
-      }
-    }
-    else {
-      Msg::Info("*** Mesh partition: level (%d-%d) is ZERO-GENUS (AR=%d, NB=%d)",
-                nextLevel->recur,nextLevel->region, AR, NB);
-    }
-
-  }
-
-#endif
-}
-
-int multiscalePartition::assembleAllPartitions(std::vector<MElement*> & elements)
-{
-  int iPart =  1;
-
-  elements.clear();
-  for (unsigned i = 0; i< levels.size(); i++){
-    partitionLevel *iLevel = levels[i];
-    if(iLevel->elements.size() > 0){
-      for (unsigned j = 0; j < iLevel->elements.size(); j++){
-        MElement *e = iLevel->elements[j];
-	elements.push_back(e);
-        e->setPartition(iPart);
-      }
-      iPart++;
-    }
-  }
-
-  return iPart - 1;
-}
diff --git a/Mesh/multiscalePartition.h b/Mesh/multiscalePartition.h
deleted file mode 100644
index 3f44ad525db693e8a6ea3e7b0d35c03f5f7f54cb..0000000000000000000000000000000000000000
--- a/Mesh/multiscalePartition.h
+++ /dev/null
@@ -1,46 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-//
-// Contributor(s):
-//   Emilie Marchandise
-
-#ifndef _MULTI_PARTITION_H_
-#define _MULTI_PARTITION_H_
-
-#include <vector>
-#include <map>
-#include "linearSystemGMM.h"
-#include "meshPartitionOptions.h"
-#include "meshPartition.h"
-
-class MElement;
-class meshPartitionOptions;
-
-struct partitionLevel {
-  int recur;
-  int region;
-  std::vector<MElement *> elements;
-};
-
-typedef enum {LAPLACIAN= 0, MULTILEVEL=1} typeOfPartition;
-
-class multiscalePartition{
-
- private:
-  std::vector<partitionLevel*> levels;
-  void partition(partitionLevel &level, int nbParts,  typeOfPartition method);
-  int totalParts;
-  bool onlyMultilevel;
-  meshPartitionOptions options;
-
- public:
-  multiscalePartition(std::vector<MElement *> &elements, int nbParts, 
-		      typeOfPartition method, int allowPartition);
-  int assembleAllPartitions(std::vector<MElement*> & elements);
-  void setNumberOfPartitions(int &nbParts);
-  int getNumberOfParts(){return totalParts;}
-};
-
-#endif
diff --git a/Parser/Gmsh.l b/Parser/Gmsh.l
index 4db69a4d3aa81a6605610b58a51a779e3c9e7ec3..d5bb0f8d09733d568181d06532a67bd51f56b75b 100644
--- a/Parser/Gmsh.l
+++ b/Parser/Gmsh.l
@@ -166,7 +166,6 @@ Cos                     return tCos;
 Cosh                    return tCosh;
 Cpu                     return tCpu;
 CreateTopology          return tCreateTopology;
-CreateTopologyNoHoles   return tCreateTopologyNoHoles;
 CurrentDir              return tCurrentDirectory;
 CurrentDirectory        return tCurrentDirectory;
 Cylinder                return tCylinder;
diff --git a/Parser/Gmsh.tab.cpp b/Parser/Gmsh.tab.cpp
index 833158f6e5a05d59d49f6bafe7b32ef60515875a..9c8c0c4d7cf06c334c0e6548da776b0d01b68f82 100644
--- a/Parser/Gmsh.tab.cpp
+++ b/Parser/Gmsh.tab.cpp
@@ -150,154 +150,153 @@
      tMemory = 331,
      tTotalMemory = 332,
      tCreateTopology = 333,
-     tCreateTopologyNoHoles = 334,
-     tDistanceFunction = 335,
-     tDefineConstant = 336,
-     tUndefineConstant = 337,
-     tDefineNumber = 338,
-     tDefineStruct = 339,
-     tNameStruct = 340,
-     tDimNameSpace = 341,
-     tAppend = 342,
-     tDefineString = 343,
-     tSetNumber = 344,
-     tSetString = 345,
-     tPoint = 346,
-     tCircle = 347,
-     tEllipse = 348,
-     tLine = 349,
-     tSphere = 350,
-     tPolarSphere = 351,
-     tSurface = 352,
-     tSpline = 353,
-     tVolume = 354,
-     tBox = 355,
-     tCylinder = 356,
-     tCone = 357,
-     tTorus = 358,
-     tEllipsoid = 359,
-     tQuadric = 360,
-     tShapeFromFile = 361,
-     tRectangle = 362,
-     tDisk = 363,
-     tWire = 364,
-     tGeoEntity = 365,
-     tCharacteristic = 366,
-     tLength = 367,
-     tParametric = 368,
-     tElliptic = 369,
-     tRefineMesh = 370,
-     tAdaptMesh = 371,
-     tRelocateMesh = 372,
-     tSetFactory = 373,
-     tThruSections = 374,
-     tWedge = 375,
-     tFillet = 376,
-     tChamfer = 377,
-     tPlane = 378,
-     tRuled = 379,
-     tTransfinite = 380,
-     tPhysical = 381,
-     tCompound = 382,
-     tPeriodic = 383,
-     tUsing = 384,
-     tPlugin = 385,
-     tDegenerated = 386,
-     tRecursive = 387,
-     tRotate = 388,
-     tTranslate = 389,
-     tSymmetry = 390,
-     tDilate = 391,
-     tExtrude = 392,
-     tLevelset = 393,
-     tAffine = 394,
-     tBooleanUnion = 395,
-     tBooleanIntersection = 396,
-     tBooleanDifference = 397,
-     tBooleanSection = 398,
-     tBooleanFragments = 399,
-     tThickSolid = 400,
-     tRecombine = 401,
-     tSmoother = 402,
-     tSplit = 403,
-     tDelete = 404,
-     tCoherence = 405,
-     tIntersect = 406,
-     tMeshAlgorithm = 407,
-     tReverse = 408,
-     tLayers = 409,
-     tScaleLast = 410,
-     tHole = 411,
-     tAlias = 412,
-     tAliasWithOptions = 413,
-     tCopyOptions = 414,
-     tQuadTriAddVerts = 415,
-     tQuadTriNoNewVerts = 416,
-     tRecombLaterals = 417,
-     tTransfQuadTri = 418,
-     tText2D = 419,
-     tText3D = 420,
-     tInterpolationScheme = 421,
-     tTime = 422,
-     tCombine = 423,
-     tBSpline = 424,
-     tBezier = 425,
-     tNurbs = 426,
-     tNurbsOrder = 427,
-     tNurbsKnots = 428,
-     tColor = 429,
-     tColorTable = 430,
-     tFor = 431,
-     tIn = 432,
-     tEndFor = 433,
-     tIf = 434,
-     tElseIf = 435,
-     tElse = 436,
-     tEndIf = 437,
-     tExit = 438,
-     tAbort = 439,
-     tField = 440,
-     tReturn = 441,
-     tCall = 442,
-     tSlide = 443,
-     tMacro = 444,
-     tShow = 445,
-     tHide = 446,
-     tGetValue = 447,
-     tGetStringValue = 448,
-     tGetEnv = 449,
-     tGetString = 450,
-     tGetNumber = 451,
-     tUnique = 452,
-     tHomology = 453,
-     tCohomology = 454,
-     tBetti = 455,
-     tExists = 456,
-     tFileExists = 457,
-     tGetForced = 458,
-     tGetForcedStr = 459,
-     tGMSH_MAJOR_VERSION = 460,
-     tGMSH_MINOR_VERSION = 461,
-     tGMSH_PATCH_VERSION = 462,
-     tGmshExecutableName = 463,
-     tSetPartition = 464,
-     tNameToString = 465,
-     tStringToName = 466,
-     tAFFECTDIVIDE = 467,
-     tAFFECTTIMES = 468,
-     tAFFECTMINUS = 469,
-     tAFFECTPLUS = 470,
-     tOR = 471,
-     tAND = 472,
-     tNOTEQUAL = 473,
-     tEQUAL = 474,
-     tGREATERGREATER = 475,
-     tLESSLESS = 476,
-     tGREATEROREQUAL = 477,
-     tLESSOREQUAL = 478,
-     UNARYPREC = 479,
-     tMINUSMINUS = 480,
-     tPLUSPLUS = 481
+     tDistanceFunction = 334,
+     tDefineConstant = 335,
+     tUndefineConstant = 336,
+     tDefineNumber = 337,
+     tDefineStruct = 338,
+     tNameStruct = 339,
+     tDimNameSpace = 340,
+     tAppend = 341,
+     tDefineString = 342,
+     tSetNumber = 343,
+     tSetString = 344,
+     tPoint = 345,
+     tCircle = 346,
+     tEllipse = 347,
+     tLine = 348,
+     tSphere = 349,
+     tPolarSphere = 350,
+     tSurface = 351,
+     tSpline = 352,
+     tVolume = 353,
+     tBox = 354,
+     tCylinder = 355,
+     tCone = 356,
+     tTorus = 357,
+     tEllipsoid = 358,
+     tQuadric = 359,
+     tShapeFromFile = 360,
+     tRectangle = 361,
+     tDisk = 362,
+     tWire = 363,
+     tGeoEntity = 364,
+     tCharacteristic = 365,
+     tLength = 366,
+     tParametric = 367,
+     tElliptic = 368,
+     tRefineMesh = 369,
+     tAdaptMesh = 370,
+     tRelocateMesh = 371,
+     tSetFactory = 372,
+     tThruSections = 373,
+     tWedge = 374,
+     tFillet = 375,
+     tChamfer = 376,
+     tPlane = 377,
+     tRuled = 378,
+     tTransfinite = 379,
+     tPhysical = 380,
+     tCompound = 381,
+     tPeriodic = 382,
+     tUsing = 383,
+     tPlugin = 384,
+     tDegenerated = 385,
+     tRecursive = 386,
+     tRotate = 387,
+     tTranslate = 388,
+     tSymmetry = 389,
+     tDilate = 390,
+     tExtrude = 391,
+     tLevelset = 392,
+     tAffine = 393,
+     tBooleanUnion = 394,
+     tBooleanIntersection = 395,
+     tBooleanDifference = 396,
+     tBooleanSection = 397,
+     tBooleanFragments = 398,
+     tThickSolid = 399,
+     tRecombine = 400,
+     tSmoother = 401,
+     tSplit = 402,
+     tDelete = 403,
+     tCoherence = 404,
+     tIntersect = 405,
+     tMeshAlgorithm = 406,
+     tReverse = 407,
+     tLayers = 408,
+     tScaleLast = 409,
+     tHole = 410,
+     tAlias = 411,
+     tAliasWithOptions = 412,
+     tCopyOptions = 413,
+     tQuadTriAddVerts = 414,
+     tQuadTriNoNewVerts = 415,
+     tRecombLaterals = 416,
+     tTransfQuadTri = 417,
+     tText2D = 418,
+     tText3D = 419,
+     tInterpolationScheme = 420,
+     tTime = 421,
+     tCombine = 422,
+     tBSpline = 423,
+     tBezier = 424,
+     tNurbs = 425,
+     tNurbsOrder = 426,
+     tNurbsKnots = 427,
+     tColor = 428,
+     tColorTable = 429,
+     tFor = 430,
+     tIn = 431,
+     tEndFor = 432,
+     tIf = 433,
+     tElseIf = 434,
+     tElse = 435,
+     tEndIf = 436,
+     tExit = 437,
+     tAbort = 438,
+     tField = 439,
+     tReturn = 440,
+     tCall = 441,
+     tSlide = 442,
+     tMacro = 443,
+     tShow = 444,
+     tHide = 445,
+     tGetValue = 446,
+     tGetStringValue = 447,
+     tGetEnv = 448,
+     tGetString = 449,
+     tGetNumber = 450,
+     tUnique = 451,
+     tHomology = 452,
+     tCohomology = 453,
+     tBetti = 454,
+     tExists = 455,
+     tFileExists = 456,
+     tGetForced = 457,
+     tGetForcedStr = 458,
+     tGMSH_MAJOR_VERSION = 459,
+     tGMSH_MINOR_VERSION = 460,
+     tGMSH_PATCH_VERSION = 461,
+     tGmshExecutableName = 462,
+     tSetPartition = 463,
+     tNameToString = 464,
+     tStringToName = 465,
+     tAFFECTDIVIDE = 466,
+     tAFFECTTIMES = 467,
+     tAFFECTMINUS = 468,
+     tAFFECTPLUS = 469,
+     tOR = 470,
+     tAND = 471,
+     tNOTEQUAL = 472,
+     tEQUAL = 473,
+     tGREATERGREATER = 474,
+     tLESSLESS = 475,
+     tGREATEROREQUAL = 476,
+     tLESSOREQUAL = 477,
+     UNARYPREC = 478,
+     tMINUSMINUS = 479,
+     tPLUSPLUS = 480
    };
 #endif
 /* Tokens.  */
@@ -377,154 +376,153 @@
 #define tMemory 331
 #define tTotalMemory 332
 #define tCreateTopology 333
-#define tCreateTopologyNoHoles 334
-#define tDistanceFunction 335
-#define tDefineConstant 336
-#define tUndefineConstant 337
-#define tDefineNumber 338
-#define tDefineStruct 339
-#define tNameStruct 340
-#define tDimNameSpace 341
-#define tAppend 342
-#define tDefineString 343
-#define tSetNumber 344
-#define tSetString 345
-#define tPoint 346
-#define tCircle 347
-#define tEllipse 348
-#define tLine 349
-#define tSphere 350
-#define tPolarSphere 351
-#define tSurface 352
-#define tSpline 353
-#define tVolume 354
-#define tBox 355
-#define tCylinder 356
-#define tCone 357
-#define tTorus 358
-#define tEllipsoid 359
-#define tQuadric 360
-#define tShapeFromFile 361
-#define tRectangle 362
-#define tDisk 363
-#define tWire 364
-#define tGeoEntity 365
-#define tCharacteristic 366
-#define tLength 367
-#define tParametric 368
-#define tElliptic 369
-#define tRefineMesh 370
-#define tAdaptMesh 371
-#define tRelocateMesh 372
-#define tSetFactory 373
-#define tThruSections 374
-#define tWedge 375
-#define tFillet 376
-#define tChamfer 377
-#define tPlane 378
-#define tRuled 379
-#define tTransfinite 380
-#define tPhysical 381
-#define tCompound 382
-#define tPeriodic 383
-#define tUsing 384
-#define tPlugin 385
-#define tDegenerated 386
-#define tRecursive 387
-#define tRotate 388
-#define tTranslate 389
-#define tSymmetry 390
-#define tDilate 391
-#define tExtrude 392
-#define tLevelset 393
-#define tAffine 394
-#define tBooleanUnion 395
-#define tBooleanIntersection 396
-#define tBooleanDifference 397
-#define tBooleanSection 398
-#define tBooleanFragments 399
-#define tThickSolid 400
-#define tRecombine 401
-#define tSmoother 402
-#define tSplit 403
-#define tDelete 404
-#define tCoherence 405
-#define tIntersect 406
-#define tMeshAlgorithm 407
-#define tReverse 408
-#define tLayers 409
-#define tScaleLast 410
-#define tHole 411
-#define tAlias 412
-#define tAliasWithOptions 413
-#define tCopyOptions 414
-#define tQuadTriAddVerts 415
-#define tQuadTriNoNewVerts 416
-#define tRecombLaterals 417
-#define tTransfQuadTri 418
-#define tText2D 419
-#define tText3D 420
-#define tInterpolationScheme 421
-#define tTime 422
-#define tCombine 423
-#define tBSpline 424
-#define tBezier 425
-#define tNurbs 426
-#define tNurbsOrder 427
-#define tNurbsKnots 428
-#define tColor 429
-#define tColorTable 430
-#define tFor 431
-#define tIn 432
-#define tEndFor 433
-#define tIf 434
-#define tElseIf 435
-#define tElse 436
-#define tEndIf 437
-#define tExit 438
-#define tAbort 439
-#define tField 440
-#define tReturn 441
-#define tCall 442
-#define tSlide 443
-#define tMacro 444
-#define tShow 445
-#define tHide 446
-#define tGetValue 447
-#define tGetStringValue 448
-#define tGetEnv 449
-#define tGetString 450
-#define tGetNumber 451
-#define tUnique 452
-#define tHomology 453
-#define tCohomology 454
-#define tBetti 455
-#define tExists 456
-#define tFileExists 457
-#define tGetForced 458
-#define tGetForcedStr 459
-#define tGMSH_MAJOR_VERSION 460
-#define tGMSH_MINOR_VERSION 461
-#define tGMSH_PATCH_VERSION 462
-#define tGmshExecutableName 463
-#define tSetPartition 464
-#define tNameToString 465
-#define tStringToName 466
-#define tAFFECTDIVIDE 467
-#define tAFFECTTIMES 468
-#define tAFFECTMINUS 469
-#define tAFFECTPLUS 470
-#define tOR 471
-#define tAND 472
-#define tNOTEQUAL 473
-#define tEQUAL 474
-#define tGREATERGREATER 475
-#define tLESSLESS 476
-#define tGREATEROREQUAL 477
-#define tLESSOREQUAL 478
-#define UNARYPREC 479
-#define tMINUSMINUS 480
-#define tPLUSPLUS 481
+#define tDistanceFunction 334
+#define tDefineConstant 335
+#define tUndefineConstant 336
+#define tDefineNumber 337
+#define tDefineStruct 338
+#define tNameStruct 339
+#define tDimNameSpace 340
+#define tAppend 341
+#define tDefineString 342
+#define tSetNumber 343
+#define tSetString 344
+#define tPoint 345
+#define tCircle 346
+#define tEllipse 347
+#define tLine 348
+#define tSphere 349
+#define tPolarSphere 350
+#define tSurface 351
+#define tSpline 352
+#define tVolume 353
+#define tBox 354
+#define tCylinder 355
+#define tCone 356
+#define tTorus 357
+#define tEllipsoid 358
+#define tQuadric 359
+#define tShapeFromFile 360
+#define tRectangle 361
+#define tDisk 362
+#define tWire 363
+#define tGeoEntity 364
+#define tCharacteristic 365
+#define tLength 366
+#define tParametric 367
+#define tElliptic 368
+#define tRefineMesh 369
+#define tAdaptMesh 370
+#define tRelocateMesh 371
+#define tSetFactory 372
+#define tThruSections 373
+#define tWedge 374
+#define tFillet 375
+#define tChamfer 376
+#define tPlane 377
+#define tRuled 378
+#define tTransfinite 379
+#define tPhysical 380
+#define tCompound 381
+#define tPeriodic 382
+#define tUsing 383
+#define tPlugin 384
+#define tDegenerated 385
+#define tRecursive 386
+#define tRotate 387
+#define tTranslate 388
+#define tSymmetry 389
+#define tDilate 390
+#define tExtrude 391
+#define tLevelset 392
+#define tAffine 393
+#define tBooleanUnion 394
+#define tBooleanIntersection 395
+#define tBooleanDifference 396
+#define tBooleanSection 397
+#define tBooleanFragments 398
+#define tThickSolid 399
+#define tRecombine 400
+#define tSmoother 401
+#define tSplit 402
+#define tDelete 403
+#define tCoherence 404
+#define tIntersect 405
+#define tMeshAlgorithm 406
+#define tReverse 407
+#define tLayers 408
+#define tScaleLast 409
+#define tHole 410
+#define tAlias 411
+#define tAliasWithOptions 412
+#define tCopyOptions 413
+#define tQuadTriAddVerts 414
+#define tQuadTriNoNewVerts 415
+#define tRecombLaterals 416
+#define tTransfQuadTri 417
+#define tText2D 418
+#define tText3D 419
+#define tInterpolationScheme 420
+#define tTime 421
+#define tCombine 422
+#define tBSpline 423
+#define tBezier 424
+#define tNurbs 425
+#define tNurbsOrder 426
+#define tNurbsKnots 427
+#define tColor 428
+#define tColorTable 429
+#define tFor 430
+#define tIn 431
+#define tEndFor 432
+#define tIf 433
+#define tElseIf 434
+#define tElse 435
+#define tEndIf 436
+#define tExit 437
+#define tAbort 438
+#define tField 439
+#define tReturn 440
+#define tCall 441
+#define tSlide 442
+#define tMacro 443
+#define tShow 444
+#define tHide 445
+#define tGetValue 446
+#define tGetStringValue 447
+#define tGetEnv 448
+#define tGetString 449
+#define tGetNumber 450
+#define tUnique 451
+#define tHomology 452
+#define tCohomology 453
+#define tBetti 454
+#define tExists 455
+#define tFileExists 456
+#define tGetForced 457
+#define tGetForcedStr 458
+#define tGMSH_MAJOR_VERSION 459
+#define tGMSH_MINOR_VERSION 460
+#define tGMSH_PATCH_VERSION 461
+#define tGmshExecutableName 462
+#define tSetPartition 463
+#define tNameToString 464
+#define tStringToName 465
+#define tAFFECTDIVIDE 466
+#define tAFFECTTIMES 467
+#define tAFFECTMINUS 468
+#define tAFFECTPLUS 469
+#define tOR 470
+#define tAND 471
+#define tNOTEQUAL 472
+#define tEQUAL 473
+#define tGREATERGREATER 474
+#define tLESSLESS 475
+#define tGREATEROREQUAL 476
+#define tLESSOREQUAL 477
+#define UNARYPREC 478
+#define tMINUSMINUS 479
+#define tPLUSPLUS 480
 
 
 
@@ -727,7 +725,7 @@ typedef union YYSTYPE
   struct TwoChar c2;
 }
 /* Line 193 of yacc.c.  */
-#line 731 "Gmsh.tab.cpp"
+#line 729 "Gmsh.tab.cpp"
 	YYSTYPE;
 # define yystype YYSTYPE /* obsolescent; will be withdrawn */
 # define YYSTYPE_IS_DECLARED 1
@@ -740,7 +738,7 @@ typedef union YYSTYPE
 
 
 /* Line 216 of yacc.c.  */
-#line 744 "Gmsh.tab.cpp"
+#line 742 "Gmsh.tab.cpp"
 
 #ifdef short
 # undef short
@@ -955,20 +953,20 @@ union yyalloc
 /* YYFINAL -- State number of the termination state.  */
 #define YYFINAL  5
 /* YYLAST -- Last index in YYTABLE.  */
-#define YYLAST   15714
+#define YYLAST   15603
 
 /* YYNTOKENS -- Number of terminals.  */
-#define YYNTOKENS  249
+#define YYNTOKENS  248
 /* YYNNTS -- Number of nonterminals.  */
 #define YYNNTS  113
 /* YYNRULES -- Number of rules.  */
-#define YYNRULES  599
+#define YYNRULES  598
 /* YYNRULES -- Number of states.  */
-#define YYNSTATES  2110
+#define YYNSTATES  2108
 
 /* YYTRANSLATE(YYLEX) -- Bison symbol number corresponding to YYLEX.  */
 #define YYUNDEFTOK  2
-#define YYMAXUTOK   481
+#define YYMAXUTOK   480
 
 #define YYTRANSLATE(YYX)						\
   ((unsigned int) (YYX) <= YYMAXUTOK ? yytranslate[YYX] : YYUNDEFTOK)
@@ -979,16 +977,16 @@ static const yytype_uint8 yytranslate[] =
        0,     2,     2,     2,     2,     2,     2,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
-       2,     2,     2,   234,     2,   246,     2,   231,   233,     2,
-     239,   240,   229,   227,   248,   228,   245,   230,     2,     2,
+       2,     2,     2,   233,     2,   245,     2,   230,   232,     2,
+     238,   239,   228,   226,   247,   227,   244,   229,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
-     221,     2,   222,   216,     2,     2,     2,     2,     2,     2,
+     220,     2,   221,   215,     2,     2,     2,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
-       2,   241,     2,   242,   238,     2,     2,     2,     2,     2,
+       2,   240,     2,   241,   237,     2,     2,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
-       2,     2,     2,   243,   232,   244,   247,     2,     2,     2,
+       2,     2,     2,   242,   231,   243,   246,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
        2,     2,     2,     2,     2,     2,     2,     2,     2,     2,
@@ -1023,8 +1021,8 @@ static const yytype_uint8 yytranslate[] =
      185,   186,   187,   188,   189,   190,   191,   192,   193,   194,
      195,   196,   197,   198,   199,   200,   201,   202,   203,   204,
      205,   206,   207,   208,   209,   210,   211,   212,   213,   214,
-     215,   217,   218,   219,   220,   223,   224,   225,   226,   235,
-     236,   237
+     216,   217,   218,   219,   222,   223,   224,   225,   234,   235,
+     236
 };
 
 #if YYDEBUG
@@ -1058,365 +1056,364 @@ static const yytype_uint16 yyprhs[] =
     1280,  1289,  1298,  1305,  1310,  1316,  1323,  1330,  1334,  1339,
     1343,  1349,  1356,  1362,  1367,  1371,  1376,  1380,  1385,  1391,
     1396,  1402,  1406,  1412,  1420,  1428,  1432,  1440,  1444,  1447,
-    1450,  1453,  1456,  1459,  1475,  1478,  1481,  1484,  1487,  1490,
-    1507,  1519,  1526,  1535,  1544,  1555,  1557,  1560,  1563,  1565,
-    1569,  1573,  1578,  1583,  1585,  1587,  1593,  1605,  1619,  1620,
-    1628,  1629,  1643,  1644,  1660,  1661,  1668,  1678,  1681,  1685,
-    1696,  1698,  1701,  1707,  1715,  1718,  1721,  1725,  1728,  1732,
-    1735,  1739,  1749,  1756,  1758,  1760,  1762,  1764,  1766,  1767,
-    1770,  1774,  1778,  1783,  1793,  1798,  1813,  1814,  1818,  1819,
-    1821,  1822,  1825,  1826,  1829,  1830,  1833,  1840,  1848,  1855,
-    1861,  1865,  1874,  1880,  1885,  1892,  1904,  1916,  1935,  1954,
-    1967,  1980,  1993,  2004,  2009,  2014,  2019,  2024,  2027,  2031,
-    2038,  2040,  2042,  2044,  2047,  2053,  2061,  2072,  2074,  2078,
-    2081,  2084,  2087,  2091,  2095,  2099,  2103,  2107,  2111,  2115,
-    2119,  2123,  2127,  2131,  2135,  2139,  2143,  2147,  2151,  2155,
-    2159,  2165,  2170,  2175,  2180,  2185,  2190,  2195,  2200,  2205,
-    2210,  2215,  2222,  2227,  2232,  2237,  2242,  2247,  2252,  2257,
-    2262,  2269,  2276,  2283,  2288,  2290,  2292,  2294,  2296,  2298,
-    2300,  2302,  2304,  2306,  2308,  2310,  2311,  2318,  2320,  2325,
-    2332,  2334,  2339,  2344,  2349,  2356,  2362,  2370,  2379,  2390,
-    2395,  2400,  2407,  2412,  2416,  2419,  2425,  2431,  2435,  2441,
-    2448,  2457,  2464,  2473,  2480,  2485,  2493,  2500,  2507,  2514,
-    2519,  2526,  2531,  2532,  2535,  2536,  2539,  2540,  2548,  2550,
-    2554,  2556,  2558,  2561,  2562,  2566,  2568,  2571,  2574,  2578,
-    2582,  2594,  2604,  2612,  2620,  2622,  2626,  2628,  2630,  2633,
-    2637,  2642,  2648,  2650,  2654,  2656,  2659,  2663,  2667,  2673,
-    2678,  2683,  2686,  2691,  2694,  2698,  2715,  2721,  2723,  2725,
-    2727,  2731,  2737,  2745,  2750,  2755,  2760,  2767,  2774,  2783,
-    2792,  2797,  2812,  2817,  2822,  2824,  2826,  2830,  2834,  2844,
-    2852,  2854,  2860,  2864,  2871,  2873,  2877,  2879,  2881,  2886,
-    2891,  2895,  2901,  2908,  2917,  2924,  2930,  2936,  2942,  2948,
-    2950,  2955,  2957,  2959,  2961,  2963,  2968,  2975,  2980,  2987,
-    2993,  3001,  3006,  3011,  3016,  3025,  3030,  3035,  3040,  3045,
-    3054,  3063,  3070,  3075,  3082,  3087,  3089,  3094,  3099,  3100,
-    3107,  3112,  3115,  3120,  3125,  3127,  3129,  3133,  3135,  3137,
-    3141,  3145,  3149,  3155,  3163,  3169,  3175,  3184,  3186,  3188
+    1450,  1453,  1456,  1459,  1475,  1478,  1481,  1484,  1487,  1504,
+    1516,  1523,  1532,  1541,  1552,  1554,  1557,  1560,  1562,  1566,
+    1570,  1575,  1580,  1582,  1584,  1590,  1602,  1616,  1617,  1625,
+    1626,  1640,  1641,  1657,  1658,  1665,  1675,  1678,  1682,  1693,
+    1695,  1698,  1704,  1712,  1715,  1718,  1722,  1725,  1729,  1732,
+    1736,  1746,  1753,  1755,  1757,  1759,  1761,  1763,  1764,  1767,
+    1771,  1775,  1780,  1790,  1795,  1810,  1811,  1815,  1816,  1818,
+    1819,  1822,  1823,  1826,  1827,  1830,  1837,  1845,  1852,  1858,
+    1862,  1871,  1877,  1882,  1889,  1901,  1913,  1932,  1951,  1964,
+    1977,  1990,  2001,  2006,  2011,  2016,  2021,  2024,  2028,  2035,
+    2037,  2039,  2041,  2044,  2050,  2058,  2069,  2071,  2075,  2078,
+    2081,  2084,  2088,  2092,  2096,  2100,  2104,  2108,  2112,  2116,
+    2120,  2124,  2128,  2132,  2136,  2140,  2144,  2148,  2152,  2156,
+    2162,  2167,  2172,  2177,  2182,  2187,  2192,  2197,  2202,  2207,
+    2212,  2219,  2224,  2229,  2234,  2239,  2244,  2249,  2254,  2259,
+    2266,  2273,  2280,  2285,  2287,  2289,  2291,  2293,  2295,  2297,
+    2299,  2301,  2303,  2305,  2307,  2308,  2315,  2317,  2322,  2329,
+    2331,  2336,  2341,  2346,  2353,  2359,  2367,  2376,  2387,  2392,
+    2397,  2404,  2409,  2413,  2416,  2422,  2428,  2432,  2438,  2445,
+    2454,  2461,  2470,  2477,  2482,  2490,  2497,  2504,  2511,  2516,
+    2523,  2528,  2529,  2532,  2533,  2536,  2537,  2545,  2547,  2551,
+    2553,  2555,  2558,  2559,  2563,  2565,  2568,  2571,  2575,  2579,
+    2591,  2601,  2609,  2617,  2619,  2623,  2625,  2627,  2630,  2634,
+    2639,  2645,  2647,  2651,  2653,  2656,  2660,  2664,  2670,  2675,
+    2680,  2683,  2688,  2691,  2695,  2712,  2718,  2720,  2722,  2724,
+    2728,  2734,  2742,  2747,  2752,  2757,  2764,  2771,  2780,  2789,
+    2794,  2809,  2814,  2819,  2821,  2823,  2827,  2831,  2841,  2849,
+    2851,  2857,  2861,  2868,  2870,  2874,  2876,  2878,  2883,  2888,
+    2892,  2898,  2905,  2914,  2921,  2927,  2933,  2939,  2945,  2947,
+    2952,  2954,  2956,  2958,  2960,  2965,  2972,  2977,  2984,  2990,
+    2998,  3003,  3008,  3013,  3022,  3027,  3032,  3037,  3042,  3051,
+    3060,  3067,  3072,  3079,  3084,  3086,  3091,  3096,  3097,  3104,
+    3109,  3112,  3117,  3122,  3124,  3126,  3130,  3132,  3134,  3138,
+    3142,  3146,  3152,  3160,  3166,  3172,  3181,  3183,  3185
 };
 
 /* YYRHS -- A `-1'-separated list of the rules' RHS.  */
 static const yytype_int16 yyrhs[] =
 {
-     250,     0,    -1,   251,    -1,     1,     6,    -1,    -1,   251,
-     252,    -1,   254,    -1,   255,    -1,   275,    -1,   118,   239,
-     351,   240,     6,    -1,   293,    -1,   299,    -1,   303,    -1,
-     304,    -1,   305,    -1,   306,    -1,   310,    -1,   319,    -1,
-     320,    -1,   326,    -1,   327,    -1,   309,    -1,   308,    -1,
-     307,    -1,   302,    -1,   329,    -1,   222,    -1,   223,    -1,
-      44,   239,   351,   240,     6,    -1,    45,   239,   351,   240,
-       6,    -1,    44,   239,   351,   240,   253,   351,     6,    -1,
-      44,   239,   351,   248,   347,   240,     6,    -1,    45,   239,
-     351,   248,   347,   240,     6,    -1,    44,   239,   351,   248,
-     347,   240,   253,   351,     6,    -1,   361,   351,   243,   256,
-     244,     6,    -1,   157,     4,   241,   330,   242,     6,    -1,
-     158,     4,   241,   330,   242,     6,    -1,   159,     4,   241,
-     330,   248,   330,   242,     6,    -1,    -1,   256,   259,    -1,
-     256,   263,    -1,   256,   266,    -1,   256,   268,    -1,   256,
-     269,    -1,   330,    -1,   257,   248,   330,    -1,   330,    -1,
-     258,   248,   330,    -1,    -1,    -1,     4,   260,   239,   257,
-     240,   261,   243,   258,   244,     6,    -1,   351,    -1,   262,
-     248,   351,    -1,    -1,   164,   239,   330,   248,   330,   248,
-     330,   240,   264,   243,   262,   244,     6,    -1,   351,    -1,
-     265,   248,   351,    -1,    -1,   165,   239,   330,   248,   330,
-     248,   330,   248,   330,   240,   267,   243,   265,   244,     6,
-      -1,   166,   243,   343,   244,   243,   343,   244,     6,    -1,
-     166,   243,   343,   244,   243,   343,   244,   243,   343,   244,
-     243,   343,   244,     6,    -1,    -1,   167,   270,   243,   258,
-     244,     6,    -1,     7,    -1,   215,    -1,   214,    -1,   213,
-      -1,   212,    -1,   237,    -1,   236,    -1,   239,    -1,   241,
-      -1,   240,    -1,   242,    -1,    81,   241,   277,   242,     6,
-      -1,    82,   241,   281,   242,     6,    -1,   335,     6,    -1,
-      89,   273,   352,   248,   330,   274,     6,    -1,    90,   273,
-     361,   248,   352,   274,     6,    -1,   361,   271,   344,     6,
-      -1,   361,   272,     6,    -1,   361,   273,   274,   271,   344,
-       6,    -1,   361,   273,   243,   347,   244,   274,   271,   344,
-       6,    -1,   361,   241,   330,   242,   271,   330,     6,    -1,
-     361,   241,   330,   242,   272,     6,    -1,   361,   239,   330,
-     240,   271,   330,     6,    -1,   361,   239,   330,   240,   272,
-       6,    -1,   361,     7,   352,     6,    -1,   361,   273,   274,
-       7,    46,   273,   274,     6,    -1,   361,   273,   274,     7,
-      46,   273,   356,   274,     6,    -1,   361,   273,   274,   215,
-      46,   273,   356,   274,     6,    -1,   361,   245,     4,     7,
-     352,     6,    -1,   361,   241,   330,   242,   245,     4,     7,
-     352,     6,    -1,   361,   245,     4,   271,   330,     6,    -1,
-     361,   241,   330,   242,   245,     4,   271,   330,     6,    -1,
-     361,   245,     4,   272,     6,    -1,   361,   241,   330,   242,
-     245,     4,   272,     6,    -1,   361,   245,   174,   245,     4,
-       7,   348,     6,    -1,   361,   241,   330,   242,   245,   174,
-     245,     4,     7,   348,     6,    -1,   361,   245,   175,     7,
-     349,     6,    -1,   361,   241,   330,   242,   245,   175,     7,
-     349,     6,    -1,   361,   185,     7,   330,     6,    -1,   185,
-     241,   330,   242,     7,     4,     6,    -1,   185,   241,   330,
-     242,     7,   100,     6,    -1,   185,   241,   330,   242,     7,
-     101,     6,    -1,   185,   241,   330,   242,   245,     4,     7,
-     330,     6,    -1,   185,   241,   330,   242,   245,     4,     7,
-     352,     6,    -1,   185,   241,   330,   242,   245,     4,     7,
-     243,   347,   244,     6,    -1,   185,   241,   330,   242,   245,
-       4,     6,    -1,   130,   239,     4,   240,   245,     4,     7,
-     330,     6,    -1,   130,   239,     4,   240,   245,     4,     7,
-     352,     6,    -1,    -1,   248,    -1,    -1,   277,   276,   361,
-      -1,   277,   276,   361,     7,   330,    -1,    -1,   277,   276,
-     361,     7,   243,   344,   278,   283,   244,    -1,    -1,   277,
-     276,   361,   273,   274,     7,   243,   344,   279,   283,   244,
-      -1,   277,   276,   361,     7,   352,    -1,    -1,   277,   276,
-     361,     7,   243,   352,   280,   287,   244,    -1,    -1,   281,
-     276,   351,    -1,   330,     7,   352,    -1,   282,   248,   330,
-       7,   352,    -1,   346,     7,   361,   239,   240,    -1,    -1,
-     248,   285,    -1,    -1,   285,    -1,   286,    -1,   285,   248,
-     286,    -1,     4,   344,    -1,     4,    -1,     4,   243,   282,
-     244,    -1,     4,   352,    -1,     4,   355,    -1,    -1,   248,
-     288,    -1,   289,    -1,   288,   248,   289,    -1,     4,   330,
-      -1,     4,   352,    -1,   189,   352,    -1,     4,   357,    -1,
-       4,   355,    -1,   330,    -1,   352,    -1,   352,   248,   330,
-      -1,    -1,   177,    95,   243,   330,   244,    -1,    -1,   123,
-     341,    -1,    91,   239,   330,   240,     7,   341,     6,    -1,
-      94,   239,   330,   240,     7,   344,     6,    -1,    98,   239,
-     330,   240,     7,   344,     6,    -1,    92,   239,   330,   240,
-       7,   344,   292,     6,    -1,    93,   239,   330,   240,     7,
-     344,   292,     6,    -1,   169,   239,   330,   240,     7,   344,
-       6,    -1,   170,   239,   330,   240,     7,   344,     6,    -1,
-     171,   239,   330,   240,     7,   344,   173,   344,   172,   330,
-       6,    -1,   109,   239,   330,   240,     7,   344,     6,    -1,
-      94,     4,   239,   330,   240,     7,   344,     6,    -1,   123,
-      97,   239,   330,   240,     7,   344,     6,    -1,    97,   239,
-     330,   240,     7,   344,   291,     6,    -1,   124,    97,   239,
-     330,   240,     7,   344,   291,     6,    -1,    13,    14,     6,
-      -1,    14,    97,   330,     6,    -1,   113,    97,   239,   330,
-     240,     7,     5,     5,     5,     6,    -1,    95,   239,   330,
-     240,     7,   344,     6,    -1,    96,   239,   330,   240,     7,
-     344,     6,    -1,   100,   239,   330,   240,     7,   344,     6,
-      -1,   103,   239,   330,   240,     7,   344,     6,    -1,   107,
-     239,   330,   240,     7,   344,     6,    -1,   108,   239,   330,
-     240,     7,   344,     6,    -1,   101,   239,   330,   240,     7,
-     344,     6,    -1,   102,   239,   330,   240,     7,   344,     6,
-      -1,   120,   239,   330,   240,     7,   344,     6,    -1,   145,
-     239,   330,   240,     7,   344,     6,    -1,    97,     4,   239,
-     330,   240,     7,   344,     6,    -1,    99,   239,   330,   240,
-       7,   344,     6,    -1,   119,   239,   330,   240,     7,   344,
-       6,    -1,   124,   119,   239,   330,   240,     7,   344,     6,
-      -1,   127,   296,   239,   330,   240,     7,   344,     6,    -1,
-     127,   296,   239,   330,   240,     7,   344,     4,   243,   343,
-     244,     6,    -1,    -1,   126,   295,   294,   239,   290,   240,
-     271,   344,     6,    -1,    91,    -1,    94,    -1,    97,    -1,
-      99,    -1,   110,   243,   330,   244,    -1,    94,    -1,    97,
-      -1,    99,    -1,   110,   243,   330,   244,    -1,    94,    -1,
-      97,    -1,   110,   243,   330,   244,    -1,    91,    -1,    94,
-      -1,    97,    -1,   110,   243,   330,   244,    -1,   134,   341,
-     243,   300,   244,    -1,   133,   243,   341,   248,   341,   248,
-     330,   244,   243,   300,   244,    -1,   135,   341,   243,   300,
-     244,    -1,   136,   243,   341,   248,   330,   244,   243,   300,
-     244,    -1,   136,   243,   341,   248,   341,   244,   243,   300,
-     244,    -1,     4,   243,   300,   244,    -1,   151,    94,   243,
-     347,   244,    97,   243,   330,   244,    -1,   148,    94,   239,
-     330,   240,   243,   347,   244,     6,    -1,   301,    -1,   299,
-      -1,    -1,   301,   293,    -1,   301,   295,   243,   347,   244,
-       6,    -1,   301,   126,   295,   243,   347,   244,     6,    -1,
-     301,   295,   243,     8,   244,     6,    -1,   301,   126,   295,
-     243,     8,   244,     6,    -1,   138,   123,   239,   330,   240,
-       7,   344,     6,    -1,   138,    91,   239,   330,   240,     7,
-     243,   343,   244,     6,    -1,   138,   123,   239,   330,   240,
-       7,   243,   341,   248,   341,   248,   347,   244,     6,    -1,
-     138,   123,   239,   330,   240,     7,   243,   341,   248,   341,
-     248,   341,   248,   347,   244,     6,    -1,   138,    95,   239,
-     330,   240,     7,   243,   341,   248,   347,   244,     6,    -1,
-     138,   101,   239,   330,   240,     7,   243,   341,   248,   341,
-     248,   347,   244,     6,    -1,   138,   102,   239,   330,   240,
-       7,   243,   341,   248,   341,   248,   347,   244,     6,    -1,
-     138,   104,   239,   330,   240,     7,   243,   341,   248,   341,
-     248,   347,   244,     6,    -1,   138,   105,   239,   330,   240,
-       7,   243,   341,   248,   341,   248,   347,   244,     6,    -1,
-     138,     4,   239,   330,   240,     7,   344,     6,    -1,   138,
-       4,   239,   330,   240,     7,     5,     6,    -1,   138,     4,
-     243,   330,   244,     6,    -1,   149,   243,   301,   244,    -1,
-     132,   149,   243,   301,   244,    -1,   149,   185,   241,   330,
-     242,     6,    -1,   149,     4,   241,   330,   242,     6,    -1,
-     149,   361,     6,    -1,   149,     4,     4,     6,    -1,   149,
-      84,     6,    -1,   174,   348,   243,   301,   244,    -1,   132,
-     174,   348,   243,   301,   244,    -1,   209,   330,   243,   301,
-     244,    -1,   190,   243,     8,   244,    -1,   190,     5,     6,
-      -1,   191,   243,     8,   244,    -1,   191,     5,     6,    -1,
-     190,   243,   301,   244,    -1,   132,   190,   243,   301,   244,
-      -1,   191,   243,   301,   244,    -1,   132,   191,   243,   301,
-     244,    -1,   361,   352,     6,    -1,    73,   239,   358,   240,
-       6,    -1,   361,   361,   241,   330,   242,   351,     6,    -1,
-     361,   361,   361,   241,   330,   242,     6,    -1,   361,   330,
-       6,    -1,   130,   239,     4,   240,   245,     4,     6,    -1,
-     168,     4,     6,    -1,   183,     6,    -1,   184,     6,    -1,
+     249,     0,    -1,   250,    -1,     1,     6,    -1,    -1,   250,
+     251,    -1,   253,    -1,   254,    -1,   274,    -1,   117,   238,
+     350,   239,     6,    -1,   292,    -1,   298,    -1,   302,    -1,
+     303,    -1,   304,    -1,   305,    -1,   309,    -1,   318,    -1,
+     319,    -1,   325,    -1,   326,    -1,   308,    -1,   307,    -1,
+     306,    -1,   301,    -1,   328,    -1,   221,    -1,   222,    -1,
+      44,   238,   350,   239,     6,    -1,    45,   238,   350,   239,
+       6,    -1,    44,   238,   350,   239,   252,   350,     6,    -1,
+      44,   238,   350,   247,   346,   239,     6,    -1,    45,   238,
+     350,   247,   346,   239,     6,    -1,    44,   238,   350,   247,
+     346,   239,   252,   350,     6,    -1,   360,   350,   242,   255,
+     243,     6,    -1,   156,     4,   240,   329,   241,     6,    -1,
+     157,     4,   240,   329,   241,     6,    -1,   158,     4,   240,
+     329,   247,   329,   241,     6,    -1,    -1,   255,   258,    -1,
+     255,   262,    -1,   255,   265,    -1,   255,   267,    -1,   255,
+     268,    -1,   329,    -1,   256,   247,   329,    -1,   329,    -1,
+     257,   247,   329,    -1,    -1,    -1,     4,   259,   238,   256,
+     239,   260,   242,   257,   243,     6,    -1,   350,    -1,   261,
+     247,   350,    -1,    -1,   163,   238,   329,   247,   329,   247,
+     329,   239,   263,   242,   261,   243,     6,    -1,   350,    -1,
+     264,   247,   350,    -1,    -1,   164,   238,   329,   247,   329,
+     247,   329,   247,   329,   239,   266,   242,   264,   243,     6,
+      -1,   165,   242,   342,   243,   242,   342,   243,     6,    -1,
+     165,   242,   342,   243,   242,   342,   243,   242,   342,   243,
+     242,   342,   243,     6,    -1,    -1,   166,   269,   242,   257,
+     243,     6,    -1,     7,    -1,   214,    -1,   213,    -1,   212,
+      -1,   211,    -1,   236,    -1,   235,    -1,   238,    -1,   240,
+      -1,   239,    -1,   241,    -1,    80,   240,   276,   241,     6,
+      -1,    81,   240,   280,   241,     6,    -1,   334,     6,    -1,
+      88,   272,   351,   247,   329,   273,     6,    -1,    89,   272,
+     360,   247,   351,   273,     6,    -1,   360,   270,   343,     6,
+      -1,   360,   271,     6,    -1,   360,   272,   273,   270,   343,
+       6,    -1,   360,   272,   242,   346,   243,   273,   270,   343,
+       6,    -1,   360,   240,   329,   241,   270,   329,     6,    -1,
+     360,   240,   329,   241,   271,     6,    -1,   360,   238,   329,
+     239,   270,   329,     6,    -1,   360,   238,   329,   239,   271,
+       6,    -1,   360,     7,   351,     6,    -1,   360,   272,   273,
+       7,    46,   272,   273,     6,    -1,   360,   272,   273,     7,
+      46,   272,   355,   273,     6,    -1,   360,   272,   273,   214,
+      46,   272,   355,   273,     6,    -1,   360,   244,     4,     7,
+     351,     6,    -1,   360,   240,   329,   241,   244,     4,     7,
+     351,     6,    -1,   360,   244,     4,   270,   329,     6,    -1,
+     360,   240,   329,   241,   244,     4,   270,   329,     6,    -1,
+     360,   244,     4,   271,     6,    -1,   360,   240,   329,   241,
+     244,     4,   271,     6,    -1,   360,   244,   173,   244,     4,
+       7,   347,     6,    -1,   360,   240,   329,   241,   244,   173,
+     244,     4,     7,   347,     6,    -1,   360,   244,   174,     7,
+     348,     6,    -1,   360,   240,   329,   241,   244,   174,     7,
+     348,     6,    -1,   360,   184,     7,   329,     6,    -1,   184,
+     240,   329,   241,     7,     4,     6,    -1,   184,   240,   329,
+     241,     7,    99,     6,    -1,   184,   240,   329,   241,     7,
+     100,     6,    -1,   184,   240,   329,   241,   244,     4,     7,
+     329,     6,    -1,   184,   240,   329,   241,   244,     4,     7,
+     351,     6,    -1,   184,   240,   329,   241,   244,     4,     7,
+     242,   346,   243,     6,    -1,   184,   240,   329,   241,   244,
+       4,     6,    -1,   129,   238,     4,   239,   244,     4,     7,
+     329,     6,    -1,   129,   238,     4,   239,   244,     4,     7,
+     351,     6,    -1,    -1,   247,    -1,    -1,   276,   275,   360,
+      -1,   276,   275,   360,     7,   329,    -1,    -1,   276,   275,
+     360,     7,   242,   343,   277,   282,   243,    -1,    -1,   276,
+     275,   360,   272,   273,     7,   242,   343,   278,   282,   243,
+      -1,   276,   275,   360,     7,   351,    -1,    -1,   276,   275,
+     360,     7,   242,   351,   279,   286,   243,    -1,    -1,   280,
+     275,   350,    -1,   329,     7,   351,    -1,   281,   247,   329,
+       7,   351,    -1,   345,     7,   360,   238,   239,    -1,    -1,
+     247,   284,    -1,    -1,   284,    -1,   285,    -1,   284,   247,
+     285,    -1,     4,   343,    -1,     4,    -1,     4,   242,   281,
+     243,    -1,     4,   351,    -1,     4,   354,    -1,    -1,   247,
+     287,    -1,   288,    -1,   287,   247,   288,    -1,     4,   329,
+      -1,     4,   351,    -1,   188,   351,    -1,     4,   356,    -1,
+       4,   354,    -1,   329,    -1,   351,    -1,   351,   247,   329,
+      -1,    -1,   176,    94,   242,   329,   243,    -1,    -1,   122,
+     340,    -1,    90,   238,   329,   239,     7,   340,     6,    -1,
+      93,   238,   329,   239,     7,   343,     6,    -1,    97,   238,
+     329,   239,     7,   343,     6,    -1,    91,   238,   329,   239,
+       7,   343,   291,     6,    -1,    92,   238,   329,   239,     7,
+     343,   291,     6,    -1,   168,   238,   329,   239,     7,   343,
+       6,    -1,   169,   238,   329,   239,     7,   343,     6,    -1,
+     170,   238,   329,   239,     7,   343,   172,   343,   171,   329,
+       6,    -1,   108,   238,   329,   239,     7,   343,     6,    -1,
+      93,     4,   238,   329,   239,     7,   343,     6,    -1,   122,
+      96,   238,   329,   239,     7,   343,     6,    -1,    96,   238,
+     329,   239,     7,   343,   290,     6,    -1,   123,    96,   238,
+     329,   239,     7,   343,   290,     6,    -1,    13,    14,     6,
+      -1,    14,    96,   329,     6,    -1,   112,    96,   238,   329,
+     239,     7,     5,     5,     5,     6,    -1,    94,   238,   329,
+     239,     7,   343,     6,    -1,    95,   238,   329,   239,     7,
+     343,     6,    -1,    99,   238,   329,   239,     7,   343,     6,
+      -1,   102,   238,   329,   239,     7,   343,     6,    -1,   106,
+     238,   329,   239,     7,   343,     6,    -1,   107,   238,   329,
+     239,     7,   343,     6,    -1,   100,   238,   329,   239,     7,
+     343,     6,    -1,   101,   238,   329,   239,     7,   343,     6,
+      -1,   119,   238,   329,   239,     7,   343,     6,    -1,   144,
+     238,   329,   239,     7,   343,     6,    -1,    96,     4,   238,
+     329,   239,     7,   343,     6,    -1,    98,   238,   329,   239,
+       7,   343,     6,    -1,   118,   238,   329,   239,     7,   343,
+       6,    -1,   123,   118,   238,   329,   239,     7,   343,     6,
+      -1,   126,   295,   238,   329,   239,     7,   343,     6,    -1,
+     126,   295,   238,   329,   239,     7,   343,     4,   242,   342,
+     243,     6,    -1,    -1,   125,   294,   293,   238,   289,   239,
+     270,   343,     6,    -1,    90,    -1,    93,    -1,    96,    -1,
+      98,    -1,   109,   242,   329,   243,    -1,    93,    -1,    96,
+      -1,    98,    -1,   109,   242,   329,   243,    -1,    93,    -1,
+      96,    -1,   109,   242,   329,   243,    -1,    90,    -1,    93,
+      -1,    96,    -1,   109,   242,   329,   243,    -1,   133,   340,
+     242,   299,   243,    -1,   132,   242,   340,   247,   340,   247,
+     329,   243,   242,   299,   243,    -1,   134,   340,   242,   299,
+     243,    -1,   135,   242,   340,   247,   329,   243,   242,   299,
+     243,    -1,   135,   242,   340,   247,   340,   243,   242,   299,
+     243,    -1,     4,   242,   299,   243,    -1,   150,    93,   242,
+     346,   243,    96,   242,   329,   243,    -1,   147,    93,   238,
+     329,   239,   242,   346,   243,     6,    -1,   300,    -1,   298,
+      -1,    -1,   300,   292,    -1,   300,   294,   242,   346,   243,
+       6,    -1,   300,   125,   294,   242,   346,   243,     6,    -1,
+     300,   294,   242,     8,   243,     6,    -1,   300,   125,   294,
+     242,     8,   243,     6,    -1,   137,   122,   238,   329,   239,
+       7,   343,     6,    -1,   137,    90,   238,   329,   239,     7,
+     242,   342,   243,     6,    -1,   137,   122,   238,   329,   239,
+       7,   242,   340,   247,   340,   247,   346,   243,     6,    -1,
+     137,   122,   238,   329,   239,     7,   242,   340,   247,   340,
+     247,   340,   247,   346,   243,     6,    -1,   137,    94,   238,
+     329,   239,     7,   242,   340,   247,   346,   243,     6,    -1,
+     137,   100,   238,   329,   239,     7,   242,   340,   247,   340,
+     247,   346,   243,     6,    -1,   137,   101,   238,   329,   239,
+       7,   242,   340,   247,   340,   247,   346,   243,     6,    -1,
+     137,   103,   238,   329,   239,     7,   242,   340,   247,   340,
+     247,   346,   243,     6,    -1,   137,   104,   238,   329,   239,
+       7,   242,   340,   247,   340,   247,   346,   243,     6,    -1,
+     137,     4,   238,   329,   239,     7,   343,     6,    -1,   137,
+       4,   238,   329,   239,     7,     5,     6,    -1,   137,     4,
+     242,   329,   243,     6,    -1,   148,   242,   300,   243,    -1,
+     131,   148,   242,   300,   243,    -1,   148,   184,   240,   329,
+     241,     6,    -1,   148,     4,   240,   329,   241,     6,    -1,
+     148,   360,     6,    -1,   148,     4,     4,     6,    -1,   148,
+      83,     6,    -1,   173,   347,   242,   300,   243,    -1,   131,
+     173,   347,   242,   300,   243,    -1,   208,   329,   242,   300,
+     243,    -1,   189,   242,     8,   243,    -1,   189,     5,     6,
+      -1,   190,   242,     8,   243,    -1,   190,     5,     6,    -1,
+     189,   242,   300,   243,    -1,   131,   189,   242,   300,   243,
+      -1,   190,   242,   300,   243,    -1,   131,   190,   242,   300,
+     243,    -1,   360,   351,     6,    -1,    73,   238,   357,   239,
+       6,    -1,   360,   360,   240,   329,   241,   350,     6,    -1,
+     360,   360,   360,   240,   329,   241,     6,    -1,   360,   329,
+       6,    -1,   129,   238,     4,   239,   244,     4,     6,    -1,
+     167,     4,     6,    -1,   182,     6,    -1,   183,     6,    -1,
       70,     6,    -1,    71,     6,    -1,    64,     6,    -1,    64,
-     243,   330,   248,   330,   248,   330,   248,   330,   248,   330,
-     248,   330,   244,     6,    -1,    65,     6,    -1,    66,     6,
-      -1,    78,     6,    -1,    79,     6,    -1,   115,     6,    -1,
-     116,   243,   347,   244,   243,   347,   244,   243,   343,   244,
-     243,   330,   248,   330,   244,     6,    -1,   188,   239,   243,
-     347,   244,   248,   352,   248,   352,   240,     6,    -1,   176,
-     239,   330,     8,   330,   240,    -1,   176,   239,   330,     8,
-     330,     8,   330,   240,    -1,   176,     4,   177,   243,   330,
-       8,   330,   244,    -1,   176,     4,   177,   243,   330,     8,
-     330,     8,   330,   244,    -1,   178,    -1,   189,     4,    -1,
-     189,   352,    -1,   186,    -1,   187,   361,     6,    -1,   187,
-     352,     6,    -1,   179,   239,   330,   240,    -1,   180,   239,
-     330,   240,    -1,   181,    -1,   182,    -1,   137,   341,   243,
-     301,   244,    -1,   137,   243,   341,   248,   341,   248,   330,
-     244,   243,   301,   244,    -1,   137,   243,   341,   248,   341,
-     248,   341,   248,   330,   244,   243,   301,   244,    -1,    -1,
-     137,   341,   243,   301,   311,   315,   244,    -1,    -1,   137,
-     243,   341,   248,   341,   248,   330,   244,   243,   301,   312,
-     315,   244,    -1,    -1,   137,   243,   341,   248,   341,   248,
-     341,   248,   330,   244,   243,   301,   313,   315,   244,    -1,
-      -1,   137,   243,   301,   314,   315,   244,    -1,   137,   243,
-     301,   244,   129,   109,   243,   330,   244,    -1,   119,   344,
-      -1,   124,   119,   344,    -1,   121,   243,   347,   244,   243,
-     347,   244,   243,   330,   244,    -1,   316,    -1,   315,   316,
-      -1,   154,   243,   330,   244,     6,    -1,   154,   243,   344,
-     248,   344,   244,     6,    -1,   155,     6,    -1,   146,     6,
-      -1,   146,   330,     6,    -1,   160,     6,    -1,   160,   162,
-       6,    -1,   161,     6,    -1,   161,   162,     6,    -1,   156,
-     239,   330,   240,     7,   344,   129,   330,     6,    -1,   129,
-       4,   241,   330,   242,     6,    -1,   140,    -1,   141,    -1,
-     142,    -1,   143,    -1,   144,    -1,    -1,   149,     6,    -1,
-     132,   149,     6,    -1,   149,   330,     6,    -1,   132,   149,
-     330,     6,    -1,   317,   243,   301,   318,   244,   243,   301,
-     318,   244,    -1,   106,   239,   351,   240,    -1,   317,   239,
-     330,   240,     7,   243,   301,   318,   244,   243,   301,   318,
-     244,     6,    -1,    -1,   129,     4,   330,    -1,    -1,     4,
-      -1,    -1,     7,   344,    -1,    -1,     7,   330,    -1,    -1,
-     139,   344,    -1,   111,   112,   345,     7,   330,     6,    -1,
-     125,    94,   345,     7,   330,   321,     6,    -1,   125,    97,
-     345,   323,   322,     6,    -1,   125,    99,   345,   323,     6,
-      -1,   163,   345,     6,    -1,   152,    97,   243,   347,   244,
-       7,   330,     6,    -1,   146,    97,   345,   324,     6,    -1,
-     146,    99,   345,     6,    -1,   147,    97,   345,     7,   330,
-       6,    -1,   128,    94,   243,   347,   244,     7,   243,   347,
-     244,   325,     6,    -1,   128,    97,   243,   347,   244,     7,
-     243,   347,   244,   325,     6,    -1,   128,    94,   243,   347,
-     244,     7,   243,   347,   244,   133,   243,   341,   248,   341,
-     248,   330,   244,     6,    -1,   128,    97,   243,   347,   244,
-       7,   243,   347,   244,   133,   243,   341,   248,   341,   248,
-     330,   244,     6,    -1,   128,    94,   243,   347,   244,     7,
-     243,   347,   244,   134,   341,     6,    -1,   128,    97,   243,
-     347,   244,     7,   243,   347,   244,   134,   341,     6,    -1,
-     128,    97,   330,   243,   347,   244,     7,   330,   243,   347,
-     244,     6,    -1,   295,   243,   347,   244,   177,   295,   243,
-     330,   244,     6,    -1,   153,   297,   345,     6,    -1,   117,
-     298,   345,     6,    -1,   131,    94,   344,     6,    -1,   127,
-     296,   344,     6,    -1,   150,     6,    -1,   150,     4,     6,
-      -1,   150,    91,   243,   347,   244,     6,    -1,   198,    -1,
-     199,    -1,   200,    -1,   328,     6,    -1,   328,   243,   344,
-     244,     6,    -1,   328,   243,   344,   248,   344,   244,     6,
-      -1,   328,   239,   344,   240,   243,   344,   248,   344,   244,
-       6,    -1,   331,    -1,   239,   330,   240,    -1,   228,   330,
-      -1,   227,   330,    -1,   234,   330,    -1,   330,   228,   330,
-      -1,   330,   227,   330,    -1,   330,   229,   330,    -1,   330,
-     230,   330,    -1,   330,   232,   330,    -1,   330,   233,   330,
-      -1,   330,   231,   330,    -1,   330,   238,   330,    -1,   330,
-     221,   330,    -1,   330,   222,   330,    -1,   330,   226,   330,
-      -1,   330,   225,   330,    -1,   330,   220,   330,    -1,   330,
-     219,   330,    -1,   330,   218,   330,    -1,   330,   217,   330,
-      -1,   330,   223,   330,    -1,   330,   224,   330,    -1,   330,
-     216,   330,     8,   330,    -1,    16,   273,   330,   274,    -1,
-      17,   273,   330,   274,    -1,    18,   273,   330,   274,    -1,
-      19,   273,   330,   274,    -1,    20,   273,   330,   274,    -1,
-      21,   273,   330,   274,    -1,    22,   273,   330,   274,    -1,
-      23,   273,   330,   274,    -1,    24,   273,   330,   274,    -1,
-      26,   273,   330,   274,    -1,    27,   273,   330,   248,   330,
-     274,    -1,    28,   273,   330,   274,    -1,    29,   273,   330,
-     274,    -1,    30,   273,   330,   274,    -1,    31,   273,   330,
-     274,    -1,    32,   273,   330,   274,    -1,    33,   273,   330,
-     274,    -1,    34,   273,   330,   274,    -1,    35,   273,   330,
-     274,    -1,    36,   273,   330,   248,   330,   274,    -1,    37,
-     273,   330,   248,   330,   274,    -1,    38,   273,   330,   248,
-     330,   274,    -1,    25,   273,   330,   274,    -1,     3,    -1,
-      10,    -1,    15,    -1,    11,    -1,    12,    -1,   205,    -1,
-     206,    -1,   207,    -1,    75,    -1,    76,    -1,    77,    -1,
-      -1,    83,   273,   330,   332,   283,   274,    -1,   335,    -1,
-     196,   273,   351,   274,    -1,   196,   273,   351,   248,   330,
-     274,    -1,   337,    -1,   361,   241,   330,   242,    -1,   361,
-     239,   330,   240,    -1,   201,   239,   337,   240,    -1,   201,
-     239,   337,   245,   338,   240,    -1,   203,   239,   337,   333,
-     240,    -1,   203,   239,   337,   245,   338,   333,   240,    -1,
-     203,   239,   337,   273,   330,   274,   333,   240,    -1,   203,
-     239,   337,   245,   338,   273,   330,   274,   333,   240,    -1,
-     202,   239,   352,   240,    -1,   246,   361,   273,   274,    -1,
-     246,   337,   245,   338,   273,   274,    -1,    86,   273,   361,
-     274,    -1,    86,   273,   274,    -1,   361,   272,    -1,   361,
-     241,   330,   242,   272,    -1,   361,   239,   330,   240,   272,
-      -1,   361,   245,   338,    -1,   361,     9,   361,   245,   338,
-      -1,   361,   245,   338,   239,   330,   240,    -1,   361,     9,
-     361,   245,   338,   239,   330,   240,    -1,   361,   245,   338,
-     241,   330,   242,    -1,   361,     9,   361,   245,   338,   241,
-     330,   242,    -1,   361,   241,   330,   242,   245,     4,    -1,
-     361,   245,     4,   272,    -1,   361,   241,   330,   242,   245,
-       4,   272,    -1,   192,   239,   351,   248,   330,   240,    -1,
-      56,   239,   344,   248,   344,   240,    -1,    57,   273,   351,
-     248,   351,   274,    -1,    55,   273,   351,   274,    -1,    58,
-     273,   351,   248,   351,   274,    -1,    63,   239,   358,   240,
-      -1,    -1,   248,   330,    -1,    -1,   248,   351,    -1,    -1,
-      84,   337,   340,   336,   241,   284,   242,    -1,   361,    -1,
-     361,     9,   361,    -1,     4,    -1,    87,    -1,    87,   330,
-      -1,    -1,   239,   339,   240,    -1,   342,    -1,   228,   341,
-      -1,   227,   341,    -1,   341,   228,   341,    -1,   341,   227,
-     341,    -1,   243,   330,   248,   330,   248,   330,   248,   330,
-     248,   330,   244,    -1,   243,   330,   248,   330,   248,   330,
-     248,   330,   244,    -1,   243,   330,   248,   330,   248,   330,
-     244,    -1,   239,   330,   248,   330,   248,   330,   240,    -1,
-     344,    -1,   343,   248,   344,    -1,   330,    -1,   346,    -1,
-     243,   244,    -1,   243,   347,   244,    -1,   228,   243,   347,
-     244,    -1,   330,   229,   243,   347,   244,    -1,   344,    -1,
-     243,     8,   244,    -1,     5,    -1,   228,   346,    -1,   330,
-     229,   346,    -1,   330,     8,   330,    -1,   330,     8,   330,
-       8,   330,    -1,    91,   243,   330,   244,    -1,    91,   243,
-       8,   244,    -1,    91,     5,    -1,   296,   243,     8,   244,
-      -1,   296,     5,    -1,   126,   295,   345,    -1,   295,   177,
-      64,   243,   330,   248,   330,   248,   330,   248,   330,   248,
-     330,   248,   330,   244,    -1,    64,   295,   243,   330,   244,
-      -1,   299,    -1,   310,    -1,   319,    -1,   361,   273,   274,
-      -1,   361,   245,   338,   273,   274,    -1,   361,     9,   361,
-     245,   338,   273,   274,    -1,    39,   241,   361,   242,    -1,
-      39,   241,   346,   242,    -1,    39,   239,   346,   240,    -1,
-      39,   273,   243,   347,   244,   274,    -1,   361,   273,   243,
-     347,   244,   274,    -1,    40,   273,   330,   248,   330,   248,
-     330,   274,    -1,    41,   273,   330,   248,   330,   248,   330,
-     274,    -1,    42,   273,   351,   274,    -1,    43,   273,   330,
-     248,   330,   248,   330,   248,   330,   248,   330,   248,   330,
-     274,    -1,   197,   273,   346,   274,    -1,    32,   273,   346,
-     274,    -1,   330,    -1,   346,    -1,   347,   248,   330,    -1,
-     347,   248,   346,    -1,   243,   330,   248,   330,   248,   330,
-     248,   330,   244,    -1,   243,   330,   248,   330,   248,   330,
-     244,    -1,   361,    -1,     4,   245,   174,   245,     4,    -1,
-     243,   350,   244,    -1,   361,   241,   330,   242,   245,   175,
-      -1,   348,    -1,   350,   248,   348,    -1,   352,    -1,   361,
-      -1,   361,   241,   330,   242,    -1,   361,   239,   330,   240,
-      -1,   361,   245,   338,    -1,   361,     9,   361,   245,   338,
-      -1,   361,   245,   338,   239,   330,   240,    -1,   361,     9,
-     361,   245,   338,   239,   330,   240,    -1,   361,   241,   330,
-     242,   245,     4,    -1,   126,    91,   243,   330,   244,    -1,
-     126,    94,   243,   330,   244,    -1,   126,    97,   243,   330,
-     244,    -1,   126,    99,   243,   330,   244,    -1,     5,    -1,
-     210,   241,   361,   242,    -1,    67,    -1,   208,    -1,    72,
-      -1,    74,    -1,   194,   239,   351,   240,    -1,   193,   239,
-     351,   248,   351,   240,    -1,   195,   273,   351,   274,    -1,
-     195,   273,   351,   248,   351,   274,    -1,   204,   239,   337,
-     334,   240,    -1,   204,   239,   337,   245,   338,   334,   240,
-      -1,    48,   273,   358,   274,    -1,    49,   239,   351,   240,
-      -1,    50,   239,   351,   240,    -1,    51,   239,   351,   248,
-     351,   248,   351,   240,    -1,    46,   273,   358,   274,    -1,
-      60,   273,   351,   274,    -1,    61,   273,   351,   274,    -1,
-      62,   273,   351,   274,    -1,    59,   273,   330,   248,   351,
-     248,   351,   274,    -1,    54,   273,   351,   248,   330,   248,
-     330,   274,    -1,    54,   273,   351,   248,   330,   274,    -1,
-      47,   273,   351,   274,    -1,    47,   273,   351,   248,   347,
-     274,    -1,    68,   273,   351,   274,    -1,    69,    -1,    53,
-     273,   351,   274,    -1,    52,   273,   351,   274,    -1,    -1,
-      88,   273,   352,   353,   287,   274,    -1,    85,   273,   354,
-     274,    -1,   246,   330,    -1,   361,     9,   246,   330,    -1,
-      46,   273,   357,   274,    -1,   358,    -1,   357,    -1,   243,
-     358,   244,    -1,   351,    -1,   359,    -1,   358,   248,   351,
-      -1,   358,   248,   359,    -1,   361,   239,   240,    -1,   361,
-     245,   338,   239,   240,    -1,   361,     9,   361,   245,   338,
-     239,   240,    -1,     4,   247,   243,   330,   244,    -1,   360,
-     247,   243,   330,   244,    -1,   211,   241,   351,   242,   247,
-     243,   330,   244,    -1,     4,    -1,   360,    -1,   211,   241,
-     351,   242,    -1
+     242,   329,   247,   329,   247,   329,   247,   329,   247,   329,
+     247,   329,   243,     6,    -1,    65,     6,    -1,    66,     6,
+      -1,    78,     6,    -1,   114,     6,    -1,   115,   242,   346,
+     243,   242,   346,   243,   242,   342,   243,   242,   329,   247,
+     329,   243,     6,    -1,   187,   238,   242,   346,   243,   247,
+     351,   247,   351,   239,     6,    -1,   175,   238,   329,     8,
+     329,   239,    -1,   175,   238,   329,     8,   329,     8,   329,
+     239,    -1,   175,     4,   176,   242,   329,     8,   329,   243,
+      -1,   175,     4,   176,   242,   329,     8,   329,     8,   329,
+     243,    -1,   177,    -1,   188,     4,    -1,   188,   351,    -1,
+     185,    -1,   186,   360,     6,    -1,   186,   351,     6,    -1,
+     178,   238,   329,   239,    -1,   179,   238,   329,   239,    -1,
+     180,    -1,   181,    -1,   136,   340,   242,   300,   243,    -1,
+     136,   242,   340,   247,   340,   247,   329,   243,   242,   300,
+     243,    -1,   136,   242,   340,   247,   340,   247,   340,   247,
+     329,   243,   242,   300,   243,    -1,    -1,   136,   340,   242,
+     300,   310,   314,   243,    -1,    -1,   136,   242,   340,   247,
+     340,   247,   329,   243,   242,   300,   311,   314,   243,    -1,
+      -1,   136,   242,   340,   247,   340,   247,   340,   247,   329,
+     243,   242,   300,   312,   314,   243,    -1,    -1,   136,   242,
+     300,   313,   314,   243,    -1,   136,   242,   300,   243,   128,
+     108,   242,   329,   243,    -1,   118,   343,    -1,   123,   118,
+     343,    -1,   120,   242,   346,   243,   242,   346,   243,   242,
+     329,   243,    -1,   315,    -1,   314,   315,    -1,   153,   242,
+     329,   243,     6,    -1,   153,   242,   343,   247,   343,   243,
+       6,    -1,   154,     6,    -1,   145,     6,    -1,   145,   329,
+       6,    -1,   159,     6,    -1,   159,   161,     6,    -1,   160,
+       6,    -1,   160,   161,     6,    -1,   155,   238,   329,   239,
+       7,   343,   128,   329,     6,    -1,   128,     4,   240,   329,
+     241,     6,    -1,   139,    -1,   140,    -1,   141,    -1,   142,
+      -1,   143,    -1,    -1,   148,     6,    -1,   131,   148,     6,
+      -1,   148,   329,     6,    -1,   131,   148,   329,     6,    -1,
+     316,   242,   300,   317,   243,   242,   300,   317,   243,    -1,
+     105,   238,   350,   239,    -1,   316,   238,   329,   239,     7,
+     242,   300,   317,   243,   242,   300,   317,   243,     6,    -1,
+      -1,   128,     4,   329,    -1,    -1,     4,    -1,    -1,     7,
+     343,    -1,    -1,     7,   329,    -1,    -1,   138,   343,    -1,
+     110,   111,   344,     7,   329,     6,    -1,   124,    93,   344,
+       7,   329,   320,     6,    -1,   124,    96,   344,   322,   321,
+       6,    -1,   124,    98,   344,   322,     6,    -1,   162,   344,
+       6,    -1,   151,    96,   242,   346,   243,     7,   329,     6,
+      -1,   145,    96,   344,   323,     6,    -1,   145,    98,   344,
+       6,    -1,   146,    96,   344,     7,   329,     6,    -1,   127,
+      93,   242,   346,   243,     7,   242,   346,   243,   324,     6,
+      -1,   127,    96,   242,   346,   243,     7,   242,   346,   243,
+     324,     6,    -1,   127,    93,   242,   346,   243,     7,   242,
+     346,   243,   132,   242,   340,   247,   340,   247,   329,   243,
+       6,    -1,   127,    96,   242,   346,   243,     7,   242,   346,
+     243,   132,   242,   340,   247,   340,   247,   329,   243,     6,
+      -1,   127,    93,   242,   346,   243,     7,   242,   346,   243,
+     133,   340,     6,    -1,   127,    96,   242,   346,   243,     7,
+     242,   346,   243,   133,   340,     6,    -1,   127,    96,   329,
+     242,   346,   243,     7,   329,   242,   346,   243,     6,    -1,
+     294,   242,   346,   243,   176,   294,   242,   329,   243,     6,
+      -1,   152,   296,   344,     6,    -1,   116,   297,   344,     6,
+      -1,   130,    93,   343,     6,    -1,   126,   295,   343,     6,
+      -1,   149,     6,    -1,   149,     4,     6,    -1,   149,    90,
+     242,   346,   243,     6,    -1,   197,    -1,   198,    -1,   199,
+      -1,   327,     6,    -1,   327,   242,   343,   243,     6,    -1,
+     327,   242,   343,   247,   343,   243,     6,    -1,   327,   238,
+     343,   239,   242,   343,   247,   343,   243,     6,    -1,   330,
+      -1,   238,   329,   239,    -1,   227,   329,    -1,   226,   329,
+      -1,   233,   329,    -1,   329,   227,   329,    -1,   329,   226,
+     329,    -1,   329,   228,   329,    -1,   329,   229,   329,    -1,
+     329,   231,   329,    -1,   329,   232,   329,    -1,   329,   230,
+     329,    -1,   329,   237,   329,    -1,   329,   220,   329,    -1,
+     329,   221,   329,    -1,   329,   225,   329,    -1,   329,   224,
+     329,    -1,   329,   219,   329,    -1,   329,   218,   329,    -1,
+     329,   217,   329,    -1,   329,   216,   329,    -1,   329,   222,
+     329,    -1,   329,   223,   329,    -1,   329,   215,   329,     8,
+     329,    -1,    16,   272,   329,   273,    -1,    17,   272,   329,
+     273,    -1,    18,   272,   329,   273,    -1,    19,   272,   329,
+     273,    -1,    20,   272,   329,   273,    -1,    21,   272,   329,
+     273,    -1,    22,   272,   329,   273,    -1,    23,   272,   329,
+     273,    -1,    24,   272,   329,   273,    -1,    26,   272,   329,
+     273,    -1,    27,   272,   329,   247,   329,   273,    -1,    28,
+     272,   329,   273,    -1,    29,   272,   329,   273,    -1,    30,
+     272,   329,   273,    -1,    31,   272,   329,   273,    -1,    32,
+     272,   329,   273,    -1,    33,   272,   329,   273,    -1,    34,
+     272,   329,   273,    -1,    35,   272,   329,   273,    -1,    36,
+     272,   329,   247,   329,   273,    -1,    37,   272,   329,   247,
+     329,   273,    -1,    38,   272,   329,   247,   329,   273,    -1,
+      25,   272,   329,   273,    -1,     3,    -1,    10,    -1,    15,
+      -1,    11,    -1,    12,    -1,   204,    -1,   205,    -1,   206,
+      -1,    75,    -1,    76,    -1,    77,    -1,    -1,    82,   272,
+     329,   331,   282,   273,    -1,   334,    -1,   195,   272,   350,
+     273,    -1,   195,   272,   350,   247,   329,   273,    -1,   336,
+      -1,   360,   240,   329,   241,    -1,   360,   238,   329,   239,
+      -1,   200,   238,   336,   239,    -1,   200,   238,   336,   244,
+     337,   239,    -1,   202,   238,   336,   332,   239,    -1,   202,
+     238,   336,   244,   337,   332,   239,    -1,   202,   238,   336,
+     272,   329,   273,   332,   239,    -1,   202,   238,   336,   244,
+     337,   272,   329,   273,   332,   239,    -1,   201,   238,   351,
+     239,    -1,   245,   360,   272,   273,    -1,   245,   336,   244,
+     337,   272,   273,    -1,    85,   272,   360,   273,    -1,    85,
+     272,   273,    -1,   360,   271,    -1,   360,   240,   329,   241,
+     271,    -1,   360,   238,   329,   239,   271,    -1,   360,   244,
+     337,    -1,   360,     9,   360,   244,   337,    -1,   360,   244,
+     337,   238,   329,   239,    -1,   360,     9,   360,   244,   337,
+     238,   329,   239,    -1,   360,   244,   337,   240,   329,   241,
+      -1,   360,     9,   360,   244,   337,   240,   329,   241,    -1,
+     360,   240,   329,   241,   244,     4,    -1,   360,   244,     4,
+     271,    -1,   360,   240,   329,   241,   244,     4,   271,    -1,
+     191,   238,   350,   247,   329,   239,    -1,    56,   238,   343,
+     247,   343,   239,    -1,    57,   272,   350,   247,   350,   273,
+      -1,    55,   272,   350,   273,    -1,    58,   272,   350,   247,
+     350,   273,    -1,    63,   238,   357,   239,    -1,    -1,   247,
+     329,    -1,    -1,   247,   350,    -1,    -1,    83,   336,   339,
+     335,   240,   283,   241,    -1,   360,    -1,   360,     9,   360,
+      -1,     4,    -1,    86,    -1,    86,   329,    -1,    -1,   238,
+     338,   239,    -1,   341,    -1,   227,   340,    -1,   226,   340,
+      -1,   340,   227,   340,    -1,   340,   226,   340,    -1,   242,
+     329,   247,   329,   247,   329,   247,   329,   247,   329,   243,
+      -1,   242,   329,   247,   329,   247,   329,   247,   329,   243,
+      -1,   242,   329,   247,   329,   247,   329,   243,    -1,   238,
+     329,   247,   329,   247,   329,   239,    -1,   343,    -1,   342,
+     247,   343,    -1,   329,    -1,   345,    -1,   242,   243,    -1,
+     242,   346,   243,    -1,   227,   242,   346,   243,    -1,   329,
+     228,   242,   346,   243,    -1,   343,    -1,   242,     8,   243,
+      -1,     5,    -1,   227,   345,    -1,   329,   228,   345,    -1,
+     329,     8,   329,    -1,   329,     8,   329,     8,   329,    -1,
+      90,   242,   329,   243,    -1,    90,   242,     8,   243,    -1,
+      90,     5,    -1,   295,   242,     8,   243,    -1,   295,     5,
+      -1,   125,   294,   344,    -1,   294,   176,    64,   242,   329,
+     247,   329,   247,   329,   247,   329,   247,   329,   247,   329,
+     243,    -1,    64,   294,   242,   329,   243,    -1,   298,    -1,
+     309,    -1,   318,    -1,   360,   272,   273,    -1,   360,   244,
+     337,   272,   273,    -1,   360,     9,   360,   244,   337,   272,
+     273,    -1,    39,   240,   360,   241,    -1,    39,   240,   345,
+     241,    -1,    39,   238,   345,   239,    -1,    39,   272,   242,
+     346,   243,   273,    -1,   360,   272,   242,   346,   243,   273,
+      -1,    40,   272,   329,   247,   329,   247,   329,   273,    -1,
+      41,   272,   329,   247,   329,   247,   329,   273,    -1,    42,
+     272,   350,   273,    -1,    43,   272,   329,   247,   329,   247,
+     329,   247,   329,   247,   329,   247,   329,   273,    -1,   196,
+     272,   345,   273,    -1,    32,   272,   345,   273,    -1,   329,
+      -1,   345,    -1,   346,   247,   329,    -1,   346,   247,   345,
+      -1,   242,   329,   247,   329,   247,   329,   247,   329,   243,
+      -1,   242,   329,   247,   329,   247,   329,   243,    -1,   360,
+      -1,     4,   244,   173,   244,     4,    -1,   242,   349,   243,
+      -1,   360,   240,   329,   241,   244,   174,    -1,   347,    -1,
+     349,   247,   347,    -1,   351,    -1,   360,    -1,   360,   240,
+     329,   241,    -1,   360,   238,   329,   239,    -1,   360,   244,
+     337,    -1,   360,     9,   360,   244,   337,    -1,   360,   244,
+     337,   238,   329,   239,    -1,   360,     9,   360,   244,   337,
+     238,   329,   239,    -1,   360,   240,   329,   241,   244,     4,
+      -1,   125,    90,   242,   329,   243,    -1,   125,    93,   242,
+     329,   243,    -1,   125,    96,   242,   329,   243,    -1,   125,
+      98,   242,   329,   243,    -1,     5,    -1,   209,   240,   360,
+     241,    -1,    67,    -1,   207,    -1,    72,    -1,    74,    -1,
+     193,   238,   350,   239,    -1,   192,   238,   350,   247,   350,
+     239,    -1,   194,   272,   350,   273,    -1,   194,   272,   350,
+     247,   350,   273,    -1,   203,   238,   336,   333,   239,    -1,
+     203,   238,   336,   244,   337,   333,   239,    -1,    48,   272,
+     357,   273,    -1,    49,   238,   350,   239,    -1,    50,   238,
+     350,   239,    -1,    51,   238,   350,   247,   350,   247,   350,
+     239,    -1,    46,   272,   357,   273,    -1,    60,   272,   350,
+     273,    -1,    61,   272,   350,   273,    -1,    62,   272,   350,
+     273,    -1,    59,   272,   329,   247,   350,   247,   350,   273,
+      -1,    54,   272,   350,   247,   329,   247,   329,   273,    -1,
+      54,   272,   350,   247,   329,   273,    -1,    47,   272,   350,
+     273,    -1,    47,   272,   350,   247,   346,   273,    -1,    68,
+     272,   350,   273,    -1,    69,    -1,    53,   272,   350,   273,
+      -1,    52,   272,   350,   273,    -1,    -1,    87,   272,   351,
+     352,   286,   273,    -1,    84,   272,   353,   273,    -1,   245,
+     329,    -1,   360,     9,   245,   329,    -1,    46,   272,   356,
+     273,    -1,   357,    -1,   356,    -1,   242,   357,   243,    -1,
+     350,    -1,   358,    -1,   357,   247,   350,    -1,   357,   247,
+     358,    -1,   360,   238,   239,    -1,   360,   244,   337,   238,
+     239,    -1,   360,     9,   360,   244,   337,   238,   239,    -1,
+       4,   246,   242,   329,   243,    -1,   359,   246,   242,   329,
+     243,    -1,   210,   240,   350,   241,   246,   242,   329,   243,
+      -1,     4,    -1,   359,    -1,   210,   240,   350,   241,    -1
 };
 
 /* YYRLINE[YYN] -- source line where rule number YYN was defined.  */
@@ -1440,48 +1437,48 @@ static const yytype_uint16 yyrline[] =
     1540,  1549,  1552,  1559,  1562,  1569,  1593,  1609,  1625,  1662,
     1702,  1718,  1734,  1756,  1772,  1791,  1807,  1828,  1839,  1845,
     1851,  1858,  1889,  1904,  1926,  1949,  1972,  1995,  2019,  2043,
-    2067,  2093,  2110,  2126,  2144,  2162,  2192,  2222,  2221,  2251,
-    2253,  2255,  2257,  2259,  2267,  2269,  2271,  2273,  2281,  2283,
-    2285,  2293,  2295,  2297,  2299,  2309,  2325,  2341,  2357,  2373,
-    2389,  2426,  2448,  2472,  2473,  2478,  2481,  2485,  2501,  2519,
-    2537,  2562,  2581,  2602,  2617,  2633,  2651,  2702,  2723,  2745,
-    2768,  2873,  2889,  2924,  2946,  2968,  2974,  2989,  3017,  3029,
-    3038,  3045,  3057,  3076,  3080,  3085,  3089,  3094,  3101,  3108,
-    3115,  3127,  3200,  3218,  3235,  3250,  3283,  3295,  3319,  3323,
-    3328,  3335,  3340,  3350,  3355,  3361,  3369,  3373,  3377,  3386,
-    3450,  3466,  3483,  3500,  3522,  3544,  3579,  3587,  3595,  3601,
-    3608,  3615,  3635,  3661,  3673,  3684,  3702,  3720,  3739,  3738,
-    3763,  3762,  3789,  3788,  3813,  3812,  3835,  3851,  3868,  3885,
-    3908,  3911,  3917,  3929,  3949,  3953,  3957,  3961,  3965,  3969,
-    3973,  3977,  3986,  3999,  4000,  4001,  4002,  4003,  4007,  4008,
-    4009,  4010,  4011,  4014,  4038,  4057,  4080,  4083,  4099,  4102,
-    4119,  4122,  4128,  4131,  4138,  4141,  4148,  4170,  4211,  4255,
-    4294,  4319,  4328,  4358,  4384,  4410,  4442,  4469,  4495,  4521,
-    4547,  4573,  4595,  4606,  4654,  4703,  4715,  4726,  4733,  4748,
-    4762,  4763,  4764,  4768,  4774,  4786,  4804,  4832,  4833,  4834,
-    4835,  4836,  4837,  4838,  4839,  4840,  4847,  4848,  4849,  4850,
-    4851,  4852,  4853,  4854,  4855,  4856,  4857,  4858,  4859,  4860,
-    4861,  4862,  4863,  4864,  4865,  4866,  4867,  4868,  4869,  4870,
-    4871,  4872,  4873,  4874,  4875,  4876,  4877,  4878,  4879,  4880,
-    4881,  4882,  4883,  4884,  4893,  4894,  4895,  4896,  4897,  4898,
-    4899,  4900,  4901,  4902,  4903,  4908,  4907,  4915,  4917,  4922,
-    4927,  4931,  4936,  4941,  4945,  4949,  4953,  4957,  4961,  4965,
-    4971,  4987,  4992,  4998,  5004,  5023,  5044,  5077,  5081,  5086,
-    5090,  5094,  5098,  5103,  5108,  5118,  5128,  5133,  5144,  5153,
-    5158,  5163,  5191,  5192,  5198,  5199,  5205,  5204,  5227,  5229,
-    5234,  5243,  5245,  5251,  5252,  5257,  5261,  5265,  5269,  5273,
-    5280,  5284,  5288,  5292,  5299,  5304,  5311,  5316,  5320,  5325,
-    5329,  5337,  5348,  5352,  5356,  5370,  5378,  5386,  5393,  5403,
-    5426,  5431,  5437,  5442,  5448,  5459,  5465,  5470,  5480,  5490,
-    5500,  5512,  5516,  5521,  5533,  5537,  5541,  5545,  5563,  5571,
-    5579,  5608,  5618,  5634,  5645,  5650,  5654,  5658,  5670,  5674,
-    5686,  5703,  5713,  5717,  5732,  5737,  5744,  5748,  5753,  5767,
-    5783,  5787,  5791,  5795,  5799,  5807,  5813,  5819,  5825,  5834,
-    5838,  5842,  5850,  5856,  5862,  5866,  5874,  5882,  5889,  5898,
-    5902,  5906,  5921,  5935,  5949,  5961,  5977,  5986,  5995,  6005,
-    6016,  6024,  6032,  6036,  6055,  6062,  6068,  6075,  6083,  6082,
-    6092,  6116,  6118,  6124,  6129,  6131,  6136,  6141,  6146,  6148,
-    6152,  6164,  6178,  6182,  6189,  6197,  6205,  6216,  6218,  6221
+    2067,  2093,  2110,  2126,  2144,  2162,  2168,  2176,  2175,  2205,
+    2207,  2209,  2211,  2213,  2221,  2223,  2225,  2227,  2235,  2237,
+    2239,  2247,  2249,  2251,  2253,  2263,  2279,  2295,  2311,  2327,
+    2343,  2380,  2402,  2426,  2427,  2432,  2435,  2439,  2455,  2473,
+    2491,  2516,  2535,  2556,  2571,  2587,  2605,  2656,  2677,  2699,
+    2722,  2827,  2843,  2878,  2900,  2922,  2928,  2943,  2971,  2983,
+    2992,  2999,  3011,  3030,  3034,  3039,  3043,  3048,  3055,  3062,
+    3069,  3081,  3154,  3172,  3189,  3204,  3237,  3249,  3273,  3277,
+    3282,  3289,  3294,  3304,  3309,  3315,  3323,  3327,  3336,  3400,
+    3416,  3433,  3450,  3472,  3494,  3529,  3537,  3545,  3551,  3558,
+    3565,  3585,  3611,  3623,  3634,  3652,  3670,  3689,  3688,  3713,
+    3712,  3739,  3738,  3763,  3762,  3785,  3801,  3818,  3835,  3858,
+    3861,  3867,  3879,  3899,  3903,  3907,  3911,  3915,  3919,  3923,
+    3927,  3936,  3949,  3950,  3951,  3952,  3953,  3957,  3958,  3959,
+    3960,  3961,  3964,  3988,  4007,  4030,  4033,  4049,  4052,  4069,
+    4072,  4078,  4081,  4088,  4091,  4098,  4120,  4161,  4205,  4244,
+    4269,  4278,  4308,  4334,  4360,  4392,  4419,  4445,  4471,  4497,
+    4523,  4545,  4556,  4604,  4653,  4665,  4676,  4683,  4698,  4712,
+    4713,  4714,  4718,  4724,  4736,  4754,  4782,  4783,  4784,  4785,
+    4786,  4787,  4788,  4789,  4790,  4797,  4798,  4799,  4800,  4801,
+    4802,  4803,  4804,  4805,  4806,  4807,  4808,  4809,  4810,  4811,
+    4812,  4813,  4814,  4815,  4816,  4817,  4818,  4819,  4820,  4821,
+    4822,  4823,  4824,  4825,  4826,  4827,  4828,  4829,  4830,  4831,
+    4832,  4833,  4834,  4843,  4844,  4845,  4846,  4847,  4848,  4849,
+    4850,  4851,  4852,  4853,  4858,  4857,  4865,  4867,  4872,  4877,
+    4881,  4886,  4891,  4895,  4899,  4903,  4907,  4911,  4915,  4921,
+    4937,  4942,  4948,  4954,  4973,  4994,  5027,  5031,  5036,  5040,
+    5044,  5048,  5053,  5058,  5068,  5078,  5083,  5094,  5103,  5108,
+    5113,  5141,  5142,  5148,  5149,  5155,  5154,  5177,  5179,  5184,
+    5193,  5195,  5201,  5202,  5207,  5211,  5215,  5219,  5223,  5230,
+    5234,  5238,  5242,  5249,  5254,  5261,  5266,  5270,  5275,  5279,
+    5287,  5298,  5302,  5306,  5320,  5328,  5336,  5343,  5353,  5376,
+    5381,  5387,  5392,  5398,  5409,  5415,  5420,  5430,  5440,  5450,
+    5462,  5466,  5471,  5483,  5487,  5491,  5495,  5513,  5521,  5529,
+    5558,  5568,  5584,  5595,  5600,  5604,  5608,  5620,  5624,  5636,
+    5653,  5663,  5667,  5682,  5687,  5694,  5698,  5703,  5717,  5733,
+    5737,  5741,  5745,  5749,  5757,  5763,  5769,  5775,  5784,  5788,
+    5792,  5800,  5806,  5812,  5816,  5824,  5832,  5839,  5848,  5852,
+    5856,  5871,  5885,  5899,  5911,  5927,  5936,  5945,  5955,  5966,
+    5974,  5982,  5986,  6005,  6012,  6018,  6025,  6033,  6032,  6042,
+    6066,  6068,  6074,  6079,  6081,  6086,  6091,  6096,  6098,  6102,
+    6114,  6128,  6132,  6139,  6147,  6155,  6166,  6168,  6171
 };
 #endif
 
@@ -1503,20 +1500,19 @@ static const char *const yytname[] =
   "tTextAttributes", "tBoundingBox", "tDraw", "tSetChanged", "tToday",
   "tFixRelativePath", "tCurrentDirectory", "tSyncModel", "tNewModel",
   "tOnelabAction", "tOnelabRun", "tCodeName", "tCpu", "tMemory",
-  "tTotalMemory", "tCreateTopology", "tCreateTopologyNoHoles",
-  "tDistanceFunction", "tDefineConstant", "tUndefineConstant",
-  "tDefineNumber", "tDefineStruct", "tNameStruct", "tDimNameSpace",
-  "tAppend", "tDefineString", "tSetNumber", "tSetString", "tPoint",
-  "tCircle", "tEllipse", "tLine", "tSphere", "tPolarSphere", "tSurface",
-  "tSpline", "tVolume", "tBox", "tCylinder", "tCone", "tTorus",
-  "tEllipsoid", "tQuadric", "tShapeFromFile", "tRectangle", "tDisk",
-  "tWire", "tGeoEntity", "tCharacteristic", "tLength", "tParametric",
-  "tElliptic", "tRefineMesh", "tAdaptMesh", "tRelocateMesh", "tSetFactory",
-  "tThruSections", "tWedge", "tFillet", "tChamfer", "tPlane", "tRuled",
-  "tTransfinite", "tPhysical", "tCompound", "tPeriodic", "tUsing",
-  "tPlugin", "tDegenerated", "tRecursive", "tRotate", "tTranslate",
-  "tSymmetry", "tDilate", "tExtrude", "tLevelset", "tAffine",
-  "tBooleanUnion", "tBooleanIntersection", "tBooleanDifference",
+  "tTotalMemory", "tCreateTopology", "tDistanceFunction",
+  "tDefineConstant", "tUndefineConstant", "tDefineNumber", "tDefineStruct",
+  "tNameStruct", "tDimNameSpace", "tAppend", "tDefineString", "tSetNumber",
+  "tSetString", "tPoint", "tCircle", "tEllipse", "tLine", "tSphere",
+  "tPolarSphere", "tSurface", "tSpline", "tVolume", "tBox", "tCylinder",
+  "tCone", "tTorus", "tEllipsoid", "tQuadric", "tShapeFromFile",
+  "tRectangle", "tDisk", "tWire", "tGeoEntity", "tCharacteristic",
+  "tLength", "tParametric", "tElliptic", "tRefineMesh", "tAdaptMesh",
+  "tRelocateMesh", "tSetFactory", "tThruSections", "tWedge", "tFillet",
+  "tChamfer", "tPlane", "tRuled", "tTransfinite", "tPhysical", "tCompound",
+  "tPeriodic", "tUsing", "tPlugin", "tDegenerated", "tRecursive",
+  "tRotate", "tTranslate", "tSymmetry", "tDilate", "tExtrude", "tLevelset",
+  "tAffine", "tBooleanUnion", "tBooleanIntersection", "tBooleanDifference",
   "tBooleanSection", "tBooleanFragments", "tThickSolid", "tRecombine",
   "tSmoother", "tSplit", "tDelete", "tCoherence", "tIntersect",
   "tMeshAlgorithm", "tReverse", "tLayers", "tScaleLast", "tHole", "tAlias",
@@ -1594,76 +1590,76 @@ static const yytype_uint16 yytoknum[] =
      435,   436,   437,   438,   439,   440,   441,   442,   443,   444,
      445,   446,   447,   448,   449,   450,   451,   452,   453,   454,
      455,   456,   457,   458,   459,   460,   461,   462,   463,   464,
-     465,   466,   467,   468,   469,   470,    63,   471,   472,   473,
-     474,    60,    62,   475,   476,   477,   478,    43,    45,    42,
-      47,    37,   124,    38,    33,   479,   480,   481,    94,    40,
-      41,    91,    93,   123,   125,    46,    35,   126,    44
+     465,   466,   467,   468,   469,    63,   470,   471,   472,   473,
+      60,    62,   474,   475,   476,   477,    43,    45,    42,    47,
+      37,   124,    38,    33,   478,   479,   480,    94,    40,    41,
+      91,    93,   123,   125,    46,    35,   126,    44
 };
 # endif
 
