// Gmsh - Copyright (C) 1997-2010 C. Geuzaine, J.-F. Remacle // // See the LICENSE.txt file for license information. Please report all // bugs and problems to <gmsh@geuz.org>. #ifndef _FULL_MATRIX_H_ #define _FULL_MATRIX_H_ #include <math.h> #include <stdio.h> #include "GmshConfig.h" #include "GmshMessage.h" class binding; template <class scalar> class fullMatrix; template <class scalar> class fullVector { private: int _r; scalar *_data; friend class fullMatrix<scalar>; public: inline const scalar* getDataPtr() const{ return _data; } fullVector(int r) : _r(r) { _data = new scalar[_r]; scale(0.); } fullVector(void) : _r(0),_data(0) {} fullVector(const fullVector<scalar> &other) : _r(other._r) { _data = new scalar[_r]; for(int i = 0; i < _r; ++i) _data[i] = other._data[i]; } ~fullVector() { if(_data) delete [] _data; } bool resize(int r) { if (_r < r){ if (_data) delete[] _data; _r = r; _data = new scalar[_r]; return true; } return false; } inline scalar operator () (int i) const { return _data[i]; } inline int size() const { return _r; } inline scalar & operator () (int i) { return _data[i]; } inline scalar norm() { scalar n = 0.; for(int i = 0; i < _r; ++i) n += _data[i] * _data[i]; return sqrt(n); } inline void scale(const scalar s) { if(s == 0.) for(int i = 0; i < _r; ++i) _data[i] = 0.; else if (s == -1.) for(int i = 0; i < _r; ++i) _data[i] = -_data[i]; else for(int i = 0; i < _r; ++i) _data[i] *= s; } inline scalar operator *(const fullVector<scalar> &other) { scalar s = 0.; for(int i = 0; i < _r; ++i) s += _data[i] * other._data[i]; return s; } void axpy(fullVector<scalar> &x, scalar alpha=1.) #if !defined(HAVE_BLAS) { for (int i = 0; i < _r; i++) _data[i] += alpha * x._data[i]; } #endif ; void print(const char *name="") const { printf("Printing vector %s:\n", name); printf(" "); for(int I = 0; I < size(); I++){ printf("%12.5E ", (*this)(I)); } printf("\n"); } void binarySave (FILE *f) const{ fwrite (_data, sizeof(scalar), _r, f); } void binaryLoad (FILE *f){ if(fread (_data, sizeof(scalar), _r, f) != _r) return; } }; template <class scalar> class fullMatrix { private: bool _own_data; // should data be freed on delete ? int _r, _c; scalar *_data; public: inline scalar get(int r, int c) const { return (*this)(r, c); } inline void set(int r, int c, scalar v){ (*this)(r, c) = v; } fullMatrix(scalar *original, int r, int c) { _r = r; _c = c; _own_data = false; _data = original; } fullMatrix(fullMatrix<scalar> &original, int c_start, int c) { _c = c; _r = original._r; _own_data = false; _data = original._data + c_start * _r; } fullMatrix(int r, int c) : _r(r), _c(c) { _data = new scalar[_r * _c]; _own_data = true; scale(0.); } fullMatrix(int r, int c, double *data) : _r(r), _c(c), _data(data), _own_data(false) { scale(0.); } fullMatrix(const fullMatrix<scalar> &other) : _r(other._r), _c(other._c) { _data = new scalar[_r * _c]; _own_data=true; for(int i = 0; i < _r * _c; ++i) _data[i] = other._data[i]; } fullMatrix() : _own_data(false),_r(0), _c(0), _data(0) {} ~fullMatrix() { if(_data && _own_data) delete [] _data; } bool resize(int r, int c) // data will be owned (same as constructor) { if ((r * c > _r * _c) || !_own_data){ _r = r; _c = c; if (_own_data && _data) delete[] _data; _data = new scalar[_r * _c]; _own_data = true; scale(0.); return true; } else{ _r = r; _c = c; } scale(0.); return false; // no reallocation } void setAsProxy(const fullMatrix<scalar> &original) { if(_data && _own_data) delete [] _data; _c = original._c; _r = original._r; _own_data = false; _data = original._data; } void setAsProxy(const fullMatrix<scalar> &original, int c_start, int c) { if(_data && _own_data) delete [] _data; _c = c; _r = original._r; _own_data = false; _data = original._data + c_start * _r; } void setAsShapeProxy(fullMatrix<scalar> &original, int nbRow, int nbCol) { if(_data && _own_data) delete [] _data; _c = nbCol; _r = nbRow; if(_c*_r != original._c*original._r) Msg::Error("trying to reshape a fullMatrix without conserving the total number of entries"); _own_data = false; _data = original._data; } inline int size1() const { return _r; } inline int size2() const { return _c; } fullMatrix<scalar> & operator = (const fullMatrix<scalar> &other) { if(this != &other){ _r = other._r; _c = other._c; if (_data && _own_data) delete[] _data; if ((_r == 0) || (_c == 0)) _data=0; else{ _data = new scalar[_r * _c]; _own_data=true; for(int i = 0; i < _r * _c; ++i) _data[i] = other._data[i]; } } return *this; } void operator += (const fullMatrix<scalar> &other) { if(_r != other._r || _c!