 /* YYR1[YYN] -- Symbol number of symbol that rule YYN derives.  */
 static const yytype_uint16 yyr1[] =
 {
-       0,   249,   250,   250,   251,   251,   252,   252,   252,   252,
-     252,   252,   252,   252,   252,   252,   252,   252,   252,   252,
-     252,   252,   252,   252,   252,   252,   253,   253,   254,   254,
-     254,   254,   254,   254,   255,   255,   255,   255,   256,   256,
-     256,   256,   256,   256,   257,   257,   258,   258,   260,   261,
-     259,   262,   262,   264,   263,   265,   265,   267,   266,   268,
-     268,   270,   269,   271,   271,   271,   271,   271,   272,   272,
-     273,   273,   274,   274,   275,   275,   275,   275,   275,   275,
-     275,   275,   275,   275,   275,   275,   275,   275,   275,   275,
-     275,   275,   275,   275,   275,   275,   275,   275,   275,   275,
-     275,   275,   275,   275,   275,   275,   275,   275,   275,   275,
-     275,   276,   276,   277,   277,   277,   278,   277,   279,   277,
-     277,   280,   277,   281,   281,   282,   282,   282,   283,   283,
-     284,   284,   285,   285,   286,   286,   286,   286,   286,   287,
-     287,   288,   288,   289,   289,   289,   289,   289,   290,   290,
-     290,   291,   291,   292,   292,   293,   293,   293,   293,   293,
-     293,   293,   293,   293,   293,   293,   293,   293,   293,   293,
-     293,   293,   293,   293,   293,   293,   293,   293,   293,   293,
-     293,   293,   293,   293,   293,   293,   293,   294,   293,   295,
-     295,   295,   295,   295,   296,   296,   296,   296,   297,   297,
-     297,   298,   298,   298,   298,   299,   299,   299,   299,   299,
-     299,   299,   299,   300,   300,   301,   301,   301,   301,   301,
-     301,   302,   302,   302,   302,   302,   302,   302,   302,   302,
-     302,   302,   302,   303,   303,   303,   303,   303,   303,   303,
-     304,   304,   305,   306,   306,   306,   306,   306,   306,   306,
-     306,   307,   307,   307,   307,   307,   307,   307,   307,   307,
-     307,   307,   307,   307,   307,   307,   307,   307,   307,   307,
-     308,   309,   309,   309,   309,   309,   309,   309,   309,   309,
-     309,   309,   309,   309,   309,   310,   310,   310,   311,   310,
-     312,   310,   313,   310,   314,   310,   310,   310,   310,   310,
-     315,   315,   316,   316,   316,   316,   316,   316,   316,   316,
-     316,   316,   316,   317,   317,   317,   317,   317,   318,   318,
-     318,   318,   318,   319,   319,   320,   321,   321,   322,   322,
-     323,   323,   324,   324,   325,   325,   326,   326,   326,   326,
-     326,   326,   326,   326,   326,   326,   326,   326,   326,   326,
-     326,   326,   326,   326,   326,   326,   326,   327,   327,   327,
-     328,   328,   328,   329,   329,   329,   329,   330,   330,   330,
+       0,   248,   249,   249,   250,   250,   251,   251,   251,   251,
+     251,   251,   251,   251,   251,   251,   251,   251,   251,   251,
+     251,   251,   251,   251,   251,   251,   252,   252,   253,   253,
+     253,   253,   253,   253,   254,   254,   254,   254,   255,   255,
+     255,   255,   255,   255,   256,   256,   257,   257,   259,   260,
+     258,   261,   261,   263,   262,   264,   264,   266,   265,   267,
+     267,   269,   268,   270,   270,   270,   270,   270,   271,   271,
+     272,   272,   273,   273,   274,   274,   274,   274,   274,   274,
+     274,   274,   274,   274,   274,   274,   274,   274,   274,   274,
+     274,   274,   274,   274,   274,   274,   274,   274,   274,   274,
+     274,   274,   274,   274,   274,   274,   274,   274,   274,   274,
+     274,   275,   275,   276,   276,   276,   277,   276,   278,   276,
+     276,   279,   276,   280,   280,   281,   281,   281,   282,   282,
+     283,   283,   284,   284,   285,   285,   285,   285,   285,   286,
+     286,   287,   287,   288,   288,   288,   288,   288,   289,   289,
+     289,   290,   290,   291,   291,   292,   292,   292,   292,   292,
+     292,   292,   292,   292,   292,   292,   292,   292,   292,   292,
+     292,   292,   292,   292,   292,   292,   292,   292,   292,   292,
+     292,   292,   292,   292,   292,   292,   292,   293,   292,   294,
+     294,   294,   294,   294,   295,   295,   295,   295,   296,   296,
+     296,   297,   297,   297,   297,   298,   298,   298,   298,   298,
+     298,   298,   298,   299,   299,   300,   300,   300,   300,   300,
+     300,   301,   301,   301,   301,   301,   301,   301,   301,   301,
+     301,   301,   301,   302,   302,   302,   302,   302,   302,   302,
+     303,   303,   304,   305,   305,   305,   305,   305,   305,   305,
+     305,   306,   306,   306,   306,   306,   306,   306,   306,   306,
+     306,   306,   306,   306,   306,   306,   306,   306,   306,   307,
+     308,   308,   308,   308,   308,   308,   308,   308,   308,   308,
+     308,   308,   308,   308,   309,   309,   309,   310,   309,   311,
+     309,   312,   309,   313,   309,   309,   309,   309,   309,   314,
+     314,   315,   315,   315,   315,   315,   315,   315,   315,   315,
+     315,   315,   316,   316,   316,   316,   316,   317,   317,   317,
+     317,   317,   318,   318,   319,   320,   320,   321,   321,   322,
+     322,   323,   323,   324,   324,   325,   325,   325,   325,   325,
+     325,   325,   325,   325,   325,   325,   325,   325,   325,   325,
+     325,   325,   325,   325,   325,   325,   326,   326,   326,   327,
+     327,   327,   328,   328,   328,   328,   329,   329,   329,   329,
+     329,   329,   329,   329,   329,   329,   329,   329,   329,   329,
+     329,   329,   329,   329,   329,   329,   329,   329,   329,   329,
+     329,   329,   329,   329,   329,   329,   329,   329,   329,   329,
+     329,   329,   329,   329,   329,   329,   329,   329,   329,   329,
+     329,   329,   329,   330,   330,   330,   330,   330,   330,   330,
+     330,   330,   330,   330,   331,   330,   330,   330,   330,   330,
      330,   330,   330,   330,   330,   330,   330,   330,   330,   330,
      330,   330,   330,   330,   330,   330,   330,   330,   330,   330,
      330,   330,   330,   330,   330,   330,   330,   330,   330,   330,
-     330,   330,   330,   330,   330,   330,   330,   330,   330,   330,
-     330,   330,   330,   330,   331,   331,   331,   331,   331,   331,
-     331,   331,   331,   331,   331,   332,   331,   331,   331,   331,
-     331,   331,   331,   331,   331,   331,   331,   331,   331,   331,
-     331,   331,   331,   331,   331,   331,   331,   331,   331,   331,
-     331,   331,   331,   331,   331,   331,   331,   331,   331,   331,
-     331,   331,   333,   333,   334,   334,   336,   335,   337,   337,
-     338,   339,   339,   340,   340,   341,   341,   341,   341,   341,
-     342,   342,   342,   342,   343,   343,   344,   344,   344,   344,
-     344,   344,   345,   345,   345,   346,   346,   346,   346,   346,
-     346,   346,   346,   346,   346,   346,   346,   346,   346,   346,
-     346,   346,   346,   346,   346,   346,   346,   346,   346,   346,
-     346,   346,   346,   346,   347,   347,   347,   347,   348,   348,
-     348,   348,   349,   349,   350,   350,   351,   351,   351,   351,
-     351,   351,   351,   351,   351,   351,   351,   351,   351,   352,
-     352,   352,   352,   352,   352,   352,   352,   352,   352,   352,
-     352,   352,   352,   352,   352,   352,   352,   352,   352,   352,
-     352,   352,   352,   352,   352,   352,   352,   352,   353,   352,
-     352,   354,   354,   355,   356,   356,   357,   358,   358,   358,
-     358,   359,   359,   359,   360,   360,   360,   361,   361,   361
+     330,   332,   332,   333,   333,   335,   334,   336,   336,   337,
+     338,   338,   339,   339,   340,   340,   340,   340,   340,   341,
+     341,   341,   341,   342,   342,   343,   343,   343,   343,   343,
+     343,   344,   344,   344,   345,   345,   345,   345,   345,   345,
+     345,   345,   345,   345,   345,   345,   345,   345,   345,   345,
+     345,   345,   345,   345,   345,   345,   345,   345,   345,   345,
+     345,   345,   345,   346,   346,   346,   346,   347,   347,   347,
+     347,   348,   348,   349,   349,   350,   350,   350,   350,   350,
+     350,   350,   350,   350,   350,   350,   350,   350,   351,   351,
+     351,   351,   351,   351,   351,   351,   351,   351,   351,   351,
+     351,   351,   351,   351,   351,   351,   351,   351,   351,   351,
+     351,   351,   351,   351,   351,   351,   351,   352,   351,   351,
+     353,   353,   354,   355,   355,   356,   357,   357,   357,   357,
+     358,   358,   358,   359,   359,   359,   360,   360,   360
 };
 
 /* YYR2[YYN] -- Number of symbols composing right hand side of rule YYN.  */
@@ -1695,40 +1691,40 @@ static const yytype_uint8 yyr2[] =
        8,     8,     6,     4,     5,     6,     6,     3,     4,     3,
        5,     6,     5,     4,     3,     4,     3,     4,     5,     4,
        5,     3,     5,     7,     7,     3,     7,     3,     2,     2,
-       2,     2,     2,    15,     2,     2,     2,     2,     2,    16,
-      11,     6,     8,     8,    10,     1,     2,     2,     1,     3,
-       3,     4,     4,     1,     1,     5,    11,    13,     0,     7,
-       0,    13,     0,    15,     0,     6,     9,     2,     3,    10,
-       1,     2,     5,     7,     2,     2,     3,     2,     3,     2,
-       3,     9,     6,     1,     1,     1,     1,     1,     0,     2,
-       3,     3,     4,     9,     4,    14,     0,     3,     0,     1,
-       0,     2,     0,     2,     0,     2,     6,     7,     6,     5,
-       3,     8,     5,     4,     6,    11,    11,    18,    18,    12,
-      12,    12,    10,     4,     4,     4,     4,     2,     3,     6,
-       1,     1,     1,     2,     5,     7,    10,     1,     3,     2,
-       2,     2,     3,     3,     3,     3,     3,     3,     3,     3,
-       3,     3,     3,     3,     3,     3,     3,     3,     3,     3,
-       5,     4,     4,     4,     4,     4,     4,     4,     4,     4,
-       4,     6,     4,     4,     4,     4,     4,     4,     4,     4,
-       6,     6,     6,     4,     1,     1,     1,     1,     1,     1,
-       1,     1,     1,     1,     1,     0,     6,     1,     4,     6,
-       1,     4,     4,     4,     6,     5,     7,     8,    10,     4,
-       4,     6,     4,     3,     2,     5,     5,     3,     5,     6,
-       8,     6,     8,     6,     4,     7,     6,     6,     6,     4,
-       6,     4,     0,     2,     0,     2,     0,     7,     1,     3,
-       1,     1,     2,     0,     3,     1,     2,     2,     3,     3,
-      11,     9,     7,     7,     1,     3,     1,     1,     2,     3,
-       4,     5,     1,     3,     1,     2,     3,     3,     5,     4,
-       4,     2,     4,     2,     3,    16,     5,     1,     1,     1,
-       3,     5,     7,     4,     4,     4,     6,     6,     8,     8,
-       4,    14,     4,     4,     1,     1,     3,     3,     9,     7,
-       1,     5,     3,     6,     1,     3,     1,     1,     4,     4,
-       3,     5,     6,     8,     6,     5,     5,     5,     5,     1,
-       4,     1,     1,     1,     1,     4,     6,     4,     6,     5,
-       7,     4,     4,     4,     8,     4,     4,     4,     4,     8,
-       8,     6,     4,     6,     4,     1,     4,     4,     0,     6,
-       4,     2,     4,     4,     1,     1,     3,     1,     1,     3,
-       3,     3,     5,     7,     5,     5,     8,     1,     1,     4
+       2,     2,     2,    15,     2,     2,     2,     2,    16,    11,
+       6,     8,     8,    10,     1,     2,     2,     1,     3,     3,
+       4,     4,     1,     1,     5,    11,    13,     0,     7,     0,
+      13,     0,    15,     0,     6,     9,     2,     3,    10,     1,
+       2,     5,     7,     2,     2,     3,     2,     3,     2,     3,
+       9,     6,     1,     1,     1,     1,     1,     0,     2,     3,
+       3,     4,     9,     4,    14,     0,     3,     0,     1,     0,
+       2,     0,     2,     0,     2,     6,     7,     6,     5,     3,
+       8,     5,     4,     6,    11,    11,    18,    18,    12,    12,
+      12,    10,     4,     4,     4,     4,     2,     3,     6,     1,
+       1,     1,     2,     5,     7,    10,     1,     3,     2,     2,
+       2,     3,     3,     3,     3,     3,     3,     3,     3,     3,
+       3,     3,     3,     3,     3,     3,     3,     3,     3,     5,
+       4,     4,     4,     4,     4,     4,     4,     4,     4,     4,
+       6,     4,     4,     4,     4,     4,     4,     4,     4,     6,
+       6,     6,     4,     1,     1,     1,     1,     1,     1,     1,
+       1,     1,     1,     1,     0,     6,     1,     4,     6,     1,
+       4,     4,     4,     6,     5,     7,     8,    10,     4,     4,
+       6,     4,     3,     2,     5,     5,     3,     5,     6,     8,
+       6,     8,     6,     4,     7,     6,     6,     6,     4,     6,
+       4,     0,     2,     0,     2,     0,     7,     1,     3,     1,
+       1,     2,     0,     3,     1,     2,     2,     3,     3,    11,
+       9,     7,     7,     1,     3,     1,     1,     2,     3,     4,
+       5,     1,     3,     1,     2,     3,     3,     5,     4,     4,
+       2,     4,     2,     3,    16,     5,     1,     1,     1,     3,
+       5,     7,     4,     4,     4,     6,     6,     8,     8,     4,
+      14,     4,     4,     1,     1,     3,     3,     9,     7,     1,
+       5,     3,     6,     1,     3,     1,     1,     4,     4,     3,
+       5,     6,     8,     6,     5,     5,     5,     5,     1,     4,
+       1,     1,     1,     1,     4,     6,     4,     6,     5,     7,
+       4,     4,     4,     8,     4,     4,     4,     4,     8,     8,
+       6,     4,     6,     4,     1,     4,     4,     0,     6,     4,
+       2,     4,     4,     1,     1,     3,     1,     1,     3,     3,
+       3,     5,     7,     5,     5,     8,     1,     1,     4
 };
 
 /* YYDEFACT[STATE-NAME] -- Default rule to reduce with in state
@@ -1736,1572 +1732,1564 @@ static const yytype_uint8 yyr2[] =
    means the default is an error.  */
 static const yytype_uint16 yydefact[] =
 {
-       0,     0,     0,     2,     3,     1,   597,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   189,     0,     0,   190,     0,     0,
-     191,     0,   192,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     2,     3,     1,   596,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,   189,     0,     0,   190,     0,     0,   191,
+       0,   192,     0,     0,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   313,   314,   315,   316,
-     317,     0,     0,     0,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     275,     0,     0,   283,   284,     0,     0,     0,   278,     0,
-       0,     0,     0,     0,   360,   361,   362,     0,     0,     5,
-       6,     7,     8,    10,     0,    11,    24,    12,    13,    14,
-      15,    23,    22,    21,    16,     0,    17,    18,    19,    20,
-       0,    25,     0,   598,     0,   215,     0,     0,     0,     0,
-       0,   262,     0,   264,   265,   260,   261,     0,   266,   267,
-     113,   123,   597,   473,   468,    70,    71,     0,     0,     0,
+       0,     0,     0,     0,     0,   312,   313,   314,   315,   316,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   274,
+       0,     0,   282,   283,     0,     0,     0,   277,     0,     0,
+       0,     0,     0,   359,   360,   361,     0,     0,     5,     6,
+       7,     8,    10,     0,    11,    24,    12,    13,    14,    15,
+      23,    22,    21,    16,     0,    17,    18,    19,    20,     0,
+      25,     0,   597,     0,   215,     0,     0,     0,     0,     0,
+     262,     0,   264,   265,   260,   261,     0,   266,   113,   123,
+     596,   472,   467,    70,    71,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   268,     0,   201,   202,   203,     0,     0,     0,   414,
-     415,   417,   418,   416,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   267,
+       0,   201,   202,   203,     0,     0,     0,   413,   414,   416,
+     417,   415,     0,     0,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   422,   423,
-     424,     0,     0,   189,   194,   195,   196,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   419,   420,   421,
-       0,     0,     0,     0,     0,     0,     0,     0,   507,   508,
-       0,   509,   486,   367,   427,   430,   297,   487,   468,     0,
-       0,     0,     0,     0,     0,     0,     0,   189,   190,   191,
-     192,   187,   194,   195,   196,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   421,   422,   423,     0,
+       0,   189,   194,   195,   196,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   418,   419,   420,     0,     0,
+       0,     0,     0,     0,     0,     0,   506,   507,     0,   508,
+     485,   366,   426,   429,   296,   486,   467,     0,     0,     0,
+       0,     0,     0,     0,     0,   189,   190,   191,   192,   187,
+     194,   195,   196,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   474,
+       0,     0,   215,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   596,     0,     0,
+     215,     0,     0,   356,     0,     0,     0,   198,   199,     0,
+       0,     0,     0,     0,   493,     0,     0,   491,     0,     0,
+       0,     0,     0,   596,     0,     0,   529,     0,     0,     0,
+       0,   258,   259,     0,   548,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   550,     0,
+     574,   552,   553,     0,     0,     0,     0,     0,     0,   551,
+       0,     0,     0,     0,   275,   276,     0,   215,     0,   215,
+       0,     0,     0,   467,     0,     0,     0,   215,   362,     0,
+       0,    76,     0,    63,     0,     0,    67,    66,    65,    64,
+      69,    68,    70,    71,     0,     0,     0,     0,     0,     0,
+     535,   467,     0,   214,     0,   213,     0,   168,     0,     0,
+     535,   536,     0,     0,   586,     0,   587,   536,   111,   111,
+       0,   465,     0,     0,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   475,     0,     0,   215,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   597,
-       0,     0,   215,     0,     0,   357,     0,     0,     0,   198,
-     199,     0,     0,     0,     0,     0,   494,     0,     0,   492,
-       0,     0,     0,     0,     0,   597,     0,     0,   530,     0,
-       0,     0,     0,   258,   259,     0,   549,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   523,   524,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     551,     0,   575,   553,   554,     0,     0,     0,     0,     0,
-       0,   552,     0,     0,     0,     0,   276,   277,     0,   215,
-       0,   215,     0,     0,     0,   468,     0,     0,     0,   215,
-     363,     0,     0,    76,     0,    63,     0,     0,    67,    66,
-      65,    64,    69,    68,    70,    71,     0,     0,     0,     0,
-       0,     0,   536,   468,     0,   214,     0,   213,     0,   168,
-       0,     0,   536,   537,     0,     0,   587,     0,   588,   537,
-     111,   111,     0,   466,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,    70,    71,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     524,   525,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   500,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,   369,     0,   368,   494,   370,     0,   487,
+       0,     0,   467,     0,   502,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,    70,
-      71,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   501,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   370,     0,   369,   495,   371,
-       0,   488,     0,     0,   468,     0,   503,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,    70,    71,     0,
+     443,     0,     0,     0,     0,     0,     0,   297,     0,   329,
+     329,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+     215,     0,   215,   215,     0,   476,   475,     0,     0,     0,
+       0,   215,   215,     0,     0,     0,     0,   293,     0,   215,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,    70,
-      71,     0,   444,     0,     0,     0,     0,     0,     0,   298,
-       0,   330,   330,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   215,     0,   215,   215,     0,   477,   476,     0,
-       0,     0,     0,   215,   215,     0,     0,     0,     0,   294,
-       0,   215,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   332,     0,     0,     0,     0,     0,   239,     0,
-       0,   237,   358,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   340,   257,     0,     0,     0,     0,     0,
-     215,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+     331,     0,     0,     0,     0,     0,   239,     0,     0,   237,
+     357,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,   339,   257,     0,     0,     0,     0,     0,   215,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   280,   279,     0,
-     244,     0,     0,   246,     0,     0,     0,   369,     0,   215,
-       0,     0,     0,     0,     0,     0,     0,   318,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,    80,    72,    73,     0,     0,   255,    38,
-     251,     0,     0,     0,     0,     0,   210,     0,     0,     0,
-       0,   216,     0,     0,   169,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   279,   278,     0,   244,     0,
+       0,   246,     0,     0,     0,   368,     0,   215,     0,     0,
+       0,     0,     0,     0,     0,   317,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     112,     0,     0,     0,   471,     0,     0,   469,     0,     0,
+       0,    80,    72,    73,     0,     0,   255,    38,   251,     0,
+       0,     0,     0,     0,   210,     0,     0,     0,     0,   216,
+       0,     0,   169,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   112,     0,
+       0,     0,   470,     0,     0,   468,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   324,     0,     0,     0,   193,
-       0,     0,     0,     0,     0,     0,   354,     0,     0,     0,
+       0,     0,     0,   323,     0,     0,     0,   193,     0,     0,
+       0,     0,     0,     0,   353,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   468,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   425,   443,     0,
-       0,     0,     0,   504,     0,     0,     0,     0,     0,   462,
-       0,   368,   489,     0,     0,     0,     0,   497,     0,   387,
-     386,   385,   384,   380,   381,   388,   389,   383,   382,   373,
-     372,     0,   374,   496,   375,   378,   376,   377,   379,   469,
-       0,     0,   470,   447,     0,   510,     0,     0,     0,     0,
-       0,     0,     0,   328,     0,     0,     0,     0,   356,     0,
-       0,     0,     0,   355,     0,   215,     0,     0,     0,     0,
-       0,   479,   478,     0,     0,     0,     0,     0,     0,     0,
-     288,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   343,     0,     0,   238,     0,     0,   233,
-       0,     0,     0,     0,   353,     0,     0,     0,   368,   493,
-       0,     0,     0,     0,     0,     0,     0,     0,   281,   282,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   578,     0,
-       0,     0,   464,     0,     0,   243,   247,   245,   249,     0,
-     374,     0,   469,   447,   599,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,    87,     0,     0,     0,     0,     0,
-     368,     0,    63,     0,     0,     0,     0,    79,     0,    63,
-      64,     0,     0,   469,     0,     0,   447,     0,     0,     0,
-     187,     0,     0,   594,    28,    26,    27,     0,     0,     0,
-       0,     0,   470,   540,    29,     0,     0,   252,   589,   590,
-       0,   591,   540,    74,   114,    75,   124,   472,   474,   130,
+       0,     0,     0,   467,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   424,   442,     0,     0,     0,
+       0,   503,     0,     0,     0,     0,     0,   461,     0,   367,
+     488,     0,     0,     0,     0,   496,     0,   386,   385,   384,
+     383,   379,   380,   387,   388,   382,   381,   372,   371,     0,
+     373,   495,   374,   377,   375,   376,   378,   468,     0,     0,
+     469,   446,     0,   509,     0,     0,     0,     0,     0,     0,
+       0,   327,     0,     0,     0,     0,   355,     0,     0,     0,
+       0,   354,     0,   215,     0,     0,     0,     0,     0,   478,
+     477,     0,     0,     0,     0,     0,     0,     0,   287,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,   342,     0,     0,   238,     0,     0,   233,     0,     0,
+       0,     0,   352,     0,     0,     0,   367,   492,     0,     0,
+       0,     0,     0,     0,     0,     0,   280,   281,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   526,   527,   204,     9,   391,   392,   393,
-     394,   395,   396,   397,   398,   399,   413,   400,     0,   402,
-     403,   404,   405,   406,   523,   407,   408,   409,     0,     0,
-       0,   515,   514,   513,     0,     0,     0,   520,     0,   459,
-       0,     0,     0,   461,     0,   128,   442,   500,   499,   197,
-       0,     0,   428,   522,   433,     0,   439,     0,     0,     0,
-       0,   490,     0,     0,   440,     0,   502,     0,     0,     0,
-       0,   432,   431,   454,    70,    71,     0,     0,     0,     0,
-       0,     0,   368,   326,   331,   329,     0,   339,     0,   148,
-     149,   197,   368,     0,     0,     0,     0,   234,     0,   248,
-     250,     0,     0,     0,   205,   207,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   300,     0,   285,
+       0,     0,     0,     0,     0,     0,   577,     0,     0,     0,
+     463,     0,     0,   243,   247,   245,   249,     0,   373,     0,
+     468,   446,   598,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,    87,     0,     0,     0,     0,     0,   367,     0,
+      63,     0,     0,     0,     0,    79,     0,    63,    64,     0,
+       0,   468,     0,     0,   446,     0,     0,     0,   187,     0,
+       0,   593,    28,    26,    27,     0,     0,     0,     0,     0,
+     469,   539,    29,     0,     0,   252,   588,   589,     0,   590,
+     539,    74,   114,    75,   124,   471,   473,   130,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   333,   342,     0,     0,     0,     0,     0,     0,     0,
-     200,     0,     0,     0,     0,     0,     0,     0,     0,   240,
-       0,     0,     0,     0,   565,     0,   572,   561,   562,   563,
-       0,   577,   576,     0,     0,   566,   567,   568,   574,   581,
-     580,     0,   139,     0,   555,     0,   557,     0,     0,     0,
-     550,     0,   242,     0,     0,     0,     0,     0,     0,     0,
-     319,     0,     0,     0,   364,     0,   595,     0,     0,     0,
-       0,   101,    63,     0,     0,     0,     0,     0,     0,     0,
-      95,     0,     0,     0,     0,     0,     0,     0,     0,    48,
-       0,     0,     0,    61,     0,    39,    40,    41,    42,    43,
-       0,   432,   431,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   539,   538,     0,     0,     0,     0,
-       0,     0,     0,   135,     0,   131,   132,     0,     0,     0,
-     153,   153,     0,     0,     0,     0,     0,   151,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   336,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   506,     0,     0,     0,     0,     0,   462,   463,     0,
-     435,     0,     0,     0,   498,   390,   491,   448,   446,     0,
-     445,     0,     0,   511,     0,     0,     0,     0,     0,     0,
-       0,     0,   338,     0,     0,     0,     0,     0,     0,     0,
-     241,     0,     0,     0,     0,     0,     0,     0,   305,     0,
-       0,   304,     0,   307,     0,   309,     0,   295,   301,     0,
-       0,     0,   232,     0,     0,     0,     0,     0,     0,     0,
-       0,   344,     0,   236,   235,   359,     0,     0,    35,    36,
-       0,     0,     0,     0,   531,     0,     0,     0,   271,     0,
+       0,   525,   526,   204,     9,   390,   391,   392,   393,   394,
+     395,   396,   397,   398,   412,   399,     0,   401,   402,   403,
+     404,   405,   522,   406,   407,   408,     0,     0,     0,   514,
+     513,   512,     0,     0,     0,   519,     0,   458,     0,     0,
+       0,   460,     0,   128,   441,   499,   498,   197,     0,     0,
+     427,   521,   432,     0,   438,     0,     0,     0,     0,   489,
+       0,     0,   439,     0,   501,     0,     0,     0,     0,   431,
+     430,   453,    70,    71,     0,     0,     0,     0,     0,     0,
+     367,   325,   330,   328,     0,   338,     0,   148,   149,   197,
+     367,     0,     0,     0,     0,   234,     0,   248,   250,     0,
+       0,     0,   205,   207,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   299,     0,   284,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   332,
+     341,     0,     0,     0,     0,     0,     0,     0,   200,     0,
+       0,     0,     0,     0,     0,     0,     0,   240,     0,     0,
+       0,     0,   564,     0,   571,   560,   561,   562,     0,   576,
+     575,     0,     0,   565,   566,   567,   573,   580,   579,     0,
+     139,     0,   554,     0,   556,     0,     0,     0,   549,     0,
+     242,     0,     0,     0,     0,     0,     0,     0,   318,     0,
+       0,     0,   363,     0,   594,     0,     0,     0,     0,   101,
+      63,     0,     0,     0,     0,     0,     0,     0,    95,     0,
+       0,     0,     0,     0,     0,     0,     0,    48,     0,     0,
+       0,    61,     0,    39,    40,    41,    42,    43,     0,   431,
+     430,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   538,   537,     0,     0,     0,     0,     0,     0,
+       0,   135,     0,   131,   132,     0,     0,     0,   153,   153,
+       0,     0,     0,     0,     0,   151,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   335,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   505,
+       0,     0,     0,     0,     0,   461,   462,     0,   434,     0,
+       0,     0,   497,   389,   490,   447,   445,     0,   444,     0,
+       0,   510,     0,     0,     0,     0,     0,     0,     0,     0,
+     337,     0,     0,     0,     0,     0,     0,     0,   241,     0,
+       0,     0,     0,     0,     0,     0,   304,     0,     0,   303,
+       0,   306,     0,   308,     0,   294,   300,     0,     0,     0,
+     232,     0,     0,     0,     0,     0,     0,     0,     0,   343,
+       0,   236,   235,   358,     0,     0,    35,    36,     0,     0,
+       0,     0,   530,     0,     0,     0,   270,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   464,   465,   559,     0,   448,     0,     0,   215,
-     320,     0,   321,   215,     0,     0,   545,   546,   547,   548,
-       0,    86,     0,     0,     0,     0,    84,    91,    93,     0,
-     534,     0,    99,     0,     0,     0,     0,    81,     0,     0,
-       0,     0,     0,    34,   448,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,    30,    31,     0,   541,
-       0,     0,    32,     0,   541,   592,     0,   115,   120,     0,
-       0,     0,   134,   137,   138,   467,     0,    77,    78,   155,
-       0,     0,     0,     0,   156,   171,   172,     0,     0,     0,
-     157,   182,   173,   177,   178,   174,   175,   176,   163,     0,
-       0,   401,   410,   411,   412,   516,     0,     0,     0,   457,
-     458,   460,   129,   426,   456,   429,   434,     0,     0,   462,
-     183,   441,     0,    70,    71,     0,   453,   449,   451,   517,
-     179,     0,     0,   151,     0,     0,   337,     0,   150,     0,
-       0,     0,     0,   256,     0,     0,     0,     0,   215,   215,
-       0,     0,   306,   486,     0,     0,   308,   310,     0,     0,
-     289,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   180,     0,     0,     0,     0,   160,   161,     0,     0,
-       0,     0,   102,   103,   104,   108,     0,   573,     0,     0,
-     571,     0,   582,     0,     0,   140,   141,   579,   556,   558,
-       0,     0,     0,     0,     0,     0,   318,   322,   318,     0,
-     365,    85,    63,     0,     0,     0,     0,    83,     0,   532,
-       0,     0,     0,     0,     0,     0,   585,   584,     0,     0,
-       0,     0,     0,   484,     0,     0,   453,   253,   449,   254,
-       0,     0,     0,     0,   219,   217,     0,     0,   544,   542,
-       0,     0,   116,   121,     0,     0,     0,   524,   525,   133,
-     154,   158,   159,   164,   181,     0,   166,     0,     0,     0,
-       0,     0,     0,   436,     0,     0,     0,     0,   512,   455,
-       0,   165,     0,   184,   327,     0,     0,   185,     0,     0,
-       0,     0,     0,     0,   483,   482,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   231,   230,     0,     0,
-       0,     0,     0,     0,     0,     0,   221,     0,     0,   341,
-      37,     0,   529,     0,     0,   273,   272,     0,     0,     0,
-       0,     0,     0,   143,   144,   147,   146,   145,     0,   560,
-       0,   596,     0,     0,     0,     0,     0,     0,    96,     0,
-       0,    97,   535,     0,     0,     0,    88,     0,     0,     0,
-      44,     0,     0,     0,     0,     0,    46,     0,   220,   218,
-      33,     0,     0,   593,   128,   139,     0,     0,   136,     0,
-       0,     0,     0,     0,     0,   518,   519,     0,   462,   437,
-       0,   450,   452,     0,   167,   188,     0,   334,   334,     0,
-     109,   110,   215,     0,   208,   209,   296,     0,   302,     0,
-       0,   215,     0,     0,     0,     0,     0,     0,     0,     0,
-     212,   211,     0,     0,     0,     0,   105,   106,   564,   570,
-     569,   142,     0,     0,     0,   323,     0,    92,    94,     0,
-     100,     0,    82,   586,    89,    90,    49,     0,     0,     0,
-       0,   485,     0,     0,   450,   543,     0,     0,     0,   118,
-     583,     0,   125,     0,     0,   170,     0,     0,     0,     0,
-     299,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   481,     0,   312,     0,     0,   290,     0,   222,     0,
-       0,     0,     0,     0,     0,     0,   528,   274,     0,     0,
-     352,   215,   366,     0,   533,     0,    45,     0,     0,     0,
-      62,    47,     0,   117,   122,   128,     0,     0,   152,     0,
-       0,   438,     0,     0,     0,     0,   335,   345,     0,     0,
-     346,     0,   206,     0,   303,     0,   286,     0,   215,     0,
-       0,     0,     0,     0,     0,   162,   107,   270,   318,    98,
-       0,     0,     0,     0,     0,     0,   126,   127,     0,     0,
-       0,   186,     0,   349,     0,   350,   351,   480,     0,     0,
-     292,   225,     0,     0,     0,     0,     0,     0,     0,     0,
-      53,     0,    59,     0,     0,   119,     0,     0,     0,     0,
-       0,   311,   291,   287,     0,     0,     0,     0,     0,     0,
+     463,   464,   558,     0,   447,     0,     0,   215,   319,     0,
+     320,   215,     0,     0,   544,   545,   546,   547,     0,    86,
+       0,     0,     0,     0,    84,    91,    93,     0,   533,     0,
+      99,     0,     0,     0,     0,    81,     0,     0,     0,     0,
+       0,    34,   447,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,    30,    31,     0,   540,     0,     0,
+      32,     0,   540,   591,     0,   115,   120,     0,     0,     0,
+     134,   137,   138,   466,     0,    77,    78,   155,     0,     0,
+       0,     0,   156,   171,   172,     0,     0,     0,   157,   182,
+     173,   177,   178,   174,   175,   176,   163,     0,     0,   400,
+     409,   410,   411,   515,     0,     0,     0,   456,   457,   459,
+     129,   425,   455,   428,   433,     0,     0,   461,   183,   440,
+       0,    70,    71,     0,   452,   448,   450,   516,   179,     0,
+       0,   151,     0,     0,   336,     0,   150,     0,     0,     0,
+       0,   256,     0,     0,     0,     0,   215,   215,     0,     0,
+     305,   485,     0,     0,   307,   309,     0,     0,   288,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   180,
+       0,     0,     0,     0,   160,   161,     0,     0,     0,     0,
+     102,   103,   104,   108,     0,   572,     0,     0,   570,     0,
+     581,     0,     0,   140,   141,   578,   555,   557,     0,     0,
+       0,     0,     0,     0,   317,   321,   317,     0,   364,    85,
+      63,     0,     0,     0,     0,    83,     0,   531,     0,     0,
+       0,     0,     0,     0,   584,   583,     0,     0,     0,     0,
+       0,   483,     0,     0,   452,   253,   448,   254,     0,     0,
+       0,     0,   219,   217,     0,     0,   543,   541,     0,     0,
+     116,   121,     0,     0,     0,   523,   524,   133,   154,   158,
+     159,   164,   181,     0,   166,     0,     0,     0,     0,     0,
+       0,   435,     0,     0,     0,     0,   511,   454,     0,   165,
+       0,   184,   326,     0,     0,   185,     0,     0,     0,     0,
+       0,     0,   482,   481,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   231,   230,     0,     0,     0,     0,
+       0,     0,     0,     0,   221,     0,     0,   340,    37,     0,
+     528,     0,     0,   272,   271,     0,     0,     0,     0,     0,
+       0,   143,   144,   147,   146,   145,     0,   559,     0,   595,
+       0,     0,     0,     0,     0,     0,    96,     0,     0,    97,
+     534,     0,     0,     0,    88,     0,     0,     0,    44,     0,
+       0,     0,     0,     0,    46,     0,   220,   218,    33,     0,
+       0,   592,   128,   139,     0,     0,   136,     0,     0,     0,
+       0,     0,     0,   517,   518,     0,   461,   436,     0,   449,
+     451,     0,   167,   188,     0,   333,   333,     0,   109,   110,
+     215,     0,   208,   209,   295,     0,   301,     0,     0,   215,
+       0,     0,     0,     0,     0,     0,     0,     0,   212,   211,
+       0,     0,     0,     0,   105,   106,   563,   569,   568,   142,
+       0,     0,     0,   322,     0,    92,    94,     0,   100,     0,
+      82,   585,    89,    90,    49,     0,     0,     0,     0,   484,
+       0,     0,   449,   542,     0,     0,     0,   118,   582,     0,
+     125,     0,     0,   170,     0,     0,     0,     0,   298,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   480,
+       0,   311,     0,     0,   289,     0,   222,     0,     0,     0,
+       0,     0,     0,     0,   527,   273,     0,     0,   351,   215,
+     365,     0,   532,     0,    45,     0,     0,     0,    62,    47,
+       0,   117,   122,   128,     0,     0,   152,     0,     0,   437,
+       0,     0,     0,     0,   334,   344,     0,     0,   345,     0,
+     206,     0,   302,     0,   285,     0,   215,     0,     0,     0,
+       0,     0,     0,   162,   107,   269,   317,    98,     0,     0,
+       0,     0,     0,     0,   126,   127,     0,     0,     0,   186,
+       0,   348,     0,   349,   350,   479,     0,     0,   291,   225,
+       0,     0,     0,     0,     0,     0,     0,     0,    53,     0,
+      59,     0,     0,   119,     0,     0,     0,     0,     0,   310,
+     290,   286,     0,     0,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   226,   227,   228,   229,     0,   223,   325,
-      50,     0,    57,     0,   263,     0,   521,     0,     0,     0,
-     293,     0,     0,    51,     0,     0,   269,     0,     0,     0,
-     224,     0,     0,     0,     0,   505,     0,     0,    54,    52,
-       0,    55,     0,   347,   348,     0,     0,    60,    58,    56
+       0,   226,   227,   228,   229,     0,   223,   324,    50,     0,
+      57,     0,   263,     0,   520,     0,     0,     0,   292,     0,
+       0,    51,     0,     0,   268,     0,     0,     0,   224,     0,
+       0,     0,     0,   504,     0,     0,    54,    52,     0,    55,
+       0,   346,   347,     0,     0,    60,    58,    56
 };
 
 /* YYDEFGOTO[NTERM-NUM].  */
 static const yytype_int16 yydefgoto[] =
 {
-      -1,     2,     3,   109,  1017,   110,   111,  1002,  1809,  1815,
-    1285,  1488,  1955,  2082,  1286,  2053,  2100,  1287,  2084,  1288,
-    1289,  1492,   417,   562,   563,  1083,   112,   741,   440,  1824,
-    1965,  1825,   441,  1706,  1353,  1314,  1315,  1316,  1449,  1645,
-    1646,  1148,  1539,  1531,   721,   573,   256,   257,   332,   187,
-     258,   426,   427,   116,   117,   118,   119,   120,   121,   122,
-     123,   259,  1180,  1987,  2044,   898,  1176,  1177,   260,   979,
-     261,   127,  1381,  1146,   873,   912,  1925,   128,   129,   130,
-     131,   262,   263,  1105,  1120,  1239,   264,   746,   265,   863,
-     745,   443,   588,   301,  1682,   339,   340,   267,   532,   347,
-    1273,  1481,   436,   432,  1232,   956,  1524,  1675,  1676,   941,
-     438,   133,   395
+      -1,     2,     3,   108,  1015,   109,   110,  1000,  1807,  1813,
+    1283,  1486,  1953,  2080,  1284,  2051,  2098,  1285,  2082,  1286,
+    1287,  1490,   415,   560,   561,  1081,   111,   739,   438,  1822,
+    1963,  1823,   439,  1704,  1351,  1312,  1313,  1314,  1447,  1643,
+    1644,  1146,  1537,  1529,   719,   571,   254,   255,   330,   185,
+     256,   424,   425,   115,   116,   117,   118,   119,   120,   121,
+     122,   257,  1178,  1985,  2042,   896,  1174,  1175,   258,   977,
+     259,   126,  1379,  1144,   871,   910,  1923,   127,   128,   129,
+     130,   260,   261,  1103,  1118,  1237,   262,   744,   263,   861,
+     743,   441,   586,   299,  1680,   337,   338,   265,   530,   345,
+    1271,  1479,   434,   430,  1230,   954,  1522,  1673,  1674,   939,
+     436,   132,   393
 };
 
 /* YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing
    STATE-NUM.  */
-#define YYPACT_NINF -1792
+#define YYPACT_NINF -1769
 static const yytype_int16 yypact[] =
 {
-   10854,    62,    54, 11005, -1792, -1792,   -74,    61,    41,   -82,
-     -52,    20,    95,   202,   241,   252,    -9,   271,   284,    64,
-      97,    25,   -26,   -26,   112,   118,   143,    36,   167,   176,
-      46,   195,   218,   230,   236,   255,   260,   270,   321,   334,
-     344,   100,   368,   512,   361,   349,   388,   378,  6202,   393,
-     398,   561,   -55,   102,   371,   311,    81,   443,   624,    -2,
-     485,   320,   320,   496,   437,    44, -1792, -1792, -1792, -1792,
-   -1792,   492,   350,   649,   658,    18,    77,   665,   667,   542,
-     768,   789,   828,  5254,   839,   618,   627,   657,    23,    65,
-   -1792,   685,   693, -1792, -1792,   883,   898,   708, -1792, 11203,
-     733, 11233,    31,    33, -1792, -1792, -1792, 10683,   732, -1792,
-   -1792, -1792, -1792, -1792,   746, -1792, -1792, -1792, -1792, -1792,
-   -1792, -1792, -1792, -1792, -1792,    83, -1792, -1792, -1792, -1792,
-      55, -1792,   988,   763,  4060,    58,   775,  1005, 10683, 11173,
-   11173, -1792, 10683, -1792, -1792, -1792, -1792, 11173, -1792, -1792,
-   -1792, -1792,   790,   800,  1037, -1792, -1792, 11263,    25, 10683,
-   10683, 10683,   821, 10683, 10683, 10683,   826, 10683, 10683, 10683,
-   10683, 10683, 10683, 10683, 11173, 10683, 10683, 10683, 10683,  5254,
-     827, -1792,  8799, -1792, -1792, -1792,   824,  5254, 11173, -1792,
-   -1792, -1792, -1792, -1792,   -26,   -26,   -26,   -26,   -26,   -26,
-     -26,   -26,   -26,   -26,   -26,   -26,   -26,   -26,   -26,   -26,
-     -26,   -26,   -26,   -26,   -26,   -26,   -26,   281,   -26,   -26,
-     -26,   -26,   -26,   829,   -26,   -26,   831,   371, -1792, -1792,
-   -1792,   -26,   -26,    38,   894,   895,   896,   832,  6439,   955,
-     371,   837,   -26,   -26,   838,   840,   841, -1792, -1792, -1792,
-   10683,  6676, 10683, 10683,  6913,    25,   901,    48, -1792, -1792,
-     842, -1792,  2905, -1792, -1792, -1792, -1792, -1792,    70, 10683,
-    8799,   844,   845,  7150,  5254,  5254,  5254, -1792, -1792, -1792,
-   -1792, -1792, -1792, -1792, -1792,   843,  7387,   846,  4299,  1077,
-    6439,   847,    23,   849,   850,   320,   320,   320, 10683, 10683,
-      -4, -1792,   224,   320,  4387,   549,   217,   848,   855,   856,
-     857,   861,   862,   863, 10683,  5254,  5254,  5254,   864,    21,
-    1082,   865, -1792,  1098,  1099, -1792,   866,   867,   868, -1792,
-   -1792,   869,  5254,   872,   873,   874, -1792, 10683,  5491, -1792,
-    1102,  1110, 10683, 10683, 10683,   280, 10683,   875, -1792,   940,
-   10683, 10683, 10683, -1792, -1792, 10683, -1792,   -26,   -26,   -26,
-     881,   884,   885,   -26,   -26,   -26,   -26,   -26,   -26,   -26,
-   -1792,   -26, -1792, -1792, -1792,   -26,   -26,   886,   887,   -26,
-     889, -1792,   888,  1116,  1124,   890, -1792, -1792,  1125,  1129,
-    1126,  1130,   -26, 10683, 13435,    82, 11173,  8799, 10683, -1792,
-   -1792,  6439,  6439, -1792,   915, 11263,   536,  1132, -1792, -1792,
-   -1792, -1792, -1792, -1792, 10683, 10683,    30,  6439,  1154,   567,
-    1687,   919,  1157,    43,   922, -1792,   924, 11451, 10683, -1792,
-    1746,  -189, -1792,   113,  -175, 10330, -1792,  -143, -1792,   121,
-    -119,  -115,  1079, -1792,    25,   921,   928, 13951, 13976, 14001,
-   10683, 14026, 14051, 14076, 10683, 14101, 14126, 14151, 14176, 14201,
-   14226, 14251,   927, 14276, 14301, 14326,  5023,  1163, 10683,  8799,
-    3423, -1792,   239, 10683,  1165,   932, 10683, 10683, 10683, 10683,
-   10683, 10683, 10683, 10683, 10683, 10683, 10683, 10683, 10683, 10683,
-   10683, 10683,  8799, 10683, 10683, 10683, 10683, 10683, 10683,  8799,
-    8799,   934, 10683, 10683, 11173, 10683, 11173,  6439, 11173, 11173,
-   11173,   935, 10683,    53, -1792,  9672, 10683,  6439,  5254, 11173,
-   11173,  8799,    25, 11263,    25,   941,  8799,   941, -1792,   941,
-   14351, -1792,   247,   936,    89,  1118, -1792,  1172, 10683, 10683,
-   10683, 10683, 10683, 10683, 10683, 10683, 10683, 10683, 10683, 10683,
-   10683, 10683,  7624, 10683, 10683, 10683, 10683, 10683,    25, 10683,
-   10683,  1179, -1792,   625, 14376,   351, 10683, 10683, 10683, -1792,
-    1177,  1178,  1178,   947, 10683, 10683,  1182,  8799,  8799, 13463,
-     949,  1185, -1792,   950, -1792, -1792,  -138, -1792, -1792, 10555,
-   11381,   320,   320,    58,    58,  -124,  4387,  4387, 10683,  5321,
-     -62, -1792, 10683, 10683, 10683, 10683, 10683, 10683, 10683, 10683,
-   10683, 14401,  1187,  1186,  1188, 10683,  1190, 10683, -1792, 10683,
-    5558, -1792, -1792,  8799,  8799,  8799, 10683,  1191, 10683, 10683,
-   10683, 14426,   954, -1792, -1792, 14451, 14476, 14501,  1025, 11414,
-   -1792,   957,  7797, 14526, 14551, 13546, 11173, 11173, 11173, 11173,
-   11173, 11173, 11173, 11173, 11173, 10683, 11173, 11173, 11173, 11173,
-      10, 11263, 11173, 11173, 11173,    25,    25, -1792, -1792,  8799,
-   -1792,   960,  5795, -1792,   963,  6032, 10683,   941, 10683, -1792,
-      25, 10683, 10683,  1179,   966,   359, 14576, 11386,   969,   381,
-   10683,  1204,   970,   971,   973,   975, 10683, 14601, 13573,   352,
-     974,  1213,  1219, -1792, -1792, -1792,  8799,   163, -1792, -1792,
-   -1792,    25, 10683, 10683,  1179,   985, -1792,   989,   -48,   371,
-     311, -1792,   984, 12536, -1792,    94,  8799,    25, 10683, 10683,
-    1225,  1227,  8799, 10683,  1228, 11173,    25,  9749,  1225,  1230,
-   -1792,    25,  1231, 11173, 10683,   991,   997, -1792, 10683, 11263,
-    1232,  1233,  1234, 14626,  1235,  1236,  1237, 14651,  1238,  1239,
-    1241,  1244,  1245,  1247,  1248, -1792,  1249,  1250,  1251, -1792,
-   10683, 14676,  8799,  1016,  8799, 12565, -1792,  1255, 13519, 13519,
-   13519, 13519, 13519, 13519, 13519, 13519, 13519, 13519, 13519, 11447,
-   13519, 13519, 13519, 13519,   736,   428, 13519, 13519, 13519, 11480,
-   11513, 11546,  3423,  1022,  1021,   103,  8799, 11579, 11612,   428,
-   11645,   428,  1017,  1018,  1019,  -122, 10683, 15476, -1792,   428,
-    1020, 12594, 12623, -1792,  1023,  -156,   428,  -129,  1028,   168,
-     431,  1263, -1792,  1225,   428,  1029,  1030,  8029,  8735,   923,
-     688,  1075,  1075,   644,   644,   644,   644,   644,   644,   566,
-     566,  8799,   179, -1792,   179,   179,   941,   941,   941,  1031,
-   14701, 13600,  -149,   463,  8799, -1792,  1266,  1032, 14726, 14751,
-   14776, 10683,  6439,  1273,  1272,  9440, 12652, 14801, -1792,   446,
-     497,  8799,  1034, -1792,  6269, -1792,  6506,  6743,   320, 10683,
-   10683, -1792, -1792,  1036,  1039,  4387, 10012,  1152,    71,   320,
-    6980, 14826, 12681, 14851, 14876, 14901, 14926, 14951, 14976, 15001,
-    1277, 10683,  1279, -1792, 10683, 15026, -1792, 13627, 13654, -1792,
-     564,   590,   596, 12710, -1792, 13681, 13708, 11678, -1792, -1792,
-    1280,  1283,  1285,  1041, 10683,  7217, 10683, 10683, -1792, -1792,
-       8,   -20,   337,   -20,  1053,  1069,  1063,   428,   428,  1064,
-   11711,   428,   428,   428,   428, 10683,   428,  1305, -1792,  1067,
-    1076,   356,   263,  1078,   601, -1792, -1792, -1792, -1792, 13519,
-     179,  7454,  1072,   647,  1071,  1144,  1315,  1176,  9981,  1083,
-    1086,  1320,  6439, 12739, -1792, 10683, 10683, 10683, 10683,  1925,
-     483,    88, 11263, 10683,  1325,  1328,    26, -1792,   602,  1287,
-    1288,  6439,    16,  1090, 15051, 13735,   399, 10683, 10683,  1097,
-    1100,  1101,  7861, -1792, -1792, -1792, -1792, 11173,  -108,  1096,
-   15076, 13762, -1792,  1105, -1792,   -50, 11744, -1792, -1792, -1792,
-    1106, -1792,  1113, -1792,    69, -1792, -1792, 15476, -1792,  1341,
-   13519,   428,   320,  6439,  6439,  1346,  6439,  6439,  6439,  1348,
-    6439,  6439,  6439,  6439,  6439,  6439,  6439,  6439,  6439,  6439,
-    2077,  1349,  8799,  3423, -1792, -1792, -1792, -1792, -1792, -1792,
-   -1792, -1792, -1792, -1792, -1792, -1792, -1792, -1792, 10683, -1792,
-   -1792, -1792, -1792, -1792, -1792, -1792, -1792, -1792, 10683, 10683,
-   10683, -1792, -1792, -1792,   607, 10683, 10683, -1792, 10683, -1792,
-    6439, 11173, 11173, -1792, 12768,  1109, -1792, -1792, -1792,  1181,
-   10683, 10683, -1792, -1792, -1792,  1225, -1792,  1225, 10683, 10683,
-    1119, -1792,  6439,   -26, -1792, 10683, -1792, 10683, 10683,   608,
-    1225,  -149,     4, -1792, 10683, 10683,   428,   614,  6439,  8799,
-    1353,  1354,  1355,  9389, -1792, -1792,  1357, -1792,  1127, 15476,
-    1117, -1792,  1359,  1361,  1363,   616,  1360, -1792,  7691, -1792,
-   -1792,   137, 11777, 11810, -1792, -1792, 12797,  -150,  1262,  1368,
-   10065,  1134,  1367,  1139,    40,    52,   -47, -1792,   141, -1792,
-      71,  1372,  1377,  1380,  1382,  1383,  1385,  1386,  1387,  1388,
-    6439, 15476, -1792,  2678,  1141,  1392,  1393,  1394,  1304,  1395,
-   -1792,  1397,  1399, 10683,  6439,  6439,  6439,  1402, 11843, -1792,
-    9062,  1322,    63,  1403, -1792,  8799, -1792, -1792, -1792, -1792,
-   11173, -1792, -1792, 10683, 11173, -1792, -1792, -1792, -1792, 15476,
-   -1792,  1164,  1161, 11173, -1792, 11173, -1792,  1225, 11173,  1171,
-   -1792,  1166, -1792,  1225, 10683, 10683,  1169,   371,  1170, 10297,
-   -1792,  2754,  1174,  6439, -1792,  1180, -1792, 12826, 12855, 12884,
-   12913, -1792, -1792, 10683,  1412,    37, 10683,  1414,  1415,  3179,
-   -1792,  1416,    23,  1419,  1195,   428,   -26,   -26,  1420, -1792,
-    1183,  1198,  1196, -1792,  1432, -1792, -1792, -1792, -1792, -1792,
-    1225,   136,  2522, 10683, 13789, 15101, 10683,  8093, 10683,  1200,
-     635,  1439,   109,  1225, -1792,  1201, 10683,  1441, 10683,  1225,
-   10374,  9031,   428,  4706,  1209,  1206, -1792,  1450,  1451,   119,
-    1335,  1335,  6439,  1453,  1455,  1456,  6439,  1286,  1458,  1459,
-    1461,  1462,  1464,  1465,  1466,  1467,  1468, -1792,  1470,   636,
-   13519, 13519, 13519, 13519,   428, 11876, 11909, 11942,  1240,   428,
-     428, -1792,  1341,   428, 15126, 13519,  1246,   -89, 15476, 13519,
-   -1792,  1471,   428, 11975, 15476, 15476, -1792,   656, -1792,  1474,
-   -1792, 15151, 13816, -1792,   428,  1473,   637,  6439,  6439,  6439,
-    1477,  1478, -1792,   188, 10683,  6439,  1252,  1253,  1480,   547,
-   -1792, 10683, 10683, 10683,  1254,  1256,  1257,  1261, -1792,  3248,
-    6439, -1792, 10683, -1792,  1483, -1792,  1484, -1792, -1792,  4387,
-     317,  5728, -1792,  1260,  1267,  1268,  1269,  1271,  1274,  8325,
-    1486, -1792,  8799, -1792, -1792, -1792,  1276, 10683, -1792, -1792,
-   13843,  1487,  1488,  1331, -1792, 10683, 10683, 10683, -1792,  1492,
-    1500,  1503,   781,   495,  1275,  9621,  1278, 10683,    27,   428,
-    1281,   428,  1284, -1792, -1792, 11263,   664, 10683,  1282, -1792,
-   -1792,  3595, -1792, -1792,  1309,  1509, -1792, -1792, -1792, -1792,
-    3629, -1792,   569,  1289,  1513,  3654, -1792, -1792, -1792,    23,
-   -1792,   643, -1792, 10683,   188,   376,  1381, -1792,  1290, 10683,
-   10683,  6439,  1292, -1792,   594,  1512,  1516, 15176,  1518,  1263,
-   15201,  1314,   650, 15226,  1521,  1522, -1792, -1792, 11173,  1294,
-    1527, 15251, -1792, 12008,  1297, -1792,  4992, 15476, -1792,  1552,
-     -26,  6913, -1792, -1792, -1792, -1792,  1341, -1792, -1792, -1792,
-     320,  1555,  1557,  1558, -1792, -1792, -1792,  1559,  1472,  1560,
-   -1792, -1792, -1792, -1792, -1792, -1792, -1792, -1792, -1792,  1563,
-    1326, -1792, -1792, -1792, -1792, -1792, 10683, 10683, 10683, -1792,
-   -1792, -1792,  1206, -1792, -1792, -1792, -1792, 10683,  1330,  1323,
-   -1792, -1792, 10683, 10683, 10683,   428,  -149, -1792, -1792, -1792,
-   -1792,  1334,  1572,  1286,  1575, 10683, -1792,  6439, 15476,   999,
-    8799,  8799, 10683, -1792,  9440, 12942, 15276,  9705,    58,    58,
-   10683, 10683, -1792,   312,  1338, 15301, -1792, -1792, 12971,   156,
-   -1792,  1577,  1584,  6439,   320,   320,   320,   320,   320,  5965,
-    1587, -1792,   681, 10683,  3727,  1588, -1792, -1792,  6439,  9937,
-     598, 15326, -1792, -1792, -1792, -1792,  9117, -1792, 11173, 10683,
-   -1792, 11173, 15476,  9354, 11263,  1347, -1792, -1792, -1792, -1792,
-    1356,  1351, 10683, 10683, 13000, 10683, 11386, -1792, 11386,  6439,
-   -1792, -1792, 11263, 10683,  1595,  1598,    26, -1792,  1597, -1792,
-      23, 13870,  6439, 11173,  1601,   428, -1792,  1366,   428, 10683,
-   12041, 12074,   683, -1792, 10683, 10683,   154, -1792,  1365, -1792,
-    1355,  1603,  1605,  1359, -1792, -1792,  1609, 10683, -1792, -1792,
-   10683, 10606, -1792, -1792,  1374,  1381,   686,  2152,  1612, -1792,
-     573, -1792, -1792, -1792, -1792,  1378, -1792,  1599,  6439, 13519,
-   13519, 12107, 13519, -1792,  1389, 12140, 15351, 13897, -1792, -1792,
-   10683, -1792,  1614, -1792, 15476,  1617,  1384, -1792,   689,   691,
-   13491,  4005,  1620,  1390, -1792, -1792, 10683,  1396,  1398, 13029,
-   13924,  1624,  6439,  1625,  1391, 10683, -1792, -1792,   692,   191,
-     226,   265,   324,   330,  8562,   354, -1792,  1630, 13058, -1792,
-   -1792,  1475, -1792, 10683, 10683, -1792, -1792,  8799,  4446,  1631,
-    1404, 13519,   428, 15476, -1792, -1792, -1792, -1792,    27, -1792,
-   11263, -1792, 13087,  1401,  1405,  1406,  1633,  4642, -1792,  1636,
-    1640, -1792, -1792,  1407,  1642,   694, -1792,  1645,  1647,   -30,
-   15476, 10683, 10683,  1411,  6439,   699, 15476, 15376, -1792, -1792,
-   -1792, 15401, 12173, -1792,  1109,  1161,  6439,   428, -1792, 10683,
-   11263,    25, 10683,  1649,   700, -1792, -1792, 10683,  1323, -1792,
-   10683, -1792, -1792, 13116, -1792, -1792,  6439,   578,   652,  8799,
-   -1792, -1792,    58, 10246, -1792, -1792, -1792,  1651, -1792,  1417,
-    6439, -1792, 13145,  1652,  8799,   320,   320,   320,   320,   320,
-   -1792, -1792, 10683, 13174, 13203,   702, -1792, -1792, -1792, -1792,
-   -1792, -1792,  1425,  1653,  1423, -1792,  1654, -1792, -1792,    23,
-   -1792,  1493, -1792, -1792, -1792, -1792, -1792, 10683, 12206, 12239,
-    6439, -1792,  1665, 10683,  1429, -1792, 10683,  1430,  1431, -1792,
-   -1792,  2637, -1792,  1434, 13232, -1792,  1433, 12272,  1437, 12305,
-   -1792,   727,  1435,   320,  6439,  1673,  1438,   320,  1674,   737,
-    1440, -1792, 10683, -1792,  1676,  1502,  8392,  1442, -1792,   740,
-     363,   366,   444,   459,   482,  4744, -1792, -1792,  1677,  1680,
-   -1792, -1792, -1792,  1682, -1792,  1446, 15476, 10683, 10683,   742,
-   -1792, 15476, 12338, -1792, -1792,  1109, 11263,  1452, -1792, 10683,
-   10683, -1792, 10683,  1684,   320,   122, -1792, -1792,   320,   128,
-   -1792,  1685, -1792, 13261, -1792, 10683, -1792,    71, -1792,  1688,
-    8799,  8799,  8799,  8799,  8562, -1792, -1792, -1792, 11386, -1792,
-   10683, 15426, 12371,    22, 10683,  1457, -1792, -1792, 12404, 12437,
-   12470, -1792,   486, -1792,   488, -1792, -1792, -1792,  4929,   545,
-    8629, -1792,   748,   751,   753,   756,   494,   785,  1460,   786,
-   -1792, 10683, -1792,  6439, 13290, -1792, 10683, 10683, 10683,   320,
-     320, -1792, -1792, -1792,    71,  1689,  1690,  1691,  1693,  8799,
-    1694,  1699,  1706,  1476, 15451,   787,  1707, 13319, 13519, 12503,
-     499,   522,   619, -1792, -1792, -1792, -1792,   788, -1792, -1792,
-   -1792, 11173, -1792,  1479, -1792,  1708, -1792, 10683, 10683, 10683,
-   -1792,  1710,   794, -1792,  1481,  6439, -1792, 13348, 13377, 13406,
-   -1792,  1711, 11173, 11173,   813, -1792,  1712,  1714, -1792, -1792,
-     814, -1792,  1717, -1792, -1792,  1719, 11173, -1792, -1792, -1792
+   10775,    39,    83, 10925, -1769, -1769,    74,   118,   -40,  -173,
+     -59,    22,    96,   178,   202,   232,    20,   286,    90,   113,
+      46,  -166,  -166,    59,   127,   136,    45,   175,   218,    53,
+     240,   245,   251,   292,   298,   303,   310,   332,   391,   399,
+     224,   487,   554,   684,   438,   503,   460,  6147,   476,   484,
+     623,   -30,   639,   576,     7,   632,   516,   706,   -75,   523,
+     451,   451,   558,   470,   103, -1769, -1769, -1769, -1769, -1769,
+     571,   411,   709,   722,    25,    58,   749,   752,    17,   858,
+     859,   868,  5203,   889,   662,   663,   695,    31,    65, -1769,
+     696,   702, -1769, -1769,   912,   935,   724, -1769, 11121,   733,
+   11173,     9,    33, -1769, -1769, -1769, 10605,   732, -1769, -1769,
+   -1769, -1769, -1769,   731, -1769, -1769, -1769, -1769, -1769, -1769,
+   -1769, -1769, -1769, -1769,     1, -1769, -1769, -1769, -1769,    34,
+   -1769,   968,   730,  4010,   325,   736,   973, 10605, 11092, 11092,
+   -1769, 10605, -1769, -1769, -1769, -1769, 11092, -1769, -1769, -1769,
+     734,   744,   974, -1769, -1769, 11286,    46, 10605, 10605, 10605,
+     746, 10605, 10605, 10605,   747, 10605, 10605, 10605, 10605, 10605,
+   10605, 10605, 11092, 10605, 10605, 10605, 10605,  5203,   748, -1769,
+    8733, -1769, -1769, -1769,   745,  5203, 11092, -1769, -1769, -1769,
+   -1769, -1769,  -166,  -166,  -166,  -166,  -166,  -166,  -166,  -166,
+    -166,  -166,  -166,  -166,  -166,  -166,  -166,  -166,  -166,  -166,
+    -166,  -166,  -166,  -166,  -166,   160,  -166,  -166,  -166,  -166,
+    -166,   750,  -166,  -166,   751,   576, -1769, -1769, -1769,  -166,
+    -166,    47,   814,   816,   817,   753,  6383,   879,   576,   756,
+    -166,  -166,   762,   764,   765, -1769, -1769, -1769, 10605,  6619,
+   10605, 10605,  6855,    46,   828,    48, -1769, -1769,   763, -1769,
+    4877, -1769, -1769, -1769, -1769, -1769,   142, 10605,  8733,   768,
+     778,  7091,  5203,  5203,  5203, -1769, -1769, -1769, -1769, -1769,
+   -1769, -1769, -1769,   785,  7327,   786,  4248,  1025,  6383,   788,
+      31,   789,   791,   451,   451,   451, 10605, 10605,   163, -1769,
+     211,   451,  4337,   319,   329,   796,   797,   798,   799,   802,
+     806,   818, 10605,  5203,  5203,  5203,   820,    14,  1049,   819,
+   -1769,  1054,  1055, -1769,   821,   822,   823, -1769, -1769,   824,
+    5203,   831,   832,   833, -1769, 10605,  5439, -1769,  1056,  1069,
+   10605, 10605, 10605,   274, 10605,   834, -1769,   902, 10605, 10605,
+   10605, -1769, -1769, 10605, -1769,  -166,  -166,  -166,   842,   843,
+     844,  -166,  -166,  -166,  -166,  -166,  -166,  -166, -1769,  -166,
+   -1769, -1769, -1769,  -166,  -166,   846,   849,  -166,   850, -1769,
+     851,  1086,  1087,   852, -1769, -1769,  1092,  1091,  1094,  1093,
+    -166, 10605, 13325,   166, 11092,  8733, 10605, -1769, -1769,  6383,
+    6383, -1769,   860, 11286,   540,  1096, -1769, -1769, -1769, -1769,
+   -1769, -1769, 10605, 10605,    56,  6383,  1098,   645,   360,   864,
+    1102,    42,   867, -1769,   870, 11407, 10605, -1769,  1732,   -92,
+   -1769,    88,   -71, 10254, -1769,   -45, -1769,   114,   -95,   222,
+    1024, -1769,    46,   869,   874, 13841, 13866, 13891, 10605, 13916,
+   13941, 13966, 10605, 13991, 14016, 14041, 14066, 14091, 14116, 14141,
+     875, 14166, 14191, 14216,  4973,  1108, 10605,  8733,  7735, -1769,
+     198, 10605,  1116,   884, 10605, 10605, 10605, 10605, 10605, 10605,
+   10605, 10605, 10605, 10605, 10605, 10605, 10605, 10605, 10605, 10605,
+    8733, 10605, 10605, 10605, 10605, 10605, 10605,  8733,  8733,   882,
+   10605, 10605, 11092, 10605, 11092,  6383, 11092, 11092, 11092,   883,
+   10605,    78, -1769,  9601, 10605,  6383,  5203, 11092, 11092,  8733,
+      46, 11286,    46,   890,  8733,   890, -1769,   890, 14241, -1769,
+     392,   885,    69,  1064, -1769,  1123, 10605, 10605, 10605, 10605,
+   10605, 10605, 10605, 10605, 10605, 10605, 10605, 10605, 10605, 10605,
+    7563, 10605, 10605, 10605, 10605, 10605,    46, 10605, 10605,  1128,
+   -1769,   728, 14266,   420, 10605, 10605, 10605, -1769,  1129,  1130,
+    1130,   897, 10605, 10605,  1132,  8733,  8733, 13353,   921,  1157,
+   -1769,   922, -1769, -1769,  -146, -1769, -1769, 10476, 11046,   451,
+     451,   325,   325,  -141,  4337,  4337, 10605,  1370,  -135, -1769,
+   10605, 10605, 10605, 10605, 10605, 10605, 10605, 10605, 10605, 14291,
+    1158,  1160,  1161, 10605,  1163, 10605, -1769, 10605,  5270, -1769,
+   -1769,  8733,  8733,  8733, 10605,  1164, 10605, 10605, 10605, 14316,
+     931, -1769, -1769, 14341, 14366, 14391,   994, 11227, -1769,   933,
+    7966, 14416, 14441, 13436, 11092, 11092, 11092, 11092, 11092, 11092,
+   11092, 11092, 11092, 10605, 11092, 11092, 11092, 11092,    16, 11286,
+   11092, 11092, 11092,    46,    46, -1769, -1769,  8733, -1769,   934,
+    5506, -1769,   937,  5742, 10605,   890, 10605, -1769,    46, 10605,
+   10605,  1128,   940,   456, 14466, 11293,   939,   462, 10605,  1170,
+     947,   948,   949,   951, 10605, 14491, 13463,   208,   952,  1185,
+    1188, -1769, -1769, -1769,  8733,   203, -1769, -1769, -1769,    46,
+   10605, 10605,  1128,   955, -1769,   964,   -28,   576,     7, -1769,
+     961, 12426, -1769,    26,  8733,    46, 10605, 10605,  1200,  1199,
+    8733, 10605,  1201, 11092,    46,  9677,  1200,  1202, -1769,    46,
+    1203, 11092, 10605,   967,   971, -1769, 10605, 11286,  1205,  1206,
+    1207, 14516,  1209,  1210,  1211, 14541,  1214,  1215,  1216,  1218,
+    1220,  1222,  1224, -1769,  1225,  1227,  1228, -1769, 10605, 14566,
+    8733,   995,  8733, 12455, -1769,  1230, 13409, 13409, 13409, 13409,
+   13409, 13409, 13409, 13409, 13409, 13409, 13409, 11337, 13409, 13409,
+   13409, 13409,  1505,   365, 13409, 13409, 13409, 11370, 11403, 11436,
+    7735,  1000,   999,   135,  8733, 11469, 11502,   365, 11535,   365,
+     996,   997,   998,   120, 10605, 15366, -1769,   365,  1003, 12484,
+   12513, -1769,  1002,   -49,   365,   -80,  1008,   473,   550,  1234,
+   -1769,  1200,   365,  1010,  1007,  8433,  8669,  1341,  1786,   519,
+     519,   531,   531,   531,   531,   531,   531,   379,   379,  8733,
+     -10, -1769,   -10,   -10,   890,   890,   890,  1009, 14591, 13490,
+     -19,   430,  8733, -1769,  1235,  1012, 14616, 14641, 14666, 10605,
+    6383,  1251,  1250,  9370, 12542, 14691, -1769,   559,   564,  8733,
+    1013, -1769,  5978, -1769,  6214,  6450,   451, 10605, 10605, -1769,
+   -1769,  1015,  1016,  4337,  9940,  1133,   528,   451,  6686, 14716,
+   12571, 14741, 14766, 14791, 14816, 14841, 14866, 14891,  1253, 10605,
+    1257, -1769, 10605, 14916, -1769, 13517, 13544, -1769,   567,   573,
+     574, 12600, -1769, 13571, 13598, 11568, -1769, -1769,  1258,  1259,
+    1261,  1020, 10605,  6922, 10605, 10605, -1769, -1769,    51,   116,
+     445,   116,  1030,  1031,  1027,   365,   365,  1028, 11601,   365,
+     365,   365,   365, 10605,   365,  1262, -1769,  1029,  1033,   463,
+     547,  1036,   581, -1769, -1769, -1769, -1769, 13409,   -10,  7158,
+    1034,   515,  1035,  1103,  1275,  1135,  9908,  1041,  1043,  1280,
+    6383, 12629, -1769, 10605, 10605, 10605, 10605,  1887,   212,    87,
+   11286, 10605,  1284,  1287,    32, -1769,   582,  1248,  1249,  6383,
+      23,  1052, 14941, 13625,   143, 10605, 10605,  1059,  1057,  1060,
+    7799, -1769, -1769, -1769, -1769, 11092,   156,  1058, 14966, 13652,
+   -1769,  1062, -1769,   226, 11634, -1769, -1769, -1769,  1061, -1769,
+    1063, -1769,    68, -1769, -1769, 15366, -1769,  1299, 13409,   365,
+     451,  6383,  6383,  1297,  6383,  6383,  6383,  1300,  6383,  6383,
+    6383,  6383,  6383,  6383,  6383,  6383,  6383,  6383,  2027,  1302,
+    8733,  7735, -1769, -1769, -1769, -1769, -1769, -1769, -1769, -1769,
+   -1769, -1769, -1769, -1769, -1769, -1769, 10605, -1769, -1769, -1769,
+   -1769, -1769, -1769, -1769, -1769, -1769, 10605, 10605, 10605, -1769,
+   -1769, -1769,   583, 10605, 10605, -1769, 10605, -1769,  6383, 11092,
+   11092, -1769, 12658,  1065, -1769, -1769, -1769,  1134, 10605, 10605,
+   -1769, -1769, -1769,  1200, -1769,  1200, 10605, 10605,  1067, -1769,
+    6383,  -166, -1769, 10605, -1769, 10605, 10605,   588,  1200,   -19,
+     -94, -1769, 10605, 10605,   365,   589,  6383,  8733,  1304,  1306,
+    1307,  9320, -1769, -1769,  1309, -1769,  1077, 15366,  1071, -1769,
+    1312,  1313,  1315,   590,  1319, -1769,  7394, -1769, -1769,  -109,
+   11667, 11700, -1769, -1769, 12687,  -150,  1241,  1320,  9991,  1084,
+    1327,  1100,    24,    35,   326, -1769,  -102, -1769,   528,  1336,
+    1344,  1346,  1347,  1348,  1349,  1350,  1351,  1352,  6383, 15366,
+   -1769,  2587,  1109,  1354,  1355,  1356,  1267,  1357, -1769,  1360,
+    1363, 10605,  6383,  6383,  6383,  1366, 11733, -1769,  8995,  1707,
+      57,  1367, -1769,  8733, -1769, -1769, -1769, -1769, 11092, -1769,
+   -1769, 10605, 11092, -1769, -1769, -1769, -1769, 15366, -1769,  1131,
+    1138, 11092, -1769, 11092, -1769,  1200, 11092,  1136, -1769,  1140,
+   -1769,  1200, 10605, 10605,  1139,   576,  1146, 10222, -1769,  2704,
+    1147,  6383, -1769,  1148, -1769, 12716, 12745, 12774, 12803, -1769,
+   -1769, 10605,  1371,    63, 10605,  1376,  1384,  2847, -1769,  1385,
+      31,  1387,  1154,   365,  -166,  -166,  1390, -1769,  1159,  1162,
+    1156, -1769,  1393, -1769, -1769, -1769, -1769, -1769,  1200,   -70,
+     876, 10605, 13679, 14991, 10605,  8030, 10605,  1165,   591,  1395,
+      41,  1200, -1769,  1166, 10605,  1396, 10605,  1200, 10298,  8964,
+     365,  4656,  1168,  1169, -1769,  1397,  1398,    98,  1283,  1283,
+    6383,  1401,  1405,  1406,  6383,  1239,  1412,  1413,  1414,  1416,
+    1417,  1418,  1419,  1420,  1421, -1769,  1423,   597, 13409, 13409,
+   13409, 13409,   365, 11766, 11799, 11832,  1191,   365,   365, -1769,
+    1299,   365, 15016, 13409,  1192,  -151, 15366, 13409, -1769,  1426,
+     365, 11865, 15366, 15366, -1769,   526, -1769,  1429, -1769, 15041,
+   13706, -1769,   365,  1428,   598,  6383,  6383,  6383,  1431,  1430,
+   -1769,   221, 10605,  6383,  1195,  1196,  1432,   548, -1769, 10605,
+   10605, 10605,  1198,  1204,  1208,  1212, -1769,  3130,  6383, -1769,
+   10605, -1769,  1436, -1769,  1438, -1769, -1769,  4337,   378,  5675,
+   -1769,  1213,  1217,  1231,  1233,  1242,  1243,  8261,  1439, -1769,
+    8733, -1769, -1769, -1769,  1245, 10605, -1769, -1769, 13733,  1441,
+    1442,  1277, -1769, 10605, 10605, 10605, -1769,  1445,  1447,  1448,
+     607,   477,  1244,  9548,  1247, 10605,    30,   365,  1260,   365,
+    1254, -1769, -1769, 11286,   615, 10605,  1255, -1769, -1769,  3198,
+   -1769, -1769,  1263,  1450, -1769, -1769, -1769, -1769,  3374, -1769,
+     216,  1246,  1491,  3544, -1769, -1769, -1769,    31, -1769,   600,
+   -1769, 10605,   221,  1630,  2476, -1769,  1219, 10605, 10605,  6383,
+    1264, -1769,   169,  1496,  1498, 15066,  1499,  1234, 15091,  1265,
+     613, 15116,  1503,  1506, -1769, -1769, 11092,  1279,  1511, 15141,
+   -1769, 11898,  1281, -1769,  4941, 15366, -1769,  1495,  -166,  6855,
+   -1769, -1769, -1769, -1769,  1299, -1769, -1769, -1769,   451,  1512,
+    1514,  1515, -1769, -1769, -1769,  1516,  1433,  1518, -1769, -1769,
+   -1769, -1769, -1769, -1769, -1769, -1769, -1769,  1520,  1286, -1769,
+   -1769, -1769, -1769, -1769, 10605, 10605, 10605, -1769, -1769, -1769,
+    1169, -1769, -1769, -1769, -1769, 10605,  1290,  1285, -1769, -1769,
+   10605, 10605, 10605,   365,   -19, -1769, -1769, -1769, -1769,  1288,
+    1525,  1239,  1527, 10605, -1769,  6383, 15366,   950,  8733,  8733,
+   10605, -1769,  9370, 12832, 15166,  9633,   325,   325, 10605, 10605,
+   -1769,   119,  1289, 15191, -1769, -1769, 12861,   -98, -1769,  1528,
+    1531,  6383,   451,   451,   451,   451,   451,  5911,  1535, -1769,
+     618, 10605,  3578,  1536, -1769, -1769,  6383,  9864,   555, 15216,
+   -1769, -1769, -1769, -1769,  9049, -1769, 11092, 10605, -1769, 11092,
+   15366,  9285, 11286,  1296, -1769, -1769, -1769, -1769,  1305,  1298,
+   10605, 10605, 12890, 10605, 11293, -1769, 11293,  6383, -1769, -1769,
+   11286, 10605,  1540,  1522,    32, -1769,  1541, -1769,    31, 13760,
+    6383, 11092,  1542,   365, -1769,  1303,   365, 10605, 11931, 11964,
+     621, -1769, 10605, 10605,   323, -1769,  1310, -1769,  1307,  1545,
+    1549,  1312, -1769, -1769,  1568, 10605, -1769, -1769, 10605, 10529,
+   -1769, -1769,  1334,  2476,   627,  4693,  1570, -1769,   507, -1769,
+   -1769, -1769, -1769,  1337, -1769,  1578,  6383, 13409, 13409, 11997,
+   13409, -1769,  1345, 12030, 15241, 13787, -1769, -1769, 10605, -1769,
+    1581, -1769, 15366,  1582,  1359, -1769,   628,   630, 13381,  3604,
+    1583,  1361, -1769, -1769, 10605,  1353,  1362, 12919, 13814,  1584,
+    6383,  1585,  1364, 10605, -1769, -1769,   635,   -93,   -87,   -56,
+     -46,   -27,  8497,   -15, -1769,  1587, 12948, -1769, -1769,  1440,
+   -1769, 10605, 10605, -1769, -1769,  8733,  3677,  1588,  1358, 13409,
+     365, 15366, -1769, -1769, -1769, -1769,    30, -1769, 11286, -1769,
+   12977,  1369,  1372,  1373,  1596,  3955, -1769,  1597,  1601, -1769,
+   -1769,  1365,  1604,   636, -1769,  1611,  1612,   253, 15366, 10605,
+   10605,  1377,  6383,   642, 15366, 15266, -1769, -1769, -1769, 15291,
+   12063, -1769,  1065,  1138,  6383,   365, -1769, 10605, 11286,    46,
+   10605,  1614,   649, -1769, -1769, 10605,  1285, -1769, 10605, -1769,
+   -1769, 13006, -1769, -1769,  6383,   562,   657,  8733, -1769, -1769,
+     325, 10169, -1769, -1769, -1769,  1615, -1769,  1379,  6383, -1769,
+   13035,  1618,  8733,   451,   451,   451,   451,   451, -1769, -1769,
+   10605, 13064, 13093,   651, -1769, -1769, -1769, -1769, -1769, -1769,
+    1386,  1621,  1388, -1769,  1622, -1769, -1769,    31, -1769,  1455,
+   -1769, -1769, -1769, -1769, -1769, 10605, 12096, 12129,  6383, -1769,
+    1625, 10605,  1399, -1769, 10605,  1389,  1394, -1769, -1769,   924,
+   -1769,  1400, 13122, -1769,  1402, 12162,  1403, 12195, -1769,   656,
+    1404,   451,  6383,  1637,  1407,   451,  1639,   659,  1408, -1769,
+   10605, -1769,  1641,  1463,  7630,  1410, -1769,   664,   -13,   223,
+     235,   241,   250,  4396, -1769, -1769,  1644,  1647, -1769, -1769,
+   -1769,  1649, -1769,  1415, 15366, 10605, 10605,   665, -1769, 15366,
+   12228, -1769, -1769,  1065, 11286,  1424, -1769, 10605, 10605, -1769,
+   10605,  1650,   451,   161, -1769, -1769,   451,   167, -1769,  1652,
+   -1769, 13151, -1769, 10605, -1769,   528, -1769,  1653,  8733,  8733,
+    8733,  8733,  8497, -1769, -1769, -1769, 11293, -1769, 10605, 15316,
+   12261,    37, 10605,  1427, -1769, -1769, 12294, 12327, 12360, -1769,
+     264, -1769,   302, -1769, -1769, -1769,  4592,   397,  8328, -1769,
+     666,   667,   672,   673,   313,   674,  1443,   699, -1769, 10605,
+   -1769,  6383, 13180, -1769, 10605, 10605, 10605,   451,   451, -1769,
+   -1769, -1769,   528,  1658,  1660,  1663,  1666,  8733,  1667,  1668,
+    1669,  1446, 15341,   704,  1681, 13209, 13409, 12393,   317,   375,
+     472, -1769, -1769, -1769, -1769,   710, -1769, -1769, -1769, 11092,
+   -1769,  1451, -1769,  1688, -1769, 10605, 10605, 10605, -1769,  1690,
+     712, -1769,  1459,  6383, -1769, 13238, 13267, 13296, -1769,  1699,
+   11092, 11092,   718, -1769,  1700,  1701, -1769, -1769,   719, -1769,
+    1703, -1769, -1769,  1704, 11092, -1769, -1769, -1769
 };
 
 /* YYPGOTO[NTERM-NUM].  */
 static const yytype_int16 yypgoto[] =
 {
-   -1792, -1792, -1792, -1792,   425, -1792, -1792, -1792, -1792,  -272,
-   -1792, -1792, -1792, -1792, -1792, -1792, -1792, -1792, -1792, -1792,
-   -1792, -1792,  -694,   -68,  3071,  3210, -1792,  1291, -1792, -1792,
-   -1792, -1792, -1792, -1792, -1791, -1792,   377,   204,   -94, -1792,
-     -54, -1792,   150,   414,  1733, -1792,     6,   -51, -1792, -1792,
-       7,  -592,  -248, -1792, -1792, -1792, -1792, -1792, -1792, -1792,
-   -1792,  1734, -1792, -1792, -1792, -1792, -1174, -1160,  1735, -1637,
-    1736, -1792, -1792, -1792,  1175, -1792,  -107, -1792, -1792, -1792,
-   -1792,  1937, -1792, -1792, -1350,   291,  1741, -1792,     2,  -675,
-   -1792, -1792,    92, -1792, -1601,   -31,  -155,  2443,   276,  -289,
-      80, -1792,   104,   -64, -1792, -1792,   105,   264, -1599,  -136,
-    1024, -1792,    -3
+   -1769, -1769, -1769, -1769,   412, -1769, -1769, -1769, -1769,  -287,
+   -1769, -1769, -1769, -1769, -1769, -1769, -1769, -1769, -1769, -1769,
+   -1769, -1769,  -674,  -131,  3022,  3161, -1769,  1301, -1769, -1769,
+   -1769, -1769, -1769, -1769, -1768, -1769,   366,   194,   -84, -1769,
+     -41, -1769,   168,   422,  1745, -1769,     6,   -47, -1769, -1769,
+       3,  -588,  -278, -1769, -1769, -1769, -1769, -1769, -1769, -1769,
+   -1769,  1747, -1769, -1769, -1769, -1769, -1173, -1163,  1748, -1635,
+    1749, -1769, -1769, -1769,  1183, -1769,   -90, -1769, -1769, -1769,
+   -1769,  1888, -1769, -1769, -1343,   304,  1754, -1769,     2,  -673,
+   -1769, -1769,   233, -1769, -1585,   -31,  -152,  2394,   228,  -289,
+      94, -1769,   680,   -85, -1769, -1769,   121,   276, -1604,  -136,
+    1032, -1769,    -3
 };
 
 /* YYTABLE[YYPACT[STATE-NUM]].  What to do in state STATE-NUM.  If
    positive, shift that token.  If negative, reduce the rule which
    number is the opposite.  If zero, do what YYDEFACT says.
    If YYTABLE_NINF, syntax error.  */
-#define YYTABLE_NINF -545
+#define YYTABLE_NINF -544
 static const yytype_int16 yytable[] =
 {
-     134,   893,   894,   583,   286,   993,  1410,  1568,   973,   114,
-     115,   437,  1758,  1001,   152,  1212,  1408,   266,   154,  1793,
-    1279,  1794,   319,   153,   467,   616,   141,   345,  2032,   152,
-     152,  1643,   474,  1907,   699,   383,   388,   387,   390,  1006,
-     162,  1472,   272,   514,  1786,   268,  1403,   152,   306,   272,
-     166,   725,   711,   536,     5,  1023,   599,   152,  1405,   726,
-     281,   400,   424,  1032,   273,   731,   418,  1439,     4,   349,
-     422,  1009,   323,   732,   620,   137,  1311,   591,   592,   558,
-     268,   324,  1169,   325,   704,   348,   705,   412,   413,   591,
-     592,   680,  1111,   445,  1395,  1262,   384,   734,   444,  1170,
-    1014,   143,   320,   591,   592,   735,  1827,  1171,  1172,  1173,
-     888,  1114,   558,  1174,  1175,  1507,  1115,  1834,  1103,   570,
-     571,   572,   727,   739,   895,  1529,   735,   742,  2013,   740,
-     736,   423,  1302,   740,  2015,   307,   433,   433,   138,   308,
-     774,   672,   425,   675,   439,   309,   310,   291,   311,   312,
-     155,   687,   156,   300,   302,   446,   305,   139,  1123,  1118,
-     612,   613,   614,  1440,  1441,   591,   592,   313,   326,   135,
-     999,   433,   292,   136,  2005,   287,   268,   627,   288,   268,
-    1280,  1281,  1282,  1283,   268,   433,   899,   140,   293,   294,
-    1307,    60,    61,    62,    63,  1262,   274,  1407,   774,   275,
-    1169,   276,  1404,   321,   700,   701,    74,   266,   144,    77,
-    1896,  1473,  1474,   155,  1406,   156,  1644,  1170,  1897,  1724,
-     704,   108,   705,   591,   592,  1171,  1172,  1173,   735,   108,
-     147,  1174,  1175,   511,   108,   268,   108,   108,   421,   593,
-     412,   413,   569,   431,   434,  1921,   518,   145,   268,  1369,
-    1408,   268,   534,  1213,   108,   576,   955,   533,   146,   581,
-    1284,   322,   617,   142,   108,  2033,   346,   268,   136,  1272,
-     268,   268,   268,   268,   389,   163,   391,   148,   462,   412,
-     413,   515,   712,   268,   713,   167,  -537,   268,   714,   348,
-     149,   537,   475,   704,   401,   705,  1263,  1266,   402,  1959,
-     408,   409,   410,   411,   350,   150,   412,   413,   155,   559,
-     156,   560,   268,   268,   268,   561,  1015,  1016,   412,   413,
-     538,   681,   398,   682,   412,   413,   399,   683,   155,   268,
-     156,  1015,  1016,  1265,   884,   268,   886,   887,   151,   412,
-     413,   691,   559,   178,   560,  1093,   591,   592,   561,   591,
-     592,   159,   728,   900,   729,   591,   592,   160,   730,   992,
-     737,  2028,   729,   823,   591,   592,   738,   181,   591,   592,
-     688,   689,   412,   413,   815,   408,   409,   410,  1000,  -539,
-     152,   356,   161,   591,   592,  1391,   702,   586,   587,  1409,
-     412,   413,   935,   433,   268,   595,   600,  -544,   268,   268,
-     408,   409,   410,   411,  1755,   282,   164,   155,   283,   156,
-     284,   555,   556,  1117,   268,   165,  1118,   557,   591,   592,
-     715,   285,   357,   358,   359,   360,   361,   362,   363,   364,
-     365,   971,  2055,   722,   168,   366,   367,   368,   369,  1864,
-    1356,   747,  1357,   370,   371,   372,  1169,   315,   373,   316,
-     374,   591,   592,   591,   592,  1367,   602,   169,   472,   828,
-     603,   375,   277,  1170,   376,   278,   268,   594,   279,   170,
-     280,  1171,  1172,  1173,  1865,   171,   812,  1174,  1175,   183,
-     179,    41,   184,   773,  2094,   185,   569,   774,  1918,   268,
-    1262,   832,   591,   592,   172,   774,   268,   805,   186,   173,
-     684,   433,   406,   433,   268,   433,   433,   439,  1237,   174,
-     819,  1238,   943,  1866,   268,   268,   433,   433,   268,   154,
-     499,   154,   500,   268,   827,   638,   829,   136,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   552,   553,   554,   555,   556,   565,   296,   297,   268,
-     557,   591,   592,  1593,  1594,   859,  1751,   591,   592,   298,
-     175,  1610,  1452,   299,   408,   409,   410,   411,  1456,   377,
-     378,   379,  1867,   176,   268,   268,  1662,   704,  1868,   705,
-     380,   591,   592,   177,   381,  1215,   382,   108,   412,   413,
-     591,   592,   182,   591,   592,   867,   704,   958,   705,   774,
-     425,   425,  1869,   975,  1235,   722,  1774,   774,   809,   180,
-     811,  1990,   813,   814,  1991,  1494,   704,   188,   705,  1673,
-     268,   268,   268,   824,   825,   981,   722,   692,  1509,   982,
-     693,   994,   269,   694,  1514,   695,   329,  1158,  1293,   330,
-    1245,   270,  -540,   439,   433,   439,   433,   433,   433,   433,
-     433,   433,   331,   433,   433,   433,   433,   957,   271,   433,
-     433,   433,   154,   963,   296,   297,   268,   962,   704,  1011,
-     705,   591,   592,   685,  1169,  1121,   298,   972,   722,   774,
-     304,   722,   289,   891,   892,  1041,   591,   592,   587,  1587,
-    1153,  1170,  1992,   722,   774,   408,   409,   410,   411,  1171,
-    1172,  1173,  1134,   268,  1135,  1174,  1175,  1993,  1003,   591,
-     592,  1922,  1923,   591,   592,   591,   592,  1924,   290,   412,
-     413,   591,   592,   268,  1019,  1010,   591,   592,   295,   268,
-    1994,   314,   439,  1030,  2039,   704,  2040,   705,  1034,   303,
-     433,  1154,  2049,   774,   538,   774,   317,  2078,  1169,   591,
-     592,   942,   318,   944,   945,   946,   947,   948,   949,   327,
-     951,   952,   953,   954,   328,  1170,   959,   960,   961,   268,
-    2079,   268,   333,  1171,  1172,  1173,   591,   592,  1663,  1174,
-    1175,   408,   409,   410,   411,  1926,  1927,  1635,  1636,  2042,
-    1672,  1924,   601,   334,  1133,   678,   553,   554,   555,   556,
-     591,   592,   830,   268,   557,   412,   413,   704,  1197,   705,
-     706,  1150,   774,  2019,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,   335,  1685,  1198,  1653,   557,  -541,   774,  1028,
-    1199,  1144,  1775,   341,   774,  1241,  1275,  1036,   268,   774,
-     774,  1344,  1366,   879,   880,   774,   774,   342,  1374,  1408,
-    1388,   268,   774,  2080,   774,   704,   343,   705,   864,   268,
-    2062,   550,   551,   678,   553,   554,   555,   556,   268,  1505,
-    1550,  1581,   557,   774,   774,   774,  1244,  1669,  1245,   353,
-     722,  1670,   722,   722,  1692,  1573,   344,  1574,   774,   920,
-     921,   922,  1408,  1652,   354,  1653,   722,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,  1264,  1267,   351,  1767,   557,  1813,  1268,   774,
-    1828,  1814,   352,  1847,  1829,  1848,  1863,   774,  1893,   774,
-    1814,   722,   735,  1902,  1916,   964,  1948,  1903,  1814,   355,
-     774,  1255,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   772,   553,   554,   555,   556,
-    1278,  1973,   385,   396,   557,  1814,   704,   722,   705,   268,
-    1161,  1981,   998,  1480,  1989,   774,  2003,  1167,   774,   397,
-    1814,  1178,  2045,  1274,   403,  2046,   774,  2047,   268,   774,
-    2048,   774,  1018,  1736,   774,  1737,  1747,  1748,  1025,   268,
-     404,   429,  1320,  1321,   433,  1323,  1324,  1325,   428,  1327,
-    1328,  1329,  1330,  1331,  1332,  1333,  1334,  1335,  1336,  2050,
-    2052,  2073,  2081,   774,  1903,  1814,   774,   136,  2091,   442,
-     268,   268,  2092,   268,   268,   268,   444,   268,   268,   268,
-     268,   268,   268,   268,   268,   268,   268,  2102,  2105,   268,
-     450,  1814,  2106,  1368,  1370,   454,   468,   473,   507,  1348,
-     510,  -190,  -191,  -192,   517,   516,   519,   522,   535,   523,
-     524,   580,  1094,   566,   567,   399,   574,   604,   618,   577,
-     582,  1361,   584,   585,   605,   606,   607,   268,   433,   433,
-     608,   609,   610,   615,   621,   622,   619,  1375,   633,   623,
-     624,   625,   626,   628,   629,   630,   634,   641,   640,   268,
-     649,  1301,   667,   650,   651,   662,   663,  1129,   665,   666,
-     668,   670,   673,   669,  1319,   268,   268,   671,   674,   696,
-    1137,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,  1155,   690,  1420,
-     703,   557,   709,   710,   722,   135,   744,   765,   716,   748,
-     770,   776,   777,  1431,  1432,  1433,   749,   806,   816,   557,
-     836,   833,   835,   862,   871,   872,   875,   268,   878,   882,
-    1668,   883,   913,   885,   911,   914,   916,   924,   929,   933,
-     936,   268,   268,   268,   965,  1349,  1350,   967,   974,   980,
-     984,  1656,   268,   985,   986,  1658,   987,   433,   988,   995,
-     996,   433,  1464,  1368,  1370,   997,  1007,  1012,  1008,  1022,
-     433,  1038,   433,  1024,  1027,   433,  1033,  1035,  1039,  1042,
-    1043,  1044,  1046,  1047,  1048,  1050,  1051,  1518,  1052,  1523,
-     268,  1053,  1054,  1458,  1055,  1056,  1057,  1058,  1059,  1062,
-    1930,  1066,  1091,  1092,  1107,  1100,  1101,  1102,  1116,   348,
-    1122,  1110,  1125,  1138,  1126,  1139,  1130,  1145,  1147,  1156,
-    1164,  1168,  1522,  1165,  1190,  1192,  1207,  1204,  1300,   433,
-    1205,  1533,  1206,  1218,   268,  1537,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,  1219,
-     268,  1220,  1223,   557,  1231,  1233,  1234,  1243,  1246,   268,
-    1240,  1247,  1248,   268,  1444,  1249,  1254,  1252,  1446,  1253,
-    1437,  1270,  1271,  1276,  1277,  1290,  1296,  1450,  1339,  1451,
-    1298,  1303,  1453,  1297,  1306,  1313,  1582,  1583,  1584,  1677,
-    1677,  1309,  1310,  1322,  1589,  1326,  1338,  1352,  -193,  1360,
-    1377,  1378,  1379,  1382,  1389,  1384,  1385,  1383,  1386,  1604,
-    1387,  1396,  1397,  1401,   268,   268,   268,  1400,  1402,  1411,
-    1612,  1802,   268,  1412,  1422,   152,   356,  1413,  1620,  1414,
-    1415,  1651,  1416,  1417,  1418,  1419,  1496,   268,  1423,  1424,
-    1425,  1426,  1427,  1428,  1664,  1429,  1434,  1442,   268,  1448,
-    1447,  1454,  1457,  1459,  1455,  1376,   268,  1463,  1471,   268,
-    1476,  1477,  1489,  1479,  1465,  1482,  1487,   357,   358,   359,
-     360,   361,   362,   363,   364,   365,  1483,  1490,  1493,  1491,
-     366,   367,   368,   369,  1504,  1506,  1510,  1512,   370,   371,
-     372,  1525,  1703,   373,  1526,   374,  1527,  1528,  1530,  1534,
-    1683,  1535,  1536,  1538,  1540,  1541,   375,  1542,  1543,   376,
-    1544,  1545,  1546,  1547,  1548,  1549,   348,  1570,  1576,  1580,
-    1559,  1585,   439,   439,  1586,  1702,  1566,  1592,   268,  1606,
-    1607,  1443,  1621,  1626,  1627,  1590,  1591,  1598,  1632,  1599,
-    1600,  1609,  1601,  1613,  1628,   433,  1633,   406,  1729,  1634,
-    1614,  1615,  1616,   268,  1617,  1660,  1686,  1618,   268,  1623,
-    1666,  1648,  1687,  1638,  1689,  1655,  1641,  1694,  1695,  1679,
-    1742,  1698,  1238,  1697,  1665,  1684,  1701,  1805,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,  1735,  1659,  1691,  1704,
-     557,  1711,  1438,  1712,  1713,  1714,  1716,  1715,  1717,  1718,
-    1723,  1118,  1779,  1502,   377,   378,   379,  1730,  1731,  1784,
-    1787,  1733,  1683,  1756,   268,   380,  1752,   268,   268,   381,
-    1757,   382,   108,  1766,  1770,  1788,  1789,  1771,  1796,  1790,
-    1953,  1798,  1799,  1801,  1833,   425,   425,  1806,  -542,  1818,
-     268,  1819,  1696,  1936,   735,  1820,   268,  1826,  1729,  1831,
-    1844,  1832,  1710,  1845,  1673,   268,  1851,  1846,  1795,  1839,
-    1858,  1985,  1860,  1852,  1861,   433,  1870,  1877,   433,  1887,
-    1854,  1804,  1855,  1889,  1878,  1884,  1890,  1872,  1892,  1885,
-    1886,  1894,  1891,  1895,  1900,  1915,   268,  1933,  1938,  1950,
-    1952,  1934,   722,  1274,   722,  1949,  1951,   348,  1954,   268,
-     439,  1960,  -543,  1967,  1963,  1964,  1969,  1971,  1974,  1977,
-    1980,  1978,  1984,  1996,  1982,  1988,  1997,  1683,  1999,  2000,
-    2011,  2016,  2007,   708,  2021,  2063,  2064,  2065,  1622,  2066,
-    2068,  2035,   439,  1998,  2051,  2069,  1759,  1760,  1761,  1762,
-    1763,  1765,  2070,  2074,  2086,   268,  2090,  2098,  2103,  2071,
-    2104,  1859,  2085,  2107,  2093,  2108,  1882,  1508,  2029,  1562,
-    1709,  1908,   743,  1732,  1881,  1532,   113,   124,   125,   126,
-    2020,  1928,  1780,  1650,   132,  1782,  1800,   874,  1785,   268,
-    1678,     0,   724,     0,     0,     0,     0,     0,     0,  1029,
-       0,   268,     0,     0,     0,     0,  1912,     0,     0,     0,
-       0,     0,     0,     0,   268,     0,     0,     0,     0,     0,
-       0,     0,     0,  1901,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1909,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   268,     0,     0,     0,  1683,     0,     0,     0,     0,
-       0,     0,     0,   268,     0,     0,     0,     0,  1913,  1935,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   268,     0,     0,   268,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   268,     0,   425,
-       0,   268,     0,     0,     0,     0,  1738,  1739,     0,  1683,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   348,     0,     0,     0,
-       0,     0,     0,  1976,     0,     0,     0,   268,     0,     0,
-       0,     0,  2006,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,   268,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,  1261,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   722,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,  1940,  1941,  1942,
-    1943,  1944,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,   268,   268,   268,
-     268,   268,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,  1683,     0,   722,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1975,     0,     0,     0,  1979,
-       0,     0,     0,     0,     0,     0,   722,     0,     0,     0,
-     268,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   394,     0,   268,     0,     0,     0,
-       0,     0,     0,  1875,  1683,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,  2012,     0,   433,     0,
-    2014,   420,     0,     0,     0,   430,     0,     0,     0,   435,
-       0,     0,   268,  1337,     0,     0,  2026,     0,     0,   433,
-     433,     0,     0,     0,     0,     0,   447,   448,   449,     0,
-     451,   452,   453,   433,   455,   456,   457,   458,   459,   460,
-     461,     0,   463,   464,   465,   466,     0,     0,     0,   470,
-       0,     0,     0,     0,     0,  1929,     0,     0,     0,     0,
-       0,  2060,  2061,     0,     0,     0,     0,     0,     0,     0,
-    1939,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,  1830,
-     538,     0,     0,   557,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  2083,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   525,   527,   529,
-     530,   470,     0,     0,     0,     0,  2099,  2101,     0,     0,
-       0,     0,     0,     0,     0,     0,   564,   470,     0,     0,
-    2109,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   579,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   589,   590,     0,     0,     0,
-       0,   590,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   611,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,  2022,  2023,  2024,  2025,
-    2027,     0,     0,     0,   631,   470,     0,     0,     0,   635,
-     636,   637,     0,   639,     0,     0,     0,   642,   643,   644,
-       0,     0,   645,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  2067,     0,     0,     0,     0,
-     677,     0,     0,     0,   470,   686,     0,     0,     0,     0,
+     133,   581,   416,   891,   892,  1408,   114,   284,   971,   113,
+     435,  1406,  1566,   381,   386,   385,   264,   152,   614,  1791,
+     150,  1792,   151,   991,   597,   465,  1756,  1277,   140,   317,
+    1401,   999,  1012,   472,  1641,   343,   150,  1784,   388,  1004,
+     398,  1403,   618,  2030,   266,     4,   150,  1505,   420,   160,
+     150,   709,   512,   534,  1905,  1021,   137,   164,  1210,   279,
+     697,  1437,   322,  1030,   323,   138,   270,  1470,   270,   347,
+     443,   321,   153,   289,   154,  1309,   589,   590,   442,   266,
+     589,   590,   150,     5,   346,   589,   590,   153,   271,   154,
+    1007,   589,   590,  1393,  1260,   382,  1116,   725,   290,  1825,
+     280,   886,   142,   281,  1527,   282,   893,   304,   318,   670,
+     327,   673,   897,   328,   291,   292,   283,   589,   590,   685,
+     568,   569,   570,   734,   589,   590,   329,   536,   589,   590,
+     421,  1832,   136,   589,   590,   431,   431,   423,  1389,   589,
+     590,   410,   411,   437,   556,  1407,   737,   723,   324,  1753,
+    1367,   556,   738,   444,  1862,   724,  1438,  1439,  1121,  1112,
+    1863,   610,   611,   612,  1113,   410,   411,  2011,   729,   431,
+     589,   590,  -538,  2013,   266,   678,   730,   266,   625,   139,
+     589,   590,   266,   431,   143,  1402,  1278,  1279,  1280,  1281,
+     702,  1864,   703,   305,   732,  2003,  1404,   306,  1109,   589,
+     590,  1865,   733,   307,   308,   264,   309,   310,   144,   319,
+     997,   589,   590,   589,   590,   990,   410,   411,  1642,  1260,
+    1866,   553,   554,  1660,  1722,   311,   107,   555,  1260,   698,
+     699,   509,  1867,   266,  1988,   107,  1471,  1472,   145,   396,
+     567,   107,   107,   397,   516,  1406,   266,  1013,  1014,   266,
+     532,   387,   107,   574,   615,   531,   107,   579,   146,  1919,
+     135,   953,  1013,  1014,   141,   266,  1282,   320,   266,   266,
+     266,   266,   399,   344,  1270,   389,   400,   410,   411,  2031,
+     710,   266,   711,   161,  -536,   266,   712,   346,   107,   513,
+     535,   165,   147,   298,   300,  1211,   303,   157,   406,   407,
+     408,   409,   882,   348,   884,   885,   153,   153,   154,   154,
+     266,   266,   266,  1957,  1261,  1264,   134,   702,   689,   703,
+     135,   898,   410,   411,   589,   590,   726,   266,   727,   422,
+     148,  1263,   728,   266,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   550,   551,   552,
+     553,   554,   735,   149,   727,   702,   555,   703,   736,  1101,
+     933,  2026,  1749,   733,   821,   158,   706,   733,   686,   687,
+     410,   411,   813,   557,   159,   558,  1091,   410,   411,   559,
+     557,  1291,   558,  1243,   700,  -539,   559,   589,   590,   589,
+     590,   431,   266,   589,   590,  1300,   266,   266,   497,   969,
+     498,   410,   411,   772,   679,   591,   680,  1683,   470,  1651,
+     681,  -540,   266,   162,   406,   407,   408,   998,   713,   406,
+     407,   408,   409,   406,   407,   408,   409,   406,   407,   408,
+     409,   720,   406,   407,   408,   409,   826,   589,   590,   745,
+    1354,   771,  1355,   410,   411,   772,  2053,   410,   411,   589,
+     590,   410,   411,   592,  1167,  1365,   163,    59,    60,    61,
+      62,   589,   590,   740,   266,  1305,   176,   589,   590,   738,
+    1989,  1168,    73,   772,   810,    76,   589,   590,   166,  1169,
+    1170,  1171,  1990,   167,   567,  1172,  1173,   266,  1991,   168,
+     589,   590,  1894,  1916,   266,   803,   563,  1992,  2092,   431,
+    1895,   431,   266,   431,   431,   437,  1167,   313,   817,   314,
+     941,  2037,   266,   266,   431,   431,   266,   152,   636,   152,
+     135,   266,   825,  1168,   827,  1167,   584,   585,   589,   590,
+     169,  1169,  1170,  1171,   593,   598,   170,  1172,  1173,   589,
+     590,   171,  1168,   589,   590,   589,   590,   266,   172,  2038,
+    1169,  1170,  1171,   857,  1591,  1592,  1172,  1173,   410,   411,
+    2047,   599,  1450,  1772,  2076,  -543,   992,   600,  1454,  1405,
+     173,   601,   266,   266,   956,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,   181,   423,   423,   182,   555,   177,   183,
+    1167,   589,   590,   720,   702,  1156,   703,   676,   551,   552,
+     553,   554,   184,  1633,  1634,  1492,   555,  1168,   266,   266,
+     266,  1608,  2077,   683,   720,  1169,  1170,  1171,  1507,   174,
+     690,  1172,  1173,   691,  1512,   830,   692,   175,   693,   772,
+    2040,   437,   431,   437,   431,   431,   431,   431,   431,   431,
+     178,   431,   431,   431,   431,   955,  1167,   431,   431,   431,
+     152,   961,  1039,   865,   266,   960,   275,   772,  1132,   276,
+    1133,  1009,   277,  1168,   278,   970,   720,   294,   295,   720,
+     180,  1169,  1170,  1171,   702,    40,   703,  1172,  1173,   296,
+     179,   720,  1213,   297,  1920,  1921,   294,   295,   186,   973,
+    1922,   266,   702,   772,   703,   979,  1001,  1585,   296,   980,
+    1233,   153,   302,   154,   267,  2078,   702,  1115,   703,   269,
+    1116,   266,  1017,  1008,   772,   285,   268,   266,   286,  1131,
+     437,  1028,   272,   589,   590,   273,  1032,   274,   431,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,   828,  1242,   287,  1243,   555,   548,   549,   676,
+     551,   552,   553,   554,  1571,   293,  1572,   266,   555,   266,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,  1148,  1924,
+    1925,  1235,   555,  1119,  1236,  1922,  1661,   772,  1773,   288,
+     301,   266,  1151,   877,   878,   315,   772,  1152,  1670,   312,
+    1195,   772,  2017,   419,   772,   316,  1196,  1197,   429,   432,
+     772,   772,   889,   890,  1239,  1273,  1342,   585,   772,   772,
+     772,  1364,  1372,  1386,  1503,   772,   772,   772,   772,  1142,
+    1548,  1579,   325,  1667,   772,   772,   266,  1668,   326,   918,
+     919,   920,   460,  1650,  1406,  1651,  1690,  1262,  1265,   266,
+     772,  1765,   331,   332,  1811,   772,   473,   266,  1812,  2060,
+    1826,  1845,   333,  1846,  1827,   772,   266,   772,  1861,  1891,
+     150,   354,  1812,   733,   702,  1900,   703,   704,   720,  1901,
+     720,   720,  1914,   339,  1946,   962,  1812,  1406,   772,  1971,
+     340,   341,  1979,  1812,   720,  1266,   772,  1987,  2001,  2043,
+    2044,   772,  1812,   772,   772,  2045,  2046,  2048,   351,   772,
+     772,   772,   355,   356,   357,   358,   359,   360,   361,   362,
+     363,  1964,   996,   342,   349,   364,   365,   366,   367,   720,
+     350,   352,  2050,   368,   369,   370,  1901,  2071,   371,  1253,
+     372,  1812,  1016,  2079,  1734,  2089,  1735,   772,  1023,  2090,
+     373,  2100,  2103,   374,   353,  1812,  2104,   702,  1276,   703,
+     862,   383,   394,   395,   401,   720,   402,   266,   426,   427,
+     135,  1478,   440,   442,   448,   452,   466,   471,   505,   508,
+    -190,  1272,  -191,  -192,   517,   514,   266,   515,  1366,  1368,
+     520,   404,   521,   522,   533,   397,   564,   266,  1745,  1746,
+    1318,  1319,   431,  1321,  1322,  1323,   565,  1325,  1326,  1327,
+    1328,  1329,  1330,  1331,  1332,  1333,  1334,   572,   575,   578,
+     580,   582,  1092,   583,   602,   603,   604,   605,   266,   266,
+     606,   266,   266,   266,   607,   266,   266,   266,   266,   266,
+     266,   266,   266,   266,   266,   616,   608,   266,   613,   617,
+     619,   620,   631,   621,   622,   623,   624,  1346,   375,   376,
+     377,   626,   627,   628,   682,   632,   638,  1127,   639,   378,
+     647,   648,   649,   379,   660,   380,   107,   661,   663,  1359,
+    1135,   664,   665,   666,   667,   266,   431,   431,   668,   669,
+     671,   672,   688,   694,   701,  1373,   707,  1153,   708,   134,
+     742,   410,   411,   714,   763,   768,   746,   266,  -537,  1159,
+    1493,   747,   774,   775,   804,   814,  1165,   555,   833,   831,
+    1176,   834,   860,   266,   266,   873,   869,   870,   876,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,  1418,  1366,  1368,
+     880,   555,   720,   881,   883,   909,   911,   931,   912,   914,
+     922,  1429,  1430,  1431,   927,   934,   982,   963,   978,  1654,
+     965,   972,   807,  1656,   809,   266,   811,   812,  1666,   983,
+     984,   985,   994,   986,   995,  1005,   993,   822,   823,   266,
+     266,   266,  1006,  1010,  1020,  1022,  1036,  1025,  1031,  1033,
+     266,  1037,  1040,  1041,  1042,   431,  1044,  1045,  1046,   431,
+    1462,  1048,  1049,  1050,  1516,  1051,  1521,  1052,   431,  1053,
+     431,  1054,  1055,   431,  1056,  1057,  1064,  1060,  1298,  1089,
+    1090,  1120,  1136,  1098,  1099,  1100,  1105,  1114,   266,  1108,
+    1124,  1456,  1123,  1128,  1137,  1143,  1145,  1154,  1162,  1163,
+    1188,  1166,  1928,  1190,  1205,  1202,  1203,   346,  1204,  1216,
+    1217,  1229,  1232,  1317,  1218,  1221,  1231,  1238,  1241,  1245,
+    1520,  1244,  1246,  1247,  1250,  1251,  1252,   431,  1337,  1531,
+    1268,  1269,   266,  1535,  1274,  1275,  1288,  1294,  1296,  1295,
+    1304,  1308,  1301,  1311,  1320,  1307,  1358,  1324,   266,  1336,
+    -193,  1375,  1350,  1376,  1377,  1380,  1381,   266,  1382,  1383,
+    1384,   266,  1385,  1387,  1395,   940,  1398,   942,   943,   944,
+     945,   946,   947,  1399,   949,   950,   951,   952,  1400,  1662,
+     957,   958,   959,  1409,  1580,  1581,  1582,  1675,  1675,  1394,
+    1410,  1420,  1587,  1411,  1412,  1413,  1414,  1415,  1416,  1417,
+    1421,  1422,  1423,  1424,  1425,  1374,  1426,  1602,  1649,  1427,
+    1432,  1440,   266,   266,   266,  1452,  1445,  1469,  1610,  1800,
+     266,  1455,  1474,     7,     8,  1446,  1618,  1453,  1457,  1461,
+    1475,  1463,  1477,  1480,  1481,   266,  1485,  1487,  1489,  1491,
+    1488,  1504,  1510,  1525,  1526,  1528,   266,  1532,  1502,  1523,
+    1508,  1533,  1534,  1026,   266,  1536,  1524,   266,  1538,  1539,
+    1540,  1034,  1541,  1542,  1543,  1544,  1545,  1546,  1547,  1701,
+    1557,  1564,  1568,  1574,  1578,  1583,  1584,  1588,  1589,  1590,
+    1596,  1441,  1604,  1727,  1605,  1619,  1597,  1624,  1625,  1626,
+    1598,  1630,  1599,  1631,  1632,  1611,  1658,  1677,  1681,  1612,
+      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
+      33,    34,    35,  1613,   346,  1614,    37,    38,    39,    40,
+     437,   437,    42,  1700,  1615,  1616,   266,  1621,   715,    48,
+    1663,  1636,    50,   716,  1639,   717,   718,  1653,  1664,  1646,
+    1684,  1236,  1702,   431,  1685,  1687,  1682,  1740,  1689,  1692,
+    1657,   266,  1693,   536,    70,  1696,   266,  1695,  1709,  1699,
+    1710,  1711,  1712,  1500,  1714,  1715,  1797,  1713,  1716,  1721,
+    1728,  1729,  1116,  1731,  1754,  1803,  1750,  1755,    84,    85,
+      86,  1764,  1768,  1786,  1787,  1788,  1796,  1799,  1804,  1777,
+     733,  1816,  -541,  1727,  1733,  1817,  1782,  1785,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,  1818,  1794,  1824,  1829,   555,  1830,
+    1681,  1934,   266,  1831,  1837,   266,   266,  1842,  1843,  1849,
+    1856,  1983,  1858,  1868,  1875,  1769,  1852,  1876,  1951,   423,
+     423,  1844,  1885,  1850,  1887,  1853,  1859,  1888,   266,  1889,
+    1890,  1870,  1882,   895,   266,  1883,  1884,  1892,  1893,  1898,
+    1913,  1931,  1932,   266,  1936,  1947,  1793,  1948,  1950,  1952,
+    1949,  1958,  1961,   431,   150,   354,   431,  1962,  1965,  1802,
+    1607,  -542,  1969,  1975,  1967,  1978,  1972,  1982,  1620,  1976,
+    1994,  1980,  1986,  1995,   266,  1997,  2009,  1998,  2014,  2019,
+     720,  1272,   720,  2005,  2061,   346,  2062,   266,   437,  2063,
+    2033,  1996,  2064,  2066,  2067,  2068,   355,   356,   357,   358,
+     359,   360,   361,   362,   363,  1681,  2049,  2072,  2069,   364,
+     365,   366,   367,  2083,  2084,  1299,  2088,   368,   369,   370,
+     437,  2091,   371,  1880,   372,  2096,  2101,  2102,  2018,  2105,
+    2106,  2027,  1506,   266,   373,  1435,  1560,   374,  1707,  1857,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   770,   551,   552,   553,   554,   722,  1906,
+     741,  1530,   555,  1910,   702,  1879,   703,   266,   112,  1730,
+     123,   124,   125,   872,  1648,   404,  1926,   131,  1798,   266,
+    1676,  1708,  1783,     0,     0,  1027,     0,     0,     0,     0,
+       0,     0,   266,     0,     0,     0,     0,     0,     0,  1347,
+    1348,  1899,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1907,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   266,
+       0,     0,     0,  1681,     0,     0,  1736,  1737,     0,     0,
+       0,   266,   375,   376,   377,     0,  1911,  1933,     0,     0,
+       0,     0,     0,   378,     0,     0,     0,   379,     0,   380,
+     107,   266,     0,     0,   266,  1757,  1758,  1759,  1760,  1761,
+    1763,     0,     0,   423,     0,   266,     0,     0,     0,   266,
+       0,     0,     0,     0,     0,     0,     0,  1681,     0,   702,
+       0,   703,  1671,     0,     0,     0,     0,     0,     0,  2004,
+       0,     0,     0,     0,   346,     0,     0,     0,     0,     0,
+       0,  1974,     0,  1259,     0,   266,     0,     0,  1442,     0,
+       0,     0,  1444,     0,     0,     0,     0,     0,     0,     0,
+       0,  1448,     0,  1449,     0,     0,  1451,     0,     0,   266,
+       0,     0,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+     720,     0,     0,     0,   555,     0,  1436,   537,   538,   539,
+     540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+    1494,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   266,   266,   266,   266,   266,
+       0,     0,     0,     0,   392,     0,     0,     0,     0,     0,
+    1681,     0,   720,  1873,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,   418,     0,   555,   720,   428,     0,     0,   266,   433,
+       0,     0,     0,  1335,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   266,   445,   446,   447,     0,   449,
+     450,   451,  1681,   453,   454,   455,   456,   457,   458,   459,
+       0,   461,   462,   463,   464,     0,   431,     0,   468,     0,
+       0,     0,     0,     0,     0,  1927,     0,     0,     0,     0,
+     266,     0,     0,     0,     0,     0,     0,   431,   431,     0,
+    1937,     0,     0,     0,     0,     0,  1938,  1939,  1940,  1941,
+    1942,   431,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   523,   525,   527,   528,
+     468,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,  1973,   562,   468,     0,  1977,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   697,   698,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   723,     0,     0,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   772,   553,   554,   555,   556,     0,   753,     0,     0,
-     557,   757,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   771,   527,     0,     0,     0,
-     775,     0,     0,   778,   779,   780,   781,   782,   783,   784,
-     785,   786,   787,   788,   789,   790,   791,   792,   793,   794,
-     796,   797,   798,   799,   800,   801,   802,   802,     0,   807,
-     808,     0,   810,     0,     0,     0,     0,     0,     0,   817,
-       0,     0,   821,   822,     0,     0,     0,     0,   802,     0,
-       0,     0,     0,   470,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   837,   838,   839,   840,   841,
-     842,   843,   844,   845,   846,   847,   848,   849,   850,   852,
-     854,   855,   856,   857,   858,     0,   860,   861,     0,     0,
-       0,     0,     0,   868,   869,   870,     0,     0,     0,     0,
-       0,   876,   877,     0,   470,   470,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   152,   356,     0,     0,
-       0,     0,     0,   525,   677,   896,     0,     0,     0,   901,
-     902,   903,   904,   905,   906,   907,   908,   909,     0,     0,
-       0,     0,   915,     0,   917,     0,   918,     0,     0,     0,
-     470,   470,   470,   923,     0,   925,   926,   927,   357,   358,
-     359,   360,   361,   362,   363,   364,   365,     0,     0,     0,
-       0,   366,   367,   368,   369,     0,     0,     0,     0,   370,
-     371,   372,   950,     0,   373,     0,   374,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   470,   375,     0,     0,
-     376,     0,     0,   969,     0,   970,     0,     0,   860,   861,
-       0,     0,     0,     0,     0,   471,     0,   983,     0,     0,
-       0,     0,     0,   989,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   470,  1966,     0,     0,     0,   406,  1004,
-    1005,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   470,     0,  1020,  1021,     0,     0,   470,
-    1026,     0,     0,     0,  1020,     0,     0,     0,     0,     0,
-       0,  1037,     0,     0,  1421,  1040,     0,     0,     0,     0,
-       0,     0,     0,     0,   528,     0,     0,   471,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,  1060,     0,   852,
-       0,  1063,     0,   471,     0,   377,   378,   379,     0,     0,
-       0,     0,     0,     0,     0,     0,   380,     0,     0,     0,
-     381,     0,   382,   108,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   470,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  1104,     0,     0,     0,     0,   412,   413,
-    1462,     0,     0,     0,     0,  -538,     0,  1495,     0,     0,
+       0,     0,     0,     0,   577,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   587,   588,  1694,     0,     0,     0,
+     588,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+     609,     0,     0,     0,     0,  2010,     0,     0,     0,  2012,
+       0,     0,     0,     0,     0,     0,  2020,  2021,  2022,  2023,
+    2025,     0,     0,   629,   468,  2024,     0,     0,   633,   634,
+     635,     0,   637,     0,     0,     0,   640,   641,   642,     0,
+       0,   643,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+    2058,  2059,     0,     0,     0,  2065,     0,     0,     0,   675,
+       0,     0,     0,   468,   684,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   471,     0,     0,     0,     0,     0,     0,   470,     0,
+     695,   696,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   721,     0,  1778,     0,     0,  1780,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   470,     0,     0,     0,     0,     0,     0,  1143,     0,
-       0,     0,  1149,     0,     0,     0,     0,     0,   470,     0,
-       0,     0,     0,     0,     0,     0,  1162,  1163,     0,     0,
-       0,     0,  1166,     0,     0,     0,     0,     0,     0,     0,
-     471,     0,     0,     0,     0,     0,     0,     0,  1191,     0,
-       0,  1193,     0,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,  1208,     0,  1210,  1211,   557,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   751,     0,     0,     0,
+     755,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   769,   525,     0,     0,     0,   773,
+       0,     0,   776,   777,   778,   779,   780,   781,   782,   783,
+     784,   785,   786,   787,   788,   789,   790,   791,   792,   794,
+     795,   796,   797,   798,   799,   800,   800,     0,   805,   806,
+       0,   808,     0,     0,     0,     0,     0,     0,   815,     0,
+       0,   819,   820,     0,     0,     0,     0,   800,     0,     0,
+       0,     0,   468,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   835,   836,   837,   838,   839,   840,
+     841,   842,   843,   844,   845,   846,   847,   848,   850,   852,
+     853,   854,   855,   856,     0,   858,   859,     0,     0,     0,
+       0,     0,   866,   867,   868,     0,     0,     0,     0,     0,
+     874,   875,     0,   468,   468,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,  1229,     0,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,   528,   538,     0,  1251,   557,     0,     0,     0,
-       0,     0,  1257,  1258,  1259,  1260,     0,     0,     0,     0,
-    1269,     0,     0,     0,     0,   795,     0,     0,     0,     0,
-       0,     0,   803,   804,  1294,  1295,     0,     0,     0,   470,
+     150,   354,   523,   675,   894,     0,     0,     0,   899,   900,
+     901,   902,   903,   904,   905,   906,   907,     0,     0,     0,
+       0,   913,     0,   915,     0,   916,     0,     0,     0,   468,
+     468,   468,   921,     0,   923,   924,   925,     0,     0,     0,
+       0,     0,   355,   356,   357,   358,   359,   360,   361,   362,
+     363,     0,     0,     0,     0,   364,   365,   366,   367,     0,
+       0,   948,     0,   368,   369,   370,     0,     0,   371,     0,
+     372,     0,     0,     0,     0,   468,     0,     0,     0,     0,
+     373,     0,   967,   374,   968,     0,     0,   858,   859,     0,
+       0,     0,     0,     0,   469,     0,   981,     0,     0,     0,
+       0,     0,   987,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   468,  1419,     0,     0,     0,     0,  1002,  1003,
+       0,   404,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   468,     0,  1018,  1019,     0,     0,   468,  1024,
+       0,     0,     0,  1018,     0,     0,     0,     0,     0,     0,
+    1035,     0,     0,     0,  1038,     0,     0,     0,     0,     0,
+       0,     0,     0,   526,     0,     0,   469,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,  1058,     0,   850,     0,
+    1061,     0,   469,     0,     0,     0,     0,     0,   375,   376,
+     377,     0,     0,     0,     0,     0,     0,     0,     0,   378,
+       0,     0,     0,   379,     0,   380,   107,     0,     0,     0,
+       0,     0,   468,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,  1102,     0,     0,     0,     0,     0,     0,     0,
+    1460,     0,     0,     0,     0,     0,     0,     0,  1671,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   826,     0,     0,     0,     0,   471,
-     539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,   853,     0,     0,     0,   470,
+     469,     0,     0,     0,     0,     0,     0,   468,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,  2081,
+     468,     0,     0,     0,     0,     0,     0,  1141,     0,     0,
+       0,  1147,     0,     0,     0,     0,     0,   468,     0,     0,
+    2097,  2099,     0,     0,     0,  1160,  1161,     0,     0,     0,
+       0,  1164,     0,     0,  2107,     0,     0,     0,     0,   469,
+       0,     0,     0,     0,     0,     0,     0,  1189,     0,     0,
+    1191,     0,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+    1206,     0,  1208,  1209,   555,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1340,     0,     0,     0,     0,
-     471,   471,     0,     0,     0,  1341,  1342,  1343,     0,     0,
-       0,     0,  1345,  1346,     0,  1347,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,  1354,  1355,     0,
-       0,     0,     0,     0,     0,  1358,  1359,     0,     0,     0,
-       0,     0,  1363,     0,  1364,  1365,   471,   471,   471,     0,
-       0,  1371,  1372,     0,     0,     0,   470,     0,     0,     0,
+       0,  1227,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1476,     0,     0,     0,     0,     0,     0,
+       0,   526,     0,     0,  1249,     0,     0,     0,     0,     0,
+       0,  1255,  1256,  1257,  1258,     0,     0,     0,     0,  1267,
+       0,     0,     0,     0,   793,     0,     0,     0,     0,     0,
+       0,   801,   802,  1292,  1293,     0,     0,     0,   468,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   157,   158,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,  1399,     0,     0,
-       0,     0,   471,     0,     0,     0,     0,     0,     0,     0,
-       0,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   552,   553,   554,   555,   556,     0,
-    1430,     0,     0,   557,     0,     0,     0,     0,     0,   471,
-       0,     0,   470,     0,     0,     0,     0,     0,     0,     0,
-    1445,     0,     0,     0,     0,     0,     0,     0,     0,   471,
-       0,     0,     0,     0,     0,   471,     0,     0,     0,     0,
-       0,  1371,  1372,     0,     0,  1478,  1461,     0,     0,     0,
+       0,     0,     0,   824,     0,     0,     0,     0,   469,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,   851,     0,     0,     0,   468,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-    1470,     0,     0,  1475,     0,   419,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   853,     0,  1064,     0,     0,
+       0,     0,     0,     0,  1338,     0,     0,     0,     0,   469,
+     469,     0,     0,     0,  1339,  1340,  1341,     0,     0,     0,
+       0,  1343,  1344,     0,  1345,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,  1352,  1353,     0,     0,
+       0,     0,     0,     0,  1356,  1357,     0,     0,     0,     0,
+       0,  1361,     0,  1362,  1363,   469,   469,   469,     0,     0,
+    1369,  1370,     0,     0,     0,   468,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-    1497,     0,     0,  1500,   470,  1503,     0,     0,     0,     0,
-       0,     0,     0,  1511,     0,  1513,     0,  1511,  1517,   471,
-       0,     0,     0,     0,  1602,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   476,   477,   478,   479,   480,
-     481,   482,   483,   484,   485,   486,   487,   488,   489,   490,
-     491,   492,   493,   494,   495,   496,   497,   498,   501,   502,
-     503,   504,   505,   506,   471,   508,   509,     0,     0,     0,
-       0,     0,   512,   513,     0,     0,     0,   471,     0,     0,
-       0,     0,     0,   520,   521,     0,     0,     0,     0,     0,
-       0,  1588,     0,     0,   471,     0,     0,     0,  1595,  1596,
-    1597,     0,     0,     0,     0,     0,     0,  1603,     0,  1605,
-       0,     0,     0,     0,     0,     0,  1608,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   470,
-       0,     0,     0,     0,  1624,     0,     0,     0,     0,     0,
-       0,     0,  1629,  1630,  1631,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,  1642,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,  1654,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-    1671,     0,     0,     0,     0,     0,  1680,  1681,   646,   647,
-     648,   538,     0,     0,   652,   653,   654,   655,   656,   657,
-     658,     0,   659,     0,     0,     0,   660,   661,     0,     0,
-     664,     0,     0,     0,     0,   471,     0,     0,  1707,     0,
-       0,     0,     0,   676,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,     0,     0,     0,     0,   557,     0,     0,     0,
-       0,     0,     0,  1719,  1720,  1721,     0,     0,     0,     0,
-       0,     0,     0,     0,  1722,   471,     0,     0,     0,  1725,
-    1726,  1727,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,  1734,     0,     0,     0,     0,   470,   470,  1740,
-       0,  1741,     0,     0,     0,     0,     0,  1749,  1750,     0,
+       0,     0,     0,   155,   156,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,  1397,     0,     0,     0,
+       0,   469,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,  1428,
+       0,     0,     0,     0,     0,     0,     0,     0,   469,     0,
+       0,   468,     0,     0,     0,     0,     0,     0,     0,  1443,
+       0,     0,     0,     0,     0,     0,     0,     0,   469,     0,
+       0,     0,     0,     0,   469,     0,     0,     0,     0,     0,
+    1369,  1370,     0,     0,     0,  1459,  1600,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,  1468,
+       0,     0,  1473,     0,     0,   417,     0,     0,     0,     0,
+       0,     0,     0,     0,   851,     0,  1062,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,  1495,
+       0,     0,  1498,   468,  1501,     0,     0,     0,     0,     0,
+       0,     0,  1509,     0,  1511,     0,  1509,  1515,   469,     0,
+       0,     0,     0,     0,  1655,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   474,   475,   476,   477,   478,   479,
+     480,   481,   482,   483,   484,   485,   486,   487,   488,   489,
+     490,   491,   492,   493,   494,   495,   496,   499,   500,   501,
+     502,   503,   504,   469,   506,   507,     0,     0,     0,     0,
+       0,   510,   511,     0,     0,     0,   469,     0,     0,     0,
+       0,     0,   518,   519,     0,     0,     0,     0,     0,     0,
+    1586,     0,     0,   469,     0,     0,     0,  1593,  1594,  1595,
+       0,     0,     0,     0,     0,     0,  1601,     0,  1603,     0,
+       0,     0,     0,     0,     0,  1606,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   468,     0,
+       0,     0,     0,  1622,     0,     0,     0,     0,     0,     0,
+       0,  1627,  1628,  1629,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1640,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1652,     0,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,  1669,
+       0,     0,     0,     0,     0,  1678,  1679,   644,   645,   646,
+    1659,     0,     0,   650,   651,   652,   653,   654,   655,   656,
+       0,   657,     0,     0,     0,   658,   659,     0,     0,   662,
+       0,     0,     0,     0,   469,     0,     0,  1705,     0,     0,
+       0,     0,   674,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,     0,     0,     0,
+       0,     0,  1717,  1718,  1719,     0,     0,     0,     0,     0,
+       0,     0,     0,  1720,   469,     0,     0,     0,  1723,  1724,
+    1725,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,  1732,     0,     0,     0,     0,   468,   468,  1738,     0,
+    1739,     0,     0,     0,     0,     0,  1747,  1748,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   470,     0,     0,     0,
-    1768,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  1778,     0,     0,  1781,     0,     0,     0,
-    1783,     0,   471,     0,     0,     0,     0,     0,     0,  1726,
-    1727,     0,  1792,     0,     0,     0,     0,     0,     0,     0,
-    1797,  1657,     0,     0,     0,   834,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,  1810,     0,     0,     0,
-       0,  1816,  1817,     0,     0,     0,     0,     0,     0,   707,
-       0,     0,     0,     0,  1821,  1661,     0,  1822,  1821,   539,
-     540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   772,   553,   554,   555,   556,     0,   471,     0,
-    1667,   557,     0,     0,     0,     0,     0,  1843,     0,     0,
+       0,     0,     0,     0,     0,   468,     0,     0,     0,  1766,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  1853,     0,     0,     0,     0,     0,     0,
-       0,     0,  1862,     0,     0,     0,     0,     0,     0,     0,
-       0,   527,     0,     0,     0,     0,     0,     0,     0,     0,
-    1873,  1874,     0,     0,   470,     0,     0,     0,     0,     0,
-       0,     0,     0,   818,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  1769,     0,     0,     0,     0,     0,     0,
-     471,     0,     0,     0,     0,     0,     0,     0,  1898,  1899,
+       0,     0,  1776,     0,     0,  1779,     0,     0,     0,  1781,
+       0,   469,     0,     0,     0,     0,     0,     0,  1724,  1725,
+       0,  1790,     0,     0,     0,     0,     0,     0,     0,  1795,
+    1665,     0,     0,     0,   832,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,  1808,     0,     0,     0,     0,
+    1814,  1815,     0,     0,     0,     0,     0,     0,   705,     0,
+       0,     0,     0,  1819,  1767,     0,  1820,  1819,     0,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,   469,     0,     0,
+    1848,   555,     0,     0,     0,     0,  1841,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,  1911,     0,     0,  1914,
-       0,     0,     0,   865,  1917,     0,     0,  1919,     0,     0,
-       0,     0,     0,     0,     0,     0,   470,     0,     0,     0,
+       0,     0,  1851,     0,     0,     0,     0,     0,     0,     0,
+       0,  1860,     0,     0,     0,     0,     0,     0,     0,     0,
+     525,     0,     0,     0,     0,     0,     0,     0,     0,  1871,
+    1872,     0,     0,   468,     0,     0,     0,     0,     0,     0,
+       0,     0,   816,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1874,     0,     0,     0,     0,     0,   469,
+       0,     0,     0,     0,     0,     0,     0,  1896,  1897,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   470,     0,     0,     0,     0,     0,     0,     0,  1945,
-       0,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,  1956,     0,     0,     0,     0,     0,
-    1961,     0,     0,  1962,     0,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,   471,     0,   557,     0,  1983,
-     539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,  2001,  2002,     0,     0,     0,     0,
-    1119,     0,     0,     0,     0,     0,  2008,  2009,     0,  2010,
+       0,     0,     0,     0,     0,  1909,     0,     0,  1912,     0,
+       0,     0,   863,  1915,     0,     0,  1917,     0,     0,     0,
+       0,     0,     0,     0,     0,   468,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,  2018,     0,     0,     0,     0,   470,   470,   470,
-     470,   470,     0,     0,  1136,     0,     0,  1816,     0,     0,
-       0,  2034,     0,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,  1708,   557,     0,     0,  2054,     0,
-       0,     0,     0,  2057,  2058,  2059,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   470,     0,  1067,  1068,
-    1069,  1070,  1071,  1072,  1073,  1074,  1075,  1076,  1077,     0,
-    1079,  1080,  1081,  1082,     0,  1084,  1085,  1086,  1087,     0,
-       0,  1850,     0,     0,  2087,  2088,  2089,     0,     0,  1097,
-       0,  1099,     0,     0,     0,     0,     0,     0,     0,  1106,
-       0,     0,     0,   471,   471,  1112,  1113,     0,     0,     0,
-       0,     0,     0,     0,  1124,     0,     0,     0,     0,     0,
+     468,     0,     0,     0,     0,     0,     0,     0,  1943,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,  1954,     0,     0,     0,     0,     0,  1959,
+       0,     0,  1960,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,   469,   555,     0,     0,  1981,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,  1999,  2000,     0,     0,     0,     0,  1117,
+       0,     0,     0,     0,     0,  2006,  2007,     0,  2008,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   471,   189,   152,   356,     0,   405,     0,     0,
-     190,   191,   192,     0,     0,   193,   194,   195,   196,   197,
-     198,   199,   200,   201,   202,   203,   204,   205,   206,   207,
-     208,   209,   392,   211,   212,   213,   214,   215,   216,     0,
-       0,     0,     0,     0,     0,  1312,   357,   358,   359,   360,
-     361,   362,   363,   364,   365,   222,   223,   224,   225,   366,
-     367,   368,   369,   226,     0,     0,     0,   370,   371,   372,
-       0,     0,   373,     0,   374,   228,   229,   230,     0,     0,
-       0,     0,     0,   231,    21,   375,   232,     0,   376,     0,
-       0,  1214,  1216,  1217,     0,     0,     0,  1221,  1222,     0,
-       0,  1225,  1226,  1227,  1228,     0,  1230,     0,     0,     0,
-       0,  1236,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   406,     0,     0,     0,
-       0,     0,     0,     0,  1362,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   528,     0,     0,
+       0,  2016,     0,     0,     0,     0,   468,   468,   468,   468,
+     468,     0,     0,  1134,     0,     0,  1814,     0,     0,     0,
+    2032,     0,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,  1706,   555,     0,     0,  2052,     0,     0,
+       0,     0,  2055,  2056,  2057,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   468,     0,  1065,  1066,  1067,
+    1068,  1069,  1070,  1071,  1072,  1073,  1074,  1075,     0,  1077,
+    1078,  1079,  1080,     0,  1082,  1083,  1084,  1085,     0,     0,
+       0,  1886,     0,  2085,  2086,  2087,     0,     0,  1095,     0,
+    1097,     0,     0,     0,     0,     0,     0,     0,  1104,     0,
+       0,     0,   469,   469,  1110,  1111,     0,     0,     0,     0,
+       0,     0,     0,  1122,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     471,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,   407,     0,     0,     0,     0,
-    1317,  1318,   241,   377,   378,   379,   242,     0,     0,     0,
-       0,   244,   245,   246,   380,   247,   248,   249,   381,     0,
-     382,   108,   408,   409,   410,   411,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   250,   393,     0,
-       0,     0,   471,     0,   252,     0,   412,   413,     0,   414,
-       0,   415,   189,   152,     0,   416,   255,   471,     0,   190,
-     191,   192,     0,     0,   193,   194,   195,   196,   197,   198,
-     199,   200,   201,   202,   203,   204,   205,   206,   207,   208,
-     209,   392,   211,   212,   213,   214,   215,   216,     0,     0,
-       0,     0,     0,     0,     0,     0,  1373,  1485,  1486,     0,
-       0,     0,     0,     0,   222,   223,   224,   225,     0,     0,
-       0,     0,   226,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   228,   229,   230,     0,     0,     0,
-       0,     0,   231,    21,     0,   232,     0,     0,     0,     0,
-     189,   152,     0,     0,     0,     0,     0,   190,   191,   192,
-       0,     0,   193,   194,   195,   196,   197,   198,   199,   200,
-     201,   202,   203,   204,   205,   206,   207,   208,   209,   392,
-     211,   212,   213,   214,   215,   216,     0,     0,  1567,     0,
-       0,     0,     0,   471,   471,   471,   471,   471,  1575,     0,
-       0,     0,   222,   223,   224,   225,     0,     0,     0,     0,
-     226,     0,  1876,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   228,   229,   230,     0,     0,     0,     0,     0,
-     231,    21,     0,   232,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1484,     0,     0,     0,     0,
-       0,   241,   471,     0,     0,   242,     0,     0,     0,     0,
-     244,   245,   246,     0,   247,   248,   249,     0,     0,     0,
-     108,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,  1519,     0,     0,     0,   250,   393,     0,     0,
-       0,     0,     0,   252,     0,     0,     0,     0,   337,     0,
-       0,     0,   578,     0,     0,   255,     0,     0,     0,     0,
-    1551,  1552,  1553,  1554,  1555,     0,     0,     0,     0,  1560,
-    1561,     0,     0,  1563,     0,  1565,     0,     0,     0,  1569,
-       0,     0,  1571,     0,     0,     0,     0,     0,     0,   241,
-       0,     0,     0,   242,  1579,     0,     0,     0,   244,   245,
-     246,  1705,   247,   248,   249,     0,     0,     0,   108,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   596,   597,     0,     0,     0,     0,
-       0,   252,     0,     0,     0,     0,   598,     0,     0,     0,
-     299,     0,     0,   255,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,  1888,     0,
-       0,     0,     0,  1637,     0,  1640,     0,     0,     0,  1647,
-       0,  1649,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1674,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   189,
-       6,   356,     0,     0,     0,     0,   190,   191,   192,     0,
-       0,   193,   194,   195,   196,   197,   198,   199,   200,   201,
-     202,   203,   204,   205,   206,   207,   208,   209,   210,   211,
-     212,   213,   214,   215,   216,   217,   218,   219,   220,   221,
-    1995,     0,  1520,   358,   359,   360,   361,   362,   363,   364,
-     365,   222,   223,   224,   225,   366,   367,   368,   369,   226,
-     227,     0,     0,   370,   371,   372,     0,     0,   373,     0,
-     374,   228,   229,   230,     0,  1728,     0,     0,     0,   231,
-      21,   375,   232,     0,   376,     0,     0,   233,     0,     0,
-     234,     0,     0,   235,     0,   236,     0,     0,     0,     0,
-       0,     0,    37,     0,     0,     0,   237,     0,     0,     0,
-       0,     0,     0,     0,     0,   238,     0,    50,     0,     0,
-     239,     0,   240,     0,     0,     0,     0,     0,     0,    60,
-      61,    62,    63,    64,     0,     0,    66,    67,    68,    69,
-      70,     0,     0,     0,    74,     0,     0,    77,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,     0,  1807,     0,     0,  1808,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   241,   377,
-     378,   379,   242,   243,     0,     0,     0,   244,   245,   246,
-     380,   247,   248,   249,   381,     0,   382,   108,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,  1835,
-    1836,     0,  1838,   250,   251,  2041,     0,     0,     0,     0,
-     252,     0,     0,     0,     0,   337,     0,     0,     0,  1521,
-       0,     0,   255,     0,     0,     0,     0,     0,     0,     0,
-     539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,     0,     0,     0,     0,
-       0,  1879,  1880,     0,     0,   189,     6,   356,     0,     0,
-       0,     0,   190,   191,   192,     0,     0,   193,   194,   195,
+       0,   469,     0,   187,   150,   354,     0,   403,     0,     0,
+     188,   189,   190,     0,     0,   191,   192,   193,   194,   195,
      196,   197,   198,   199,   200,   201,   202,   203,   204,   205,
-     206,   207,   208,   209,   210,   211,   212,   213,   214,   215,
-     216,   217,   218,   219,   220,   221,     0,  1910,   357,   358,
-     359,   360,   361,   362,   363,   364,   365,   222,   223,   224,
-     225,   366,   367,   368,   369,   226,   227,     0,     0,   370,
-     371,   372,     0,     0,   373,     0,   374,   228,   229,   230,
-       0,     0,     0,     0,     0,   231,    21,   375,   232,     0,
-     376,     0,     0,   233,     0,     0,   234,     0,     0,   235,
-       0,   236,     0,     0,     0,     0,     0,     0,    37,     0,
-       0,     0,   237,     0,     0,     0,     0,     0,     0,     0,
-       0,   238,     0,    50,     0,     0,   239,     0,   240,     0,
-       0,     0,     0,     0,     0,    60,    61,    62,    63,    64,
-       0,     0,    66,    67,    68,    69,    70,     0,     0,     0,
-      74,     0,     0,    77,     0,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
+     206,   207,   390,   209,   210,   211,   212,   213,   214,     0,
+       0,     0,     0,     0,  1310,     0,   355,   356,   357,   358,
+     359,   360,   361,   362,   363,   220,   221,   222,   223,   364,
+     365,   366,   367,   224,     0,     0,     0,   368,   369,   370,
+       0,     0,   371,     0,   372,   226,   227,   228,     0,     0,
+       0,     0,   229,    20,   373,   230,     0,   374,     0,     0,
+    1212,  1214,  1215,     0,     0,     0,  1219,  1220,     0,     0,
+    1223,  1224,  1225,  1226,     0,  1228,     0,     0,     0,     0,
+    1234,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   404,     0,     0,     0,     0,
+       0,     0,     0,  1360,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   526,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   469,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,   405,     0,     0,     0,     0,  1315,
+    1316,   239,   375,   376,   377,   240,     0,     0,     0,     0,
+     242,   243,   244,   378,   245,   246,   247,   379,     0,   380,
+     107,   406,   407,   408,   409,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   248,   391,     0,     0,
+       0,   469,     0,   250,     0,   410,   411,     0,   412,     0,
+     413,   187,   150,     0,   414,   253,   469,     0,   188,   189,
+     190,     0,     0,   191,   192,   193,   194,   195,   196,   197,
+     198,   199,   200,   201,   202,   203,   204,   205,   206,   207,
+     390,   209,   210,   211,   212,   213,   214,     0,     0,     0,
+       0,     0,     0,     0,     0,  1371,  1483,  1484,     0,     0,
+       0,     0,     0,   220,   221,   222,   223,     0,     0,     0,
+       0,   224,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,   226,   227,   228,     0,     0,     0,     0,
+     229,    20,     0,   230,     0,     0,     0,     0,     0,     0,
+     187,   150,     0,     0,     0,     0,     0,   188,   189,   190,
+       0,     0,   191,   192,   193,   194,   195,   196,   197,   198,
+     199,   200,   201,   202,   203,   204,   205,   206,   207,   390,
+     209,   210,   211,   212,   213,   214,     0,  1565,     0,     0,
+       0,     0,   469,   469,   469,   469,   469,  1573,     0,     0,
+       0,     0,   220,   221,   222,   223,     0,     0,     0,     0,
+     224,     0,  1993,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   226,   227,   228,     0,     0,     0,     0,   229,
+      20,     0,   230,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,  1482,     0,     0,     0,     0,   239,
+       0,   469,     0,   240,     0,     0,     0,     0,   242,   243,
+     244,     0,   245,   246,   247,     0,     0,     0,   107,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   241,   377,   378,   379,   242,   243,
-       0,     0,     0,   244,   245,   246,   380,   247,   248,   249,
-     381,     0,   382,   108,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   250,
-     251,     0,     0,     0,     0,     0,   252,     0,     0,     0,
-       0,   337,     0,     0,     0,   254,     0,     0,   255,   539,
-     540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,   189,     6,   336,
-       0,   557,     0,     0,   190,   191,   192,   769,  2076,   193,
-     194,   195,   196,   197,   198,   199,   200,   201,   202,   203,
-     204,   205,   206,   207,   208,   209,   210,   211,   212,   213,
-     214,   215,   216,   217,   218,   219,   220,   221,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   222,
-     223,   224,   225,     0,     0,     0,     0,   226,   227,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   228,
-     229,   230,     0,     0,     7,     8,     0,   231,    21,     0,
-     232,     0,     0,     0,     0,   233,     0,     0,   234,     0,
-       0,   235,     0,   236,     0,     0,     0,     0,     0,     0,
-      37,     0,     0,     0,   237,     0,     0,     0,     0,     0,
-       0,     0,     0,   238,     0,    50,     0,     0,   239,     0,
-     240,     0,     0,     0,     0,     0,     0,    60,    61,    62,
-      63,    64,     0,     0,    66,    67,    68,    69,    70,     0,
-       0,     0,    74,     0,     0,    77,     0,     0,     0,     0,
-       0,     0,    24,    25,    26,    27,    28,    29,    30,    31,
-      32,    33,    34,    35,    36,     0,     0,     0,    38,    39,
-      40,    41,     0,     0,    43,     0,     0,     0,     0,     0,
-     717,    49,     0,     0,    51,   718,   241,   719,   720,     0,
-     242,   243,     0,     0,     0,   244,   245,   246,     0,   247,
-     248,   249,     0,     0,     0,   108,    71,     0,     0,     0,
+       0,  1517,     0,     0,   248,   391,     0,     0,     0,     0,
+       0,   250,     0,     0,     0,     0,   335,     0,     0,     0,
+     576,     0,     0,   253,     0,     0,     0,     0,     0,  1549,
+    1550,  1551,  1552,  1553,     0,     0,     0,     0,  1558,  1559,
+       0,     0,  1561,     0,  1563,     0,     0,     0,  1567,     0,
+       0,  1569,     0,     0,     0,     0,     0,     0,   239,     0,
+       0,     0,   240,  1577,     0,     0,     0,   242,   243,   244,
+    1703,   245,   246,   247,     0,     0,     0,   107,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   250,   251,     0,     0,     0,     0,     0,   252,     0,
-      85,    86,    87,   337,   189,     6,     0,   338,     0,   632,
-     255,   190,   191,   192,     0,     0,   193,   194,   195,   196,
-     197,   198,   199,   200,   201,   202,   203,   204,   205,   206,
-     207,   208,   209,   210,   211,   212,   213,   214,   215,   216,
-     217,   218,   219,   220,   221,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   222,   223,   224,   225,
-       0,     0,     0,     0,   226,   227,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   897,   228,   229,   230,     0,
-       0,     7,     8,     0,   231,    21,     0,   232,     0,     0,
-       0,     0,   233,     0,     0,   234,     0,     0,   235,     0,
-     236,     0,     0,     0,     0,     0,     0,    37,     0,     0,
-       0,   237,     0,     0,     0,     0,     0,     0,     0,     0,
-     238,     0,    50,     0,     0,   239,     0,   240,     0,     0,
-       0,     0,     0,     0,    60,    61,    62,    63,    64,     0,
-       0,    66,    67,    68,    69,    70,     0,     0,     0,    74,
-       0,     0,    77,     0,     0,     0,     0,     0,     0,    24,
-      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
-      35,    36,     0,     0,     0,    38,    39,    40,    41,     0,
-       0,    43,     0,     0,     0,     0,     0,   717,    49,     0,
-       0,    51,   718,   241,   719,   720,     0,   242,   243,     0,
-       0,     0,   244,   245,   246,     0,   247,   248,   249,     0,
-       0,     0,   108,    71,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   250,   469,
-       0,     0,     0,     0,     0,   252,     0,    85,    86,    87,
-     337,   189,     6,  1611,     0,   531,     0,   255,   190,   191,
-     192,     0,     0,   193,   194,   195,   196,   197,   198,   199,
+       0,     0,     0,   594,   595,     0,     0,     0,     0,     0,
+     250,     0,     0,     0,     0,   596,     0,     0,     0,   297,
+       0,     0,   253,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,  2039,     0,
+       0,     0,  1635,     0,  1638,     0,     0,     0,  1645,     0,
+    1647,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,  1672,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   187,
+       6,   354,     0,     0,     0,     0,   188,   189,   190,     0,
+       0,   191,   192,   193,   194,   195,   196,   197,   198,   199,
      200,   201,   202,   203,   204,   205,   206,   207,   208,   209,
      210,   211,   212,   213,   214,   215,   216,   217,   218,   219,
-     220,   221,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   222,   223,   224,   225,     0,     0,     0,
-       0,   226,   227,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   919,   228,   229,   230,     0,     0,     7,     8,
-       0,   231,    21,     0,   232,     0,     0,     0,     0,   233,
-       0,     0,   234,     0,     0,   235,     0,   236,     0,     0,
-       0,     0,     0,     0,    37,     0,     0,     0,   237,     0,
-       0,     0,     0,     0,     0,     0,     0,   238,     0,    50,
-       0,     0,   239,     0,   240,     0,     0,     0,     0,     0,
-       0,    60,    61,    62,    63,    64,     0,     0,    66,    67,
-      68,    69,    70,     0,     0,     0,    74,     0,     0,    77,
-       0,     0,     0,     0,     0,     0,    24,    25,    26,    27,
-      28,    29,    30,    31,    32,    33,    34,    35,    36,     0,
-       0,     0,    38,    39,    40,    41,     0,     0,    43,     0,
-       0,     0,     0,     0,   717,    49,     0,     0,    51,   718,
-     241,   719,   720,     0,   242,   243,     0,     0,     0,   244,
-     245,   246,     0,   247,   248,   249,     0,     0,     0,   108,
-      71,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   250,   251,     0,     0,     0,
-       0,     0,   252,     0,    85,    86,    87,   337,   189,     6,
-       0,   254,     0,     0,   255,   190,   191,   192,     0,     0,
+    1828,   536,  1518,   356,   357,   358,   359,   360,   361,   362,
+     363,   220,   221,   222,   223,   364,   365,   366,   367,   224,
+     225,     0,     0,   368,   369,   370,     0,     0,   371,     0,
+     372,   226,   227,   228,  1726,     0,     0,     0,   229,    20,
+     373,   230,     0,   374,     0,     0,   231,     0,     0,   232,
+       0,     0,   233,     0,   234,     0,     0,     0,     0,     0,
+       0,    36,     0,     0,     0,   235,     0,     0,     0,     0,
+       0,     0,     0,     0,   236,     0,    49,     0,     0,   237,
+       0,   238,     0,     0,     0,     0,     0,     0,    59,    60,
+      61,    62,    63,     0,     0,    65,    66,    67,    68,    69,
+       0,     0,     0,    73,     0,     0,    76,   537,   538,   539,
+     540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+       0,     0,     0,     0,  1805,     0,     0,  1806,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   239,   375,   376,
+     377,   240,   241,     0,     0,     0,   242,   243,   244,   378,
+     245,   246,   247,   379,     0,   380,   107,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,  1833,  1834,
+       0,  1836,   248,   249,     0,   536,     0,     0,     0,   250,
+       0,     0,     0,     0,   335,     0,     0,     0,  1519,     0,
+       0,   253,     0,     0,     0,     0,     0,     0,   537,   538,
+     539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
+     549,   770,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+    1877,  1878,     0,     0,   187,     6,   354,     0,     0,     0,
+       0,   188,   189,   190,     0,     0,   191,   192,   193,   194,
+     195,   196,   197,   198,   199,   200,   201,   202,   203,   204,
+     205,   206,   207,   208,   209,   210,   211,   212,   213,   214,
+     215,   216,   217,   218,   219,     0,  1908,   355,   356,   357,
+     358,   359,   360,   361,   362,   363,   220,   221,   222,   223,
+     364,   365,   366,   367,   224,   225,     0,     0,   368,   369,
+     370,     0,     0,   371,     0,   372,   226,   227,   228,     0,
+       0,     0,     0,   229,    20,   373,   230,     0,   374,     0,
+       0,   231,     0,     0,   232,     0,     0,   233,     0,   234,
+       0,     0,     0,     0,     0,     0,    36,     0,     0,     0,
+     235,     0,     0,     0,     0,     0,     0,     0,     0,   236,
+       0,    49,     0,     0,   237,     0,   238,     0,     0,     0,
+       0,     0,     0,    59,    60,    61,    62,    63,     0,     0,
+      65,    66,    67,    68,    69,     0,     0,     0,    73,     0,
+       0,    76,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   550,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   239,   375,   376,   377,   240,   241,     0,     0,
+       0,   242,   243,   244,   378,   245,   246,   247,   379,     0,
+     380,   107,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   248,   249,     0,
+       0,     0,     0,     0,   250,     0,     0,     0,     0,   335,
+       0,     0,     0,   252,     0,     0,   253,     0,   537,   538,
+     539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
+     549,   676,   551,   552,   553,   554,   187,     6,   334,     0,
+     555,     0,     0,   188,   189,   190,   767,  2074,   191,   192,
      193,   194,   195,   196,   197,   198,   199,   200,   201,   202,
      203,   204,   205,   206,   207,   208,   209,   210,   211,   212,
-     213,   214,   215,   216,   217,   218,   219,   220,   221,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     222,   223,   224,   225,     0,     0,     0,     0,   226,   227,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   966,
-     228,   229,   230,     0,     0,     7,     8,     0,   231,    21,
-       0,   232,     0,     0,     0,     0,   233,     0,     0,   234,
-       0,     0,   235,     0,   236,     0,     0,     0,     0,     0,
-       0,    37,     0,     0,     0,   237,     0,     0,     0,     0,
-       0,     0,     0,     0,   238,     0,    50,     0,     0,   239,
-       0,   240,     0,     0,     0,     0,     0,     0,    60,    61,
-      62,    63,    64,     0,     0,    66,    67,    68,    69,    70,
-       0,     0,     0,    74,     0,     0,    77,     0,     0,     0,
-       0,     0,     0,    24,    25,    26,    27,    28,    29,    30,
-      31,    32,    33,    34,    35,    36,     0,     0,     0,    38,
-      39,    40,    41,     0,     0,    43,     0,     0,     0,     0,
-       0,   717,    49,     0,     0,    51,   718,   241,   719,   720,
-       0,   242,   243,     0,     0,     0,   244,   245,   246,     0,
-     247,   248,   249,     0,     0,     0,   108,    71,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   596,  1764,     0,     0,     0,     0,     0,   252,
-       0,    85,    86,    87,   598,   189,     6,     0,   299,   531,
-       0,   255,   190,   191,   192,     0,     0,   193,   194,   195,
-     196,   197,   198,   199,   200,   201,   202,   203,   204,   205,
-     206,   207,   208,   209,   210,   211,   212,   213,   214,   215,
-     216,   217,   218,   219,   220,   221,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   222,   223,   224,
-     225,     0,     0,     0,     0,   226,   227,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   968,   228,   229,   230,
-       0,     0,     7,     8,     0,   231,    21,     0,   232,     0,
-       0,     0,     0,   233,     0,     0,   234,     0,     0,   235,
-       0,   236,     0,     0,     0,     0,     0,     0,    37,     0,
-       0,     0,   237,     0,     0,     0,     0,     0,     0,     0,
-       0,   238,     0,    50,     0,     0,   239,     0,   240,     0,
-       0,     0,     0,     0,     0,    60,    61,    62,    63,    64,
-       0,     0,    66,    67,    68,    69,    70,     0,     0,     0,
-      74,     0,     0,    77,     0,     0,     0,     0,     0,     0,
-      24,    25,    26,    27,    28,    29,    30,    31,    32,    33,
-      34,    35,    36,     0,     0,     0,    38,    39,    40,    41,
-       0,     0,    43,     0,     0,     0,     0,     0,   717,    49,
-       0,     0,    51,   718,   241,   719,   720,     0,   242,   243,
-       0,     0,     0,   244,   245,   246,     0,   247,   248,   249,
-       0,     0,     0,   108,    71,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   250,
-     251,     0,     0,     0,     0,     0,   252,     0,    85,    86,
-      87,   253,   189,     6,     0,   254,     0,     0,   255,   190,
-     191,   192,     0,     0,   193,   194,   195,   196,   197,   198,
-     199,   200,   201,   202,   203,   204,   205,   206,   207,   208,
-     209,   210,   211,   212,   213,   214,   215,   216,   217,   218,
-     219,   220,   221,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   222,   223,   224,   225,     0,     0,
-       0,     0,   226,   227,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  1157,   228,   229,   230,     0,     0,     7,
-       8,     0,   231,    21,     0,   232,     0,     0,     0,     0,
-     233,     0,     0,   234,     0,     0,   235,     0,   236,     0,
-       0,     0,     0,     0,     0,    37,     0,     0,     0,   237,
-       0,     0,     0,     0,     0,     0,     0,     0,   238,     0,
-      50,     0,     0,   239,     0,   240,     0,     0,     0,     0,
-       0,     0,    60,    61,    62,    63,    64,     0,     0,    66,
-      67,    68,    69,    70,     0,     0,     0,    74,     0,     0,
-      77,     0,     0,     0,     0,     0,     0,    24,    25,    26,
-      27,    28,    29,    30,    31,    32,    33,    34,    35,    36,
-       0,     0,     0,    38,    39,    40,    41,     0,     0,    43,
-       0,     0,     0,     0,     0,   717,    49,     0,     0,    51,
-     718,   241,   719,   720,     0,   242,   243,     0,     0,     0,
-     244,   245,   246,     0,   247,   248,   249,     0,     0,     0,
-     108,    71,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   250,   251,     0,     0,
-       0,     0,     0,   252,     0,    85,    86,    87,   337,   189,
-       6,     0,   254,     0,     0,   255,   190,   191,   192,     0,
-       0,   193,   194,   195,   196,   197,   198,   199,   200,   201,
-     202,   203,   204,   205,   206,   207,   208,   209,   210,   211,
-     212,   213,   214,   215,   216,   217,   218,   219,   220,   221,
+     213,   214,   215,   216,   217,   218,   219,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   220,   221,
+     222,   223,     0,     0,     0,     0,   224,   225,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   226,   227,
+     228,     0,     0,     7,     8,   229,    20,     0,   230,     0,
+       0,     0,     0,   231,     0,     0,   232,     0,     0,   233,
+       0,   234,     0,     0,     0,     0,     0,     0,    36,     0,
+       0,     0,   235,     0,     0,     0,     0,     0,     0,     0,
+       0,   236,     0,    49,     0,     0,   237,     0,   238,     0,
+       0,     0,     0,     0,     0,    59,    60,    61,    62,    63,
+       0,     0,    65,    66,    67,    68,    69,     0,     0,     0,
+      73,     0,     0,    76,     0,     0,     0,     0,     0,     0,
+      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
+      33,    34,    35,     0,     0,     0,    37,    38,    39,    40,
+       0,     0,    42,     0,     0,     0,     0,     0,   715,    48,
+       0,     0,    50,   716,   239,   717,   718,     0,   240,   241,
+       0,     0,     0,   242,   243,   244,     0,   245,   246,   247,
+       0,     0,     0,   107,    70,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   248,
+     249,     0,     0,     0,     0,     0,   250,     0,    84,    85,
+      86,   335,   187,     6,     0,   336,     0,   630,   253,   188,
+     189,   190,     0,     0,   191,   192,   193,   194,   195,   196,
+     197,   198,   199,   200,   201,   202,   203,   204,   205,   206,
+     207,   208,   209,   210,   211,   212,   213,   214,   215,   216,
+     217,   218,   219,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   220,   221,   222,   223,     0,     0,
+       0,     0,   224,   225,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,   917,   226,   227,   228,     0,     0,     7,
+       8,   229,    20,     0,   230,     0,     0,     0,     0,   231,
+       0,     0,   232,     0,     0,   233,     0,   234,     0,     0,
+       0,     0,     0,     0,    36,     0,     0,     0,   235,     0,
+       0,     0,     0,     0,     0,     0,     0,   236,     0,    49,
+       0,     0,   237,     0,   238,     0,     0,     0,     0,     0,
+       0,    59,    60,    61,    62,    63,     0,     0,    65,    66,
+      67,    68,    69,     0,     0,     0,    73,     0,     0,    76,
+       0,     0,     0,     0,     0,     0,    23,    24,    25,    26,
+      27,    28,    29,    30,    31,    32,    33,    34,    35,     0,
+       0,     0,    37,    38,    39,    40,     0,     0,    42,     0,
+       0,     0,     0,     0,   715,    48,     0,     0,    50,   716,
+     239,   717,   718,     0,   240,   241,     0,     0,     0,   242,
+     243,   244,     0,   245,   246,   247,     0,     0,     0,   107,
+      70,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   248,   467,     0,     0,     0,
+       0,     0,   250,     0,    84,    85,    86,   335,   187,     6,
+    1609,     0,   529,     0,   253,   188,   189,   190,     0,     0,
+     191,   192,   193,   194,   195,   196,   197,   198,   199,   200,
+     201,   202,   203,   204,   205,   206,   207,   208,   209,   210,
+     211,   212,   213,   214,   215,   216,   217,   218,   219,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   222,   223,   224,   225,     0,     0,     0,     0,   226,
-     227,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-    1159,   228,   229,   230,     0,     0,     7,     8,     0,   231,
-      21,     0,   232,     0,     0,     0,     0,   233,     0,     0,
-     234,     0,     0,   235,     0,   236,     0,     0,     0,     0,
-       0,     0,    37,     0,     0,     0,   237,     0,     0,     0,
-       0,     0,     0,     0,     0,   238,     0,    50,     0,     0,
-     239,     0,   240,     0,     0,     0,     0,     0,     0,    60,
-      61,    62,    63,    64,     0,     0,    66,    67,    68,    69,
-      70,     0,     0,     0,    74,     0,     0,    77,     0,     0,
-       0,     0,     0,     0,    24,    25,    26,    27,    28,    29,
-      30,    31,    32,    33,    34,    35,    36,     0,     0,     0,
-      38,    39,    40,    41,     0,     0,    43,     0,     0,     0,
-       0,     0,   717,    49,     0,     0,    51,   718,   241,   719,
-     720,     0,   242,   243,     0,     0,     0,   244,   245,   246,
-       0,   247,   248,   249,     0,     0,     0,   108,    71,     0,
+     220,   221,   222,   223,     0,     0,     0,     0,   224,   225,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   964,
+     226,   227,   228,     0,     0,     7,     8,   229,    20,     0,
+     230,     0,     0,     0,     0,   231,     0,     0,   232,     0,
+       0,   233,     0,   234,     0,     0,     0,     0,     0,     0,
+      36,     0,     0,     0,   235,     0,     0,     0,     0,     0,
+       0,     0,     0,   236,     0,    49,     0,     0,   237,     0,
+     238,     0,     0,     0,     0,     0,     0,    59,    60,    61,
+      62,    63,     0,     0,    65,    66,    67,    68,    69,     0,
+       0,     0,    73,     0,     0,    76,     0,     0,     0,     0,
+       0,     0,    23,    24,    25,    26,    27,    28,    29,    30,
+      31,    32,    33,    34,    35,     0,     0,     0,    37,    38,
+      39,    40,     0,     0,    42,     0,     0,     0,     0,     0,
+     715,    48,     0,     0,    50,   716,   239,   717,   718,     0,
+     240,   241,     0,     0,     0,   242,   243,   244,     0,   245,
+     246,   247,     0,     0,     0,   107,    70,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   250,   469,     0,     0,     0,     0,     0,
-     252,     0,    85,    86,    87,   337,   189,     6,     0,   526,
-       0,     0,   255,   190,   191,   192,     0,     0,   193,   194,
+       0,   248,   249,     0,     0,     0,     0,     0,   250,     0,
+      84,    85,    86,   335,   187,     6,     0,   252,     0,     0,
+     253,   188,   189,   190,     0,     0,   191,   192,   193,   194,
      195,   196,   197,   198,   199,   200,   201,   202,   203,   204,
      205,   206,   207,   208,   209,   210,   211,   212,   213,   214,
-     215,   216,   217,   218,   219,   220,   221,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   222,   223,
-     224,   225,     0,     0,     0,     0,   226,   227,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,  1160,   228,   229,
-     230,     0,     0,     7,     8,     0,   231,    21,     0,   232,
-       0,     0,     0,     0,   233,     0,     0,   234,     0,     0,
-     235,     0,   236,     0,     0,     0,     0,     0,     0,    37,
-       0,     0,     0,   237,     0,     0,     0,     0,     0,     0,
-       0,     0,   238,     0,    50,     0,     0,   239,     0,   240,
-       0,     0,     0,     0,     0,     0,    60,    61,    62,    63,
-      64,     0,     0,    66,    67,    68,    69,    70,     0,     0,
-       0,    74,     0,     0,    77,     0,     0,     0,     0,     0,
-       0,    24,    25,    26,    27,    28,    29,    30,    31,    32,
-      33,    34,    35,    36,     0,     0,     0,    38,    39,    40,
-      41,     0,     0,    43,     0,     0,     0,     0,     0,   717,
-      49,     0,     0,    51,   718,   241,   719,   720,     0,   242,
-     243,     0,     0,     0,   244,   245,   246,     0,   247,   248,
-     249,     0,     0,     0,   108,    71,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     250,   469,     0,     0,     0,     0,     0,   252,     0,    85,
-      86,    87,   337,   189,     6,     0,     0,   531,     0,   255,
-     190,   191,   192,     0,     0,   193,   194,   195,   196,   197,
-     198,   199,   200,   201,   202,   203,   204,   205,   206,   207,
-     208,   209,   210,   211,   212,   213,   214,   215,   216,   217,
-     218,   219,   220,   221,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   222,   223,   224,   225,     0,
-       0,     0,     0,   226,   227,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,  1179,   228,   229,   230,     0,     0,
-       7,     8,     0,   231,    21,     0,   232,     0,     0,     0,
-       0,   233,     0,     0,   234,     0,     0,   235,     0,   236,
-       0,     0,     0,     0,     0,     0,    37,     0,     0,     0,
-     237,     0,     0,     0,     0,     0,     0,     0,     0,   238,
-       0,    50,     0,     0,   239,     0,   240,     0,     0,     0,
-       0,     0,     0,    60,    61,    62,    63,    64,     0,     0,
-      66,    67,    68,    69,    70,     0,     0,     0,    74,     0,
-       0,    77,     0,     0,     0,     0,     0,     0,    24,    25,
-      26,    27,    28,    29,    30,    31,    32,    33,    34,    35,
-      36,     0,     0,     0,    38,    39,    40,    41,     0,     0,
-      43,     0,     0,     0,     0,     0,   717,    49,     0,     0,
-      51,   718,   241,   719,   720,     0,   242,   243,     0,     0,
-       0,   244,   245,   246,     0,   247,   248,   249,     0,     0,
-       0,   108,    71,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   250,   251,     0,
-       0,     0,     0,     0,   252,     0,    85,    86,    87,   568,
-     189,     6,     0,   254,     0,     0,   255,   190,   191,   192,
-       0,     0,   193,   194,   195,   196,   197,   198,   199,   200,
-     201,   202,   203,   204,   205,   206,   207,   208,   209,   210,
-     211,   212,   213,   214,   215,   216,   217,   218,   219,   220,
-     221,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   222,   223,   224,   225,     0,     0,     0,     0,
-     226,   227,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,  1209,   228,   229,   230,     0,     0,     7,     8,     0,
-     231,    21,     0,   232,     0,     0,     0,     0,   233,     0,
-       0,   234,     0,     0,   235,     0,   236,     0,     0,     0,
-       0,     0,     0,    37,     0,     0,     0,   237,     0,     0,
-       0,     0,     0,     0,     0,     0,   238,     0,    50,     0,
-       0,   239,     0,   240,     0,     0,     0,     0,     0,     0,
-      60,    61,    62,    63,    64,     0,     0,    66,    67,    68,
-      69,    70,     0,     0,     0,    74,     0,     0,    77,     0,
-       0,     0,     0,     0,     0,    24,    25,    26,    27,    28,
-      29,    30,    31,    32,    33,    34,    35,    36,     0,     0,
-       0,    38,    39,    40,    41,     0,     0,    43,     0,     0,
-       0,     0,     0,   717,    49,     0,     0,    51,   718,   241,
-     719,   720,     0,   242,   243,     0,     0,     0,   244,   245,
-     246,     0,   247,   248,   249,     0,     0,     0,   108,    71,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   250,   251,     0,     0,     0,     0,
-       0,   252,     0,    85,    86,    87,   575,   189,     6,     0,
-     254,     0,     0,   255,   190,   191,   192,     0,     0,   193,
-     194,   195,   196,   197,   198,   199,   200,   201,   202,   203,
-     204,   205,   206,   207,   208,   209,   210,   211,   212,   213,
-     214,   215,   216,   217,   218,   219,   220,   221,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   222,
-     223,   224,   225,     0,     0,     0,     0,   226,   227,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,  1242,   228,
-     229,   230,     0,     0,     7,     8,     0,   231,    21,     0,
-     232,     0,     0,     0,     0,   233,     0,     0,   234,     0,
-       0,   235,     0,   236,     0,     0,     0,     0,     0,     0,
-      37,     0,     0,     0,   237,     0,     0,     0,     0,     0,
-       0,     0,     0,   238,     0,    50,     0,     0,   239,     0,
-     240,     0,     0,     0,     0,     0,     0,    60,    61,    62,
-      63,    64,     0,     0,    66,    67,    68,    69,    70,     0,
-       0,     0,    74,     0,     0,    77,     0,     0,     0,     0,
-       0,     0,    24,    25,    26,    27,    28,    29,    30,    31,
-      32,    33,    34,    35,    36,     0,     0,     0,    38,    39,
-      40,    41,     0,     0,    43,   937,     0,     0,     0,     0,
-     717,    49,     0,     0,    51,   718,   241,   719,   720,     0,
-     242,   243,     0,     0,     0,   244,   245,   246,     0,   247,
-     248,   249,     0,     0,     0,   108,    71,     0,     0,     0,
+     215,   216,   217,   218,   219,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   220,   221,   222,   223,
+       0,     0,     0,     0,   224,   225,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   966,   226,   227,   228,     0,
+       0,     7,     8,   229,    20,     0,   230,     0,     0,     0,
+       0,   231,     0,     0,   232,     0,     0,   233,     0,   234,
+       0,     0,     0,     0,     0,     0,    36,     0,     0,     0,
+     235,     0,     0,     0,     0,     0,     0,     0,     0,   236,
+       0,    49,     0,     0,   237,     0,   238,     0,     0,     0,
+       0,     0,     0,    59,    60,    61,    62,    63,     0,     0,
+      65,    66,    67,    68,    69,     0,     0,     0,    73,     0,
+       0,    76,     0,     0,     0,     0,     0,     0,    23,    24,
+      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
+      35,     0,     0,     0,    37,    38,    39,    40,     0,     0,
+      42,     0,     0,     0,     0,     0,   715,    48,     0,     0,
+      50,   716,   239,   717,   718,     0,   240,   241,     0,     0,
+       0,   242,   243,   244,     0,   245,   246,   247,     0,     0,
+       0,   107,    70,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   594,  1762,     0,
+       0,     0,     0,     0,   250,     0,    84,    85,    86,   596,
+     187,     6,     0,   297,   529,     0,   253,   188,   189,   190,
+       0,     0,   191,   192,   193,   194,   195,   196,   197,   198,
+     199,   200,   201,   202,   203,   204,   205,   206,   207,   208,
+     209,   210,   211,   212,   213,   214,   215,   216,   217,   218,
+     219,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   220,   221,   222,   223,     0,     0,     0,     0,
+     224,   225,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,  1155,   226,   227,   228,     0,     0,     7,     8,   229,
+      20,     0,   230,     0,     0,     0,     0,   231,     0,     0,
+     232,     0,     0,   233,     0,   234,     0,     0,     0,     0,
+       0,     0,    36,     0,     0,     0,   235,     0,     0,     0,
+       0,     0,     0,     0,     0,   236,     0,    49,     0,     0,
+     237,     0,   238,     0,     0,     0,     0,     0,     0,    59,
+      60,    61,    62,    63,     0,     0,    65,    66,    67,    68,
+      69,     0,     0,     0,    73,     0,     0,    76,     0,     0,
+       0,     0,     0,     0,    23,    24,    25,    26,    27,    28,
+      29,    30,    31,    32,    33,    34,    35,     0,     0,     0,
+      37,    38,    39,    40,     0,     0,    42,     0,     0,     0,
+       0,     0,   715,    48,     0,     0,    50,   716,   239,   717,
+     718,     0,   240,   241,     0,     0,     0,   242,   243,   244,
+       0,   245,   246,   247,     0,     0,     0,   107,    70,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   250,   469,     0,     0,     0,     0,     0,   252,     0,
-      85,    86,    87,   337,   189,     6,     0,   851,     0,  1299,
-     255,   190,   191,   192,     0,     0,   193,   194,   195,   196,
+       0,     0,     0,   248,   249,     0,     0,     0,     0,     0,
+     250,     0,    84,    85,    86,   251,   187,     6,     0,   252,
+       0,     0,   253,   188,   189,   190,     0,     0,   191,   192,
+     193,   194,   195,   196,   197,   198,   199,   200,   201,   202,
+     203,   204,   205,   206,   207,   208,   209,   210,   211,   212,
+     213,   214,   215,   216,   217,   218,   219,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   220,   221,
+     222,   223,     0,     0,     0,     0,   224,   225,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,  1157,   226,   227,
+     228,     0,     0,     7,     8,   229,    20,     0,   230,     0,
+       0,     0,     0,   231,     0,     0,   232,     0,     0,   233,
+       0,   234,     0,     0,     0,     0,     0,     0,    36,     0,
+       0,     0,   235,     0,     0,     0,     0,     0,     0,     0,
+       0,   236,     0,    49,     0,     0,   237,     0,   238,     0,
+       0,     0,     0,     0,     0,    59,    60,    61,    62,    63,
+       0,     0,    65,    66,    67,    68,    69,     0,     0,     0,
+      73,     0,     0,    76,     0,     0,     0,     0,     0,     0,
+      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
+      33,    34,    35,     0,     0,     0,    37,    38,    39,    40,
+       0,     0,    42,     0,     0,     0,     0,     0,   715,    48,
+       0,     0,    50,   716,   239,   717,   718,     0,   240,   241,
+       0,     0,     0,   242,   243,   244,     0,   245,   246,   247,
+       0,     0,     0,   107,    70,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   248,
+     249,     0,     0,     0,     0,     0,   250,     0,    84,    85,
+      86,   335,   187,     6,     0,   252,     0,     0,   253,   188,
+     189,   190,     0,     0,   191,   192,   193,   194,   195,   196,
      197,   198,   199,   200,   201,   202,   203,   204,   205,   206,
      207,   208,   209,   210,   211,   212,   213,   214,   215,   216,
-     217,   218,   219,   220,   221,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   222,   223,   224,   225,
-       0,     0,     0,     0,   226,   227,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1390,   228,   229,   230,     0,
-       0,     0,     0,     0,   231,    21,     0,   232,     0,     0,
-       0,     0,   233,     0,     0,   234,     0,     0,   235,     0,
-     236,     0,     0,     0,     0,     0,     0,    37,     0,     0,
-       0,   237,     0,     0,     0,     0,     0,     0,     0,     0,
-     238,     0,    50,     0,     0,   239,     0,   240,     0,     0,
-       0,     0,     0,     0,    60,    61,    62,    63,    64,     0,
-       0,    66,    67,    68,    69,    70,     0,     0,     0,    74,
-       0,     0,    77,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,  1127,     0,     0,
+     217,   218,   219,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   220,   221,   222,   223,     0,     0,
+       0,     0,   224,   225,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1158,   226,   227,   228,     0,     0,     7,
+       8,   229,    20,     0,   230,     0,     0,     0,     0,   231,
+       0,     0,   232,     0,     0,   233,     0,   234,     0,     0,
+       0,     0,     0,     0,    36,     0,     0,     0,   235,     0,
+       0,     0,     0,     0,     0,     0,     0,   236,     0,    49,
+       0,     0,   237,     0,   238,     0,     0,     0,     0,     0,
+       0,    59,    60,    61,    62,    63,     0,     0,    65,    66,
+      67,    68,    69,     0,     0,     0,    73,     0,     0,    76,
+       0,     0,     0,     0,     0,     0,    23,    24,    25,    26,
+      27,    28,    29,    30,    31,    32,    33,    34,    35,     0,
+       0,     0,    37,    38,    39,    40,     0,     0,    42,     0,
+       0,     0,     0,     0,   715,    48,     0,     0,    50,   716,
+     239,   717,   718,     0,   240,   241,     0,     0,     0,   242,
+     243,   244,     0,   245,   246,   247,     0,     0,     0,   107,
+      70,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   248,   467,     0,     0,     0,
+       0,     0,   250,     0,    84,    85,    86,   335,   187,     6,
+       0,   524,     0,     0,   253,   188,   189,   190,     0,     0,
+     191,   192,   193,   194,   195,   196,   197,   198,   199,   200,
+     201,   202,   203,   204,   205,   206,   207,   208,   209,   210,
+     211,   212,   213,   214,   215,   216,   217,   218,   219,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   241,     0,     0,     0,   242,   243,     0,
-       0,     0,   244,   245,   246,     0,   247,   248,   249,     0,
-       0,     0,   108,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   250,   469,
-       0,     0,     0,     0,     0,   252,   189,     6,     0,     0,
-     337,  1501,     0,   190,   191,   192,     0,   255,   193,   194,
+     220,   221,   222,   223,     0,     0,     0,     0,   224,   225,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,  1177,
+     226,   227,   228,     0,     0,     7,     8,   229,    20,     0,
+     230,     0,     0,     0,     0,   231,     0,     0,   232,     0,
+       0,   233,     0,   234,     0,     0,     0,     0,     0,     0,
+      36,     0,     0,     0,   235,     0,     0,     0,     0,     0,
+       0,     0,     0,   236,     0,    49,     0,     0,   237,     0,
+     238,     0,     0,     0,     0,     0,     0,    59,    60,    61,
+      62,    63,     0,     0,    65,    66,    67,    68,    69,     0,
+       0,     0,    73,     0,     0,    76,     0,     0,     0,     0,
+       0,     0,    23,    24,    25,    26,    27,    28,    29,    30,
+      31,    32,    33,    34,    35,     0,     0,     0,    37,    38,
+      39,    40,     0,     0,    42,     0,     0,     0,     0,     0,
+     715,    48,     0,     0,    50,   716,   239,   717,   718,     0,
+     240,   241,     0,     0,     0,   242,   243,   244,     0,   245,
+     246,   247,     0,     0,     0,   107,    70,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,   248,   467,     0,     0,     0,     0,     0,   250,     0,
+      84,    85,    86,   335,   187,     6,     0,     0,   529,     0,
+     253,   188,   189,   190,     0,     0,   191,   192,   193,   194,
      195,   196,   197,   198,   199,   200,   201,   202,   203,   204,
      205,   206,   207,   208,   209,   210,   211,   212,   213,   214,
-     215,   216,   217,   218,   219,   220,   221,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   222,   223,
-     224,   225,     0,     0,     0,     0,   226,   227,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   228,   229,
-     230,     0,     0,     0,     0,     0,   231,    21,     0,   232,
-       0,     0,     0,     0,   233,     0,     0,   234,     0,     0,
-     235,     0,   236,     0,     0,     0,     0,     0,     0,    37,
-       0,     0,     0,   237,     0,     0,     0,     0,     0,     0,
-       0,     0,   238,     0,    50,     0,     0,   239,     0,   240,
-       0,     0,     0,     0,     0,     0,    60,    61,    62,    63,
-      64,     0,     0,    66,    67,    68,    69,    70,     0,     0,
-       0,    74,     0,     0,    77,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,   241,     0,     0,     0,   242,
-     243,     0,     0,     0,   244,   245,   246,     0,   247,   248,
-     249,     0,     0,     0,   108,     0,     0,     0,     0,     0,
+     215,   216,   217,   218,   219,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   220,   221,   222,   223,
+       0,     0,     0,     0,   224,   225,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,  1207,   226,   227,   228,     0,
+       0,     7,     8,   229,    20,     0,   230,     0,     0,     0,
+       0,   231,     0,     0,   232,     0,     0,   233,     0,   234,
+       0,     0,     0,     0,     0,     0,    36,     0,     0,     0,
+     235,     0,     0,     0,     0,     0,     0,     0,     0,   236,
+       0,    49,     0,     0,   237,     0,   238,     0,     0,     0,
+       0,     0,     0,    59,    60,    61,    62,    63,     0,     0,
+      65,    66,    67,    68,    69,     0,     0,     0,    73,     0,
+       0,    76,     0,     0,     0,     0,     0,     0,    23,    24,
+      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
+      35,     0,     0,     0,    37,    38,    39,    40,     0,     0,
+      42,     0,     0,     0,     0,     0,   715,    48,     0,     0,
+      50,   716,   239,   717,   718,     0,   240,   241,     0,     0,
+       0,   242,   243,   244,     0,   245,   246,   247,     0,     0,
+       0,   107,    70,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   248,   249,     0,
+       0,     0,     0,     0,   250,     0,    84,    85,    86,   566,
+     187,     6,     0,   252,     0,     0,   253,   188,   189,   190,
+       0,     0,   191,   192,   193,   194,   195,   196,   197,   198,
+     199,   200,   201,   202,   203,   204,   205,   206,   207,   208,
+     209,   210,   211,   212,   213,   214,   215,   216,   217,   218,
+     219,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   220,   221,   222,   223,     0,     0,     0,     0,
+     224,   225,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,  1240,   226,   227,   228,     0,     0,     7,     8,   229,
+      20,     0,   230,     0,     0,     0,     0,   231,     0,     0,
+     232,     0,     0,   233,     0,   234,     0,     0,     0,     0,
+       0,     0,    36,     0,     0,     0,   235,     0,     0,     0,
+       0,     0,     0,     0,     0,   236,     0,    49,     0,     0,
+     237,     0,   238,     0,     0,     0,     0,     0,     0,    59,
+      60,    61,    62,    63,     0,     0,    65,    66,    67,    68,
+      69,     0,     0,     0,    73,     0,     0,    76,     0,     0,
+       0,     0,     0,     0,    23,    24,    25,    26,    27,    28,
+      29,    30,    31,    32,    33,    34,    35,     0,     0,     0,
+      37,    38,    39,    40,     0,     0,    42,     0,     0,     0,
+       0,     0,   715,    48,     0,     0,    50,   716,   239,   717,
+     718,     0,   240,   241,     0,     0,     0,   242,   243,   244,
+       0,   245,   246,   247,     0,     0,     0,   107,    70,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     250,   469,     0,     0,     0,     0,     0,   252,   189,     6,
-       0,     0,   337,     0,     0,   190,   191,   192,     0,   255,
+       0,     0,     0,   248,   249,     0,     0,     0,     0,     0,
+     250,     0,    84,    85,    86,   573,   187,     6,     0,   252,
+       0,     0,   253,   188,   189,   190,     0,     0,   191,   192,
      193,   194,   195,   196,   197,   198,   199,   200,   201,   202,
      203,   204,   205,   206,   207,   208,   209,   210,   211,   212,
-     213,   214,   215,   216,   217,   218,   219,   220,   221,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     222,   223,   224,   225,     0,     0,     0,     0,   226,   227,
+     213,   214,   215,   216,   217,   218,   219,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   220,   221,
+     222,   223,     0,     0,     0,     0,   224,   225,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,  1388,   226,   227,
+     228,     0,     0,     7,     8,   229,    20,     0,   230,     0,
+       0,     0,     0,   231,     0,     0,   232,     0,     0,   233,
+       0,   234,     0,     0,     0,     0,     0,     0,    36,     0,
+       0,     0,   235,     0,     0,     0,     0,     0,     0,     0,
+       0,   236,     0,    49,     0,     0,   237,     0,   238,     0,
+       0,     0,     0,     0,     0,    59,    60,    61,    62,    63,
+       0,     0,    65,    66,    67,    68,    69,     0,     0,     0,
+      73,     0,     0,    76,     0,     0,     0,     0,     0,     0,
+      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
+      33,    34,    35,     0,     0,     0,    37,    38,    39,    40,
+       0,     0,    42,   536,     0,     0,     0,     0,   715,    48,
+       0,     0,    50,   716,   239,   717,   718,     0,   240,   241,
+       0,     0,     0,   242,   243,   244,     0,   245,   246,   247,
+       0,     0,     0,   107,    70,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   248,
+     467,     0,     0,     0,     0,     0,   250,     0,    84,    85,
+      86,   335,   187,     6,     0,   849,     0,  1297,   253,   188,
+     189,   190,     0,     0,   191,   192,   193,   194,   195,   196,
+     197,   198,   199,   200,   201,   202,   203,   204,   205,   206,
+     207,   208,   209,   210,   211,   212,   213,   214,   215,   216,
+     217,   218,   219,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   220,   221,   222,   223,     0,     0,
+       0,     0,   224,   225,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1984,   226,   227,   228,     0,     0,     0,
+       0,   229,    20,     0,   230,     0,     0,     0,     0,   231,
+       0,     0,   232,     0,     0,   233,     0,   234,     0,     0,
+       0,     0,     0,     0,    36,     0,     0,     0,   235,     0,
+       0,     0,     0,     0,     0,     0,     0,   236,     0,    49,
+       0,     0,   237,     0,   238,     0,     0,     0,     0,     0,
+       0,    59,    60,    61,    62,    63,     0,     0,    65,    66,
+      67,    68,    69,     0,     0,     0,    73,     0,     0,    76,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   770,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,   935,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     228,   229,   230,     0,     0,     7,     8,     0,   231,    21,
-       0,   232,     0,     0,     0,     0,   233,     0,     0,   234,
-       0,     0,   235,     0,   236,     0,     0,     0,     0,     0,
-       0,    37,     0,     0,     0,   237,     0,     0,     0,     0,
-       0,     0,     0,     0,   238,     0,    50,     0,     0,   239,
-       0,   240,     0,     0,     0,     0,     0,     0,    60,    61,
-      62,    63,    64,     0,     0,    66,    67,    68,    69,    70,
-       0,     0,     0,    74,     0,     0,    77,     0,     0,     0,
-       0,     0,     0,    24,    25,    26,    27,    28,    29,    30,
-      31,    32,    33,    34,    35,    36,     0,     0,     0,    38,
-      39,    40,    41,     0,     0,    43,     0,     0,     0,     0,
-       0,   717,    49,     0,     0,    51,   718,   241,   719,   720,
-       0,   242,   243,     0,     0,     0,   244,   245,   246,     0,
-     247,   248,   249,     0,     0,     0,   108,    71,     0,     0,
+     239,     0,     0,     0,   240,   241,     0,     0,     0,   242,
+     243,   244,     0,   245,   246,   247,     0,     0,     0,   107,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   250,   251,     0,     0,     0,     0,     0,   252,
-       0,    85,    86,    87,   337,   189,     6,     0,  1619,     0,
-       0,   255,   190,   191,   192,     0,     0,   193,   194,   195,
+       0,     0,     0,     0,     0,   248,   467,     0,     0,     0,
+       0,     0,   250,   187,     6,     0,     0,   335,  1499,     0,
+     188,   189,   190,     0,   253,   191,   192,   193,   194,   195,
      196,   197,   198,   199,   200,   201,   202,   203,   204,   205,
      206,   207,   208,   209,   210,   211,   212,   213,   214,   215,
-     216,   217,   218,   219,   220,   221,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   222,   223,   224,
-     225,     0,     0,     0,     0,   226,   227,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,  1986,   228,   229,   230,
-       0,     0,     7,     8,     0,   231,    21,     0,   232,     0,
-       0,     0,     0,   233,     0,     0,   234,     0,     0,   235,
-       0,   236,     0,     0,     0,     0,     0,     0,    37,     0,
-       0,     0,   237,     0,     0,     0,     0,     0,     0,     0,
-       0,   238,     0,    50,     0,     0,   239,     0,   240,     0,
-       0,     0,     0,     0,     0,    60,    61,    62,    63,    64,
-       0,     0,    66,    67,    68,    69,    70,     0,     0,     0,
-      74,     0,     0,    77,     0,     0,     0,     0,     0,     0,
-      24,    25,    26,    27,    28,    29,    30,    31,    32,    33,
-      34,    35,    36,     0,     0,     0,    38,    39,    40,    41,
-       0,     0,    43,  1128,     0,     0,     0,     0,   717,    49,
-       0,     0,    51,   718,   241,   719,   720,     0,   242,   243,
-       0,     0,     0,   244,   245,   246,     0,   247,   248,   249,
-       0,     0,     0,   108,    71,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   596,
-    1764,     0,     0,     0,     0,     0,   252,     0,    85,    86,
-      87,   598,   189,     6,     0,   299,     0,     0,   255,   190,
-     191,   192,     0,     0,   193,   194,   195,   196,   197,   198,
+     216,   217,   218,   219,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   220,   221,   222,   223,     0,
+       0,     0,     0,   224,   225,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   226,   227,   228,     0,     0,
+       0,     0,   229,    20,     0,   230,     0,     0,     0,     0,
+     231,     0,     0,   232,     0,     0,   233,     0,   234,     0,
+       0,     0,     0,     0,     0,    36,     0,     0,     0,   235,
+       0,     0,     0,     0,     0,     0,     0,     0,   236,     0,
+      49,     0,     0,   237,     0,   238,     0,     0,     0,     0,
+       0,     0,    59,    60,    61,    62,    63,     0,     0,    65,
+      66,    67,    68,    69,     0,     0,     0,    73,     0,     0,
+      76,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,   239,     0,     0,     0,   240,   241,     0,     0,     0,
+     242,   243,   244,     0,   245,   246,   247,     0,     0,     0,
+     107,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   248,   467,     0,     0,
+       0,     0,     0,   250,   187,     6,     0,     0,   335,     0,
+       0,   188,   189,   190,     0,   253,   191,   192,   193,   194,
+     195,   196,   197,   198,   199,   200,   201,   202,   203,   204,
+     205,   206,   207,   208,   209,   210,   211,   212,   213,   214,
+     215,   216,   217,   218,   219,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   220,   221,   222,   223,
+       0,     0,     0,     0,   224,   225,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   226,   227,   228,     0,
+       0,     7,     8,   229,    20,     0,   230,     0,     0,     0,
+       0,   231,     0,     0,   232,     0,     0,   233,     0,   234,
+       0,     0,     0,     0,     0,     0,    36,     0,     0,     0,
+     235,     0,     0,     0,     0,     0,     0,     0,     0,   236,
+       0,    49,     0,     0,   237,     0,   238,     0,     0,     0,
+       0,     0,     0,    59,    60,    61,    62,    63,     0,     0,
+      65,    66,    67,    68,    69,     0,     0,     0,    73,     0,
+       0,    76,     0,     0,     0,     0,     0,     0,    23,    24,
+      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
+      35,     0,     0,     0,    37,    38,    39,    40,     0,     0,
+      42,  1125,     0,     0,     0,     0,   715,    48,     0,     0,
+      50,   716,   239,   717,   718,     0,   240,   241,     0,     0,
+       0,   242,   243,   244,     0,   245,   246,   247,     0,     0,
+       0,   107,    70,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   248,   249,     0,
+       0,     0,     0,     0,   250,     0,    84,    85,    86,   335,
+     187,     6,     0,  1617,     0,     0,   253,   188,   189,   190,
+       0,     0,   191,   192,   193,   194,   195,   196,   197,   198,
      199,   200,   201,   202,   203,   204,   205,   206,   207,   208,
      209,   210,   211,   212,   213,   214,   215,   216,   217,   218,
-     219,   220,   221,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   222,   223,   224,   225,     0,     0,
-       0,     0,   226,   227,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  2043,   228,   229,   230,     0,     0,     0,
-       0,     0,   231,    21,     0,   232,     0,     0,     0,     0,
-     233,     0,     0,   234,     0,     0,   235,     0,   236,     0,
-       0,     0,     0,     0,     0,    37,     0,     0,     0,   237,
-       0,     0,     0,     0,     0,     0,     0,     0,   238,     0,
-      50,     0,     0,   239,     0,   240,     0,     0,     0,     0,
-       0,     0,    60,    61,    62,    63,    64,     0,     0,    66,
-      67,    68,    69,    70,     0,     0,     0,    74,     0,     0,
-      77,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,     0,     0,
+     219,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   220,   221,   222,   223,     0,     0,     0,     0,
+     224,   225,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,  2041,   226,   227,   228,     0,     0,     0,     0,   229,
+      20,     0,   230,     0,     0,     0,     0,   231,     0,     0,
+     232,     0,     0,   233,     0,   234,     0,     0,     0,     0,
+       0,     0,    36,     0,     0,     0,   235,     0,     0,     0,
+       0,     0,     0,     0,     0,   236,     0,    49,     0,     0,
+     237,     0,   238,     0,     0,     0,     0,     0,     0,    59,
+      60,    61,    62,    63,     0,     0,    65,    66,    67,    68,
+      69,     0,     0,     0,    73,     0,     0,    76,   537,   538,
+     539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,     0,  1126,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   239,     0,
+       0,     0,   240,   241,     0,     0,     0,   242,   243,   244,
+       0,   245,   246,   247,     0,     0,     0,   107,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   241,     0,     0,     0,   242,   243,     0,     0,     0,
-     244,   245,   246,     0,   247,   248,   249,     0,     0,     0,
-     108,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   250,   469,     0,     0,
-       0,     0,     0,   252,   189,   152,   356,     0,   337,     0,
-       0,   190,   191,   192,     0,   255,   193,   194,   195,   196,
-     197,   198,   199,   200,   201,   202,   203,   204,   205,   206,
-     207,   208,   209,   392,   211,   212,   213,   214,   215,   216,
-    1436,     0,     0,     0,     0,     0,     0,   357,   358,   359,
-     360,   361,   362,   363,   364,   365,   222,   223,   224,   225,
-     366,   367,   368,   369,   226,     0,     0,     0,   370,   371,
-     372,     0,     0,   373,     0,   374,   228,   229,   230,     0,
-       0,     0,     0,     0,   231,    21,   375,   232,     0,   376,
-     189,   152,   356,     0,     0,     0,     0,   190,   191,   192,
-       0,     0,   193,   194,   195,   196,   197,   198,   199,   200,
-     201,   202,   203,   204,   205,   206,   207,   208,   209,   392,
-     211,   212,   213,   214,   215,   216,     0,     0,     0,     0,
-       0,     0,     0,   357,   358,   359,   360,   361,   362,   363,
-     364,   365,   222,   223,   224,   225,   366,   367,   368,   369,
-     226,     0,     0,     0,   370,   371,   372,     0,     0,   373,
-       0,   374,   228,   229,   230,     0,     0,     0,     0,     0,
-     231,    21,   375,   232,     0,   376,     0,     0,     0,     0,
+       0,     0,     0,   594,  1762,     0,     0,     0,     0,     0,
+     250,     0,     0,     0,     0,   596,   187,     6,     0,   297,
+       0,     0,   253,   188,   189,   190,     0,     0,   191,   192,
+     193,   194,   195,   196,   197,   198,   199,   200,   201,   202,
+     203,   204,   205,   206,   207,   208,   209,   210,   211,   212,
+     213,   214,   215,   216,   217,   218,   219,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   220,   221,
+     222,   223,     0,     0,     0,     0,   224,   225,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   226,   227,
+     228,     0,     0,     0,     0,   229,    20,     0,   230,     0,
+       0,     0,     0,   231,     0,     0,   232,     0,     0,   233,
+       0,   234,     0,     0,     0,     0,     0,     0,    36,     0,
+       0,     0,   235,     0,     0,     0,     0,     0,     0,     0,
+       0,   236,     0,    49,     0,     0,   237,     0,   238,     0,
+       0,     0,     0,     0,     0,    59,    60,    61,    62,    63,
+       0,     0,    65,    66,    67,    68,    69,     0,     0,     0,
+      73,     0,     0,    76,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   241,   377,   378,   379,   242,     0,     0,
-       0,     0,   244,   245,   246,   380,   247,   248,   249,   381,
-       0,   382,   108,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   250,   393,
-       0,     0,     0,     0,     0,   252,     0,     0,     0,     0,
-     337,     0,     0,     0,  1516,     0,     0,   255,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,     0,     0,     0,     0,     0,   241,
-     377,   378,   379,   242,     0,     0,     0,     0,   244,   245,
-     246,   380,   247,   248,   249,   381,     0,   382,   108,     0,
+       0,     0,     0,     0,   239,     0,     0,     0,   240,   241,
+       0,     0,     0,   242,   243,   244,     0,   245,   246,   247,
+       0,     0,     0,   107,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,   248,
+     467,     0,     0,     0,     0,     0,   250,   187,   150,   354,
+       0,   335,     0,     0,   188,   189,   190,     0,   253,   191,
+     192,   193,   194,   195,   196,   197,   198,   199,   200,   201,
+     202,   203,   204,   205,   206,   207,   390,   209,   210,   211,
+     212,   213,   214,  1434,     0,     0,     0,     0,     0,     0,
+     355,   356,   357,   358,   359,   360,   361,   362,   363,   220,
+     221,   222,   223,   364,   365,   366,   367,   224,     0,     0,
+       0,   368,   369,   370,     0,     0,   371,     0,   372,   226,
+     227,   228,     0,     0,     0,     0,   229,    20,   373,   230,
+       0,   374,   187,   150,   354,     0,     0,     0,     0,   188,
+     189,   190,     0,     0,   191,   192,   193,   194,   195,   196,
+     197,   198,   199,   200,   201,   202,   203,   204,   205,   206,
+     207,   390,   209,   210,   211,   212,   213,   214,     0,     0,
+       0,     0,     0,     0,     0,   355,   356,   357,   358,   359,
+     360,   361,   362,   363,   220,   221,   222,   223,   364,   365,
+     366,   367,   224,     0,     0,     0,   368,   369,   370,     0,
+       0,   371,     0,   372,   226,   227,   228,     0,     0,     0,
+       0,   229,    20,   373,   230,     0,   374,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   250,   393,     0,     0,     0,     0,
-       0,   252,     0,     0,     0,     0,   337,   189,   152,   356,
-    1777,     0,     0,   255,   190,   191,   192,     0,     0,   193,
-     194,   195,   196,   197,   198,   199,   200,   201,   202,   203,
-     204,   205,   206,   207,   208,   209,   392,   211,   212,   213,
-     214,   215,   216,     0,     0,     0,     0,     0,     0,     0,
-    1520,   358,   359,   360,   361,   362,   363,   364,   365,   222,
-     223,   224,   225,   366,   367,   368,   369,   226,     0,     0,
-       0,   370,   371,   372,     0,     0,   373,     0,   374,   228,
-     229,   230,     0,     0,     0,     0,     0,   231,    21,   375,
-     232,     0,   376,   189,   152,   356,     0,     0,     0,     0,
-     190,   191,   192,     0,     0,   193,   194,   195,   196,   197,
-     198,   199,   200,   201,   202,   203,   204,   205,   206,   207,
-     208,   209,   392,   211,   212,   213,   214,   215,   216,     0,
-       0,     0,     0,     0,     0,     0,   357,   358,   359,   360,
-     361,   362,   363,   364,   365,   222,   223,   224,   225,   366,
-     367,   368,   369,   226,     0,     0,     0,   370,   371,   372,
-       0,     0,   373,     0,   374,   228,   229,   230,  1380,     0,
-       0,     0,     0,   231,    21,   375,   232,     0,   376,     0,
+       0,     0,     0,     0,     0,   239,   375,   376,   377,   240,
+       0,     0,     0,     0,   242,   243,   244,   378,   245,   246,
+     247,   379,     0,   380,   107,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   241,   377,   378,   379,
-     242,     0,     0,     0,     0,   244,   245,   246,   380,   247,
-     248,   249,   381,     0,   382,   108,     0,     0,     0,     0,
+     248,   391,     0,     0,     0,     0,     0,   250,     0,     0,
+       0,     0,   335,     0,     0,     0,  1514,     0,     0,   253,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,     0,     0,     0,     0,
+     239,   375,   376,   377,   240,     0,     0,     0,     0,   242,
+     243,   244,   378,   245,   246,   247,   379,     0,   380,   107,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   250,   393,     0,     0,     0,     0,     0,   252,     0,
-       0,     0,     0,   337,     0,     0,     0,  1673,     0,     0,
-     255,     0,     0,     0,     0,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,     0,   241,   377,   378,   379,   242,     0,     0,     0,
-       0,   244,   245,   246,   380,   247,   248,   249,   381,     0,
-     382,   108,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   250,   393,     0,
-       0,     0,     0,     0,   252,   189,   152,     0,     0,   337,
-     820,     0,   190,   191,   192,     0,   255,   193,   194,   195,
+       0,     0,     0,     0,     0,   248,   391,     0,     0,     0,
+       0,     0,   250,     0,     0,     0,     0,   335,   187,   150,
+     354,  1775,     0,     0,   253,   188,   189,   190,     0,     0,
+     191,   192,   193,   194,   195,   196,   197,   198,   199,   200,
+     201,   202,   203,   204,   205,   206,   207,   390,   209,   210,
+     211,   212,   213,   214,     0,     0,     0,     0,     0,     0,
+       0,  1518,   356,   357,   358,   359,   360,   361,   362,   363,
+     220,   221,   222,   223,   364,   365,   366,   367,   224,     0,
+       0,     0,   368,   369,   370,     0,     0,   371,     0,   372,
+     226,   227,   228,     0,     0,     0,     0,   229,    20,   373,
+     230,     0,   374,   187,   150,   354,     0,     0,     0,     0,
+     188,   189,   190,     0,     0,   191,   192,   193,   194,   195,
      196,   197,   198,   199,   200,   201,   202,   203,   204,   205,
-     206,   207,   208,   209,   392,   211,   212,   213,   214,   215,
-     216,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   222,   223,   224,
-     225,     0,     0,     0,     0,   226,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,   228,   229,   230,
-       0,     0,   189,   152,     0,   231,    21,     0,   232,   190,
-     191,   192,     0,     0,   193,   194,   195,   196,   197,   198,
-     199,   200,   201,   202,   203,   204,   205,   206,   207,   208,
-     209,   392,   211,   212,   213,   214,   215,   216,     0,     0,
+     206,   207,   390,   209,   210,   211,   212,   213,   214,     0,
+       0,     0,     0,     0,     0,     0,   355,   356,   357,   358,
+     359,   360,   361,   362,   363,   220,   221,   222,   223,   364,
+     365,   366,   367,   224,     0,     0,     0,   368,   369,   370,
+       0,     0,   371,     0,   372,   226,   227,   228,  1378,     0,
+       0,     0,   229,    20,   373,   230,     0,   374,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   222,   223,   224,   225,     0,     0,
-       0,     0,   226,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   228,   229,   230,     0,     0,     0,
-       0,     0,   231,    21,     0,   232,     0,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   704,     0,   705,   241,     0,     0,     0,   242,  1639,
-       0,     0,     0,   244,   245,   246,     0,   247,   248,   249,
-       0,     0,     0,   108,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   250,
-     393,     0,     0,     0,     0,     0,   252,     0,     0,     0,
-       0,   337,     0,     0,     0,     0,     0,     0,   255,     0,
-       0,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,   241,     0,   557,     0,   242,     0,     0,     0,  1745,
-     244,   245,   246,  1746,   247,   248,   249,     0,     0,     0,
-     108,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   250,   393,     0,     0,
-       0,     0,     0,   252,   189,   152,     0,  1250,   337,  1031,
-       0,   190,   191,   192,     0,   255,   193,   194,   195,   196,
-     197,   198,   199,   200,   201,   202,   203,   204,   205,   206,
-     207,   208,   209,   392,   211,   212,   213,   214,   215,   216,
+       0,     0,     0,     0,     0,     0,   239,   375,   376,   377,
+     240,     0,     0,     0,     0,   242,   243,   244,   378,   245,
+     246,   247,   379,     0,   380,   107,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   222,   223,   224,   225,
-       0,     0,     0,     0,   226,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   228,   229,   230,     0,
-       0,     0,     0,     0,   231,    21,     0,   232,   189,   152,
-       0,  1398,     0,     0,     0,   190,   191,   192,     0,     0,
-     193,   194,   195,   196,   197,   198,   199,   200,   201,   202,
-     203,   204,   205,   206,   207,   208,   209,   392,   211,   212,
-     213,   214,   215,   216,     0,     0,     0,     0,     0,     0,
+       0,   248,   391,     0,     0,     0,     0,     0,   250,     0,
+       0,     0,     0,   335,     0,     0,     0,  1671,     0,     0,
+     253,     0,     0,     0,     0,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,   239,   375,   376,   377,   240,     0,     0,     0,     0,
+     242,   243,   244,   378,   245,   246,   247,   379,     0,   380,
+     107,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   248,   391,     0,     0,
+       0,     0,     0,   250,   187,   150,     0,     0,   335,   818,
+       0,   188,   189,   190,     0,   253,   191,   192,   193,   194,
+     195,   196,   197,   198,   199,   200,   201,   202,   203,   204,
+     205,   206,   207,   390,   209,   210,   211,   212,   213,   214,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   220,   221,   222,   223,
+       0,     0,     0,     0,   224,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   226,   227,   228,     0,
+     187,   150,     0,   229,    20,     0,   230,   188,   189,   190,
+       0,     0,   191,   192,   193,   194,   195,   196,   197,   198,
+     199,   200,   201,   202,   203,   204,   205,   206,   207,   390,
+     209,   210,   211,   212,   213,   214,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   220,   221,   222,   223,     0,     0,     0,     0,
+     224,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,   226,   227,   228,     0,     0,     0,     0,   229,
+      20,     0,   230,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,   702,     0,   703,
+       0,     0,   239,     0,     0,  1637,   240,     0,     0,     0,
+       0,   242,   243,   244,     0,   245,   246,   247,     0,     0,
+       0,   107,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   248,   391,     0,
+       0,     0,     0,     0,   250,     0,     0,     0,     0,   335,
+       0,     0,     0,     0,     0,     0,   253,     0,   537,   538,
+     539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
+     549,   676,   551,   552,   553,   554,     0,     0,   239,     0,
+     555,     0,   240,     0,     0,     0,  1743,   242,   243,   244,
+    1744,   245,   246,   247,     0,     0,     0,   107,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     222,   223,   224,   225,     0,     0,     0,     0,   226,     0,
+       0,     0,     0,   248,   391,     0,     0,     0,     0,     0,
+     250,   187,   150,     0,  1248,   335,  1029,     0,   188,   189,
+     190,     0,   253,   191,   192,   193,   194,   195,   196,   197,
+     198,   199,   200,   201,   202,   203,   204,   205,   206,   207,
+     390,   209,   210,   211,   212,   213,   214,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     228,   229,   230,     0,     0,     0,     0,     0,   231,    21,
-       0,   232,     0,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,   241,     0,   557,     0,   242,     0,     0,
-       0,  1772,   244,   245,   246,  1773,   247,   248,   249,     0,
-       0,     0,   108,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   250,   393,
-       0,     0,     0,     0,     0,   252,     0,     0,     0,     0,
-     337,     0,     0,     0,     0,     0,     0,   255,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,   928,     0,     0,     0,     0,   241,     0,     0,
-     889,   242,     0,     0,     0,     0,   244,   245,   246,     0,
-     247,   248,   249,     0,     0,     0,   108,     0,     0,     0,
+       0,     0,     0,   220,   221,   222,   223,     0,     0,     0,
+       0,   224,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,   226,   227,   228,     0,     0,     0,     0,
+     229,    20,     0,   230,   187,   150,     0,  1396,     0,     0,
+       0,   188,   189,   190,     0,     0,   191,   192,   193,   194,
+     195,   196,   197,   198,   199,   200,   201,   202,   203,   204,
+     205,   206,   207,   390,   209,   210,   211,   212,   213,   214,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   250,   393,     0,     0,     0,     0,     0,   252,
-     189,   152,     0,  1460,   337,     0,     0,   190,   191,   192,
-       0,   255,   193,   194,   195,   196,   197,   198,   199,   200,
-     201,   202,   203,   204,   205,   206,   207,   208,   209,   392,
-     211,   212,   213,   214,   215,   216,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   220,   221,   222,   223,
+       0,     0,     0,     0,   224,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,   226,   227,   228,     0,
+       0,     0,     0,   229,    20,     0,   230,     0,     0,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,   239,
+       0,   555,     0,   240,     0,     0,     0,  1770,   242,   243,
+     244,  1771,   245,   246,   247,     0,     0,     0,   107,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   222,   223,   224,   225,     0,     0,     0,     0,
-     226,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   228,   229,   230,     0,     0,   189,   152,     0,
-     231,    21,     0,   232,   190,   191,   192,     0,     0,   193,
+       0,     0,     0,     0,   248,   391,     0,     0,     0,     0,
+       0,   250,     0,     0,     0,     0,   335,     0,     0,     0,
+       0,     0,     0,   253,     0,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,   926,
+       0,     0,   239,     0,     0,     0,   240,   887,     0,     0,
+       0,   242,   243,   244,     0,   245,   246,   247,     0,     0,
+       0,   107,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   248,   391,     0,
+       0,     0,     0,     0,   250,   187,   150,     0,  1458,   335,
+       0,     0,   188,   189,   190,     0,   253,   191,   192,   193,
      194,   195,   196,   197,   198,   199,   200,   201,   202,   203,
-     204,   205,   206,   207,   208,   209,   392,   211,   212,   213,
-     214,   215,   216,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   222,
-     223,   224,   225,     0,     0,     0,     0,   226,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,   228,
-     229,   230,     0,     0,     0,     0,     0,   231,    21,     0,
-     232,     0,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,   241,
-    1931,     0,     0,   242,  1932,     0,     0,     0,   244,   245,
-     246,     0,   247,   248,   249,     0,     0,     0,   108,     0,
+     204,   205,   206,   207,   390,   209,   210,   211,   212,   213,
+     214,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   220,   221,   222,
+     223,     0,     0,     0,     0,   224,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   226,   227,   228,
+       0,   187,   150,     0,   229,    20,     0,   230,   188,   189,
+     190,     0,     0,   191,   192,   193,   194,   195,   196,   197,
+     198,   199,   200,   201,   202,   203,   204,   205,   206,   207,
+     390,   209,   210,   211,   212,   213,   214,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,   250,   393,     0,     0,     0,     0,
-       0,   252,     0,     0,     0,     0,   337,     0,     0,     0,
-       0,     0,     0,   255,     0,     0,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,   241,     0,   557,     0,
-     242,     0,     0,     0,     0,   244,   245,   246,   733,   247,
-     248,   249,     0,     0,     0,   108,     0,     0,     0,     0,
+       0,     0,     0,   220,   221,   222,   223,     0,     0,     0,
+       0,   224,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,   226,   227,   228,     0,     0,     0,     0,
+     229,    20,     0,   230,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
+       0,     0,  1929,   239,     0,     0,  1930,   240,     0,     0,
+       0,     0,   242,   243,   244,     0,   245,   246,   247,     0,
+       0,     0,   107,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,   248,   391,
+       0,     0,     0,     0,     0,   250,     0,     0,     0,     0,
+     335,     0,     0,     0,     0,     0,     0,   253,     0,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,   239,
+       0,   555,     0,   240,     0,     0,     0,     0,   242,   243,
+     244,   731,   245,   246,   247,     0,     0,     0,   107,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   250,   393,     0,     0,     0,     0,     0,   252,   189,
-     152,     0,     0,   337,  1515,     0,   190,   191,   192,     0,
-     255,   193,   194,   195,   196,   197,   198,   199,   200,   201,
-     202,   203,   204,   205,   206,   207,   208,   209,   392,   211,
-     212,   213,   214,   215,   216,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   248,   391,     0,     0,     0,     0,
+       0,   250,   187,   150,     0,     0,   335,  1513,     0,   188,
+     189,   190,     0,   253,   191,   192,   193,   194,   195,   196,
+     197,   198,   199,   200,   201,   202,   203,   204,   205,   206,
+     207,   390,   209,   210,   211,   212,   213,   214,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   222,   223,   224,   225,     0,     0,     0,     0,   226,
+       0,     0,     0,     0,   220,   221,   222,   223,     0,     0,
+       0,     0,   224,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   226,   227,   228,     0,   187,   150,
+       0,   229,    20,     0,   230,   188,   189,   190,     0,     0,
+     191,   192,   193,   194,   195,   196,   197,   198,   199,   200,
+     201,   202,   203,   204,   205,   206,   207,   390,   209,   210,
+     211,   212,   213,   214,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,   228,   229,   230,     0,     0,   189,   152,     0,   231,
-      21,     0,   232,   190,   191,   192,     0,     0,   193,   194,
-     195,   196,   197,   198,   199,   200,   201,   202,   203,   204,
-     205,   206,   207,   208,   209,   392,   211,   212,   213,   214,
-     215,   216,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   222,   223,
-     224,   225,     0,     0,     0,     0,   226,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   228,   229,
-     230,     0,     0,     0,     0,     0,   231,    21,     0,   232,
-       0,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,   241,     0,
-       0,     0,   242,   889,     0,     0,     0,   244,   245,   246,
-       0,   247,   248,   249,     0,     0,     0,   108,     0,     0,
+     220,   221,   222,   223,     0,     0,     0,     0,   224,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,   250,   393,     0,     0,     0,     0,     0,
-     252,     0,     0,     0,     0,   337,  1823,     0,     0,     0,
-       0,     0,   255,     0,    -4,     1,     0,     0,    -4,     0,
-       0,     0,     0,     0,     0,     0,     0,    -4,    -4,     0,
-       0,     0,     0,     0,     0,   241,     0,     0,     0,   242,
-       0,     0,     0,     0,   244,   245,   246,     0,   247,   248,
-     249,     0,     0,     0,   108,     0,     0,     0,    -4,    -4,
+     226,   227,   228,     0,     0,     0,     0,   229,    20,     0,
+     230,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,     0,
+     239,     0,     0,   887,   240,     0,     0,     0,     0,   242,
+     243,   244,     0,   245,   246,   247,     0,     0,     0,   107,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-     250,   393,     0,     0,     0,     0,     0,   252,    -4,    -4,
-      -4,     0,   337,     0,    -4,    -4,     0,    -4,     0,   255,
-       0,     0,    -4,    -4,     0,    -4,    -4,     0,    -4,     0,
+       0,     0,     0,     0,     0,   248,   391,     0,     0,     0,
+       0,     0,   250,     0,     0,     0,     0,   335,  1821,     0,
+       0,     0,     0,     0,   253,    -4,     1,     0,     0,    -4,
+       0,     0,     0,     0,     0,     0,     0,     0,    -4,    -4,
+       0,     0,     0,     0,     0,     0,   239,     0,     0,     0,
+     240,     0,     0,     0,     0,   242,   243,   244,     0,   245,
+     246,   247,     0,     0,     0,   107,     0,     0,     0,    -4,
+      -4,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,   248,   391,     0,     0,     0,     0,     0,   250,    -4,
+      -4,    -4,     0,   335,     0,    -4,    -4,     0,    -4,     0,
+     253,     0,     0,    -4,     0,    -4,    -4,     0,    -4,     0,
        0,     0,     0,    -4,    -4,    -4,    -4,    -4,    -4,    -4,
       -4,    -4,    -4,    -4,    -4,    -4,    -4,    -4,     0,     0,
       -4,    -4,    -4,    -4,    -4,    -4,     0,    -4,     0,    -4,
@@ -3316,2263 +3304,2249 @@ static const yytype_int16 yytable[] =
       10,     0,    -4,    -4,    -4,     0,     0,     0,     0,     0,
        0,     0,     0,    -4,     0,    -4,     0,     0,     0,    11,
       12,    13,     0,     0,     0,    14,    15,     0,    16,     0,
-       0,     0,     0,    17,    18,     0,    19,    20,     0,    21,
-       0,     0,     0,     0,    22,    23,    24,    25,    26,    27,
-      28,    29,    30,    31,    32,    33,    34,    35,    36,     0,
-       0,    37,    38,    39,    40,    41,    42,     0,    43,     0,
-      44,    45,    46,    47,    48,    49,    50,     0,    51,    52,
-      53,    54,    55,    56,     0,    57,    58,    59,    60,    61,
-      62,    63,    64,    65,     0,    66,    67,    68,    69,    70,
-      71,    72,    73,    74,    75,    76,    77,    78,    79,     0,
-       0,     0,    80,    81,    82,     0,     0,     0,    83,     0,
-       0,     0,     0,    84,    85,    86,    87,   152,   356,    88,
-       0,    89,     0,    90,    91,    92,    93,    94,    95,    96,
-      97,    98,    99,   100,   101,   102,   103,     0,     0,     0,
-       0,     0,     0,   104,   105,   106,     0,   152,   356,     0,
-       0,     0,     0,     0,   107,     0,   108,     0,     0,   357,
-     358,   359,   360,   361,   362,   363,   364,   365,     0,     0,
-       0,     0,   366,   367,   368,   369,     0,   386,   356,     0,
-     370,   371,   372,     0,     0,   373,     0,   374,     0,   357,
-     358,   359,   360,   361,   362,   363,   364,   365,   375,     0,
-       0,   376,   366,   367,   368,   369,     0,     0,   356,     0,
-     370,   371,   372,     0,     0,   373,     0,   374,     0,   357,
-     358,   359,   360,   361,   362,   363,   364,   365,   375,     0,
-       0,   376,   366,   367,   368,   369,     0,     0,     0,   406,
-     370,   371,   372,     0,     0,   373,     0,   374,     0,   357,
-     358,   359,   360,   361,   362,   363,   364,   365,   375,     0,
-       0,   376,   366,   367,   368,   369,     0,     0,     0,     0,
-     370,   371,   372,     0,     0,   373,     0,   374,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,   375,     0,
-       0,   376,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   377,   378,   379,     0,
-       0,     0,     0,     0,     0,     0,     0,   380,     0,     0,
-       0,   381,     0,   382,   108,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   377,   378,   379,     7,
-       8,     0,     0,     0,     0,     0,     0,   380,     0,     0,
-       0,   381,     0,   382,   108,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   377,   378,   379,     0,
-       0,     0,     0,     0,     0,     0,     0,   380,     0,     0,
-       0,   381,     0,   382,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,   377,   378,   379,     0,
-       0,     0,     0,     0,     7,     8,     0,   380,     0,     0,
-       0,   381,     0,   382,     0,     0,     0,    24,    25,    26,
-      27,    28,    29,    30,    31,    32,    33,    34,    35,    36,
-       0,     0,     0,    38,    39,    40,    41,     0,     0,    43,
-       0,     0,     0,     0,     0,   717,    49,     0,     0,    51,
-     718,     0,   719,   720,     0,     0,     0,     0,   977,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,    71,     0,     0,     0,   978,     0,     0,     0,     0,
-       0,     0,    24,    25,    26,    27,    28,    29,    30,    31,
-      32,    33,    34,    35,    36,    85,    86,    87,    38,    39,
-      40,    41,     0,     0,    43,     0,     0,     0,     0,     0,
-     717,    49,     0,     0,    51,   718,     0,   719,   720,     0,
+       0,     0,     0,    17,     0,    18,    19,     0,    20,     0,
+       0,     0,     0,    21,    22,    23,    24,    25,    26,    27,
+      28,    29,    30,    31,    32,    33,    34,    35,     0,     0,
+      36,    37,    38,    39,    40,    41,     0,    42,     0,    43,
+      44,    45,    46,    47,    48,    49,     0,    50,    51,    52,
+      53,    54,    55,     0,    56,    57,    58,    59,    60,    61,
+      62,    63,    64,     0,    65,    66,    67,    68,    69,    70,
+      71,    72,    73,    74,    75,    76,    77,    78,     0,     0,
+       0,    79,    80,    81,     0,     0,     0,    82,     0,     0,
+       0,     0,    83,    84,    85,    86,   150,   354,    87,     0,
+      88,     0,    89,    90,    91,    92,    93,    94,    95,    96,
+      97,    98,    99,   100,   101,   102,     0,     0,     0,     0,
+       0,     0,   103,   104,   105,   150,   354,     0,     0,     0,
+       0,     0,     0,   106,     0,   107,     0,     0,   355,   356,
+     357,   358,   359,   360,   361,   362,   363,     0,     0,     0,
+       0,   364,   365,   366,   367,     0,     0,     0,     0,   368,
+     369,   370,     0,     0,   371,     0,   372,   355,   356,   357,
+     358,   359,   360,   361,   362,   363,   373,   384,   354,   374,
+     364,   365,   366,   367,     0,     0,     0,     0,   368,   369,
+     370,     0,     0,   371,     0,   372,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,   373,     0,     0,   374,     0,
+       0,     0,     0,     0,     0,     0,     0,   404,     0,   355,
+     356,   357,   358,   359,   360,   361,   362,   363,     0,     0,
+       0,     0,   364,   365,   366,   367,     0,     0,     0,     0,
+     368,   369,   370,     0,     0,   371,     0,   372,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,   373,     0,     0,
+     374,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,   375,   376,   377,     0,     0,     0,
+       0,   354,     0,   888,     0,   378,     0,     0,     0,   379,
+       0,   380,   107,     0,     0,     0,     7,     8,     0,     0,
+       0,     0,     0,   375,   376,   377,     0,     0,     0,     0,
+       0,     0,     0,     0,   378,     0,     0,     0,   379,     0,
+     380,   107,   355,   356,   357,   358,   359,   360,   361,   362,
+     363,     0,     0,     0,     0,   364,   365,   366,   367,     0,
+       0,     0,     0,   368,   369,   370,     0,     0,   371,     0,
+     372,     0,     0,     0,     0,   375,   376,   377,     0,     0,
+     373,     0,     0,   374,     0,     0,   378,     0,     0,     0,
+     379,     0,   380,    23,    24,    25,    26,    27,    28,    29,
+      30,    31,    32,    33,    34,    35,     0,     0,     0,    37,
+      38,    39,    40,     0,     0,    42,     0,     0,     0,     0,
+       0,   715,    48,     0,     0,    50,   716,     0,   717,   718,
+       7,     8,     0,     0,   975,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,    70,     0,     0,
+       0,   976,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,    84,    85,    86,   555,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,   932,     0,     0,     0,   375,   376,
+     377,     0,     0,     0,     0,     0,     0,     0,     0,   378,
+       0,     0,     0,   379,     0,   380,     0,    23,    24,    25,
+      26,    27,    28,    29,    30,    31,    32,    33,    34,    35,
+       0,     0,     0,    37,    38,    39,    40,     0,     0,    42,
+       0,     0,     0,     0,     0,   715,    48,     0,     0,    50,
+     716,     0,   717,   718,     0,     0,     0,     0,     0,     0,
        0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,    71,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-      85,    86,    87,     0,     0,     0,     0,     0,     0,   890,
+       0,    70,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,    84,    85,    86,     0,     0,
+       0,     0,     0,     0,  1076,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,  1086,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,   934,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1078,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,  1088,   539,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+    1087,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1088,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,  1093,   537,   538,   539,
      540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,  1089,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,  1090,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,  1095,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-    1096,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  1098,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,     0,     0,     0,     0,   557,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,  1203,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,  1224,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,  1094,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,  1096,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,  1201,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,  1222,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,  1306,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,  1390,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,  1391,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,  1308,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1392,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,  1393,   539,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+    1433,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1554,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,  1555,   537,   538,   539,
      540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,  1435,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,  1556,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,  1557,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-    1558,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  1572,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,     0,     0,     0,     0,   557,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,  1700,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,  1811,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,  1556,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,  1570,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,  1698,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,  1809,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,  1810,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,  1835,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,  1838,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,  1812,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  1837,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,  1840,   539,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+    1904,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,     0,
+       0,     0,     0,  1955,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
+       0,     0,     0,     0,     0,     0,  1956,   537,   538,   539,
      540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,  1906,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,     0,
-       0,     0,     0,     0,  1957,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,     0,     0,     0,     0,     0,     0,  1958,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,     0,     0,     0,     0,     0,     0,
-    1970,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,     0,     0,
-       0,     0,     0,  1972,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,     0,     0,     0,     0,   557,     0,     0,     0,
-       0,     0,     0,     0,     0,     0,  2004,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,     0,     0,     0,     0,     0,     0,     0,     0,  2031,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+       0,     0,     0,     0,     0,     0,     0,     0,     0,  1968,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,     0,     0,     0,     0,
+       0,     0,  1970,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,     0,     0,     0,
+       0,     0,     0,     0,     0,  2002,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+       0,     0,     0,     0,     0,     0,     0,     0,  2029,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,     0,     0,     0,     0,     0,     0,
+       0,  2034,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+       0,     0,     0,     0,  2035,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,     0,     0,     0,     0,     0,     0,  2036,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,     0,     0,     0,     0,
-       0,     0,  2036,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,     0,     0,     0,     0,  2037,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,     0,     0,     0,     0,     0,     0,  2038,   539,
-     540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,     0,     0,     0,     0,     0,
-       0,  2077,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,     0,
-    1013,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,     0,  1065,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,     0,     0,     0,     0,
+    2075,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,  1011,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,     0,     0,  1063,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,     0,     0,     0,  1106,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,     0,     0,  1108,   539,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,  1107,   537,   538,   539,
      540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,     0,     0,  1109,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,     0,     0,  1151,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,     0,     0,     0,     0,  1182,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,     0,     0,  1200,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,     0,     0,  1256,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,     0,     0,     0,     0,   557,     0,     0,     0,
-       0,     0,  1351,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,  1394,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,     0,
-    1466,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,     0,  1467,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+       0,     0,     0,     0,     0,  1149,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+       0,     0,     0,     0,  1180,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,     0,     0,  1198,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
+       0,     0,  1254,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,     0,     0,     0,
+       0,  1349,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+    1392,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,  1464,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,     0,     0,  1465,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,     0,     0,     0,  1466,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,     0,     0,  1468,   539,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,  1467,   537,   538,   539,
      540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,     0,     0,  1469,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,     0,     0,  1743,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,     0,     0,     0,     0,  1754,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,     0,     0,  1791,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,     0,     0,  1856,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,     0,     0,     0,     0,   557,     0,     0,     0,
-       0,     0,  1871,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,  1883,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,     0,
-    1920,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,     0,  1937,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+       0,     0,     0,     0,     0,  1741,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+       0,     0,     0,     0,  1752,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,     0,     0,  1789,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
+       0,     0,  1854,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,     0,     0,     0,
+       0,  1869,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+    1881,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,  1918,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,     0,     0,  1935,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,     0,     0,     0,  1944,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,     0,     0,  1946,   539,
-     540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,     0,     0,  1947,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,     0,     0,  1968,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,     0,     0,     0,     0,  2017,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,     0,     0,  2056,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,     0,     0,  2075,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,     0,     0,     0,     0,   557,     0,     0,     0,
-       0,     0,  2095,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,     0,
-       0,  2096,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,     0,     0,
-    2097,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,     0,   679,   539,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,     0,  1945,   537,   538,   539,
      540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,     0,   881,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,     0,     0,     0,  1849,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,   704,
-       0,   705,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,   940,   539,
-     540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,   991,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,  1132,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,  1195,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+       0,     0,     0,     0,     0,  1966,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+       0,     0,     0,     0,  2015,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,     0,     0,  2054,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
+       0,     0,  2073,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,     0,     0,     0,
+       0,  2093,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,     0,     0,
+    2094,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,     0,     0,  2095,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,     0,   677,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,  1196,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,     0,     0,  1201,   539,   540,   541,   542,   543,   544,
-     545,   546,   547,   548,   549,   550,   551,   678,   553,   554,
-     555,   556,     0,     0,     0,     0,   557,     0,     0,     0,
-    1202,   539,   540,   541,   542,   543,   544,   545,   546,   547,
-     548,   549,   550,   551,   678,   553,   554,   555,   556,     0,
-       0,     0,     0,   557,     0,     0,     0,  1292,   539,   540,
-     541,   542,   543,   544,   545,   546,   547,   548,   549,   550,
-     551,   678,   553,   554,   555,   556,     0,     0,     0,     0,
-     557,     0,     0,     0,  1305,   539,   540,   541,   542,   543,
-     544,   545,   546,   547,   548,   549,   550,   551,   678,   553,
-     554,   555,   556,     0,     0,     0,     0,   557,     0,     0,
-       0,  1498,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,     0,     0,  1578,   539,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,     0,   879,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+       0,     0,     0,  1847,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,   702,     0,
+     703,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,   938,   537,   538,
+     539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,   989,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,  1130,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,  1193,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,     0,  1194,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+       0,     0,  1199,   537,   538,   539,   540,   541,   542,   543,
+     544,   545,   546,   547,   548,   549,   676,   551,   552,   553,
+     554,     0,     0,     0,     0,   555,     0,     0,     0,  1200,
+     537,   538,   539,   540,   541,   542,   543,   544,   545,   546,
+     547,   548,   549,   676,   551,   552,   553,   554,     0,     0,
+       0,     0,   555,     0,     0,     0,  1290,   537,   538,   539,
      540,   541,   542,   543,   544,   545,   546,   547,   548,   549,
-     550,   551,   678,   553,   554,   555,   556,     0,     0,     0,
-       0,   557,     0,     0,     0,  1625,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   678,
-     553,   554,   555,   556,     0,     0,     0,     0,   557,     0,
-       0,     0,  1803,   539,   540,   541,   542,   543,   544,   545,
-     546,   547,   548,   549,   550,   551,   678,   553,   554,   555,
-     556,     0,     0,     0,     0,   557,     0,     0,     0,  1842,
+     676,   551,   552,   553,   554,     0,     0,     0,     0,   555,
+       0,     0,     0,  1303,   537,   538,   539,   540,   541,   542,
+     543,   544,   545,   546,   547,   548,   549,   676,   551,   552,
+     553,   554,     0,     0,     0,     0,   555,     0,     0,     0,
+    1496,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,     0,     0,  1576,   537,   538,
      539,   540,   541,   542,   543,   544,   545,   546,   547,   548,
-     549,   550,   551,   678,   553,   554,   555,   556,     0,     0,
-       0,     0,   557,     0,     0,     0,  1857,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   750,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   751,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   752,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   754,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   755,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   756,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   758,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   759,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   760,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   761,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   762,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   763,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   764,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   766,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   767,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   768,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   831,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   866,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   910,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   928,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   930,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   931,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   932,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   938,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   939,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,   976,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,   990,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1045,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1049,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1061,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1131,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1140,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1141,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1142,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1152,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1181,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1183,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1184,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1185,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1186,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1187,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1188,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1189,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1194,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1291,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1304,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1499,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1564,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1577,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1688,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1690,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1693,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1699,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1744,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1753,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1776,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1841,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  1904,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  1905,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557,     0,  2030,   539,   540,   541,
-     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
-     678,   553,   554,   555,   556,     0,     0,     0,     0,   557,
-       0,  2072,   539,   540,   541,   542,   543,   544,   545,   546,
-     547,   548,   549,   550,   551,   678,   553,   554,   555,   556,
-       0,     0,     0,     0,   557
+     549,   676,   551,   552,   553,   554,     0,     0,     0,     0,
+     555,     0,     0,     0,  1623,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   676,   551,
+     552,   553,   554,     0,     0,     0,     0,   555,     0,     0,
+       0,  1801,   537,   538,   539,   540,   541,   542,   543,   544,
+     545,   546,   547,   548,   549,   676,   551,   552,   553,   554,
+       0,     0,     0,     0,   555,     0,     0,     0,  1840,   537,
+     538,   539,   540,   541,   542,   543,   544,   545,   546,   547,
+     548,   549,   676,   551,   552,   553,   554,     0,     0,     0,
+       0,   555,     0,     0,     0,  1855,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     748,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   749,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     750,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   752,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     753,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   754,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     756,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   757,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     758,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   759,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     760,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   761,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     762,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   764,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     765,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   766,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     829,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   864,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     908,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   926,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     928,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   929,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     930,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   936,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     937,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,   974,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+     988,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1043,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1047,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1059,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1129,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1138,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1139,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1140,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1150,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1179,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1181,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1182,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1183,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1184,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1185,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1186,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1187,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1192,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1289,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1302,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1497,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1562,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1575,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1686,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1688,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1691,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1697,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1742,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1751,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1774,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1839,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  1902,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    1903,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555,     0,  2028,   537,   538,   539,   540,
+     541,   542,   543,   544,   545,   546,   547,   548,   549,   676,
+     551,   552,   553,   554,     0,     0,     0,     0,   555,     0,
+    2070,   537,   538,   539,   540,   541,   542,   543,   544,   545,
+     546,   547,   548,   549,   676,   551,   552,   553,   554,     0,
+       0,     0,     0,   555
 };
 