= other._c) Msg::Error("sum matrices of different sizes\n"); for(int i = 0; i < _r * _c; ++i) _data[i] += other._data[i]; } inline scalar operator () (int i, int j) const { return _data[i + _r * j]; } inline scalar & operator () (int i, int j) { return _data[i + _r * j]; } void copy(const fullMatrix<scalar> &a, int i0, int ni, int j0, int nj, int desti0, int destj0) { for(int i = i0, desti = desti0; i < i0 + ni; i++, desti++) for(int j = j0, destj = destj0; j < j0 + nj; j++, destj++) (*this)(desti, destj) = a(i, j); } void mult_naive(const fullMatrix<scalar> &b, fullMatrix<scalar> &c)const { c.scale(0.); for(int i = 0; i < _r; i++) for(int j = 0; j < b.size2(); j++) for(int k = 0; k < _c; k++) c._data[i + _r * j] += (*this)(i, k) * b(k, j); } ; void mult(const fullMatrix<scalar> &b, fullMatrix<scalar> &c)const #if !defined(HAVE_BLAS) { mult_naive(b,c); } #endif ; void gemm_naive(const fullMatrix<scalar> &a, const fullMatrix<scalar> &b, scalar alpha=1., scalar beta=1.) { fullMatrix<scalar> temp(a.size1(), b.size2()); a.mult_naive(b, temp); temp.scale(alpha); scale(beta); add(temp); } ; void gemm(const fullMatrix<scalar> &a, const fullMatrix<scalar> &b, scalar alpha=1., scalar beta=1.) #if !defined(HAVE_BLAS) { gemm_naive(anb,alpha,beta); } #endif ; inline void setAll(const scalar &m) { for(int i = 0; i < _r * _c; i++) _data[i] = m; } inline void setAll(const fullMatrix<scalar> &m) { for(int i = 0; i < _r * _c; i++) _data[i] = m._data[i]; } inline void scale(const double s) { if(s == 0.) for(int i = 0; i < _r * _c; ++i) _data[i] = 0.; else for(int i = 0; i < _r * _c; ++i) _data[i] *= s; } inline void add(const double &a) { for(int i = 0; i < _r * _c; ++i) _data[i] += a; } inline void add(const fullMatrix<scalar> &m) { for(int i = 0; i < size1(); i++) for(int j = 0; j < size2(); j++) (*this)(i, j) += m(i, j); } inline void add(const fullMatrix<scalar> &m, const double &a) { for(int i = 0; i < size1(); i++) for(int j = 0; j < size2(); j++) (*this)(i, j) += a*m(i, j); } void mult(const fullVector<scalar> &x, fullVector<scalar> &y) #if !defined(HAVE_BLAS) { y.scale(0.); for(int i = 0; i < _r; i++) for(int j = 0; j < _c; j++) y._data[i] += (*this)(i, j) * x(j); } #endif ; inline fullMatrix<scalar> transpose() { fullMatrix<scalar> T(size2(), size1()); for(int i = 0; i < size1(); i++) for(int j = 0; j < size2(); j++) T(j, i) = (*this)(i, j); return T; } inline void transposeInPlace() { if(size1() != size2()){ Msg::Error("Not a square matrix (size1: %d, size2: %d)", size1(), size2()); } scalar t; for(int i = 0; i < size1(); i++) for(int j = 0; j < i; j++) { t = _data[i + _r * j]; _data[i + _r * j] = _data[j + _r * i]; _data[j + _r * i] = t; } } bool luSolve(const fullVector<scalar> &rhs, fullVector<scalar> &result) #if !defined(HAVE_LAPACK) { Msg::Error("LU factorization requires LAPACK"); return false; } #endif ; bool invertInPlace() #if !defined(HAVE_LAPACK) { Msg::Error("Matrix inversion requires LAPACK"); return false; } #endif ; bool eig(fullVector<double> &eigenValReal, fullVector<double> &eigenValImag, fullMatrix<scalar> &leftEigenVect, fullMatrix<scalar> &rightEigenVect, bool sortRealPart=false) #if !defined(HAVE_LAPACK) { Msg::Error("Eigenvalue computations requires LAPACK"); return false; } #endif ; bool invert(fullMatrix<scalar> &result) #if !defined(HAVE_LAPACK) { Msg::Error("LU factorization requires LAPACK"); return false; } #endif ; fullMatrix<scalar> cofactor(int i, int j) const { int ni = size1(); int nj = size2(); fullMatrix<scalar> cof(ni - 1, nj - 1); for(int I = 0; I < ni; I++){ for(int J = 0; J < nj; J++){ if(J != j && I != i) cof(I < i ? I : I - 1, J < j ? J : J - 1) = (*this)(I, J); } } return cof; } scalar determinant() const #if !defined(HAVE_LAPACK) { Msg::Error("Determinant computation requires LAPACK"); return 0.; } #endif ; bool svd(fullMatrix<scalar> &V, fullVector<scalar> &S) #if !defined(HAVE_LAPACK) { Msg::Error("Singular value decomposition requires LAPACK"); return false; } #endif ; void print(const std::string name = "") const { printf("Printing matrix %s:\n", name.c_str()); int ni = size1(); int nj = size2(); for(int I = 0; I < ni; I++){ printf(" "); for(int J = 0; J < nj; J++){ printf("%12.5E ", (*this)(I, J)); } printf("\n"); } } static void registerBindings(binding *b); }; #endif