 static const yytype_int16 yycheck[] =
 {
-       3,   593,   594,   292,    55,   699,  1180,  1357,   683,     3,
-       3,   147,  1613,   707,     4,     7,  1176,    48,    21,  1656,
-       4,  1658,     4,    21,   179,     4,     6,     4,     6,     4,
-       4,     4,   187,  1824,     4,    99,     5,   101,     5,   714,
-       4,     4,    97,     5,  1643,    48,     6,     4,     4,    97,
-       4,   240,     9,     5,     0,   730,   304,     4,     6,   248,
-      54,     6,     4,   738,   119,   240,   134,     4,     6,     4,
-     134,   119,    75,   248,   322,    14,     7,   227,   228,     9,
-      83,     4,   129,     6,   240,    88,   242,   236,   237,   227,
-     228,     9,   248,   157,   244,     7,    99,   240,     9,   146,
-       6,     6,    84,   227,   228,   248,  1705,   154,   155,   156,
-     248,   240,     9,   160,   161,     6,   245,  1718,   240,   274,
-     275,   276,     9,   242,   248,     6,   248,   242,     6,   248,
-       9,   134,   240,   248,     6,    91,   139,   140,    97,    95,
-     248,   389,   135,   391,   147,   101,   102,   149,   104,   105,
-     239,   399,   241,    61,    62,   158,    64,   239,   833,   248,
-     315,   316,   317,   100,   101,   227,   228,   123,    91,   243,
-       7,   174,   174,   247,  1965,    94,   179,   332,    97,   182,
-     164,   165,   166,   167,   187,   188,   248,   239,   190,   191,
-     240,   133,   134,   135,   136,     7,    94,   244,   248,    97,
-     129,    99,   162,   185,   174,   175,   148,   238,     6,   151,
-     240,   174,   175,   239,   162,   241,   189,   146,   248,  1569,
-     240,   211,   242,   227,   228,   154,   155,   156,   248,   211,
-     239,   160,   161,   227,   211,   238,   211,   211,   134,   243,
-     236,   237,   273,   139,   140,  1846,   240,     6,   251,   245,
-    1410,   254,   255,   245,   211,   286,   246,   255,     6,   290,
-     244,   243,   241,   243,   211,   243,   243,   270,   247,   243,
-     273,   274,   275,   276,   243,   239,   243,     6,   174,   236,
-     237,   243,   239,   286,   241,   239,   243,   290,   245,   292,
-       6,   243,   188,   240,   239,   242,   990,   991,   243,  1900,
-     212,   213,   214,   215,   239,   241,   236,   237,   239,   239,
-     241,   241,   315,   316,   317,   245,   222,   223,   236,   237,
-       8,   239,   239,   241,   236,   237,   243,   245,   239,   332,
-     241,   222,   223,   245,   582,   338,   584,   585,   241,   236,
-     237,   405,   239,   243,   241,   242,   227,   228,   245,   227,
-     228,   239,   239,   601,   241,   227,   228,   239,   245,     7,
-     239,  1998,   241,   518,   227,   228,   245,     6,   227,   228,
-     401,   402,   236,   237,   510,   212,   213,   214,   215,   243,
-       4,     5,   239,   227,   228,   248,   417,   295,   296,   248,
-     236,   237,   640,   396,   397,   303,   304,   243,   401,   402,
-     212,   213,   214,   215,   248,    94,   239,   239,    97,   241,
-      99,   232,   233,   245,   417,   239,   248,   238,   227,   228,
-     423,   110,    46,    47,    48,    49,    50,    51,    52,    53,
-      54,   679,  2033,   427,   239,    59,    60,    61,    62,   248,
-    1115,   444,  1117,    67,    68,    69,   129,    97,    72,    99,
-      74,   227,   228,   227,   228,  1130,   239,   239,   182,   523,
-     243,    85,    91,   146,    88,    94,   469,   243,    97,   239,
-      99,   154,   155,   156,   248,   239,   507,   160,   161,    91,
-     112,   110,    94,   244,  2085,    97,   517,   248,  1838,   492,
-       7,   244,   227,   228,   239,   248,   499,   500,   110,   239,
-     396,   504,   126,   506,   507,   508,   509,   510,   245,   239,
-     513,   248,   648,   248,   517,   518,   519,   520,   521,   522,
-     239,   524,   241,   526,   522,   245,   524,   247,   216,   217,
-     218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,   270,   227,   228,   552,
-     238,   227,   228,     6,     7,   558,   244,   227,   228,   239,
-     239,   244,  1237,   243,   212,   213,   214,   215,  1243,   193,
-     194,   195,   248,   239,   577,   578,     7,   240,   248,   242,
-     204,   227,   228,   239,   208,   248,   210,   211,   236,   237,
-     227,   228,   243,   227,   228,   244,   240,   661,   242,   248,
-     593,   594,   248,   244,   248,   599,     8,   248,   504,    97,
-     506,   248,   508,   509,   248,  1290,   240,   239,   242,   243,
-     623,   624,   625,   519,   520,   244,   620,    91,  1303,   248,
-      94,   699,   239,    97,  1309,    99,    94,   885,   239,    97,
-     241,   243,   243,   646,   647,   648,   649,   650,   651,   652,
-     653,   654,   110,   656,   657,   658,   659,   660,    97,   662,
-     663,   664,   665,   666,   227,   228,   669,   665,   240,   720,
-     242,   227,   228,   397,   129,   244,   239,   680,   672,   248,
-     243,   675,   239,   591,   592,   749,   227,   228,   596,  1383,
-     244,   146,   248,   687,   248,   212,   213,   214,   215,   154,
-     155,   156,   239,   706,   241,   160,   161,   248,   711,   227,
-     228,   133,   134,   227,   228,   227,   228,   139,    94,   236,
-     237,   227,   228,   726,   727,   719,   227,   228,   243,   732,
-     248,   239,   735,   736,   248,   240,   248,   242,   741,   243,
-     743,   244,   248,   248,     8,   248,    97,   248,   129,   227,
-     228,   647,    94,   649,   650,   651,   652,   653,   654,    94,
-     656,   657,   658,   659,    97,   146,   662,   663,   664,   772,
-     248,   774,     4,   154,   155,   156,   227,   228,  1472,   160,
-     161,   212,   213,   214,   215,   133,   134,     6,     7,   244,
-    1484,   139,   243,     4,   862,   229,   230,   231,   232,   233,
-     227,   228,   526,   806,   238,   236,   237,   240,   244,   242,
-     243,   875,   248,  1987,   216,   217,   218,   219,   220,   221,
-     222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,     4,   239,   244,   241,   238,   243,   248,   735,
-     244,   872,   244,     4,   248,   244,   244,   743,   851,   248,
-     248,   244,   244,   577,   578,   248,   248,   239,   244,  2019,
-     244,   864,   248,   244,   248,   240,   239,   242,   243,   872,
-    2044,   227,   228,   229,   230,   231,   232,   233,   881,   244,
-     244,   244,   238,   248,   248,   248,   239,   244,   241,     6,
-     884,   248,   886,   887,   244,   239,   239,   241,   248,   623,
-     624,   625,  2062,   239,     6,   241,   900,   219,   220,   221,
-     222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,   990,   991,   239,   244,   238,   244,   992,   248,
-     244,   248,   239,   244,   248,   244,   244,   248,   244,   248,
-     248,   935,   248,   244,   244,   669,   244,   248,   248,   241,
-     248,   982,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-    1001,   244,   239,   241,   238,   248,   240,   971,   242,   982,
-     888,   244,   706,  1272,   244,   248,   244,   895,   248,   243,
-     248,   899,   244,   996,     6,   244,   248,   244,  1001,   248,
-     244,   248,   726,     4,   248,     6,  1598,  1599,   732,  1012,
-     247,     6,  1043,  1044,  1017,  1046,  1047,  1048,   243,  1050,
-    1051,  1052,  1053,  1054,  1055,  1056,  1057,  1058,  1059,   244,
-     244,   244,   244,   248,   248,   248,   248,   247,   244,   239,
-    1043,  1044,   248,  1046,  1047,  1048,     9,  1050,  1051,  1052,
-    1053,  1054,  1055,  1056,  1057,  1058,  1059,   244,   244,  1062,
-     239,   248,   248,  1131,  1132,   239,   239,   243,   239,  1100,
-     239,   177,   177,   177,   119,   243,   239,   239,   177,   239,
-     239,     4,   806,   239,   239,   243,   243,   239,     6,   243,
-     243,  1122,   243,   243,   239,   239,   239,  1100,  1101,  1102,
-     239,   239,   239,   239,     6,     6,   241,  1138,     6,   243,
-     243,   243,   243,   241,   241,   241,     6,   177,   243,  1122,
-     239,  1017,     6,   239,   239,   239,   239,   851,   239,   241,
-       6,     6,     6,   243,  1042,  1138,  1139,     8,     8,     7,
-     864,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,   881,   243,  1190,
-       6,   238,   243,     6,  1158,   243,    87,   240,   244,   248,
-       7,     6,   240,  1204,  1205,  1206,   248,   243,   243,   238,
-       8,   245,    64,     4,     7,     7,   239,  1190,     6,   240,
-    1479,     6,     6,   243,     7,     7,     6,     6,   244,   174,
-     243,  1204,  1205,  1206,   244,  1101,  1102,   244,   242,   240,
-       6,  1459,  1215,   243,   243,  1463,   243,  1220,   243,   245,
-       7,  1224,  1253,  1291,  1292,     6,   241,   243,   239,     4,
-    1233,   240,  1235,     6,     6,  1238,     6,     6,   241,     7,
-       7,     7,     7,     7,     7,     7,     7,  1311,     7,  1313,
-    1253,     7,     7,  1247,     7,     7,     7,     7,     7,   243,
-    1852,     6,   240,   242,   244,   248,   248,   248,   240,  1272,
-       7,   248,   243,     7,   244,   243,   245,     4,     6,   245,
-     244,   129,  1313,   244,     7,     6,   245,     7,  1012,  1292,
-       7,  1322,     7,   240,  1297,  1326,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,   240,
-    1313,   248,   248,   238,     9,   248,   240,   245,   247,  1322,
-     242,   177,     7,  1326,  1220,   149,     6,   244,  1224,   243,
-       8,     6,     4,    46,    46,   245,   239,  1233,  1062,  1235,
-     239,   245,  1238,   243,   239,     4,  1377,  1378,  1379,  1485,
-    1486,   245,   239,     7,  1385,     7,     7,   248,   177,   240,
-       7,     7,     7,     6,     4,   248,     7,   240,     7,  1400,
-       7,   109,     4,     6,  1377,  1378,  1379,   243,   239,     7,
-    1411,  1670,  1385,     6,   243,     4,     5,     7,  1419,     7,
-       7,  1455,     7,     7,     7,     7,  1292,  1400,     6,     6,
-       6,    97,     7,     6,  1472,     6,     4,     4,  1411,   248,
-     246,   240,   243,   243,   248,  1139,  1419,   243,     6,  1422,
-       6,     6,   239,     7,   244,     6,     6,    46,    47,    48,
-      49,    50,    51,    52,    53,    54,   241,   239,     6,   243,
-      59,    60,    61,    62,   244,     6,   245,     6,    67,    68,
-      69,   242,  1516,    72,   248,    74,     6,     6,   123,     6,
-    1491,     6,     6,   177,     6,     6,    85,     6,     6,    88,
-       6,     6,     6,     6,     6,     5,  1479,     6,     4,     6,
-     240,     4,  1485,  1486,     6,  1516,   240,     7,  1491,     6,
-       6,  1215,     6,     6,     6,   243,   243,   243,     6,   243,
-     243,  1409,   241,   243,   173,  1508,     6,   126,  1576,     6,
-     243,   243,   243,  1516,   243,     6,     4,   243,  1521,   243,
-       7,   240,     6,   248,     6,   243,   248,     6,     6,   239,
-    1594,     4,   248,   239,   245,   243,   239,  1673,   216,   217,
+       3,   290,   133,   591,   592,  1178,     3,    54,   681,     3,
+     146,  1174,  1355,    98,     5,   100,    47,    20,     4,  1654,
+       4,  1656,    20,   697,   302,   177,  1611,     4,     6,     4,
+       6,   705,     6,   185,     4,     4,     4,  1641,     5,   712,
+       6,     6,   320,     6,    47,     6,     4,     6,   133,     4,
+       4,     9,     5,     5,  1822,   728,    96,     4,     7,    53,
+       4,     4,     4,   736,     6,   238,    96,     4,    96,     4,
+     155,    74,   238,   148,   240,     7,   226,   227,     9,    82,
+     226,   227,     4,     0,    87,   226,   227,   238,   118,   240,
+     118,   226,   227,   243,     7,    98,   247,     9,   173,  1703,
+      93,   247,     6,    96,     6,    98,   247,     4,    83,   387,
+      93,   389,   247,    96,   189,   190,   109,   226,   227,   397,
+     272,   273,   274,     9,   226,   227,   109,     8,   226,   227,
+     133,  1716,    14,   226,   227,   138,   139,   134,   247,   226,
+     227,   235,   236,   146,     9,   247,   241,   239,    90,   247,
+     244,     9,   247,   156,   247,   247,    99,   100,   831,   239,
+     247,   313,   314,   315,   244,   235,   236,     6,   239,   172,
+     226,   227,   242,     6,   177,     9,   247,   180,   330,   238,
+     226,   227,   185,   186,     6,   161,   163,   164,   165,   166,
+     239,   247,   241,    90,   239,  1963,   161,    94,   247,   226,
+     227,   247,   247,   100,   101,   236,   103,   104,     6,   184,
+       7,   226,   227,   226,   227,     7,   235,   236,   188,     7,
+     247,   231,   232,     7,  1567,   122,   210,   237,     7,   173,
+     174,   225,   247,   236,   247,   210,   173,   174,     6,   238,
+     271,   210,   210,   242,   238,  1408,   249,   221,   222,   252,
+     253,   242,   210,   284,   240,   253,   210,   288,   238,  1844,
+     246,   245,   221,   222,   242,   268,   243,   242,   271,   272,
+     273,   274,   238,   242,   242,   242,   242,   235,   236,   242,
+     238,   284,   240,   238,   242,   288,   244,   290,   210,   242,
+     242,   238,     6,    60,    61,   244,    63,   238,   211,   212,
+     213,   214,   580,   238,   582,   583,   238,   238,   240,   240,
+     313,   314,   315,  1898,   988,   989,   242,   239,   403,   241,
+     246,   599,   235,   236,   226,   227,   238,   330,   240,     4,
+     240,   244,   244,   336,   215,   216,   217,   218,   219,   220,
+     221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
+     231,   232,   238,   240,   240,   239,   237,   241,   244,   239,
+     638,  1996,   243,   247,   516,   238,     6,   247,   399,   400,
+     235,   236,   508,   238,   238,   240,   241,   235,   236,   244,
+     238,   238,   240,   240,   415,   242,   244,   226,   227,   226,
+     227,   394,   395,   226,   227,   239,   399,   400,   238,   677,
+     240,   235,   236,   247,   238,   242,   240,   238,   180,   240,
+     244,   242,   415,   238,   211,   212,   213,   214,   421,   211,
+     212,   213,   214,   211,   212,   213,   214,   211,   212,   213,
+     214,   425,   211,   212,   213,   214,   521,   226,   227,   442,
+    1113,   243,  1115,   235,   236,   247,  2031,   235,   236,   226,
+     227,   235,   236,   242,   128,  1128,   238,   132,   133,   134,
+     135,   226,   227,   241,   467,   239,   242,   226,   227,   247,
+     247,   145,   147,   247,   505,   150,   226,   227,   238,   153,
+     154,   155,   247,   238,   515,   159,   160,   490,   247,   238,
+     226,   227,   239,  1836,   497,   498,   268,   247,  2083,   502,
+     247,   504,   505,   506,   507,   508,   128,    96,   511,    98,
+     646,   247,   515,   516,   517,   518,   519,   520,   244,   522,
+     246,   524,   520,   145,   522,   128,   293,   294,   226,   227,
+     238,   153,   154,   155,   301,   302,   238,   159,   160,   226,
+     227,   238,   145,   226,   227,   226,   227,   550,   238,   247,
+     153,   154,   155,   556,     6,     7,   159,   160,   235,   236,
+     247,   242,  1235,     8,   247,   242,   697,   238,  1241,   243,
+     238,   242,   575,   576,   659,   215,   216,   217,   218,   219,
+     220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
+     230,   231,   232,    90,   591,   592,    93,   237,   111,    96,
+     128,   226,   227,   597,   239,   883,   241,   228,   229,   230,
+     231,   232,   109,     6,     7,  1288,   237,   145,   621,   622,
+     623,   243,   247,   395,   618,   153,   154,   155,  1301,   238,
+      90,   159,   160,    93,  1307,   243,    96,   238,    98,   247,
+     243,   644,   645,   646,   647,   648,   649,   650,   651,   652,
+      96,   654,   655,   656,   657,   658,   128,   660,   661,   662,
+     663,   664,   747,   243,   667,   663,    90,   247,   238,    93,
+     240,   718,    96,   145,    98,   678,   670,   226,   227,   673,
+     242,   153,   154,   155,   239,   109,   241,   159,   160,   238,
+       6,   685,   247,   242,   132,   133,   226,   227,   238,   243,
+     138,   704,   239,   247,   241,   243,   709,  1381,   238,   247,
+     247,   238,   242,   240,   238,   243,   239,   244,   241,    96,
+     247,   724,   725,   717,   247,    93,   242,   730,    96,   860,
+     733,   734,    93,   226,   227,    96,   739,    98,   741,   220,
+     221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
+     231,   232,   524,   238,   238,   240,   237,   226,   227,   228,
+     229,   230,   231,   232,   238,   242,   240,   770,   237,   772,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,   873,   132,
+     133,   244,   237,   243,   247,   138,  1470,   247,   243,    93,
+     242,   804,   243,   575,   576,    96,   247,   243,  1482,   238,
+     243,   247,  1985,   133,   247,    93,   243,   243,   138,   139,
+     247,   247,   589,   590,   243,   243,   243,   594,   247,   247,
+     247,   243,   243,   243,   243,   247,   247,   247,   247,   870,
+     243,   243,    93,   243,   247,   247,   849,   247,    96,   621,
+     622,   623,   172,   238,  2017,   240,   243,   988,   989,   862,
+     247,   243,     4,     4,   243,   247,   186,   870,   247,  2042,
+     243,   243,     4,   243,   247,   247,   879,   247,   243,   243,
+       4,     5,   247,   247,   239,   243,   241,   242,   882,   247,
+     884,   885,   243,     4,   243,   667,   247,  2060,   247,   243,
+     238,   238,   243,   247,   898,   990,   247,   243,   243,   243,
+     243,   247,   247,   247,   247,   243,   243,   243,     6,   247,
+     247,   247,    46,    47,    48,    49,    50,    51,    52,    53,
+      54,     7,   704,   238,   238,    59,    60,    61,    62,   933,
+     238,     6,   243,    67,    68,    69,   247,   243,    72,   980,
+      74,   247,   724,   243,     4,   243,     6,   247,   730,   247,
+      84,   243,   243,    87,   240,   247,   247,   239,   999,   241,
+     242,   238,   240,   242,     6,   969,   246,   980,   242,     6,
+     246,  1270,   238,     9,   238,   238,   238,   242,   238,   238,
+     176,   994,   176,   176,   238,   242,   999,   118,  1129,  1130,
+     238,   125,   238,   238,   176,   242,   238,  1010,  1596,  1597,
+    1041,  1042,  1015,  1044,  1045,  1046,   238,  1048,  1049,  1050,
+    1051,  1052,  1053,  1054,  1055,  1056,  1057,   242,   242,     4,
+     242,   242,   804,   242,   238,   238,   238,   238,  1041,  1042,
+     238,  1044,  1045,  1046,   238,  1048,  1049,  1050,  1051,  1052,
+    1053,  1054,  1055,  1056,  1057,     6,   238,  1060,   238,   240,
+       6,     6,     6,   242,   242,   242,   242,  1098,   192,   193,
+     194,   240,   240,   240,   394,     6,   242,   849,   176,   203,
+     238,   238,   238,   207,   238,   209,   210,   238,   238,  1120,
+     862,   240,     6,     6,   242,  1098,  1099,  1100,     6,     8,
+       6,     8,   242,     7,     6,  1136,   242,   879,     6,   242,
+      86,   235,   236,   243,   239,     7,   247,  1120,   242,   886,
+     244,   247,     6,   239,   242,   242,   893,   237,    64,   244,
+     897,     8,     4,  1136,  1137,   238,     7,     7,     6,   215,
+     216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
+     226,   227,   228,   229,   230,   231,   232,  1188,  1289,  1290,
+     239,   237,  1156,     6,   242,     7,     6,   173,     7,     6,
+       6,  1202,  1203,  1204,   243,   242,     6,   243,   239,  1457,
+     243,   241,   502,  1461,   504,  1188,   506,   507,  1477,   242,
+     242,   242,     7,   242,     6,   240,   244,   517,   518,  1202,
+    1203,  1204,   238,   242,     4,     6,   239,     6,     6,     6,
+    1213,   240,     7,     7,     7,  1218,     7,     7,     7,  1222,
+    1251,     7,     7,     7,  1309,     7,  1311,     7,  1231,     7,
+    1233,     7,     7,  1236,     7,     7,     6,   242,  1010,   239,
+     241,     7,     7,   247,   247,   247,   243,   239,  1251,   247,
+     243,  1245,   242,   244,   242,     4,     6,   244,   243,   243,
+       7,   128,  1850,     6,   244,     7,     7,  1270,     7,   239,
+     239,     9,   239,  1040,   247,   247,   247,   241,   244,   176,
+    1311,   246,     7,   148,   243,   242,     6,  1290,  1060,  1320,
+       6,     4,  1295,  1324,    46,    46,   244,   238,   238,   242,
+     238,   238,   244,     4,     7,   244,   239,     7,  1311,     7,
+     176,     7,   247,     7,     7,     6,   239,  1320,   247,     7,
+       7,  1324,     7,     4,     4,   645,   242,   647,   648,   649,
+     650,   651,   652,     6,   654,   655,   656,   657,   238,  1470,
+     660,   661,   662,     7,  1375,  1376,  1377,  1483,  1484,   108,
+       6,   242,  1383,     7,     7,     7,     7,     7,     7,     7,
+       6,     6,     6,    96,     7,  1137,     6,  1398,  1453,     6,
+       4,     4,  1375,  1376,  1377,   239,   245,     6,  1409,  1668,
+    1383,   242,     6,    13,    14,   247,  1417,   247,   242,   242,
+       6,   243,     7,     6,   240,  1398,     6,   238,   242,     6,
+     238,     6,     6,     6,     6,   122,  1409,     6,   243,   241,
+     244,     6,     6,   733,  1417,   176,   247,  1420,     6,     6,
+       6,   741,     6,     6,     6,     6,     6,     6,     5,  1514,
+     239,   239,     6,     4,     6,     4,     6,   242,   242,     7,
+     242,  1213,     6,  1574,     6,     6,   242,     6,     6,   172,
+     242,     6,   240,     6,     6,   242,     6,   238,  1489,   242,
+      90,    91,    92,    93,    94,    95,    96,    97,    98,    99,
+     100,   101,   102,   242,  1477,   242,   106,   107,   108,   109,
+    1483,  1484,   112,  1514,   242,   242,  1489,   242,   118,   119,
+     244,   247,   122,   123,   247,   125,   126,   242,     7,   239,
+       4,   247,     7,  1506,     6,     6,   242,  1592,   243,     6,
+     247,  1514,     6,     8,   144,     4,  1519,   238,     6,   238,
+       6,     6,     6,  1295,     6,     5,     4,    94,   242,   239,
+     242,     6,   247,     6,     6,  1671,   247,     6,   168,   169,
+     170,     6,     6,   247,   239,   247,     6,     6,     6,  1634,
+     247,     6,   242,  1684,  1585,     6,  1641,  1642,   217,   218,
+     219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
+     229,   230,   231,   232,     6,  1660,   242,     7,   237,   242,
+    1611,  1859,  1585,     5,   239,  1588,  1589,     6,     6,     6,
+       6,   128,     7,     6,     6,  1626,   243,   239,  1887,  1596,
+    1597,   242,     6,   242,     7,   243,   242,     6,  1611,   244,
+       6,   171,   243,   243,  1617,   243,   243,     6,     6,   242,
+       6,     6,   243,  1626,     6,   239,  1657,     6,     6,   174,
+     242,     6,   243,  1636,     4,     5,  1639,   243,   238,  1670,
+    1407,   242,   239,     6,   242,     6,   242,     6,  1420,   242,
+       6,   243,   242,     6,  1657,     6,     6,   242,     6,     6,
+    1654,  1664,  1656,   239,     6,  1668,     6,  1670,  1671,     6,
+     243,  1949,     6,     6,     6,     6,    46,    47,    48,    49,
+      50,    51,    52,    53,    54,  1716,   243,     6,   242,    59,
+      60,    61,    62,   242,     6,  1015,     6,    67,    68,    69,
+    1703,   242,    72,  1788,    74,     6,     6,     6,  1986,     6,
+       6,  1998,  1300,  1716,    84,     8,  1350,    87,  1524,  1750,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,     6,  1823,
+     439,  1319,   237,  1828,   239,  1786,   241,  1750,     3,  1581,
+       3,     3,     3,   570,  1450,   125,  1846,     3,  1664,  1762,
+    1484,  1528,  1641,    -1,    -1,   733,    -1,    -1,    -1,    -1,
+      -1,    -1,  1775,    -1,    -1,    -1,    -1,    -1,    -1,  1099,
+    1100,  1812,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,  1824,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1812,
+      -1,    -1,    -1,  1844,    -1,    -1,  1588,  1589,    -1,    -1,
+      -1,  1824,   192,   193,   194,    -1,  1829,  1858,    -1,    -1,
+      -1,    -1,    -1,   203,    -1,    -1,    -1,   207,    -1,   209,
+     210,  1844,    -1,    -1,  1847,  1612,  1613,  1614,  1615,  1616,
+    1617,    -1,    -1,  1850,    -1,  1858,    -1,    -1,    -1,  1862,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,  1898,    -1,   239,
+      -1,   241,   242,    -1,    -1,    -1,    -1,    -1,    -1,  1964,
+      -1,    -1,    -1,    -1,  1887,    -1,    -1,    -1,    -1,    -1,
+      -1,  1922,    -1,     6,    -1,  1898,    -1,    -1,  1218,    -1,
+      -1,    -1,  1222,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,  1231,    -1,  1233,    -1,    -1,  1236,    -1,    -1,  1922,
+      -1,    -1,   215,   216,   217,   218,   219,   220,   221,   222,
+     223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
+    1934,    -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,  1587,   248,   244,     7,
-     238,     6,   240,     6,     6,     6,     6,    95,     5,   243,
-     240,   248,  1636,  1297,   193,   194,   195,   243,     6,  1643,
-    1644,     6,  1613,     6,  1587,   204,   248,  1590,  1591,   208,
-       6,   210,   211,     6,     6,   248,   240,  1628,  1662,   248,
-    1889,     6,     4,     6,     5,  1598,  1599,     6,   243,     6,
-    1613,     6,  1508,  1861,   248,     6,  1619,   243,  1686,     7,
-       6,   243,  1530,     6,   243,  1628,     6,   243,  1659,   240,
-       6,   129,     7,   243,   243,  1638,     6,     6,  1641,     6,
-     244,  1672,   244,     7,   240,   244,     6,   172,     6,   244,
-     244,     6,   245,     6,   243,     6,  1659,     6,     6,     6,
-       6,   244,  1656,  1666,  1658,   240,   243,  1670,   175,  1672,
-    1673,     6,   243,   239,   244,   244,   243,   240,   243,     6,
-       6,   243,     6,     6,   244,   243,     6,  1718,     6,   243,
-       6,     6,   240,     6,     6,     6,     6,     6,  1422,     6,
-       6,   244,  1705,  1951,   244,     6,  1614,  1615,  1616,  1617,
-    1618,  1619,     6,     6,     6,  1718,     6,     6,     6,   243,
-       6,  1752,   243,     6,   243,     6,  1790,  1302,  2000,  1352,
-    1526,  1825,   441,  1583,  1788,  1321,     3,     3,     3,     3,
-    1988,  1848,  1638,  1452,     3,  1641,  1666,   572,  1643,  1752,
-    1486,    -1,     6,    -1,    -1,    -1,    -1,    -1,    -1,   735,
-      -1,  1764,    -1,    -1,    -1,    -1,  1830,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,  1777,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,  1814,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,  1826,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,  1814,    -1,    -1,    -1,  1846,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,  1826,    -1,    -1,    -1,    -1,  1831,  1860,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,  1846,    -1,    -1,  1849,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,  1860,    -1,  1852,
-      -1,  1864,    -1,    -1,    -1,    -1,  1590,  1591,    -1,  1900,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  1889,    -1,    -1,    -1,
-      -1,    -1,    -1,  1924,    -1,    -1,    -1,  1900,    -1,    -1,
-      -1,    -1,  1966,   216,   217,   218,   219,   220,   221,   222,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+    1290,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,  1988,  1989,  1990,  1991,  1992,
+      -1,    -1,    -1,    -1,   106,    -1,    -1,    -1,    -1,    -1,
+    2031,    -1,  1996,  1775,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,   133,    -1,   237,  2018,   137,    -1,    -1,  2031,   141,
+      -1,    -1,    -1,     6,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,  2047,   157,   158,   159,    -1,   161,
+     162,   163,  2083,   165,   166,   167,   168,   169,   170,   171,
+      -1,   173,   174,   175,   176,    -1,  2069,    -1,   180,    -1,
+      -1,    -1,    -1,    -1,    -1,  1847,    -1,    -1,    -1,    -1,
+    2083,    -1,    -1,    -1,    -1,    -1,    -1,  2090,  2091,    -1,
+    1862,    -1,    -1,    -1,    -1,    -1,  1863,  1864,  1865,  1866,
+    1867,  2104,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,  1924,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,     6,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,  1936,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,  1865,  1866,  1867,
-    1868,  1869,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,  1990,  1991,  1992,
-    1993,  1994,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,  2033,    -1,  1998,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,  1923,    -1,    -1,    -1,  1927,
-      -1,    -1,    -1,    -1,    -1,    -1,  2020,    -1,    -1,    -1,
-    2033,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   107,    -1,  2049,    -1,    -1,    -1,
-      -1,    -1,    -1,  1777,  2085,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  1974,    -1,  2071,    -1,
-    1978,   134,    -1,    -1,    -1,   138,    -1,    -1,    -1,   142,
-      -1,    -1,  2085,     6,    -1,    -1,  1994,    -1,    -1,  2092,
-    2093,    -1,    -1,    -1,    -1,    -1,   159,   160,   161,    -1,
-     163,   164,   165,  2106,   167,   168,   169,   170,   171,   172,
-     173,    -1,   175,   176,   177,   178,    -1,    -1,    -1,   182,
-      -1,    -1,    -1,    -1,    -1,  1849,    -1,    -1,    -1,    -1,
-      -1,  2039,  2040,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-    1864,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,     7,
-       8,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,  2071,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   250,   251,   252,
-     253,   254,    -1,    -1,    -1,    -1,  2092,  2093,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   269,   270,    -1,    -1,
-    2106,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   288,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   298,   299,    -1,    -1,    -1,
-      -1,   304,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   314,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  1990,  1991,  1992,  1993,
-    1994,    -1,    -1,    -1,   337,   338,    -1,    -1,    -1,   342,
-     343,   344,    -1,   346,    -1,    -1,    -1,   350,   351,   352,
-      -1,    -1,   355,   216,   217,   218,   219,   220,   221,   222,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   248,   249,   250,   251,
+     252,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,  1921,   267,   268,    -1,  1925,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   286,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   296,   297,  1506,    -1,    -1,    -1,
+     302,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+     312,    -1,    -1,    -1,    -1,  1972,    -1,    -1,    -1,  1976,
+      -1,    -1,    -1,    -1,    -1,    -1,  1988,  1989,  1990,  1991,
+    1992,    -1,    -1,   335,   336,  1992,    -1,    -1,   340,   341,
+     342,    -1,   344,    -1,    -1,    -1,   348,   349,   350,    -1,
+      -1,   353,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,  2049,    -1,    -1,    -1,    -1,
-     393,    -1,    -1,    -1,   397,   398,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
+    2037,  2038,    -1,    -1,    -1,  2047,    -1,    -1,    -1,   391,
+      -1,    -1,    -1,   395,   396,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   414,   415,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   428,    -1,    -1,   216,   217,
-     218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,   450,    -1,    -1,
-     238,   454,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   468,   469,    -1,    -1,    -1,
-     473,    -1,    -1,   476,   477,   478,   479,   480,   481,   482,
-     483,   484,   485,   486,   487,   488,   489,   490,   491,   492,
-     493,   494,   495,   496,   497,   498,   499,   500,    -1,   502,
-     503,    -1,   505,    -1,    -1,    -1,    -1,    -1,    -1,   512,
-      -1,    -1,   515,   516,    -1,    -1,    -1,    -1,   521,    -1,
-      -1,    -1,    -1,   526,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   538,   539,   540,   541,   542,
-     543,   544,   545,   546,   547,   548,   549,   550,   551,   552,
-     553,   554,   555,   556,   557,    -1,   559,   560,    -1,    -1,
-      -1,    -1,    -1,   566,   567,   568,    -1,    -1,    -1,    -1,
-      -1,   574,   575,    -1,   577,   578,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,     4,     5,    -1,    -1,
-      -1,    -1,    -1,   596,   597,   598,    -1,    -1,    -1,   602,
-     603,   604,   605,   606,   607,   608,   609,   610,    -1,    -1,
-      -1,    -1,   615,    -1,   617,    -1,   619,    -1,    -1,    -1,
-     623,   624,   625,   626,    -1,   628,   629,   630,    46,    47,
-      48,    49,    50,    51,    52,    53,    54,    -1,    -1,    -1,
-      -1,    59,    60,    61,    62,    -1,    -1,    -1,    -1,    67,
-      68,    69,   655,    -1,    72,    -1,    74,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   669,    85,    -1,    -1,
-      88,    -1,    -1,   676,    -1,   678,    -1,    -1,   681,   682,
-      -1,    -1,    -1,    -1,    -1,   182,    -1,   690,    -1,    -1,
-      -1,    -1,    -1,   696,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   706,     7,    -1,    -1,    -1,   126,   712,
-     713,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   726,    -1,   728,   729,    -1,    -1,   732,
-     733,    -1,    -1,    -1,   737,    -1,    -1,    -1,    -1,    -1,
-      -1,   744,    -1,    -1,     6,   748,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   251,    -1,    -1,   254,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   770,    -1,   772,
-      -1,   774,    -1,   270,    -1,   193,   194,   195,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   204,    -1,    -1,    -1,
-     208,    -1,   210,   211,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   806,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   816,    -1,    -1,    -1,    -1,   236,   237,
-       6,    -1,    -1,    -1,    -1,   243,    -1,   245,    -1,    -1,
+     412,   413,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   426,    -1,  1636,    -1,    -1,  1639,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   338,    -1,    -1,    -1,    -1,    -1,    -1,   851,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   448,    -1,    -1,    -1,
+     452,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   466,   467,    -1,    -1,    -1,   471,
+      -1,    -1,   474,   475,   476,   477,   478,   479,   480,   481,
+     482,   483,   484,   485,   486,   487,   488,   489,   490,   491,
+     492,   493,   494,   495,   496,   497,   498,    -1,   500,   501,
+      -1,   503,    -1,    -1,    -1,    -1,    -1,    -1,   510,    -1,
+      -1,   513,   514,    -1,    -1,    -1,    -1,   519,    -1,    -1,
+      -1,    -1,   524,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   536,   537,   538,   539,   540,   541,
+     542,   543,   544,   545,   546,   547,   548,   549,   550,   551,
+     552,   553,   554,   555,    -1,   557,   558,    -1,    -1,    -1,
+      -1,    -1,   564,   565,   566,    -1,    -1,    -1,    -1,    -1,
+     572,   573,    -1,   575,   576,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+       4,     5,   594,   595,   596,    -1,    -1,    -1,   600,   601,
+     602,   603,   604,   605,   606,   607,   608,    -1,    -1,    -1,
+      -1,   613,    -1,   615,    -1,   617,    -1,    -1,    -1,   621,
+     622,   623,   624,    -1,   626,   627,   628,    -1,    -1,    -1,
+      -1,    -1,    46,    47,    48,    49,    50,    51,    52,    53,
+      54,    -1,    -1,    -1,    -1,    59,    60,    61,    62,    -1,
+      -1,   653,    -1,    67,    68,    69,    -1,    -1,    72,    -1,
+      74,    -1,    -1,    -1,    -1,   667,    -1,    -1,    -1,    -1,
+      84,    -1,   674,    87,   676,    -1,    -1,   679,   680,    -1,
+      -1,    -1,    -1,    -1,   180,    -1,   688,    -1,    -1,    -1,
+      -1,    -1,   694,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,   704,     6,    -1,    -1,    -1,    -1,   710,   711,
+      -1,   125,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,   724,    -1,   726,   727,    -1,    -1,   730,   731,
+      -1,    -1,    -1,   735,    -1,    -1,    -1,    -1,    -1,    -1,
+     742,    -1,    -1,    -1,   746,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   249,    -1,    -1,   252,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   768,    -1,   770,    -1,
+     772,    -1,   268,    -1,    -1,    -1,    -1,    -1,   192,   193,
+     194,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   203,
+      -1,    -1,    -1,   207,    -1,   209,   210,    -1,    -1,    -1,
+      -1,    -1,   804,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,   814,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+       6,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   242,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   864,    -1,    -1,    -1,    -1,    -1,    -1,   871,    -1,
-      -1,    -1,   875,    -1,    -1,    -1,    -1,    -1,   881,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   889,   890,    -1,    -1,
-      -1,    -1,   895,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     397,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   911,    -1,
-      -1,   914,    -1,   216,   217,   218,   219,   220,   221,   222,
+     336,    -1,    -1,    -1,    -1,    -1,    -1,   849,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  2069,
+     862,    -1,    -1,    -1,    -1,    -1,    -1,   869,    -1,    -1,
+      -1,   873,    -1,    -1,    -1,    -1,    -1,   879,    -1,    -1,
+    2090,  2091,    -1,    -1,    -1,   887,   888,    -1,    -1,    -1,
+      -1,   893,    -1,    -1,  2104,    -1,    -1,    -1,    -1,   395,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   909,    -1,    -1,
+     912,    -1,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,   934,    -1,   936,   937,   238,    -1,    -1,    -1,    -1,
+     932,    -1,   934,   935,   237,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   955,    -1,   216,   217,   218,   219,   220,   221,
-     222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,   469,     8,    -1,   978,   238,    -1,    -1,    -1,
-      -1,    -1,   985,   986,   987,   988,    -1,    -1,    -1,    -1,
-     993,    -1,    -1,    -1,    -1,   492,    -1,    -1,    -1,    -1,
-      -1,    -1,   499,   500,  1007,  1008,    -1,    -1,    -1,  1012,
+      -1,   953,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,     6,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   467,    -1,    -1,   976,    -1,    -1,    -1,    -1,    -1,
+      -1,   983,   984,   985,   986,    -1,    -1,    -1,    -1,   991,
+      -1,    -1,    -1,    -1,   490,    -1,    -1,    -1,    -1,    -1,
+      -1,   497,   498,  1005,  1006,    -1,    -1,    -1,  1010,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   521,    -1,    -1,    -1,    -1,   526,
+      -1,    -1,    -1,   519,    -1,    -1,    -1,    -1,   524,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,   552,    -1,    -1,    -1,  1062,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,   550,    -1,    -1,    -1,  1060,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,  1078,    -1,    -1,    -1,    -1,
-     577,   578,    -1,    -1,    -1,  1088,  1089,  1090,    -1,    -1,
-      -1,    -1,  1095,  1096,    -1,  1098,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,  1110,  1111,    -1,
-      -1,    -1,    -1,    -1,    -1,  1118,  1119,    -1,    -1,    -1,
-      -1,    -1,  1125,    -1,  1127,  1128,   623,   624,   625,    -1,
-      -1,  1134,  1135,    -1,    -1,    -1,  1139,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,  1076,    -1,    -1,    -1,    -1,   575,
+     576,    -1,    -1,    -1,  1086,  1087,  1088,    -1,    -1,    -1,
+      -1,  1093,  1094,    -1,  1096,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,  1108,  1109,    -1,    -1,
+      -1,    -1,    -1,    -1,  1116,  1117,    -1,    -1,    -1,    -1,
+      -1,  1123,    -1,  1125,  1126,   621,   622,   623,    -1,    -1,
+    1132,  1133,    -1,    -1,    -1,  1137,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    22,    23,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,  1170,    -1,    -1,
-      -1,    -1,   669,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-    1203,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,   706,
-      -1,    -1,  1215,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-    1223,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   726,
-      -1,    -1,    -1,    -1,    -1,   732,    -1,    -1,    -1,    -1,
-      -1,  1244,  1245,    -1,    -1,     6,  1249,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-    1263,    -1,    -1,  1266,    -1,   134,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   772,    -1,   774,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-    1293,    -1,    -1,  1296,  1297,  1298,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,  1306,    -1,  1308,    -1,  1310,  1311,   806,
+      -1,    -1,    -1,    21,    22,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,  1168,    -1,    -1,    -1,
+      -1,   667,   215,   216,   217,   218,   219,   220,   221,   222,
+     223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,  1201,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   704,    -1,
+      -1,  1213,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1221,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   724,    -1,
+      -1,    -1,    -1,    -1,   730,    -1,    -1,    -1,    -1,    -1,
+    1242,  1243,    -1,    -1,    -1,  1247,     6,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1261,
+      -1,    -1,  1264,    -1,    -1,   133,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   770,    -1,   772,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1291,
+      -1,    -1,  1294,  1295,  1296,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,  1304,    -1,  1306,    -1,  1308,  1309,   804,    -1,
       -1,    -1,    -1,    -1,     6,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   194,   195,   196,   197,   198,
-     199,   200,   201,   202,   203,   204,   205,   206,   207,   208,
-     209,   210,   211,   212,   213,   214,   215,   216,   217,   218,
-     219,   220,   221,   222,   851,   224,   225,    -1,    -1,    -1,
-      -1,    -1,   231,   232,    -1,    -1,    -1,   864,    -1,    -1,
-      -1,    -1,    -1,   242,   243,    -1,    -1,    -1,    -1,    -1,
-      -1,  1384,    -1,    -1,   881,    -1,    -1,    -1,  1391,  1392,
-    1393,    -1,    -1,    -1,    -1,    -1,    -1,  1400,    -1,  1402,
-      -1,    -1,    -1,    -1,    -1,    -1,  1409,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1422,
-      -1,    -1,    -1,    -1,  1427,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,  1435,  1436,  1437,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,  1447,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,  1457,   216,   217,   218,   219,   220,
-     221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-    1483,    -1,    -1,    -1,    -1,    -1,  1489,  1490,   357,   358,
-     359,     8,    -1,    -1,   363,   364,   365,   366,   367,   368,
-     369,    -1,   371,    -1,    -1,    -1,   375,   376,    -1,    -1,
-     379,    -1,    -1,    -1,    -1,  1012,    -1,    -1,  1521,    -1,
-      -1,    -1,    -1,   392,   216,   217,   218,   219,   220,   221,
+      -1,    -1,    -1,    -1,   192,   193,   194,   195,   196,   197,
+     198,   199,   200,   201,   202,   203,   204,   205,   206,   207,
+     208,   209,   210,   211,   212,   213,   214,   215,   216,   217,
+     218,   219,   220,   849,   222,   223,    -1,    -1,    -1,    -1,
+      -1,   229,   230,    -1,    -1,    -1,   862,    -1,    -1,    -1,
+      -1,    -1,   240,   241,    -1,    -1,    -1,    -1,    -1,    -1,
+    1382,    -1,    -1,   879,    -1,    -1,    -1,  1389,  1390,  1391,
+      -1,    -1,    -1,    -1,    -1,    -1,  1398,    -1,  1400,    -1,
+      -1,    -1,    -1,    -1,    -1,  1407,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1420,    -1,
+      -1,    -1,    -1,  1425,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,  1433,  1434,  1435,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,  1445,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,  1455,    -1,   215,   216,   217,   218,   219,
+     220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,  1481,
+      -1,    -1,    -1,    -1,    -1,  1487,  1488,   355,   356,   357,
+       6,    -1,    -1,   361,   362,   363,   364,   365,   366,   367,
+      -1,   369,    -1,    -1,    -1,   373,   374,    -1,    -1,   377,
+      -1,    -1,    -1,    -1,  1010,    -1,    -1,  1519,    -1,    -1,
+      -1,    -1,   390,   215,   216,   217,   218,   219,   220,   221,
      222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
-      -1,    -1,    -1,  1556,  1557,  1558,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,  1567,  1062,    -1,    -1,    -1,  1572,
-    1573,  1574,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,  1585,    -1,    -1,    -1,    -1,  1590,  1591,  1592,
-      -1,  1594,    -1,    -1,    -1,    -1,    -1,  1600,  1601,    -1,
+     232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,
+      -1,    -1,  1554,  1555,  1556,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,  1565,  1060,    -1,    -1,    -1,  1570,  1571,
+    1572,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,  1583,    -1,    -1,    -1,    -1,  1588,  1589,  1590,    -1,
+    1592,    -1,    -1,    -1,    -1,    -1,  1598,  1599,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  1619,    -1,    -1,    -1,
-    1623,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,  1636,    -1,    -1,  1639,    -1,    -1,    -1,
-    1643,    -1,  1139,    -1,    -1,    -1,    -1,    -1,    -1,  1652,
-    1653,    -1,  1655,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-    1663,     6,    -1,    -1,    -1,   534,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  1679,    -1,    -1,    -1,
-      -1,  1684,  1685,    -1,    -1,    -1,    -1,    -1,    -1,   419,
-      -1,    -1,    -1,    -1,  1697,     6,    -1,  1700,  1701,   216,
-     217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,  1215,    -1,
-       6,   238,    -1,    -1,    -1,    -1,    -1,  1730,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,  1617,    -1,    -1,    -1,  1621,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,  1746,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,  1755,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,  1764,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-    1773,  1774,    -1,    -1,  1777,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   513,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,     6,    -1,    -1,    -1,    -1,    -1,    -1,
-    1297,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1811,  1812,
+      -1,    -1,  1634,    -1,    -1,  1637,    -1,    -1,    -1,  1641,
+      -1,  1137,    -1,    -1,    -1,    -1,    -1,    -1,  1650,  1651,
+      -1,  1653,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1661,
+       6,    -1,    -1,    -1,   532,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,  1677,    -1,    -1,    -1,    -1,
+    1682,  1683,    -1,    -1,    -1,    -1,    -1,    -1,   417,    -1,
+      -1,    -1,    -1,  1695,     6,    -1,  1698,  1699,    -1,   215,
+     216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
+     226,   227,   228,   229,   230,   231,   232,  1213,    -1,    -1,
+       6,   237,    -1,    -1,    -1,    -1,  1728,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  1829,    -1,    -1,  1832,
-      -1,    -1,    -1,   563,  1837,    -1,    -1,  1840,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  1849,    -1,    -1,    -1,
+      -1,    -1,  1744,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,  1753,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+    1762,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1771,
+    1772,    -1,    -1,  1775,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,   511,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,     6,    -1,    -1,    -1,    -1,    -1,  1295,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,  1809,  1810,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,  1864,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1872,
-      -1,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,  1897,    -1,    -1,    -1,    -1,    -1,
-    1903,    -1,    -1,  1906,    -1,   216,   217,   218,   219,   220,
-     221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,  1422,    -1,   238,    -1,  1932,
+      -1,    -1,    -1,    -1,    -1,  1827,    -1,    -1,  1830,    -1,
+      -1,    -1,   561,  1835,    -1,    -1,  1838,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,  1847,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+    1862,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1870,   215,
+     216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,  1895,    -1,    -1,    -1,    -1,    -1,  1901,
+      -1,    -1,  1904,   215,   216,   217,   218,   219,   220,   221,
+     222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
+     232,    -1,    -1,    -1,  1420,   237,    -1,    -1,  1930,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,  1957,  1958,    -1,    -1,    -1,    -1,
-     829,    -1,    -1,    -1,    -1,    -1,  1969,  1970,    -1,  1972,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,  1955,  1956,    -1,    -1,    -1,    -1,   827,
+      -1,    -1,    -1,    -1,    -1,  1967,  1968,    -1,  1970,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,  1985,    -1,    -1,    -1,    -1,  1990,  1991,  1992,
-    1993,  1994,    -1,    -1,   863,    -1,    -1,  2000,    -1,    -1,
-      -1,  2004,    -1,   216,   217,   218,   219,   220,   221,   222,
+      -1,  1983,    -1,    -1,    -1,    -1,  1988,  1989,  1990,  1991,
+    1992,    -1,    -1,   861,    -1,    -1,  1998,    -1,    -1,    -1,
+    2002,    -1,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,  1521,   238,    -1,    -1,  2031,    -1,
-      -1,    -1,    -1,  2036,  2037,  2038,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  2049,    -1,   778,   779,
-     780,   781,   782,   783,   784,   785,   786,   787,   788,    -1,
-     790,   791,   792,   793,    -1,   795,   796,   797,   798,    -1,
-      -1,     6,    -1,    -1,  2077,  2078,  2079,    -1,    -1,   809,
-      -1,   811,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   819,
-      -1,    -1,    -1,  1590,  1591,   825,   826,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   834,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,  1519,   237,    -1,    -1,  2029,    -1,    -1,
+      -1,    -1,  2034,  2035,  2036,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,  2047,    -1,   776,   777,   778,
+     779,   780,   781,   782,   783,   784,   785,   786,    -1,   788,
+     789,   790,   791,    -1,   793,   794,   795,   796,    -1,    -1,
+      -1,     6,    -1,  2075,  2076,  2077,    -1,    -1,   807,    -1,
+     809,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   817,    -1,
+      -1,    -1,  1588,  1589,   823,   824,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   832,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,  1619,     3,     4,     5,    -1,     7,    -1,    -1,
+      -1,  1617,    -1,     3,     4,     5,    -1,     7,    -1,    -1,
       10,    11,    12,    -1,    -1,    15,    16,    17,    18,    19,
       20,    21,    22,    23,    24,    25,    26,    27,    28,    29,
       30,    31,    32,    33,    34,    35,    36,    37,    38,    -1,
-      -1,    -1,    -1,    -1,    -1,  1034,    46,    47,    48,    49,
+      -1,    -1,    -1,    -1,  1032,    -1,    46,    47,    48,    49,
       50,    51,    52,    53,    54,    55,    56,    57,    58,    59,
       60,    61,    62,    63,    -1,    -1,    -1,    67,    68,    69,
       -1,    -1,    72,    -1,    74,    75,    76,    77,    -1,    -1,
-      -1,    -1,    -1,    83,    84,    85,    86,    -1,    88,    -1,
-      -1,   941,   942,   943,    -1,    -1,    -1,   947,   948,    -1,
-      -1,   951,   952,   953,   954,    -1,   956,    -1,    -1,    -1,
-      -1,   961,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   126,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,  1123,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,  1764,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-    1777,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,   185,    -1,    -1,    -1,    -1,
-    1040,  1041,   192,   193,   194,   195,   196,    -1,    -1,    -1,
-      -1,   201,   202,   203,   204,   205,   206,   207,   208,    -1,
-     210,   211,   212,   213,   214,   215,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,   228,    -1,
-      -1,    -1,  1849,    -1,   234,    -1,   236,   237,    -1,   239,
-      -1,   241,     3,     4,    -1,   245,   246,  1864,    -1,    10,
-      11,    12,    -1,    -1,    15,    16,    17,    18,    19,    20,
-      21,    22,    23,    24,    25,    26,    27,    28,    29,    30,
-      31,    32,    33,    34,    35,    36,    37,    38,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,  1136,  1276,  1277,    -1,
-      -1,    -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,
-      -1,    -1,    63,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    75,    76,    77,    -1,    -1,    -1,
-      -1,    -1,    83,    84,    -1,    86,    -1,    -1,    -1,    -1,
+      -1,    -1,    82,    83,    84,    85,    -1,    87,    -1,    -1,
+     939,   940,   941,    -1,    -1,    -1,   945,   946,    -1,    -1,
+     949,   950,   951,   952,    -1,   954,    -1,    -1,    -1,    -1,
+     959,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   125,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,  1121,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,  1762,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1775,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,   184,    -1,    -1,    -1,    -1,  1038,
+    1039,   191,   192,   193,   194,   195,    -1,    -1,    -1,    -1,
+     200,   201,   202,   203,   204,   205,   206,   207,    -1,   209,
+     210,   211,   212,   213,   214,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,    -1,
+      -1,  1847,    -1,   233,    -1,   235,   236,    -1,   238,    -1,
+     240,     3,     4,    -1,   244,   245,  1862,    -1,    10,    11,
+      12,    -1,    -1,    15,    16,    17,    18,    19,    20,    21,
+      22,    23,    24,    25,    26,    27,    28,    29,    30,    31,
+      32,    33,    34,    35,    36,    37,    38,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,  1134,  1274,  1275,    -1,    -1,
+      -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,
+      -1,    63,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    75,    76,    77,    -1,    -1,    -1,    -1,
+      82,    83,    -1,    85,    -1,    -1,    -1,    -1,    -1,    -1,
        3,     4,    -1,    -1,    -1,    -1,    -1,    10,    11,    12,
       -1,    -1,    15,    16,    17,    18,    19,    20,    21,    22,
       23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
-      33,    34,    35,    36,    37,    38,    -1,    -1,  1357,    -1,
-      -1,    -1,    -1,  1990,  1991,  1992,  1993,  1994,  1367,    -1,
+      33,    34,    35,    36,    37,    38,    -1,  1355,    -1,    -1,
+      -1,    -1,  1988,  1989,  1990,  1991,  1992,  1365,    -1,    -1,
       -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,
       63,    -1,     6,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    75,    76,    77,    -1,    -1,    -1,    -1,    -1,
-      83,    84,    -1,    86,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,  1275,    -1,    -1,    -1,    -1,
-      -1,   192,  2049,    -1,    -1,   196,    -1,    -1,    -1,    -1,
-     201,   202,   203,    -1,   205,   206,   207,    -1,    -1,    -1,
-     211,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,  1312,    -1,    -1,    -1,   227,   228,    -1,    -1,
-      -1,    -1,    -1,   234,    -1,    -1,    -1,    -1,   239,    -1,
-      -1,    -1,   243,    -1,    -1,   246,    -1,    -1,    -1,    -1,
-    1340,  1341,  1342,  1343,  1344,    -1,    -1,    -1,    -1,  1349,
-    1350,    -1,    -1,  1353,    -1,  1355,    -1,    -1,    -1,  1359,
-      -1,    -1,  1362,    -1,    -1,    -1,    -1,    -1,    -1,   192,
-      -1,    -1,    -1,   196,  1374,    -1,    -1,    -1,   201,   202,
-     203,  1520,   205,   206,   207,    -1,    -1,    -1,   211,    -1,
+      -1,    -1,    75,    76,    77,    -1,    -1,    -1,    -1,    82,
+      83,    -1,    85,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,  1273,    -1,    -1,    -1,    -1,   191,
+      -1,  2047,    -1,   195,    -1,    -1,    -1,    -1,   200,   201,
+     202,    -1,   204,   205,   206,    -1,    -1,    -1,   210,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   227,   228,    -1,    -1,    -1,    -1,
-      -1,   234,    -1,    -1,    -1,    -1,   239,    -1,    -1,    -1,
-     243,    -1,    -1,   246,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,  1310,    -1,    -1,   226,   227,    -1,    -1,    -1,    -1,
+      -1,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
+     242,    -1,    -1,   245,    -1,    -1,    -1,    -1,    -1,  1338,
+    1339,  1340,  1341,  1342,    -1,    -1,    -1,    -1,  1347,  1348,
+      -1,    -1,  1351,    -1,  1353,    -1,    -1,    -1,  1357,    -1,
+      -1,  1360,    -1,    -1,    -1,    -1,    -1,    -1,   191,    -1,
+      -1,    -1,   195,  1372,    -1,    -1,    -1,   200,   201,   202,
+    1518,   204,   205,   206,    -1,    -1,    -1,   210,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   226,   227,    -1,    -1,    -1,    -1,    -1,
+     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,   242,
+      -1,    -1,   245,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,     6,    -1,
-      -1,    -1,    -1,  1443,    -1,  1445,    -1,    -1,    -1,  1449,
-      -1,  1451,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,  1485,    -1,    -1,    -1,    -1,
+      -1,    -1,  1441,    -1,  1443,    -1,    -1,    -1,  1447,    -1,
+    1449,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,  1483,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,     3,
        4,     5,    -1,    -1,    -1,    -1,    10,    11,    12,    -1,
       -1,    15,    16,    17,    18,    19,    20,    21,    22,    23,
       24,    25,    26,    27,    28,    29,    30,    31,    32,    33,
       34,    35,    36,    37,    38,    39,    40,    41,    42,    43,
-       6,    -1,    46,    47,    48,    49,    50,    51,    52,    53,
+       7,     8,    46,    47,    48,    49,    50,    51,    52,    53,
       54,    55,    56,    57,    58,    59,    60,    61,    62,    63,
       64,    -1,    -1,    67,    68,    69,    -1,    -1,    72,    -1,
-      74,    75,    76,    77,    -1,  1575,    -1,    -1,    -1,    83,
-      84,    85,    86,    -1,    88,    -1,    -1,    91,    -1,    -1,
-      94,    -1,    -1,    97,    -1,    99,    -1,    -1,    -1,    -1,
-      -1,    -1,   106,    -1,    -1,    -1,   110,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   119,    -1,   121,    -1,    -1,
-     124,    -1,   126,    -1,    -1,    -1,    -1,    -1,    -1,   133,
-     134,   135,   136,   137,    -1,    -1,   140,   141,   142,   143,
-     144,    -1,    -1,    -1,   148,    -1,    -1,   151,   216,   217,
+      74,    75,    76,    77,  1573,    -1,    -1,    -1,    82,    83,
+      84,    85,    -1,    87,    -1,    -1,    90,    -1,    -1,    93,
+      -1,    -1,    96,    -1,    98,    -1,    -1,    -1,    -1,    -1,
+      -1,   105,    -1,    -1,    -1,   109,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   118,    -1,   120,    -1,    -1,   123,
+      -1,   125,    -1,    -1,    -1,    -1,    -1,    -1,   132,   133,
+     134,   135,   136,    -1,    -1,   139,   140,   141,   142,   143,
+      -1,    -1,    -1,   147,    -1,    -1,   150,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,    -1,  1675,    -1,    -1,  1678,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   192,   193,
-     194,   195,   196,   197,    -1,    -1,    -1,   201,   202,   203,
-     204,   205,   206,   207,   208,    -1,   210,   211,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1719,
-    1720,    -1,  1722,   227,   228,     6,    -1,    -1,    -1,    -1,
-     234,    -1,    -1,    -1,    -1,   239,    -1,    -1,    -1,   243,
-      -1,    -1,   246,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,  1781,  1782,    -1,    -1,     3,     4,     5,    -1,    -1,
-      -1,    -1,    10,    11,    12,    -1,    -1,    15,    16,    17,
-      18,    19,    20,    21,    22,    23,    24,    25,    26,    27,
-      28,    29,    30,    31,    32,    33,    34,    35,    36,    37,
-      38,    39,    40,    41,    42,    43,    -1,  1827,    46,    47,
-      48,    49,    50,    51,    52,    53,    54,    55,    56,    57,
-      58,    59,    60,    61,    62,    63,    64,    -1,    -1,    67,
-      68,    69,    -1,    -1,    72,    -1,    74,    75,    76,    77,
-      -1,    -1,    -1,    -1,    -1,    83,    84,    85,    86,    -1,
-      88,    -1,    -1,    91,    -1,    -1,    94,    -1,    -1,    97,
-      -1,    99,    -1,    -1,    -1,    -1,    -1,    -1,   106,    -1,
-      -1,    -1,   110,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   119,    -1,   121,    -1,    -1,   124,    -1,   126,    -1,
-      -1,    -1,    -1,    -1,    -1,   133,   134,   135,   136,   137,
-      -1,    -1,   140,   141,   142,   143,   144,    -1,    -1,    -1,
-     148,    -1,    -1,   151,    -1,   216,   217,   218,   219,   220,
-     221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+      -1,    -1,    -1,    -1,  1673,    -1,    -1,  1676,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   191,   192,   193,
+     194,   195,   196,    -1,    -1,    -1,   200,   201,   202,   203,
+     204,   205,   206,   207,    -1,   209,   210,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,  1717,  1718,
+      -1,  1720,   226,   227,    -1,     8,    -1,    -1,    -1,   233,
+      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,   242,    -1,
+      -1,   245,    -1,    -1,    -1,    -1,    -1,    -1,   215,   216,
+     217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+    1779,  1780,    -1,    -1,     3,     4,     5,    -1,    -1,    -1,
+      -1,    10,    11,    12,    -1,    -1,    15,    16,    17,    18,
+      19,    20,    21,    22,    23,    24,    25,    26,    27,    28,
+      29,    30,    31,    32,    33,    34,    35,    36,    37,    38,
+      39,    40,    41,    42,    43,    -1,  1825,    46,    47,    48,
+      49,    50,    51,    52,    53,    54,    55,    56,    57,    58,
+      59,    60,    61,    62,    63,    64,    -1,    -1,    67,    68,
+      69,    -1,    -1,    72,    -1,    74,    75,    76,    77,    -1,
+      -1,    -1,    -1,    82,    83,    84,    85,    -1,    87,    -1,
+      -1,    90,    -1,    -1,    93,    -1,    -1,    96,    -1,    98,
+      -1,    -1,    -1,    -1,    -1,    -1,   105,    -1,    -1,    -1,
+     109,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   118,
+      -1,   120,    -1,    -1,   123,    -1,   125,    -1,    -1,    -1,
+      -1,    -1,    -1,   132,   133,   134,   135,   136,    -1,    -1,
+     139,   140,   141,   142,   143,    -1,    -1,    -1,   147,    -1,
+      -1,   150,   215,   216,   217,   218,   219,   220,   221,   222,
+     223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   192,   193,   194,   195,   196,   197,
-      -1,    -1,    -1,   201,   202,   203,   204,   205,   206,   207,
-     208,    -1,   210,   211,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,
-     228,    -1,    -1,    -1,    -1,    -1,   234,    -1,    -1,    -1,
-      -1,   239,    -1,    -1,    -1,   243,    -1,    -1,   246,   216,
+      -1,    -1,   191,   192,   193,   194,   195,   196,    -1,    -1,
+      -1,   200,   201,   202,   203,   204,   205,   206,   207,    -1,
+     209,   210,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,
+      -1,    -1,    -1,    -1,   233,    -1,    -1,    -1,    -1,   238,
+      -1,    -1,    -1,   242,    -1,    -1,   245,    -1,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,     3,     4,     5,
-      -1,   238,    -1,    -1,    10,    11,    12,   244,  2058,    15,
-      16,    17,    18,    19,    20,    21,    22,    23,    24,    25,
-      26,    27,    28,    29,    30,    31,    32,    33,    34,    35,
-      36,    37,    38,    39,    40,    41,    42,    43,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,
-      56,    57,    58,    -1,    -1,    -1,    -1,    63,    64,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    75,
-      76,    77,    -1,    -1,    13,    14,    -1,    83,    84,    -1,
-      86,    -1,    -1,    -1,    -1,    91,    -1,    -1,    94,    -1,
-      -1,    97,    -1,    99,    -1,    -1,    -1,    -1,    -1,    -1,
-     106,    -1,    -1,    -1,   110,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   119,    -1,   121,    -1,    -1,   124,    -1,
-     126,    -1,    -1,    -1,    -1,    -1,    -1,   133,   134,   135,
-     136,   137,    -1,    -1,   140,   141,   142,   143,   144,    -1,
-      -1,    -1,   148,    -1,    -1,   151,    -1,    -1,    -1,    -1,
-      -1,    -1,    91,    92,    93,    94,    95,    96,    97,    98,
-      99,   100,   101,   102,   103,    -1,    -1,    -1,   107,   108,
-     109,   110,    -1,    -1,   113,    -1,    -1,    -1,    -1,    -1,
-     119,   120,    -1,    -1,   123,   124,   192,   126,   127,    -1,
-     196,   197,    -1,    -1,    -1,   201,   202,   203,    -1,   205,
-     206,   207,    -1,    -1,    -1,   211,   145,    -1,    -1,    -1,
+     227,   228,   229,   230,   231,   232,     3,     4,     5,    -1,
+     237,    -1,    -1,    10,    11,    12,   243,  2056,    15,    16,
+      17,    18,    19,    20,    21,    22,    23,    24,    25,    26,
+      27,    28,    29,    30,    31,    32,    33,    34,    35,    36,
+      37,    38,    39,    40,    41,    42,    43,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,    56,
+      57,    58,    -1,    -1,    -1,    -1,    63,    64,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    75,    76,
+      77,    -1,    -1,    13,    14,    82,    83,    -1,    85,    -1,
+      -1,    -1,    -1,    90,    -1,    -1,    93,    -1,    -1,    96,
+      -1,    98,    -1,    -1,    -1,    -1,    -1,    -1,   105,    -1,
+      -1,    -1,   109,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   118,    -1,   120,    -1,    -1,   123,    -1,   125,    -1,
+      -1,    -1,    -1,    -1,    -1,   132,   133,   134,   135,   136,
+      -1,    -1,   139,   140,   141,   142,   143,    -1,    -1,    -1,
+     147,    -1,    -1,   150,    -1,    -1,    -1,    -1,    -1,    -1,
+      90,    91,    92,    93,    94,    95,    96,    97,    98,    99,
+     100,   101,   102,    -1,    -1,    -1,   106,   107,   108,   109,
+      -1,    -1,   112,    -1,    -1,    -1,    -1,    -1,   118,   119,
+      -1,    -1,   122,   123,   191,   125,   126,    -1,   195,   196,
+      -1,    -1,    -1,   200,   201,   202,    -1,   204,   205,   206,
+      -1,    -1,    -1,   210,   144,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,
+     227,    -1,    -1,    -1,    -1,    -1,   233,    -1,   168,   169,
+     170,   238,     3,     4,    -1,   242,    -1,     8,   245,    10,
+      11,    12,    -1,    -1,    15,    16,    17,    18,    19,    20,
+      21,    22,    23,    24,    25,    26,    27,    28,    29,    30,
+      31,    32,    33,    34,    35,    36,    37,    38,    39,    40,
+      41,    42,    43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,
+      -1,    -1,    63,    64,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   243,    75,    76,    77,    -1,    -1,    13,
+      14,    82,    83,    -1,    85,    -1,    -1,    -1,    -1,    90,
+      -1,    -1,    93,    -1,    -1,    96,    -1,    98,    -1,    -1,
+      -1,    -1,    -1,    -1,   105,    -1,    -1,    -1,   109,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   118,    -1,   120,
+      -1,    -1,   123,    -1,   125,    -1,    -1,    -1,    -1,    -1,
+      -1,   132,   133,   134,   135,   136,    -1,    -1,   139,   140,
+     141,   142,   143,    -1,    -1,    -1,   147,    -1,    -1,   150,
+      -1,    -1,    -1,    -1,    -1,    -1,    90,    91,    92,    93,
+      94,    95,    96,    97,    98,    99,   100,   101,   102,    -1,
+      -1,    -1,   106,   107,   108,   109,    -1,    -1,   112,    -1,
+      -1,    -1,    -1,    -1,   118,   119,    -1,    -1,   122,   123,
+     191,   125,   126,    -1,   195,   196,    -1,    -1,    -1,   200,
+     201,   202,    -1,   204,   205,   206,    -1,    -1,    -1,   210,
+     144,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   226,   227,    -1,    -1,    -1,
+      -1,    -1,   233,    -1,   168,   169,   170,   238,     3,     4,
+       5,    -1,   243,    -1,   245,    10,    11,    12,    -1,    -1,
+      15,    16,    17,    18,    19,    20,    21,    22,    23,    24,
+      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
+      35,    36,    37,    38,    39,    40,    41,    42,    43,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   227,   228,    -1,    -1,    -1,    -1,    -1,   234,    -1,
-     169,   170,   171,   239,     3,     4,    -1,   243,    -1,     8,
-     246,    10,    11,    12,    -1,    -1,    15,    16,    17,    18,
+      55,    56,    57,    58,    -1,    -1,    -1,    -1,    63,    64,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   243,
+      75,    76,    77,    -1,    -1,    13,    14,    82,    83,    -1,
+      85,    -1,    -1,    -1,    -1,    90,    -1,    -1,    93,    -1,
+      -1,    96,    -1,    98,    -1,    -1,    -1,    -1,    -1,    -1,
+     105,    -1,    -1,    -1,   109,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   118,    -1,   120,    -1,    -1,   123,    -1,
+     125,    -1,    -1,    -1,    -1,    -1,    -1,   132,   133,   134,
+     135,   136,    -1,    -1,   139,   140,   141,   142,   143,    -1,
+      -1,    -1,   147,    -1,    -1,   150,    -1,    -1,    -1,    -1,
+      -1,    -1,    90,    91,    92,    93,    94,    95,    96,    97,
+      98,    99,   100,   101,   102,    -1,    -1,    -1,   106,   107,
+     108,   109,    -1,    -1,   112,    -1,    -1,    -1,    -1,    -1,
+     118,   119,    -1,    -1,   122,   123,   191,   125,   126,    -1,
+     195,   196,    -1,    -1,    -1,   200,   201,   202,    -1,   204,
+     205,   206,    -1,    -1,    -1,   210,   144,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   226,   227,    -1,    -1,    -1,    -1,    -1,   233,    -1,
+     168,   169,   170,   238,     3,     4,    -1,   242,    -1,    -1,
+     245,    10,    11,    12,    -1,    -1,    15,    16,    17,    18,
       19,    20,    21,    22,    23,    24,    25,    26,    27,    28,
       29,    30,    31,    32,    33,    34,    35,    36,    37,    38,
       39,    40,    41,    42,    43,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,    58,
       -1,    -1,    -1,    -1,    63,    64,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   244,    75,    76,    77,    -1,
-      -1,    13,    14,    -1,    83,    84,    -1,    86,    -1,    -1,
-      -1,    -1,    91,    -1,    -1,    94,    -1,    -1,    97,    -1,
-      99,    -1,    -1,    -1,    -1,    -1,    -1,   106,    -1,    -1,
-      -1,   110,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     119,    -1,   121,    -1,    -1,   124,    -1,   126,    -1,    -1,
-      -1,    -1,    -1,    -1,   133,   134,   135,   136,   137,    -1,
-      -1,   140,   141,   142,   143,   144,    -1,    -1,    -1,   148,
-      -1,    -1,   151,    -1,    -1,    -1,    -1,    -1,    -1,    91,
+      -1,    -1,    -1,    -1,    -1,   243,    75,    76,    77,    -1,
+      -1,    13,    14,    82,    83,    -1,    85,    -1,    -1,    -1,
+      -1,    90,    -1,    -1,    93,    -1,    -1,    96,    -1,    98,
+      -1,    -1,    -1,    -1,    -1,    -1,   105,    -1,    -1,    -1,
+     109,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   118,
+      -1,   120,    -1,    -1,   123,    -1,   125,    -1,    -1,    -1,
+      -1,    -1,    -1,   132,   133,   134,   135,   136,    -1,    -1,
+     139,   140,   141,   142,   143,    -1,    -1,    -1,   147,    -1,
+      -1,   150,    -1,    -1,    -1,    -1,    -1,    -1,    90,    91,
       92,    93,    94,    95,    96,    97,    98,    99,   100,   101,
-     102,   103,    -1,    -1,    -1,   107,   108,   109,   110,    -1,
-      -1,   113,    -1,    -1,    -1,    -1,    -1,   119,   120,    -1,
-      -1,   123,   124,   192,   126,   127,    -1,   196,   197,    -1,
-      -1,    -1,   201,   202,   203,    -1,   205,   206,   207,    -1,
-      -1,    -1,   211,   145,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,   228,
-      -1,    -1,    -1,    -1,    -1,   234,    -1,   169,   170,   171,
-     239,     3,     4,     5,    -1,   244,    -1,   246,    10,    11,
-      12,    -1,    -1,    15,    16,    17,    18,    19,    20,    21,
-      22,    23,    24,    25,    26,    27,    28,    29,    30,    31,
-      32,    33,    34,    35,    36,    37,    38,    39,    40,    41,
-      42,    43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,
-      -1,    63,    64,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   244,    75,    76,    77,    -1,    -1,    13,    14,
-      -1,    83,    84,    -1,    86,    -1,    -1,    -1,    -1,    91,
-      -1,    -1,    94,    -1,    -1,    97,    -1,    99,    -1,    -1,
-      -1,    -1,    -1,    -1,   106,    -1,    -1,    -1,   110,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   119,    -1,   121,
-      -1,    -1,   124,    -1,   126,    -1,    -1,    -1,    -1,    -1,
-      -1,   133,   134,   135,   136,   137,    -1,    -1,   140,   141,
-     142,   143,   144,    -1,    -1,    -1,   148,    -1,    -1,   151,
-      -1,    -1,    -1,    -1,    -1,    -1,    91,    92,    93,    94,
-      95,    96,    97,    98,    99,   100,   101,   102,   103,    -1,
-      -1,    -1,   107,   108,   109,   110,    -1,    -1,   113,    -1,
-      -1,    -1,    -1,    -1,   119,   120,    -1,    -1,   123,   124,
-     192,   126,   127,    -1,   196,   197,    -1,    -1,    -1,   201,
-     202,   203,    -1,   205,   206,   207,    -1,    -1,    -1,   211,
-     145,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   227,   228,    -1,    -1,    -1,
-      -1,    -1,   234,    -1,   169,   170,   171,   239,     3,     4,
-      -1,   243,    -1,    -1,   246,    10,    11,    12,    -1,    -1,
-      15,    16,    17,    18,    19,    20,    21,    22,    23,    24,
-      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
-      35,    36,    37,    38,    39,    40,    41,    42,    43,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      55,    56,    57,    58,    -1,    -1,    -1,    -1,    63,    64,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   244,
-      75,    76,    77,    -1,    -1,    13,    14,    -1,    83,    84,
-      -1,    86,    -1,    -1,    -1,    -1,    91,    -1,    -1,    94,
-      -1,    -1,    97,    -1,    99,    -1,    -1,    -1,    -1,    -1,
-      -1,   106,    -1,    -1,    -1,   110,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   119,    -1,   121,    -1,    -1,   124,
-      -1,   126,    -1,    -1,    -1,    -1,    -1,    -1,   133,   134,
-     135,   136,   137,    -1,    -1,   140,   141,   142,   143,   144,
-      -1,    -1,    -1,   148,    -1,    -1,   151,    -1,    -1,    -1,
-      -1,    -1,    -1,    91,    92,    93,    94,    95,    96,    97,
-      98,    99,   100,   101,   102,   103,    -1,    -1,    -1,   107,
-     108,   109,   110,    -1,    -1,   113,    -1,    -1,    -1,    -1,
-      -1,   119,   120,    -1,    -1,   123,   124,   192,   126,   127,
-      -1,   196,   197,    -1,    -1,    -1,   201,   202,   203,    -1,
-     205,   206,   207,    -1,    -1,    -1,   211,   145,    -1,    -1,
+     102,    -1,    -1,    -1,   106,   107,   108,   109,    -1,    -1,
+     112,    -1,    -1,    -1,    -1,    -1,   118,   119,    -1,    -1,
+     122,   123,   191,   125,   126,    -1,   195,   196,    -1,    -1,
+      -1,   200,   201,   202,    -1,   204,   205,   206,    -1,    -1,
+      -1,   210,   144,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,
+      -1,    -1,    -1,    -1,   233,    -1,   168,   169,   170,   238,
+       3,     4,    -1,   242,   243,    -1,   245,    10,    11,    12,
+      -1,    -1,    15,    16,    17,    18,    19,    20,    21,    22,
+      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
+      33,    34,    35,    36,    37,    38,    39,    40,    41,    42,
+      43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,
+      63,    64,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   243,    75,    76,    77,    -1,    -1,    13,    14,    82,
+      83,    -1,    85,    -1,    -1,    -1,    -1,    90,    -1,    -1,
+      93,    -1,    -1,    96,    -1,    98,    -1,    -1,    -1,    -1,
+      -1,    -1,   105,    -1,    -1,    -1,   109,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   118,    -1,   120,    -1,    -1,
+     123,    -1,   125,    -1,    -1,    -1,    -1,    -1,    -1,   132,
+     133,   134,   135,   136,    -1,    -1,   139,   140,   141,   142,
+     143,    -1,    -1,    -1,   147,    -1,    -1,   150,    -1,    -1,
+      -1,    -1,    -1,    -1,    90,    91,    92,    93,    94,    95,
+      96,    97,    98,    99,   100,   101,   102,    -1,    -1,    -1,
+     106,   107,   108,   109,    -1,    -1,   112,    -1,    -1,    -1,
+      -1,    -1,   118,   119,    -1,    -1,   122,   123,   191,   125,
+     126,    -1,   195,   196,    -1,    -1,    -1,   200,   201,   202,
+      -1,   204,   205,   206,    -1,    -1,    -1,   210,   144,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   227,   228,    -1,    -1,    -1,    -1,    -1,   234,
-      -1,   169,   170,   171,   239,     3,     4,    -1,   243,   244,
-      -1,   246,    10,    11,    12,    -1,    -1,    15,    16,    17,
-      18,    19,    20,    21,    22,    23,    24,    25,    26,    27,
-      28,    29,    30,    31,    32,    33,    34,    35,    36,    37,
-      38,    39,    40,    41,    42,    43,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,
-      58,    -1,    -1,    -1,    -1,    63,    64,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   244,    75,    76,    77,
-      -1,    -1,    13,    14,    -1,    83,    84,    -1,    86,    -1,
-      -1,    -1,    -1,    91,    -1,    -1,    94,    -1,    -1,    97,
-      -1,    99,    -1,    -1,    -1,    -1,    -1,    -1,   106,    -1,
-      -1,    -1,   110,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   119,    -1,   121,    -1,    -1,   124,    -1,   126,    -1,
-      -1,    -1,    -1,    -1,    -1,   133,   134,   135,   136,   137,
-      -1,    -1,   140,   141,   142,   143,   144,    -1,    -1,    -1,
-     148,    -1,    -1,   151,    -1,    -1,    -1,    -1,    -1,    -1,
-      91,    92,    93,    94,    95,    96,    97,    98,    99,   100,
-     101,   102,   103,    -1,    -1,    -1,   107,   108,   109,   110,
-      -1,    -1,   113,    -1,    -1,    -1,    -1,    -1,   119,   120,
-      -1,    -1,   123,   124,   192,   126,   127,    -1,   196,   197,
-      -1,    -1,    -1,   201,   202,   203,    -1,   205,   206,   207,
-      -1,    -1,    -1,   211,   145,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,
-     228,    -1,    -1,    -1,    -1,    -1,   234,    -1,   169,   170,
-     171,   239,     3,     4,    -1,   243,    -1,    -1,   246,    10,
+      -1,    -1,    -1,   226,   227,    -1,    -1,    -1,    -1,    -1,
+     233,    -1,   168,   169,   170,   238,     3,     4,    -1,   242,
+      -1,    -1,   245,    10,    11,    12,    -1,    -1,    15,    16,
+      17,    18,    19,    20,    21,    22,    23,    24,    25,    26,
+      27,    28,    29,    30,    31,    32,    33,    34,    35,    36,
+      37,    38,    39,    40,    41,    42,    43,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,    56,
+      57,    58,    -1,    -1,    -1,    -1,    63,    64,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   243,    75,    76,
+      77,    -1,    -1,    13,    14,    82,    83,    -1,    85,    -1,
+      -1,    -1,    -1,    90,    -1,    -1,    93,    -1,    -1,    96,
+      -1,    98,    -1,    -1,    -1,    -1,    -1,    -1,   105,    -1,
+      -1,    -1,   109,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   118,    -1,   120,    -1,    -1,   123,    -1,   125,    -1,
+      -1,    -1,    -1,    -1,    -1,   132,   133,   134,   135,   136,
+      -1,    -1,   139,   140,   141,   142,   143,    -1,    -1,    -1,
+     147,    -1,    -1,   150,    -1,    -1,    -1,    -1,    -1,    -1,
+      90,    91,    92,    93,    94,    95,    96,    97,    98,    99,
+     100,   101,   102,    -1,    -1,    -1,   106,   107,   108,   109,
+      -1,    -1,   112,    -1,    -1,    -1,    -1,    -1,   118,   119,
+      -1,    -1,   122,   123,   191,   125,   126,    -1,   195,   196,
+      -1,    -1,    -1,   200,   201,   202,    -1,   204,   205,   206,
+      -1,    -1,    -1,   210,   144,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,
+     227,    -1,    -1,    -1,    -1,    -1,   233,    -1,   168,   169,
+     170,   238,     3,     4,    -1,   242,    -1,    -1,   245,    10,
       11,    12,    -1,    -1,    15,    16,    17,    18,    19,    20,
       21,    22,    23,    24,    25,    26,    27,    28,    29,    30,
       31,    32,    33,    34,    35,    36,    37,    38,    39,    40,
       41,    42,    43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,
       -1,    -1,    63,    64,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   244,    75,    76,    77,    -1,    -1,    13,
-      14,    -1,    83,    84,    -1,    86,    -1,    -1,    -1,    -1,
-      91,    -1,    -1,    94,    -1,    -1,    97,    -1,    99,    -1,
-      -1,    -1,    -1,    -1,    -1,   106,    -1,    -1,    -1,   110,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   119,    -1,
-     121,    -1,    -1,   124,    -1,   126,    -1,    -1,    -1,    -1,
-      -1,    -1,   133,   134,   135,   136,   137,    -1,    -1,   140,
-     141,   142,   143,   144,    -1,    -1,    -1,   148,    -1,    -1,
-     151,    -1,    -1,    -1,    -1,    -1,    -1,    91,    92,    93,
-      94,    95,    96,    97,    98,    99,   100,   101,   102,   103,
-      -1,    -1,    -1,   107,   108,   109,   110,    -1,    -1,   113,
-      -1,    -1,    -1,    -1,    -1,   119,   120,    -1,    -1,   123,
-     124,   192,   126,   127,    -1,   196,   197,    -1,    -1,    -1,
-     201,   202,   203,    -1,   205,   206,   207,    -1,    -1,    -1,
-     211,   145,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   227,   228,    -1,    -1,
-      -1,    -1,    -1,   234,    -1,   169,   170,   171,   239,     3,
-       4,    -1,   243,    -1,    -1,   246,    10,    11,    12,    -1,
-      -1,    15,    16,    17,    18,    19,    20,    21,    22,    23,
-      24,    25,    26,    27,    28,    29,    30,    31,    32,    33,
-      34,    35,    36,    37,    38,    39,    40,    41,    42,    43,
+      -1,    -1,    -1,   243,    75,    76,    77,    -1,    -1,    13,
+      14,    82,    83,    -1,    85,    -1,    -1,    -1,    -1,    90,
+      -1,    -1,    93,    -1,    -1,    96,    -1,    98,    -1,    -1,
+      -1,    -1,    -1,    -1,   105,    -1,    -1,    -1,   109,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   118,    -1,   120,
+      -1,    -1,   123,    -1,   125,    -1,    -1,    -1,    -1,    -1,
+      -1,   132,   133,   134,   135,   136,    -1,    -1,   139,   140,
+     141,   142,   143,    -1,    -1,    -1,   147,    -1,    -1,   150,
+      -1,    -1,    -1,    -1,    -1,    -1,    90,    91,    92,    93,
+      94,    95,    96,    97,    98,    99,   100,   101,   102,    -1,
+      -1,    -1,   106,   107,   108,   109,    -1,    -1,   112,    -1,
+      -1,    -1,    -1,    -1,   118,   119,    -1,    -1,   122,   123,
+     191,   125,   126,    -1,   195,   196,    -1,    -1,    -1,   200,
+     201,   202,    -1,   204,   205,   206,    -1,    -1,    -1,   210,
+     144,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   226,   227,    -1,    -1,    -1,
+      -1,    -1,   233,    -1,   168,   169,   170,   238,     3,     4,
+      -1,   242,    -1,    -1,   245,    10,    11,    12,    -1,    -1,
+      15,    16,    17,    18,    19,    20,    21,    22,    23,    24,
+      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
+      35,    36,    37,    38,    39,    40,    41,    42,    43,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,    63,
-      64,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     244,    75,    76,    77,    -1,    -1,    13,    14,    -1,    83,
-      84,    -1,    86,    -1,    -1,    -1,    -1,    91,    -1,    -1,
-      94,    -1,    -1,    97,    -1,    99,    -1,    -1,    -1,    -1,
-      -1,    -1,   106,    -1,    -1,    -1,   110,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   119,    -1,   121,    -1,    -1,
-     124,    -1,   126,    -1,    -1,    -1,    -1,    -1,    -1,   133,
-     134,   135,   136,   137,    -1,    -1,   140,   141,   142,   143,
-     144,    -1,    -1,    -1,   148,    -1,    -1,   151,    -1,    -1,
-      -1,    -1,    -1,    -1,    91,    92,    93,    94,    95,    96,
-      97,    98,    99,   100,   101,   102,   103,    -1,    -1,    -1,
-     107,   108,   109,   110,    -1,    -1,   113,    -1,    -1,    -1,
-      -1,    -1,   119,   120,    -1,    -1,   123,   124,   192,   126,
-     127,    -1,   196,   197,    -1,    -1,    -1,   201,   202,   203,
-      -1,   205,   206,   207,    -1,    -1,    -1,   211,   145,    -1,
+      55,    56,    57,    58,    -1,    -1,    -1,    -1,    63,    64,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   243,
+      75,    76,    77,    -1,    -1,    13,    14,    82,    83,    -1,
+      85,    -1,    -1,    -1,    -1,    90,    -1,    -1,    93,    -1,
+      -1,    96,    -1,    98,    -1,    -1,    -1,    -1,    -1,    -1,
+     105,    -1,    -1,    -1,   109,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   118,    -1,   120,    -1,    -1,   123,    -1,
+     125,    -1,    -1,    -1,    -1,    -1,    -1,   132,   133,   134,
+     135,   136,    -1,    -1,   139,   140,   141,   142,   143,    -1,
+      -1,    -1,   147,    -1,    -1,   150,    -1,    -1,    -1,    -1,
+      -1,    -1,    90,    91,    92,    93,    94,    95,    96,    97,
+      98,    99,   100,   101,   102,    -1,    -1,    -1,   106,   107,
+     108,   109,    -1,    -1,   112,    -1,    -1,    -1,    -1,    -1,
+     118,   119,    -1,    -1,   122,   123,   191,   125,   126,    -1,
+     195,   196,    -1,    -1,    -1,   200,   201,   202,    -1,   204,
+     205,   206,    -1,    -1,    -1,   210,   144,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   227,   228,    -1,    -1,    -1,    -1,    -1,
-     234,    -1,   169,   170,   171,   239,     3,     4,    -1,   243,
-      -1,    -1,   246,    10,    11,    12,    -1,    -1,    15,    16,
+      -1,   226,   227,    -1,    -1,    -1,    -1,    -1,   233,    -1,
+     168,   169,   170,   238,     3,     4,    -1,    -1,   243,    -1,
+     245,    10,    11,    12,    -1,    -1,    15,    16,    17,    18,
+      19,    20,    21,    22,    23,    24,    25,    26,    27,    28,
+      29,    30,    31,    32,    33,    34,    35,    36,    37,    38,
+      39,    40,    41,    42,    43,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,    58,
+      -1,    -1,    -1,    -1,    63,    64,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   243,    75,    76,    77,    -1,
+      -1,    13,    14,    82,    83,    -1,    85,    -1,    -1,    -1,
+      -1,    90,    -1,    -1,    93,    -1,    -1,    96,    -1,    98,
+      -1,    -1,    -1,    -1,    -1,    -1,   105,    -1,    -1,    -1,
+     109,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   118,
+      -1,   120,    -1,    -1,   123,    -1,   125,    -1,    -1,    -1,
+      -1,    -1,    -1,   132,   133,   134,   135,   136,    -1,    -1,
+     139,   140,   141,   142,   143,    -1,    -1,    -1,   147,    -1,
+      -1,   150,    -1,    -1,    -1,    -1,    -1,    -1,    90,    91,
+      92,    93,    94,    95,    96,    97,    98,    99,   100,   101,
+     102,    -1,    -1,    -1,   106,   107,   108,   109,    -1,    -1,
+     112,    -1,    -1,    -1,    -1,    -1,   118,   119,    -1,    -1,
+     122,   123,   191,   125,   126,    -1,   195,   196,    -1,    -1,
+      -1,   200,   201,   202,    -1,   204,   205,   206,    -1,    -1,
+      -1,   210,   144,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,
+      -1,    -1,    -1,    -1,   233,    -1,   168,   169,   170,   238,
+       3,     4,    -1,   242,    -1,    -1,   245,    10,    11,    12,
+      -1,    -1,    15,    16,    17,    18,    19,    20,    21,    22,
+      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
+      33,    34,    35,    36,    37,    38,    39,    40,    41,    42,
+      43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,
+      63,    64,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   243,    75,    76,    77,    -1,    -1,    13,    14,    82,
+      83,    -1,    85,    -1,    -1,    -1,    -1,    90,    -1,    -1,
+      93,    -1,    -1,    96,    -1,    98,    -1,    -1,    -1,    -1,
+      -1,    -1,   105,    -1,    -1,    -1,   109,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   118,    -1,   120,    -1,    -1,
+     123,    -1,   125,    -1,    -1,    -1,    -1,    -1,    -1,   132,
+     133,   134,   135,   136,    -1,    -1,   139,   140,   141,   142,
+     143,    -1,    -1,    -1,   147,    -1,    -1,   150,    -1,    -1,
+      -1,    -1,    -1,    -1,    90,    91,    92,    93,    94,    95,
+      96,    97,    98,    99,   100,   101,   102,    -1,    -1,    -1,
+     106,   107,   108,   109,    -1,    -1,   112,    -1,    -1,    -1,
+      -1,    -1,   118,   119,    -1,    -1,   122,   123,   191,   125,
+     126,    -1,   195,   196,    -1,    -1,    -1,   200,   201,   202,
+      -1,   204,   205,   206,    -1,    -1,    -1,   210,   144,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   226,   227,    -1,    -1,    -1,    -1,    -1,
+     233,    -1,   168,   169,   170,   238,     3,     4,    -1,   242,
+      -1,    -1,   245,    10,    11,    12,    -1,    -1,    15,    16,
       17,    18,    19,    20,    21,    22,    23,    24,    25,    26,
       27,    28,    29,    30,    31,    32,    33,    34,    35,    36,
       37,    38,    39,    40,    41,    42,    43,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,    56,
       57,    58,    -1,    -1,    -1,    -1,    63,    64,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   244,    75,    76,
-      77,    -1,    -1,    13,    14,    -1,    83,    84,    -1,    86,
-      -1,    -1,    -1,    -1,    91,    -1,    -1,    94,    -1,    -1,
-      97,    -1,    99,    -1,    -1,    -1,    -1,    -1,    -1,   106,
-      -1,    -1,    -1,   110,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   119,    -1,   121,    -1,    -1,   124,    -1,   126,
-      -1,    -1,    -1,    -1,    -1,    -1,   133,   134,   135,   136,
-     137,    -1,    -1,   140,   141,   142,   143,   144,    -1,    -1,
-      -1,   148,    -1,    -1,   151,    -1,    -1,    -1,    -1,    -1,
-      -1,    91,    92,    93,    94,    95,    96,    97,    98,    99,
-     100,   101,   102,   103,    -1,    -1,    -1,   107,   108,   109,
-     110,    -1,    -1,   113,    -1,    -1,    -1,    -1,    -1,   119,
-     120,    -1,    -1,   123,   124,   192,   126,   127,    -1,   196,
-     197,    -1,    -1,    -1,   201,   202,   203,    -1,   205,   206,
-     207,    -1,    -1,    -1,   211,   145,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   243,    75,    76,
+      77,    -1,    -1,    13,    14,    82,    83,    -1,    85,    -1,
+      -1,    -1,    -1,    90,    -1,    -1,    93,    -1,    -1,    96,
+      -1,    98,    -1,    -1,    -1,    -1,    -1,    -1,   105,    -1,
+      -1,    -1,   109,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   118,    -1,   120,    -1,    -1,   123,    -1,   125,    -1,
+      -1,    -1,    -1,    -1,    -1,   132,   133,   134,   135,   136,
+      -1,    -1,   139,   140,   141,   142,   143,    -1,    -1,    -1,
+     147,    -1,    -1,   150,    -1,    -1,    -1,    -1,    -1,    -1,
+      90,    91,    92,    93,    94,    95,    96,    97,    98,    99,
+     100,   101,   102,    -1,    -1,    -1,   106,   107,   108,   109,
+      -1,    -1,   112,     8,    -1,    -1,    -1,    -1,   118,   119,
+      -1,    -1,   122,   123,   191,   125,   126,    -1,   195,   196,
+      -1,    -1,    -1,   200,   201,   202,    -1,   204,   205,   206,
+      -1,    -1,    -1,   210,   144,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,
+     227,    -1,    -1,    -1,    -1,    -1,   233,    -1,   168,   169,
+     170,   238,     3,     4,    -1,   242,    -1,     8,   245,    10,
+      11,    12,    -1,    -1,    15,    16,    17,    18,    19,    20,
+      21,    22,    23,    24,    25,    26,    27,    28,    29,    30,
+      31,    32,    33,    34,    35,    36,    37,    38,    39,    40,
+      41,    42,    43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,
+      -1,    -1,    63,    64,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   243,    75,    76,    77,    -1,    -1,    -1,
+      -1,    82,    83,    -1,    85,    -1,    -1,    -1,    -1,    90,
+      -1,    -1,    93,    -1,    -1,    96,    -1,    98,    -1,    -1,
+      -1,    -1,    -1,    -1,   105,    -1,    -1,    -1,   109,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   118,    -1,   120,
+      -1,    -1,   123,    -1,   125,    -1,    -1,    -1,    -1,    -1,
+      -1,   132,   133,   134,   135,   136,    -1,    -1,   139,   140,
+     141,   142,   143,    -1,    -1,    -1,   147,    -1,    -1,   150,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,     8,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     227,   228,    -1,    -1,    -1,    -1,    -1,   234,    -1,   169,
-     170,   171,   239,     3,     4,    -1,    -1,   244,    -1,   246,
-      10,    11,    12,    -1,    -1,    15,    16,    17,    18,    19,
+     191,    -1,    -1,    -1,   195,   196,    -1,    -1,    -1,   200,
+     201,   202,    -1,   204,   205,   206,    -1,    -1,    -1,   210,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   226,   227,    -1,    -1,    -1,
+      -1,    -1,   233,     3,     4,    -1,    -1,   238,     8,    -1,
+      10,    11,    12,    -1,   245,    15,    16,    17,    18,    19,
       20,    21,    22,    23,    24,    25,    26,    27,    28,    29,
       30,    31,    32,    33,    34,    35,    36,    37,    38,    39,
       40,    41,    42,    43,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    55,    56,    57,    58,    -1,
       -1,    -1,    -1,    63,    64,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   244,    75,    76,    77,    -1,    -1,
-      13,    14,    -1,    83,    84,    -1,    86,    -1,    -1,    -1,
-      -1,    91,    -1,    -1,    94,    -1,    -1,    97,    -1,    99,
-      -1,    -1,    -1,    -1,    -1,    -1,   106,    -1,    -1,    -1,
-     110,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   119,
-      -1,   121,    -1,    -1,   124,    -1,   126,    -1,    -1,    -1,
-      -1,    -1,    -1,   133,   134,   135,   136,   137,    -1,    -1,
-     140,   141,   142,   143,   144,    -1,    -1,    -1,   148,    -1,
-      -1,   151,    -1,    -1,    -1,    -1,    -1,    -1,    91,    92,
-      93,    94,    95,    96,    97,    98,    99,   100,   101,   102,
-     103,    -1,    -1,    -1,   107,   108,   109,   110,    -1,    -1,
-     113,    -1,    -1,    -1,    -1,    -1,   119,   120,    -1,    -1,
-     123,   124,   192,   126,   127,    -1,   196,   197,    -1,    -1,
-      -1,   201,   202,   203,    -1,   205,   206,   207,    -1,    -1,
-      -1,   211,   145,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,   228,    -1,
-      -1,    -1,    -1,    -1,   234,    -1,   169,   170,   171,   239,
-       3,     4,    -1,   243,    -1,    -1,   246,    10,    11,    12,
-      -1,    -1,    15,    16,    17,    18,    19,    20,    21,    22,
-      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
-      33,    34,    35,    36,    37,    38,    39,    40,    41,    42,
-      43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,
-      63,    64,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   244,    75,    76,    77,    -1,    -1,    13,    14,    -1,
-      83,    84,    -1,    86,    -1,    -1,    -1,    -1,    91,    -1,
-      -1,    94,    -1,    -1,    97,    -1,    99,    -1,    -1,    -1,
-      -1,    -1,    -1,   106,    -1,    -1,    -1,   110,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   119,    -1,   121,    -1,
-      -1,   124,    -1,   126,    -1,    -1,    -1,    -1,    -1,    -1,
-     133,   134,   135,   136,   137,    -1,    -1,   140,   141,   142,
-     143,   144,    -1,    -1,    -1,   148,    -1,    -1,   151,    -1,
-      -1,    -1,    -1,    -1,    -1,    91,    92,    93,    94,    95,
-      96,    97,    98,    99,   100,   101,   102,   103,    -1,    -1,
-      -1,   107,   108,   109,   110,    -1,    -1,   113,    -1,    -1,
-      -1,    -1,    -1,   119,   120,    -1,    -1,   123,   124,   192,
-     126,   127,    -1,   196,   197,    -1,    -1,    -1,   201,   202,
-     203,    -1,   205,   206,   207,    -1,    -1,    -1,   211,   145,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   227,   228,    -1,    -1,    -1,    -1,
-      -1,   234,    -1,   169,   170,   171,   239,     3,     4,    -1,
-     243,    -1,    -1,   246,    10,    11,    12,    -1,    -1,    15,
-      16,    17,    18,    19,    20,    21,    22,    23,    24,    25,
-      26,    27,    28,    29,    30,    31,    32,    33,    34,    35,
-      36,    37,    38,    39,    40,    41,    42,    43,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,
-      56,    57,    58,    -1,    -1,    -1,    -1,    63,    64,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   244,    75,
-      76,    77,    -1,    -1,    13,    14,    -1,    83,    84,    -1,
-      86,    -1,    -1,    -1,    -1,    91,    -1,    -1,    94,    -1,
-      -1,    97,    -1,    99,    -1,    -1,    -1,    -1,    -1,    -1,
-     106,    -1,    -1,    -1,   110,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   119,    -1,   121,    -1,    -1,   124,    -1,
-     126,    -1,    -1,    -1,    -1,    -1,    -1,   133,   134,   135,
-     136,   137,    -1,    -1,   140,   141,   142,   143,   144,    -1,
-      -1,    -1,   148,    -1,    -1,   151,    -1,    -1,    -1,    -1,
-      -1,    -1,    91,    92,    93,    94,    95,    96,    97,    98,
-      99,   100,   101,   102,   103,    -1,    -1,    -1,   107,   108,
-     109,   110,    -1,    -1,   113,     8,    -1,    -1,    -1,    -1,
-     119,   120,    -1,    -1,   123,   124,   192,   126,   127,    -1,
-     196,   197,    -1,    -1,    -1,   201,   202,   203,    -1,   205,
-     206,   207,    -1,    -1,    -1,   211,   145,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    75,    76,    77,    -1,    -1,
+      -1,    -1,    82,    83,    -1,    85,    -1,    -1,    -1,    -1,
+      90,    -1,    -1,    93,    -1,    -1,    96,    -1,    98,    -1,
+      -1,    -1,    -1,    -1,    -1,   105,    -1,    -1,    -1,   109,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   118,    -1,
+     120,    -1,    -1,   123,    -1,   125,    -1,    -1,    -1,    -1,
+      -1,    -1,   132,   133,   134,   135,   136,    -1,    -1,   139,
+     140,   141,   142,   143,    -1,    -1,    -1,   147,    -1,    -1,
+     150,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   227,   228,    -1,    -1,    -1,    -1,    -1,   234,    -1,
-     169,   170,   171,   239,     3,     4,    -1,   243,    -1,     8,
-     246,    10,    11,    12,    -1,    -1,    15,    16,    17,    18,
+      -1,   191,    -1,    -1,    -1,   195,   196,    -1,    -1,    -1,
+     200,   201,   202,    -1,   204,   205,   206,    -1,    -1,    -1,
+     210,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,    -1,
+      -1,    -1,    -1,   233,     3,     4,    -1,    -1,   238,    -1,
+      -1,    10,    11,    12,    -1,   245,    15,    16,    17,    18,
       19,    20,    21,    22,    23,    24,    25,    26,    27,    28,
       29,    30,    31,    32,    33,    34,    35,    36,    37,    38,
       39,    40,    41,    42,    43,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,    58,
       -1,    -1,    -1,    -1,    63,    64,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   244,    75,    76,    77,    -1,
-      -1,    -1,    -1,    -1,    83,    84,    -1,    86,    -1,    -1,
-      -1,    -1,    91,    -1,    -1,    94,    -1,    -1,    97,    -1,
-      99,    -1,    -1,    -1,    -1,    -1,    -1,   106,    -1,    -1,
-      -1,   110,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     119,    -1,   121,    -1,    -1,   124,    -1,   126,    -1,    -1,
-      -1,    -1,    -1,    -1,   133,   134,   135,   136,   137,    -1,
-      -1,   140,   141,   142,   143,   144,    -1,    -1,    -1,   148,
-      -1,    -1,   151,   216,   217,   218,   219,   220,   221,   222,
-     223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,     8,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    75,    76,    77,    -1,
+      -1,    13,    14,    82,    83,    -1,    85,    -1,    -1,    -1,
+      -1,    90,    -1,    -1,    93,    -1,    -1,    96,    -1,    98,
+      -1,    -1,    -1,    -1,    -1,    -1,   105,    -1,    -1,    -1,
+     109,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   118,
+      -1,   120,    -1,    -1,   123,    -1,   125,    -1,    -1,    -1,
+      -1,    -1,    -1,   132,   133,   134,   135,   136,    -1,    -1,
+     139,   140,   141,   142,   143,    -1,    -1,    -1,   147,    -1,
+      -1,   150,    -1,    -1,    -1,    -1,    -1,    -1,    90,    91,
+      92,    93,    94,    95,    96,    97,    98,    99,   100,   101,
+     102,    -1,    -1,    -1,   106,   107,   108,   109,    -1,    -1,
+     112,     8,    -1,    -1,    -1,    -1,   118,   119,    -1,    -1,
+     122,   123,   191,   125,   126,    -1,   195,   196,    -1,    -1,
+      -1,   200,   201,   202,    -1,   204,   205,   206,    -1,    -1,
+      -1,   210,   144,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,
+      -1,    -1,    -1,    -1,   233,    -1,   168,   169,   170,   238,
+       3,     4,    -1,   242,    -1,    -1,   245,    10,    11,    12,
+      -1,    -1,    15,    16,    17,    18,    19,    20,    21,    22,
+      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
+      33,    34,    35,    36,    37,    38,    39,    40,    41,    42,
+      43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,
+      63,    64,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   243,    75,    76,    77,    -1,    -1,    -1,    -1,    82,
+      83,    -1,    85,    -1,    -1,    -1,    -1,    90,    -1,    -1,
+      93,    -1,    -1,    96,    -1,    98,    -1,    -1,    -1,    -1,
+      -1,    -1,   105,    -1,    -1,    -1,   109,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   118,    -1,   120,    -1,    -1,
+     123,    -1,   125,    -1,    -1,    -1,    -1,    -1,    -1,   132,
+     133,   134,   135,   136,    -1,    -1,   139,   140,   141,   142,
+     143,    -1,    -1,    -1,   147,    -1,    -1,   150,   215,   216,
+     217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,    -1,     8,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   191,    -1,
+      -1,    -1,   195,   196,    -1,    -1,    -1,   200,   201,   202,
+      -1,   204,   205,   206,    -1,    -1,    -1,   210,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   192,    -1,    -1,    -1,   196,   197,    -1,
-      -1,    -1,   201,   202,   203,    -1,   205,   206,   207,    -1,
-      -1,    -1,   211,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,   228,
-      -1,    -1,    -1,    -1,    -1,   234,     3,     4,    -1,    -1,
-     239,     8,    -1,    10,    11,    12,    -1,   246,    15,    16,
+      -1,    -1,    -1,   226,   227,    -1,    -1,    -1,    -1,    -1,
+     233,    -1,    -1,    -1,    -1,   238,     3,     4,    -1,   242,
+      -1,    -1,   245,    10,    11,    12,    -1,    -1,    15,    16,
       17,    18,    19,    20,    21,    22,    23,    24,    25,    26,
       27,    28,    29,    30,    31,    32,    33,    34,    35,    36,
       37,    38,    39,    40,    41,    42,    43,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,    56,
       57,    58,    -1,    -1,    -1,    -1,    63,    64,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    75,    76,
-      77,    -1,    -1,    -1,    -1,    -1,    83,    84,    -1,    86,
-      -1,    -1,    -1,    -1,    91,    -1,    -1,    94,    -1,    -1,
-      97,    -1,    99,    -1,    -1,    -1,    -1,    -1,    -1,   106,
-      -1,    -1,    -1,   110,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   119,    -1,   121,    -1,    -1,   124,    -1,   126,
-      -1,    -1,    -1,    -1,    -1,    -1,   133,   134,   135,   136,
-     137,    -1,    -1,   140,   141,   142,   143,   144,    -1,    -1,
-      -1,   148,    -1,    -1,   151,   216,   217,   218,   219,   220,
+      77,    -1,    -1,    -1,    -1,    82,    83,    -1,    85,    -1,
+      -1,    -1,    -1,    90,    -1,    -1,    93,    -1,    -1,    96,
+      -1,    98,    -1,    -1,    -1,    -1,    -1,    -1,   105,    -1,
+      -1,    -1,   109,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   118,    -1,   120,    -1,    -1,   123,    -1,   125,    -1,
+      -1,    -1,    -1,    -1,    -1,   132,   133,   134,   135,   136,
+      -1,    -1,   139,   140,   141,   142,   143,    -1,    -1,    -1,
+     147,    -1,    -1,   150,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   192,    -1,    -1,    -1,   196,
-     197,    -1,    -1,    -1,   201,   202,   203,    -1,   205,   206,
-     207,    -1,    -1,    -1,   211,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   191,    -1,    -1,    -1,   195,   196,
+      -1,    -1,    -1,   200,   201,   202,    -1,   204,   205,   206,
+      -1,    -1,    -1,   210,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,
+     227,    -1,    -1,    -1,    -1,    -1,   233,     3,     4,     5,
+      -1,   238,    -1,    -1,    10,    11,    12,    -1,   245,    15,
+      16,    17,    18,    19,    20,    21,    22,    23,    24,    25,
+      26,    27,    28,    29,    30,    31,    32,    33,    34,    35,
+      36,    37,    38,     8,    -1,    -1,    -1,    -1,    -1,    -1,
+      46,    47,    48,    49,    50,    51,    52,    53,    54,    55,
+      56,    57,    58,    59,    60,    61,    62,    63,    -1,    -1,
+      -1,    67,    68,    69,    -1,    -1,    72,    -1,    74,    75,
+      76,    77,    -1,    -1,    -1,    -1,    82,    83,    84,    85,
+      -1,    87,     3,     4,     5,    -1,    -1,    -1,    -1,    10,
+      11,    12,    -1,    -1,    15,    16,    17,    18,    19,    20,
+      21,    22,    23,    24,    25,    26,    27,    28,    29,    30,
+      31,    32,    33,    34,    35,    36,    37,    38,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    46,    47,    48,    49,    50,
+      51,    52,    53,    54,    55,    56,    57,    58,    59,    60,
+      61,    62,    63,    -1,    -1,    -1,    67,    68,    69,    -1,
+      -1,    72,    -1,    74,    75,    76,    77,    -1,    -1,    -1,
+      -1,    82,    83,    84,    85,    -1,    87,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     227,   228,    -1,    -1,    -1,    -1,    -1,   234,     3,     4,
-      -1,    -1,   239,    -1,    -1,    10,    11,    12,    -1,   246,
-      15,    16,    17,    18,    19,    20,    21,    22,    23,    24,
-      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
-      35,    36,    37,    38,    39,    40,    41,    42,    43,    -1,
+      -1,    -1,    -1,    -1,    -1,   191,   192,   193,   194,   195,
+      -1,    -1,    -1,    -1,   200,   201,   202,   203,   204,   205,
+     206,   207,    -1,   209,   210,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      55,    56,    57,    58,    -1,    -1,    -1,    -1,    63,    64,
+     226,   227,    -1,    -1,    -1,    -1,    -1,   233,    -1,    -1,
+      -1,    -1,   238,    -1,    -1,    -1,   242,    -1,    -1,   245,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+     191,   192,   193,   194,   195,    -1,    -1,    -1,    -1,   200,
+     201,   202,   203,   204,   205,   206,   207,    -1,   209,   210,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      75,    76,    77,    -1,    -1,    13,    14,    -1,    83,    84,
-      -1,    86,    -1,    -1,    -1,    -1,    91,    -1,    -1,    94,
-      -1,    -1,    97,    -1,    99,    -1,    -1,    -1,    -1,    -1,
-      -1,   106,    -1,    -1,    -1,   110,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   119,    -1,   121,    -1,    -1,   124,
-      -1,   126,    -1,    -1,    -1,    -1,    -1,    -1,   133,   134,
-     135,   136,   137,    -1,    -1,   140,   141,   142,   143,   144,
-      -1,    -1,    -1,   148,    -1,    -1,   151,    -1,    -1,    -1,
-      -1,    -1,    -1,    91,    92,    93,    94,    95,    96,    97,
-      98,    99,   100,   101,   102,   103,    -1,    -1,    -1,   107,
-     108,   109,   110,    -1,    -1,   113,    -1,    -1,    -1,    -1,
-      -1,   119,   120,    -1,    -1,   123,   124,   192,   126,   127,
-      -1,   196,   197,    -1,    -1,    -1,   201,   202,   203,    -1,
-     205,   206,   207,    -1,    -1,    -1,   211,   145,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   226,   227,    -1,    -1,    -1,
+      -1,    -1,   233,    -1,    -1,    -1,    -1,   238,     3,     4,
+       5,   242,    -1,    -1,   245,    10,    11,    12,    -1,    -1,
+      15,    16,    17,    18,    19,    20,    21,    22,    23,    24,
+      25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
+      35,    36,    37,    38,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    46,    47,    48,    49,    50,    51,    52,    53,    54,
+      55,    56,    57,    58,    59,    60,    61,    62,    63,    -1,
+      -1,    -1,    67,    68,    69,    -1,    -1,    72,    -1,    74,
+      75,    76,    77,    -1,    -1,    -1,    -1,    82,    83,    84,
+      85,    -1,    87,     3,     4,     5,    -1,    -1,    -1,    -1,
+      10,    11,    12,    -1,    -1,    15,    16,    17,    18,    19,
+      20,    21,    22,    23,    24,    25,    26,    27,    28,    29,
+      30,    31,    32,    33,    34,    35,    36,    37,    38,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    46,    47,    48,    49,
+      50,    51,    52,    53,    54,    55,    56,    57,    58,    59,
+      60,    61,    62,    63,    -1,    -1,    -1,    67,    68,    69,
+      -1,    -1,    72,    -1,    74,    75,    76,    77,   128,    -1,
+      -1,    -1,    82,    83,    84,    85,    -1,    87,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   227,   228,    -1,    -1,    -1,    -1,    -1,   234,
-      -1,   169,   170,   171,   239,     3,     4,    -1,   243,    -1,
-      -1,   246,    10,    11,    12,    -1,    -1,    15,    16,    17,
-      18,    19,    20,    21,    22,    23,    24,    25,    26,    27,
-      28,    29,    30,    31,    32,    33,    34,    35,    36,    37,
-      38,    39,    40,    41,    42,    43,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,
-      58,    -1,    -1,    -1,    -1,    63,    64,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   244,    75,    76,    77,
-      -1,    -1,    13,    14,    -1,    83,    84,    -1,    86,    -1,
-      -1,    -1,    -1,    91,    -1,    -1,    94,    -1,    -1,    97,
-      -1,    99,    -1,    -1,    -1,    -1,    -1,    -1,   106,    -1,
-      -1,    -1,   110,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   119,    -1,   121,    -1,    -1,   124,    -1,   126,    -1,
-      -1,    -1,    -1,    -1,    -1,   133,   134,   135,   136,   137,
-      -1,    -1,   140,   141,   142,   143,   144,    -1,    -1,    -1,
-     148,    -1,    -1,   151,    -1,    -1,    -1,    -1,    -1,    -1,
-      91,    92,    93,    94,    95,    96,    97,    98,    99,   100,
-     101,   102,   103,    -1,    -1,    -1,   107,   108,   109,   110,
-      -1,    -1,   113,     8,    -1,    -1,    -1,    -1,   119,   120,
-      -1,    -1,   123,   124,   192,   126,   127,    -1,   196,   197,
-      -1,    -1,    -1,   201,   202,   203,    -1,   205,   206,   207,
-      -1,    -1,    -1,   211,   145,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,
-     228,    -1,    -1,    -1,    -1,    -1,   234,    -1,   169,   170,
-     171,   239,     3,     4,    -1,   243,    -1,    -1,   246,    10,
-      11,    12,    -1,    -1,    15,    16,    17,    18,    19,    20,
-      21,    22,    23,    24,    25,    26,    27,    28,    29,    30,
-      31,    32,    33,    34,    35,    36,    37,    38,    39,    40,
-      41,    42,    43,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,
-      -1,    -1,    63,    64,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   244,    75,    76,    77,    -1,    -1,    -1,
-      -1,    -1,    83,    84,    -1,    86,    -1,    -1,    -1,    -1,
-      91,    -1,    -1,    94,    -1,    -1,    97,    -1,    99,    -1,
-      -1,    -1,    -1,    -1,    -1,   106,    -1,    -1,    -1,   110,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   119,    -1,
-     121,    -1,    -1,   124,    -1,   126,    -1,    -1,    -1,    -1,
-      -1,    -1,   133,   134,   135,   136,   137,    -1,    -1,   140,
-     141,   142,   143,   144,    -1,    -1,    -1,   148,    -1,    -1,
-     151,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   191,   192,   193,   194,
+     195,    -1,    -1,    -1,    -1,   200,   201,   202,   203,   204,
+     205,   206,   207,    -1,   209,   210,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   192,    -1,    -1,    -1,   196,   197,    -1,    -1,    -1,
-     201,   202,   203,    -1,   205,   206,   207,    -1,    -1,    -1,
-     211,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   227,   228,    -1,    -1,
-      -1,    -1,    -1,   234,     3,     4,     5,    -1,   239,    -1,
-      -1,    10,    11,    12,    -1,   246,    15,    16,    17,    18,
+      -1,   226,   227,    -1,    -1,    -1,    -1,    -1,   233,    -1,
+      -1,    -1,    -1,   238,    -1,    -1,    -1,   242,    -1,    -1,
+     245,    -1,    -1,    -1,    -1,   215,   216,   217,   218,   219,
+     220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,   191,   192,   193,   194,   195,    -1,    -1,    -1,    -1,
+     200,   201,   202,   203,   204,   205,   206,   207,    -1,   209,
+     210,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,    -1,
+      -1,    -1,    -1,   233,     3,     4,    -1,    -1,   238,     8,
+      -1,    10,    11,    12,    -1,   245,    15,    16,    17,    18,
       19,    20,    21,    22,    23,    24,    25,    26,    27,    28,
       29,    30,    31,    32,    33,    34,    35,    36,    37,    38,
-       8,    -1,    -1,    -1,    -1,    -1,    -1,    46,    47,    48,
-      49,    50,    51,    52,    53,    54,    55,    56,    57,    58,
-      59,    60,    61,    62,    63,    -1,    -1,    -1,    67,    68,
-      69,    -1,    -1,    72,    -1,    74,    75,    76,    77,    -1,
-      -1,    -1,    -1,    -1,    83,    84,    85,    86,    -1,    88,
-       3,     4,     5,    -1,    -1,    -1,    -1,    10,    11,    12,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,    58,
+      -1,    -1,    -1,    -1,    63,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    75,    76,    77,    -1,
+       3,     4,    -1,    82,    83,    -1,    85,    10,    11,    12,
       -1,    -1,    15,    16,    17,    18,    19,    20,    21,    22,
       23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
       33,    34,    35,    36,    37,    38,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    46,    47,    48,    49,    50,    51,    52,
-      53,    54,    55,    56,    57,    58,    59,    60,    61,    62,
-      63,    -1,    -1,    -1,    67,    68,    69,    -1,    -1,    72,
-      -1,    74,    75,    76,    77,    -1,    -1,    -1,    -1,    -1,
-      83,    84,    85,    86,    -1,    88,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   192,   193,   194,   195,   196,    -1,    -1,
-      -1,    -1,   201,   202,   203,   204,   205,   206,   207,   208,
-      -1,   210,   211,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,   228,
-      -1,    -1,    -1,    -1,    -1,   234,    -1,    -1,    -1,    -1,
-     239,    -1,    -1,    -1,   243,    -1,    -1,   246,   216,   217,
-     218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   192,
-     193,   194,   195,   196,    -1,    -1,    -1,    -1,   201,   202,
-     203,   204,   205,   206,   207,   208,    -1,   210,   211,    -1,
+      -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,
+      63,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    75,    76,    77,    -1,    -1,    -1,    -1,    82,
+      83,    -1,    85,   215,   216,   217,   218,   219,   220,   221,
+     222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
+     232,    -1,    -1,    -1,    -1,   237,    -1,   239,    -1,   241,
+      -1,    -1,   191,    -1,    -1,   247,   195,    -1,    -1,    -1,
+      -1,   200,   201,   202,    -1,   204,   205,   206,    -1,    -1,
+      -1,   210,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,
+      -1,    -1,    -1,    -1,   233,    -1,    -1,    -1,    -1,   238,
+      -1,    -1,    -1,    -1,    -1,    -1,   245,    -1,   215,   216,
+     217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
+     227,   228,   229,   230,   231,   232,    -1,    -1,   191,    -1,
+     237,    -1,   195,    -1,    -1,    -1,   243,   200,   201,   202,
+     247,   204,   205,   206,    -1,    -1,    -1,   210,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   227,   228,    -1,    -1,    -1,    -1,
-      -1,   234,    -1,    -1,    -1,    -1,   239,     3,     4,     5,
-     243,    -1,    -1,   246,    10,    11,    12,    -1,    -1,    15,
-      16,    17,    18,    19,    20,    21,    22,    23,    24,    25,
-      26,    27,    28,    29,    30,    31,    32,    33,    34,    35,
-      36,    37,    38,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      46,    47,    48,    49,    50,    51,    52,    53,    54,    55,
-      56,    57,    58,    59,    60,    61,    62,    63,    -1,    -1,
-      -1,    67,    68,    69,    -1,    -1,    72,    -1,    74,    75,
-      76,    77,    -1,    -1,    -1,    -1,    -1,    83,    84,    85,
-      86,    -1,    88,     3,     4,     5,    -1,    -1,    -1,    -1,
-      10,    11,    12,    -1,    -1,    15,    16,    17,    18,    19,
-      20,    21,    22,    23,    24,    25,    26,    27,    28,    29,
-      30,    31,    32,    33,    34,    35,    36,    37,    38,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    46,    47,    48,    49,
-      50,    51,    52,    53,    54,    55,    56,    57,    58,    59,
-      60,    61,    62,    63,    -1,    -1,    -1,    67,    68,    69,
-      -1,    -1,    72,    -1,    74,    75,    76,    77,   129,    -1,
-      -1,    -1,    -1,    83,    84,    85,    86,    -1,    88,    -1,
+      -1,    -1,    -1,   226,   227,    -1,    -1,    -1,    -1,    -1,
+     233,     3,     4,    -1,     6,   238,   239,    -1,    10,    11,
+      12,    -1,   245,    15,    16,    17,    18,    19,    20,    21,
+      22,    23,    24,    25,    26,    27,    28,    29,    30,    31,
+      32,    33,    34,    35,    36,    37,    38,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   192,   193,   194,   195,
-     196,    -1,    -1,    -1,    -1,   201,   202,   203,   204,   205,
-     206,   207,   208,    -1,   210,   211,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,
+      -1,    63,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    75,    76,    77,    -1,    -1,    -1,    -1,
+      82,    83,    -1,    85,     3,     4,    -1,     6,    -1,    -1,
+      -1,    10,    11,    12,    -1,    -1,    15,    16,    17,    18,
+      19,    20,    21,    22,    23,    24,    25,    26,    27,    28,
+      29,    30,    31,    32,    33,    34,    35,    36,    37,    38,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   227,   228,    -1,    -1,    -1,    -1,    -1,   234,    -1,
-      -1,    -1,    -1,   239,    -1,    -1,    -1,   243,    -1,    -1,
-     246,    -1,    -1,    -1,    -1,   216,   217,   218,   219,   220,
-     221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-      -1,    -1,   192,   193,   194,   195,   196,    -1,    -1,    -1,
-      -1,   201,   202,   203,   204,   205,   206,   207,   208,    -1,
-     210,   211,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,   228,    -1,
-      -1,    -1,    -1,    -1,   234,     3,     4,    -1,    -1,   239,
-       8,    -1,    10,    11,    12,    -1,   246,    15,    16,    17,
+      -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,    58,
+      -1,    -1,    -1,    -1,    63,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    75,    76,    77,    -1,
+      -1,    -1,    -1,    82,    83,    -1,    85,    -1,    -1,   215,
+     216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,   191,
+      -1,   237,    -1,   195,    -1,    -1,    -1,   243,   200,   201,
+     202,   247,   204,   205,   206,    -1,    -1,    -1,   210,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   226,   227,    -1,    -1,    -1,    -1,
+      -1,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
+      -1,    -1,    -1,   245,    -1,   215,   216,   217,   218,   219,
+     220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,   239,
+      -1,    -1,   191,    -1,    -1,    -1,   195,   247,    -1,    -1,
+      -1,   200,   201,   202,    -1,   204,   205,   206,    -1,    -1,
+      -1,   210,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,   227,    -1,
+      -1,    -1,    -1,    -1,   233,     3,     4,    -1,     6,   238,
+      -1,    -1,    10,    11,    12,    -1,   245,    15,    16,    17,
       18,    19,    20,    21,    22,    23,    24,    25,    26,    27,
       28,    29,    30,    31,    32,    33,    34,    35,    36,    37,
       38,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,
       58,    -1,    -1,    -1,    -1,    63,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    75,    76,    77,
-      -1,    -1,     3,     4,    -1,    83,    84,    -1,    86,    10,
-      11,    12,    -1,    -1,    15,    16,    17,    18,    19,    20,
+      -1,     3,     4,    -1,    82,    83,    -1,    85,    10,    11,
+      12,    -1,    -1,    15,    16,    17,    18,    19,    20,    21,
+      22,    23,    24,    25,    26,    27,    28,    29,    30,    31,
+      32,    33,    34,    35,    36,    37,    38,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,
+      -1,    63,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    75,    76,    77,    -1,    -1,    -1,    -1,
+      82,    83,    -1,    85,   215,   216,   217,   218,   219,   220,
+     221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
+      -1,    -1,   243,   191,    -1,    -1,   247,   195,    -1,    -1,
+      -1,    -1,   200,   201,   202,    -1,   204,   205,   206,    -1,
+      -1,    -1,   210,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   226,   227,
+      -1,    -1,    -1,    -1,    -1,   233,    -1,    -1,    -1,    -1,
+     238,    -1,    -1,    -1,    -1,    -1,    -1,   245,    -1,   215,
+     216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,   191,
+      -1,   237,    -1,   195,    -1,    -1,    -1,    -1,   200,   201,
+     202,   247,   204,   205,   206,    -1,    -1,    -1,   210,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   226,   227,    -1,    -1,    -1,    -1,
+      -1,   233,     3,     4,    -1,    -1,   238,   239,    -1,    10,
+      11,    12,    -1,   245,    15,    16,    17,    18,    19,    20,
       21,    22,    23,    24,    25,    26,    27,    28,    29,    30,
       31,    32,    33,    34,    35,    36,    37,    38,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    55,    56,    57,    58,    -1,    -1,
       -1,    -1,    63,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    75,    76,    77,    -1,    -1,    -1,
-      -1,    -1,    83,    84,    -1,    86,    -1,   216,   217,   218,
-     219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,    -1,   242,   192,    -1,    -1,    -1,   196,   248,
-      -1,    -1,    -1,   201,   202,   203,    -1,   205,   206,   207,
-      -1,    -1,    -1,   211,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,
-     228,    -1,    -1,    -1,    -1,    -1,   234,    -1,    -1,    -1,
-      -1,   239,    -1,    -1,    -1,    -1,    -1,    -1,   246,    -1,
-      -1,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,   192,    -1,   238,    -1,   196,    -1,    -1,    -1,   244,
-     201,   202,   203,   248,   205,   206,   207,    -1,    -1,    -1,
-     211,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   227,   228,    -1,    -1,
-      -1,    -1,    -1,   234,     3,     4,    -1,     6,   239,   240,
-      -1,    10,    11,    12,    -1,   246,    15,    16,    17,    18,
-      19,    20,    21,    22,    23,    24,    25,    26,    27,    28,
-      29,    30,    31,    32,    33,    34,    35,    36,    37,    38,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    55,    56,    57,    58,
-      -1,    -1,    -1,    -1,    63,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    75,    76,    77,    -1,
-      -1,    -1,    -1,    -1,    83,    84,    -1,    86,     3,     4,
-      -1,     6,    -1,    -1,    -1,    10,    11,    12,    -1,    -1,
+      -1,    -1,    -1,    -1,    75,    76,    77,    -1,     3,     4,
+      -1,    82,    83,    -1,    85,    10,    11,    12,    -1,    -1,
       15,    16,    17,    18,    19,    20,    21,    22,    23,    24,
       25,    26,    27,    28,    29,    30,    31,    32,    33,    34,
       35,    36,    37,    38,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
       55,    56,    57,    58,    -1,    -1,    -1,    -1,    63,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      75,    76,    77,    -1,    -1,    -1,    -1,    -1,    83,    84,
-      -1,    86,    -1,   216,   217,   218,   219,   220,   221,   222,
-     223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,   192,    -1,   238,    -1,   196,    -1,    -1,
-      -1,   244,   201,   202,   203,   248,   205,   206,   207,    -1,
-      -1,    -1,   211,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   227,   228,
-      -1,    -1,    -1,    -1,    -1,   234,    -1,    -1,    -1,    -1,
-     239,    -1,    -1,    -1,    -1,    -1,    -1,   246,   216,   217,
-     218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,   240,    -1,    -1,    -1,    -1,   192,    -1,    -1,
-     248,   196,    -1,    -1,    -1,    -1,   201,   202,   203,    -1,
-     205,   206,   207,    -1,    -1,    -1,   211,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   227,   228,    -1,    -1,    -1,    -1,    -1,   234,
-       3,     4,    -1,     6,   239,    -1,    -1,    10,    11,    12,
-      -1,   246,    15,    16,    17,    18,    19,    20,    21,    22,
-      23,    24,    25,    26,    27,    28,    29,    30,    31,    32,
-      33,    34,    35,    36,    37,    38,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,
-      63,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    75,    76,    77,    -1,    -1,     3,     4,    -1,
-      83,    84,    -1,    86,    10,    11,    12,    -1,    -1,    15,
-      16,    17,    18,    19,    20,    21,    22,    23,    24,    25,
-      26,    27,    28,    29,    30,    31,    32,    33,    34,    35,
-      36,    37,    38,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,
-      56,    57,    58,    -1,    -1,    -1,    -1,    63,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    75,
-      76,    77,    -1,    -1,    -1,    -1,    -1,    83,    84,    -1,
-      86,    -1,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,   192,
-     244,    -1,    -1,   196,   248,    -1,    -1,    -1,   201,   202,
-     203,    -1,   205,   206,   207,    -1,    -1,    -1,   211,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   227,   228,    -1,    -1,    -1,    -1,
-      -1,   234,    -1,    -1,    -1,    -1,   239,    -1,    -1,    -1,
-      -1,    -1,    -1,   246,    -1,    -1,   216,   217,   218,   219,
-     220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,   192,    -1,   238,    -1,
-     196,    -1,    -1,    -1,    -1,   201,   202,   203,   248,   205,
-     206,   207,    -1,    -1,    -1,   211,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   227,   228,    -1,    -1,    -1,    -1,    -1,   234,     3,
-       4,    -1,    -1,   239,   240,    -1,    10,    11,    12,    -1,
-     246,    15,    16,    17,    18,    19,    20,    21,    22,    23,
-      24,    25,    26,    27,    28,    29,    30,    31,    32,    33,
-      34,    35,    36,    37,    38,    -1,    -1,    -1,    -1,    -1,
+      75,    76,    77,    -1,    -1,    -1,    -1,    82,    83,    -1,
+      85,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,
+     191,    -1,    -1,   247,   195,    -1,    -1,    -1,    -1,   200,
+     201,   202,    -1,   204,   205,   206,    -1,    -1,    -1,   210,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    55,    56,    57,    58,    -1,    -1,    -1,    -1,    63,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    75,    76,    77,    -1,    -1,     3,     4,    -1,    83,
-      84,    -1,    86,    10,    11,    12,    -1,    -1,    15,    16,
-      17,    18,    19,    20,    21,    22,    23,    24,    25,    26,
-      27,    28,    29,    30,    31,    32,    33,    34,    35,    36,
-      37,    38,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    55,    56,
-      57,    58,    -1,    -1,    -1,    -1,    63,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    75,    76,
-      77,    -1,    -1,    -1,    -1,    -1,    83,    84,    -1,    86,
-      -1,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,   192,    -1,
-      -1,    -1,   196,   248,    -1,    -1,    -1,   201,   202,   203,
-      -1,   205,   206,   207,    -1,    -1,    -1,   211,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   227,   228,    -1,    -1,    -1,    -1,    -1,
-     234,    -1,    -1,    -1,    -1,   239,   240,    -1,    -1,    -1,
-      -1,    -1,   246,    -1,     0,     1,    -1,    -1,     4,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    13,    14,    -1,
-      -1,    -1,    -1,    -1,    -1,   192,    -1,    -1,    -1,   196,
-      -1,    -1,    -1,    -1,   201,   202,   203,    -1,   205,   206,
-     207,    -1,    -1,    -1,   211,    -1,    -1,    -1,    44,    45,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     227,   228,    -1,    -1,    -1,    -1,    -1,   234,    64,    65,
-      66,    -1,   239,    -1,    70,    71,    -1,    73,    -1,   246,
-      -1,    -1,    78,    79,    -1,    81,    82,    -1,    84,    -1,
-      -1,    -1,    -1,    89,    90,    91,    92,    93,    94,    95,
-      96,    97,    98,    99,   100,   101,   102,   103,    -1,    -1,
-     106,   107,   108,   109,   110,   111,    -1,   113,    -1,   115,
-     116,   117,   118,   119,   120,   121,    -1,   123,   124,   125,
-     126,   127,   128,    -1,   130,   131,   132,   133,   134,   135,
-     136,   137,   138,    -1,   140,   141,   142,   143,   144,   145,
-     146,   147,   148,   149,   150,   151,   152,   153,    -1,     4,
-      -1,   157,   158,   159,    -1,    -1,    -1,   163,    13,    14,
-      -1,    -1,   168,   169,   170,   171,    -1,    -1,   174,    -1,
-     176,    -1,   178,   179,   180,   181,   182,   183,   184,   185,
-     186,   187,   188,   189,   190,   191,    -1,    -1,    -1,    44,
-      45,    -1,   198,   199,   200,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   209,    -1,   211,    -1,    -1,    -1,    64,
+      -1,    -1,    -1,    -1,    -1,   226,   227,    -1,    -1,    -1,
+      -1,    -1,   233,    -1,    -1,    -1,    -1,   238,   239,    -1,
+      -1,    -1,    -1,    -1,   245,     0,     1,    -1,    -1,     4,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    13,    14,
+      -1,    -1,    -1,    -1,    -1,    -1,   191,    -1,    -1,    -1,
+     195,    -1,    -1,    -1,    -1,   200,   201,   202,    -1,   204,
+     205,   206,    -1,    -1,    -1,   210,    -1,    -1,    -1,    44,
+      45,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   226,   227,    -1,    -1,    -1,    -1,    -1,   233,    64,
+      65,    66,    -1,   238,    -1,    70,    71,    -1,    73,    -1,
+     245,    -1,    -1,    78,    -1,    80,    81,    -1,    83,    -1,
+      -1,    -1,    -1,    88,    89,    90,    91,    92,    93,    94,
+      95,    96,    97,    98,    99,   100,   101,   102,    -1,    -1,
+     105,   106,   107,   108,   109,   110,    -1,   112,    -1,   114,
+     115,   116,   117,   118,   119,   120,    -1,   122,   123,   124,
+     125,   126,   127,    -1,   129,   130,   131,   132,   133,   134,
+     135,   136,   137,    -1,   139,   140,   141,   142,   143,   144,
+     145,   146,   147,   148,   149,   150,   151,   152,    -1,     4,
+      -1,   156,   157,   158,    -1,    -1,    -1,   162,    13,    14,
+      -1,    -1,   167,   168,   169,   170,    -1,    -1,   173,    -1,
+     175,    -1,   177,   178,   179,   180,   181,   182,   183,   184,
+     185,   186,   187,   188,   189,   190,    -1,    -1,    -1,    44,
+      45,    -1,   197,   198,   199,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   208,    -1,   210,    -1,    -1,    -1,    64,
       65,    66,    -1,    -1,    -1,    70,    71,    -1,    73,    -1,
-      -1,    -1,    -1,    78,    79,    -1,    81,    82,    -1,    84,
-      -1,    -1,    -1,    -1,    89,    90,    91,    92,    93,    94,
-      95,    96,    97,    98,    99,   100,   101,   102,   103,    -1,
-      -1,   106,   107,   108,   109,   110,   111,    -1,   113,    -1,
-     115,   116,   117,   118,   119,   120,   121,    -1,   123,   124,
-     125,   126,   127,   128,    -1,   130,   131,   132,   133,   134,
-     135,   136,   137,   138,    -1,   140,   141,   142,   143,   144,
-     145,   146,   147,   148,   149,   150,   151,   152,   153,    -1,
-      -1,    -1,   157,   158,   159,    -1,    -1,    -1,   163,    -1,
-      -1,    -1,    -1,   168,   169,   170,   171,     4,     5,   174,
-      -1,   176,    -1,   178,   179,   180,   181,   182,   183,   184,
-     185,   186,   187,   188,   189,   190,   191,    -1,    -1,    -1,
-      -1,    -1,    -1,   198,   199,   200,    -1,     4,     5,    -1,
-      -1,    -1,    -1,    -1,   209,    -1,   211,    -1,    -1,    46,
+      -1,    -1,    -1,    78,    -1,    80,    81,    -1,    83,    -1,
+      -1,    -1,    -1,    88,    89,    90,    91,    92,    93,    94,
+      95,    96,    97,    98,    99,   100,   101,   102,    -1,    -1,
+     105,   106,   107,   108,   109,   110,    -1,   112,    -1,   114,
+     115,   116,   117,   118,   119,   120,    -1,   122,   123,   124,
+     125,   126,   127,    -1,   129,   130,   131,   132,   133,   134,
+     135,   136,   137,    -1,   139,   140,   141,   142,   143,   144,
+     145,   146,   147,   148,   149,   150,   151,   152,    -1,    -1,
+      -1,   156,   157,   158,    -1,    -1,    -1,   162,    -1,    -1,
+      -1,    -1,   167,   168,   169,   170,     4,     5,   173,    -1,
+     175,    -1,   177,   178,   179,   180,   181,   182,   183,   184,
+     185,   186,   187,   188,   189,   190,    -1,    -1,    -1,    -1,
+      -1,    -1,   197,   198,   199,     4,     5,    -1,    -1,    -1,
+      -1,    -1,    -1,   208,    -1,   210,    -1,    -1,    46,    47,
+      48,    49,    50,    51,    52,    53,    54,    -1,    -1,    -1,
+      -1,    59,    60,    61,    62,    -1,    -1,    -1,    -1,    67,
+      68,    69,    -1,    -1,    72,    -1,    74,    46,    47,    48,
+      49,    50,    51,    52,    53,    54,    84,     4,     5,    87,
+      59,    60,    61,    62,    -1,    -1,    -1,    -1,    67,    68,
+      69,    -1,    -1,    72,    -1,    74,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    84,    -1,    -1,    87,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   125,    -1,    46,
       47,    48,    49,    50,    51,    52,    53,    54,    -1,    -1,
-      -1,    -1,    59,    60,    61,    62,    -1,     4,     5,    -1,
-      67,    68,    69,    -1,    -1,    72,    -1,    74,    -1,    46,
-      47,    48,    49,    50,    51,    52,    53,    54,    85,    -1,
-      -1,    88,    59,    60,    61,    62,    -1,    -1,     5,    -1,
-      67,    68,    69,    -1,    -1,    72,    -1,    74,    -1,    46,
-      47,    48,    49,    50,    51,    52,    53,    54,    85,    -1,
-      -1,    88,    59,    60,    61,    62,    -1,    -1,    -1,   126,
-      67,    68,    69,    -1,    -1,    72,    -1,    74,    -1,    46,
-      47,    48,    49,    50,    51,    52,    53,    54,    85,    -1,
-      -1,    88,    59,    60,    61,    62,    -1,    -1,    -1,    -1,
+      -1,    -1,    59,    60,    61,    62,    -1,    -1,    -1,    -1,
       67,    68,    69,    -1,    -1,    72,    -1,    74,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    85,    -1,
-      -1,    88,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   193,   194,   195,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   204,    -1,    -1,
-      -1,   208,    -1,   210,   211,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   193,   194,   195,    13,
-      14,    -1,    -1,    -1,    -1,    -1,    -1,   204,    -1,    -1,
-      -1,   208,    -1,   210,   211,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   193,   194,   195,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   204,    -1,    -1,
-      -1,   208,    -1,   210,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   193,   194,   195,    -1,
-      -1,    -1,    -1,    -1,    13,    14,    -1,   204,    -1,    -1,
-      -1,   208,    -1,   210,    -1,    -1,    -1,    91,    92,    93,
-      94,    95,    96,    97,    98,    99,   100,   101,   102,   103,
-      -1,    -1,    -1,   107,   108,   109,   110,    -1,    -1,   113,
-      -1,    -1,    -1,    -1,    -1,   119,   120,    -1,    -1,   123,
-     124,    -1,   126,   127,    -1,    -1,    -1,    -1,   132,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   145,    -1,    -1,    -1,   149,    -1,    -1,    -1,    -1,
-      -1,    -1,    91,    92,    93,    94,    95,    96,    97,    98,
-      99,   100,   101,   102,   103,   169,   170,   171,   107,   108,
-     109,   110,    -1,    -1,   113,    -1,    -1,    -1,    -1,    -1,
-     119,   120,    -1,    -1,   123,   124,    -1,   126,   127,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    84,    -1,    -1,
+      87,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,   192,   193,   194,    -1,    -1,    -1,
+      -1,     5,    -1,   247,    -1,   203,    -1,    -1,    -1,   207,
+      -1,   209,   210,    -1,    -1,    -1,    13,    14,    -1,    -1,
+      -1,    -1,    -1,   192,   193,   194,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   203,    -1,    -1,    -1,   207,    -1,
+     209,   210,    46,    47,    48,    49,    50,    51,    52,    53,
+      54,    -1,    -1,    -1,    -1,    59,    60,    61,    62,    -1,
+      -1,    -1,    -1,    67,    68,    69,    -1,    -1,    72,    -1,
+      74,    -1,    -1,    -1,    -1,   192,   193,   194,    -1,    -1,
+      84,    -1,    -1,    87,    -1,    -1,   203,    -1,    -1,    -1,
+     207,    -1,   209,    90,    91,    92,    93,    94,    95,    96,
+      97,    98,    99,   100,   101,   102,    -1,    -1,    -1,   106,
+     107,   108,   109,    -1,    -1,   112,    -1,    -1,    -1,    -1,
+      -1,   118,   119,    -1,    -1,   122,   123,    -1,   125,   126,
+      13,    14,    -1,    -1,   131,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   144,    -1,    -1,
+      -1,   148,   215,   216,   217,   218,   219,   220,   221,   222,
+     223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
+      -1,   168,   169,   170,   237,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   247,    -1,    -1,    -1,   192,   193,
+     194,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   203,
+      -1,    -1,    -1,   207,    -1,   209,    -1,    90,    91,    92,
+      93,    94,    95,    96,    97,    98,    99,   100,   101,   102,
+      -1,    -1,    -1,   106,   107,   108,   109,    -1,    -1,   112,
+      -1,    -1,    -1,    -1,    -1,   118,   119,    -1,    -1,   122,
+     123,    -1,   125,   126,    -1,    -1,    -1,    -1,    -1,    -1,
       -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   145,   216,   217,   218,
-     219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-     169,   170,   171,    -1,    -1,    -1,    -1,    -1,    -1,   248,
-     216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   248,   216,   217,   218,   219,   220,   221,   222,
+      -1,   144,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   248,   216,   217,   218,   219,
+      -1,    -1,    -1,    -1,   237,   168,   169,   170,    -1,    -1,
+      -1,    -1,    -1,    -1,   247,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,   216,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   248,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   248,   216,   217,   218,   219,   220,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+     247,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   247,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,   216,   217,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   247,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     248,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   248,   216,   217,   218,   219,   220,   221,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,   247,   215,   216,   217,   218,   219,   220,   221,
      222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   248,   216,   217,   218,
+     232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   247,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   248,   216,   217,   218,   219,   220,   221,   222,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   247,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   248,   216,   217,   218,   219,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   247,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,   216,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   248,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   248,   216,   217,   218,   219,   220,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+     247,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   247,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,   216,   217,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   247,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     248,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   248,   216,   217,   218,   219,   220,   221,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,   247,   215,   216,   217,   218,   219,   220,   221,
      222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   248,   216,   217,   218,
+     232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   247,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   248,   216,   217,   218,   219,   220,   221,   222,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   247,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   248,   216,   217,   218,   219,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   247,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,   216,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   248,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,   248,   216,   217,   218,   219,   220,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+     247,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,   247,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,   216,   217,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,   247,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-     248,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,   248,   216,   217,   218,   219,   220,   221,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,   247,   215,   216,   217,   218,   219,   220,   221,
      222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,   248,   216,   217,   218,
+     232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,   247,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,    -1,   248,   216,   217,   218,   219,   220,   221,   222,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+      -1,   247,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,    -1,    -1,    -1,    -1,   248,   216,   217,   218,   219,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
+      -1,    -1,    -1,    -1,   247,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,   248,   216,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,    -1,    -1,    -1,    -1,    -1,    -1,   247,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
-      -1,   248,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,
-     244,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,   244,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,    -1,
+     247,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,   243,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,   243,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,   244,   216,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,    -1,    -1,    -1,   243,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,    -1,    -1,   244,   216,   217,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,   243,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,    -1,    -1,   244,   216,   217,   218,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+      -1,    -1,    -1,    -1,    -1,   243,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,    -1,    -1,    -1,    -1,   244,   216,   217,   218,   219,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+      -1,    -1,    -1,    -1,   243,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,    -1,    -1,   244,   216,   217,   218,   219,   220,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,    -1,    -1,   243,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-      -1,    -1,    -1,   244,   216,   217,   218,   219,   220,   221,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
+      -1,    -1,   243,   215,   216,   217,   218,   219,   220,   221,
      222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
-      -1,    -1,   244,   216,   217,   218,   219,   220,   221,   222,
+     232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,
+      -1,   243,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,   244,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,
-     244,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,   244,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
+     243,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,   243,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,   243,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,   244,   216,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,    -1,    -1,    -1,   243,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,    -1,    -1,   244,   216,   217,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,   243,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,    -1,    -1,   244,   216,   217,   218,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+      -1,    -1,    -1,    -1,    -1,   243,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,    -1,    -1,    -1,    -1,   244,   216,   217,   218,   219,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+      -1,    -1,    -1,    -1,   243,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,    -1,    -1,   244,   216,   217,   218,   219,   220,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,    -1,    -1,   243,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-      -1,    -1,    -1,   244,   216,   217,   218,   219,   220,   221,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
+      -1,    -1,   243,   215,   216,   217,   218,   219,   220,   221,
      222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
-      -1,    -1,   244,   216,   217,   218,   219,   220,   221,   222,
+     232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,
+      -1,   243,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,   244,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,
-     244,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,   244,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
+     243,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,   243,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,   243,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,   244,   216,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,    -1,    -1,    -1,   243,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,    -1,    -1,   244,   216,   217,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,    -1,   243,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,    -1,    -1,   244,   216,   217,   218,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+      -1,    -1,    -1,    -1,    -1,   243,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,    -1,    -1,    -1,    -1,   244,   216,   217,   218,   219,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+      -1,    -1,    -1,    -1,   243,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,    -1,    -1,   244,   216,   217,   218,   219,   220,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,    -1,    -1,   243,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-      -1,    -1,    -1,   244,   216,   217,   218,   219,   220,   221,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
+      -1,    -1,   243,   215,   216,   217,   218,   219,   220,   221,
      222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
-      -1,    -1,   244,   216,   217,   218,   219,   220,   221,   222,
+     232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,
+      -1,   243,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,
-      -1,   244,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,    -1,
-     244,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,    -1,   243,   216,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,
+     243,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,    -1,    -1,   243,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,    -1,   242,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,    -1,   243,   216,   217,   218,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,    -1,   242,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,    -1,    -1,    -1,   243,   216,   217,   218,   219,   220,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+      -1,    -1,    -1,   242,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,   240,
-      -1,   242,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,   242,   216,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,   239,    -1,
+     241,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,   241,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,   242,   216,   217,   218,   219,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,   241,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,   242,   216,   217,   218,   219,   220,   221,   222,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,   241,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,   242,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,   241,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,   242,   216,   217,   218,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,    -1,   241,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,    -1,    -1,   242,   216,   217,   218,   219,   220,   221,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+      -1,    -1,   241,   215,   216,   217,   218,   219,   220,   221,
      222,   223,   224,   225,   226,   227,   228,   229,   230,   231,
-     232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,
-     242,   216,   217,   218,   219,   220,   221,   222,   223,   224,
-     225,   226,   227,   228,   229,   230,   231,   232,   233,    -1,
-      -1,    -1,    -1,   238,    -1,    -1,    -1,   242,   216,   217,
+     232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,   241,
+     215,   216,   217,   218,   219,   220,   221,   222,   223,   224,
+     225,   226,   227,   228,   229,   230,   231,   232,    -1,    -1,
+      -1,    -1,   237,    -1,    -1,    -1,   241,   215,   216,   217,
      218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
-     228,   229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,
-     238,    -1,    -1,    -1,   242,   216,   217,   218,   219,   220,
+     228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,
+      -1,    -1,    -1,   241,   215,   216,   217,   218,   219,   220,
      221,   222,   223,   224,   225,   226,   227,   228,   229,   230,
-     231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,    -1,
-      -1,   242,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,   242,   216,
+     231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,
+     241,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,    -1,    -1,   241,   215,   216,
      217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,    -1,    -1,    -1,
-      -1,   238,    -1,    -1,    -1,   242,   216,   217,   218,   219,
+     227,   228,   229,   230,   231,   232,    -1,    -1,    -1,    -1,
+     237,    -1,    -1,    -1,   241,   215,   216,   217,   218,   219,
      220,   221,   222,   223,   224,   225,   226,   227,   228,   229,
-     230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,    -1,
-      -1,    -1,   242,   216,   217,   218,   219,   220,   221,   222,
+     230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,    -1,
+      -1,   241,   215,   216,   217,   218,   219,   220,   221,   222,
      223,   224,   225,   226,   227,   228,   229,   230,   231,   232,
-     233,    -1,    -1,    -1,    -1,   238,    -1,    -1,    -1,   242,
+      -1,    -1,    -1,    -1,   237,    -1,    -1,    -1,   241,   215,
      216,   217,   218,   219,   220,   221,   222,   223,   224,   225,
-     226,   227,   228,   229,   230,   231,   232,   233,    -1,    -1,
-      -1,    -1,   238,    -1,    -1,    -1,   242,   216,   217,   218,
+     226,   227,   228,   229,   230,   231,   232,    -1,    -1,    -1,
+      -1,   237,    -1,    -1,    -1,   241,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238,    -1,   240,   216,   217,   218,
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237,    -1,   239,   215,   216,   217,   218,
      219,   220,   221,   222,   223,   224,   225,   226,   227,   228,
-     229,   230,   231,   232,   233,    -1,    -1,    -1,    -1,   238,
-      -1,   240,   216,   217,   218,   219,   220,   221,   222,   223,
-     224,   225,   226,   227,   228,   229,   230,   231,   232,   233,
-      -1,    -1,    -1,    -1,   238
+     229,   230,   231,   232,    -1,    -1,    -1,    -1,   237,    -1,
+     239,   215,   216,   217,   218,   219,   220,   221,   222,   223,
+     224,   225,   226,   227,   228,   229,   230,   231,   232,    -1,
+      -1,    -1,    -1,   237
 };
 
 /* YYSTOS[STATE-NUM] -- The (internal number of the) accessing
    symbol of state STATE-NUM.  */
 static const yytype_uint16 yystos[] =
 {
-       0,     1,   250,   251,     6,     0,     4,    13,    14,    44,
-      45,    64,    65,    66,    70,    71,    73,    78,    79,    81,
-      82,    84,    89,    90,    91,    92,    93,    94,    95,    96,
-      97,    98,    99,   100,   101,   102,   103,   106,   107,   108,
-     109,   110,   111,   113,   115,   116,   117,   118,   119,   120,
-     121,   123,   124,   125,   126,   127,   128,   130,   131,   132,
-     133,   134,   135,   136,   137,   138,   140,   141,   142,   143,
-     144,   145,   146,   147,   148,   149,   150,   151,   152,   153,
-     157,   158,   159,   163,   168,   169,   170,   171,   174,   176,
+       0,     1,   249,   250,     6,     0,     4,    13,    14,    44,
+      45,    64,    65,    66,    70,    71,    73,    78,    80,    81,
+      83,    88,    89,    90,    91,    92,    93,    94,    95,    96,
+      97,    98,    99,   100,   101,   102,   105,   106,   107,   108,
+     109,   110,   112,   114,   115,   116,   117,   118,   119,   120,
+     122,   123,   124,   125,   126,   127,   129,   130,   131,   132,
+     133,   134,   135,   136,   137,   139,   140,   141,   142,   143,
+     144,   145,   146,   147,   148,   149,   150,   151,   152,   156,
+     157,   158,   162,   167,   168,   169,   170,   173,   175,   177,
      178,   179,   180,   181,   182,   183,   184,   185,   186,   187,
-     188,   189,   190,   191,   198,   199,   200,   209,   211,   252,
-     254,   255,   275,   293,   295,   299,   302,   303,   304,   305,
-     306,   307,   308,   309,   310,   317,   319,   320,   326,   327,
-     328,   329,   335,   360,   361,   243,   247,    14,    97,   239,
-     239,     6,   243,     6,     6,     6,     6,   239,     6,     6,
-     241,   241,     4,   337,   361,   239,   241,   273,   273,   239,
-     239,   239,     4,   239,   239,   239,     4,   239,   239,   239,
-     239,   239,   239,   239,   239,   239,   239,   239,   243,   112,
-      97,     6,   243,    91,    94,    97,   110,   298,   239,     3,
-      10,    11,    12,    15,    16,    17,    18,    19,    20,    21,
-      22,    23,    24,    25,    26,    27,    28,    29,    30,    31,
-      32,    33,    34,    35,    36,    37,    38,    39,    40,    41,
-      42,    43,    55,    56,    57,    58,    63,    64,    75,    76,
-      77,    83,    86,    91,    94,    97,    99,   110,   119,   124,
-     126,   192,   196,   197,   201,   202,   203,   205,   206,   207,
-     227,   228,   234,   239,   243,   246,   295,   296,   299,   310,
-     317,   319,   330,   331,   335,   337,   344,   346,   361,   239,
-     243,    97,    97,   119,    94,    97,    99,    91,    94,    97,
-      99,   295,    94,    97,    99,   110,   296,    94,    97,   239,
-      94,   149,   174,   190,   191,   243,   227,   228,   239,   243,
-     341,   342,   341,   243,   243,   341,     4,    91,    95,   101,
-     102,   104,   105,   123,   239,    97,    99,    97,    94,     4,
-      84,   185,   243,   361,     4,     6,    91,    94,    97,    94,
-      97,   110,   297,     4,     4,     4,     5,   239,   243,   344,
-     345,     4,   239,   239,   239,     4,   243,   348,   361,     4,
-     239,   239,   239,     6,     6,   241,     5,    46,    47,    48,
-      49,    50,    51,    52,    53,    54,    59,    60,    61,    62,
-      67,    68,    69,    72,    74,    85,    88,   193,   194,   195,
-     204,   208,   210,   352,   361,   239,     4,   352,     5,   243,
-       5,   243,    32,   228,   330,   361,   241,   243,   239,   243,
-       6,   239,   243,     6,   247,     7,   126,   185,   212,   213,
-     214,   215,   236,   237,   239,   241,   245,   271,   272,   273,
-     330,   351,   352,   361,     4,   299,   300,   301,   243,     6,
-     330,   351,   352,   361,   351,   330,   351,   358,   359,   361,
-     277,   281,   239,   340,     9,   352,   361,   330,   330,   330,
-     239,   330,   330,   330,   239,   330,   330,   330,   330,   330,
-     330,   330,   351,   330,   330,   330,   330,   345,   239,   228,
-     330,   346,   347,   243,   345,   351,   273,   273,   273,   273,
-     273,   273,   273,   273,   273,   273,   273,   273,   273,   273,
-     273,   273,   273,   273,   273,   273,   273,   273,   273,   239,
-     241,   273,   273,   273,   273,   273,   273,   239,   273,   273,
-     239,   295,   273,   273,     5,   243,   243,   119,   295,   239,
-     273,   273,   239,   239,   239,   330,   243,   330,   346,   330,
-     330,   244,   347,   337,   361,   177,     5,   243,     8,   216,
-     217,   218,   219,   220,   221,   222,   223,   224,   225,   226,
-     227,   228,   229,   230,   231,   232,   233,   238,     9,   239,
-     241,   245,   272,   273,   330,   347,   239,   239,   239,   344,
-     345,   345,   345,   294,   243,   239,   344,   243,   243,   330,
-       4,   344,   243,   348,   243,   243,   341,   341,   341,   330,
-     330,   227,   228,   243,   243,   341,   227,   228,   239,   301,
-     341,   243,   239,   243,   239,   239,   239,   239,   239,   239,
-     239,   330,   345,   345,   345,   239,     4,   241,     6,   241,
-     301,     6,     6,   243,   243,   243,   243,   345,   241,   241,
-     241,   330,     8,     6,     6,   330,   330,   330,   245,   330,
-     243,   177,   330,   330,   330,   330,   273,   273,   273,   239,
-     239,   239,   273,   273,   273,   273,   273,   273,   273,   273,
-     273,   273,   239,   239,   273,   239,   241,     6,     6,   243,
-       6,     8,   301,     6,     8,   301,   273,   330,   229,   243,
-       9,   239,   241,   245,   351,   347,   330,   301,   344,   344,
-     243,   352,    91,    94,    97,    99,     7,   330,   330,     4,
-     174,   175,   344,     6,   240,   242,   243,   274,     6,   243,
-       6,     9,   239,   241,   245,   361,   244,   119,   124,   126,
-     127,   293,   295,   330,     6,   240,   248,     9,   239,   241,
-     245,   240,   248,   248,   240,   248,     9,   239,   245,   242,
-     248,   276,   242,   276,    87,   339,   336,   361,   248,   248,
-     240,   240,   240,   330,   240,   240,   240,   330,   240,   240,
-     240,   240,   240,   240,   240,   240,   240,   240,   240,   244,
-       7,   330,   229,   244,   248,   330,     6,   240,   330,   330,
-     330,   330,   330,   330,   330,   330,   330,   330,   330,   330,
-     330,   330,   330,   330,   330,   346,   330,   330,   330,   330,
-     330,   330,   330,   346,   346,   361,   243,   330,   330,   351,
-     330,   351,   344,   351,   351,   358,   243,   330,   274,   361,
-       8,   330,   330,   345,   351,   351,   346,   337,   352,   337,
-     347,   240,   244,   245,   273,    64,     8,   330,   330,   330,
-     330,   330,   330,   330,   330,   330,   330,   330,   330,   330,
-     330,   243,   330,   346,   330,   330,   330,   330,   330,   361,
-     330,   330,     4,   338,   243,   274,   240,   244,   330,   330,
-     330,     7,     7,   323,   323,   239,   330,   330,     6,   347,
-     347,   243,   240,     6,   301,   243,   301,   301,   248,   248,
-     248,   341,   341,   300,   300,   248,   330,   244,   314,   248,
-     301,   330,   330,   330,   330,   330,   330,   330,   330,   330,
-     240,     7,   324,     6,     7,   330,     6,   330,   330,   244,
-     347,   347,   347,   330,     6,   330,   330,   330,   240,   244,
-     240,   240,   240,   174,   248,   301,   243,     8,   240,   240,
-     242,   358,   351,   358,   351,   351,   351,   351,   351,   351,
-     330,   351,   351,   351,   351,   246,   354,   361,   352,   351,
-     351,   351,   337,   361,   347,   244,   244,   244,   244,   330,
-     330,   301,   361,   338,   242,   244,   240,   132,   149,   318,
-     240,   244,   248,   330,     6,   243,   243,   243,   243,   330,
-     240,   242,     7,   271,   272,   245,     7,     6,   347,     7,
-     215,   271,   256,   361,   330,   330,   338,   241,   239,   119,
-     295,   296,   243,   244,     6,   222,   223,   253,   347,   361,
-     330,   330,     4,   338,     6,   347,   330,     6,   351,   359,
-     361,   240,   338,     6,   361,     6,   351,   330,   240,   241,
-     330,   352,     7,     7,     7,   240,     7,     7,     7,   240,
-       7,     7,     7,     7,     7,     7,     7,     7,     7,     7,
-     330,   240,   243,   330,   346,   244,     6,   274,   274,   274,
-     274,   274,   274,   274,   274,   274,   274,   274,   248,   274,
-     274,   274,   274,   274,   274,   274,   274,   274,   248,   248,
-     248,   240,   242,   242,   347,   248,   248,   274,   248,   274,
-     248,   248,   248,   240,   330,   332,   274,   244,   244,   244,
-     248,   248,   274,   274,   240,   245,   240,   245,   248,   273,
-     333,   244,     7,   338,   274,   243,   244,     8,     8,   347,
-     245,   240,   242,   272,   239,   241,   273,   347,     7,   243,
-     240,   240,   240,   330,   344,     4,   322,     6,   290,   330,
-     352,   244,   240,   244,   244,   347,   245,   244,   301,   244,
-     244,   341,   330,   330,   244,   244,   330,   341,   129,   129,
-     146,   154,   155,   156,   160,   161,   315,   316,   341,   244,
-     311,   240,   244,   240,   240,   240,   240,   240,   240,   240,
-       7,   330,     6,   330,   240,   242,   242,   244,   244,   244,
-     244,   242,   242,   248,     7,     7,     7,   245,   330,   244,
-     330,   330,     7,   245,   274,   248,   274,   274,   240,   240,
-     248,   274,   274,   248,   248,   274,   274,   274,   274,   330,
-     274,     9,   353,   248,   240,   248,   274,   245,   248,   334,
-     242,   244,   244,   245,   239,   241,   247,   177,     7,   149,
-       6,   330,   244,   243,     6,   344,   244,   330,   330,   330,
-     330,     6,     7,   271,   272,   245,   271,   272,   352,   330,
-       6,     4,   243,   349,   361,   244,    46,    46,   344,     4,
-     164,   165,   166,   167,   244,   259,   263,   266,   268,   269,
-     245,   240,   242,   239,   330,   330,   239,   243,   239,     8,
-     347,   351,   240,   245,   240,   242,   239,   240,   248,   245,
-     239,     7,   273,     4,   284,   285,   286,   274,   274,   341,
-     344,   344,     7,   344,   344,   344,     7,   344,   344,   344,
-     344,   344,   344,   344,   344,   344,   344,     6,     7,   347,
-     330,   330,   330,   330,   244,   330,   330,   330,   344,   351,
-     351,   244,   248,   283,   330,   330,   338,   338,   330,   330,
-     240,   344,   273,   330,   330,   330,   244,   338,   272,   245,
-     272,   330,   330,   274,   244,   344,   347,     7,     7,     7,
-     129,   321,     6,   240,   248,     7,     7,     7,   244,     4,
-     244,   248,   248,   248,   244,   244,   109,     4,     6,   330,
-     243,     6,   239,     6,   162,     6,   162,   244,   316,   248,
-     315,     7,     6,     7,     7,     7,     7,     7,     7,     7,
-     344,     6,   243,     6,     6,     6,    97,     7,     6,     6,
-     330,   344,   344,   344,     4,   248,     8,     8,   240,     4,
-     100,   101,     4,   347,   351,   330,   351,   246,   248,   287,
-     351,   351,   338,   351,   240,   248,   338,   243,   295,   243,
-       6,   330,     6,   243,   344,   244,   244,   244,   244,   244,
-     330,     6,     4,   174,   175,   330,     6,     6,     6,     7,
-     348,   350,     6,   241,   274,   273,   273,     6,   260,   239,
-     239,   243,   270,     6,   338,   245,   351,   330,   242,   240,
-     330,     8,   347,   330,   244,   244,     6,     6,   253,   338,
-     245,   330,     6,   330,   338,   240,   243,   330,   352,   274,
-      46,   243,   344,   352,   355,   242,   248,     6,     6,     6,
-     123,   292,   292,   344,     6,     6,     6,   344,   177,   291,
-       6,     6,     6,     6,     6,     6,     6,     6,     6,     5,
-     244,   274,   274,   274,   274,   274,   248,   248,   248,   240,
-     274,   274,   285,   274,   240,   274,   240,   273,   333,   274,
-       6,   274,   248,   239,   241,   273,     4,   240,   242,   274,
-       6,   244,   344,   344,   344,     4,     6,   271,   330,   344,
-     243,   243,     7,     6,     7,   330,   330,   330,   243,   243,
-     243,   241,     6,   330,   344,   330,     6,     6,   330,   341,
-     244,     5,   344,   243,   243,   243,   243,   243,   243,   243,
-     344,     6,   347,   243,   330,   242,     6,     6,   173,   330,
-     330,   330,     6,     6,     6,     6,     7,   274,   248,   248,
-     274,   248,   330,     4,   189,   288,   289,   274,   240,   274,
-     334,   352,   239,   241,   330,   243,   301,     6,   301,   248,
-       6,     6,     7,   271,   272,   245,     7,     6,   348,   244,
-     248,   330,   271,   243,   274,   356,   357,   358,   356,   239,
-     330,   330,   343,   344,   243,   239,     4,     6,   240,     6,
-     240,   244,   244,   240,     6,     6,   351,   239,     4,   240,
-     248,   239,   344,   352,     7,   273,   282,   330,   346,   286,
-     341,     6,     6,     6,     6,    95,     6,     5,   243,   330,
-     330,   330,   330,   240,   333,   330,   330,   330,   274,   272,
-     243,     6,   291,     6,   330,   344,     4,     6,   347,   347,
-     330,   330,   352,   244,   240,   244,   248,   300,   300,   330,
-     330,   244,   248,   240,   244,   248,     6,     6,   343,   341,
-     341,   341,   341,   341,   228,   341,     6,   244,   330,     6,
-       6,   344,   244,   248,     8,   244,   240,   243,   330,   352,
-     351,   330,   351,   330,   352,   355,   357,   352,   248,   240,
-     248,   244,   330,   318,   318,   344,   352,   330,     6,     4,
-     349,     6,   348,   242,   344,   358,     6,   274,   274,   257,
-     330,   248,   248,   244,   248,   258,   330,   330,     6,     6,
-       6,   330,   330,   240,   278,   280,   243,   357,   244,   248,
-       7,     7,   243,     5,   343,   274,   274,   248,   274,   240,
-     248,   240,   242,   330,     6,     6,   243,   244,   244,   243,
-       6,     6,   243,   330,   244,   244,   244,   242,     6,   344,
-       7,   243,   330,   244,   248,   248,   248,   248,   248,   248,
-       6,   244,   172,   330,   330,   347,     6,     6,   240,   274,
-     274,   289,   352,   244,   244,   244,   244,     6,     6,     7,
-       6,   245,     6,   244,     6,     6,   240,   248,   330,   330,
-     243,   344,   244,   248,   240,   240,   248,   283,   287,   344,
-     274,   330,   352,   361,   330,     6,   244,   330,   333,   330,
-     244,   343,   133,   134,   139,   325,   133,   134,   325,   347,
-     300,   244,   248,     6,   244,   344,   301,   244,     6,   347,
-     341,   341,   341,   341,   341,   330,   244,   244,   244,   240,
-       6,   243,     6,   348,   175,   261,   330,   248,   248,   343,
-       6,   330,   330,   244,   244,   279,     7,   239,   244,   243,
-     248,   240,   248,   244,   243,   341,   344,     6,   243,   341,
-       6,   244,   244,   330,     6,   129,   244,   312,   243,   244,
-     248,   248,   248,   248,   248,     6,     6,     6,   301,     6,
-     243,   330,   330,   244,   248,   283,   352,   240,   330,   330,
-     330,     6,   341,     6,   341,     6,     6,   244,   330,   315,
-     301,     6,   347,   347,   347,   347,   341,   347,   318,   258,
-     240,   248,     6,   243,   330,   244,   248,   248,   248,   248,
-     248,     6,   244,   244,   313,   244,   244,   244,   244,   248,
-     244,   244,   244,   264,   330,   343,   244,   330,   330,   330,
-     341,   341,   315,     6,     6,     6,     6,   347,     6,     6,
-       6,   243,   240,   244,     6,   244,   274,   248,   248,   248,
-     244,   244,   262,   351,   267,   243,     6,   330,   330,   330,
-       6,   244,   248,   243,   343,   244,   244,   244,     6,   351,
-     265,   351,   244,     6,     6,   244,   248,     6,     6,   351
+     188,   189,   190,   197,   198,   199,   208,   210,   251,   253,
+     254,   274,   292,   294,   298,   301,   302,   303,   304,   305,
+     306,   307,   308,   309,   316,   318,   319,   325,   326,   327,
+     328,   334,   359,   360,   242,   246,    14,    96,   238,   238,
+       6,   242,     6,     6,     6,     6,   238,     6,   240,   240,
+       4,   336,   360,   238,   240,   272,   272,   238,   238,   238,
+       4,   238,   238,   238,     4,   238,   238,   238,   238,   238,
+     238,   238,   238,   238,   238,   238,   242,   111,    96,     6,
+     242,    90,    93,    96,   109,   297,   238,     3,    10,    11,
+      12,    15,    16,    17,    18,    19,    20,    21,    22,    23,
+      24,    25,    26,    27,    28,    29,    30,    31,    32,    33,
+      34,    35,    36,    37,    38,    39,    40,    41,    42,    43,
+      55,    56,    57,    58,    63,    64,    75,    76,    77,    82,
+      85,    90,    93,    96,    98,   109,   118,   123,   125,   191,
+     195,   196,   200,   201,   202,   204,   205,   206,   226,   227,
+     233,   238,   242,   245,   294,   295,   298,   309,   316,   318,
+     329,   330,   334,   336,   343,   345,   360,   238,   242,    96,
+      96,   118,    93,    96,    98,    90,    93,    96,    98,   294,
+      93,    96,    98,   109,   295,    93,    96,   238,    93,   148,
+     173,   189,   190,   242,   226,   227,   238,   242,   340,   341,
+     340,   242,   242,   340,     4,    90,    94,   100,   101,   103,
+     104,   122,   238,    96,    98,    96,    93,     4,    83,   184,
+     242,   360,     4,     6,    90,    93,    96,    93,    96,   109,
+     296,     4,     4,     4,     5,   238,   242,   343,   344,     4,
+     238,   238,   238,     4,   242,   347,   360,     4,   238,   238,
+     238,     6,     6,   240,     5,    46,    47,    48,    49,    50,
+      51,    52,    53,    54,    59,    60,    61,    62,    67,    68,
+      69,    72,    74,    84,    87,   192,   193,   194,   203,   207,
+     209,   351,   360,   238,     4,   351,     5,   242,     5,   242,
+      32,   227,   329,   360,   240,   242,   238,   242,     6,   238,
+     242,     6,   246,     7,   125,   184,   211,   212,   213,   214,
+     235,   236,   238,   240,   244,   270,   271,   272,   329,   350,
+     351,   360,     4,   298,   299,   300,   242,     6,   329,   350,
+     351,   360,   350,   329,   350,   357,   358,   360,   276,   280,
+     238,   339,     9,   351,   360,   329,   329,   329,   238,   329,
+     329,   329,   238,   329,   329,   329,   329,   329,   329,   329,
+     350,   329,   329,   329,   329,   344,   238,   227,   329,   345,
+     346,   242,   344,   350,   272,   272,   272,   272,   272,   272,
+     272,   272,   272,   272,   272,   272,   272,   272,   272,   272,
+     272,   272,   272,   272,   272,   272,   272,   238,   240,   272,
+     272,   272,   272,   272,   272,   238,   272,   272,   238,   294,
+     272,   272,     5,   242,   242,   118,   294,   238,   272,   272,
+     238,   238,   238,   329,   242,   329,   345,   329,   329,   243,
+     346,   336,   360,   176,     5,   242,     8,   215,   216,   217,
+     218,   219,   220,   221,   222,   223,   224,   225,   226,   227,
+     228,   229,   230,   231,   232,   237,     9,   238,   240,   244,
+     271,   272,   329,   346,   238,   238,   238,   343,   344,   344,
+     344,   293,   242,   238,   343,   242,   242,   329,     4,   343,
+     242,   347,   242,   242,   340,   340,   340,   329,   329,   226,
+     227,   242,   242,   340,   226,   227,   238,   300,   340,   242,
+     238,   242,   238,   238,   238,   238,   238,   238,   238,   329,
+     344,   344,   344,   238,     4,   240,     6,   240,   300,     6,
+       6,   242,   242,   242,   242,   344,   240,   240,   240,   329,
+       8,     6,     6,   329,   329,   329,   244,   329,   242,   176,
+     329,   329,   329,   329,   272,   272,   272,   238,   238,   238,
+     272,   272,   272,   272,   272,   272,   272,   272,   272,   272,
+     238,   238,   272,   238,   240,     6,     6,   242,     6,     8,
+     300,     6,     8,   300,   272,   329,   228,   242,     9,   238,
+     240,   244,   350,   346,   329,   300,   343,   343,   242,   351,
+      90,    93,    96,    98,     7,   329,   329,     4,   173,   174,
+     343,     6,   239,   241,   242,   273,     6,   242,     6,     9,
+     238,   240,   244,   360,   243,   118,   123,   125,   126,   292,
+     294,   329,     6,   239,   247,     9,   238,   240,   244,   239,
+     247,   247,   239,   247,     9,   238,   244,   241,   247,   275,
+     241,   275,    86,   338,   335,   360,   247,   247,   239,   239,
+     239,   329,   239,   239,   239,   329,   239,   239,   239,   239,
+     239,   239,   239,   239,   239,   239,   239,   243,     7,   329,
+     228,   243,   247,   329,     6,   239,   329,   329,   329,   329,
+     329,   329,   329,   329,   329,   329,   329,   329,   329,   329,
+     329,   329,   329,   345,   329,   329,   329,   329,   329,   329,
+     329,   345,   345,   360,   242,   329,   329,   350,   329,   350,
+     343,   350,   350,   357,   242,   329,   273,   360,     8,   329,
+     329,   344,   350,   350,   345,   336,   351,   336,   346,   239,
+     243,   244,   272,    64,     8,   329,   329,   329,   329,   329,
+     329,   329,   329,   329,   329,   329,   329,   329,   329,   242,
+     329,   345,   329,   329,   329,   329,   329,   360,   329,   329,
+       4,   337,   242,   273,   239,   243,   329,   329,   329,     7,
+       7,   322,   322,   238,   329,   329,     6,   346,   346,   242,
+     239,     6,   300,   242,   300,   300,   247,   247,   247,   340,
+     340,   299,   299,   247,   329,   243,   313,   247,   300,   329,
+     329,   329,   329,   329,   329,   329,   329,   329,   239,     7,
+     323,     6,     7,   329,     6,   329,   329,   243,   346,   346,
+     346,   329,     6,   329,   329,   329,   239,   243,   239,   239,
+     239,   173,   247,   300,   242,     8,   239,   239,   241,   357,
+     350,   357,   350,   350,   350,   350,   350,   350,   329,   350,
+     350,   350,   350,   245,   353,   360,   351,   350,   350,   350,
+     336,   360,   346,   243,   243,   243,   243,   329,   329,   300,
+     360,   337,   241,   243,   239,   131,   148,   317,   239,   243,
+     247,   329,     6,   242,   242,   242,   242,   329,   239,   241,
+       7,   270,   271,   244,     7,     6,   346,     7,   214,   270,
+     255,   360,   329,   329,   337,   240,   238,   118,   294,   295,
+     242,   243,     6,   221,   222,   252,   346,   360,   329,   329,
+       4,   337,     6,   346,   329,     6,   350,   358,   360,   239,
+     337,     6,   360,     6,   350,   329,   239,   240,   329,   351,
+       7,     7,     7,   239,     7,     7,     7,   239,     7,     7,
+       7,     7,     7,     7,     7,     7,     7,     7,   329,   239,
+     242,   329,   345,   243,     6,   273,   273,   273,   273,   273,
+     273,   273,   273,   273,   273,   273,   247,   273,   273,   273,
+     273,   273,   273,   273,   273,   273,   247,   247,   247,   239,
+     241,   241,   346,   247,   247,   273,   247,   273,   247,   247,
+     247,   239,   329,   331,   273,   243,   243,   243,   247,   247,
+     273,   273,   239,   244,   239,   244,   247,   272,   332,   243,
+       7,   337,   273,   242,   243,     8,     8,   346,   244,   239,
+     241,   271,   238,   240,   272,   346,     7,   242,   239,   239,
+     239,   329,   343,     4,   321,     6,   289,   329,   351,   243,
+     239,   243,   243,   346,   244,   243,   300,   243,   243,   340,
+     329,   329,   243,   243,   329,   340,   128,   128,   145,   153,
+     154,   155,   159,   160,   314,   315,   340,   243,   310,   239,
+     243,   239,   239,   239,   239,   239,   239,   239,     7,   329,
+       6,   329,   239,   241,   241,   243,   243,   243,   243,   241,
+     241,   247,     7,     7,     7,   244,   329,   243,   329,   329,
+       7,   244,   273,   247,   273,   273,   239,   239,   247,   273,
+     273,   247,   247,   273,   273,   273,   273,   329,   273,     9,
+     352,   247,   239,   247,   273,   244,   247,   333,   241,   243,
+     243,   244,   238,   240,   246,   176,     7,   148,     6,   329,
+     243,   242,     6,   343,   243,   329,   329,   329,   329,     6,
+       7,   270,   271,   244,   270,   271,   351,   329,     6,     4,
+     242,   348,   360,   243,    46,    46,   343,     4,   163,   164,
+     165,   166,   243,   258,   262,   265,   267,   268,   244,   239,
+     241,   238,   329,   329,   238,   242,   238,     8,   346,   350,
+     239,   244,   239,   241,   238,   239,   247,   244,   238,     7,
+     272,     4,   283,   284,   285,   273,   273,   340,   343,   343,
+       7,   343,   343,   343,     7,   343,   343,   343,   343,   343,
+     343,   343,   343,   343,   343,     6,     7,   346,   329,   329,
+     329,   329,   243,   329,   329,   329,   343,   350,   350,   243,
+     247,   282,   329,   329,   337,   337,   329,   329,   239,   343,
+     272,   329,   329,   329,   243,   337,   271,   244,   271,   329,
+     329,   273,   243,   343,   346,     7,     7,     7,   128,   320,
+       6,   239,   247,     7,     7,     7,   243,     4,   243,   247,
+     247,   247,   243,   243,   108,     4,     6,   329,   242,     6,
+     238,     6,   161,     6,   161,   243,   315,   247,   314,     7,
+       6,     7,     7,     7,     7,     7,     7,     7,   343,     6,
+     242,     6,     6,     6,    96,     7,     6,     6,   329,   343,
+     343,   343,     4,   247,     8,     8,   239,     4,    99,   100,
+       4,   346,   350,   329,   350,   245,   247,   286,   350,   350,
+     337,   350,   239,   247,   337,   242,   294,   242,     6,   329,
+       6,   242,   343,   243,   243,   243,   243,   243,   329,     6,
+       4,   173,   174,   329,     6,     6,     6,     7,   347,   349,
+       6,   240,   273,   272,   272,     6,   259,   238,   238,   242,
+     269,     6,   337,   244,   350,   329,   241,   239,   329,     8,
+     346,   329,   243,   243,     6,     6,   252,   337,   244,   329,
+       6,   329,   337,   239,   242,   329,   351,   273,    46,   242,
+     343,   351,   354,   241,   247,     6,     6,     6,   122,   291,
+     291,   343,     6,     6,     6,   343,   176,   290,     6,     6,
+       6,     6,     6,     6,     6,     6,     6,     5,   243,   273,
+     273,   273,   273,   273,   247,   247,   247,   239,   273,   273,
+     284,   273,   239,   273,   239,   272,   332,   273,     6,   273,
+     247,   238,   240,   272,     4,   239,   241,   273,     6,   243,
+     343,   343,   343,     4,     6,   270,   329,   343,   242,   242,
+       7,     6,     7,   329,   329,   329,   242,   242,   242,   240,
+       6,   329,   343,   329,     6,     6,   329,   340,   243,     5,
+     343,   242,   242,   242,   242,   242,   242,   242,   343,     6,
+     346,   242,   329,   241,     6,     6,   172,   329,   329,   329,
+       6,     6,     6,     6,     7,   273,   247,   247,   273,   247,
+     329,     4,   188,   287,   288,   273,   239,   273,   333,   351,
+     238,   240,   329,   242,   300,     6,   300,   247,     6,     6,
+       7,   270,   271,   244,     7,     6,   347,   243,   247,   329,
+     270,   242,   273,   355,   356,   357,   355,   238,   329,   329,
+     342,   343,   242,   238,     4,     6,   239,     6,   239,   243,
+     243,   239,     6,     6,   350,   238,     4,   239,   247,   238,
+     343,   351,     7,   272,   281,   329,   345,   285,   340,     6,
+       6,     6,     6,    94,     6,     5,   242,   329,   329,   329,
+     329,   239,   332,   329,   329,   329,   273,   271,   242,     6,
+     290,     6,   329,   343,     4,     6,   346,   346,   329,   329,
+     351,   243,   239,   243,   247,   299,   299,   329,   329,   243,
+     247,   239,   243,   247,     6,     6,   342,   340,   340,   340,
+     340,   340,   227,   340,     6,   243,   329,     6,     6,   343,
+     243,   247,     8,   243,   239,   242,   329,   351,   350,   329,
+     350,   329,   351,   354,   356,   351,   247,   239,   247,   243,
+     329,   317,   317,   343,   351,   329,     6,     4,   348,     6,
+     347,   241,   343,   357,     6,   273,   273,   256,   329,   247,
+     247,   243,   247,   257,   329,   329,     6,     6,     6,   329,
+     329,   239,   277,   279,   242,   356,   243,   247,     7,     7,
+     242,     5,   342,   273,   273,   247,   273,   239,   247,   239,
+     241,   329,     6,     6,   242,   243,   243,   242,     6,     6,
+     242,   329,   243,   243,   243,   241,     6,   343,     7,   242,
+     329,   243,   247,   247,   247,   247,   247,   247,     6,   243,
+     171,   329,   329,   346,     6,     6,   239,   273,   273,   288,
+     351,   243,   243,   243,   243,     6,     6,     7,     6,   244,
+       6,   243,     6,     6,   239,   247,   329,   329,   242,   343,
+     243,   247,   239,   239,   247,   282,   286,   343,   273,   329,
+     351,   360,   329,     6,   243,   329,   332,   329,   243,   342,
+     132,   133,   138,   324,   132,   133,   324,   346,   299,   243,
+     247,     6,   243,   343,   300,   243,     6,   346,   340,   340,
+     340,   340,   340,   329,   243,   243,   243,   239,     6,   242,
+       6,   347,   174,   260,   329,   247,   247,   342,     6,   329,
+     329,   243,   243,   278,     7,   238,   243,   242,   247,   239,
+     247,   243,   242,   340,   343,     6,   242,   340,     6,   243,
+     243,   329,     6,   128,   243,   311,   242,   243,   247,   247,
+     247,   247,   247,     6,     6,     6,   300,     6,   242,   329,
+     329,   243,   247,   282,   351,   239,   329,   329,   329,     6,
+     340,     6,   340,     6,     6,   243,   329,   314,   300,     6,
+     346,   346,   346,   346,   340,   346,   317,   257,   239,   247,
+       6,   242,   329,   243,   247,   247,   247,   247,   247,     6,
+     243,   243,   312,   243,   243,   243,   243,   247,   243,   243,
+     243,   263,   329,   342,   243,   329,   329,   329,   340,   340,
+     314,     6,     6,     6,     6,   346,     6,     6,     6,   242,
+     239,   243,     6,   243,   273,   247,   247,   247,   243,   243,
+     261,   350,   266,   242,     6,   329,   329,   329,     6,   243,
+     247,   242,   342,   243,   243,   243,     6,   350,   264,   350,
+     243,     6,     6,   243,   247,     6,     6,   350
 };
 
 #define yyerrok		(yyerrstatus = 0)
@@ -8615,76 +8589,30 @@ yyreduce:
   case 185:
 #line 2163 "Gmsh.y"
     {
-      int num = (int)(yyvsp[(4) - (8)].d);
-      std::vector<int> tags; ListOfDouble2Vector((yyvsp[(7) - (8)].l), tags);
-      switch ((yyvsp[(2) - (8)].i)) {
-      case 1:
-        {
-          bool r = GModel::current()->getGEOInternals()->addCompoundLine(num, tags);
-          if(!r) yymsg(0, "Could not add compound line");
-        }
-        (yyval.s).Type = MSH_SEGM_COMPOUND;
-        break;
-      case 2:
-        {
-          bool r = GModel::current()->getGEOInternals()->addCompoundSurface(num, tags);
-          if(!r) yymsg(0, "Could not add compound surface");
-        }
-        (yyval.s).Type = MSH_SURF_COMPOUND;
-        break;
-      case 3:
-        {
-          bool r = GModel::current()->getGEOInternals()->addCompoundVolume(num, tags);
-          if(!r) yymsg(0, "Could not add compound volume");
-        }
-        (yyval.s).Type = MSH_VOLUME_COMPOUND;
-        break;
-      }
-      List_Delete((yyvsp[(7) - (8)].l));
-      (yyval.s).Num = num;
+      yymsg(0, "Compounds entities are deprecated: use Compound meshing constraints instead");
+      (yyval.s).Type = 0;
+      (yyval.s).Num = 0;
     ;}
     break;
 
   case 186:
-#line 2194 "Gmsh.y"
-    {
-      // Particular case only for dim 2 (Surface)
-      if ((yyvsp[(2) - (12)].i) == 2) {
-        int num = (int)(yyvsp[(4) - (12)].d);
-        std::vector<int> tags; ListOfDouble2Vector((yyvsp[(7) - (12)].l), tags);
-        std::vector<int> bndTags[4];
-        for(int i = 0; i < List_Nbr((yyvsp[(10) - (12)].l)); i++){
-          if(i < 4)
-            ListOfDouble2Vector(*(List_T**)List_Pointer((yyvsp[(10) - (12)].l), i), bndTags[i]);
-          else
-            break;
-        }
-        bool r = GModel::current()->getGEOInternals()->addCompoundSurface
-          (num, tags, bndTags);
-        if(!r) yymsg(0, "Could not add compound surface");
-        List_Delete((yyvsp[(7) - (12)].l));
-        Free((yyvsp[(8) - (12)].c));
-        for (int i = 0; i < List_Nbr((yyvsp[(10) - (12)].l)); i++)
-          List_Delete(*(List_T**)List_Pointer((yyvsp[(10) - (12)].l), i));
-        List_Delete((yyvsp[(10) - (12)].l));
-        (yyval.s).Type = MSH_SURF_COMPOUND;
-        (yyval.s).Num = num;
-      }
-      else {
-        yymsg(0, "GeoEntity dim out of range [2,2]");
-      }
+#line 2170 "Gmsh.y"
+    {
+      yymsg(0, "Compounds entities are deprecated: use Compound meshing constraints instead");
+      (yyval.s).Type = 0;
+      (yyval.s).Num = 0;
     ;}
     break;
 
   case 187:
-#line 2222 "Gmsh.y"
+#line 2176 "Gmsh.y"
     {
       dim_entity = (yyvsp[(2) - (2)].i);
     ;}
     break;
 
   case 188:
-#line 2226 "Gmsh.y"
+#line 2180 "Gmsh.y"
     {
       int num = (int)(yyvsp[(5) - (9)].i);
       int op = (yyvsp[(7) - (9)].i);
@@ -8710,27 +8638,27 @@ yyreduce:
     break;
 
   case 189:
-#line 2252 "Gmsh.y"
+#line 2206 "Gmsh.y"
     { (yyval.i) = 0; ;}
     break;
 
   case 190:
-#line 2254 "Gmsh.y"
+#line 2208 "Gmsh.y"
     { (yyval.i) = 1; ;}
     break;
 
   case 191:
-#line 2256 "Gmsh.y"
+#line 2210 "Gmsh.y"
     { (yyval.i) = 2; ;}
     break;
 
   case 192:
-#line 2258 "Gmsh.y"
+#line 2212 "Gmsh.y"
     { (yyval.i) = 3; ;}
     break;
 
   case 193:
-#line 2260 "Gmsh.y"
+#line 2214 "Gmsh.y"
     {
       (yyval.i) = (int)(yyvsp[(3) - (4)].d);
       if ((yyval.i)<0 || (yyval.i)>3) yymsg(0, "GeoEntity dim out of range [0,3]");
@@ -8738,22 +8666,22 @@ yyreduce:
     break;
 
   case 194:
-#line 2268 "Gmsh.y"
+#line 2222 "Gmsh.y"
     { (yyval.i) = 1; ;}
     break;
 
   case 195:
-#line 2270 "Gmsh.y"
+#line 2224 "Gmsh.y"
     { (yyval.i) = 2; ;}
     break;
 
   case 196:
-#line 2272 "Gmsh.y"
+#line 2226 "Gmsh.y"
     { (yyval.i) = 3; ;}
     break;
 
   case 197:
-#line 2274 "Gmsh.y"
+#line 2228 "Gmsh.y"
     {
       (yyval.i) = (int)(yyvsp[(3) - (4)].d);
       if ((yyval.i)<1 || (yyval.i)>3) yymsg(0, "GeoEntity dim out of range [1,3]");
@@ -8761,17 +8689,17 @@ yyreduce:
     break;
 
   case 198:
-#line 2282 "Gmsh.y"
+#line 2236 "Gmsh.y"
     { (yyval.i) = 1; ;}
     break;
 
   case 199:
-#line 2284 "Gmsh.y"
+#line 2238 "Gmsh.y"
     { (yyval.i) = 2; ;}
     break;
 
   case 200:
-#line 2286 "Gmsh.y"
+#line 2240 "Gmsh.y"
     {
       (yyval.i) = (int)(yyvsp[(3) - (4)].d);
       if ((yyval.i)<1 || (yyval.i)>2) yymsg(0, "GeoEntity dim out of range [1,2]");
@@ -8779,22 +8707,22 @@ yyreduce:
     break;
 
   case 201:
-#line 2294 "Gmsh.y"
+#line 2248 "Gmsh.y"
     { (yyval.i) = 0; ;}
     break;
 
   case 202:
-#line 2296 "Gmsh.y"
+#line 2250 "Gmsh.y"
     { (yyval.i) = 1; ;}
     break;
 
   case 203:
-#line 2298 "Gmsh.y"
+#line 2252 "Gmsh.y"
     { (yyval.i) = 2; ;}
     break;
 
   case 204:
-#line 2300 "Gmsh.y"
+#line 2254 "Gmsh.y"
     {
       (yyval.i) = (int)(yyvsp[(3) - (4)].d);
       if ((yyval.i)<0 || (yyval.i)>2) yymsg(0, "GeoEntity dim out of range [0,2]");
@@ -8802,7 +8730,7 @@ yyreduce:
     break;
 
   case 205:
-#line 2310 "Gmsh.y"
+#line 2264 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (5)].l), dimTags);
@@ -8821,7 +8749,7 @@ yyreduce:
     break;
 
   case 206:
-#line 2326 "Gmsh.y"
+#line 2280 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(10) - (11)].l), dimTags);
@@ -8840,7 +8768,7 @@ yyreduce:
     break;
 
   case 207:
-#line 2342 "Gmsh.y"
+#line 2296 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (5)].l), dimTags);
@@ -8859,7 +8787,7 @@ yyreduce:
     break;
 
   case 208:
-#line 2358 "Gmsh.y"
+#line 2312 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(8) - (9)].l), dimTags);
@@ -8878,7 +8806,7 @@ yyreduce:
     break;
 
   case 209:
-#line 2374 "Gmsh.y"
+#line 2328 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(8) - (9)].l), dimTags);
@@ -8897,7 +8825,7 @@ yyreduce:
     break;
 
   case 210:
-#line 2390 "Gmsh.y"
+#line 2344 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(3) - (4)].l), inDimTags);
@@ -8937,7 +8865,7 @@ yyreduce:
     break;
 
   case 211:
-#line 2427 "Gmsh.y"
+#line 2381 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(Shape));
       bool r = true;
@@ -8961,7 +8889,7 @@ yyreduce:
     break;
 
   case 212:
-#line 2449 "Gmsh.y"
+#line 2403 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(Shape));
       bool r = true;
@@ -8985,31 +8913,31 @@ yyreduce:
     break;
 
   case 213:
-#line 2472 "Gmsh.y"
+#line 2426 "Gmsh.y"
     { (yyval.l) = (yyvsp[(1) - (1)].l); ;}
     break;
 
   case 214:
-#line 2473 "Gmsh.y"
+#line 2427 "Gmsh.y"
     { (yyval.l) = (yyvsp[(1) - (1)].l); ;}
     break;
 
   case 215:
-#line 2478 "Gmsh.y"
+#line 2432 "Gmsh.y"
     {
       (yyval.l) = List_Create(3, 3, sizeof(Shape));
     ;}
     break;
 
   case 216:
-#line 2482 "Gmsh.y"
+#line 2436 "Gmsh.y"
     {
       List_Add((yyval.l), &(yyvsp[(2) - (2)].s));
     ;}
     break;
 
   case 217:
-#line 2486 "Gmsh.y"
+#line 2440 "Gmsh.y"
     {
       for(int i = 0; i < List_Nbr((yyvsp[(4) - (6)].l)); i++){
 	double d;
@@ -9028,7 +8956,7 @@ yyreduce:
     break;
 
   case 218:
-#line 2502 "Gmsh.y"
+#line 2456 "Gmsh.y"
     {
       List_T *tmp = List_Create(10, 10, sizeof(double));
       getElementaryTagsForPhysicalGroups((yyvsp[(3) - (7)].i), (yyvsp[(5) - (7)].l), tmp);
@@ -9049,7 +8977,7 @@ yyreduce:
     break;
 
   case 219:
-#line 2520 "Gmsh.y"
+#line 2474 "Gmsh.y"
     {
       List_T *tmp = List_Create(10, 10, sizeof(double));
       getAllElementaryTags((yyvsp[(2) - (6)].i), tmp);
@@ -9070,7 +8998,7 @@ yyreduce:
     break;
 
   case 220:
-#line 2538 "Gmsh.y"
+#line 2492 "Gmsh.y"
     {
       List_T *tmp = List_Create(10, 10, sizeof(double));
       List_T *tmp2 = List_Create(10, 10, sizeof(double));
@@ -9093,7 +9021,7 @@ yyreduce:
     break;
 
   case 221:
-#line 2563 "Gmsh.y"
+#line 2517 "Gmsh.y"
     {
       if(List_Nbr((yyvsp[(7) - (8)].l)) == 4){
         int t = (int)(yyvsp[(4) - (8)].d);
@@ -9115,7 +9043,7 @@ yyreduce:
     break;
 
   case 222:
-#line 2582 "Gmsh.y"
+#line 2536 "Gmsh.y"
     {
       int t = (int)(yyvsp[(4) - (10)].d);
       if(gLevelset::find(t)){
@@ -9139,7 +9067,7 @@ yyreduce:
     break;
 
   case 223:
-#line 2604 "Gmsh.y"
+#line 2558 "Gmsh.y"
     {
       int t = (int)(yyvsp[(4) - (14)].d);
       if(gLevelset::find(t)){
@@ -9156,7 +9084,7 @@ yyreduce:
     break;
 
   case 224:
-#line 2619 "Gmsh.y"
+#line 2573 "Gmsh.y"
     {
       int t = (int)(yyvsp[(4) - (16)].d);
       if(gLevelset::find(t)){
@@ -9174,7 +9102,7 @@ yyreduce:
     break;
 
   case 225:
-#line 2634 "Gmsh.y"
+#line 2588 "Gmsh.y"
     {
       if(List_Nbr((yyvsp[(10) - (12)].l)) == 1){
         int t = (int)(yyvsp[(4) - (12)].d);
@@ -9195,7 +9123,7 @@ yyreduce:
     break;
 
   case 226:
-#line 2653 "Gmsh.y"
+#line 2607 "Gmsh.y"
     {
       if(List_Nbr((yyvsp[(12) - (14)].l)) == 1){
         int t = (int)(yyvsp[(4) - (14)].d);
@@ -9248,7 +9176,7 @@ yyreduce:
     break;
 
   case 227:
-#line 2704 "Gmsh.y"
+#line 2658 "Gmsh.y"
     {
       if(List_Nbr((yyvsp[(12) - (14)].l)) == 1){
         int t = (int)(yyvsp[(4) - (14)].d);
@@ -9271,7 +9199,7 @@ yyreduce:
     break;
 
   case 228:
-#line 2725 "Gmsh.y"
+#line 2679 "Gmsh.y"
     {
       if(List_Nbr((yyvsp[(12) - (14)].l)) == 3){
         int t = (int)(yyvsp[(4) - (14)].d);
@@ -9295,7 +9223,7 @@ yyreduce:
     break;
 
   case 229:
-#line 2747 "Gmsh.y"
+#line 2701 "Gmsh.y"
     {
       if(List_Nbr((yyvsp[(12) - (14)].l)) == 5){
         int t = (int)(yyvsp[(4) - (14)].d);
@@ -9320,7 +9248,7 @@ yyreduce:
     break;
 
   case 230:
-#line 2769 "Gmsh.y"
+#line 2723 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(2) - (8)].c), "Union")){
         int t = (int)(yyvsp[(4) - (8)].d);
@@ -9428,7 +9356,7 @@ yyreduce:
     break;
 
   case 231:
-#line 2874 "Gmsh.y"
+#line 2828 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(2) - (8)].c), "MathEval")){
         int t = (int)(yyvsp[(4) - (8)].d);
@@ -9447,7 +9375,7 @@ yyreduce:
     break;
 
   case 232:
-#line 2890 "Gmsh.y"
+#line 2844 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(2) - (6)].c), "CutMesh")){
         int t = (int)(yyvsp[(4) - (6)].d);
@@ -9480,7 +9408,7 @@ yyreduce:
     break;
 
   case 233:
-#line 2925 "Gmsh.y"
+#line 2879 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(3) - (4)].l), dimTags);
@@ -9505,7 +9433,7 @@ yyreduce:
     break;
 
   case 234:
-#line 2947 "Gmsh.y"
+#line 2901 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (5)].l), dimTags);
@@ -9530,7 +9458,7 @@ yyreduce:
     break;
 
   case 235:
-#line 2969 "Gmsh.y"
+#line 2923 "Gmsh.y"
     {
 #if defined(HAVE_MESH)
       GModel::current()->getFields()->deleteField((int)(yyvsp[(4) - (6)].d));
@@ -9539,7 +9467,7 @@ yyreduce:
     break;
 
   case 236:
-#line 2975 "Gmsh.y"
+#line 2929 "Gmsh.y"
     {
 #if defined(HAVE_POST)
       if(!strcmp((yyvsp[(2) - (6)].c), "View")){
@@ -9557,7 +9485,7 @@ yyreduce:
     break;
 
   case 237:
-#line 2990 "Gmsh.y"
+#line 2944 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(2) - (3)].c), "Meshes") || !strcmp((yyvsp[(2) - (3)].c), "All")){
         ClearProject();
@@ -9588,7 +9516,7 @@ yyreduce:
     break;
 
   case 238:
-#line 3018 "Gmsh.y"
+#line 2972 "Gmsh.y"
     {
 #if defined(HAVE_POST)
       if(!strcmp((yyvsp[(2) - (4)].c), "Empty") && !strcmp((yyvsp[(3) - (4)].c), "Views")){
@@ -9603,14 +9531,14 @@ yyreduce:
     break;
 
   case 239:
-#line 3030 "Gmsh.y"
+#line 2984 "Gmsh.y"
     {
       gmsh_yynamespaces.clear();
     ;}
     break;
 
   case 240:
-#line 3039 "Gmsh.y"
+#line 2993 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (5)].l), dimTags);
@@ -9620,7 +9548,7 @@ yyreduce:
     break;
 
   case 241:
-#line 3046 "Gmsh.y"
+#line 3000 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(5) - (6)].l), dimTags);
@@ -9630,7 +9558,7 @@ yyreduce:
     break;
 
   case 242:
-#line 3058 "Gmsh.y"
+#line 3012 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (5)].l), dimTags);
@@ -9647,14 +9575,14 @@ yyreduce:
     break;
 
   case 243:
-#line 3077 "Gmsh.y"
+#line 3031 "Gmsh.y"
     {
       setVisibility(-1, 1, false);
     ;}
     break;
 
   case 244:
-#line 3081 "Gmsh.y"
+#line 3035 "Gmsh.y"
     {
       setVisibility(-1, 1, false);
       Free((yyvsp[(2) - (3)].c));
@@ -9662,14 +9590,14 @@ yyreduce:
     break;
 
   case 245:
-#line 3086 "Gmsh.y"
+#line 3040 "Gmsh.y"
     {
       setVisibility(-1, 0, false);
     ;}
     break;
 
   case 246:
-#line 3090 "Gmsh.y"
+#line 3044 "Gmsh.y"
     {
       setVisibility(-1, 0, false);
       Free((yyvsp[(2) - (3)].c));
@@ -9677,7 +9605,7 @@ yyreduce:
     break;
 
   case 247:
-#line 3095 "Gmsh.y"
+#line 3049 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(3) - (4)].l), dimTags);
@@ -9687,7 +9615,7 @@ yyreduce:
     break;
 
   case 248:
-#line 3102 "Gmsh.y"
+#line 3056 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (5)].l), dimTags);
@@ -9697,7 +9625,7 @@ yyreduce:
     break;
 
   case 249:
-#line 3109 "Gmsh.y"
+#line 3063 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(3) - (4)].l), dimTags);
@@ -9707,7 +9635,7 @@ yyreduce:
     break;
 
   case 250:
-#line 3116 "Gmsh.y"
+#line 3070 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > dimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (5)].l), dimTags);
@@ -9717,7 +9645,7 @@ yyreduce:
     break;
 
   case 251:
-#line 3128 "Gmsh.y"
+#line 3082 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(1) - (3)].c), "Include")){
         std::string tmp = FixRelativePath(gmsh_yyname, (yyvsp[(2) - (3)].c));
@@ -9793,7 +9721,7 @@ yyreduce:
     break;
 
   case 252:
-#line 3201 "Gmsh.y"
+#line 3155 "Gmsh.y"
     {
       int n = List_Nbr((yyvsp[(3) - (5)].l));
       if(n == 1){
@@ -9814,7 +9742,7 @@ yyreduce:
     break;
 
   case 253:
-#line 3219 "Gmsh.y"
+#line 3173 "Gmsh.y"
     {
 #if defined(HAVE_POST)
       if(!strcmp((yyvsp[(1) - (7)].c), "Save") && !strcmp((yyvsp[(2) - (7)].c), "View")){
@@ -9834,7 +9762,7 @@ yyreduce:
     break;
 
   case 254:
-#line 3236 "Gmsh.y"
+#line 3190 "Gmsh.y"
     {
 #if defined(HAVE_POST) && defined(HAVE_MESH)
       if(!strcmp((yyvsp[(1) - (7)].c), "Background") && !strcmp((yyvsp[(2) - (7)].c), "Mesh")  && !strcmp((yyvsp[(3) - (7)].c), "View")){
@@ -9852,7 +9780,7 @@ yyreduce:
     break;
 
   case 255:
-#line 3251 "Gmsh.y"
+#line 3205 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(1) - (3)].c), "Sleep")){
 	SleepInSeconds((yyvsp[(2) - (3)].d));
@@ -9888,7 +9816,7 @@ yyreduce:
     break;
 
   case 256:
-#line 3284 "Gmsh.y"
+#line 3238 "Gmsh.y"
     {
 #if defined(HAVE_PLUGINS)
        try {
@@ -9903,7 +9831,7 @@ yyreduce:
     break;
 
   case 257:
-#line 3296 "Gmsh.y"
+#line 3250 "Gmsh.y"
     {
 #if defined(HAVE_POST)
       if(!strcmp((yyvsp[(2) - (3)].c), "ElementsFromAllViews"))
@@ -9930,14 +9858,14 @@ yyreduce:
     break;
 
   case 258:
-#line 3320 "Gmsh.y"
+#line 3274 "Gmsh.y"
     {
       Msg::Exit(0);
     ;}
     break;
 
   case 259:
-#line 3324 "Gmsh.y"
+#line 3278 "Gmsh.y"
     {
       gmsh_yyerrorstate = 999; // this will be checked when yyparse returns
       YYABORT;
@@ -9945,7 +9873,7 @@ yyreduce:
     break;
 
   case 260:
-#line 3329 "Gmsh.y"
+#line 3283 "Gmsh.y"
     {
       // force sync
       if(GModel::current()->getOCCInternals())
@@ -9955,7 +9883,7 @@ yyreduce:
     break;
 
   case 261:
-#line 3336 "Gmsh.y"
+#line 3290 "Gmsh.y"
     {
       new GModel();
       GModel::current(GModel::list.size() - 1);
@@ -9963,7 +9891,7 @@ yyreduce:
     break;
 
   case 262:
-#line 3341 "Gmsh.y"
+#line 3295 "Gmsh.y"
     {
       CTX::instance()->forcedBBox = 0;
       if(GModel::current()->getOCCInternals() &&
@@ -9976,7 +9904,7 @@ yyreduce:
     break;
 
   case 263:
-#line 3351 "Gmsh.y"
+#line 3305 "Gmsh.y"
     {
       CTX::instance()->forcedBBox = 1;
       SetBoundingBox((yyvsp[(3) - (15)].d), (yyvsp[(5) - (15)].d), (yyvsp[(7) - (15)].d), (yyvsp[(9) - (15)].d), (yyvsp[(11) - (15)].d), (yyvsp[(13) - (15)].d));
@@ -9984,7 +9912,7 @@ yyreduce:
     break;
 
   case 264:
-#line 3356 "Gmsh.y"
+#line 3310 "Gmsh.y"
     {
 #if defined(HAVE_OPENGL)
       drawContext::global()->draw();
@@ -9993,7 +9921,7 @@ yyreduce:
     break;
 
   case 265:
-#line 3362 "Gmsh.y"
+#line 3316 "Gmsh.y"
     {
 #if defined(HAVE_OPENGL)
      CTX::instance()->mesh.changed = ENT_ALL;
@@ -10004,21 +9932,14 @@ yyreduce:
     break;
 
   case 266:
-#line 3370 "Gmsh.y"
+#line 3324 "Gmsh.y"
     {
       GModel::current()->createTopologyFromMesh();
     ;}
     break;
 
   case 267:
-#line 3374 "Gmsh.y"
-    {
-      GModel::current()->createTopologyFromMesh(1);
-    ;}
-    break;
-
-  case 268:
-#line 3378 "Gmsh.y"
+#line 3328 "Gmsh.y"
     {
       if(GModel::current()->getOCCInternals() &&
          GModel::current()->getOCCInternals()->getChanged())
@@ -10029,8 +9950,8 @@ yyreduce:
     ;}
     break;
 
-  case 269:
-#line 3388 "Gmsh.y"
+  case 268:
+#line 3338 "Gmsh.y"
     {
       int lock = CTX::instance()->lock;
       CTX::instance()->lock = 0;
@@ -10090,8 +10011,8 @@ yyreduce:
     ;}
     break;
 
-  case 270:
-#line 3451 "Gmsh.y"
+  case 269:
+#line 3401 "Gmsh.y"
     {
 #if defined(HAVE_POPPLER)
        std::vector<int> is;
@@ -10105,8 +10026,8 @@ yyreduce:
      ;}
     break;
 
-  case 271:
-#line 3467 "Gmsh.y"
+  case 270:
+#line 3417 "Gmsh.y"
     {
       LoopControlVariablesTab[ImbricatedLoop][0] = (yyvsp[(3) - (6)].d);
       LoopControlVariablesTab[ImbricatedLoop][1] = (yyvsp[(5) - (6)].d);
@@ -10125,8 +10046,8 @@ yyreduce:
     ;}
     break;
 
-  case 272:
-#line 3484 "Gmsh.y"
+  case 271:
+#line 3434 "Gmsh.y"
     {
       LoopControlVariablesTab[ImbricatedLoop][0] = (yyvsp[(3) - (8)].d);
       LoopControlVariablesTab[ImbricatedLoop][1] = (yyvsp[(5) - (8)].d);
@@ -10145,8 +10066,8 @@ yyreduce:
     ;}
     break;
 
-  case 273:
-#line 3501 "Gmsh.y"
+  case 272:
+#line 3451 "Gmsh.y"
     {
       LoopControlVariablesTab[ImbricatedLoop][0] = (yyvsp[(5) - (8)].d);
       LoopControlVariablesTab[ImbricatedLoop][1] = (yyvsp[(7) - (8)].d);
@@ -10170,8 +10091,8 @@ yyreduce:
     ;}
     break;
 
-  case 274:
-#line 3523 "Gmsh.y"
+  case 273:
+#line 3473 "Gmsh.y"
     {
       LoopControlVariablesTab[ImbricatedLoop][0] = (yyvsp[(5) - (10)].d);
       LoopControlVariablesTab[ImbricatedLoop][1] = (yyvsp[(7) - (10)].d);
@@ -10195,8 +10116,8 @@ yyreduce:
     ;}
     break;
 
-  case 275:
-#line 3545 "Gmsh.y"
+  case 274:
+#line 3495 "Gmsh.y"
     {
       if(ImbricatedLoop <= 0){
 	yymsg(0, "Invalid For/EndFor loop");
@@ -10233,8 +10154,8 @@ yyreduce:
     ;}
     break;
 
-  case 276:
-#line 3580 "Gmsh.y"
+  case 275:
+#line 3530 "Gmsh.y"
     {
       if(!FunctionManager::Instance()->createFunction
          (std::string((yyvsp[(2) - (2)].c)), gmsh_yyin, gmsh_yyname, gmsh_yylineno))
@@ -10244,8 +10165,8 @@ yyreduce:
     ;}
     break;
 
-  case 277:
-#line 3588 "Gmsh.y"
+  case 276:
+#line 3538 "Gmsh.y"
     {
       if(!FunctionManager::Instance()->createFunction
          (std::string((yyvsp[(2) - (2)].c)), gmsh_yyin, gmsh_yyname, gmsh_yylineno))
@@ -10255,8 +10176,8 @@ yyreduce:
     ;}
     break;
 
-  case 278:
-#line 3596 "Gmsh.y"
+  case 277:
+#line 3546 "Gmsh.y"
     {
       if(!FunctionManager::Instance()->leaveFunction
          (&gmsh_yyin, gmsh_yyname, gmsh_yylineno))
@@ -10264,8 +10185,8 @@ yyreduce:
     ;}
     break;
 
-  case 279:
-#line 3602 "Gmsh.y"
+  case 278:
+#line 3552 "Gmsh.y"
     {
       if(!FunctionManager::Instance()->enterFunction
          (std::string((yyvsp[(2) - (3)].c)), &gmsh_yyin, gmsh_yyname, gmsh_yylineno))
@@ -10274,8 +10195,8 @@ yyreduce:
     ;}
     break;
 
-  case 280:
-#line 3609 "Gmsh.y"
+  case 279:
+#line 3559 "Gmsh.y"
     {
       if(!FunctionManager::Instance()->enterFunction
          (std::string((yyvsp[(2) - (3)].c)), &gmsh_yyin, gmsh_yyname, gmsh_yylineno))
@@ -10284,8 +10205,8 @@ yyreduce:
     ;}
     break;
 
-  case 281:
-#line 3616 "Gmsh.y"
+  case 280:
+#line 3566 "Gmsh.y"
     {
       ImbricatedTest++;
       if(ImbricatedTest > MAX_RECUR_TESTS-1){
@@ -10307,8 +10228,8 @@ yyreduce:
     ;}
     break;
 
-  case 282:
-#line 3636 "Gmsh.y"
+  case 281:
+#line 3586 "Gmsh.y"
     {
       if(ImbricatedTest > 0){
         if (statusImbricatedTests[ImbricatedTest]){
@@ -10336,8 +10257,8 @@ yyreduce:
     ;}
     break;
 
-  case 283:
-#line 3662 "Gmsh.y"
+  case 282:
+#line 3612 "Gmsh.y"
     {
       if(ImbricatedTest > 0){
         if(statusImbricatedTests[ImbricatedTest]){
@@ -10351,8 +10272,8 @@ yyreduce:
     ;}
     break;
 
-  case 284:
-#line 3674 "Gmsh.y"
+  case 283:
+#line 3624 "Gmsh.y"
     {
       ImbricatedTest--;
       if(ImbricatedTest < 0)
@@ -10360,8 +10281,8 @@ yyreduce:
     ;}
     break;
 
-  case 285:
-#line 3685 "Gmsh.y"
+  case 284:
+#line 3635 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (5)].l), inDimTags);
@@ -10381,8 +10302,8 @@ yyreduce:
     ;}
     break;
 
-  case 286:
-#line 3703 "Gmsh.y"
+  case 285:
+#line 3653 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(10) - (11)].l), inDimTags);
@@ -10402,8 +10323,8 @@ yyreduce:
     ;}
     break;
 
-  case 287:
-#line 3721 "Gmsh.y"
+  case 286:
+#line 3671 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(12) - (13)].l), inDimTags);
@@ -10423,8 +10344,8 @@ yyreduce:
     ;}
     break;
 
-  case 288:
-#line 3739 "Gmsh.y"
+  case 287:
+#line 3689 "Gmsh.y"
     {
       extr.mesh.ExtrudeMesh = extr.mesh.Recombine = false;
       extr.mesh.QuadToTri = NO_QUADTRI;
@@ -10432,8 +10353,8 @@ yyreduce:
     ;}
     break;
 
-  case 289:
-#line 3745 "Gmsh.y"
+  case 288:
+#line 3695 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(4) - (7)].l), inDimTags);
@@ -10453,8 +10374,8 @@ yyreduce:
     ;}
     break;
 
-  case 290:
-#line 3763 "Gmsh.y"
+  case 289:
+#line 3713 "Gmsh.y"
     {
       extr.mesh.ExtrudeMesh = extr.mesh.Recombine = false;
       extr.mesh.QuadToTri = NO_QUADTRI;
@@ -10462,8 +10383,8 @@ yyreduce:
     ;}
     break;
 
-  case 291:
-#line 3769 "Gmsh.y"
+  case 290:
+#line 3719 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(10) - (13)].l), inDimTags);
@@ -10485,8 +10406,8 @@ yyreduce:
     ;}
     break;
 
-  case 292:
-#line 3789 "Gmsh.y"
+  case 291:
+#line 3739 "Gmsh.y"
     {
       extr.mesh.ExtrudeMesh = extr.mesh.Recombine = false;
       extr.mesh.QuadToTri = NO_QUADTRI;
@@ -10494,8 +10415,8 @@ yyreduce:
     ;}
     break;
 
-  case 293:
-#line 3795 "Gmsh.y"
+  case 292:
+#line 3745 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(12) - (15)].l), inDimTags);
@@ -10515,8 +10436,8 @@ yyreduce:
     ;}
     break;
 
-  case 294:
-#line 3813 "Gmsh.y"
+  case 293:
+#line 3763 "Gmsh.y"
     {
       extr.mesh.ExtrudeMesh = extr.mesh.Recombine = false;
       extr.mesh.QuadToTri = NO_QUADTRI;
@@ -10524,8 +10445,8 @@ yyreduce:
     ;}
     break;
 
-  case 295:
-#line 3819 "Gmsh.y"
+  case 294:
+#line 3769 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(3) - (6)].l), inDimTags);
@@ -10544,8 +10465,8 @@ yyreduce:
     ;}
     break;
 
-  case 296:
-#line 3836 "Gmsh.y"
+  case 295:
+#line 3786 "Gmsh.y"
     {
       std::vector<std::pair<int, int> > inDimTags, outDimTags;
       ListOfShapes2VectorOfPairs((yyvsp[(3) - (9)].l), inDimTags);
@@ -10563,8 +10484,8 @@ yyreduce:
     ;}
     break;
 
-  case 297:
-#line 3852 "Gmsh.y"
+  case 296:
+#line 3802 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(Shape));
       bool r = true;
@@ -10583,8 +10504,8 @@ yyreduce:
     ;}
     break;
 
-  case 298:
-#line 3869 "Gmsh.y"
+  case 297:
+#line 3819 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(Shape));
       bool r = true;
@@ -10603,8 +10524,8 @@ yyreduce:
     ;}
     break;
 
-  case 299:
-#line 3886 "Gmsh.y"
+  case 298:
+#line 3836 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(Shape));
       bool r = true;
@@ -10626,20 +10547,20 @@ yyreduce:
     ;}
     break;
 
-  case 300:
-#line 3909 "Gmsh.y"
+  case 299:
+#line 3859 "Gmsh.y"
     {
     ;}
     break;
 
-  case 301:
-#line 3912 "Gmsh.y"
+  case 300:
+#line 3862 "Gmsh.y"
     {
     ;}
     break;
 
-  case 302:
-#line 3918 "Gmsh.y"
+  case 301:
+#line 3868 "Gmsh.y"
     {
       int n = (int)fabs((yyvsp[(3) - (5)].d));
       if(n){ // we accept n==0 to easily disable layers
@@ -10653,8 +10574,8 @@ yyreduce:
     ;}
     break;
 
-  case 303:
-#line 3930 "Gmsh.y"
+  case 302:
+#line 3880 "Gmsh.y"
     {
       extr.mesh.ExtrudeMesh = true;
       extr.mesh.NbLayer = List_Nbr((yyvsp[(3) - (7)].l));
@@ -10676,57 +10597,57 @@ yyreduce:
     ;}
     break;
 
-  case 304:
-#line 3950 "Gmsh.y"
+  case 303:
+#line 3900 "Gmsh.y"
     {
       extr.mesh.ScaleLast = true;
     ;}
     break;
 
-  case 305:
-#line 3954 "Gmsh.y"
+  case 304:
+#line 3904 "Gmsh.y"
     {
       extr.mesh.Recombine = true;
     ;}
     break;
 
-  case 306:
-#line 3958 "Gmsh.y"
+  case 305:
+#line 3908 "Gmsh.y"
     {
       extr.mesh.Recombine = (yyvsp[(2) - (3)].d) ? true : false;
     ;}
     break;
 
-  case 307:
-#line 3962 "Gmsh.y"
+  case 306:
+#line 3912 "Gmsh.y"
     {
       extr.mesh.QuadToTri = QUADTRI_ADDVERTS_1;
     ;}
     break;
 
-  case 308:
-#line 3966 "Gmsh.y"
+  case 307:
+#line 3916 "Gmsh.y"
     {
       extr.mesh.QuadToTri = QUADTRI_ADDVERTS_1_RECOMB;
     ;}
     break;
 
-  case 309:
-#line 3970 "Gmsh.y"
+  case 308:
+#line 3920 "Gmsh.y"
     {
       extr.mesh.QuadToTri = QUADTRI_NOVERTS_1;
     ;}
     break;
 
-  case 310:
-#line 3974 "Gmsh.y"
+  case 309:
+#line 3924 "Gmsh.y"
     {
       extr.mesh.QuadToTri = QUADTRI_NOVERTS_1_RECOMB;
     ;}
     break;
 
-  case 311:
-#line 3978 "Gmsh.y"
+  case 310:
+#line 3928 "Gmsh.y"
     {
       std::vector<int> tags; ListOfDouble2Vector((yyvsp[(6) - (9)].l), tags);
       int num = (int)(yyvsp[(3) - (9)].d);
@@ -10737,8 +10658,8 @@ yyreduce:
     ;}
     break;
 
-  case 312:
-#line 3987 "Gmsh.y"
+  case 311:
+#line 3937 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(2) - (6)].c), "Index"))
         extr.mesh.BoundaryLayerIndex = (yyvsp[(4) - (6)].d);
@@ -10748,58 +10669,58 @@ yyreduce:
     ;}
     break;
 
-  case 313:
-#line 3999 "Gmsh.y"
+  case 312:
+#line 3949 "Gmsh.y"
     { (yyval.i) = OCC_Internals::Union; ;}
     break;
 
-  case 314:
-#line 4000 "Gmsh.y"
+  case 313:
+#line 3950 "Gmsh.y"
     { (yyval.i) = OCC_Internals::Intersection; ;}
     break;
 
-  case 315:
-#line 4001 "Gmsh.y"
+  case 314:
+#line 3951 "Gmsh.y"
     { (yyval.i) = OCC_Internals::Difference; ;}
     break;
 
-  case 316:
-#line 4002 "Gmsh.y"
+  case 315:
+#line 3952 "Gmsh.y"
     { (yyval.i) = OCC_Internals::Section; ;}
     break;
 
-  case 317:
-#line 4003 "Gmsh.y"
+  case 316:
+#line 3953 "Gmsh.y"
     { (yyval.i) = OCC_Internals::Fragments; ;}
     break;
 
-  case 318:
-#line 4007 "Gmsh.y"
+  case 317:
+#line 3957 "Gmsh.y"
     { (yyval.i) = 0; ;}
     break;
 
-  case 319:
-#line 4008 "Gmsh.y"
+  case 318:
+#line 3958 "Gmsh.y"
     { (yyval.i) = 1; ;}
     break;
 
-  case 320:
-#line 4009 "Gmsh.y"
+  case 319:
+#line 3959 "Gmsh.y"
     { (yyval.i) = 2; ;}
     break;
 
-  case 321:
-#line 4010 "Gmsh.y"
+  case 320:
+#line 3960 "Gmsh.y"
     { (yyval.i) = (yyvsp[(2) - (3)].d) ? 1 : 0; ;}
     break;
 
-  case 322:
-#line 4011 "Gmsh.y"
+  case 321:
+#line 3961 "Gmsh.y"
     { (yyval.i) = (yyvsp[(3) - (4)].d) ? 2 : 0; ;}
     break;
 
-  case 323:
-#line 4016 "Gmsh.y"
+  case 322:
+#line 3966 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(Shape));
       bool r = true;
@@ -10824,8 +10745,8 @@ yyreduce:
     ;}
     break;
 
-  case 324:
-#line 4039 "Gmsh.y"
+  case 323:
+#line 3989 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(Shape));
       bool r = true;
@@ -10843,8 +10764,8 @@ yyreduce:
     ;}
     break;
 
-  case 325:
-#line 4059 "Gmsh.y"
+  case 324:
+#line 4009 "Gmsh.y"
     {
       bool r = true;
       if(gmsh_yyfactory == "OpenCASCADE" && GModel::current()->getOCCInternals()){
@@ -10864,15 +10785,15 @@ yyreduce:
     ;}
     break;
 
-  case 326:
-#line 4080 "Gmsh.y"
+  case 325:
+#line 4030 "Gmsh.y"
     {
       (yyval.v)[0] = (yyval.v)[1] = 1.;
     ;}
     break;
 
-  case 327:
-#line 4084 "Gmsh.y"
+  case 326:
+#line 4034 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(2) - (3)].c), "Progression") || !strcmp((yyvsp[(2) - (3)].c), "Power"))
         (yyval.v)[0] = 1.;
@@ -10887,15 +10808,15 @@ yyreduce:
     ;}
     break;
 
-  case 328:
-#line 4099 "Gmsh.y"
+  case 327:
+#line 4049 "Gmsh.y"
     {
       (yyval.i) = -1; // left
     ;}
     break;
 
-  case 329:
-#line 4103 "Gmsh.y"
+  case 328:
+#line 4053 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(1) - (1)].c), "Right"))
         (yyval.i) = 1;
@@ -10911,50 +10832,50 @@ yyreduce:
     ;}
     break;
 
-  case 330:
-#line 4119 "Gmsh.y"
+  case 329:
+#line 4069 "Gmsh.y"
     {
      (yyval.l) = List_Create(1, 1, sizeof(double));
    ;}
     break;
 
-  case 331:
-#line 4123 "Gmsh.y"
+  case 330:
+#line 4073 "Gmsh.y"
     {
      (yyval.l) = (yyvsp[(2) - (2)].l);
    ;}
     break;
 
-  case 332:
-#line 4128 "Gmsh.y"
+  case 331:
+#line 4078 "Gmsh.y"
     {
       (yyval.i) = 45;
     ;}
     break;
 
-  case 333:
-#line 4132 "Gmsh.y"
+  case 332:
+#line 4082 "Gmsh.y"
     {
       (yyval.i) = (int)(yyvsp[(2) - (2)].d);
     ;}
     break;
 
-  case 334:
-#line 4138 "Gmsh.y"
+  case 333:
+#line 4088 "Gmsh.y"
     {
       (yyval.l) = List_Create(1, 1, sizeof(double));
     ;}
     break;
 
-  case 335:
-#line 4142 "Gmsh.y"
+  case 334:
+#line 4092 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(2) - (2)].l);
     ;}
     break;
 
-  case 336:
-#line 4149 "Gmsh.y"
+  case 335:
+#line 4099 "Gmsh.y"
     {
       // mesh sizes at vertices are stored in internal CAD data, as they can be
       // specified during vertex creation and copied around during CAD
@@ -10978,8 +10899,8 @@ yyreduce:
     ;}
     break;
 
-  case 337:
-#line 4171 "Gmsh.y"
+  case 336:
+#line 4121 "Gmsh.y"
     {
       // transfinite constraints are stored in GEO internals in addition to
       // GModel, as they can be copied around during GEO operations
@@ -11022,8 +10943,8 @@ yyreduce:
     ;}
     break;
 
-  case 338:
-#line 4212 "Gmsh.y"
+  case 337:
+#line 4162 "Gmsh.y"
     {
       // transfinite constraints are stored in GEO internals in addition to
       // GModel, as they can be copied around during GEO operations
@@ -11069,8 +10990,8 @@ yyreduce:
     ;}
     break;
 
-  case 339:
-#line 4256 "Gmsh.y"
+  case 338:
+#line 4206 "Gmsh.y"
     {
       // transfinite constraints are stored in GEO internals in addition to
       // GModel, as they can be copied around during GEO operations
@@ -11111,8 +11032,8 @@ yyreduce:
     ;}
     break;
 
-  case 340:
-#line 4295 "Gmsh.y"
+  case 339:
+#line 4245 "Gmsh.y"
     {
       // transfinite constraints are stored in GEO internals in addition to
       // GModel, as they can be copied around during GEO operations
@@ -11139,8 +11060,8 @@ yyreduce:
     ;}
     break;
 
-  case 341:
-#line 4320 "Gmsh.y"
+  case 340:
+#line 4270 "Gmsh.y"
     {
       for(int i = 0; i < List_Nbr((yyvsp[(4) - (8)].l)); i++){
 	double d;
@@ -11151,8 +11072,8 @@ yyreduce:
     ;}
     break;
 
-  case 342:
-#line 4329 "Gmsh.y"
+  case 341:
+#line 4279 "Gmsh.y"
     {
       // recombine constraints are stored in GEO internals in addition to
       // GModel, as they can be copied around during GEO operations
@@ -11184,8 +11105,8 @@ yyreduce:
     ;}
     break;
 
-  case 343:
-#line 4359 "Gmsh.y"
+  case 342:
+#line 4309 "Gmsh.y"
     {
       // recombine constraints are stored in GEO internals in addition to
       // GModel, as they can be copied around during GEO operations
@@ -11213,8 +11134,8 @@ yyreduce:
     ;}
     break;
 
-  case 344:
-#line 4385 "Gmsh.y"
+  case 343:
+#line 4335 "Gmsh.y"
     {
       // smoothing constraints are stored in GEO internals in addition to
       // GModel, as they can be copied around during GEO operations
@@ -11242,8 +11163,8 @@ yyreduce:
     ;}
     break;
 
-  case 345:
-#line 4412 "Gmsh.y"
+  case 344:
+#line 4362 "Gmsh.y"
     {
       if (List_Nbr((yyvsp[(4) - (11)].l)) != List_Nbr((yyvsp[(8) - (11)].l))){
         yymsg(0, "Number of master lines (%d) different from number of "
@@ -11276,8 +11197,8 @@ yyreduce:
     ;}
     break;
 
-  case 346:
-#line 4444 "Gmsh.y"
+  case 345:
+#line 4394 "Gmsh.y"
     {
       if (List_Nbr((yyvsp[(4) - (11)].l)) != List_Nbr((yyvsp[(8) - (11)].l))){
         yymsg(0, "Number of master faces (%d) different from number of "
@@ -11305,8 +11226,8 @@ yyreduce:
     ;}
     break;
 
-  case 347:
-#line 4471 "Gmsh.y"
+  case 346:
+#line 4421 "Gmsh.y"
     {
       if (List_Nbr((yyvsp[(4) - (18)].l)) != List_Nbr((yyvsp[(8) - (18)].l))){
         yymsg(0, "Number of master edges (%d) different from number of "
@@ -11333,8 +11254,8 @@ yyreduce:
     ;}
     break;
 
-  case 348:
-#line 4497 "Gmsh.y"
+  case 347:
+#line 4447 "Gmsh.y"
     {
       if (List_Nbr((yyvsp[(4) - (18)].l)) != List_Nbr((yyvsp[(8) - (18)].l))){
         yymsg(0, "Number of master faces (%d) different from number of "
@@ -11361,8 +11282,8 @@ yyreduce:
     ;}
     break;
 
-  case 349:
-#line 4523 "Gmsh.y"
+  case 348:
+#line 4473 "Gmsh.y"
     {
       if (List_Nbr((yyvsp[(4) - (12)].l)) != List_Nbr((yyvsp[(8) - (12)].l))){
         yymsg(0, "Number of master edges (%d) different from number of "
@@ -11389,8 +11310,8 @@ yyreduce:
     ;}
     break;
 
-  case 350:
-#line 4549 "Gmsh.y"
+  case 349:
+#line 4499 "Gmsh.y"
     {
       if (List_Nbr((yyvsp[(4) - (12)].l)) != List_Nbr((yyvsp[(8) - (12)].l))){
         yymsg(0, "Number of master faces (%d) different from number of "
@@ -11417,8 +11338,8 @@ yyreduce:
     ;}
     break;
 
-  case 351:
-#line 4575 "Gmsh.y"
+  case 350:
+#line 4525 "Gmsh.y"
     {
       if (List_Nbr((yyvsp[(5) - (12)].l)) != List_Nbr((yyvsp[(10) - (12)].l))){
         yymsg(0, "Number of master surface edges (%d) different from number of "
@@ -11441,8 +11362,8 @@ yyreduce:
     ;}
     break;
 
-  case 352:
-#line 4596 "Gmsh.y"
+  case 351:
+#line 4546 "Gmsh.y"
     {
       if (((yyvsp[(6) - (10)].i)==2 || (yyvsp[(6) - (10)].i)==3) && (yyvsp[(1) - (10)].i)<(yyvsp[(6) - (10)].i) ) {
         std::vector<int> tags; ListOfDouble2Vector((yyvsp[(3) - (10)].l), tags);
@@ -11455,8 +11376,8 @@ yyreduce:
     ;}
     break;
 
-  case 353:
-#line 4607 "Gmsh.y"
+  case 352:
+#line 4557 "Gmsh.y"
     {
       // reverse mesh constraints are stored in GEO internals in addition to
       // GModel, as they can be copied around during GEO operations
@@ -11506,8 +11427,8 @@ yyreduce:
     ;}
     break;
 
-  case 354:
-#line 4655 "Gmsh.y"
+  case 353:
+#line 4605 "Gmsh.y"
     {
       if(!(yyvsp[(3) - (4)].l)){
         switch ((yyvsp[(2) - (4)].i)) {
@@ -11558,8 +11479,8 @@ yyreduce:
     ;}
     break;
 
-  case 355:
-#line 4704 "Gmsh.y"
+  case 354:
+#line 4654 "Gmsh.y"
     {
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (4)].l)); i++){
 	double dnum;
@@ -11573,8 +11494,8 @@ yyreduce:
     ;}
     break;
 
-  case 356:
-#line 4716 "Gmsh.y"
+  case 355:
+#line 4666 "Gmsh.y"
     {
       std::vector<int> tags; ListOfDouble2Vector((yyvsp[(3) - (4)].l), tags);
       GModel::current()->getGEOInternals()->setCompoundMesh((yyvsp[(2) - (4)].i), tags);
@@ -11582,8 +11503,8 @@ yyreduce:
     ;}
     break;
 
-  case 357:
-#line 4727 "Gmsh.y"
+  case 356:
+#line 4677 "Gmsh.y"
     {
       if(gmsh_yyfactory == "OpenCASCADE" && GModel::current()->getOCCInternals())
         GModel::current()->getOCCInternals()->removeAllDuplicates();
@@ -11592,8 +11513,8 @@ yyreduce:
     ;}
     break;
 
-  case 358:
-#line 4734 "Gmsh.y"
+  case 357:
+#line 4684 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(2) - (3)].c), "Geometry")){
         if(gmsh_yyfactory == "OpenCASCADE" && GModel::current()->getOCCInternals())
@@ -11610,8 +11531,8 @@ yyreduce:
     ;}
     break;
 
-  case 359:
-#line 4749 "Gmsh.y"
+  case 358:
+#line 4699 "Gmsh.y"
     {
       std::vector<int> tags; ListOfDouble2Vector((yyvsp[(4) - (6)].l), tags);
       if(gmsh_yyfactory == "OpenCASCADE" && GModel::current()->getOCCInternals())
@@ -11622,23 +11543,23 @@ yyreduce:
     ;}
     break;
 
-  case 360:
-#line 4762 "Gmsh.y"
+  case 359:
+#line 4712 "Gmsh.y"
     { (yyval.c) = (char*)"Homology"; ;}
     break;
 
-  case 361:
-#line 4763 "Gmsh.y"
+  case 360:
+#line 4713 "Gmsh.y"
     { (yyval.c) = (char*)"Cohomology"; ;}
     break;
 
-  case 362:
-#line 4764 "Gmsh.y"
+  case 361:
+#line 4714 "Gmsh.y"
     { (yyval.c) = (char*)"Betti"; ;}
     break;
 
-  case 363:
-#line 4769 "Gmsh.y"
+  case 362:
+#line 4719 "Gmsh.y"
     {
       std::vector<int> domain, subdomain, dim;
       for(int i = 0; i < 4; i++) dim.push_back(i);
@@ -11646,8 +11567,8 @@ yyreduce:
     ;}
     break;
 
-  case 364:
-#line 4775 "Gmsh.y"
+  case 363:
+#line 4725 "Gmsh.y"
     {
       std::vector<int> domain, subdomain, dim;
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (5)].l)); i++){
@@ -11661,8 +11582,8 @@ yyreduce:
     ;}
     break;
 
-  case 365:
-#line 4787 "Gmsh.y"
+  case 364:
+#line 4737 "Gmsh.y"
     {
       std::vector<int> domain, subdomain, dim;
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (7)].l)); i++){
@@ -11682,8 +11603,8 @@ yyreduce:
     ;}
     break;
 
-  case 366:
-#line 4805 "Gmsh.y"
+  case 365:
+#line 4755 "Gmsh.y"
     {
       std::vector<int> domain, subdomain, dim;
       for(int i = 0; i < List_Nbr((yyvsp[(6) - (10)].l)); i++){
@@ -11708,48 +11629,48 @@ yyreduce:
     ;}
     break;
 
-  case 367:
-#line 4832 "Gmsh.y"
+  case 366:
+#line 4782 "Gmsh.y"
     { (yyval.d) = (yyvsp[(1) - (1)].d);           ;}
     break;
 
-  case 368:
-#line 4833 "Gmsh.y"
+  case 367:
+#line 4783 "Gmsh.y"
     { (yyval.d) = (yyvsp[(2) - (3)].d);           ;}
     break;
 
-  case 369:
-#line 4834 "Gmsh.y"
+  case 368:
+#line 4784 "Gmsh.y"
     { (yyval.d) = -(yyvsp[(2) - (2)].d);          ;}
     break;
 
-  case 370:
-#line 4835 "Gmsh.y"
+  case 369:
+#line 4785 "Gmsh.y"
     { (yyval.d) = (yyvsp[(2) - (2)].d);           ;}
     break;
 
-  case 371:
-#line 4836 "Gmsh.y"
+  case 370:
+#line 4786 "Gmsh.y"
     { (yyval.d) = !(yyvsp[(2) - (2)].d);          ;}
     break;
 
-  case 372:
-#line 4837 "Gmsh.y"
+  case 371:
+#line 4787 "Gmsh.y"
     { (yyval.d) = (yyvsp[(1) - (3)].d) - (yyvsp[(3) - (3)].d);      ;}
     break;
 
-  case 373:
-#line 4838 "Gmsh.y"
+  case 372:
+#line 4788 "Gmsh.y"
     { (yyval.d) = (yyvsp[(1) - (3)].d) + (yyvsp[(3) - (3)].d);      ;}
     break;
 
-  case 374:
-#line 4839 "Gmsh.y"
+  case 373:
+#line 4789 "Gmsh.y"
     { (yyval.d) = (yyvsp[(1) - (3)].d) * (yyvsp[(3) - (3)].d);      ;}
     break;
 
-  case 375:
-#line 4841 "Gmsh.y"
+  case 374:
+#line 4791 "Gmsh.y"
     {
       if(!(yyvsp[(3) - (3)].d))
 	yymsg(0, "Division by zero in '%g / %g'", (yyvsp[(1) - (3)].d), (yyvsp[(3) - (3)].d));
@@ -11758,258 +11679,258 @@ yyreduce:
     ;}
     break;
 
-  case 376:
-#line 4847 "Gmsh.y"
+  case 375:
+#line 4797 "Gmsh.y"
     { (yyval.d) = (int)(yyvsp[(1) - (3)].d) | (int)(yyvsp[(3) - (3)].d); ;}
     break;
 
-  case 377:
-#line 4848 "Gmsh.y"
+  case 376:
+#line 4798 "Gmsh.y"
     { (yyval.d) = (int)(yyvsp[(1) - (3)].d) & (int)(yyvsp[(3) - (3)].d); ;}
     break;
 
-  case 378:
-#line 4849 "Gmsh.y"
+  case 377:
+#line 4799 "Gmsh.y"
     { (yyval.d) = (int)(yyvsp[(1) - (3)].d) % (int)(yyvsp[(3) - (3)].d); ;}
     break;
 
-  case 379:
-#line 4850 "Gmsh.y"
+  case 378:
+#line 4800 "Gmsh.y"
     { (yyval.d) = pow((yyvsp[(1) - (3)].d), (yyvsp[(3) - (3)].d));  ;}
     break;
 
+  case 379:
+#line 4801 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (3)].d) < (yyvsp[(3) - (3)].d);      ;}
+    break;
+
   case 380:
-#line 4851 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (3)].d) < (yyvsp[(3) - (3)].d);      ;}
+#line 4802 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (3)].d) > (yyvsp[(3) - (3)].d);      ;}
     break;
 
   case 381:
-#line 4852 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (3)].d) > (yyvsp[(3) - (3)].d);      ;}
+#line 4803 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (3)].d) <= (yyvsp[(3) - (3)].d);     ;}
     break;
 
   case 382:
-#line 4853 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (3)].d) <= (yyvsp[(3) - (3)].d);     ;}
+#line 4804 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (3)].d) >= (yyvsp[(3) - (3)].d);     ;}
     break;
 
   case 383:
-#line 4854 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (3)].d) >= (yyvsp[(3) - (3)].d);     ;}
+#line 4805 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (3)].d) == (yyvsp[(3) - (3)].d);     ;}
     break;
 
   case 384:
-#line 4855 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (3)].d) == (yyvsp[(3) - (3)].d);     ;}
+#line 4806 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (3)].d) != (yyvsp[(3) - (3)].d);     ;}
     break;
 
   case 385:
-#line 4856 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (3)].d) != (yyvsp[(3) - (3)].d);     ;}
+#line 4807 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (3)].d) && (yyvsp[(3) - (3)].d);     ;}
     break;
 
   case 386:
-#line 4857 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (3)].d) && (yyvsp[(3) - (3)].d);     ;}
+#line 4808 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (3)].d) || (yyvsp[(3) - (3)].d);     ;}
     break;
 
   case 387:
-#line 4858 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (3)].d) || (yyvsp[(3) - (3)].d);     ;}
+#line 4809 "Gmsh.y"
+    { (yyval.d) = ((int)(yyvsp[(1) - (3)].d) >> (int)(yyvsp[(3) - (3)].d)); ;}
     break;
 
   case 388:
-#line 4859 "Gmsh.y"
-    { (yyval.d) = ((int)(yyvsp[(1) - (3)].d) >> (int)(yyvsp[(3) - (3)].d)); ;}
+#line 4810 "Gmsh.y"
+    { (yyval.d) = ((int)(yyvsp[(1) - (3)].d) << (int)(yyvsp[(3) - (3)].d)); ;}
     break;
 
   case 389:
-#line 4860 "Gmsh.y"
-    { (yyval.d) = ((int)(yyvsp[(1) - (3)].d) << (int)(yyvsp[(3) - (3)].d)); ;}
+#line 4811 "Gmsh.y"
+    { (yyval.d) = (yyvsp[(1) - (5)].d) ? (yyvsp[(3) - (5)].d) : (yyvsp[(5) - (5)].d); ;}
     break;
 
   case 390:
-#line 4861 "Gmsh.y"
-    { (yyval.d) = (yyvsp[(1) - (5)].d) ? (yyvsp[(3) - (5)].d) : (yyvsp[(5) - (5)].d); ;}
+#line 4812 "Gmsh.y"
+    { (yyval.d) = exp((yyvsp[(3) - (4)].d));      ;}
     break;
 
   case 391:
-#line 4862 "Gmsh.y"
-    { (yyval.d) = exp((yyvsp[(3) - (4)].d));      ;}
+#line 4813 "Gmsh.y"
+    { (yyval.d) = log((yyvsp[(3) - (4)].d));      ;}
     break;
 
   case 392:
-#line 4863 "Gmsh.y"
-    { (yyval.d) = log((yyvsp[(3) - (4)].d));      ;}
+#line 4814 "Gmsh.y"
+    { (yyval.d) = log10((yyvsp[(3) - (4)].d));    ;}
     break;
 
   case 393:
-#line 4864 "Gmsh.y"
-    { (yyval.d) = log10((yyvsp[(3) - (4)].d));    ;}
+#line 4815 "Gmsh.y"
+    { (yyval.d) = sqrt((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 394:
-#line 4865 "Gmsh.y"
-    { (yyval.d) = sqrt((yyvsp[(3) - (4)].d));     ;}
+#line 4816 "Gmsh.y"
+    { (yyval.d) = sin((yyvsp[(3) - (4)].d));      ;}
     break;
 
   case 395:
-#line 4866 "Gmsh.y"
-    { (yyval.d) = sin((yyvsp[(3) - (4)].d));      ;}
+#line 4817 "Gmsh.y"
+    { (yyval.d) = asin((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 396:
-#line 4867 "Gmsh.y"
-    { (yyval.d) = asin((yyvsp[(3) - (4)].d));     ;}
+#line 4818 "Gmsh.y"
+    { (yyval.d) = cos((yyvsp[(3) - (4)].d));      ;}
     break;
 
   case 397:
-#line 4868 "Gmsh.y"
-    { (yyval.d) = cos((yyvsp[(3) - (4)].d));      ;}
+#line 4819 "Gmsh.y"
+    { (yyval.d) = acos((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 398:
-#line 4869 "Gmsh.y"
-    { (yyval.d) = acos((yyvsp[(3) - (4)].d));     ;}
+#line 4820 "Gmsh.y"
+    { (yyval.d) = tan((yyvsp[(3) - (4)].d));      ;}
     break;
 
   case 399:
-#line 4870 "Gmsh.y"
-    { (yyval.d) = tan((yyvsp[(3) - (4)].d));      ;}
+#line 4821 "Gmsh.y"
+    { (yyval.d) = atan((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 400:
-#line 4871 "Gmsh.y"
-    { (yyval.d) = atan((yyvsp[(3) - (4)].d));     ;}
+#line 4822 "Gmsh.y"
+    { (yyval.d) = atan2((yyvsp[(3) - (6)].d), (yyvsp[(5) - (6)].d));;}
     break;
 
   case 401:
-#line 4872 "Gmsh.y"
-    { (yyval.d) = atan2((yyvsp[(3) - (6)].d), (yyvsp[(5) - (6)].d));;}
+#line 4823 "Gmsh.y"
+    { (yyval.d) = sinh((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 402:
-#line 4873 "Gmsh.y"
-    { (yyval.d) = sinh((yyvsp[(3) - (4)].d));     ;}
+#line 4824 "Gmsh.y"
+    { (yyval.d) = cosh((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 403:
-#line 4874 "Gmsh.y"
-    { (yyval.d) = cosh((yyvsp[(3) - (4)].d));     ;}
+#line 4825 "Gmsh.y"
+    { (yyval.d) = tanh((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 404:
-#line 4875 "Gmsh.y"
-    { (yyval.d) = tanh((yyvsp[(3) - (4)].d));     ;}
+#line 4826 "Gmsh.y"
+    { (yyval.d) = fabs((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 405:
-#line 4876 "Gmsh.y"
-    { (yyval.d) = fabs((yyvsp[(3) - (4)].d));     ;}
+#line 4827 "Gmsh.y"
+    { (yyval.d) = std::abs((yyvsp[(3) - (4)].d)); ;}
     break;
 
   case 406:
-#line 4877 "Gmsh.y"
-    { (yyval.d) = std::abs((yyvsp[(3) - (4)].d)); ;}
+#line 4828 "Gmsh.y"
+    { (yyval.d) = floor((yyvsp[(3) - (4)].d));    ;}
     break;
 
   case 407:
-#line 4878 "Gmsh.y"
-    { (yyval.d) = floor((yyvsp[(3) - (4)].d));    ;}
+#line 4829 "Gmsh.y"
+    { (yyval.d) = ceil((yyvsp[(3) - (4)].d));     ;}
     break;
 
   case 408:
-#line 4879 "Gmsh.y"
-    { (yyval.d) = ceil((yyvsp[(3) - (4)].d));     ;}
+#line 4830 "Gmsh.y"
+    { (yyval.d) = floor((yyvsp[(3) - (4)].d) + 0.5); ;}
     break;
 
   case 409:
-#line 4880 "Gmsh.y"
-    { (yyval.d) = floor((yyvsp[(3) - (4)].d) + 0.5); ;}
+#line 4831 "Gmsh.y"
+    { (yyval.d) = fmod((yyvsp[(3) - (6)].d), (yyvsp[(5) - (6)].d)); ;}
     break;
 
   case 410:
-#line 4881 "Gmsh.y"
+#line 4832 "Gmsh.y"
     { (yyval.d) = fmod((yyvsp[(3) - (6)].d), (yyvsp[(5) - (6)].d)); ;}
     break;
 
   case 411:
-#line 4882 "Gmsh.y"
-    { (yyval.d) = fmod((yyvsp[(3) - (6)].d), (yyvsp[(5) - (6)].d)); ;}
-    break;
-
-  case 412:
-#line 4883 "Gmsh.y"
+#line 4833 "Gmsh.y"
     { (yyval.d) = sqrt((yyvsp[(3) - (6)].d) * (yyvsp[(3) - (6)].d) + (yyvsp[(5) - (6)].d) * (yyvsp[(5) - (6)].d)); ;}
     break;
 
-  case 413:
-#line 4884 "Gmsh.y"
+  case 412:
+#line 4834 "Gmsh.y"
     { (yyval.d) = (yyvsp[(3) - (4)].d) * (double)rand() / (double)RAND_MAX; ;}
     break;
 
-  case 414:
-#line 4893 "Gmsh.y"
+  case 413:
+#line 4843 "Gmsh.y"
     { (yyval.d) = (yyvsp[(1) - (1)].d); ;}
     break;
 
-  case 415:
-#line 4894 "Gmsh.y"
+  case 414:
+#line 4844 "Gmsh.y"
     { (yyval.d) = 3.141592653589793; ;}
     break;
 
-  case 416:
-#line 4895 "Gmsh.y"
+  case 415:
+#line 4845 "Gmsh.y"
     { (yyval.d) = (double)ImbricatedTest; ;}
     break;
 
-  case 417:
-#line 4896 "Gmsh.y"
+  case 416:
+#line 4846 "Gmsh.y"
     { (yyval.d) = Msg::GetCommRank(); ;}
     break;
 
-  case 418:
-#line 4897 "Gmsh.y"
+  case 417:
+#line 4847 "Gmsh.y"
     { (yyval.d) = Msg::GetCommSize(); ;}
     break;
 
-  case 419:
-#line 4898 "Gmsh.y"
+  case 418:
+#line 4848 "Gmsh.y"
     { (yyval.d) = GetGmshMajorVersion(); ;}
     break;
 
-  case 420:
-#line 4899 "Gmsh.y"
+  case 419:
+#line 4849 "Gmsh.y"
     { (yyval.d) = GetGmshMinorVersion(); ;}
     break;
 
-  case 421:
-#line 4900 "Gmsh.y"
+  case 420:
+#line 4850 "Gmsh.y"
     { (yyval.d) = GetGmshPatchVersion(); ;}
     break;
 
-  case 422:
-#line 4901 "Gmsh.y"
+  case 421:
+#line 4851 "Gmsh.y"
     { (yyval.d) = Cpu(); ;}
     break;
 
-  case 423:
-#line 4902 "Gmsh.y"
+  case 422:
+#line 4852 "Gmsh.y"
     { (yyval.d) = GetMemoryUsage()/1024./1024.; ;}
     break;
 
-  case 424:
-#line 4903 "Gmsh.y"
+  case 423:
+#line 4853 "Gmsh.y"
     { (yyval.d) = TotalRam(); ;}
     break;
 
-  case 425:
-#line 4908 "Gmsh.y"
+  case 424:
+#line 4858 "Gmsh.y"
     { init_options(); ;}
     break;
 
-  case 426:
-#line 4910 "Gmsh.y"
+  case 425:
+#line 4860 "Gmsh.y"
     {
       std::vector<double> val(1, (yyvsp[(3) - (6)].d));
       Msg::ExchangeOnelabParameter("", val, floatOptions, charOptions);
@@ -12017,92 +11938,92 @@ yyreduce:
     ;}
     break;
 
-  case 427:
-#line 4916 "Gmsh.y"
+  case 426:
+#line 4866 "Gmsh.y"
     { (yyval.d) = (yyvsp[(1) - (1)].d); ;}
     break;
 
-  case 428:
-#line 4918 "Gmsh.y"
+  case 427:
+#line 4868 "Gmsh.y"
     {
       (yyval.d) = Msg::GetOnelabNumber((yyvsp[(3) - (4)].c));
       Free((yyvsp[(3) - (4)].c));
     ;}
     break;
 
-  case 429:
-#line 4923 "Gmsh.y"
+  case 428:
+#line 4873 "Gmsh.y"
     {
       (yyval.d) = Msg::GetOnelabNumber((yyvsp[(3) - (6)].c), (yyvsp[(5) - (6)].d));
       Free((yyvsp[(3) - (6)].c));
     ;}
     break;
 
-  case 430:
-#line 4928 "Gmsh.y"
+  case 429:
+#line 4878 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_Float((yyvsp[(1) - (1)].c2).char1, (yyvsp[(1) - (1)].c2).char2);
     ;}
     break;
 
-  case 431:
-#line 4933 "Gmsh.y"
+  case 430:
+#line 4883 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_Float(NULL, (yyvsp[(1) - (4)].c), 2, (int)(yyvsp[(3) - (4)].d));
     ;}
     break;
 
-  case 432:
-#line 4938 "Gmsh.y"
+  case 431:
+#line 4888 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_Float(NULL, (yyvsp[(1) - (4)].c), 2, (int)(yyvsp[(3) - (4)].d));
     ;}
     break;
 
-  case 433:
-#line 4942 "Gmsh.y"
+  case 432:
+#line 4892 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_Float((yyvsp[(3) - (4)].c2).char1, (yyvsp[(3) - (4)].c2).char2, 1, 0, 0., 1);
     ;}
     break;
 
-  case 434:
-#line 4946 "Gmsh.y"
+  case 433:
+#line 4896 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float((yyvsp[(3) - (6)].c2).char1, (yyvsp[(3) - (6)].c2).char2, (yyvsp[(5) - (6)].c), 0, 0., 1);
     ;}
     break;
 
-  case 435:
-#line 4950 "Gmsh.y"
+  case 434:
+#line 4900 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_Float((yyvsp[(3) - (5)].c2).char1, (yyvsp[(3) - (5)].c2).char2, 1, 0, (yyvsp[(4) - (5)].d), 2);
     ;}
     break;
 
-  case 436:
-#line 4954 "Gmsh.y"
+  case 435:
+#line 4904 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float((yyvsp[(3) - (7)].c2).char1, (yyvsp[(3) - (7)].c2).char2, (yyvsp[(5) - (7)].c), 0, (yyvsp[(6) - (7)].d), 2);
     ;}
     break;
 
-  case 437:
-#line 4958 "Gmsh.y"
+  case 436:
+#line 4908 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_Float((yyvsp[(3) - (8)].c2).char1, (yyvsp[(3) - (8)].c2).char2, 2, (int)(yyvsp[(5) - (8)].d), (yyvsp[(7) - (8)].d), 2);
     ;}
     break;
 
-  case 438:
-#line 4962 "Gmsh.y"
+  case 437:
+#line 4912 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float((yyvsp[(3) - (10)].c2).char1, (yyvsp[(3) - (10)].c2).char2, (yyvsp[(5) - (10)].c), (int)(yyvsp[(7) - (10)].d), (yyvsp[(9) - (10)].d), 2);
     ;}
     break;
 
-  case 439:
-#line 4966 "Gmsh.y"
+  case 438:
+#line 4916 "Gmsh.y"
     {
       std::string tmp = FixRelativePath(gmsh_yyname, (yyvsp[(3) - (4)].c));
       (yyval.d) = !StatFile(tmp);
@@ -12110,8 +12031,8 @@ yyreduce:
     ;}
     break;
 
-  case 440:
-#line 4972 "Gmsh.y"
+  case 439:
+#line 4922 "Gmsh.y"
     {
       if(gmsh_yysymbols.count((yyvsp[(2) - (4)].c))){
         gmsh_yysymbol &s(gmsh_yysymbols[(yyvsp[(2) - (4)].c)]);
@@ -12128,15 +12049,15 @@ yyreduce:
     ;}
     break;
 
-  case 441:
-#line 4988 "Gmsh.y"
+  case 440:
+#line 4938 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float_getDim((yyvsp[(2) - (6)].c2).char1, (yyvsp[(2) - (6)].c2).char2, (yyvsp[(4) - (6)].c));
     ;}
     break;
 
-  case 442:
-#line 4993 "Gmsh.y"
+  case 441:
+#line 4943 "Gmsh.y"
     {
       std::string struct_namespace((yyvsp[(3) - (4)].c));
       (yyval.d) = (double)gmsh_yynamespaces[struct_namespace].size();
@@ -12144,16 +12065,16 @@ yyreduce:
     ;}
     break;
 
-  case 443:
-#line 4999 "Gmsh.y"
+  case 442:
+#line 4949 "Gmsh.y"
     {
       std::string struct_namespace(std::string(""));
       (yyval.d) = (double)gmsh_yynamespaces[struct_namespace].size();
     ;}
     break;
 
-  case 444:
-#line 5005 "Gmsh.y"
+  case 443:
+#line 4955 "Gmsh.y"
     {
       if(!gmsh_yysymbols.count((yyvsp[(1) - (2)].c))){
 	yymsg(0, "Unknown variable '%s'", (yyvsp[(1) - (2)].c));
@@ -12174,8 +12095,8 @@ yyreduce:
     ;}
     break;
 
-  case 445:
-#line 5024 "Gmsh.y"
+  case 444:
+#line 4974 "Gmsh.y"
     {
       int index = (int)(yyvsp[(3) - (5)].d);
       if(!gmsh_yysymbols.count((yyvsp[(1) - (5)].c))){
@@ -12197,8 +12118,8 @@ yyreduce:
     ;}
     break;
 
-  case 446:
-#line 5045 "Gmsh.y"
+  case 445:
+#line 4995 "Gmsh.y"
     {
       int index = (int)(yyvsp[(3) - (5)].d);
       if(!gmsh_yysymbols.count((yyvsp[(1) - (5)].c))){
@@ -12220,58 +12141,58 @@ yyreduce:
     ;}
     break;
 
-  case 447:
-#line 5078 "Gmsh.y"
+  case 446:
+#line 5028 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float(NULL, (yyvsp[(1) - (3)].c), (yyvsp[(3) - (3)].c));
     ;}
     break;
 
-  case 448:
-#line 5082 "Gmsh.y"
+  case 447:
+#line 5032 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float((yyvsp[(1) - (5)].c), (yyvsp[(3) - (5)].c), (yyvsp[(5) - (5)].c));
     ;}
     break;
 
-  case 449:
-#line 5087 "Gmsh.y"
+  case 448:
+#line 5037 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float(NULL, (yyvsp[(1) - (6)].c), (yyvsp[(3) - (6)].c), (int)(yyvsp[(5) - (6)].d));
     ;}
     break;
 
-  case 450:
-#line 5091 "Gmsh.y"
+  case 449:
+#line 5041 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float((yyvsp[(1) - (8)].c), (yyvsp[(3) - (8)].c), (yyvsp[(5) - (8)].c), (int)(yyvsp[(7) - (8)].d));
     ;}
     break;
 
-  case 451:
-#line 5095 "Gmsh.y"
+  case 450:
+#line 5045 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float(NULL, (yyvsp[(1) - (6)].c), (yyvsp[(3) - (6)].c), (int)(yyvsp[(5) - (6)].d));
     ;}
     break;
 
-  case 452:
-#line 5099 "Gmsh.y"
+  case 451:
+#line 5049 "Gmsh.y"
     {
       (yyval.d) = treat_Struct_FullName_dot_tSTRING_Float((yyvsp[(1) - (8)].c), (yyvsp[(3) - (8)].c), (yyvsp[(5) - (8)].c), (int)(yyvsp[(7) - (8)].d));
     ;}
     break;
 
-  case 453:
-#line 5104 "Gmsh.y"
+  case 452:
+#line 5054 "Gmsh.y"
     {
       NumberOption(GMSH_GET, (yyvsp[(1) - (6)].c), (int)(yyvsp[(3) - (6)].d), (yyvsp[(6) - (6)].c), (yyval.d));
       Free((yyvsp[(1) - (6)].c)); Free((yyvsp[(6) - (6)].c));
     ;}
     break;
 
-  case 454:
-#line 5109 "Gmsh.y"
+  case 453:
+#line 5059 "Gmsh.y"
     {
       double d = 0.;
       if(NumberOption(GMSH_GET, (yyvsp[(1) - (4)].c), 0, (yyvsp[(3) - (4)].c), d)){
@@ -12283,8 +12204,8 @@ yyreduce:
     ;}
     break;
 
-  case 455:
-#line 5119 "Gmsh.y"
+  case 454:
+#line 5069 "Gmsh.y"
     {
       double d = 0.;
       if(NumberOption(GMSH_GET, (yyvsp[(1) - (7)].c), (int)(yyvsp[(3) - (7)].d), (yyvsp[(6) - (7)].c), d)){
@@ -12296,16 +12217,16 @@ yyreduce:
     ;}
     break;
 
-  case 456:
-#line 5129 "Gmsh.y"
+  case 455:
+#line 5079 "Gmsh.y"
     {
       (yyval.d) = Msg::GetValue((yyvsp[(3) - (6)].c), (yyvsp[(5) - (6)].d));
       Free((yyvsp[(3) - (6)].c));
     ;}
     break;
 
-  case 457:
-#line 5134 "Gmsh.y"
+  case 456:
+#line 5084 "Gmsh.y"
     {
       int matches = 0;
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (6)].l)); i++){
@@ -12318,8 +12239,8 @@ yyreduce:
     ;}
     break;
 
-  case 458:
-#line 5145 "Gmsh.y"
+  case 457:
+#line 5095 "Gmsh.y"
     {
       std::string s((yyvsp[(3) - (6)].c)), substr((yyvsp[(5) - (6)].c));
       if(s.find(substr) != std::string::npos)
@@ -12330,24 +12251,24 @@ yyreduce:
     ;}
     break;
 
-  case 459:
-#line 5154 "Gmsh.y"
+  case 458:
+#line 5104 "Gmsh.y"
     {
       (yyval.d) = strlen((yyvsp[(3) - (4)].c));
       Free((yyvsp[(3) - (4)].c));
     ;}
     break;
 
-  case 460:
-#line 5159 "Gmsh.y"
+  case 459:
+#line 5109 "Gmsh.y"
     {
       (yyval.d) = strcmp((yyvsp[(3) - (6)].c), (yyvsp[(5) - (6)].c));
       Free((yyvsp[(3) - (6)].c)); Free((yyvsp[(5) - (6)].c));
     ;}
     break;
 
-  case 461:
-#line 5164 "Gmsh.y"
+  case 460:
+#line 5114 "Gmsh.y"
     {
       int align = 0, font = 0, fontsize = CTX::instance()->glFontSize;
       if(List_Nbr((yyvsp[(3) - (4)].l)) % 2){
@@ -12373,28 +12294,28 @@ yyreduce:
     ;}
     break;
 
-  case 462:
-#line 5191 "Gmsh.y"
+  case 461:
+#line 5141 "Gmsh.y"
     { (yyval.d) = 0.; ;}
     break;
 
-  case 463:
-#line 5193 "Gmsh.y"
+  case 462:
+#line 5143 "Gmsh.y"
     { (yyval.d) = (yyvsp[(2) - (2)].d);;}
     break;
 
-  case 464:
-#line 5198 "Gmsh.y"
+  case 463:
+#line 5148 "Gmsh.y"
     { (yyval.c) = NULL; ;}
     break;
 
-  case 465:
-#line 5200 "Gmsh.y"
+  case 464:
+#line 5150 "Gmsh.y"
     { (yyval.c) = (yyvsp[(2) - (2)].c);;}
     break;
 
-  case 466:
-#line 5205 "Gmsh.y"
+  case 465:
+#line 5155 "Gmsh.y"
     {
       std::string struct_namespace((yyvsp[(2) - (3)].c2).char1? (yyvsp[(2) - (3)].c2).char1 : std::string("")),
         struct_name((yyvsp[(2) - (3)].c2).char2);
@@ -12403,8 +12324,8 @@ yyreduce:
     ;}
     break;
 
-  case 467:
-#line 5212 "Gmsh.y"
+  case 466:
+#line 5162 "Gmsh.y"
     {
       std::string struct_namespace((yyvsp[(2) - (7)].c2).char1? (yyvsp[(2) - (7)].c2).char1 : std::string("")),
         struct_name((yyvsp[(2) - (7)].c2).char2);
@@ -12419,151 +12340,151 @@ yyreduce:
     ;}
     break;
 
-  case 468:
-#line 5228 "Gmsh.y"
+  case 467:
+#line 5178 "Gmsh.y"
     { (yyval.c2).char1 = NULL; (yyval.c2).char2 = (yyvsp[(1) - (1)].c); ;}
     break;
 
-  case 469:
-#line 5230 "Gmsh.y"
+  case 468:
+#line 5180 "Gmsh.y"
     { (yyval.c2).char1 = (yyvsp[(1) - (3)].c); (yyval.c2).char2 = (yyvsp[(3) - (3)].c); ;}
     break;
 
-  case 470:
-#line 5235 "Gmsh.y"
+  case 469:
+#line 5185 "Gmsh.y"
     { (yyval.c) = (yyvsp[(1) - (1)].c); flag_tSTRING_alloc = 1; ;}
     break;
 
-  case 471:
-#line 5244 "Gmsh.y"
+  case 470:
+#line 5194 "Gmsh.y"
     { (yyval.i) = 99; ;}
     break;
 
-  case 472:
-#line 5246 "Gmsh.y"
+  case 471:
+#line 5196 "Gmsh.y"
     { (yyval.i) = (int)(yyvsp[(2) - (2)].d); ;}
     break;
 
-  case 473:
-#line 5251 "Gmsh.y"
+  case 472:
+#line 5201 "Gmsh.y"
     { (yyval.i) = 0; ;}
     break;
 
-  case 474:
-#line 5253 "Gmsh.y"
+  case 473:
+#line 5203 "Gmsh.y"
     { (yyval.i) = (yyvsp[(2) - (3)].i); ;}
     break;
 
-  case 475:
-#line 5258 "Gmsh.y"
+  case 474:
+#line 5208 "Gmsh.y"
     {
       memcpy((yyval.v), (yyvsp[(1) - (1)].v), 5*sizeof(double));
     ;}
     break;
 
-  case 476:
-#line 5262 "Gmsh.y"
+  case 475:
+#line 5212 "Gmsh.y"
     {
       for(int i = 0; i < 5; i++) (yyval.v)[i] = -(yyvsp[(2) - (2)].v)[i];
     ;}
     break;
 
-  case 477:
-#line 5266 "Gmsh.y"
+  case 476:
+#line 5216 "Gmsh.y"
     {
       for(int i = 0; i < 5; i++) (yyval.v)[i] = (yyvsp[(2) - (2)].v)[i];
     ;}
     break;
 
-  case 478:
-#line 5270 "Gmsh.y"
+  case 477:
+#line 5220 "Gmsh.y"
     {
       for(int i = 0; i < 5; i++) (yyval.v)[i] = (yyvsp[(1) - (3)].v)[i] - (yyvsp[(3) - (3)].v)[i];
     ;}
     break;
 
-  case 479:
-#line 5274 "Gmsh.y"
+  case 478:
+#line 5224 "Gmsh.y"
     {
       for(int i = 0; i < 5; i++) (yyval.v)[i] = (yyvsp[(1) - (3)].v)[i] + (yyvsp[(3) - (3)].v)[i];
     ;}
     break;
 
-  case 480:
-#line 5281 "Gmsh.y"
+  case 479:
+#line 5231 "Gmsh.y"
     {
       (yyval.v)[0] = (yyvsp[(2) - (11)].d);  (yyval.v)[1] = (yyvsp[(4) - (11)].d);  (yyval.v)[2] = (yyvsp[(6) - (11)].d);  (yyval.v)[3] = (yyvsp[(8) - (11)].d); (yyval.v)[4] = (yyvsp[(10) - (11)].d);
     ;}
     break;
 
-  case 481:
-#line 5285 "Gmsh.y"
+  case 480:
+#line 5235 "Gmsh.y"
     {
       (yyval.v)[0] = (yyvsp[(2) - (9)].d);  (yyval.v)[1] = (yyvsp[(4) - (9)].d);  (yyval.v)[2] = (yyvsp[(6) - (9)].d);  (yyval.v)[3] = (yyvsp[(8) - (9)].d); (yyval.v)[4] = 1.0;
     ;}
     break;
 
-  case 482:
-#line 5289 "Gmsh.y"
+  case 481:
+#line 5239 "Gmsh.y"
     {
       (yyval.v)[0] = (yyvsp[(2) - (7)].d);  (yyval.v)[1] = (yyvsp[(4) - (7)].d);  (yyval.v)[2] = (yyvsp[(6) - (7)].d);  (yyval.v)[3] = 0.0; (yyval.v)[4] = 1.0;
     ;}
     break;
 
-  case 483:
-#line 5293 "Gmsh.y"
+  case 482:
+#line 5243 "Gmsh.y"
     {
       (yyval.v)[0] = (yyvsp[(2) - (7)].d);  (yyval.v)[1] = (yyvsp[(4) - (7)].d);  (yyval.v)[2] = (yyvsp[(6) - (7)].d);  (yyval.v)[3] = 0.0; (yyval.v)[4] = 1.0;
     ;}
     break;
 
-  case 484:
-#line 5300 "Gmsh.y"
+  case 483:
+#line 5250 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(List_T*));
       List_Add((yyval.l), &((yyvsp[(1) - (1)].l)));
     ;}
     break;
 
-  case 485:
-#line 5305 "Gmsh.y"
+  case 484:
+#line 5255 "Gmsh.y"
     {
       List_Add((yyval.l), &((yyvsp[(3) - (3)].l)));
     ;}
     break;
 
-  case 486:
-#line 5312 "Gmsh.y"
+  case 485:
+#line 5262 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(double));
       List_Add((yyval.l), &((yyvsp[(1) - (1)].d)));
     ;}
     break;
 
-  case 487:
-#line 5317 "Gmsh.y"
+  case 486:
+#line 5267 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(1) - (1)].l);
     ;}
     break;
 
-  case 488:
-#line 5321 "Gmsh.y"
+  case 487:
+#line 5271 "Gmsh.y"
     {
       // creates an empty list
       (yyval.l) = List_Create(2, 1, sizeof(double));
     ;}
     break;
 
-  case 489:
-#line 5326 "Gmsh.y"
+  case 488:
+#line 5276 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(2) - (3)].l);
     ;}
     break;
 
-  case 490:
-#line 5330 "Gmsh.y"
+  case 489:
+#line 5280 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(3) - (4)].l);
       for(int i = 0; i < List_Nbr((yyval.l)); i++){
@@ -12573,8 +12494,8 @@ yyreduce:
     ;}
     break;
 
-  case 491:
-#line 5338 "Gmsh.y"
+  case 490:
+#line 5288 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(4) - (5)].l);
       for(int i = 0; i < List_Nbr((yyval.l)); i++){
@@ -12584,22 +12505,22 @@ yyreduce:
     ;}
     break;
 
-  case 492:
-#line 5349 "Gmsh.y"
+  case 491:
+#line 5299 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(1) - (1)].l);
     ;}
     break;
 
-  case 493:
-#line 5353 "Gmsh.y"
+  case 492:
+#line 5303 "Gmsh.y"
     {
       (yyval.l) = 0;
     ;}
     break;
 
-  case 494:
-#line 5357 "Gmsh.y"
+  case 493:
+#line 5307 "Gmsh.y"
     {
       if(!strcmp((yyvsp[(1) - (1)].c), "*") || !strcmp((yyvsp[(1) - (1)].c), "all")){
         (yyval.l) = 0;
@@ -12612,8 +12533,8 @@ yyreduce:
     ;}
     break;
 
-  case 495:
-#line 5371 "Gmsh.y"
+  case 494:
+#line 5321 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(2) - (2)].l);
       for(int i = 0; i < List_Nbr((yyval.l)); i++){
@@ -12623,8 +12544,8 @@ yyreduce:
     ;}
     break;
 
-  case 496:
-#line 5379 "Gmsh.y"
+  case 495:
+#line 5329 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(3) - (3)].l);
       for(int i = 0; i < List_Nbr((yyval.l)); i++){
@@ -12634,8 +12555,8 @@ yyreduce:
     ;}
     break;
 
-  case 497:
-#line 5387 "Gmsh.y"
+  case 496:
+#line 5337 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(double));
       for(double d = (yyvsp[(1) - (3)].d); ((yyvsp[(1) - (3)].d) < (yyvsp[(3) - (3)].d)) ? (d <= (yyvsp[(3) - (3)].d)) : (d >= (yyvsp[(3) - (3)].d));
@@ -12644,8 +12565,8 @@ yyreduce:
     ;}
     break;
 
-  case 498:
-#line 5394 "Gmsh.y"
+  case 497:
+#line 5344 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(double));
       if(!(yyvsp[(5) - (5)].d)){  //|| ($1 < $3 && $5 < 0) || ($1 > $3 && $5 > 0)
@@ -12657,8 +12578,8 @@ yyreduce:
    ;}
     break;
 
-  case 499:
-#line 5404 "Gmsh.y"
+  case 498:
+#line 5354 "Gmsh.y"
     {
       (yyval.l) = List_Create(3, 1, sizeof(double));
       int tag = (int)(yyvsp[(3) - (4)].d);
@@ -12683,16 +12604,16 @@ yyreduce:
     ;}
     break;
 
-  case 500:
-#line 5427 "Gmsh.y"
+  case 499:
+#line 5377 "Gmsh.y"
     {
       (yyval.l) = List_Create(10, 10, sizeof(double));
       getAllElementaryTags(0, (yyval.l));
     ;}
     break;
 
-  case 501:
-#line 5432 "Gmsh.y"
+  case 500:
+#line 5382 "Gmsh.y"
     {
       (yyval.l) = List_Create(10, 10, sizeof(double));
       getAllElementaryTags(0, (yyval.l));
@@ -12700,16 +12621,16 @@ yyreduce:
     ;}
     break;
 
-  case 502:
-#line 5438 "Gmsh.y"
+  case 501:
+#line 5388 "Gmsh.y"
     {
       (yyval.l) = List_Create(10, 10, sizeof(double));
       getAllElementaryTags((yyvsp[(1) - (4)].i), (yyval.l));
     ;}
     break;
 
-  case 503:
-#line 5443 "Gmsh.y"
+  case 502:
+#line 5393 "Gmsh.y"
     {
       (yyval.l) = List_Create(10, 10, sizeof(double));
       getAllElementaryTags((yyvsp[(1) - (2)].i), (yyval.l));
@@ -12717,8 +12638,8 @@ yyreduce:
     ;}
     break;
 
-  case 504:
-#line 5449 "Gmsh.y"
+  case 503:
+#line 5399 "Gmsh.y"
     {
       (yyval.l) = List_Create(10, 10, sizeof(double));
       if(!(yyvsp[(3) - (3)].l)){
@@ -12731,24 +12652,24 @@ yyreduce:
     ;}
     break;
 
-  case 505:
-#line 5461 "Gmsh.y"
+  case 504:
+#line 5411 "Gmsh.y"
     {
       (yyval.l) = List_Create(10, 10, sizeof(double));
       getElementaryTagsInBoundingBox((yyvsp[(1) - (16)].i), (yyvsp[(5) - (16)].d), (yyvsp[(7) - (16)].d), (yyvsp[(9) - (16)].d), (yyvsp[(11) - (16)].d), (yyvsp[(13) - (16)].d), (yyvsp[(15) - (16)].d), (yyval.l));
     ;}
     break;
 
-  case 506:
-#line 5466 "Gmsh.y"
+  case 505:
+#line 5416 "Gmsh.y"
     {
       (yyval.l) = List_Create(10, 10, sizeof(double));
       getBoundingBox((yyvsp[(2) - (5)].i), (int)(yyvsp[(4) - (5)].d), (yyval.l));
     ;}
     break;
 
-  case 507:
-#line 5471 "Gmsh.y"
+  case 506:
+#line 5421 "Gmsh.y"
     {
       (yyval.l) = List_Create(List_Nbr((yyvsp[(1) - (1)].l)), 1, sizeof(double));
       for(int i = 0; i < List_Nbr((yyvsp[(1) - (1)].l)); i++){
@@ -12760,8 +12681,8 @@ yyreduce:
     ;}
     break;
 
-  case 508:
-#line 5481 "Gmsh.y"
+  case 507:
+#line 5431 "Gmsh.y"
     {
       (yyval.l) = List_Create(List_Nbr((yyvsp[(1) - (1)].l)), 1, sizeof(double));
       for(int i = 0; i < List_Nbr((yyvsp[(1) - (1)].l)); i++){
@@ -12773,8 +12694,8 @@ yyreduce:
     ;}
     break;
 
-  case 509:
-#line 5491 "Gmsh.y"
+  case 508:
+#line 5441 "Gmsh.y"
     {
       (yyval.l) = List_Create(List_Nbr((yyvsp[(1) - (1)].l)), 1, sizeof(double));
       for(int i = 0; i < List_Nbr((yyvsp[(1) - (1)].l)); i++){
@@ -12786,8 +12707,8 @@ yyreduce:
     ;}
     break;
 
-  case 510:
-#line 5501 "Gmsh.y"
+  case 509:
+#line 5451 "Gmsh.y"
     {
       (yyval.l) = List_Create(20, 20, sizeof(double));
       if(!gmsh_yysymbols.count((yyvsp[(1) - (3)].c)))
@@ -12801,22 +12722,22 @@ yyreduce:
     ;}
     break;
 
-  case 511:
-#line 5513 "Gmsh.y"
+  case 510:
+#line 5463 "Gmsh.y"
     {
       (yyval.l) = treat_Struct_FullName_dot_tSTRING_ListOfFloat(NULL, (yyvsp[(1) - (5)].c), (yyvsp[(3) - (5)].c));
     ;}
     break;
 
-  case 512:
-#line 5517 "Gmsh.y"
+  case 511:
+#line 5467 "Gmsh.y"
     {
       (yyval.l) = treat_Struct_FullName_dot_tSTRING_ListOfFloat((yyvsp[(1) - (7)].c), (yyvsp[(3) - (7)].c), (yyvsp[(5) - (7)].c));
     ;}
     break;
 
-  case 513:
-#line 5522 "Gmsh.y"
+  case 512:
+#line 5472 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(double));
       if(!gmsh_yysymbols.count((yyvsp[(3) - (4)].c)))
@@ -12830,29 +12751,29 @@ yyreduce:
     ;}
     break;
 
-  case 514:
-#line 5534 "Gmsh.y"
+  case 513:
+#line 5484 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(3) - (4)].l);
     ;}
     break;
 
-  case 515:
-#line 5538 "Gmsh.y"
+  case 514:
+#line 5488 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(3) - (4)].l);
     ;}
     break;
 
-  case 516:
-#line 5542 "Gmsh.y"
+  case 515:
+#line 5492 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(4) - (6)].l);
     ;}
     break;
 
-  case 517:
-#line 5546 "Gmsh.y"
+  case 516:
+#line 5496 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(double));
       if(!gmsh_yysymbols.count((yyvsp[(1) - (6)].c)))
@@ -12872,8 +12793,8 @@ yyreduce:
     ;}
     break;
 
-  case 518:
-#line 5564 "Gmsh.y"
+  case 517:
+#line 5514 "Gmsh.y"
     {
       (yyval.l) = List_Create(20,20,sizeof(double));
       for(int i = 0; i < (int)(yyvsp[(7) - (8)].d); i++) {
@@ -12883,8 +12804,8 @@ yyreduce:
     ;}
     break;
 
-  case 519:
-#line 5572 "Gmsh.y"
+  case 518:
+#line 5522 "Gmsh.y"
     {
       (yyval.l) = List_Create(20,20,sizeof(double));
       for(int i = 0; i < (int)(yyvsp[(7) - (8)].d); i++) {
@@ -12894,8 +12815,8 @@ yyreduce:
     ;}
     break;
 
-  case 520:
-#line 5580 "Gmsh.y"
+  case 519:
+#line 5530 "Gmsh.y"
     {
       Msg::Barrier();
       FILE *File;
@@ -12926,8 +12847,8 @@ yyreduce:
     ;}
     break;
 
-  case 521:
-#line 5609 "Gmsh.y"
+  case 520:
+#line 5559 "Gmsh.y"
     {
       double x0 = (yyvsp[(3) - (14)].d), x1 = (yyvsp[(5) - (14)].d), y0 = (yyvsp[(7) - (14)].d), y1 = (yyvsp[(9) - (14)].d), ys = (yyvsp[(11) - (14)].d);
       int N = (int)(yyvsp[(13) - (14)].d);
@@ -12939,8 +12860,8 @@ yyreduce:
     ;}
     break;
 
-  case 522:
-#line 5619 "Gmsh.y"
+  case 521:
+#line 5569 "Gmsh.y"
     {
       std::vector<double> tmp;
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (4)].l)); i++){
@@ -12958,8 +12879,8 @@ yyreduce:
     ;}
     break;
 
-  case 523:
-#line 5635 "Gmsh.y"
+  case 522:
+#line 5585 "Gmsh.y"
     {
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (4)].l)); i++){
         double *d = (double*)List_Pointer((yyvsp[(3) - (4)].l), i);
@@ -12969,30 +12890,30 @@ yyreduce:
     ;}
     break;
 
-  case 524:
-#line 5646 "Gmsh.y"
+  case 523:
+#line 5596 "Gmsh.y"
     {
       (yyval.l) = List_Create(2, 1, sizeof(double));
       List_Add((yyval.l), &((yyvsp[(1) - (1)].d)));
     ;}
     break;
 
-  case 525:
-#line 5651 "Gmsh.y"
+  case 524:
+#line 5601 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(1) - (1)].l);
     ;}
     break;
 
-  case 526:
-#line 5655 "Gmsh.y"
+  case 525:
+#line 5605 "Gmsh.y"
     {
       List_Add((yyval.l), &((yyvsp[(3) - (3)].d)));
     ;}
     break;
 
-  case 527:
-#line 5659 "Gmsh.y"
+  case 526:
+#line 5609 "Gmsh.y"
     {
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (3)].l)); i++){
 	double d;
@@ -13003,22 +12924,22 @@ yyreduce:
     ;}
     break;
 
-  case 528:
-#line 5671 "Gmsh.y"
+  case 527:
+#line 5621 "Gmsh.y"
     {
       (yyval.u) = CTX::instance()->packColor((int)(yyvsp[(2) - (9)].d), (int)(yyvsp[(4) - (9)].d), (int)(yyvsp[(6) - (9)].d), (int)(yyvsp[(8) - (9)].d));
     ;}
     break;
 
-  case 529:
-#line 5675 "Gmsh.y"
+  case 528:
+#line 5625 "Gmsh.y"
     {
       (yyval.u) = CTX::instance()->packColor((int)(yyvsp[(2) - (7)].d), (int)(yyvsp[(4) - (7)].d), (int)(yyvsp[(6) - (7)].d), 255);
     ;}
     break;
 
-  case 530:
-#line 5687 "Gmsh.y"
+  case 529:
+#line 5637 "Gmsh.y"
     {
       int flag = 0;
       if(gmsh_yystringsymbols.count((yyvsp[(1) - (1)].c))){
@@ -13037,8 +12958,8 @@ yyreduce:
     ;}
     break;
 
-  case 531:
-#line 5704 "Gmsh.y"
+  case 530:
+#line 5654 "Gmsh.y"
     {
       unsigned int val = 0;
       ColorOption(GMSH_GET, (yyvsp[(1) - (5)].c), 0, (yyvsp[(5) - (5)].c), val);
@@ -13047,15 +12968,15 @@ yyreduce:
     ;}
     break;
 
-  case 532:
-#line 5714 "Gmsh.y"
+  case 531:
+#line 5664 "Gmsh.y"
     {
       (yyval.l) = (yyvsp[(2) - (3)].l);
     ;}
     break;
 
-  case 533:
-#line 5718 "Gmsh.y"
+  case 532:
+#line 5668 "Gmsh.y"
     {
       (yyval.l) = List_Create(256, 10, sizeof(unsigned int));
       GmshColorTable *ct = GetColorTable((int)(yyvsp[(3) - (6)].d));
@@ -13069,38 +12990,38 @@ yyreduce:
     ;}
     break;
 
-  case 534:
-#line 5733 "Gmsh.y"
+  case 533:
+#line 5683 "Gmsh.y"
     {
       (yyval.l) = List_Create(256, 10, sizeof(unsigned int));
       List_Add((yyval.l), &((yyvsp[(1) - (1)].u)));
     ;}
     break;
 
-  case 535:
-#line 5738 "Gmsh.y"
+  case 534:
+#line 5688 "Gmsh.y"
     {
       List_Add((yyval.l), &((yyvsp[(3) - (3)].u)));
     ;}
     break;
 
-  case 536:
-#line 5745 "Gmsh.y"
+  case 535:
+#line 5695 "Gmsh.y"
     {
       (yyval.c) = (yyvsp[(1) - (1)].c);
     ;}
     break;
 
-  case 537:
-#line 5749 "Gmsh.y"
+  case 536:
+#line 5699 "Gmsh.y"
     {
       // No need to extend to Struct_FullName (a Tag is not a String)
       (yyval.c) = treat_Struct_FullName_String(NULL, (yyvsp[(1) - (1)].c));
     ;}
     break;
 
-  case 538:
-#line 5754 "Gmsh.y"
+  case 537:
+#line 5704 "Gmsh.y"
     {
       std::string val;
       int j = (int)(yyvsp[(3) - (4)].d);
@@ -13116,8 +13037,8 @@ yyreduce:
     ;}
     break;
 
-  case 539:
-#line 5768 "Gmsh.y"
+  case 538:
+#line 5718 "Gmsh.y"
     {
       std::string val;
       int j = (int)(yyvsp[(3) - (4)].d);
@@ -13133,36 +13054,36 @@ yyreduce:
     ;}
     break;
 
-  case 540:
-#line 5784 "Gmsh.y"
+  case 539:
+#line 5734 "Gmsh.y"
     {
       (yyval.c) = treat_Struct_FullName_dot_tSTRING_String(NULL, (yyvsp[(1) - (3)].c), (yyvsp[(3) - (3)].c));
     ;}
     break;
 
-  case 541:
-#line 5788 "Gmsh.y"
+  case 540:
+#line 5738 "Gmsh.y"
     {
       (yyval.c) = treat_Struct_FullName_dot_tSTRING_String((yyvsp[(1) - (5)].c), (yyvsp[(3) - (5)].c), (yyvsp[(5) - (5)].c));
     ;}
     break;
 
-  case 542:
-#line 5792 "Gmsh.y"
+  case 541:
+#line 5742 "Gmsh.y"
     {
       (yyval.c) = treat_Struct_FullName_dot_tSTRING_String(NULL, (yyvsp[(1) - (6)].c), (yyvsp[(3) - (6)].c), (int)(yyvsp[(5) - (6)].d));
     ;}
     break;
 
-  case 543:
-#line 5796 "Gmsh.y"
+  case 542:
+#line 5746 "Gmsh.y"
     {
       (yyval.c) = treat_Struct_FullName_dot_tSTRING_String((yyvsp[(1) - (8)].c), (yyvsp[(3) - (8)].c), (yyvsp[(5) - (8)].c), (int)(yyvsp[(7) - (8)].d));
     ;}
     break;
 
-  case 544:
-#line 5800 "Gmsh.y"
+  case 543:
+#line 5750 "Gmsh.y"
     {
       std::string out;
       StringOption(GMSH_GET, (yyvsp[(1) - (6)].c), (int)(yyvsp[(3) - (6)].d), (yyvsp[(6) - (6)].c), out);
@@ -13172,8 +13093,8 @@ yyreduce:
     ;}
     break;
 
-  case 545:
-#line 5808 "Gmsh.y"
+  case 544:
+#line 5758 "Gmsh.y"
     {
       std::string name = GModel::current()->getPhysicalName(0, (int)(yyvsp[(4) - (5)].d));
       (yyval.c) = (char*)Malloc((name.size() + 1) * sizeof(char));
@@ -13181,8 +13102,8 @@ yyreduce:
     ;}
     break;
 
-  case 546:
-#line 5814 "Gmsh.y"
+  case 545:
+#line 5764 "Gmsh.y"
     {
       std::string name = GModel::current()->getPhysicalName(1, (int)(yyvsp[(4) - (5)].d));
       (yyval.c) = (char*)Malloc((name.size() + 1) * sizeof(char));
@@ -13190,8 +13111,8 @@ yyreduce:
     ;}
     break;
 
-  case 547:
-#line 5820 "Gmsh.y"
+  case 546:
+#line 5770 "Gmsh.y"
     {
       std::string name = GModel::current()->getPhysicalName(2, (int)(yyvsp[(4) - (5)].d));
       (yyval.c) = (char*)Malloc((name.size() + 1) * sizeof(char));
@@ -13199,8 +13120,8 @@ yyreduce:
     ;}
     break;
 
-  case 548:
-#line 5826 "Gmsh.y"
+  case 547:
+#line 5776 "Gmsh.y"
     {
       std::string name = GModel::current()->getPhysicalName(3, (int)(yyvsp[(4) - (5)].d));
       (yyval.c) = (char*)Malloc((name.size() + 1) * sizeof(char));
@@ -13208,22 +13129,22 @@ yyreduce:
     ;}
     break;
 
-  case 549:
-#line 5835 "Gmsh.y"
+  case 548:
+#line 5785 "Gmsh.y"
     {
       (yyval.c) = (yyvsp[(1) - (1)].c);
     ;}
     break;
 
-  case 550:
-#line 5839 "Gmsh.y"
+  case 549:
+#line 5789 "Gmsh.y"
     {
       (yyval.c) = (yyvsp[(3) - (4)].c);
     ;}
     break;
 
-  case 551:
-#line 5843 "Gmsh.y"
+  case 550:
+#line 5793 "Gmsh.y"
     {
       (yyval.c) = (char *)Malloc(32 * sizeof(char));
       time_t now;
@@ -13233,8 +13154,8 @@ yyreduce:
     ;}
     break;
 
-  case 552:
-#line 5851 "Gmsh.y"
+  case 551:
+#line 5801 "Gmsh.y"
     {
       std::string exe = Msg::GetExecutableName();
       (yyval.c) = (char *)Malloc(exe.size() + 1);
@@ -13242,8 +13163,8 @@ yyreduce:
     ;}
     break;
 
-  case 553:
-#line 5857 "Gmsh.y"
+  case 552:
+#line 5807 "Gmsh.y"
     {
       std::string action = Msg::GetOnelabAction();
       (yyval.c) = (char *)Malloc(action.size() + 1);
@@ -13251,15 +13172,15 @@ yyreduce:
     ;}
     break;
 
-  case 554:
-#line 5863 "Gmsh.y"
+  case 553:
+#line 5813 "Gmsh.y"
     {
       (yyval.c) = strsave((char*)"Gmsh");
     ;}
     break;
 
-  case 555:
-#line 5867 "Gmsh.y"
+  case 554:
+#line 5817 "Gmsh.y"
     {
       const char *env = GetEnvironmentVar((yyvsp[(3) - (4)].c));
       if(!env) env = "";
@@ -13269,8 +13190,8 @@ yyreduce:
     ;}
     break;
 
-  case 556:
-#line 5875 "Gmsh.y"
+  case 555:
+#line 5825 "Gmsh.y"
     {
       std::string s = Msg::GetString((yyvsp[(3) - (6)].c), (yyvsp[(5) - (6)].c));
       (yyval.c) = (char *)Malloc((s.size() + 1) * sizeof(char));
@@ -13280,8 +13201,8 @@ yyreduce:
     ;}
     break;
 
-  case 557:
-#line 5883 "Gmsh.y"
+  case 556:
+#line 5833 "Gmsh.y"
     {
       std::string s = Msg::GetOnelabString((yyvsp[(3) - (4)].c));
       (yyval.c) = (char *)Malloc((s.size() + 1) * sizeof(char));
@@ -13290,8 +13211,8 @@ yyreduce:
     ;}
     break;
 
-  case 558:
-#line 5890 "Gmsh.y"
+  case 557:
+#line 5840 "Gmsh.y"
     {
       std::string s = Msg::GetOnelabString((yyvsp[(3) - (6)].c), (yyvsp[(5) - (6)].c));
       (yyval.c) = (char *)Malloc((s.size() + 1) * sizeof(char));
@@ -13301,22 +13222,22 @@ yyreduce:
     ;}
     break;
 
-  case 559:
-#line 5899 "Gmsh.y"
+  case 558:
+#line 5849 "Gmsh.y"
     {
       (yyval.c) = treat_Struct_FullName_String(NULL, (yyvsp[(3) - (5)].c2).char2, 1, 0, (yyvsp[(4) - (5)].c), 2);
     ;}
     break;
 
-  case 560:
-#line 5903 "Gmsh.y"
+  case 559:
+#line 5853 "Gmsh.y"
     {
       (yyval.c) = treat_Struct_FullName_dot_tSTRING_String((yyvsp[(3) - (7)].c2).char1, (yyvsp[(3) - (7)].c2).char2, (yyvsp[(5) - (7)].c), 0, (yyvsp[(6) - (7)].c), 2);
     ;}
     break;
 
-  case 561:
-#line 5907 "Gmsh.y"
+  case 560:
+#line 5857 "Gmsh.y"
     {
       int size = 1;
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (4)].l)); i++)
@@ -13333,8 +13254,8 @@ yyreduce:
     ;}
     break;
 
-  case 562:
-#line 5922 "Gmsh.y"
+  case 561:
+#line 5872 "Gmsh.y"
     {
       (yyval.c) = (char *)Malloc((strlen((yyvsp[(3) - (4)].c)) + 1) * sizeof(char));
       int i;
@@ -13350,8 +13271,8 @@ yyreduce:
     ;}
     break;
 
-  case 563:
-#line 5936 "Gmsh.y"
+  case 562:
+#line 5886 "Gmsh.y"
     {
       (yyval.c) = (char *)Malloc((strlen((yyvsp[(3) - (4)].c)) + 1) * sizeof(char));
       int i;
@@ -13367,8 +13288,8 @@ yyreduce:
     ;}
     break;
 
-  case 564:
-#line 5950 "Gmsh.y"
+  case 563:
+#line 5900 "Gmsh.y"
     {
       std::string input = (yyvsp[(3) - (8)].c);
       std::string substr_old = (yyvsp[(5) - (8)].c);
@@ -13382,8 +13303,8 @@ yyreduce:
     ;}
     break;
 
-  case 565:
-#line 5962 "Gmsh.y"
+  case 564:
+#line 5912 "Gmsh.y"
     {
       int size = 1;
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (4)].l)); i++)
@@ -13401,8 +13322,8 @@ yyreduce:
     ;}
     break;
 
-  case 566:
-#line 5978 "Gmsh.y"
+  case 565:
+#line 5928 "Gmsh.y"
     {
       int i = 0;
       while ((yyvsp[(3) - (4)].c)[i]) {
@@ -13413,8 +13334,8 @@ yyreduce:
     ;}
     break;
 
-  case 567:
-#line 5987 "Gmsh.y"
+  case 566:
+#line 5937 "Gmsh.y"
     {
       int i = 0;
       while ((yyvsp[(3) - (4)].c)[i]) {
@@ -13425,8 +13346,8 @@ yyreduce:
     ;}
     break;
 
-  case 568:
-#line 5996 "Gmsh.y"
+  case 567:
+#line 5946 "Gmsh.y"
     {
       int i = 0;
       while ((yyvsp[(3) - (4)].c)[i]) {
@@ -13438,8 +13359,8 @@ yyreduce:
     ;}
     break;
 
-  case 569:
-#line 6006 "Gmsh.y"
+  case 568:
+#line 5956 "Gmsh.y"
     {
       if((yyvsp[(3) - (8)].d)){
         (yyval.c) = (yyvsp[(5) - (8)].c);
@@ -13452,8 +13373,8 @@ yyreduce:
     ;}
     break;
 
-  case 570:
-#line 6017 "Gmsh.y"
+  case 569:
+#line 5967 "Gmsh.y"
     {
       std::string in = (yyvsp[(3) - (8)].c);
       std::string out = in.substr((int)(yyvsp[(5) - (8)].d), (int)(yyvsp[(7) - (8)].d));
@@ -13463,8 +13384,8 @@ yyreduce:
     ;}
     break;
 
-  case 571:
-#line 6025 "Gmsh.y"
+  case 570:
+#line 5975 "Gmsh.y"
     {
       std::string in = (yyvsp[(3) - (6)].c);
       std::string out = in.substr((int)(yyvsp[(5) - (6)].d), std::string::npos);
@@ -13474,15 +13395,15 @@ yyreduce:
     ;}
     break;
 
-  case 572:
-#line 6033 "Gmsh.y"
+  case 571:
+#line 5983 "Gmsh.y"
     {
       (yyval.c) = (yyvsp[(3) - (4)].c);
     ;}
     break;
 
-  case 573:
-#line 6037 "Gmsh.y"
+  case 572:
+#line 5987 "Gmsh.y"
     {
       char tmpstring[5000];
       int i = printListOfDouble((yyvsp[(3) - (6)].c), (yyvsp[(5) - (6)].l), tmpstring);
@@ -13503,8 +13424,8 @@ yyreduce:
     ;}
     break;
 
-  case 574:
-#line 6056 "Gmsh.y"
+  case 573:
+#line 6006 "Gmsh.y"
     {
       std::string tmp = FixRelativePath(gmsh_yyname, (yyvsp[(3) - (4)].c));
       (yyval.c) = (char*)Malloc((tmp.size() + 1) * sizeof(char));
@@ -13513,8 +13434,8 @@ yyreduce:
     ;}
     break;
 
-  case 575:
-#line 6063 "Gmsh.y"
+  case 574:
+#line 6013 "Gmsh.y"
     {
       std::string tmp = SplitFileName(GetAbsolutePath(gmsh_yyname))[0];
       (yyval.c) = (char*)Malloc((tmp.size() + 1) * sizeof(char));
@@ -13522,8 +13443,8 @@ yyreduce:
     ;}
     break;
 
-  case 576:
-#line 6069 "Gmsh.y"
+  case 575:
+#line 6019 "Gmsh.y"
     {
       std::string tmp = SplitFileName((yyvsp[(3) - (4)].c))[0];
       (yyval.c) = (char*)Malloc((tmp.size() + 1) * sizeof(char));
@@ -13532,8 +13453,8 @@ yyreduce:
     ;}
     break;
 
-  case 577:
-#line 6076 "Gmsh.y"
+  case 576:
+#line 6026 "Gmsh.y"
     {
       std::string tmp = GetAbsolutePath((yyvsp[(3) - (4)].c));
       (yyval.c) = (char*)Malloc((tmp.size() + 1) * sizeof(char));
@@ -13542,13 +13463,13 @@ yyreduce:
     ;}
     break;
 
-  case 578:
-#line 6083 "Gmsh.y"
+  case 577:
+#line 6033 "Gmsh.y"
     { init_options(); ;}
     break;
 
-  case 579:
-#line 6085 "Gmsh.y"
+  case 578:
+#line 6035 "Gmsh.y"
     {
       std::string val((yyvsp[(3) - (6)].c));
       Msg::ExchangeOnelabParameter("", val, floatOptions, charOptions);
@@ -13558,8 +13479,8 @@ yyreduce:
     ;}
     break;
 
-  case 580:
-#line 6093 "Gmsh.y"
+  case 579:
+#line 6043 "Gmsh.y"
     {
       std::string out;
       const std::string * key_struct = NULL;
@@ -13582,58 +13503,58 @@ yyreduce:
     ;}
     break;
 
-  case 581:
-#line 6117 "Gmsh.y"
+  case 580:
+#line 6067 "Gmsh.y"
     { struct_namespace = std::string(""); (yyval.d) = (yyvsp[(2) - (2)].d); ;}
     break;
 
-  case 582:
-#line 6119 "Gmsh.y"
+  case 581:
+#line 6069 "Gmsh.y"
     { struct_namespace = (yyvsp[(1) - (4)].c); Free((yyvsp[(1) - (4)].c)); (yyval.d) = (yyvsp[(4) - (4)].d); ;}
     break;
 
-  case 583:
-#line 6125 "Gmsh.y"
+  case 582:
+#line 6075 "Gmsh.y"
     { (yyval.l) = (yyvsp[(3) - (4)].l); ;}
     break;
 
-  case 584:
-#line 6130 "Gmsh.y"
+  case 583:
+#line 6080 "Gmsh.y"
     { (yyval.l) = (yyvsp[(1) - (1)].l); ;}
     break;
 
-  case 585:
-#line 6132 "Gmsh.y"
+  case 584:
+#line 6082 "Gmsh.y"
     { (yyval.l) = (yyvsp[(1) - (1)].l); ;}
     break;
 
-  case 586:
-#line 6137 "Gmsh.y"
+  case 585:
+#line 6087 "Gmsh.y"
     { (yyval.l) = (yyvsp[(2) - (3)].l); ;}
     break;
 
-  case 587:
-#line 6142 "Gmsh.y"
+  case 586:
+#line 6092 "Gmsh.y"
     {
       (yyval.l) = List_Create(20,20,sizeof(char*));
       List_Add((yyval.l), &((yyvsp[(1) - (1)].c)));
     ;}
     break;
 
-  case 588:
-#line 6147 "Gmsh.y"
+  case 587:
+#line 6097 "Gmsh.y"
     { (yyval.l) = (yyvsp[(1) - (1)].l); ;}
     break;
 
-  case 589:
-#line 6149 "Gmsh.y"
+  case 588:
+#line 6099 "Gmsh.y"
     {
       List_Add((yyval.l), &((yyvsp[(3) - (3)].c)));
     ;}
     break;
 
-  case 590:
-#line 6153 "Gmsh.y"
+  case 589:
+#line 6103 "Gmsh.y"
     {
       for(int i = 0; i < List_Nbr((yyvsp[(3) - (3)].l)); i++){
 	char* c;
@@ -13644,8 +13565,8 @@ yyreduce:
     ;}
     break;
 
-  case 591:
-#line 6165 "Gmsh.y"
+  case 590:
+#line 6115 "Gmsh.y"
     {
       (yyval.l) = List_Create(20, 20, sizeof(char *));
       if(!gmsh_yystringsymbols.count((yyvsp[(1) - (3)].c)))
@@ -13661,22 +13582,22 @@ yyreduce:
     ;}
     break;
 
-  case 592:
-#line 6179 "Gmsh.y"
+  case 591:
+#line 6129 "Gmsh.y"
     {
       (yyval.l) = treat_Struct_FullName_dot_tSTRING_ListOfString(NULL, (yyvsp[(1) - (5)].c), (yyvsp[(3) - (5)].c));
     ;}
     break;
 
-  case 593:
-#line 6183 "Gmsh.y"
+  case 592:
+#line 6133 "Gmsh.y"
     {
       (yyval.l) = treat_Struct_FullName_dot_tSTRING_ListOfString((yyvsp[(1) - (7)].c), (yyvsp[(3) - (7)].c), (yyvsp[(5) - (7)].c));
     ;}
     break;
 
-  case 594:
-#line 6190 "Gmsh.y"
+  case 593:
+#line 6140 "Gmsh.y"
     {
       char tmpstr[256];
       sprintf(tmpstr, "_%d", (int)(yyvsp[(4) - (5)].d));
@@ -13686,8 +13607,8 @@ yyreduce:
     ;}
     break;
 
-  case 595:
-#line 6198 "Gmsh.y"
+  case 594:
+#line 6148 "Gmsh.y"
     {
       char tmpstr[256];
       sprintf(tmpstr, "_%d", (int)(yyvsp[(4) - (5)].d));
@@ -13697,8 +13618,8 @@ yyreduce:
     ;}
     break;
 
-  case 596:
-#line 6206 "Gmsh.y"
+  case 595:
+#line 6156 "Gmsh.y"
     {
       char tmpstr[256];
       sprintf(tmpstr, "_%d", (int)(yyvsp[(7) - (8)].d));
@@ -13708,24 +13629,24 @@ yyreduce:
     ;}
     break;
 
-  case 597:
-#line 6217 "Gmsh.y"
+  case 596:
+#line 6167 "Gmsh.y"
     { (yyval.c) = (yyvsp[(1) - (1)].c); ;}
     break;
 
-  case 598:
-#line 6219 "Gmsh.y"
+  case 597:
+#line 6169 "Gmsh.y"
     { (yyval.c) = (yyvsp[(1) - (1)].c); ;}
     break;
 
-  case 599:
-#line 6222 "Gmsh.y"
+  case 598:
+#line 6172 "Gmsh.y"
     { (yyval.c) = (yyvsp[(3) - (4)].c); ;}
     break;
 
 
 /* Line 1267 of yacc.c.  */
-#line 13729 "Gmsh.tab.cpp"
+#line 13650 "Gmsh.tab.cpp"
       default: break;
     }
   YY_SYMBOL_PRINT ("-> $$ =", yyr1[yyn], &yyval, &yyloc);
@@ -13939,7 +13860,7 @@ yyreturn:
 }
 
 
-#line 6225 "Gmsh.y"
+#line 6175 "Gmsh.y"
 
 
 void assignVariable(const std::string &name, int index, int assignType,
diff --git a/Parser/Gmsh.tab.hpp b/Parser/Gmsh.tab.hpp
index 4f611a4132a601d5d99502fb56611dd548adab25..5973b437e15ac150e89f5eb995a06a2b50308e8a 100644
--- a/Parser/Gmsh.tab.hpp
+++ b/Parser/Gmsh.tab.hpp
@@ -115,154 +115,153 @@
      tMemory = 331,
      tTotalMemory = 332,
      tCreateTopology = 333,
-     tCreateTopologyNoHoles = 334,
-     tDistanceFunction = 335,
-     tDefineConstant = 336,
-     tUndefineConstant = 337,
-     tDefineNumber = 338,
-     tDefineStruct = 339,
-     tNameStruct = 340,
-     tDimNameSpace = 341,
-     tAppend = 342,
-     tDefineString = 343,
-     tSetNumber = 344,
-     tSetString = 345,
-     tPoint = 346,
-     tCircle = 347,
-     tEllipse = 348,
-     tLine = 349,
-     tSphere = 350,
-     tPolarSphere = 351,
-     tSurface = 352,
-     tSpline = 353,
-     tVolume = 354,
-     tBox = 355,
-     tCylinder = 356,
-     tCone = 357,
-     tTorus = 358,
-     tEllipsoid = 359,
-     tQuadric = 360,
-     tShapeFromFile = 361,
-     tRectangle = 362,
-     tDisk = 363,
-     tWire = 364,
-     tGeoEntity = 365,
-     tCharacteristic = 366,
-     tLength = 367,
-     tParametric = 368,
-     tElliptic = 369,
-     tRefineMesh = 370,
-     tAdaptMesh = 371,
-     tRelocateMesh = 372,
-     tSetFactory = 373,
-     tThruSections = 374,
-     tWedge = 375,
-     tFillet = 376,
-     tChamfer = 377,
-     tPlane = 378,
-     tRuled = 379,
-     tTransfinite = 380,
-     tPhysical = 381,
-     tCompound = 382,
-     tPeriodic = 383,
-     tUsing = 384,
-     tPlugin = 385,
-     tDegenerated = 386,
-     tRecursive = 387,
-     tRotate = 388,
-     tTranslate = 389,
-     tSymmetry = 390,
-     tDilate = 391,
-     tExtrude = 392,
-     tLevelset = 393,
-     tAffine = 394,
-     tBooleanUnion = 395,
-     tBooleanIntersection = 396,
-     tBooleanDifference = 397,
-     tBooleanSection = 398,
-     tBooleanFragments = 399,
-     tThickSolid = 400,
-     tRecombine = 401,
-     tSmoother = 402,
-     tSplit = 403,
-     tDelete = 404,
-     tCoherence = 405,
-     tIntersect = 406,
-     tMeshAlgorithm = 407,
-     tReverse = 408,
-     tLayers = 409,
-     tScaleLast = 410,
-     tHole = 411,
-     tAlias = 412,
-     tAliasWithOptions = 413,
-     tCopyOptions = 414,
-     tQuadTriAddVerts = 415,
-     tQuadTriNoNewVerts = 416,
-     tRecombLaterals = 417,
-     tTransfQuadTri = 418,
-     tText2D = 419,
-     tText3D = 420,
-     tInterpolationScheme = 421,
-     tTime = 422,
-     tCombine = 423,
-     tBSpline = 424,
-     tBezier = 425,
-     tNurbs = 426,
-     tNurbsOrder = 427,
-     tNurbsKnots = 428,
-     tColor = 429,
-     tColorTable = 430,
-     tFor = 431,
-     tIn = 432,
-     tEndFor = 433,
-     tIf = 434,
-     tElseIf = 435,
-     tElse = 436,
-     tEndIf = 437,
-     tExit = 438,
-     tAbort = 439,
-     tField = 440,
-     tReturn = 441,
-     tCall = 442,
-     tSlide = 443,
-     tMacro = 444,
-     tShow = 445,
-     tHide = 446,
-     tGetValue = 447,
-     tGetStringValue = 448,
-     tGetEnv = 449,
-     tGetString = 450,
-     tGetNumber = 451,
-     tUnique = 452,
-     tHomology = 453,
-     tCohomology = 454,
-     tBetti = 455,
-     tExists = 456,
-     tFileExists = 457,
-     tGetForced = 458,
-     tGetForcedStr = 459,
-     tGMSH_MAJOR_VERSION = 460,
-     tGMSH_MINOR_VERSION = 461,
-     tGMSH_PATCH_VERSION = 462,
-     tGmshExecutableName = 463,
-     tSetPartition = 464,
-     tNameToString = 465,
-     tStringToName = 466,
-     tAFFECTDIVIDE = 467,
-     tAFFECTTIMES = 468,
-     tAFFECTMINUS = 469,
-     tAFFECTPLUS = 470,
-     tOR = 471,
-     tAND = 472,
-     tNOTEQUAL = 473,
-     tEQUAL = 474,
-     tGREATERGREATER = 475,
-     tLESSLESS = 476,
-     tGREATEROREQUAL = 477,
-     tLESSOREQUAL = 478,
-     UNARYPREC = 479,
-     tMINUSMINUS = 480,
-     tPLUSPLUS = 481
+     tDistanceFunction = 334,
+     tDefineConstant = 335,
+     tUndefineConstant = 336,
+     tDefineNumber = 337,
+     tDefineStruct = 338,
+     tNameStruct = 339,
+     tDimNameSpace = 340,
+     tAppend = 341,
+     tDefineString = 342,
+     tSetNumber = 343,
+     tSetString = 344,
+     tPoint = 345,
+     tCircle = 346,
+     tEllipse = 347,
+     tLine = 348,
+     tSphere = 349,
+     tPolarSphere = 350,
+     tSurface = 351,
+     tSpline = 352,
+     tVolume = 353,
+     tBox = 354,
+     tCylinder = 355,
+     tCone = 356,
+     tTorus = 357,
+     tEllipsoid = 358,
+     tQuadric = 359,
+     tShapeFromFile = 360,
+     tRectangle = 361,
+     tDisk = 362,
+     tWire = 363,
+     tGeoEntity = 364,
+     tCharacteristic = 365,
+     tLength = 366,
+     tParametric = 367,
+     tElliptic = 368,
+     tRefineMesh = 369,
+     tAdaptMesh = 370,
+     tRelocateMesh = 371,
+     tSetFactory = 372,
+     tThruSections = 373,
+     tWedge = 374,
+     tFillet = 375,
+     tChamfer = 376,
+     tPlane = 377,
+     tRuled = 378,
+     tTransfinite = 379,
+     tPhysical = 380,
+     tCompound = 381,
+     tPeriodic = 382,
+     tUsing = 383,
+     tPlugin = 384,
+     tDegenerated = 385,
+     tRecursive = 386,
+     tRotate = 387,
+     tTranslate = 388,
+     tSymmetry = 389,
+     tDilate = 390,
+     tExtrude = 391,
+     tLevelset = 392,
+     tAffine = 393,
+     tBooleanUnion = 394,
+     tBooleanIntersection = 395,
+     tBooleanDifference = 396,
+     tBooleanSection = 397,
+     tBooleanFragments = 398,
+     tThickSolid = 399,
+     tRecombine = 400,
+     tSmoother = 401,
+     tSplit = 402,
+     tDelete = 403,
+     tCoherence = 404,
+     tIntersect = 405,
+     tMeshAlgorithm = 406,
+     tReverse = 407,
+     tLayers = 408,
+     tScaleLast = 409,
+     tHole = 410,
+     tAlias = 411,
+     tAliasWithOptions = 412,
+     tCopyOptions = 413,
+     tQuadTriAddVerts = 414,
+     tQuadTriNoNewVerts = 415,
+     tRecombLaterals = 416,
+     tTransfQuadTri = 417,
+     tText2D = 418,
+     tText3D = 419,
+     tInterpolationScheme = 420,
+     tTime = 421,
+     tCombine = 422,
+     tBSpline = 423,
+     tBezier = 424,
+     tNurbs = 425,
+     tNurbsOrder = 426,
+     tNurbsKnots = 427,
+     tColor = 428,
+     tColorTable = 429,
+     tFor = 430,
+     tIn = 431,
+     tEndFor = 432,
+     tIf = 433,
+     tElseIf = 434,
+     tElse = 435,
+     tEndIf = 436,
+     tExit = 437,
+     tAbort = 438,
+     tField = 439,
+     tReturn = 440,
+     tCall = 441,
+     tSlide = 442,
+     tMacro = 443,
+     tShow = 444,
+     tHide = 445,
+     tGetValue = 446,
+     tGetStringValue = 447,
+     tGetEnv = 448,
+     tGetString = 449,
+     tGetNumber = 450,
+     tUnique = 451,
+     tHomology = 452,
+     tCohomology = 453,
+     tBetti = 454,
+     tExists = 455,
+     tFileExists = 456,
+     tGetForced = 457,
+     tGetForcedStr = 458,
+     tGMSH_MAJOR_VERSION = 459,
+     tGMSH_MINOR_VERSION = 460,
+     tGMSH_PATCH_VERSION = 461,
+     tGmshExecutableName = 462,
+     tSetPartition = 463,
+     tNameToString = 464,
+     tStringToName = 465,
+     tAFFECTDIVIDE = 466,
+     tAFFECTTIMES = 467,
+     tAFFECTMINUS = 468,
+     tAFFECTPLUS = 469,
+     tOR = 470,
+     tAND = 471,
+     tNOTEQUAL = 472,
+     tEQUAL = 473,
+     tGREATERGREATER = 474,
+     tLESSLESS = 475,
+     tGREATEROREQUAL = 476,
+     tLESSOREQUAL = 477,
+     UNARYPREC = 478,
+     tMINUSMINUS = 479,
+     tPLUSPLUS = 480
    };
 #endif
 /* Tokens.  */
@@ -342,154 +341,153 @@
 #define tMemory 331
 #define tTotalMemory 332
 #define tCreateTopology 333
-#define tCreateTopologyNoHoles 334
-#define tDistanceFunction 335
-#define tDefineConstant 336
-#define tUndefineConstant 337
-#define tDefineNumber 338
-#define tDefineStruct 339
-#define tNameStruct 340
-#define tDimNameSpace 341
-#define tAppend 342
-#define tDefineString 343
-#define tSetNumber 344
-#define tSetString 345
-#define tPoint 346
-#define tCircle 347
-#define tEllipse 348
-#define tLine 349
-#define tSphere 350
-#define tPolarSphere 351
-#define tSurface 352
-#define tSpline 353
-#define tVolume 354
-#define tBox 355
-#define tCylinder 356
-#define tCone 357
-#define tTorus 358
-#define tEllipsoid 359
-#define tQuadric 360
-#define tShapeFromFile 361
-#define tRectangle 362
-#define tDisk 363
-#define tWire 364
-#define tGeoEntity 365
-#define tCharacteristic 366
-#define tLength 367
-#define tParametric 368
-#define tElliptic 369
-#define tRefineMesh 370
-#define tAdaptMesh 371
-#define tRelocateMesh 372
-#define tSetFactory 373
-#define tThruSections 374
-#define tWedge 375
-#define tFillet 376
-#define tChamfer 377
-#define tPlane 378
-#define tRuled 379
-#define tTransfinite 380
-#define tPhysical 381
-#define tCompound 382
-#define tPeriodic 383
-#define tUsing 384
-#define tPlugin 385
-#define tDegenerated 386
-#define tRecursive 387
-#define tRotate 388
-#define tTranslate 389
-#define tSymmetry 390
-#define tDilate 391
-#define tExtrude 392
-#define tLevelset 393
-#define tAffine 394
-#define tBooleanUnion 395
-#define tBooleanIntersection 396
-#define tBooleanDifference 397
-#define tBooleanSection 398
-#define tBooleanFragments 399
-#define tThickSolid 400
-#define tRecombine 401
-#define tSmoother 402
-#define tSplit 403
-#define tDelete 404
-#define tCoherence 405
-#define tIntersect 406
-#define tMeshAlgorithm 407
-#define tReverse 408
-#define tLayers 409
-#define tScaleLast 410
-#define tHole 411
-#define tAlias 412
-#define tAliasWithOptions 413
-#define tCopyOptions 414
-#define tQuadTriAddVerts 415
-#define tQuadTriNoNewVerts 416
-#define tRecombLaterals 417
-#define tTransfQuadTri 418
-#define tText2D 419
-#define tText3D 420
-#define tInterpolationScheme 421
-#define tTime 422
-#define tCombine 423
-#define tBSpline 424
-#define tBezier 425
-#define tNurbs 426
-#define tNurbsOrder 427
-#define tNurbsKnots 428
-#define tColor 429
-#define tColorTable 430
-#define tFor 431
-#define tIn 432
-#define tEndFor 433
-#define tIf 434
-#define tElseIf 435
-#define tElse 436
-#define tEndIf 437
-#define tExit 438
-#define tAbort 439
-#define tField 440
-#define tReturn 441
-#define tCall 442
-#define tSlide 443
-#define tMacro 444
-#define tShow 445
-#define tHide 446
-#define tGetValue 447
-#define tGetStringValue 448
-#define tGetEnv 449
-#define tGetString 450
-#define tGetNumber 451
-#define tUnique 452
-#define tHomology 453
-#define tCohomology 454
-#define tBetti 455
-#define tExists 456
-#define tFileExists 457
-#define tGetForced 458
-#define tGetForcedStr 459
-#define tGMSH_MAJOR_VERSION 460
-#define tGMSH_MINOR_VERSION 461
-#define tGMSH_PATCH_VERSION 462
-#define tGmshExecutableName 463
-#define tSetPartition 464
-#define tNameToString 465
-#define tStringToName 466
-#define tAFFECTDIVIDE 467
-#define tAFFECTTIMES 468
-#define tAFFECTMINUS 469
-#define tAFFECTPLUS 470
-#define tOR 471
-#define tAND 472
-#define tNOTEQUAL 473
-#define tEQUAL 474
-#define tGREATERGREATER 475
-#define tLESSLESS 476
-#define tGREATEROREQUAL 477
-#define tLESSOREQUAL 478
-#define UNARYPREC 479
-#define tMINUSMINUS 480
-#define tPLUSPLUS 481
+#define tDistanceFunction 334
+#define tDefineConstant 335
+#define tUndefineConstant 336
+#define tDefineNumber 337
+#define tDefineStruct 338
+#define tNameStruct 339
+#define tDimNameSpace 340
+#define tAppend 341
+#define tDefineString 342
+#define tSetNumber 343
+#define tSetString 344
+#define tPoint 345
+#define tCircle 346
+#define tEllipse 347
+#define tLine 348
+#define tSphere 349
+#define tPolarSphere 350
+#define tSurface 351
+#define tSpline 352
+#define tVolume 353
+#define tBox 354
+#define tCylinder 355
+#define tCone 356
+#define tTorus 357
+#define tEllipsoid 358
+#define tQuadric 359
+#define tShapeFromFile 360
+#define tRectangle 361
+#define tDisk 362
+#define tWire 363
+#define tGeoEntity 364
+#define tCharacteristic 365
+#define tLength 366
+#define tParametric 367
+#define tElliptic 368
+#define tRefineMesh 369
+#define tAdaptMesh 370
+#define tRelocateMesh 371
+#define tSetFactory 372
+#define tThruSections 373
+#define tWedge 374
+#define tFillet 375
+#define tChamfer 376
+#define tPlane 377
+#define tRuled 378
+#define tTransfinite 379
+#define tPhysical 380
+#define tCompound 381
+#define tPeriodic 382
+#define tUsing 383
+#define tPlugin 384
+#define tDegenerated 385
+#define tRecursive 386
+#define tRotate 387
+#define tTranslate 388
+#define tSymmetry 389
+#define tDilate 390
+#define tExtrude 391
+#define tLevelset 392
+#define tAffine 393
+#define tBooleanUnion 394
+#define tBooleanIntersection 395
+#define tBooleanDifference 396
+#define tBooleanSection 397
+#define tBooleanFragments 398
+#define tThickSolid 399
+#define tRecombine 400
+#define tSmoother 401
+#define tSplit 402
+#define tDelete 403
+#define tCoherence 404
+#define tIntersect 405
+#define tMeshAlgorithm 406
+#define tReverse 407
+#define tLayers 408
+#define tScaleLast 409
+#define tHole 410
+#define tAlias 411
+#define tAliasWithOptions 412
+#define tCopyOptions 413
+#define tQuadTriAddVerts 414
+#define tQuadTriNoNewVerts 415
+#define tRecombLaterals 416
+#define tTransfQuadTri 417
+#define tText2D 418
+#define tText3D 419
+#define tInterpolationScheme 420
+#define tTime 421
+#define tCombine 422
+#define tBSpline 423
+#define tBezier 424
+#define tNurbs 425
+#define tNurbsOrder 426
+#define tNurbsKnots 427
+#define tColor 428
+#define tColorTable 429
+#define tFor 430
+#define tIn 431
+#define tEndFor 432
+#define tIf 433
+#define tElseIf 434
+#define tElse 435
+#define tEndIf 436
+#define tExit 437
+#define tAbort 438
+#define tField 439
+#define tReturn 440
+#define tCall 441
+#define tSlide 442
+#define tMacro 443
+#define tShow 444
+#define tHide 445
+#define tGetValue 446
+#define tGetStringValue 447
+#define tGetEnv 448
+#define tGetString 449
+#define tGetNumber 450
+#define tUnique 451
+#define tHomology 452
+#define tCohomology 453
+#define tBetti 454
+#define tExists 455
+#define tFileExists 456
+#define tGetForced 457
+#define tGetForcedStr 458
+#define tGMSH_MAJOR_VERSION 459
+#define tGMSH_MINOR_VERSION 460
+#define tGMSH_PATCH_VERSION 461
+#define tGmshExecutableName 462
+#define tSetPartition 463
+#define tNameToString 464
+#define tStringToName 465
+#define tAFFECTDIVIDE 466
+#define tAFFECTTIMES 467
+#define tAFFECTMINUS 468
+#define tAFFECTPLUS 469
+#define tOR 470
+#define tAND 471
+#define tNOTEQUAL 472
+#define tEQUAL 473
+#define tGREATERGREATER 474
+#define tLESSLESS 475
+#define tGREATEROREQUAL 476
+#define tLESSOREQUAL 477
+#define UNARYPREC 478
+#define tMINUSMINUS 479
+#define tPLUSPLUS 480
 
 
 
@@ -508,7 +506,7 @@ typedef union YYSTYPE
   struct TwoChar c2;
 }
 /* Line 1529 of yacc.c.  */
-#line 512 "Gmsh.tab.hpp"
+#line 510 "Gmsh.tab.hpp"
 	YYSTYPE;
 # define yystype YYSTYPE /* obsolescent; will be withdrawn */
 # define YYSTYPE_IS_DECLARED 1
diff --git a/Parser/Gmsh.y b/Parser/Gmsh.y
index 4200917b0193120c90fcc9c1764e3eadd99c437d..a8b25a4132b066a1033a730c6c7df3f67c8ae3f1 100644
--- a/Parser/Gmsh.y
+++ b/Parser/Gmsh.y
@@ -188,7 +188,7 @@ struct doubleXstring{
 %token tSyncModel tNewModel
 %token tOnelabAction tOnelabRun tCodeName
 %token tCpu tMemory tTotalMemory
-%token tCreateTopology tCreateTopologyNoHoles
+%token tCreateTopology
 %token tDistanceFunction tDefineConstant tUndefineConstant
 %token tDefineNumber tDefineStruct tNameStruct tDimNameSpace tAppend
 %token tDefineString tSetNumber tSetString
@@ -2161,62 +2161,16 @@ Shape :
     }
   | tCompound GeoEntity123 '(' FExpr ')' tAFFECT ListOfDouble tEND
     {
-      int num = (int)$4;
-      std::vector<int> tags; ListOfDouble2Vector($7, tags);
-      switch ($2) {
-      case 1:
-        {
-          bool r = GModel::current()->getGEOInternals()->addCompoundLine(num, tags);
-          if(!r) yymsg(0, "Could not add compound line");
-        }
-        $$.Type = MSH_SEGM_COMPOUND;
-        break;
-      case 2:
-        {
-          bool r = GModel::current()->getGEOInternals()->addCompoundSurface(num, tags);
-          if(!r) yymsg(0, "Could not add compound surface");
-        }
-        $$.Type = MSH_SURF_COMPOUND;
-        break;
-      case 3:
-        {
-          bool r = GModel::current()->getGEOInternals()->addCompoundVolume(num, tags);
-          if(!r) yymsg(0, "Could not add compound volume");
-        }
-        $$.Type = MSH_VOLUME_COMPOUND;
-        break;
-      }
-      List_Delete($7);
-      $$.Num = num;
+      yymsg(0, "Compounds entities are deprecated: use Compound meshing constraints instead");
+      $$.Type = 0;
+      $$.Num = 0;
     }
   | tCompound GeoEntity123 '(' FExpr ')' tAFFECT ListOfDouble tSTRING
       '{' RecursiveListOfListOfDouble '}' tEND
     {
-      // Particular case only for dim 2 (Surface)
-      if ($2 == 2) {
-        int num = (int)$4;
-        std::vector<int> tags; ListOfDouble2Vector($7, tags);
-        std::vector<int> bndTags[4];
-        for(int i = 0; i < List_Nbr($10); i++){
-          if(i < 4)
-            ListOfDouble2Vector(*(List_T**)List_Pointer($10, i), bndTags[i]);
-          else
-            break;
-        }
-        bool r = GModel::current()->getGEOInternals()->addCompoundSurface
-          (num, tags, bndTags);
-        if(!r) yymsg(0, "Could not add compound surface");
-        List_Delete($7);
-        Free($8);
-        for (int i = 0; i < List_Nbr($10); i++)
-          List_Delete(*(List_T**)List_Pointer($10, i));
-        List_Delete($10);
-        $$.Type = MSH_SURF_COMPOUND;
-        $$.Num = num;
-      }
-      else {
-        yymsg(0, "GeoEntity dim out of range [2,2]");
-      }
+      yymsg(0, "Compounds entities are deprecated: use Compound meshing constraints instead");
+      $$.Type = 0;
+      $$.Num = 0;
     }
   | tPhysical GeoEntity
     {
@@ -3370,10 +3324,6 @@ Command :
     {
       GModel::current()->createTopologyFromMesh();
     }
-   | tCreateTopologyNoHoles tEND
-    {
-      GModel::current()->createTopologyFromMesh(1);
-    }
    | tRefineMesh tEND
     {
       if(GModel::current()->getOCCInternals() &&
diff --git a/Parser/Gmsh.yy.cpp b/Parser/Gmsh.yy.cpp
index 77982f41c5486caf1013eeac490273cda745ec2d..6e63ce75af4e5401cd6aa832661d85a6fcff6d0a 100644
--- a/Parser/Gmsh.yy.cpp
+++ b/Parser/Gmsh.yy.cpp
@@ -380,8 +380,8 @@ static void yy_fatal_error (yyconst char msg[]  );
 	*yy_cp = '\0'; \
 	(yy_c_buf_p) = yy_cp;
 
-#define YY_NUM_RULES 256
-#define YY_END_OF_BUFFER 257
+#define YY_NUM_RULES 255
+#define YY_END_OF_BUFFER 256
 /* This struct is not used in this scanner,
    but its presence is necessary. */
 struct yy_trans_info
@@ -389,150 +389,150 @@ struct yy_trans_info
 	flex_int32_t yy_verify;
 	flex_int32_t yy_nxt;
 	};
-static yyconst flex_int16_t yy_accept[1299] =
+static yyconst flex_int16_t yy_accept[1292] =
     {   0,
-        0,    0,  257,  255,    1,    1,  255,    5,  255,    6,
-      255,  255,  255,  255,  255,  250,   21,    2,  255,   16,
-      255,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  255,   29,   25,   19,   26,
-       17,   27,   18,    0,  252,    3,    4,   20,  251,  250,
-        0,   23,   33,   30,   28,   31,   32,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  141,  142,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  174,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  228,  229,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,   24,   22,    0,
-      251,    0,    0,  253,  254,   35,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-       53,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-
-      254,  254,  254,   82,   84,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  112,  254,  254,  254,  254,  254,  254,  254,
-      254,  122,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  152,
-      254,  254,  254,  254,  254,  254,  163,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      195,  254,  254,  254,  254,  204,  254,  254,  254,  254,
-      254,  254,  213,  254,  254,  254,  254,  231,  254,  254,
-
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,    0,  252,    0,    0,  251,  254,
-      254,   37,  254,  254,  254,  254,  254,  254,  254,   47,
-       48,  254,  254,  254,  254,  254,  254,   65,  254,  254,
-       68,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-       79,  254,  254,   83,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,   98,   99,  254,  104,  254,  254,  254,
-      254,  254,  111,  254,  114,  254,  254,  254,  118,  254,
-      254,  121,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  136,  137,  254,  254,  254,  254,  254,  254,  254,
-
-      254,  254,  149,  150,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  183,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  203,  205,  254,  254,  254,  254,
-      254,  212,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  230,  232,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  249,
-       10,   15,    9,    8,  254,   12,   14,    0,  251,   34,
-      254,  254,  254,   40,  254,  254,  254,  254,   49,  254,
-
-       51,  254,   54,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,   75,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      107,  108,  254,  254,  254,  115,  254,  254,  254,  120,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      139,  254,  254,  144,  254,  254,  254,  254,  254,  153,
-      254,  254,  254,  254,  159,  254,  254,  254,  254,  254,
-      254,  167,  254,  170,  254,  254,  254,  175,  254,  177,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  193,  194,  254,  254,  254,  254,  254,  254,
-
-      254,  206,  254,  254,  254,  210,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  237,  238,  254,  254,  254,  254,
-      254,  246,  254,  248,   11,  254,   13,  254,  254,   39,
-      254,   43,   42,   44,   45,  254,   52,  254,  254,  254,
-      254,  254,  254,   71,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,   94,   95,  254,
-      254,  254,  254,  105,  106,  254,  110,  254,  254,  117,
-      254,  254,  254,  254,  254,  128,  254,  254,  254,  254,
-      254,  254,  254,  254,  145,  146,  254,  254,  254,  254,
-
-      254,  254,  254,  160,  254,  162,  254,  254,  254,  254,
-      254,  254,  254,  176,  254,  179,  254,  254,  254,  254,
-      254,  254,  254,  190,  254,  192,  254,  254,  254,  254,
-      254,  254,  254,  254,  208,  209,  254,  214,  254,  216,
-      254,  218,  254,  254,  254,  222,  254,  224,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  244,
-      254,  247,    7,  254,  254,  254,   46,   50,  254,  254,
-      254,  254,   69,  254,  254,  254,  254,  254,   77,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-       97,  100,  254,  254,  254,  254,  113,  254,  254,  254,
-
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      180,  254,  254,  254,  254,  254,  254,  191,  254,  254,
-      254,  254,  254,  254,  254,  254,  211,  254,  217,  254,
-      254,  254,  254,  225,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,   66,  254,  254,   72,
-      254,  254,  254,   78,  254,  254,  254,  254,   89,  254,
-      254,  254,  254,  254,  101,  254,  103,  254,  254,  254,
-
-      123,  254,  254,  254,  254,  254,  254,  254,  134,  254,
-      138,  254,  254,  147,  148,  254,  154,  254,  157,  158,
-      254,  254,  254,  166,  254,  254,  254,  172,  173,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  207,  254,  254,  254,  254,
-      254,  226,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,   38,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,   73,  254,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  102,
-      109,  254,  254,  254,  254,  254,  127,  129,  131,  132,
-
-      254,  254,  143,  254,  155,  254,  254,  254,  254,  169,
-      254,  254,  254,  254,  254,  185,  186,  187,  254,  254,
-      254,  254,  254,  199,  254,  201,  254,  215,  219,  254,
-      254,  254,  227,  233,  254,  254,  254,  254,  254,  254,
-      242,  254,  245,  254,  254,  254,  254,   57,  254,  254,
-      254,  254,  254,  254,  254,   67,  254,   74,   76,  254,
-      254,  254,   87,  254,  254,  254,  254,  254,  116,  254,
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      164,  254,  254,  171,  254,  254,  254,  254,  188,  254,
-      254,  197,  198,  254,  254,  254,  221,  254,  254,  235,
-
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,   60,  254,  254,  254,   64,  254,   80,   81,  254,
-      254,  254,  254,  254,   93,  254,  254,  254,  254,  254,
-      254,  254,  254,  254,  254,  156,  254,  254,  254,  178,
-      254,  254,  254,  254,  254,  254,  254,  220,  254,  254,
-      254,  239,  254,  241,  254,   36,  254,  254,  254,  254,
-      254,  254,  254,   63,  254,  254,  254,  254,   91,   92,
-       96,  254,  254,  254,  254,  130,  254,  254,  254,  151,
-      254,  165,  168,  254,  254,  254,  189,  254,  200,  254,
-      223,  254,  236,  254,  254,  254,  254,   56,  254,  254,
-
-      254,  254,  254,  254,  254,  254,  254,  254,  254,  254,
-      254,  254,  254,  161,  254,  254,  254,  254,  202,  254,
-      240,  254,  254,  254,  254,  254,  254,   62,   70,   85,
-      254,   90,  254,  254,  254,  254,  133,  254,  254,  254,
-      254,  184,  196,  234,  254,  254,  254,  254,  254,  254,
-      254,  254,  119,  254,  254,  254,  254,  254,  181,  254,
-      254,   41,   55,  254,   59,  254,  254,   88,  254,  254,
-      254,  254,  254,  254,  243,   58,  254,  254,  254,  254,
-      254,  254,  254,  182,  254,  254,  124,  125,  126,  135,
-      254,   61,  254,  254,  254,  140,   86,    0
+        0,    0,  256,  254,    1,    1,  254,    5,  254,    6,
+      254,  254,  254,  254,  254,  249,   21,    2,  254,   16,
+      254,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  254,   29,   25,   19,   26,
+       17,   27,   18,    0,  251,    3,    4,   20,  250,  249,
+        0,   23,   33,   30,   28,   31,   32,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  140,  141,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  173,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  227,  228,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,   24,   22,    0,
+      250,    0,    0,  252,  253,   35,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+       53,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+
+      253,  253,  253,   82,   84,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  111,  253,  253,  253,  253,  253,  253,  253,
+      253,  121,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  151,
+      253,  253,  253,  253,  253,  253,  162,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      194,  253,  253,  253,  253,  203,  253,  253,  253,  253,
+      253,  253,  212,  253,  253,  253,  253,  230,  253,  253,
+
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,    0,  251,    0,    0,  250,  253,
+      253,   37,  253,  253,  253,  253,  253,  253,  253,   47,
+       48,  253,  253,  253,  253,  253,  253,   65,  253,  253,
+       68,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+       79,  253,  253,   83,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,   97,   98,  253,  103,  253,  253,  253,
+      253,  253,  110,  253,  113,  253,  253,  253,  117,  253,
+      253,  120,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  135,  136,  253,  253,  253,  253,  253,  253,  253,
+
+      253,  253,  148,  149,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  182,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  202,  204,  253,  253,  253,  253,
+      253,  211,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  229,  231,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  248,
+       10,   15,    9,    8,  253,   12,   14,    0,  250,   34,
+      253,  253,  253,   40,  253,  253,  253,  253,   49,  253,
+
+       51,  253,   54,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,   75,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      106,  107,  253,  253,  253,  114,  253,  253,  253,  119,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      138,  253,  253,  143,  253,  253,  253,  253,  253,  152,
+      253,  253,  253,  253,  158,  253,  253,  253,  253,  253,
+      253,  166,  253,  169,  253,  253,  253,  174,  253,  176,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  192,  193,  253,  253,  253,  253,  253,  253,
+
+      253,  205,  253,  253,  253,  209,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  236,  237,  253,  253,  253,  253,
+      253,  245,  253,  247,   11,  253,   13,  253,  253,   39,
+      253,   43,   42,   44,   45,  253,   52,  253,  253,  253,
+      253,  253,  253,   71,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,   93,   94,  253,
+      253,  253,  253,  104,  105,  253,  109,  253,  253,  116,
+      253,  253,  253,  253,  253,  127,  253,  253,  253,  253,
+      253,  253,  253,  253,  144,  145,  253,  253,  253,  253,
+
+      253,  253,  253,  159,  253,  161,  253,  253,  253,  253,
+      253,  253,  253,  175,  253,  178,  253,  253,  253,  253,
+      253,  253,  253,  189,  253,  191,  253,  253,  253,  253,
+      253,  253,  253,  253,  207,  208,  253,  213,  253,  215,
+      253,  217,  253,  253,  253,  221,  253,  223,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  243,
+      253,  246,    7,  253,  253,  253,   46,   50,  253,  253,
+      253,  253,   69,  253,  253,  253,  253,  253,   77,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+       96,   99,  253,  253,  253,  253,  112,  253,  253,  253,
+
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      179,  253,  253,  253,  253,  253,  253,  190,  253,  253,
+      253,  253,  253,  253,  253,  253,  210,  253,  216,  253,
+      253,  253,  253,  224,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,   66,  253,  253,   72,
+      253,  253,  253,   78,  253,  253,  253,  253,   88,  253,
+      253,  253,  253,  253,  100,  253,  102,  253,  253,  253,
+
+      122,  253,  253,  253,  253,  253,  253,  253,  133,  253,
+      137,  253,  253,  146,  147,  253,  153,  253,  156,  157,
+      253,  253,  253,  165,  253,  253,  253,  171,  172,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  206,  253,  253,  253,  253,
+      253,  225,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,   38,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,   73,  253,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  101,
+      108,  253,  253,  253,  253,  253,  126,  128,  130,  131,
+
+      253,  253,  142,  253,  154,  253,  253,  253,  253,  168,
+      253,  253,  253,  253,  253,  184,  185,  186,  253,  253,
+      253,  253,  253,  198,  253,  200,  253,  214,  218,  253,
+      253,  253,  226,  232,  253,  253,  253,  253,  253,  253,
+      241,  253,  244,  253,  253,  253,  253,   57,  253,  253,
+      253,  253,  253,  253,  253,   67,  253,   74,   76,  253,
+      253,  253,   86,  253,  253,  253,  253,  253,  115,  253,
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      163,  253,  253,  170,  253,  253,  253,  253,  187,  253,
+      253,  196,  197,  253,  253,  253,  220,  253,  253,  234,
+
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,   60,  253,  253,  253,   64,  253,   80,   81,  253,
+      253,  253,  253,  253,   92,  253,  253,  253,  253,  253,
+      253,  253,  253,  253,  253,  155,  253,  253,  253,  177,
+      253,  253,  253,  253,  253,  253,  253,  219,  253,  253,
+      253,  238,  253,  240,  253,   36,  253,  253,  253,  253,
+      253,  253,  253,   63,  253,  253,  253,  253,   90,   91,
+       95,  253,  253,  253,  253,  129,  253,  253,  253,  150,
+      253,  164,  167,  253,  253,  253,  188,  253,  199,  253,
+      222,  253,  235,  253,  253,  253,  253,   56,  253,  253,
+
+      253,  253,  253,  253,  253,  253,  253,  253,  253,  253,
+      253,  253,  253,  160,  253,  253,  253,  253,  201,  253,
+      239,  253,  253,  253,  253,  253,  253,   62,   70,   85,
+      253,   89,  253,  253,  253,  253,  132,  253,  253,  253,
+      253,  183,  195,  233,  253,  253,  253,  253,  253,  253,
+      253,  118,  253,  253,  253,  253,  253,  180,  253,  253,
+       41,   55,  253,   59,  253,   87,  253,  253,  253,  253,
+      253,  253,  242,   58,  253,  253,  253,  253,  253,  253,
+      181,  253,  123,  124,  125,  134,  253,   61,  253,  139,
+        0
 
     } ;
 
@@ -580,84 +580,84 @@ static yyconst flex_int32_t yy_meta[74] =
         2,    2,    1
     } ;
 
-static yyconst flex_int16_t yy_base[1300] =
+static yyconst flex_int16_t yy_base[1293] =
     {   0,
-        0,    0, 1428, 1429, 1429, 1429, 1406, 1429, 1420, 1429,
-     1404,   65,   66,   64,   76,   78, 1406, 1429,   62, 1402,
+        0,    0, 1421, 1422, 1422, 1422, 1399, 1422, 1413, 1422,
+     1397,   65,   66,   64,   76,   78, 1399, 1422,   62, 1395,
        77,   51,   62,   70,   55,   69,   87,  103,   86,  108,
-        0, 1362,  104,  111,  125,   46,  123, 1354,  122,  178,
-      151,  126, 1359,   56, 1367, 1345, 1429, 1429, 1429, 1429,
-     1429, 1429, 1429, 1406,  194, 1429, 1429, 1429,  237,  244,
-      209, 1429, 1429, 1429, 1429, 1429, 1429,    0,   63, 1355,
-     1367, 1361, 1357, 1350, 1361, 1354, 1361, 1346,   24, 1346,
-      134,   92, 1350, 1357, 1340,  214, 1336, 1350, 1337, 1342,
-      144,  219, 1351,  111, 1347, 1333, 1346,  134, 1346,  210,
-
-     1333, 1332, 1328, 1331, 1349,  119, 1324, 1337,  155, 1325,
-     1344,    0, 1319, 1323, 1312,  167,  178,  151, 1351, 1331,
-      183, 1329, 1338, 1319, 1308, 1312, 1323, 1323, 1309, 1308,
-     1300,    0,  199,   95, 1314, 1321, 1308,  232,  150, 1309,
-     1330, 1317, 1298,  233, 1303, 1306, 1300,  233, 1296, 1295,
-     1294,  172,    0,    0, 1322, 1296,  222,  237,  244, 1307,
-      248, 1292, 1297, 1294, 1300, 1286, 1280, 1429, 1429,  302,
-      307,  316,  322,  327, 1284, 1286, 1281, 1283, 1288, 1295,
-     1290,  261, 1281, 1280, 1281, 1272, 1281, 1286, 1277, 1274,
-        0, 1275,  204, 1274,  250, 1281, 1278,  293, 1268,  298,
-
-     1276, 1263, 1255, 1270,    0, 1276, 1259, 1266, 1265, 1268,
-     1267, 1270, 1281, 1280, 1258, 1245, 1257, 1260,  318, 1250,
-     1252,  240,    0, 1245, 1243, 1249,  255, 1255, 1265, 1243,
-     1252,    0, 1252, 1271, 1273,  325, 1244, 1246, 1245, 1235,
-     1234, 1267, 1241, 1226, 1239, 1236, 1237,  310, 1222,  314,
-     1235, 1239, 1221, 1223, 1228, 1215,    0, 1229, 1245, 1230,
-     1220, 1225, 1228, 1219, 1209, 1213, 1218, 1211, 1222, 1209,
-     1217, 1216,  297, 1210, 1204, 1197, 1211, 1214, 1201, 1208,
-        0, 1201,  340, 1196, 1188, 1201, 1204, 1193, 1201, 1196,
-     1195, 1184,  345, 1196, 1189, 1197, 1219, 1190, 1178, 1177,
-
-     1192, 1174, 1192, 1172, 1190, 1177, 1184, 1172, 1182, 1173,
-     1165, 1177, 1178,  334,  390,  400,  409,  414,  419, 1163,
-     1170,    0, 1161, 1166, 1160, 1164, 1162, 1166, 1173,    0,
-     1205, 1163, 1162, 1165, 1159, 1163, 1163,    0, 1153, 1145,
-        0, 1158, 1162, 1151, 1172, 1143, 1147, 1141, 1148, 1142,
-        0, 1151, 1164,    0, 1134, 1147, 1138, 1137, 1136, 1129,
-     1128, 1145, 1144,    0,    0, 1129, 1159, 1128, 1135, 1123,
-     1130, 1119,    0, 1117,    0, 1132, 1155, 1129,    0, 1128,
-     1115,    0, 1112, 1130, 1116, 1115, 1113, 1106, 1106, 1123,
-     1143,    0,    0, 1111, 1102, 1127, 1102, 1100, 1100, 1097,
-
-     1104, 1099,    0, 1132, 1146, 1096, 1093,  316, 1095, 1091,
-     1131, 1095,  330, 1091, 1086, 1102, 1085, 1089, 1086, 1090,
-     1093, 1088, 1077, 1078, 1075,  325,    0, 1081, 1091, 1074,
-     1077, 1086, 1071, 1070, 1067, 1081, 1080, 1078, 1074, 1080,
-     1060, 1078, 1059, 1072,    0,    0, 1071, 1056, 1057,  314,
-     1060,    0,  389, 1063, 1066, 1053, 1064, 1048, 1054, 1063,
-     1064, 1059, 1075,    0,    0, 1075, 1085, 1050, 1065, 1034,
-     1039, 1045, 1037, 1048, 1033, 1035, 1044, 1038, 1044,    0,
-        0,    0, 1037,    0, 1042, 1035,    0,  425,  436,    0,
-     1025, 1056, 1038, 1044, 1037, 1022, 1026, 1025,    0, 1024,
-
-        0, 1019,    0, 1034, 1025, 1032, 1021, 1026, 1027, 1024,
-     1027, 1022, 1012, 1030, 1011, 1003, 1013, 1006, 1015, 1006,
-     1014, 1012, 1011, 1010, 1009, 1001, 1000,  328, 1005,  993,
-        0,    0, 1005,  990, 1003,    0,  983,  986,  993,    0,
-      994,  362,  983,  980,  983,  987,  981,  986,  973,  981,
-        0, 1003,  975,    0,  974,  983,  972,  988,  971,    0,
-      986, 1008,  984,  975,    0,  959,  971,  967,  961,  965,
-      974,    0,  975,    0,  971,  971,  971,    0,  960,    0,
-      978,  965,  953,  960,  966,  954,  948,  960,  963,  950,
-      944,  956,    0,    0,  973,  958,  955,  945,  939,  938,
-
-      973,    0,  945,  947,  946,    0,  931,  930,  934,  932,
-      933,  932,  939,  385,  941,  935,  922,  937,  920,  924,
-      932,  917,  941,  929,    0,    0,  945,  324,  923,  926,
-      952,    0,  924,    0,    0,  921,    0,  908,  921,    0,
-      916,    0,    0,    0,  956,  918,    0,  909,  908,  903,
-      908,  901,  898,    0,  904,  902,  903,  912,  907,  898,
-      897,  890,  913,  888,  901,  420,  888,    0,    0,  899,
-      898,  402,  893,    0,    0,  892,    0,  895,  890,    0,
-      897,  883,  434,  920,  886,    0,  891,  891,  883,  871,
-      885,  882,  898,  882,    0,    0,  881,  882,  870,  880,
+        0, 1355,  104,  111,  125,   46,  123, 1347,  122,  178,
+      151,  126, 1352,   56, 1360, 1338, 1422, 1422, 1422, 1422,
+     1422, 1422, 1422, 1399,  194, 1422, 1422, 1422,  237,  244,
+      209, 1422, 1422, 1422, 1422, 1422, 1422,    0,   63, 1348,
+     1360, 1354, 1350, 1343, 1354, 1347, 1354, 1339,   24, 1339,
+      134,   92, 1343, 1350, 1333,  214, 1329, 1343, 1330, 1335,
+      144,  219, 1344,  111, 1340, 1326, 1339,  134, 1339,  210,
+
+     1326, 1325, 1321, 1324, 1342,  119, 1317, 1330,  155, 1318,
+     1337,    0, 1312, 1316, 1305,  167,  178,  151, 1344, 1324,
+      183, 1322, 1331, 1312, 1301, 1305, 1316, 1316, 1302, 1301,
+     1293,    0,  199,   95, 1307, 1314, 1301,  232,  150, 1302,
+     1323, 1310, 1291,  233, 1296, 1299, 1293,  233, 1289, 1288,
+     1287,  172,    0,    0, 1315, 1289,  222,  237,  244, 1300,
+      248, 1285, 1290, 1287, 1293, 1279, 1273, 1422, 1422,  302,
+      307,  316,  322,  327, 1277, 1279, 1274, 1276, 1281, 1288,
+     1283,  261, 1274, 1273, 1274, 1265, 1274, 1279, 1270, 1267,
+        0, 1268,  204, 1267,  250, 1274, 1271,  293, 1261,  298,
+
+     1269, 1256, 1248, 1263,    0, 1269, 1252, 1259, 1258, 1261,
+     1260, 1263, 1274, 1273, 1251, 1238, 1250, 1253,  318, 1243,
+     1245,  240,    0, 1238, 1236, 1242,  255, 1248, 1258, 1236,
+     1245,    0, 1245, 1264, 1266,  325, 1237, 1239, 1238, 1228,
+     1227, 1260, 1234, 1219, 1232, 1229, 1230,  310, 1215,  314,
+     1228, 1232, 1214, 1216, 1221, 1208,    0, 1222, 1238, 1223,
+     1213, 1218, 1221, 1212, 1202, 1206, 1211, 1204, 1215, 1202,
+     1210, 1209,  297, 1203, 1197, 1190, 1204, 1207, 1194, 1201,
+        0, 1194,  340, 1189, 1181, 1194, 1197, 1186, 1194, 1189,
+     1188, 1177,  345, 1189, 1182, 1190, 1212, 1183, 1171, 1170,
+
+     1185, 1167, 1185, 1165, 1183, 1170, 1177, 1165, 1175, 1166,
+     1158, 1170, 1171,  334,  390,  400,  409,  414,  419, 1156,
+     1163,    0, 1154, 1159, 1153, 1157, 1155, 1159, 1166,    0,
+     1198, 1156, 1155, 1158, 1152, 1156, 1156,    0, 1146, 1138,
+        0, 1151, 1155, 1144, 1165, 1136, 1140, 1134, 1141, 1135,
+        0, 1144, 1157,    0, 1127, 1140, 1131, 1130, 1129, 1122,
+     1121, 1138, 1137,    0,    0, 1122, 1152, 1121, 1128, 1116,
+     1123, 1112,    0, 1110,    0, 1125, 1148, 1122,    0, 1121,
+     1108,    0, 1105, 1123, 1109, 1108, 1106, 1099, 1099, 1116,
+     1136,    0,    0, 1104, 1095, 1120, 1095, 1093, 1093, 1090,
+
+     1097, 1092,    0, 1125, 1139, 1089, 1086,  316, 1088, 1084,
+     1124, 1088,  330, 1084, 1079, 1095, 1078, 1082, 1079, 1083,
+     1086, 1081, 1070, 1071, 1068,  325,    0, 1074, 1084, 1067,
+     1070, 1079, 1064, 1063, 1060, 1074, 1073, 1071, 1067, 1073,
+     1053, 1071, 1052, 1065,    0,    0, 1064, 1049, 1050,  314,
+     1053,    0,  389, 1056, 1059, 1046, 1057, 1041, 1047, 1056,
+     1057, 1052, 1068,    0,    0, 1068, 1078, 1043, 1058, 1027,
+     1032, 1038, 1030, 1041, 1026, 1028, 1037, 1031, 1037,    0,
+        0,    0, 1030,    0, 1035, 1028,    0,  425,  436,    0,
+     1018, 1049, 1031, 1037, 1030, 1015, 1019, 1018,    0, 1017,
+
+        0, 1012,    0, 1027, 1018, 1025, 1014, 1019, 1020, 1017,
+     1020, 1015, 1005, 1023, 1004,  996, 1006,  999, 1008,  999,
+     1007, 1005, 1004, 1003, 1002,  994,  993,  328,  998,  986,
+        0,    0,  998,  983,  996,    0,  976,  979,  986,    0,
+      987,  362,  976,  973,  976,  980,  974,  979,  966,  974,
+        0,  996,  968,    0,  967,  976,  965,  981,  964,    0,
+      979, 1001,  977,  968,    0,  952,  964,  960,  954,  958,
+      967,    0,  968,    0,  964,  964,  964,    0,  953,    0,
+      971,  958,  946,  953,  959,  947,  941,  953,  956,  943,
+      937,  949,    0,    0,  966,  951,  948,  938,  932,  931,
+
+      966,    0,  938,  940,  939,    0,  924,  923,  927,  925,
+      926,  925,  932,  385,  934,  928,  915,  930,  913,  917,
+      925,  910,  934,  922,    0,    0,  938,  324,  916,  919,
+      945,    0,  917,    0,    0,  914,    0,  901,  914,    0,
+      909,    0,    0,    0,  949,  911,    0,  902,  901,  896,
+      901,  894,  891,    0,  897,  895,  896,  905,  900,  891,
+      890,  883,  906,  881,  894,  420,  881,    0,    0,  892,
+      891,  402,  886,    0,    0,  885,    0,  888,  883,    0,
+      890,  876,  434,  913,  879,    0,  884,  884,  876,  864,
+      878,  875,  891,  875,    0,    0,  874,  875,  863,  873,
 
        37,   61,   92,    0,  140,    0,  165,  198,  215,  432,
       261,  292,  302,    0,  313,    0,  332,  340,  412,  341,
@@ -716,165 +716,165 @@ static yyconst flex_int16_t yy_base[1300] =
 
       805,  798,  809,  789,  800,  796,  797,  824,  825,  826,
       815,  816,  822,    0,  805,  820,  808,  810,    0,  810,
-        0,  828,  817,  828,  819,  814,  831,    0,    0,  846,
-      819,    0,  829,  844,  845,  846,    0,  852,  848,  825,
-      827,    0,    0,    0,  832,  828,  842,  845,  831,  831,
-      837,  828,    0,  869,  870,  871,  855,  879,    0,  839,
-      840,    0,    0,  855,    0,  852,  879,    0,  873,  874,
-      875,  854,  884,  850,    0,    0,  855,  856,  882,  883,
-      884,  869,  895,    0,  863,  866,    0,    0,    0,    0,
-      890,    0,  874,  900,  863,    0,    0, 1429,  927
+        0,  828,  817,  828,  819,  814,  831,    0,    0,    0,
+      818,    0,  828,  843,  844,  845,    0,  851,  847,  824,
+      826,    0,    0,    0,  831,  827,  841,  844,  830,  830,
+      826,    0,  867,  868,  869,  853,  877,    0,  837,  838,
+        0,    0,  853,    0,  850,    0,  870,  871,  872,  851,
+      881,  847,    0,    0,  852,  878,  879,  880,  865,  891,
+        0,  859,    0,    0,    0,    0,  885,    0,  894,    0,
+     1422,  920
 
     } ;
 
-static yyconst flex_int16_t yy_def[1300] =
+static yyconst flex_int16_t yy_def[1293] =
     {   0,
-     1298,    1, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1298, 1298, 1298, 1298, 1298, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1298, 1298, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299, 1299,
-     1299, 1299, 1299, 1299, 1299, 1299, 1299,    0, 1298
+     1291,    1, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1291, 1291, 1291, 1291, 1291, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1291, 1291, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+     1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292, 1292,
+        0, 1291
 
     } ;
 
-static yyconst flex_int16_t yy_nxt[1503] =
+static yyconst flex_int16_t yy_nxt[1496] =
     {   0,
         4,    5,    6,    7,    8,    9,   10,   11,   12,   13,
        14,   15,   16,   16,   16,   16,   16,   17,   18,   19,
@@ -977,74 +977,73 @@ static yyconst flex_int16_t yy_nxt[1503] =
 
      1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279,
      1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289,
-     1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297,   68,  816,
-      815,  814,  813,  812,  811,  810,  809,  808,  807,  806,
-      805,  804,  803,  800,  799,  798,  797,  796,  795,  791,
-      790,  789,  785,  784,  783,  782,  781,  780,  779,  778,
-      777,  776,  775,  774,  773,  772,  771,  770,  769,  768,
-      767,  766,  765,  764,  763,  762,  761,  760,  759,  756,
-      755,  754,  753,  752,  751,  750,  749,  748,  747,  746,
-      743,  742,  741,  740,  739,  738,  737,  736,  735,  734,
-
-      733,  732,  731,  730,  729,  728,  727,  726,  725,  724,
-      723,  722,  721,  720,  719,  718,  717,  716,  715,  714,
-      713,  712,  711,  710,  709,  708,  707,  706,  705,  704,
-      703,  702,  701,  700,  699,  698,  697,  696,  695,  694,
-      693,  692,  691,  690,  689,  688,  687,  686,  685,  682,
-      681,  680,  679,  678,  677,  676,  675,  674,  671,  670,
-      669,  668,  667,  666,  665,  664,  663,  662,  661,  660,
-      659,  658,  657,  656,  655,  654,  653,  652,  651,  650,
-      649,  648,  647,  646,  645,  644,  643,  642,  641,  640,
-      639,  638,  637,  636,  635,  634,  633,  632,  631,  630,
-
-      629,  628,  627,  626,  625,  624,  623,  622,  621,  620,
-      619,  618,  617,  616,  615,  614,  613,  612,  611,  607,
-      604,  603,  602,  601,  600,  599,  598,  597,  596,  595,
-      594,  593,  592,  591,  590,  589,  588,  587,  586,  585,
-      582,  581,  580,  579,  578,  577,  576,  575,  574,  573,
-      572,  571,  568,  567,  566,  565,  562,  561,  560,  559,
-      558,  557,  556,  555,  554,  553,  552,  551,  550,  549,
-      548,  547,  546,  545,  544,  543,  542,  541,  540,  539,
-      538,  537,  536,  535,  534,  533,  532,  531,  530,  529,
-      528,  527,  526,  525,  524,  523,  522,  521,  520,  519,
+     1290,   68,  816,  815,  814,  813,  812,  811,  810,  809,
+      808,  807,  806,  805,  804,  803,  800,  799,  798,  797,
+      796,  795,  791,  790,  789,  785,  784,  783,  782,  781,
+      780,  779,  778,  777,  776,  775,  774,  773,  772,  771,
+      770,  769,  768,  767,  766,  765,  764,  763,  762,  761,
+      760,  759,  756,  755,  754,  753,  752,  751,  750,  749,
+      748,  747,  746,  743,  742,  741,  740,  739,  738,  737,
+      736,  735,  734,  733,  732,  731,  730,  729,  728,  727,
+
+      726,  725,  724,  723,  722,  721,  720,  719,  718,  717,
+      716,  715,  714,  713,  712,  711,  710,  709,  708,  707,
+      706,  705,  704,  703,  702,  701,  700,  699,  698,  697,
+      696,  695,  694,  693,  692,  691,  690,  689,  688,  687,
+      686,  685,  682,  681,  680,  679,  678,  677,  676,  675,
+      674,  671,  670,  669,  668,  667,  666,  665,  664,  663,
+      662,  661,  660,  659,  658,  657,  656,  655,  654,  653,
+      652,  651,  650,  649,  648,  647,  646,  645,  644,  643,
+      642,  641,  640,  639,  638,  637,  636,  635,  634,  633,
+      632,  631,  630,  629,  628,  627,  626,  625,  624,  623,
+
+      622,  621,  620,  619,  618,  617,  616,  615,  614,  613,
+      612,  611,  607,  604,  603,  602,  601,  600,  599,  598,
+      597,  596,  595,  594,  593,  592,  591,  590,  589,  588,
+      587,  586,  585,  582,  581,  580,  579,  578,  577,  576,
+      575,  574,  573,  572,  571,  568,  567,  566,  565,  562,
+      561,  560,  559,  558,  557,  556,  555,  554,  553,  552,
+      551,  550,  549,  548,  547,  546,  545,  544,  543,  542,
+      541,  540,  539,  538,  537,  536,  535,  534,  533,  532,
+      531,  530,  529,  528,  527,  526,  525,  524,  523,  522,
+      521,  520,  519,  518,  517,  516,  515,  514,  513,  512,
+
+      511,  510,  509,  508,  507,  506,  505,  504,  503,  502,
+      501,  500,  499,  498,  497,  496,  495,  494,  493,  492,
+      491,  490,  480,  479,  478,  477,  476,  475,  474,  473,
+      472,  471,  470,  469,  468,  467,  466,  465,  464,  463,
+      462,  461,  452,  451,  450,  449,  448,  447,  446,  445,
+      444,  438,  437,  436,  435,  434,  433,  432,  431,  427,
+      426,  425,  424,  423,  422,  421,  420,  419,  418,  417,
+      416,  415,  414,  413,  412,  411,  410,  409,  408,  407,
+      404,  401,  400,  399,  398,  397,  396,  395,  394,  393,
+      392,  391,  385,  384,  383,  382,  381,  380,  379,  376,
+
+      375,  374,  371,  370,  367,  366,  365,  364,  363,  362,
+      361,  360,  359,  358,  357,  356,  355,  354,  353,  352,
+      351,  348,  345,  344,  341,  338,  337,  336,  335,  334,
+      333,  332,  331,  330,  326,  325,  324,  323,  322,  321,
+      320,  314,  313,  312,  311,  310,  309,  306,  298,  297,
+      294,  293,  292,  288,  287,  286,  283,  282,  281,  280,
+      272,  271,  270,  265,  264,  263,  262,  261,  260,  259,
+      258,  257,  256,  253,  252,  245,  244,  243,  242,  241,
+      238,  237,  234,  233,  232,  231,  230,  225,  221,  220,
+      219,  216,  208,  207,  206,  205,  196,  195,  194,  188,
+
+      185,  184,  183,  182,  181,  180,  179,  178,  177,  169,
+      168,  167,  164,  136,  114,   65,   62,   49,   48,   47,
+     1291,    3, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291
 
-      518,  517,  516,  515,  514,  513,  512,  511,  510,  509,
-      508,  507,  506,  505,  504,  503,  502,  501,  500,  499,
-      498,  497,  496,  495,  494,  493,  492,  491,  490,  480,
-      479,  478,  477,  476,  475,  474,  473,  472,  471,  470,
-      469,  468,  467,  466,  465,  464,  463,  462,  461,  452,
-      451,  450,  449,  448,  447,  446,  445,  444,  438,  437,
-      436,  435,  434,  433,  432,  431,  427,  426,  425,  424,
-      423,  422,  421,  420,  419,  418,  417,  416,  415,  414,
-      413,  412,  411,  410,  409,  408,  407,  404,  401,  400,
-      399,  398,  397,  396,  395,  394,  393,  392,  391,  385,
-
-      384,  383,  382,  381,  380,  379,  376,  375,  374,  371,
-      370,  367,  366,  365,  364,  363,  362,  361,  360,  359,
-      358,  357,  356,  355,  354,  353,  352,  351,  348,  345,
-      344,  341,  338,  337,  336,  335,  334,  333,  332,  331,
-      330,  326,  325,  324,  323,  322,  321,  320,  314,  313,
-      312,  311,  310,  309,  306,  298,  297,  294,  293,  292,
-      288,  287,  286,  283,  282,  281,  280,  272,  271,  270,
-      265,  264,  263,  262,  261,  260,  259,  258,  257,  256,
-      253,  252,  245,  244,  243,  242,  241,  238,  237,  234,
-      233,  232,  231,  230,  225,  221,  220,  219,  216,  208,
-
-      207,  206,  205,  196,  195,  194,  188,  185,  184,  183,
-      182,  181,  180,  179,  178,  177,  169,  168,  167,  164,
-      136,  114,   65,   62,   49,   48,   47, 1298,    3, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-
-     1298, 1298
     } ;
 
-static yyconst flex_int16_t yy_chk[1503] =
+static yyconst flex_int16_t yy_chk[1496] =
     {   0,
         1,    1,    1,    1,    1,    1,    1,    1,    1,    1,
         1,    1,    1,    1,    1,    1,    1,    1,    1,    1,
@@ -1142,76 +1141,75 @@ static yyconst flex_int16_t yy_chk[1503] =
      1194, 1195, 1196, 1197, 1199, 1200, 1201, 1202, 1203, 1204,
      1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1185,
      1215, 1216, 1217, 1218, 1220, 1222, 1223, 1224, 1225, 1226,
-     1227, 1230, 1231, 1233, 1234, 1235, 1236, 1238, 1239, 1240,
-     1241, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1254,
-
-     1255, 1256, 1257, 1258, 1260, 1261, 1264, 1266, 1267, 1269,
-     1270, 1271, 1272, 1273, 1274, 1277, 1278, 1279, 1280, 1281,
-     1282, 1283, 1285, 1286, 1291, 1293, 1294, 1295, 1299,  700,
-      699,  698,  697,  694,  693,  692,  691,  690,  689,  688,
-      687,  685,  684,  682,  681,  679,  678,  676,  673,  671,
-      670,  667,  665,  664,  663,  662,  661,  660,  659,  658,
-      657,  656,  655,  653,  652,  651,  650,  649,  648,  646,
-      645,  641,  639,  638,  636,  633,  631,  630,  629,  627,
-      624,  623,  622,  621,  620,  619,  618,  617,  616,  615,
-      613,  612,  611,  610,  609,  608,  607,  605,  604,  603,
-
-      601,  600,  599,  598,  597,  596,  595,  592,  591,  590,
-      589,  588,  587,  586,  585,  584,  583,  582,  581,  579,
-      577,  576,  575,  573,  571,  570,  569,  568,  567,  566,
-      564,  563,  562,  561,  559,  558,  557,  556,  555,  553,
-      552,  550,  549,  548,  547,  546,  545,  544,  543,  541,
-      539,  538,  537,  535,  534,  533,  530,  529,  527,  526,
-      525,  524,  523,  522,  521,  520,  519,  518,  517,  516,
-      515,  514,  513,  512,  511,  510,  509,  508,  507,  506,
-      505,  504,  502,  500,  498,  497,  496,  495,  494,  493,
-      492,  491,  486,  485,  483,  479,  478,  477,  476,  475,
-
-      474,  473,  472,  471,  470,  469,  468,  467,  466,  463,
-      462,  461,  460,  459,  458,  457,  456,  455,  454,  451,
-      449,  448,  447,  444,  443,  442,  441,  440,  439,  438,
-      437,  436,  435,  434,  433,  432,  431,  430,  429,  428,
-      425,  424,  423,  422,  421,  420,  419,  418,  417,  416,
-      415,  414,  412,  411,  410,  409,  407,  406,  405,  404,
-      402,  401,  400,  399,  398,  397,  396,  395,  394,  391,
-      390,  389,  388,  387,  386,  385,  384,  383,  381,  380,
-      378,  377,  376,  374,  372,  371,  370,  369,  368,  367,
-      366,  363,  362,  361,  360,  359,  358,  357,  356,  355,
-
-      353,  352,  350,  349,  348,  347,  346,  345,  344,  343,
-      342,  340,  339,  337,  336,  335,  334,  333,  332,  331,
-      329,  328,  327,  326,  325,  324,  323,  321,  320,  313,
-      312,  311,  310,  309,  308,  307,  306,  305,  304,  303,
-      302,  301,  300,  299,  298,  297,  296,  295,  294,  292,
-      291,  290,  289,  288,  287,  286,  285,  284,  282,  280,
-      279,  278,  277,  276,  275,  274,  272,  271,  270,  269,
-      268,  267,  266,  265,  264,  263,  262,  261,  260,  259,
-      258,  256,  255,  254,  253,  252,  251,  249,  247,  246,
-      245,  244,  243,  242,  241,  240,  239,  238,  237,  235,
-
-      234,  233,  231,  230,  229,  228,  226,  225,  224,  221,
-      220,  218,  217,  216,  215,  214,  213,  212,  211,  210,
-      209,  208,  207,  206,  204,  203,  202,  201,  199,  197,
-      196,  194,  192,  190,  189,  188,  187,  186,  185,  184,
-      183,  181,  180,  179,  178,  177,  176,  175,  167,  166,
-      165,  164,  163,  162,  160,  156,  155,  151,  150,  149,
-      147,  146,  145,  143,  142,  141,  140,  137,  136,  135,
-      131,  130,  129,  128,  127,  126,  125,  124,  123,  122,
-      120,  119,  115,  114,  113,  111,  110,  108,  107,  105,
-      104,  103,  102,  101,   99,   97,   96,   95,   93,   90,
-
-       89,   88,   87,   85,   84,   83,   80,   78,   77,   76,
-       75,   74,   73,   72,   71,   70,   54,   46,   45,   43,
-       38,   32,   20,   17,   11,    9,    7,    3, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-     1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298, 1298,
-
-     1298, 1298
+     1227, 1231, 1233, 1234, 1235, 1236, 1238, 1239, 1240, 1241,
+     1245, 1246, 1247, 1248, 1249, 1250, 1251, 1253, 1254, 1255,
+
+     1256, 1257, 1259, 1260, 1263, 1265, 1267, 1268, 1269, 1270,
+     1271, 1272, 1275, 1276, 1277, 1278, 1279, 1280, 1282, 1287,
+     1289, 1292,  700,  699,  698,  697,  694,  693,  692,  691,
+      690,  689,  688,  687,  685,  684,  682,  681,  679,  678,
+      676,  673,  671,  670,  667,  665,  664,  663,  662,  661,
+      660,  659,  658,  657,  656,  655,  653,  652,  651,  650,
+      649,  648,  646,  645,  641,  639,  638,  636,  633,  631,
+      630,  629,  627,  624,  623,  622,  621,  620,  619,  618,
+      617,  616,  615,  613,  612,  611,  610,  609,  608,  607,
+      605,  604,  603,  601,  600,  599,  598,  597,  596,  595,
+
+      592,  591,  590,  589,  588,  587,  586,  585,  584,  583,
+      582,  581,  579,  577,  576,  575,  573,  571,  570,  569,
+      568,  567,  566,  564,  563,  562,  561,  559,  558,  557,
+      556,  555,  553,  552,  550,  549,  548,  547,  546,  545,
+      544,  543,  541,  539,  538,  537,  535,  534,  533,  530,
+      529,  527,  526,  525,  524,  523,  522,  521,  520,  519,
+      518,  517,  516,  515,  514,  513,  512,  511,  510,  509,
+      508,  507,  506,  505,  504,  502,  500,  498,  497,  496,
+      495,  494,  493,  492,  491,  486,  485,  483,  479,  478,
+      477,  476,  475,  474,  473,  472,  471,  470,  469,  468,
+
+      467,  466,  463,  462,  461,  460,  459,  458,  457,  456,
+      455,  454,  451,  449,  448,  447,  444,  443,  442,  441,
+      440,  439,  438,  437,  436,  435,  434,  433,  432,  431,
+      430,  429,  428,  425,  424,  423,  422,  421,  420,  419,
+      418,  417,  416,  415,  414,  412,  411,  410,  409,  407,
+      406,  405,  404,  402,  401,  400,  399,  398,  397,  396,
+      395,  394,  391,  390,  389,  388,  387,  386,  385,  384,
+      383,  381,  380,  378,  377,  376,  374,  372,  371,  370,
+      369,  368,  367,  366,  363,  362,  361,  360,  359,  358,
+      357,  356,  355,  353,  352,  350,  349,  348,  347,  346,
+
+      345,  344,  343,  342,  340,  339,  337,  336,  335,  334,
+      333,  332,  331,  329,  328,  327,  326,  325,  324,  323,
+      321,  320,  313,  312,  311,  310,  309,  308,  307,  306,
+      305,  304,  303,  302,  301,  300,  299,  298,  297,  296,
+      295,  294,  292,  291,  290,  289,  288,  287,  286,  285,
+      284,  282,  280,  279,  278,  277,  276,  275,  274,  272,
+      271,  270,  269,  268,  267,  266,  265,  264,  263,  262,
+      261,  260,  259,  258,  256,  255,  254,  253,  252,  251,
+      249,  247,  246,  245,  244,  243,  242,  241,  240,  239,
+      238,  237,  235,  234,  233,  231,  230,  229,  228,  226,
+
+      225,  224,  221,  220,  218,  217,  216,  215,  214,  213,
+      212,  211,  210,  209,  208,  207,  206,  204,  203,  202,
+      201,  199,  197,  196,  194,  192,  190,  189,  188,  187,
+      186,  185,  184,  183,  181,  180,  179,  178,  177,  176,
+      175,  167,  166,  165,  164,  163,  162,  160,  156,  155,
+      151,  150,  149,  147,  146,  145,  143,  142,  141,  140,
+      137,  136,  135,  131,  130,  129,  128,  127,  126,  125,
+      124,  123,  122,  120,  119,  115,  114,  113,  111,  110,
+      108,  107,  105,  104,  103,  102,  101,   99,   97,   96,
+       95,   93,   90,   89,   88,   87,   85,   84,   83,   80,
+
+       78,   77,   76,   75,   74,   73,   72,   71,   70,   54,
+       46,   45,   43,   38,   32,   20,   17,   11,    9,    7,
+        3, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291, 1291,
+     1291, 1291, 1291, 1291, 1291
+
     } ;
 
 static yy_state_type yy_last_accepting_state;
@@ -1298,7 +1296,7 @@ void   skipline(void);
 // versions of flex/bison
 #define register
 
-#line 1302 "Gmsh.yy.cpp"
+#line 1300 "Gmsh.yy.cpp"
 
 #define INITIAL 0
 
@@ -1483,7 +1481,7 @@ YY_DECL
 #line 79 "Gmsh.l"
 
 
-#line 1487 "Gmsh.yy.cpp"
+#line 1485 "Gmsh.yy.cpp"
 
 	if ( !(yy_init) )
 		{
@@ -1536,13 +1534,13 @@ yy_match:
 			while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
 				{
 				yy_current_state = (int) yy_def[yy_current_state];
-				if ( yy_current_state >= 1299 )
+				if ( yy_current_state >= 1292 )
 					yy_c = yy_meta[(unsigned int) yy_c];
 				}
 			yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
 			++yy_cp;
 			}
-		while ( yy_base[yy_current_state] != 1429 );
+		while ( yy_base[yy_current_state] != 1422 );
 
 yy_find_action:
 		yy_act = yy_accept[yy_current_state];
@@ -1995,7 +1993,7 @@ return tCreateTopology;
 case 86:
 YY_RULE_SETUP
 #line 169 "Gmsh.l"
-return tCreateTopologyNoHoles;
+return tCurrentDirectory;
 	YY_BREAK
 case 87:
 YY_RULE_SETUP
@@ -2005,62 +2003,62 @@ return tCurrentDirectory;
 case 88:
 YY_RULE_SETUP
 #line 171 "Gmsh.l"
-return tCurrentDirectory;
+return tCylinder;
 	YY_BREAK
 case 89:
 YY_RULE_SETUP
-#line 172 "Gmsh.l"
-return tCylinder;
+#line 173 "Gmsh.l"
+return tDefineConstant;
 	YY_BREAK
 case 90:
 YY_RULE_SETUP
 #line 174 "Gmsh.l"
-return tDefineConstant;
+return tDefineNumber;
 	YY_BREAK
 case 91:
 YY_RULE_SETUP
 #line 175 "Gmsh.l"
-return tDefineNumber;
+return tDefineString;
 	YY_BREAK
 case 92:
 YY_RULE_SETUP
 #line 176 "Gmsh.l"
-return tDefineString;
+return tDegenerated;
 	YY_BREAK
 case 93:
 YY_RULE_SETUP
 #line 177 "Gmsh.l"
-return tDegenerated;
+return tDelete;
 	YY_BREAK
 case 94:
 YY_RULE_SETUP
 #line 178 "Gmsh.l"
-return tDelete;
+return tDilate;
 	YY_BREAK
 case 95:
 YY_RULE_SETUP
 #line 179 "Gmsh.l"
-return tDilate;
+return tDimNameSpace;
 	YY_BREAK
 case 96:
 YY_RULE_SETUP
 #line 180 "Gmsh.l"
-return tDimNameSpace;
+return tDirName;
 	YY_BREAK
 case 97:
 YY_RULE_SETUP
 #line 181 "Gmsh.l"
-return tDirName;
+return tDisk;
 	YY_BREAK
 case 98:
 YY_RULE_SETUP
 #line 182 "Gmsh.l"
-return tDisk;
+return tDraw;
 	YY_BREAK
 case 99:
 YY_RULE_SETUP
-#line 183 "Gmsh.l"
-return tDraw;
+#line 184 "Gmsh.l"
+return tEllipse;
 	YY_BREAK
 case 100:
 YY_RULE_SETUP
@@ -2070,775 +2068,770 @@ return tEllipse;
 case 101:
 YY_RULE_SETUP
 #line 186 "Gmsh.l"
-return tEllipse;
+return tEllipsoid;
 	YY_BREAK
 case 102:
 YY_RULE_SETUP
 #line 187 "Gmsh.l"
-return tEllipsoid;
+return tElliptic;
 	YY_BREAK
 case 103:
 YY_RULE_SETUP
 #line 188 "Gmsh.l"
-return tElliptic;
+return tElse;
 	YY_BREAK
 case 104:
 YY_RULE_SETUP
 #line 189 "Gmsh.l"
-return tElse;
+return tElseIf;
 	YY_BREAK
 case 105:
 YY_RULE_SETUP
 #line 190 "Gmsh.l"
-return tElseIf;
+return tEndFor;
 	YY_BREAK
 case 106:
 YY_RULE_SETUP
 #line 191 "Gmsh.l"
-return tEndFor;
+return tEndIf;
 	YY_BREAK
 case 107:
 YY_RULE_SETUP
 #line 192 "Gmsh.l"
-return tEndIf;
+return tError;
 	YY_BREAK
 case 108:
 YY_RULE_SETUP
 #line 193 "Gmsh.l"
-return tError;
+return tEuclidian;
 	YY_BREAK
 case 109:
 YY_RULE_SETUP
 #line 194 "Gmsh.l"
-return tEuclidian;
+return tExists;
 	YY_BREAK
 case 110:
 YY_RULE_SETUP
 #line 195 "Gmsh.l"
-return tExists;
+return tExit;
 	YY_BREAK
 case 111:
 YY_RULE_SETUP
 #line 196 "Gmsh.l"
-return tExit;
+return tExp;
 	YY_BREAK
 case 112:
 YY_RULE_SETUP
 #line 197 "Gmsh.l"
-return tExp;
+return tExtrude;
 	YY_BREAK
 case 113:
 YY_RULE_SETUP
-#line 198 "Gmsh.l"
-return tExtrude;
+#line 199 "Gmsh.l"
+return tFabs;
 	YY_BREAK
 case 114:
 YY_RULE_SETUP
 #line 200 "Gmsh.l"
-return tFabs;
+return tField;
 	YY_BREAK
 case 115:
 YY_RULE_SETUP
 #line 201 "Gmsh.l"
-return tField;
+return tFileExists;
 	YY_BREAK
 case 116:
 YY_RULE_SETUP
 #line 202 "Gmsh.l"
-return tFileExists;
+return tFillet;
 	YY_BREAK
 case 117:
 YY_RULE_SETUP
 #line 203 "Gmsh.l"
-return tFillet;
+return tFind;
 	YY_BREAK
 case 118:
 YY_RULE_SETUP
 #line 204 "Gmsh.l"
-return tFind;
+return tFixRelativePath;
 	YY_BREAK
 case 119:
 YY_RULE_SETUP
 #line 205 "Gmsh.l"
-return tFixRelativePath;
+return tFloor;
 	YY_BREAK
 case 120:
 YY_RULE_SETUP
 #line 206 "Gmsh.l"
-return tFloor;
+return tFmod;
 	YY_BREAK
 case 121:
 YY_RULE_SETUP
 #line 207 "Gmsh.l"
-return tFmod;
+return tFor;
 	YY_BREAK
 case 122:
 YY_RULE_SETUP
 #line 208 "Gmsh.l"
-return tFor;
+return tMacro;
 	YY_BREAK
 case 123:
 YY_RULE_SETUP
-#line 209 "Gmsh.l"
-return tMacro;
+#line 210 "Gmsh.l"
+return tGMSH_MAJOR_VERSION;
 	YY_BREAK
 case 124:
 YY_RULE_SETUP
 #line 211 "Gmsh.l"
-return tGMSH_MAJOR_VERSION;
+return tGMSH_MINOR_VERSION;
 	YY_BREAK
 case 125:
 YY_RULE_SETUP
 #line 212 "Gmsh.l"
-return tGMSH_MINOR_VERSION;
+return tGMSH_PATCH_VERSION;
 	YY_BREAK
 case 126:
 YY_RULE_SETUP
 #line 213 "Gmsh.l"
-return tGMSH_PATCH_VERSION;
+return tGeoEntity;
 	YY_BREAK
 case 127:
 YY_RULE_SETUP
 #line 214 "Gmsh.l"
-return tGeoEntity;
+return tGetEnv;
 	YY_BREAK
 case 128:
 YY_RULE_SETUP
 #line 215 "Gmsh.l"
-return tGetEnv;
+return tGetForced;
 	YY_BREAK
 case 129:
 YY_RULE_SETUP
 #line 216 "Gmsh.l"
-return tGetForced;
+return tGetForcedStr;
 	YY_BREAK
 case 130:
 YY_RULE_SETUP
 #line 217 "Gmsh.l"
-return tGetForcedStr;
+return tGetNumber;
 	YY_BREAK
 case 131:
 YY_RULE_SETUP
 #line 218 "Gmsh.l"
-return tGetNumber;
+return tGetString;
 	YY_BREAK
 case 132:
 YY_RULE_SETUP
 #line 219 "Gmsh.l"
-return tGetString;
+return tGetStringValue;
 	YY_BREAK
 case 133:
 YY_RULE_SETUP
 #line 220 "Gmsh.l"
-return tGetStringValue;
+return tGetValue;
 	YY_BREAK
 case 134:
 YY_RULE_SETUP
 #line 221 "Gmsh.l"
-return tGetValue;
+return tGmshExecutableName;
 	YY_BREAK
 case 135:
 YY_RULE_SETUP
-#line 222 "Gmsh.l"
-return tGmshExecutableName;
+#line 223 "Gmsh.l"
+return tHide;
 	YY_BREAK
 case 136:
 YY_RULE_SETUP
 #line 224 "Gmsh.l"
-return tHide;
+return tHole;
 	YY_BREAK
 case 137:
 YY_RULE_SETUP
 #line 225 "Gmsh.l"
-return tHole;
+return tHomology;
 	YY_BREAK
 case 138:
 YY_RULE_SETUP
 #line 226 "Gmsh.l"
-return tHomology;
+return tHypot;
 	YY_BREAK
 case 139:
 YY_RULE_SETUP
-#line 227 "Gmsh.l"
-return tHypot;
+#line 228 "Gmsh.l"
+return tInterpolationScheme;
 	YY_BREAK
 case 140:
 YY_RULE_SETUP
 #line 229 "Gmsh.l"
-return tInterpolationScheme;
+return tIf;
 	YY_BREAK
 case 141:
 YY_RULE_SETUP
 #line 230 "Gmsh.l"
-return tIf;
+return tIn;
 	YY_BREAK
 case 142:
 YY_RULE_SETUP
 #line 231 "Gmsh.l"
-return tIn;
+return tIntersect;
 	YY_BREAK
 case 143:
 YY_RULE_SETUP
-#line 232 "Gmsh.l"
-return tIntersect;
+#line 233 "Gmsh.l"
+return tNurbsKnots;
 	YY_BREAK
 case 144:
 YY_RULE_SETUP
-#line 234 "Gmsh.l"
-return tNurbsKnots;
+#line 235 "Gmsh.l"
+return tLayers;
 	YY_BREAK
 case 145:
 YY_RULE_SETUP
 #line 236 "Gmsh.l"
-return tLayers;
+return tLength;
 	YY_BREAK
 case 146:
 YY_RULE_SETUP
 #line 237 "Gmsh.l"
-return tLength;
+return tLevelset;
 	YY_BREAK
 case 147:
 YY_RULE_SETUP
 #line 238 "Gmsh.l"
-return tLevelset;
+return tLinSpace;
 	YY_BREAK
 case 148:
 YY_RULE_SETUP
 #line 239 "Gmsh.l"
-return tLinSpace;
+return tLine;
 	YY_BREAK
 case 149:
 YY_RULE_SETUP
 #line 240 "Gmsh.l"
-return tLine;
+return tList;
 	YY_BREAK
 case 150:
 YY_RULE_SETUP
 #line 241 "Gmsh.l"
-return tList;
+return tListFromFile;
 	YY_BREAK
 case 151:
 YY_RULE_SETUP
 #line 242 "Gmsh.l"
-return tListFromFile;
+return tLog;
 	YY_BREAK
 case 152:
 YY_RULE_SETUP
 #line 243 "Gmsh.l"
-return tLog;
+return tLog10;
 	YY_BREAK
 case 153:
 YY_RULE_SETUP
 #line 244 "Gmsh.l"
-return tLog10;
+return tLogSpace;
 	YY_BREAK
 case 154:
 YY_RULE_SETUP
 #line 245 "Gmsh.l"
-return tLogSpace;
+return tLowerCase;
 	YY_BREAK
 case 155:
 YY_RULE_SETUP
 #line 246 "Gmsh.l"
-return tLowerCase;
+return tLowerCaseIn;
 	YY_BREAK
 case 156:
 YY_RULE_SETUP
-#line 247 "Gmsh.l"
-return tLowerCaseIn;
+#line 248 "Gmsh.l"
+return tMPI_Rank;
 	YY_BREAK
 case 157:
 YY_RULE_SETUP
 #line 249 "Gmsh.l"
-return tMPI_Rank;
+return tMPI_Size;
 	YY_BREAK
 case 158:
 YY_RULE_SETUP
 #line 250 "Gmsh.l"
-return tMPI_Size;
+return tMacro;
 	YY_BREAK
 case 159:
 YY_RULE_SETUP
 #line 251 "Gmsh.l"
-return tMacro;
+return tMemory;
 	YY_BREAK
 case 160:
 YY_RULE_SETUP
 #line 252 "Gmsh.l"
-return tMemory;
+return tMeshAlgorithm;
 	YY_BREAK
 case 161:
 YY_RULE_SETUP
 #line 253 "Gmsh.l"
-return tMeshAlgorithm;
+return tModulo;
 	YY_BREAK
 case 162:
 YY_RULE_SETUP
-#line 254 "Gmsh.l"
-return tModulo;
+#line 255 "Gmsh.l"
+return tNameToString;
 	YY_BREAK
 case 163:
 YY_RULE_SETUP
 #line 256 "Gmsh.l"
-return tNameToString;
+return tNameStruct;
 	YY_BREAK
 case 164:
 YY_RULE_SETUP
 #line 257 "Gmsh.l"
-return tNameStruct;
+return tNameToString;
 	YY_BREAK
 case 165:
 YY_RULE_SETUP
 #line 258 "Gmsh.l"
-return tNameToString;
+return tNewModel;
 	YY_BREAK
 case 166:
 YY_RULE_SETUP
 #line 259 "Gmsh.l"
-return tNewModel;
+return tNurbs;
 	YY_BREAK
 case 167:
 YY_RULE_SETUP
-#line 260 "Gmsh.l"
-return tNurbs;
+#line 261 "Gmsh.l"
+return tOnelabAction;
 	YY_BREAK
 case 168:
 YY_RULE_SETUP
 #line 262 "Gmsh.l"
-return tOnelabAction;
+return tOnelabRun;
 	YY_BREAK
 case 169:
 YY_RULE_SETUP
 #line 263 "Gmsh.l"
-return tOnelabRun;
+return tNurbsOrder;
 	YY_BREAK
 case 170:
 YY_RULE_SETUP
-#line 264 "Gmsh.l"
-return tNurbsOrder;
+#line 265 "Gmsh.l"
+return tParametric;
 	YY_BREAK
 case 171:
 YY_RULE_SETUP
 #line 266 "Gmsh.l"
-return tParametric;
+return tPeriodic;
 	YY_BREAK
 case 172:
 YY_RULE_SETUP
 #line 267 "Gmsh.l"
-return tPeriodic;
+return tPhysical;
 	YY_BREAK
 case 173:
 YY_RULE_SETUP
 #line 268 "Gmsh.l"
-return tPhysical;
+return tPi;
 	YY_BREAK
 case 174:
 YY_RULE_SETUP
 #line 269 "Gmsh.l"
-return tPi;
+return tPlane;
 	YY_BREAK
 case 175:
 YY_RULE_SETUP
 #line 270 "Gmsh.l"
-return tPlane;
+return tPlugin;
 	YY_BREAK
 case 176:
 YY_RULE_SETUP
 #line 271 "Gmsh.l"
-return tPlugin;
+return tPoint;
 	YY_BREAK
 case 177:
 YY_RULE_SETUP
 #line 272 "Gmsh.l"
-return tPoint;
+return tPolarSphere;
 	YY_BREAK
 case 178:
 YY_RULE_SETUP
 #line 273 "Gmsh.l"
-return tPolarSphere;
+return tPrintf;
 	YY_BREAK
 case 179:
 YY_RULE_SETUP
-#line 274 "Gmsh.l"
-return tPrintf;
+#line 275 "Gmsh.l"
+return tQuadric;
 	YY_BREAK
 case 180:
 YY_RULE_SETUP
 #line 276 "Gmsh.l"
-return tQuadric;
+return tQuadTriAddVerts;
 	YY_BREAK
 case 181:
 YY_RULE_SETUP
 #line 277 "Gmsh.l"
-return tQuadTriAddVerts;
+return tQuadTriNoNewVerts;
 	YY_BREAK
 case 182:
 YY_RULE_SETUP
-#line 278 "Gmsh.l"
-return tQuadTriNoNewVerts;
+#line 279 "Gmsh.l"
+return tRand;
 	YY_BREAK
 case 183:
 YY_RULE_SETUP
 #line 280 "Gmsh.l"
-return tRand;
+return tRecombLaterals;
 	YY_BREAK
 case 184:
 YY_RULE_SETUP
 #line 281 "Gmsh.l"
-return tRecombLaterals;
+return tRecombine;
 	YY_BREAK
 case 185:
 YY_RULE_SETUP
 #line 282 "Gmsh.l"
-return tRecombine;
+return tRectangle;
 	YY_BREAK
 case 186:
 YY_RULE_SETUP
 #line 283 "Gmsh.l"
-return tRectangle;
+return tRecursive;
 	YY_BREAK
 case 187:
 YY_RULE_SETUP
 #line 284 "Gmsh.l"
-return tRecursive;
+return tRefineMesh;
 	YY_BREAK
 case 188:
 YY_RULE_SETUP
 #line 285 "Gmsh.l"
-return tRefineMesh;
+return tRelocateMesh;
 	YY_BREAK
 case 189:
 YY_RULE_SETUP
 #line 286 "Gmsh.l"
-return tRelocateMesh;
+return tReturn;
 	YY_BREAK
 case 190:
 YY_RULE_SETUP
 #line 287 "Gmsh.l"
-return tReturn;
+return tReverse;
 	YY_BREAK
 case 191:
 YY_RULE_SETUP
 #line 288 "Gmsh.l"
-return tReverse;
+return tRotate;
 	YY_BREAK
 case 192:
 YY_RULE_SETUP
 #line 289 "Gmsh.l"
-return tRotate;
+return tRound;
 	YY_BREAK
 case 193:
 YY_RULE_SETUP
 #line 290 "Gmsh.l"
-return tRound;
+return tRuled;
 	YY_BREAK
 case 194:
 YY_RULE_SETUP
-#line 291 "Gmsh.l"
-return tRuled;
+#line 292 "Gmsh.l"
+return tStringToName;
 	YY_BREAK
 case 195:
 YY_RULE_SETUP
 #line 293 "Gmsh.l"
-return tStringToName;
+return tScaleLast;
 	YY_BREAK
 case 196:
 YY_RULE_SETUP
 #line 294 "Gmsh.l"
-return tScaleLast;
+return tSetChanged;
 	YY_BREAK
 case 197:
 YY_RULE_SETUP
 #line 295 "Gmsh.l"
-return tSetChanged;
+return tSetFactory;
 	YY_BREAK
 case 198:
 YY_RULE_SETUP
 #line 296 "Gmsh.l"
-return tSetFactory;
+return tSetNumber;
 	YY_BREAK
 case 199:
 YY_RULE_SETUP
 #line 297 "Gmsh.l"
-return tSetNumber;
+return tSetPartition;
 	YY_BREAK
 case 200:
 YY_RULE_SETUP
 #line 298 "Gmsh.l"
-return tSetPartition;
+return tSetString;
 	YY_BREAK
 case 201:
 YY_RULE_SETUP
 #line 299 "Gmsh.l"
-return tSetString;
+return tShapeFromFile;
 	YY_BREAK
 case 202:
 YY_RULE_SETUP
 #line 300 "Gmsh.l"
-return tShapeFromFile;
+return tShow;
 	YY_BREAK
 case 203:
 YY_RULE_SETUP
 #line 301 "Gmsh.l"
-return tShow;
+return tSin;
 	YY_BREAK
 case 204:
 YY_RULE_SETUP
 #line 302 "Gmsh.l"
-return tSin;
+return tSinh;
 	YY_BREAK
 case 205:
 YY_RULE_SETUP
 #line 303 "Gmsh.l"
-return tSinh;
+return tSlide;
 	YY_BREAK
 case 206:
 YY_RULE_SETUP
 #line 304 "Gmsh.l"
-return tSlide;
+return tSmoother;
 	YY_BREAK
 case 207:
 YY_RULE_SETUP
 #line 305 "Gmsh.l"
-return tSmoother;
+return tSphere;
 	YY_BREAK
 case 208:
 YY_RULE_SETUP
 #line 306 "Gmsh.l"
-return tSphere;
+return tSpline;
 	YY_BREAK
 case 209:
 YY_RULE_SETUP
 #line 307 "Gmsh.l"
-return tSpline;
+return tSplit;
 	YY_BREAK
 case 210:
 YY_RULE_SETUP
 #line 308 "Gmsh.l"
-return tSplit;
+return tSprintf;
 	YY_BREAK
 case 211:
 YY_RULE_SETUP
 #line 309 "Gmsh.l"
-return tSprintf;
+return tSqrt;
 	YY_BREAK
 case 212:
 YY_RULE_SETUP
 #line 310 "Gmsh.l"
-return tSqrt;
+return tStr;
 	YY_BREAK
 case 213:
 YY_RULE_SETUP
 #line 311 "Gmsh.l"
-return tStr;
+return tStrCat;
 	YY_BREAK
 case 214:
 YY_RULE_SETUP
 #line 312 "Gmsh.l"
-return tStrCat;
+return tStrChoice;
 	YY_BREAK
 case 215:
 YY_RULE_SETUP
 #line 313 "Gmsh.l"
-return tStrChoice;
+return tStrCmp;
 	YY_BREAK
 case 216:
 YY_RULE_SETUP
 #line 314 "Gmsh.l"
-return tStrCmp;
+return tStrFind;
 	YY_BREAK
 case 217:
 YY_RULE_SETUP
 #line 315 "Gmsh.l"
-return tStrFind;
+return tStrLen;
 	YY_BREAK
 case 218:
 YY_RULE_SETUP
 #line 316 "Gmsh.l"
-return tStrLen;
+return tStrPrefix;
 	YY_BREAK
 case 219:
 YY_RULE_SETUP
 #line 317 "Gmsh.l"
-return tStrPrefix;
+return tStrRelative;
 	YY_BREAK
 case 220:
 YY_RULE_SETUP
 #line 318 "Gmsh.l"
-return tStrRelative;
+return tStrReplace;
 	YY_BREAK
 case 221:
 YY_RULE_SETUP
 #line 319 "Gmsh.l"
-return tStrReplace;
+return tStrSub;
 	YY_BREAK
 case 222:
 YY_RULE_SETUP
 #line 320 "Gmsh.l"
-return tStrSub;
+return tStringToName;
 	YY_BREAK
 case 223:
 YY_RULE_SETUP
 #line 321 "Gmsh.l"
-return tStringToName;
+return tDefineStruct;
 	YY_BREAK
 case 224:
 YY_RULE_SETUP
 #line 322 "Gmsh.l"
-return tDefineStruct;
+return tSurface;
 	YY_BREAK
 case 225:
 YY_RULE_SETUP
 #line 323 "Gmsh.l"
-return tSurface;
+return tSymmetry;
 	YY_BREAK
 case 226:
 YY_RULE_SETUP
 #line 324 "Gmsh.l"
-return tSymmetry;
+return tSyncModel;
 	YY_BREAK
 case 227:
 YY_RULE_SETUP
-#line 325 "Gmsh.l"
-return tSyncModel;
+#line 326 "Gmsh.l"
+return tText2D;
 	YY_BREAK
 case 228:
 YY_RULE_SETUP
 #line 327 "Gmsh.l"
-return tText2D;
+return tText3D;
 	YY_BREAK
 case 229:
 YY_RULE_SETUP
 #line 328 "Gmsh.l"
-return tText3D;
+return tTime;
 	YY_BREAK
 case 230:
 YY_RULE_SETUP
 #line 329 "Gmsh.l"
-return tTime;
+return tTan;
 	YY_BREAK
 case 231:
 YY_RULE_SETUP
 #line 330 "Gmsh.l"
-return tTan;
+return tTanh;
 	YY_BREAK
 case 232:
 YY_RULE_SETUP
 #line 331 "Gmsh.l"
-return tTanh;
+return tTestLevel;
 	YY_BREAK
 case 233:
 YY_RULE_SETUP
 #line 332 "Gmsh.l"
-return tTestLevel;
+return tTextAttributes;
 	YY_BREAK
 case 234:
 YY_RULE_SETUP
 #line 333 "Gmsh.l"
-return tTextAttributes;
+return tThickSolid;
 	YY_BREAK
 case 235:
 YY_RULE_SETUP
 #line 334 "Gmsh.l"
-return tThickSolid;
+return tThruSections;
 	YY_BREAK
 case 236:
 YY_RULE_SETUP
 #line 335 "Gmsh.l"
-return tThruSections;
+return tToday;
 	YY_BREAK
 case 237:
 YY_RULE_SETUP
 #line 336 "Gmsh.l"
-return tToday;
+return tTorus;
 	YY_BREAK
 case 238:
 YY_RULE_SETUP
 #line 337 "Gmsh.l"
-return tTorus;
+return tTotalMemory;
 	YY_BREAK
 case 239:
 YY_RULE_SETUP
 #line 338 "Gmsh.l"
-return tTotalMemory;
+return tTransfQuadTri;
 	YY_BREAK
 case 240:
 YY_RULE_SETUP
 #line 339 "Gmsh.l"
-return tTransfQuadTri;
+return tTransfinite;
 	YY_BREAK
 case 241:
 YY_RULE_SETUP
 #line 340 "Gmsh.l"
-return tTransfinite;
+return tTranslate;
 	YY_BREAK
 case 242:
 YY_RULE_SETUP
-#line 341 "Gmsh.l"
-return tTranslate;
+#line 342 "Gmsh.l"
+return tUndefineConstant;
 	YY_BREAK
 case 243:
 YY_RULE_SETUP
 #line 343 "Gmsh.l"
-return tUndefineConstant;
+return tUnique;
 	YY_BREAK
 case 244:
 YY_RULE_SETUP
 #line 344 "Gmsh.l"
-return tUnique;
+return tUpperCase;
 	YY_BREAK
 case 245:
 YY_RULE_SETUP
 #line 345 "Gmsh.l"
-return tUpperCase;
+return tUsing;
 	YY_BREAK
 case 246:
 YY_RULE_SETUP
-#line 346 "Gmsh.l"
-return tUsing;
+#line 347 "Gmsh.l"
+return tVolume;
 	YY_BREAK
 case 247:
 YY_RULE_SETUP
-#line 348 "Gmsh.l"
-return tVolume;
+#line 349 "Gmsh.l"
+return tWedge;
 	YY_BREAK
 case 248:
 YY_RULE_SETUP
 #line 350 "Gmsh.l"
-return tWedge;
-	YY_BREAK
-case 249:
-YY_RULE_SETUP
-#line 351 "Gmsh.l"
 return tWire;
 	YY_BREAK
+case 249:
+#line 353 "Gmsh.l"
 case 250:
 #line 354 "Gmsh.l"
 case 251:
 #line 355 "Gmsh.l"
 case 252:
-#line 356 "Gmsh.l"
-case 253:
 YY_RULE_SETUP
-#line 356 "Gmsh.l"
+#line 355 "Gmsh.l"
 { gmsh_yylval.d = atof((char *)gmsh_yytext); return tDOUBLE; }
 	YY_BREAK
-case 254:
+case 253:
 YY_RULE_SETUP
-#line 358 "Gmsh.l"
+#line 357 "Gmsh.l"
 { gmsh_yylval.c = strsave((char*)gmsh_yytext); return tSTRING; }
 	YY_BREAK
-case 255:
+case 254:
 YY_RULE_SETUP
-#line 360 "Gmsh.l"
+#line 359 "Gmsh.l"
 return gmsh_yytext[0];
 	YY_BREAK
-case 256:
+case 255:
 YY_RULE_SETUP
-#line 362 "Gmsh.l"
+#line 361 "Gmsh.l"
 ECHO;
 	YY_BREAK
-#line 2842 "Gmsh.yy.cpp"
+#line 2835 "Gmsh.yy.cpp"
 case YY_STATE_EOF(INITIAL):
 	yyterminate();
 
@@ -3130,7 +3123,7 @@ static int yy_get_next_buffer (void)
 		while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
 			{
 			yy_current_state = (int) yy_def[yy_current_state];
-			if ( yy_current_state >= 1299 )
+			if ( yy_current_state >= 1292 )
 				yy_c = yy_meta[(unsigned int) yy_c];
 			}
 		yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
@@ -3158,11 +3151,11 @@ static int yy_get_next_buffer (void)
 	while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )
 		{
 		yy_current_state = (int) yy_def[yy_current_state];
-		if ( yy_current_state >= 1299 )
+		if ( yy_current_state >= 1292 )
 			yy_c = yy_meta[(unsigned int) yy_c];
 		}
 	yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];
-	yy_is_jam = (yy_current_state == 1298);
+	yy_is_jam = (yy_current_state == 1291);
 
 	return yy_is_jam ? 0 : yy_current_state;
 }
@@ -3835,7 +3828,7 @@ void gmsh_yyfree (void * ptr )
 
 #define YYTABLES_NAME "yytables"
 
-#line 362 "Gmsh.l"
+#line 361 "Gmsh.l"
 
 
 
diff --git a/Solver/CMakeLists.txt b/Solver/CMakeLists.txt
index d9f5de36614eb4848556ccdc3dad4f09925f3a74..9254e2aa6d368096dcbb97c0dd5d80da9332ea8f 100644
--- a/Solver/CMakeLists.txt
+++ b/Solver/CMakeLists.txt
@@ -15,7 +15,6 @@ elasticitySolver.cpp
   thermicSolver.cpp
   SElement.cpp
   eigenSolver.cpp
-  multiscaleLaplace.cpp
 functionSpace.cpp
   filters.cpp
   frameSolver.cpp
diff --git a/Solver/multiscaleLaplace.cpp b/Solver/multiscaleLaplace.cpp
deleted file mode 100644
index ca2d11eaae226ec908d1dd3350f94e0498aeeb0d..0000000000000000000000000000000000000000
--- a/Solver/multiscaleLaplace.cpp
+++ /dev/null
@@ -1,1138 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-//
-// Contributor(s):
-//   Emilie Marchandise
-//
-
-#include "Context.h"
-#include "multiscaleLaplace.h"
-#include "GmshConfig.h"
-#include "GmshDefines.h"
-#include "Numeric.h"
-#include "OS.h"
-#include "SBoundingBox3d.h"
-#include "SPoint3.h"
-#include "dofManager.h"
-#include "laplaceTerm.h"
-#include "convexCombinationTerm.h"
-#include "linearSystemCSR.h"
-#include "linearSystemPETSc.h"
-#include "robustPredicates.h"
-#include "meshGFaceOptimize.h"
-#include "GFaceCompound.h"
-
-#ifdef HAVE_GMM
-#include "linearSystemGMM.h"
-#endif
-
-#include "linearSystemFull.h"
-#include "MTriangle.h"
-#include "robustPredicates.h"
-
-struct compareRotatedPoints {
-  double angle;
-  const SPoint2 &left;
-  compareRotatedPoints (const SPoint2& l,const SPoint2& r) : left(l){
-    angle = atan2(r.y()-l.y(),r.x()-l.x());
-  }
-  bool operator  ( ) (const SPoint2 &p1, const SPoint2 &p2) const {
-    //sort from left (x=-1) to right (sin=0), cos(=1)
-    double x1 = (p1.x()-left.x())*cos(angle) + (p1.y()-left.y())*sin(angle);
-    double x2 = (p2.x()-left.x())*cos(angle) + (p2.y()-left.y())*sin(angle);
-    if (x1<x2)return true;
-    if (x1>x2)return false;
-    double y1 =-(p1.x()-left.x())*sin(angle) + (p1.y()-left.y())*cos(angle);
-    double y2 =-(p2.x()-left.x())*sin(angle) + (p2.y()-left.y())*cos(angle);
-    if (y1<y2)return true;
-    return false;
-  }
-};
-
-struct sort_pred {
-  compareRotatedPoints  comparator;
-  sort_pred (const SPoint2 &left, const SPoint2 &right)
-    : comparator(left,right) {}
-  bool operator()(const std::pair<SPoint2,multiscaleLaplaceLevel*> &left,
-                  const std::pair<SPoint2,multiscaleLaplaceLevel*> &right)
-  {
-    return comparator(left.first,right.first);
-  }
-};
-
-static void recur_connect (MVertex *v,
-                           std::multimap<MVertex*,MEdge> &v2e,
-                           std::set<MEdge,Less_Edge> &group,
-                           std::set<MVertex*> &touched)
-{
-  if (touched.find(v) != touched.end()) return;
-
-  touched.insert(v);
-  for (std::multimap <MVertex*,MEdge>::iterator it = v2e.lower_bound(v);
-       it != v2e.upper_bound(v) ; ++it){
-    group.insert(it->second);
-    for (int i=0;i<it->second.getNumVertices();++i){
-      recur_connect (it->second.getVertex(i),v2e,group,touched);
-    }
-  }
-
-}
-
-static void connected_bounds (std::vector<MElement*> &elements,
-                              std::vector<std::vector<MEdge> > &boundaries)
-{
-  std::vector<MEdge> bEdges;
-  for(unsigned int i = 0; i < elements.size(); i++){
-    for(int j = 0; j < elements[i]->getNumEdges(); j++){
-      MEdge me =  elements[i]->getEdge(j);
-      if(std::find(bEdges.begin(), bEdges.end(), me) == bEdges.end())
-        bEdges.push_back(me);
-      else
-        bEdges.erase(std::find(bEdges.begin(), bEdges.end(),me));
-    }
-  }
-
-  std::multimap<MVertex*,MEdge> v2e;
-  for (unsigned int i = 0; i < bEdges.size(); ++i){
-    for (int j=0;j<bEdges[i].getNumVertices();j++){
-      v2e.insert(std::make_pair(bEdges[i].getVertex(j),bEdges[i]));
-    }
-  }
-  while (!v2e.empty()){
-    std::set<MEdge, Less_Edge> group;
-    std::set<MVertex*> touched;
-    recur_connect (v2e.begin()->first,v2e,group,touched);
-    std::vector<MEdge> temp;
-    temp.insert(temp.begin(), group.begin(), group.end());
-    boundaries.push_back(temp);
-    for ( std::set<MVertex*>::iterator it = touched.begin() ; it != touched.end();++it)
-      v2e.erase(*it);
-  }
-
-  return;
-}
-
-static double getSizeBB(std::vector<MEdge> &me)
-{
-  SBoundingBox3d bb ;
-  SOrientedBoundingBox obbox ;
-
-  std::vector<SPoint3> vertices;
-  for (unsigned int i=0; i< me.size(); i++){
-    MVertex *v0 = me[i].getVertex(0);
-    MVertex *v1 = me[i].getVertex(1);
-    SPoint3 pt1(v0->x(),v0->y(), v0->z());
-    vertices.push_back(pt1);
-    SPoint3 pt2(v1->x(),v1->y(), v1->z());
-    vertices.push_back(pt2);
-    bb+=pt1;
-    bb+=pt2;
-  }
-
-  //double H = norm(SVector3(bb.max(), bb.min()));
-  //printf("H=%g \n", H);
-
-  obbox =  SOrientedBoundingBox::buildOBB(vertices);
-  double H =  obbox.getMaxSize();
-
-  return H;
-}
-
-static void  ordering_dirichlet(std::vector<MElement*> &elements,
-                                std::vector<std::pair<MVertex*,double> > &dirichletNodes)
-{
-  //finding all boundaries
-  std::vector<std::vector<MEdge> > boundaries;
-  connected_bounds(elements,boundaries);
-
-  //largest boundary is dirichlet boundary
-  std::vector<MEdge> dirichletEdges;
-  double maxSize = 0.0;
-  for(unsigned int i = 0; i < boundaries.size(); i++){
-    std::vector<MEdge> iBound = boundaries[i];
-    double size = getSizeBB(iBound);
-    if (size > maxSize) {
-      dirichletEdges = iBound;
-      maxSize = size;
-    }
-  }
-
-  //ordering dirichletNodes
-  dirichletNodes.clear();
-  std::list<MEdge> temp;
-  double tot_length = 0.0;
-  for(unsigned int i = 0; i < dirichletEdges.size(); i++ ){
-      MVertex *v0 =  dirichletEdges[i].getVertex(0);
-      MVertex *v1 =  dirichletEdges[i].getVertex(1);
-      double len = sqrt((v0->x() - v1->x()) * (v0->x() - v1->x()) +
-                       (v0->y() - v1->y()) * (v0->y() - v1->y()) +
-                        (v0->z() - v1->z()) * (v0->z() - v1->z())) ;
-      tot_length += len;
-      temp.push_back(dirichletEdges[i]);
-  }
-
-  dirichletNodes.push_back(std::make_pair(dirichletEdges[0].getVertex(0),0.0));
-  MVertex *current_v =  dirichletEdges[0].getVertex(1);
-  temp.erase(temp.begin());
-
-  while(temp.size()){
-    bool found = false;
-    for(std::list<MEdge>::iterator itl = temp.begin(); itl != temp.end(); ++itl){
-      MVertex *v0 =  itl->getVertex(0);
-      MVertex *v1 =  itl->getVertex(1);
-      if(v0 == current_v){
-        found = true;
-        current_v = v1;
-        temp.erase(itl);
-        double length = sqrt((v0->x() - v1->x()) * (v0->x() - v1->x()) +
-                             (v0->y() - v1->y()) * (v0->y() - v1->y()) +
-                             (v0->z() - v1->z()) * (v0->z() - v1->z()));
-        double iLength = dirichletNodes[dirichletNodes.size()-1].second +
-          (length / tot_length);
-        dirichletNodes.push_back(std::make_pair(v0,iLength));
-        break;
-      }
-      else if(v1 == current_v){
-        found = true;
-        current_v = v0;
-        temp.erase(itl);
-        double length = sqrt((v0->x() - v1->x()) * (v0->x() - v1->x()) +
-                             (v0->y() - v1->y()) * (v0->y() - v1->y()) +
-                             (v0->z() - v1->z()) * (v0->z() - v1->z()));
-        double iLength = dirichletNodes[dirichletNodes.size()-1].second +
-          (length  / tot_length);
-        dirichletNodes.push_back(std::make_pair(v1,iLength));
-        break;
-      }
-    }
-    if(!found) return ;
-  }
-
-  return;
-}
-
-static int intersection_segments (SPoint2 &p1, SPoint2 &p2,
-                                  SPoint2 &q1, SPoint2 &q2,
-                                  double x[2])
-{
-  double A[2][2];
-  A[0][0] = p2.x()-p1.x();
-  A[0][1] = q1.x()-q2.x();
-  A[1][0] = p2.y()-p1.y();
-  A[1][1] = q1.y()-q2.y();
-  double b[2] = {q1.x()-p1.x(),q1.y()-p1.y()};
-  sys2x2(A,b,x);
-
-  return (x[0] >= 0.0 && x[0] <= 1. &&
-          x[1] >= 0.0 && x[1] <= 1.);
-
-}
-
-static void recur_compute_centers_ (double R, double a1, double a2,
-                                    multiscaleLaplaceLevel * root, int &nbElems)
-{
-  nbElems += root->elements.size();
-
-  root->radius = R;
-  std::vector<std::pair<SPoint2,multiscaleLaplaceLevel*> > &centers = root->cut;
-  centers.clear();
-  multiscaleLaplaceLevel* zero = 0;
-
-  double fact = 2.5;
-  SPoint2 PL (fact*R*cos(a1),fact*R*sin(a1));
-  SPoint2 PR (fact*R*cos(a2),fact*R*sin(a2));
-
-  std::vector<SPoint2> centersChild;
-  centersChild.clear();
-  for (unsigned int i=0;i<root->children.size();i++){
-    multiscaleLaplaceLevel* m = root->children[i];
-    centers.push_back(std::make_pair(m->center,m));
-    m->radius = 0.0;
-    for (std::map<MVertex*,SPoint2>::iterator it = m->coordinates.begin();
-         it !=  m->coordinates.end() ; ++it){
-      SPoint2 p = it->second;
-      m->radius = std::max(m->radius,sqrt ((m->center.x() - p.x())*(m->center.x() - p.x())+
-                                           (m->center.y() - p.y())*(m->center.y() - p.y())));
-    }
-    centersChild.push_back(m->center);
-  }
-
-  //add the center of real holes ...
-  std::vector<std::vector<MEdge> > boundaries;
-  connected_bounds(root->elements, boundaries);
-  int added = 0;
-  int toadd = boundaries.size()-1 - root->children.size();
-  if (root->children.size()==0  || (root->children.size()> 0 && toadd > 0) ){
-    for (unsigned int i = 0; i < boundaries.size(); i++){
-      std::vector<MEdge> me = boundaries[i];
-      SPoint2 c(0.0,0.0);
-      double rad = 0.0;
-      for(unsigned int j= 0; j< me.size(); j++){
-        MVertex *v = me[j].getVertex(0);
-        std::map<MVertex *, SPoint2>::iterator it0 = root->coordinates.find(v);
-        c += it0->second;
-      }
-      c *= 1./((double)me.size());
-      for(unsigned int j= 0; j< me.size(); j++){
-        SPoint2 p =  root->coordinates[me[j].getVertex(0)];
-        rad = std::max(rad,sqrt ((c.x() - p.x())*(c.x() - p.x())+
-                                 (c.y() - p.y())*(c.y() - p.y())));
-      }
-
-      //check if the center has not been added
-      bool newCenter = true;
-      for (std::vector<SPoint2>::iterator it2 = centersChild.begin();
-           it2 != centersChild.end(); it2++){
-        SPoint2 p = *it2;
-        double dist = sqrt ((c.x() - p.x())*(c.x() - p.x())+
-                            (c.y() - p.y())*(c.y() - p.y()));
-        if (dist < 0.5*rad)  newCenter = false;//0.6
-      }
-
-      if (std::abs(rad/root->radius) < 0.65 && std::abs(rad) < 0.95 && newCenter){//0.6
-        added++;
-        centers.push_back(std::make_pair(c,zero));
-      }
-    }
-  }
-  if (added !=  toadd && root->children.size()> 0)  {
-    printf("!!!!!!!! ARG added = %d != %d (bounds=%d, child=%d)\n",  added,
-           (int)(boundaries.size() - 1 - root->children.size()), (int)boundaries.size(),
-           (int)root->children.size());
-  }
-
-  //sort centers from left to right
-  std::sort(centers.begin(),centers.end(), sort_pred(PL,PR));
-
-  //sort from distances
-  //sort_centers_dist(centers, PL);
-
-  centers.insert(centers.begin(), std::make_pair(PL,zero));
-  centers.push_back(std::make_pair(PR,zero));
-
-  for (unsigned int i = 1; i < centers.size() - 1; i++){
-    multiscaleLaplaceLevel* m2 = centers[i].second;
-    if (m2){
-      a1 = myatan2 (centers[i-1].first.y()- m2->center.y(),
-                    centers[i-1].first.x()-m2->center.x());
-      a2 = myatan2 (centers[i+1].first.y()- m2->center.y(),
-                    centers[i+1].first.x()-m2->center.x());
-      recur_compute_centers_ (m2->radius, a1, a2, m2, nbElems);
-    }
-  }
-
-}
-
-static void recur_cut_edges_ (multiscaleLaplaceLevel *root,
-                              std::map<MEdge,MVertex*,Less_Edge> &cutEdges,
-                              std::set<MVertex*> &cutVertices)
-{
-  const double EPS = 0.001;
-
-  std::multimap<MEdge,MElement*,Less_Edge> e2e;
-  std::set<MEdge,Less_Edge> allEdges;
-  for (unsigned int i = 0; i < root->elements.size(); ++i){
-    for (int j = 0; j < root->elements[i]->getNumEdges(); j++){
-      e2e.insert(std::make_pair(root->elements[i]->getEdge(j),root->elements[i]));
-      allEdges.insert(root->elements[i]->getEdge(j));
-     }
-   }
-
-  std::vector<std::pair<SPoint2,multiscaleLaplaceLevel*> > &centers = root->cut;
-  for (unsigned int i = 0; i < centers.size() - 1; i++){
-    SPoint2 p1 = centers[i].first;
-    SPoint2 p2 = centers[i+1].first;
-    //printf("*************** line p1p2 (%g %g) -- (%g %g) \n",p1.x(),p1.y(),p2.x(),p2.y());
-    for (std::set <MEdge,Less_Edge>::iterator it = allEdges.begin();
-         it != allEdges.end() ; ++it){
-      if(cutEdges.find(*it) == cutEdges.end()){//e2e.count(*it) == 2 &&
-        std::map<MVertex *, SPoint2>::iterator it0 = root->coordinates.find(it->getVertex(0));
-        std::map<MVertex *, SPoint2>::iterator it1 = root->coordinates.find(it->getVertex(1));
-        if (it0 != root->coordinates.end() && it1 != root->coordinates.end()){
-          SPoint2 q1 = root->coordinates[it->getVertex(0)];
-          SPoint2 q2 = root->coordinates[it->getVertex(1)];
-          double x[2];
-          int inters = intersection_segments (p1,p2,q1,q2,x);
-          if (inters && x[1] > EPS && x[1] < 1.-EPS){
-	    MVertex *newv = new MVertex
-              ((1.-x[1])*it->getVertex(0)->x() + x[1]*it->getVertex(1)->x(),
-               (1.-x[1])*it->getVertex(0)->y() + x[1]*it->getVertex(1)->y(),
-               (1.-x[1])*it->getVertex(0)->z() + x[1]*it->getVertex(1)->z());
-            cutEdges[*it] = newv;
-            root->coordinates[newv] = q1*(1.-x[1]) + q2*x[1] ;
-          }
-          else if (inters && x[1] <= EPS) cutVertices.insert(it->getVertex(0));
-          else if (inters && x[1] >= 1.-EPS) cutVertices.insert(it->getVertex(1));
-        }
-      }
-    }
-  }
-  for (unsigned int i = 0; i < centers.size(); i++){
-    multiscaleLaplaceLevel* m2 = centers[i].second;
-    if (m2){
-      recur_cut_edges_ (m2,cutEdges,cutVertices);
-    }
-  }
-}
-
-static void recur_cut_elements_ (multiscaleLaplaceLevel * root,
-                                 std::map<MEdge,MVertex*,Less_Edge> &cutEdges,
-                                 std::set<MVertex*> &cutVertices,
-                                 std::set<MEdge,Less_Edge> &theCut,
-                                 std::vector<MElement*> &_all)
-{
-  std::vector<std::pair<SPoint2,multiscaleLaplaceLevel*> > &centers = root->cut;
-  std::vector<MElement*> newElements;
-  for (unsigned int i = 0; i < root->elements.size(); i++){
-    MVertex *c[3] = {0,0,0};
-    for (int j=0;j<3;j++){
-      MEdge ed = root->elements[i]->getEdge(j);
-      std::map<MEdge,MVertex*,Less_Edge> :: iterator it = cutEdges.find(ed);
-      if (it != cutEdges.end()){
-        c[j] = it->second;
-      }
-    }
-    if (c[0] && c[1]){
-      newElements.push_back(new MTriangle (c[0],root->elements[i]->getVertex(1),c[1]));
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(0),c[0],
-                                           root->elements[i]->getVertex(2)));
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(2),c[0],c[1]));
-      theCut.insert(MEdge(c[0],c[1]));
-    }
-    else if (c[0] && c[2]){
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(0),c[0],c[2]));
-      newElements.push_back(new MTriangle (c[0],root->elements[i]->getVertex(1),
-                                           root->elements[i]->getVertex(2)));
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(2),c[2],c[0]));
-      theCut.insert(MEdge(c[0],c[2]));
-    }
-    else if (c[1] && c[2]){
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(2),c[2],c[1]));
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(0),
-                                           root->elements[i]->getVertex(1),c[2]));
-      newElements.push_back(new MTriangle (c[2],root->elements[i]->getVertex(1),c[1]));
-      theCut.insert(MEdge(c[1],c[2]));
-    }
-    else if (c[0]){
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(0),c[0],
-                                           root->elements[i]->getVertex(2)));
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(2),c[0],
-                                           root->elements[i]->getVertex(1)));
-      if (cutVertices.find (root->elements[i]->getVertex(0)) != cutVertices.end()){
-        theCut.insert(MEdge(c[0],root->elements[i]->getVertex(0)));
-      }
-      else if (cutVertices.find (root->elements[i]->getVertex(1)) != cutVertices.end()) {
-        theCut.insert(MEdge(c[0],root->elements[i]->getVertex(1)));
-      }
-      else{
-        theCut.insert(MEdge(c[0],root->elements[i]->getVertex(2)));
-      }
-    }
-    else if (c[1]){
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(1),c[1],
-                                           root->elements[i]->getVertex(0)));
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(0),c[1],
-                                           root->elements[i]->getVertex(2)));
-     if (cutVertices.find (root->elements[i]->getVertex(0)) != cutVertices.end()){
-        theCut.insert(MEdge(c[1],root->elements[i]->getVertex(0)));
-      }
-      else if (cutVertices.find (root->elements[i]->getVertex(1)) != cutVertices.end()) {
-        theCut.insert(MEdge(c[1],root->elements[i]->getVertex(1)));
-      }
-      else{
-        theCut.insert(MEdge(c[1],root->elements[i]->getVertex(2)));
-      }
-    }
-    else if (c[2]){
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(0),
-                                           root->elements[i]->getVertex(1), c[2]));
-      newElements.push_back(new MTriangle (root->elements[i]->getVertex(1),
-                                           root->elements[i]->getVertex(2), c[2]));
-     if (cutVertices.find (root->elements[i]->getVertex(0)) != cutVertices.end()){
-        theCut.insert(MEdge(c[2],root->elements[i]->getVertex(0)));
-      }
-      else if (cutVertices.find (root->elements[i]->getVertex(1)) != cutVertices.end()) {
-        theCut.insert(MEdge(c[2],root->elements[i]->getVertex(1)));
-      }
-      else{
-        theCut.insert(MEdge(c[2],root->elements[i]->getVertex(2)));
-      }
-    }
-    else {
-      newElements.push_back(root->elements[i]);
-      if (cutVertices.find (root->elements[i]->getVertex(0)) != cutVertices.end() &&
-	  cutVertices.find (root->elements[i]->getVertex(1)) != cutVertices.end())
-        theCut.insert(MEdge(root->elements[i]->getVertex(0),root->elements[i]->getVertex(1)));
-      if (cutVertices.find (root->elements[i]->getVertex(0)) != cutVertices.end() &&
-	  cutVertices.find (root->elements[i]->getVertex(2)) != cutVertices.end())
-        theCut.insert(MEdge(root->elements[i]->getVertex(0),root->elements[i]->getVertex(2)));
-      if (cutVertices.find (root->elements[i]->getVertex(2)) != cutVertices.end() &&
-	  cutVertices.find (root->elements[i]->getVertex(1)) != cutVertices.end())
-        theCut.insert(MEdge(root->elements[i]->getVertex(2),root->elements[i]->getVertex(1)));
-    }
-  }
-
-  root->elements.clear();
-  root->elements = newElements;
-  _all.insert(_all.end(),newElements.begin(),newElements.end());
-  for (unsigned int i = 0; i < centers.size(); i++){
-    multiscaleLaplaceLevel* m2 = centers[i].second;
-    if (m2){
-      recur_cut_elements_ (m2,cutEdges,cutVertices,theCut,_all);
-    }
-  }
-}
-
-static void recur_leftCut_ (MElement *e,
-			    std::multimap<MEdge,MElement*,Less_Edge> &e2e,
-			    std::set<MEdge,Less_Edge> &theCut,
-			    std::set<MElement*> &leftSet)
-{
-  if (leftSet.find(e) != leftSet.end())return;
-  leftSet.insert(e);
-  //printf("insert in left %d \n", e->getNum());
-  for (int i=0;i<e->getNumEdges();i++){
-    MEdge ed = e->getEdge(i);
-    if (theCut.find(ed) == theCut.end()){
-      for (std::multimap <MEdge,MElement*,Less_Edge>::iterator it = e2e.lower_bound(ed);
-         it != e2e.upper_bound(ed) ; ++it){
-        if (it->second != e) recur_leftCut_ (it->second,e2e,theCut, leftSet);
-      }
-    }
-  }
-
-}
-
-// starting form a list of elements, returns
-// lists of lists that are all simply connected
-static void recur_connect (const MEdge &e,
-                           std::multimap<MEdge,MElement*,Less_Edge> &e2e,
-                           std::set<MElement*> &group,
-                           std::set<MEdge,Less_Edge> &touched)
-{
-  if (touched.find(e) != touched.end())return;
-  touched.insert(e);
-  for (std::multimap <MEdge,MElement*,Less_Edge>::iterator it = e2e.lower_bound(e);
-         it != e2e.upper_bound(e) ; ++it){
-    group.insert(it->second);
-    for (int i=0;i<it->second->getNumEdges();++i){
-      recur_connect (it->second->getEdge(i),e2e,group,touched);
-    }
-  }
-}
-
-static void connectedRegions (const std::vector<MElement*> &elements,
-                              std::vector<std::vector<MElement*> > &regions)
-{
-  std::multimap<MEdge,MElement*,Less_Edge> e2e;
-  for (unsigned int i = 0; i < elements.size(); ++i){
-    for (int j = 0; j < elements[i]->getNumEdges(); j++){
-      e2e.insert(std::make_pair(elements[i]->getEdge(j),elements[i]));
-    }
-  }
-  while (!e2e.empty()){
-    std::set<MElement*> group;
-    std::set<MEdge,Less_Edge> touched;
-    recur_connect (e2e.begin()->first,e2e,group,touched);
-    std::vector<MElement*> temp;
-    temp.insert(temp.begin(), group.begin(), group.end());
-    regions.push_back(temp);
-    for ( std::set<MEdge,Less_Edge>::iterator it = touched.begin() ; it != touched.end();++it)
-      e2e.erase(*it);
-  }
-}
-
-static void keepConnected(std::vector<MElement*> &goodSize, std::vector<MElement*> &tooSmall)
-{
-  std::vector<std::vector<MElement*> >  regGoodSize;
-  connectedRegions (goodSize,regGoodSize);
-  if (regGoodSize.size()  > 0){
-    int index=0;
-    int maxSize= regGoodSize[0].size();
-    for (unsigned int i=1;i< regGoodSize.size() ; i++){
-      int size = regGoodSize[i].size();
-      if(size > maxSize){
-        index = i;
-        maxSize = size;
-      }
-    }
-    goodSize.clear();
-    for (unsigned int i = 0; i < regGoodSize.size(); i++){
-      if ((int)i == index)
-        goodSize.insert(goodSize.begin(), regGoodSize[i].begin(),
-                        regGoodSize[i].end());
-      else
-        tooSmall.insert(tooSmall.begin(), regGoodSize[i].begin(),
-                        regGoodSize[i].end());
-    }
-  }
-}
-
-static void recur_cut_ (double R, double a1, double a2,
-                        multiscaleLaplaceLevel * root,
-                        std::vector<MElement *> &left,
-                        std::vector<MElement *> &right)
-{
-  SPoint2 PL (R*cos(a1),R*sin(a1));
-  SPoint2 PR (R*cos(a2),R*sin(a2));
-  std::vector<std::pair<SPoint2,multiscaleLaplaceLevel*> > centers = root->cut;
-
-  double d = sqrt((PL.x()-PR.x())*(PL.x()-PR.x())+
-                  (PL.y()-PR.y())*(PL.y()-PR.y()));
-  SPoint2 farLeft (0.5*(PL.x()+PR.x()) - (PR.y()-PL.y())/d ,
-                   0.5*(PL.y()+PR.y()) + (PR.x()-PL.x())/d );
-
-  for (unsigned int i = 0; i < root->elements.size(); i++){
-    SPoint2 pp (0,0);
-    for (int j=0; j<root->elements[i]->getNumVertices(); j++){
-      pp += root->coordinates[root->elements[i]->getVertex(j)];
-    }
-    pp *= 1./(double)root->elements[i]->getNumVertices();
-    int nbIntersect = 0;
-    for (unsigned int j = 0; j < centers.size() - 1; j++){
-      double x[2];
-      nbIntersect += intersection_segments (centers[j].first,centers[j+1].first,pp,farLeft,x);
-    }
-    if (nbIntersect %2 != 0)
-      left.push_back(root->elements[i]);
-    else
-      right.push_back(root->elements[i]);
-  }
-
-  for (unsigned int i = 1; i < centers.size() - 1; i++){
-    multiscaleLaplaceLevel* m2 = centers[i].second;
-    if (m2){
-      a1 = myatan2 (centers[i-1].first.y() - m2->center.y(),
-                    centers[i-1].first.x() - m2->center.x());
-      a2 = myatan2 (centers[i+1].first.y() - m2->center.y(),
-                    centers[i+1].first.x() - m2->center.x());
-      recur_cut_ (m2->radius, a1, a2, m2, left, right);
-    }
-  }
-}
-
-static void connected_left_right (std::vector<MElement *> &left,
-                                 std::vector<MElement *> &right)
-{
-  //connected left
-  keepConnected(left, right);
-
-  //assign partitions
-  for (unsigned int i= 0; i< left.size(); i++)
-    left[i]->setPartition(1);
-  for (unsigned int i= 0; i< right.size(); i++)
-    right[i]->setPartition(2);
-}
-
-static void printCut(std::map<MEdge,MVertex*,Less_Edge> &cutEdges,
-                     std::set<MEdge,Less_Edge> &theCut, std::set<MVertex*> cutVertices)
-{
-   printf("Writing points.pos \n");
-   std::map<MEdge,MVertex*,Less_Edge>::iterator ite = cutEdges.begin();
-   FILE *f1 = Fopen("points.pos","w");
-   if(f1){
-     fprintf(f1,"View\"\"{\n");
-     for ( ; ite != cutEdges.end();++ite){
-       fprintf(f1,"SP(%g,%g,%g){1.0};\n",ite->second->x(),ite->second->y(),ite->second->z());
-     }
-     std::set<MVertex*>::iterator itv = cutVertices.begin();
-     for ( ; itv != cutVertices.end();++itv){
-       fprintf(f1,"SP(%g,%g,%g){3.0};\n",(*itv)->x(),(*itv)->y(),(*itv)->z());
-     }
-     fprintf(f1,"};\n");
-     fclose(f1);
-   }
-
-   printf("Writing edges.pos \n");
-   std::set<MEdge,Less_Edge>::iterator itc = theCut.begin();
-   FILE *f2 = Fopen("edges.pos","w");
-   if(f2){
-     fprintf(f2,"View\"\"{\n");
-     for ( ; itc != theCut.end();++itc){
-       fprintf(f2,"SL(%g,%g,%g,%g,%g,%g){1.0,1.0};\n",itc->getVertex(0)->x(),
-               itc->getVertex(0)->y(),itc->getVertex(0)->z(),
-               itc->getVertex(1)->x(),itc->getVertex(1)->y(),itc->getVertex(1)->z());
-     }
-     fprintf(f2,"};\n");
-     fclose(f2);
-   }
-}
-
-static void printLevel(const char* fn,
-                       std::vector<MElement *> &elements,
-                       std::map<MVertex*,SPoint2> *coordinates,
-                       double version,
-		       double *dx = 0)
-{
-  if(!CTX::instance()->mesh.saveAll) return;
-
-  std::set<MVertex*> vs;
-  for (unsigned int i = 0; i < elements.size(); i++)
-    for (int j = 0; j < elements[i]->getNumVertices(); j++)
-      vs.insert(elements[i]->getVertex(j));
-
-  bool binary = false;
-  FILE *fp = Fopen (fn, "w");
-  if(!fp){
-    Msg::Error("Could not open file '%s'", fn);
-    return;
-  }
-  fprintf(fp, "$MeshFormat\n");
-  fprintf(fp, "%g %d %d\n", version, binary ? 1 : 0, (int)sizeof(double));
-  fprintf(fp, "$EndMeshFormat\n");
-
-  fprintf(fp, "$Nodes\n%d\n", (int)vs.size());
-  std::set<MVertex*> :: iterator it = vs.begin();
-  int index = 1;
-  for (; it != vs.end() ; ++it){
-    (*it)->setIndex(index++);
-    SPoint2 p = (coordinates) ? (*coordinates)[*it] : SPoint2(0,0);
-    if (coordinates) {
-      if (dx)fprintf(fp, "%d %22.15E %22.15E 0\n", (*it)->getIndex(),
-                     dx[2]*(p.x()-dx[0]), dx[2]*(p.y()-dx[1]));
-      else   fprintf(fp, "%d %22.15E %22.15E 0\n", (*it)->getIndex(), p.x(), p.y());
-    }
-    else fprintf(fp, "%d %g %g %g\n", (*it)->getIndex(),(*it)->x(), (*it)->y(), (*it)->z());
-  }
-  fprintf(fp, "$EndNodes\n");
-
-  fprintf(fp, "$Elements\n%d\n", (int)elements.size());
-  for (unsigned int i = 0; i < elements.size(); i++){
-    elements[i]->writeMSH(fp, version);
-  }
-  fprintf(fp, "$EndElements\n");
-
-  fclose(fp);
-}
-
-static double localSize(MElement *e,  std::map<MVertex*,SPoint2> &solution)
-{
-  SBoundingBox3d local;
-  for(int j = 0; j<e->getNumVertices(); ++j){
-    SPoint2 p = solution[e->getVertex(j)];
-    local += SPoint3(p.x(),p.y(),0.0);
-  }
-  return local.max().distance(local.min());
-
-//   MVertex* v0 = e->getVertex(0);
-//   MVertex* v1 = e->getVertex(1);
-//   MVertex* v2 = e->getVertex(2);
-//   double p0[3] = {v0->x(), v0->y(), v0->z()};
-//   double p1[3] = {v1->x(), v1->y(), v1->z()};
-//   double p2[3] = {v2->x(), v2->y(), v2->z()};
-//   double a_3D = fabs(triangle_area(p0, p1, p2));
-//   SPoint2 s1 = solution[v0];
-//   SPoint2 s2 = solution[v1];
-//   SPoint2 s3 = solution[v2];
-//   double q0[3] = {s1.x(), s1.y(), 0.0};
-//   double q1[3] = {s2.x(), s2.y(), 0.0};
-//   double q2[3] = {s3.x(), s3.y(), 0.0};
-//   double a_2D = fabs(triangle_area(q0, q1, q2));
-
-//   return a_2D;  //a_2D / a_3D;
-}
-
-static void printLevel_onlysmall(const char* fn,
-				 std::vector<MElement *> &elements,
-				 std::map<MVertex*,SPoint2> *coordinates,
-				 double version,
-				 double tolerance)
-{
-  std::vector<MElement *> small;
-  double dx[3] = {0,0,0};
-  int COUNT = 0;
-  for (unsigned i=0;i<elements.size();i++){
-    double local_size = localSize(elements[i],*coordinates);
-    if (local_size < tolerance){
-      small.push_back(elements[i]);
-      for (int j=0;j<3;j++){
-	SPoint2 p = (*coordinates)[elements[i]->getVertex(j)];
-	dx[0] += p.x();
-	dx[1] += p.y();
-	COUNT++;
-      }
-    }
-  }
-  dx[0] /= COUNT;
-  dx[1] /= COUNT;
-  dx[2] = 1./tolerance;
-  printLevel(fn,small,coordinates,version,dx);
-}
-
-multiscaleLaplace::multiscaleLaplace (std::vector<MElement *> &elements,
-                                      std::map<MVertex*, SPoint3> &allCoordinates)
-{
-  //Find the boundary loops
-  //The loop with the largest equivalent radius is the Dirichlet boundary
-  std::vector<std::pair<MVertex*,double> > boundaryNodes;
-  ordering_dirichlet(elements,boundaryNodes);
-
-  //Assign Dirichlet BCs
-  // FIXME: this is never deleted
-  root = new multiscaleLaplaceLevel;
-  root->elements = elements;
-  for(unsigned int i = 0; i < boundaryNodes.size(); i++){
-     MVertex *v = boundaryNodes[i].first;
-     const double theta = 2 * M_PI * boundaryNodes[i].second;
-     root->coordinates[v] = SPoint2(cos(theta),sin(theta));
-  }
-
-  //Recursively parametrize
-  root->recur = 0;
-  root->region = 0;
-  root->scale = 1.0;
-  root->_name = "Root";
-
-  parametrize(*root);
-
-  //fill the coordinates
-  std::vector<double> iScale;
-  std::vector<SPoint2> iCenter;
-  fillCoordinates(*root, allCoordinates, iScale, iCenter);
-
-  //Compute centers for the cut
-  int nbElems = 0;
-  recur_compute_centers_ (1.0, M_PI, 0.0, root, nbElems);
-
-  //Split the mesh in left and right
-  //or Cut the mesh in left and right (of bamg)
-  if ( CTX::instance()->mesh.algo2d ==  ALGO_2D_BAMG){
-    printf("-------------> EXACT CUTTING \n");
-    cutElems(elements);
-  }
-  else {
-    splitElems(elements);
-  }
-
-}
-
-void multiscaleLaplace::fillCoordinates (multiscaleLaplaceLevel & level,
-                                         std::map<MVertex*, SPoint3> &allCoordinates,
-                                         std::vector<double> &iScale,
-                                         std::vector<SPoint2> &iCenter)
-{
-  iScale.push_back(level.scale);
-  iCenter.push_back(level.center);
-
-  for(unsigned int i = 0; i < level.elements.size(); ++i){
-    MElement *e = level.elements[i];
-    for(int j = 0; j<e->getNumVertices(); ++j){
-      MVertex *v = e->getVertex(j);
-      SPoint2 coord  = level.coordinates[v];
-      for (int k= iScale.size()-1; k > 0; k--){
-        coord = coord*iScale[k] + iCenter[k];
-      }
-      allCoordinates[v] = SPoint3(coord.x(), coord.y(), 0.0);
-    }
-  }
-
-  for (unsigned int i=0;i<level.children.size();i++){
-    multiscaleLaplaceLevel* m = level.children[i];
-    fillCoordinates(*m, allCoordinates, iScale, iCenter);
-  }
-}
-
-void multiscaleLaplace::parametrize(multiscaleLaplaceLevel & level)
-{
-  //Compute all nodes for the level
-  std::set<MVertex*> allNodes;
-  for(unsigned int i = 0; i < level.elements.size(); ++i){
-    MElement *e = level.elements[i];
-    for(int j = 0; j<e->getNumVertices(); ++j){
-      allNodes.insert(e->getVertex(j));
-    }
-  }
-
-  //Parametrize level
-  std::map<MVertex*,SPoint2> solution;
-  parametrize_method(level, allNodes, solution);
-
-  //Compute the bbox of the parametric space
-  SBoundingBox3d bbox;
-  for(std::set<MVertex *>::iterator itv = allNodes.begin(); itv !=allNodes.end() ; ++itv){
-    MVertex *v = *itv;
-    SPoint2 p = solution[v];
-    bbox += SPoint3(p.x(),p.y(),0.0);
-  }
-  double global_size = bbox.max().distance(bbox.min());
-
-  //Check elements that are too small
-  std::vector<MElement*> tooSmall, goodSize;
-  for(unsigned int i = 0; i < level.elements.size(); ++i){
-    MElement *e = level.elements[i];
-    std::vector<SPoint2> localCoord;
-    double local_size = localSize(e,solution);
-    if (local_size < 1.e-6*global_size)
-      tooSmall.push_back(e);
-    else  goodSize.push_back(e);
-  }
-
-  //Only keep the connected elements vectors goodSize (the rest goes into tooSmall)
-  keepConnected(goodSize, tooSmall);
-
-  //Add the not too small regions to the level.elements
-  std::vector<std::vector<MElement*> >  regions_, regions ;
-  regions.clear(); regions_.clear();
-  connectedRegions (tooSmall,regions_);
-  for (unsigned int i=0;i< regions_.size() ; i++){
-    bool really_small_elements = false;
-    for (unsigned int k=0; k<regions_[i].size() ; k++){
-      MElement *e = regions_[i][k];
-      double local_size = localSize(e,solution);
-      if (local_size < 1.e-8*global_size) //1.e-7
-        really_small_elements = true;
-    }
-    if(really_small_elements ){
-      regions.push_back(regions_[i]);
-    }
-    else
-      goodSize.insert(goodSize.begin(), regions_[i].begin(), regions_[i].end() );
-  }
-
-  //check for convex small regions patches
-  for (unsigned int i = 0; i < regions.size(); i++){
-    std::vector<MElement*> &elemR = regions[i];
-    v2t_cont adj;
-    buildVertexToElement (elemR,adj);
-    for (std::vector<MElement*>::iterator it = elemR.begin(); it != elemR.end(); ++it){
-      int nbNeigh = 0;
-      MElement *e = *it;
-      v2t_cont::iterator it0 = adj.find(e->getVertex(0));
-      if(it0 != adj.end()) nbNeigh += it0->second.size();
-      v2t_cont::iterator it1 = adj.find(e->getVertex(1));
-      if(it1 != adj.end()) nbNeigh += it1->second.size();
-      v2t_cont::iterator it2 = adj.find(e->getVertex(2));
-      if(it2 != adj.end()) nbNeigh += it2->second.size();
-      std::vector<MElement*>::iterator itp;
-      if (nbNeigh < 12) {
-  	goodSize.push_back(e);
-  	itp = it;
-  	it++;
-  	elemR.erase(itp);
-      }
-    }
-    keepConnected(elemR, goodSize);
-  }
-  tooSmall.clear();
-  for (unsigned int i = 0; i < regions.size(); i++)
-    tooSmall.insert(tooSmall.begin(), regions[i].begin(), regions[i].end());
-
-  keepConnected(goodSize, tooSmall);
-  regions.clear();
-  connectedRegions (tooSmall,regions);
-
-  level.elements.clear();
-  level.elements = goodSize;
-
-  //Fill level.coordinates
-  std::set<MVertex*> goodSizev;
-  for(unsigned int i = 0; i < level.elements.size(); ++i){
-    MElement *e = level.elements[i];
-    for(int j = 0; j<e->getNumVertices(); ++j){
-      MVertex *v = e->getVertex(j);
-      goodSizev.insert(v);
-      level.coordinates[v] = solution[v];
-    }
-  }
-
-  //Save multiscale meshes
-   std::string name1(level._name+"real.msh");
-   std::string name2(level._name+"param.msh");
-   std::string name3(level._name+"param_small.msh");
-   printLevel (name1.c_str(),level.elements,0,2.2);
-   printLevel (name2.c_str(),level.elements,&level.coordinates,2.2);
-   printLevel_onlysmall (name3.c_str(),level.elements,&level.coordinates,2.2,1.e-15);
-
-  //For every small region compute a new parametrization
-  Msg::Info("Level (%d-%d): %d connected small regions",
-            level.recur, level.region, regions.size());
-  for (unsigned int i = 0; i < regions.size(); i++){
-    std::set<MVertex*> tooSmallv;
-    tooSmallv.clear();
-    for (unsigned int k=0; k<regions[i].size() ; k++){
-      MElement *e = regions[i][k];
-      for(int j = 0; j<e->getNumVertices(); ++j){
-        tooSmallv.insert(e->getVertex(j));
-      }
-    }
-
-    // FIXME: this is never deleted
-    multiscaleLaplaceLevel *nextLevel = new multiscaleLaplaceLevel;
-    nextLevel->elements = regions[i];
-    nextLevel->recur = level.recur+1;
-    nextLevel->region = i;
-    std::stringstream s1 ; s1 << nextLevel->recur;
-    std::stringstream s2 ; s2 << nextLevel->region;
-    nextLevel->_name = level._name+"-"+s1.str()+"-"+s2.str();
-    SBoundingBox3d smallB;
-    for(std::set<MVertex *>::iterator itv = tooSmallv.begin();
-        itv !=tooSmallv.end(); ++itv){
-      SPoint2 p = solution[*itv];
-      nextLevel->center += p;
-      smallB += SPoint3(p.x(),p.y(),0.0);
-    }
-    nextLevel->center *= (1./(double)tooSmallv.size());
-    nextLevel->scale = smallB.max().distance(smallB.min());
-
-    for(std::set<MVertex *>::iterator itv = tooSmallv.begin();
-        itv !=tooSmallv.end() ; ++itv){
-      MVertex *v = *itv;
-      if (goodSizev.find(v) != goodSizev.end()){
-        nextLevel->coordinates[v] =  (solution[v]-nextLevel->center) *
-          (1./nextLevel->scale);
-      }
-    }
-    // recursively continue if tooSmall is not empty
-    if (!tooSmallv.empty()){
-      Msg::Info("Level (%d-%d) Multiscale Laplace (reg[%d] =  %d too small)",
-                level.recur,level.region, i, tooSmallv.size());
-      level.children.push_back(nextLevel);
-      parametrize(*nextLevel);
-    }
-  }
-}
-
-void multiscaleLaplace::parametrize_method (multiscaleLaplaceLevel & level,
-                                            std::set<MVertex*> &allNodes,
-                                            std::map<MVertex*,SPoint2> &solution)
-{
-  linearSystem<double> *_lsys;
-#if defined(HAVE_PETSC)
-  _lsys =  new linearSystemPETSc<double>;
-#elif defined(HAVE_GMM)
-  linearSystemGmm<double> *_lsysb = new linearSystemGmm<double>;
-  _lsysb->setGmres(1);
-  _lsys = _lsysb;
-#else
-  _lsys = new linearSystemFull<double>;
-#endif
-
-  solution.clear();
-  simpleFunction<double> ONE(1.0);
-
-  for (int step =0 ; step<2 ; step++){
-
-    dofManager<double> myAssembler(_lsys);
-    for(std::map<MVertex*,SPoint2>::iterator it = level.coordinates.begin();
-        it != level.coordinates.end(); ++it){
-      MVertex *v = it->first;
-      myAssembler.fixVertex(v, 0, 1, it->second[step]);
-    }
-
-    // do the numbering
-    for(std::set<MVertex *>::iterator itv = allNodes.begin();
-        itv != allNodes.end(); ++itv){
-      MVertex *v = *itv;
-      myAssembler.numberVertex(v, 0, 1);
-    }
-
-    // assemble
-    femTerm<double> *mapping;
-    mapping = new convexCombinationTerm(0, 1, &ONE);
-
-    for(unsigned int i = 0; i < level.elements.size(); ++i){
-      MElement *e = level.elements[i];
-      SElement se(e);
-      mapping->addToMatrix(myAssembler, &se);
-    }
-
-    delete mapping;
-
-    // solve
-    if (myAssembler.sizeOfR() != 0) _lsys->systemSolve();
-
-    // get the values
-    for(std::set<MVertex *>::iterator itv = allNodes.begin();
-        itv != allNodes.end(); ++itv){
-      MVertex *v = *itv;
-      double value;
-      myAssembler.getDofValue(v, 0, 1, value);
-      if (step == 0)solution[v] = SPoint2(value,0);
-      else solution[v] = SPoint2(solution[v][0],value);
-    }
-    _lsys->clear();
-
-  }
-
-  delete _lsys;
-}
-
-void multiscaleLaplace::cutElems(std::vector<MElement *> &elements)
-{
-   std::map<MEdge,MVertex*,Less_Edge> cutEdges;
-   std::set<MEdge,Less_Edge> theCut;
-   std::set<MVertex*> cutVertices;
-   elements.clear();
-
-   recur_cut_edges_ (root, cutEdges,cutVertices);
-   recur_cut_elements_ (root,cutEdges,cutVertices,theCut, elements);
-   printCut(cutEdges, theCut, cutVertices);
-
-   std::multimap<MEdge,MElement*,Less_Edge> e2e;
-   for (unsigned int i = 0; i < elements.size(); ++i){
-     for (int j = 0; j < elements[i]->getNumEdges(); j++){
-       e2e.insert(std::make_pair(elements[i]->getEdge(j),elements[i]));
-     }
-   }
-   std::set<MElement*> leftS;
-   leftS.clear();
-   std::vector<MElement*> left,right;
-   recur_leftCut_ (elements[0], e2e, theCut, leftS);
-
-   for (unsigned int i = 0; i < elements.size(); i++){
-     MElement *e = elements[i];
-     if (leftS.find(e) != leftS.end()) left.push_back(e);
-     else right.push_back(e);
-   }
-
-   connected_left_right(left, right);
-   if (left.size() == 0 || right.size() == 0) {
-     Msg::Error("KO size left=%d, right=%d  not good (zero elems)",
-                (int) left.size(), (int) right.size() );
-     return;
-   }
-
-   elements.clear();
-   elements.insert(elements.end(),left.begin(),left.end());
-   elements.insert(elements.end(),right.begin(),right.end());
-
-   printLevel ("Rootcut-left.msh",left,0,2.2);
-   printLevel ("Rootcut-right.msh",right,0,2.2);
-   printLevel ("Rootcut-all.msh",elements, 0,2.2);
-}
-
-void multiscaleLaplace::splitElems(std::vector<MElement *> &elements)
-{
-  std::vector<MElement*> left,right;
-  recur_cut_ (1.0, M_PI, 0.0, root,left,right);
-  connected_left_right(left, right);
-
-  printLevel ("Rootsplit-left.msh",left,0,2.2);
-  printLevel ("Rootsplit-right.msh",right,0,2.2);
-  printLevel ("Rootsplit-all.msh",elements, 0,2.2);
-
-  printLevel ("Rootsplit-left-param.msh",left,&root->coordinates,2.2);
-  // printLevel_onlysmall ("Rootsplit-left-param10.msh",left,&root->coordinates,2.2,1.e-10);
-  // printLevel_onlysmall ("Rootsplit-left-param12.msh",left,&root->coordinates,2.2,1.e-12);
-  // printLevel_onlysmall ("Rootsplit-left-param15.msh",left,&root->coordinates,2.2,1.e-15);
-
-  printLevel ("Rootsplit-right-param.msh",right,&root->coordinates,2.2);
-  // printLevel_onlysmall ("Rootsplit-right-param10.msh",right,&root->coordinates,2.2,1.e-10);
-  // printLevel_onlysmall ("Rootsplit-right-param12.msh",right,&root->coordinates,2.2,1.e-12);
-  // printLevel_onlysmall ("Rootsplit-right-param15.msh",right,&root->coordinates,2.2,1.e-15);
-
-  // printLevel_onlysmall ("Rootsplit-all-param12.msh",elements,&root->coordinates,2.2,1.e-12);
-  // printLevel_onlysmall ("Rootsplit-all-param15.msh",elements,&root->coordinates,2.2,1.e-15);
-
-  if ( elements.size() != left.size()+right.size()) {
-    Msg::Error("Cutting laplace wrong nb elements (%d) != left + right (%d)",
-               elements.size(), left.size()+right.size());
-    return;
-  }
-
-  elements.clear();
-  elements.insert(elements.end(),left.begin(),left.end());
-  elements.insert(elements.end(),right.begin(),right.end());
-}
diff --git a/Solver/multiscaleLaplace.h b/Solver/multiscaleLaplace.h
deleted file mode 100644
index b5411284fb98a7168387c44d0f2575d72ee8f853..0000000000000000000000000000000000000000
--- a/Solver/multiscaleLaplace.h
+++ /dev/null
@@ -1,50 +0,0 @@
-// Gmsh - Copyright (C) 1997-2017 C. Geuzaine, J.-F. Remacle
-//
-// See the LICENSE.txt file for license information. Please report all
-// bugs and problems to the public mailing list <gmsh@onelab.info>.
-
-#ifndef _MULTISCALE_LAPLACE_H_
-#define _MULTISCALE_LAPLACE_H_
-
-#include <vector>
-#include <map>
-#include <set>
-#include "SPoint2.h"
-#include "SPoint3.h"
-#include "linearSystem.h"
-
-class MElement;
-class MVertex;
-
-struct multiscaleLaplaceLevel {
-  SPoint2 center;
-  double  scale;
-  double radius;
-  int recur,region;
-  std::vector<multiscaleLaplaceLevel*> children;
-  std::vector<MElement *> elements;
-  std::map<MVertex*,SPoint2> coordinates;
-  std::vector<std::pair<SPoint2,multiscaleLaplaceLevel*> > cut;
-  std::string _name;
-};
-
-class multiscaleLaplace{
-public:
-  multiscaleLaplace (std::vector<MElement *> &elements,
-                     std::map<MVertex*, SPoint3> &allCoordinates);
-  void cutElems   (std::vector<MElement *> &elements);
-  void splitElems (std::vector<MElement *> &elements);
- 
-  multiscaleLaplaceLevel* root;
-  void fillCoordinates (multiscaleLaplaceLevel & level,
-                        std::map<MVertex*, SPoint3> &allCoordinates,
-                        std::vector<double> &iScale,
-                        std::vector<SPoint2> &iCenter);
-  void parametrize (multiscaleLaplaceLevel &);
-  void parametrize_method (multiscaleLaplaceLevel & level,
-                           std::set<MVertex*> &allNodes,
-                           std::map<MVertex*,SPoint2> &solution);
-
-
-};
-#endif
diff --git a/benchmarks/2d/compound.geo b/benchmarks/2d/compound.geo
index f1c388e193191aa8d6bbb7568f6b122a0355de80..e2849269ba89bea8bb0abcc2938a2d5497fc285b 100644
--- a/benchmarks/2d/compound.geo
+++ b/benchmarks/2d/compound.geo
@@ -23,4 +23,4 @@ Line(15) = {8, 7};
 Line Loop(100) = {13, -14, 15};
 Plane Surface(11) = {10,100};
 
-Compound Surface(12)={9,11}; 
+Compound Surface{9,11};
diff --git a/benchmarks/2d/hybrid_compound.geo b/benchmarks/2d/hybrid_compound.geo
index cbacae45b00f61c38257e08929db010fa77e9d0a..8a69f1fc91343b98fa62cba8f1be06dc359161fd 100644
--- a/benchmarks/2d/hybrid_compound.geo
+++ b/benchmarks/2d/hybrid_compound.geo
@@ -1,8 +1,9 @@
+General.MeshDiscrete = 1;
+
 Merge "hybrid_part.msh";
-CreateTopology;
 
-Compound Line(100) = {14};
-Compound Surface(101) = {16};
+Compound Line{14};
+Compound Surface{16};
 
 lc = 1e-2;
 Point(1) = {0, 0, 0, lc};
@@ -12,5 +13,6 @@ Line(1) = {1,11} ;
 Line(3) = {14,4} ;
 Line(4) = {4,1} ;
 
-Line Loop(5) = {-4,-1,100,-3} ;
+Line Loop(5) = {-4,-1,14,-3} ;
 Plane Surface(6) = {5} ;
+
diff --git a/benchmarks/3d/CubeAniso2.geo b/benchmarks/3d/CubeAniso2.geo
index 337fbb3666b21c2c28151ec1360eb172ee38f3d7..fa93a1fef14048e0eaa42149a2d6357cfceb806b 100644
--- a/benchmarks/3d/CubeAniso2.geo
+++ b/benchmarks/3d/CubeAniso2.geo
@@ -1,19 +1,10 @@
 lc = 0.1;
 
-Mesh.RemeshParametrization=1; //(0) harmonic (1) conformal 
-Mesh.RemeshAlgorithm=1; //(0) nosplit (1) automatic (2) split only with metis ///Default: 1 
+General.MeshDiscrete=1;
 
 Merge "CubeAniso2D.msh";
-CreateTopology;
 
-Compound Surface(106) = {6}; //, 15};
-Compound Surface(115) = {15};
-Compound Surface(119) = {19};
-Compound Surface(123) = {23};
-Compound Surface(127) = {27};
-Compound Surface(128) = {28};
-
-Surface Loop(100) = {106, 115, 119,123,127,128};
+Surface Loop(100) = {6, 15, 19, 23, 27, 28};
 Volume(1) = {100};
 
 Field[2] = MathEvalAniso;
diff --git a/benchmarks/extrude/Cylinder.geo b/benchmarks/extrude/Cylinder.geo
index 4e0e81bd4f9cb72f46846683aa11e4758c755db1..187f27e6de52765222408613c8fef138baa19404 100644
--- a/benchmarks/extrude/Cylinder.geo
+++ b/benchmarks/extrude/Cylinder.geo
@@ -1,5 +1,3 @@
-Mesh.RemeshParametrization=1; //(0) harmonic (1) conformal 
-Mesh.RemeshAlgorithm=1; //(0) nosplit (1) automatic (2) split metis
 
 Point(1) = {0, 0, 0};
 Point(2) = {1, 0, 0};
@@ -13,7 +11,3 @@ Circle(4) = {5, 1, 3};
 Extrude {0, 0, 13} {
   Line{4, 1, 2, 3};
 }
-
-
-Compound Surface(10000) = {20, 16, 12, 8};
-
diff --git a/benchmarks/extrude/aorta.geo b/benchmarks/extrude/aorta.geo
index 507e3b2e70ace6ef14c4453a2ee35e1bb39015f3..5dace658c1a092c2d042c7085a943b652b0d0a8c 100644
--- a/benchmarks/extrude/aorta.geo
+++ b/benchmarks/extrude/aorta.geo
@@ -1,15 +1,13 @@
+General.MeshDiscrete = 1;
 Merge "aorta2.stl";
-CreateTopology;
 
-//Merge "aortaRADIUS2.bgm";
+//Line Loop(60) = {1}; Plane Surface(61) = {60};
+//Line Loop(62) = {2}; Plane Surface(63) = {62};
+//Line Loop(64) = {3}; Plane Surface(65) = {64};
+//Line Loop(66) = {4}; Plane Surface(67) = {66};
+//Line Loop(68) = {5}; Plane Surface(69) = {68};
 
-Line Loop(60) = {1}; Plane Surface(61) = {60};
-Line Loop(62) = {2}; Plane Surface(63) = {62};
-Line Loop(64) = {3}; Plane Surface(65) = {64};
-Line Loop(66) = {4}; Plane Surface(67) = {66};
-Line Loop(68) = {5}; Plane Surface(69) = {68};
+//Mesh.Algorithm3D = 4;
 
-Mesh.Algorithm3D = 4;
-
-Surface Loop(100) = {1, 61:69:2};
-Volume(100) = 100;
+//Surface Loop(100) = {1, 61:69:2};
+//Volume(100) = 100;
diff --git a/benchmarks/extrude/aorta_extrude.geo b/benchmarks/extrude/aorta_extrude.geo
index 74c91413820c34c96241a2a7e180d113c9d12e52..88283f74fd5c4a644efde6461883c364e575e4cb 100644
--- a/benchmarks/extrude/aorta_extrude.geo
+++ b/benchmarks/extrude/aorta_extrude.geo
@@ -1,14 +1,14 @@
+General.MeshDiscrete = 1;
 Merge "aorta2.stl";
-CreateTopology;
 
 Merge "aortaRADIUS2.bgm";
 
 // create a boundary layer, whose tickness is given in View[0]
-out1[] = Extrude{Surface{-1}; Layers{4, 0.5}; Using Index[0]; Using View[0]; };
+//out1[] = Extrude{Surface{-1}; Layers{4, 0.5}; Using Index[0]; Using View[0]; };
 
 // we could create a second boundary layer inside...
 //out2[] = Extrude{Surface{1}; Layers{4, -0.5}; Using Index[1]; Using View[0]; };
-
+/*
 Line Loop(60) = {1}; Plane Surface(61) = {60};
 Line Loop(62) = {2}; Plane Surface(63) = {62};
 Line Loop(64) = {3}; Plane Surface(65) = {64};
@@ -19,3 +19,4 @@ Mesh.Algorithm3D = 4;
 
 Surface Loop(100) = {1, 61:69:2};
 Volume(100) = 100;
+*/
diff --git a/benchmarks/extrude/sphere_discrete.geo b/benchmarks/extrude/sphere_discrete.geo
index 5417d009c3d609f0b4bb6544ec77829d58466b2a..f3bcd425fc7b3f00607c3b0c6870f46569bb0efc 100644
--- a/benchmarks/extrude/sphere_discrete.geo
+++ b/benchmarks/extrude/sphere_discrete.geo
@@ -1,14 +1,12 @@
-//Merge "sphere_boundary_layer.msh";
-Merge "sphere.stl";
-CreateTopology;
+General.MeshDiscrete=1 ;
 
-out[] = Extrude{
- Surface{1}; Layers{5, 0.1}; Recombine;
-};
+// FIXME: re-add this once we have a good reparam
 
-//the volume of the boundary layer is created
-//with the extrusion
-
-//here we create the volume of the inside of the sphere
-Surface Loop(100)={1};
-Volume(101)={100};
\ No newline at end of file
+//Merge "sphere.stl";
+//out[] = Extrude{
+// Surface{1}; Layers{5, 0.1}; Recombine;
+//};
+// the volume of the boundary layer is created with the extrusion
+// here we create the volume of the inside of the sphere
+//Surface Loop(100)={1};
+//Volume(101)={100};
diff --git a/doc/texinfo/gmsh.texi b/doc/texinfo/gmsh.texi
index 2378519e840ace89e832c4c59fbb6065ad6d4f8c..f645649b3bb3455828860c32ce8e6df91e2fa633 100644
--- a/doc/texinfo/gmsh.texi
+++ b/doc/texinfo/gmsh.texi
@@ -1963,16 +1963,6 @@ Creates a path made of lines. Wires are only available with the
 OpenCASCADE kernel. They are used to create @code{ThruSections} and
 extrusions along paths.
 
-@item Compound Line ( @var{expression} ) = @{ @var{expression-list} @};
-Creates a compound line from several elementary lines.  When meshed, a
-compound line will be reparametrized as a single line, whose mesh can
-thus cross internal boundaries. The @var{expression} inside the
-parentheses is the compound line's identification number; the
-@var{expression-list} on the right hand side contains the identification
-number of the elementary lines that should be reparametrized as a single
-line. See @code{Compound Surface} for additional information on compound
-entities.
-
 @item Physical Line ( @var{expression} | @var{char-expression} <, @var{expression}> ) <+|->= @{ @var{expression-list} @};
 Creates a physical line. The @var{expression} inside the parentheses is
 the physical line's identification number; the @var{expression-list} on
@@ -2043,19 +2033,6 @@ elementary surfaces should be oriented consistently (using negative
 identification numbers to specify reverse orientation). (Surface loops are
 used to create volumes: see @ref{Volumes}.)
 
-@item Compound Surface ( @var{expression} ) = @{ @var{expression-list} @} < Boundary @{ @{ @var{expression-list} @}, @{ @var{expression-list} @}, @{ @var{expression-list} @}, @{ @var{expression-list} @} @} > ;
-Creates a compound surface from several elementary surfaces.  When
-meshed, a compound surface will be reparametrized as a single surface,
-whose mesh can thus cross internal boundaries. Compound surfaces are
-mostly useful for remeshing discrete models; see ``J.-F. Remacle,
-C. Geuzaine, G. Compere and E. Marchandise, @emph{High Quality Surface
-Remeshing Using Harmonic Maps}, International Journal for Numerical
-Methods in Engineering, 2009'' for details as well as the wiki for more
-examples.  The @var{expression} inside the parentheses is the compound
-surface's identification number; the mandatory @var{expression-list} on
-the right hand side contains the identification number of the elementary
-surfaces that should be reparametrized as a single surface.
-
 @item Physical Surface ( @var{expression} | @var{char-expression} <, @var{expression}> ) <+|->= @{ @var{expression-list} @};
 Creates a physical surface. The @var{expression} inside the parentheses
 is the physical surface's identification number; the
@@ -2143,16 +2120,6 @@ the OpenCASCADE kernel.
 @c @item ThickSolid ( @var{expression} ) = @{ @var{expression-list} @};
 @c todo: @code{ThickSolid} is only available with the OpenCASCADE kernel.
 
-@item Compound Volume ( @var{expression} ) = @{ @var{expression-list} @};
-Creates a compound volume from several elementary volumes.  When meshed,
-a compound volume will be reparametrized as a single volume, whose mesh
-can thus cross internal boundaries. The @var{expression} inside the
-parentheses is the compound volume's identification number; the
-@var{expression-list} on the right hand side contains the identification
-number of the elementary volumes that should be reparametrized as a
-single volume. See @code{Compound Surface} for additional information on
-compound entities.
-
 @item Physical Volume ( @var{expression} | @var{char-expression} <, @var{expression}> ) <+|->= @{ @var{expression-list} @};
 Creates a physical volume. The @var{expression} inside the parentheses
 is the physical volume's identification number; the
diff --git a/tutorial/t12.geo b/tutorial/t12.geo
index 2e1856f00aa7be4da158531a4cf40386232e02f1..dc161c0f95b54d96cd4768198ee67b7e299def23 100644
--- a/tutorial/t12.geo
+++ b/tutorial/t12.geo
@@ -23,36 +23,14 @@ Line(4) = {9, 3}; Line(5) = {3, 4}; Line(6) = {4, 7};
 Line(7) = {7, 6}; Line(8) = {6, 1}; Spline(9) = {7, 5, 9};
 Line(10) = {6, 8};
 
-Line Loop(11) = {5, 6, 9, 4};     Surface(12) = {11};
-Line Loop(13) = {9, -3, -10, -7}; Surface(14) = {13};
-Line Loop(15) = {10, -2, -1, -8}; Surface(16) = {15};
+Line Loop(11) = {5, 6, 9, 4};     Surface(1) = {11};
+Line Loop(13) = {9, -3, -10, -7}; Surface(5) = {13};
+Line Loop(15) = {10, -2, -1, -8}; Surface(10) = {15};
 
 // Treat lines 2, 3 and 4 as a single line
-Compound Line(100) = {2, 3, 4};
+Compound Line{2, 3, 4}; // FIXME: not (re)implemeted yet
 // Idem with lines 6, 7 and 8
-Compound Line(101) = {6, 7, 8};
+Compound Line{6, 7, 8}; // FIXME: not (re)implemeted yet
 
 // Treat surfaces 12, 14 and 16 as a single surface
-Compound Surface(200) = {12, 14, 16};
-
-// Add option to toggle visibility of sub-entities
-DefineConstant[ hide = {Geometry.HideCompounds, Choices{0,1},
-    Name "Hide compound sub-entities", GmshOption "Geometry.HideCompounds",
-    AutoCheck 0} ];
-
-// More details about the reparametrization technique can be found in the
-// following papers:
-//
-// * J.-F. Remacle, C. Geuzaine, G. Comp�re and E. Marchandise, "High-Quality
-//   Surface Remeshing Using Harmonic Maps", International Journal for Numerical
-//   Methods in Engineering, 83 (4), pp. 403-425, 2010.
-//
-// * E. Marchandise, G. Comp�re, M. Willemet, G. Bricteux, C. Geuzaine and J-F
-//   Remacle, "Quality meshing based on STL triangulations for biomedical
-//   simulations", International Journal for Numerical Methods in Biomedical
-//   Engineering", 26 (7), pp. 876-889, 2010.
-//
-// * E. Marchandise, C. Carton de Wiart, W. G. Vos, C. Geuzaine and
-//   J.-F. Remacle, "High Quality Surface Remeshing Using Harmonic Maps. Part
-//   II: Surfaces with High Genus and of Large Aspect Ratio", International
-//   Journal for Numerical Methods in Engineering, 86 (11), pp. 1303-1321, 2011.
+Compound Surface{1, 5, 10};
diff --git a/tutorial/t13.geo b/tutorial/t13.geo
index 14e5023587ea376fd444a1359044e714968ea705..7ab78936bbad37f60e518f3b06d87be39cfe62fe 100644
--- a/tutorial/t13.geo
+++ b/tutorial/t13.geo
@@ -10,54 +10,32 @@
 // them to remesh STL files, even if in this case there's usually only a single
 // elementary geometrical entity per compound.
 
+// FIXME: compute parametrization of discrete surfaces read from mesh file
+General.MeshDiscrete = 1;
+
 // Let's merge the mesh that we would like to remesh. This mesh was reclassified
 // ("colored") from an initial STL triangulation using the "Reclassify 2D" tool
 // in Gmsh, so that we could split it along sharp geometrical features.
 Merge "t13_data.msh";
 
-// Since the original mesh is a bit coarse, we refine it once
-RefineMesh;
-
-// Create the topology of the discrete model
-CreateTopology;
-
 // We can now define a compound line (resp. surface) for each discrete line
 // (resp. surface) in the model
-ll[] = Line {:};
-For j In {0 : #ll[]-1}
-  Compound Line(newl) = ll[j];
-EndFor
 ss[] = Surface {:};
-s = news;
-For i In {0 : #ss[]-1}
-  Compound Surface(s+i) = ss[i];
-EndFor
 
-// And we can create the volume based on the new compound entities
-Surface Loop(1) = {s : s + #ss[]-1};
-Volume(1) = {1};
+// FIXME: does not do anything yet (because the underlying surfaces are
+// discrete):
+Compound Surface{ss[]};
 
-Physical Surface(1) = {s : s + #ss[]-1};
-Physical Volume(1) = 1;
-Physical Line(1) = {26 ... 37};
+// FIXME: re-add this when we use a good parametrization
+//Surface Loop(1) = {ss[]};
+//Volume(1) = {1};
 
 // element size imposed by a size field
 Field[1] = MathEval;
-Field[1].F = "2.0";
+Field[1].F = "1.5";
 Background Field = 1;
 
-DefineConstant[
-  funny = {0, Choices{0,1},
-    Name "Parameters/Apply funny mesh size field?"},
-  hide = {Geometry.HideCompounds, Choices{0,1},
-    AutoCheck 0, GmshOption "Geometry.HideCompounds",
-    Name "Parameters/Hide compound sub-entities"}
-];
-
+funny = DefineNumber[0, Choices{0,1}, Name "Parameters/Apply funny mesh size field?" ];
 If(funny)
   Field[1].F = "2*Sin((x+y)/5) + 3";
 EndIf
-
-Mesh.RemeshAlgorithm = 1; // automatic
-Mesh.RemeshParametrization = 7; // conformal finite element
-Mesh.Algorithm = 6; // Frontal