// $Id: MElement.cpp,v 1.80 2008-07-11 10:54:24 remacle Exp $ // // Copyright (C) 1997-2008 C. Geuzaine, J.-F. Remacle // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 // USA. // // Please report all bugs and problems to <gmsh@geuz.org>. #include <stdlib.h> #include <math.h> #include "MElement.h" #include "GEntity.h" #include "GFace.h" #if defined(HAVE_GMSH_EMBEDDED) # include "GmshEmbedded.h" #else # include "Numeric.h" # include "FunctionSpace.h" # include "GaussLegendre1D.h" # include "Message.h" # include "Context.h" # include "qualityMeasures.h" #endif #define SQU(a) ((a)*(a)) extern Context_T CTX; int MElement::_globalNum = 0; double MElementLessThanLexicographic::tolerance = 1.e-6; void MElement::_getEdgeRep(MVertex *v0, MVertex *v1, double *x, double *y, double *z, SVector3 *n, int faceIndex) { x[0] = v0->x(); y[0] = v0->y(); z[0] = v0->z(); x[1] = v1->x(); y[1] = v1->y(); z[1] = v1->z(); if(faceIndex >= 0){ n[0] = n[1] = getFace(faceIndex).normal(); } else{ MEdge e(v0, v1); n[0] = n[1] = e.normal(); } } void MElement::_getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2, double *x, double *y, double *z, SVector3 *n) { x[0] = v0->x(); x[1] = v1->x(); x[2] = v2->x(); y[0] = v0->y(); y[1] = v1->y(); y[2] = v2->y(); z[0] = v0->z(); z[1] = v1->z(); z[2] = v2->z(); SVector3 t1(x[1] - x[0], y[1] - y[0], z[1] - z[0]); SVector3 t2(x[2] - x[0], y[2] - y[0], z[2] - z[0]); SVector3 normal = crossprod(t1, t2); normal.normalize(); for(int i = 0; i < 3; i++) n[i] = normal; } char MElement::getVisibility() { if(CTX.hide_unselected && _visible < 2) return false; return _visible; } double MElement::minEdge() { double m = 1.e25; for(int i = 0; i < getNumEdges(); i++){ MEdge e = getEdge(i); m = std::min(m, e.getVertex(0)->distance(e.getVertex(1))); } return m; } double MElement::maxEdge() { double m = 0.; for(int i = 0; i < getNumEdges(); i++){ MEdge e = getEdge(i); m = std::max(m, e.getVertex(0)->distance(e.getVertex(1))); } return m; } double MElement::rhoShapeMeasure() { double min = minEdge(); double max = maxEdge(); if(max) return min / max; else return 0.; } void MElement::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const { Msg::Error("No integration points defined for this type of element"); } double MTriangle::gammaShapeMeasure() { #if defined(HAVE_GMSH_EMBEDDED) return 0.; #else return qmTriangle(this, QMTRI_RHO); #endif } double MTetrahedron::gammaShapeMeasure() { #if defined(HAVE_GMSH_EMBEDDED) return 0.; #else double vol; return qmTet(this, QMTET_2, &vol); #endif } double MTetrahedron::etaShapeMeasure() { #if defined(HAVE_GMSH_EMBEDDED) return 0.; #else double vol; return qmTet(this, QMTET_3, &vol); #endif } double MTetrahedron::getVolume() { double mat[3][3]; getMat(mat); return det3x3(mat) / 6.; } void MTetrahedron::xyz2uvw(double xyz[3], double uvw[3]) { double mat[3][3], b[3], det; getMat(mat); b[0] = xyz[0] - getVertex(0)->x(); b[1] = xyz[1] - getVertex(0)->y(); b[2] = xyz[2] - getVertex(0)->z(); sys3x3(mat, b, uvw, &det); } int MHexahedron::getVolumeSign() { double mat[3][3]; mat[0][0] = _v[1]->x() - _v[0]->x(); mat[0][1] = _v[3]->x() - _v[0]->x(); mat[0][2] = _v[4]->x() - _v[0]->x(); mat[1][0] = _v[1]->y() - _v[0]->y(); mat[1][1] = _v[3]->y() - _v[0]->y(); mat[1][2] = _v[4]->y() - _v[0]->y(); mat[2][0] = _v[1]->z() - _v[0]->z(); mat[2][1] = _v[3]->z() - _v[0]->z(); mat[2][2] = _v[4]->z() - _v[0]->z(); return sign(det3x3(mat)); } int MPrism::getVolumeSign() { double mat[3][3]; mat[0][0] = _v[1]->x() - _v[0]->x(); mat[0][1] = _v[2]->x() - _v[0]->x(); mat[0][2] = _v[3]->x() - _v[0]->x(); mat[1][0] = _v[1]->y() - _v[0]->y(); mat[1][1] = _v[2]->y() - _v[0]->y(); mat[1][2] = _v[3]->y() - _v[0]->y(); mat[2][0] = _v[1]->z() - _v[0]->z(); mat[2][1] = _v[2]->z() - _v[0]->z(); mat[2][2] = _v[3]->z() - _v[0]->z(); return sign(det3x3(mat)); } int MPyramid::getVolumeSign() { double mat[3][3]; mat[0][0] = _v[1]->x() - _v[0]->x(); mat[0][1] = _v[3]->x() - _v[0]->x(); mat[0][2] = _v[4]->x() - _v[0]->x(); mat[1][0] = _v[1]->y() - _v[0]->y(); mat[1][1] = _v[3]->y() - _v[0]->y(); mat[1][2] = _v[4]->y() - _v[0]->y(); mat[2][0] = _v[1]->z() - _v[0]->z(); mat[2][1] = _v[3]->z() - _v[0]->z(); mat[2][2] = _v[4]->z() - _v[0]->z(); return sign(det3x3(mat)); } SPoint3 MElement::barycenter() { SPoint3 p(0., 0., 0.); int n = getNumVertices(); for(int i = 0; i < n; i++) { MVertex *v = getVertex(i); p[0] += v->x(); p[1] += v->y(); p[2] += v->z(); } p[0] /= (double)n; p[1] /= (double)n; p[2] /= (double)n; return p; } std::string MElement::getInfoString() { char tmp[256]; sprintf(tmp, "Element %d", getNum()); return std::string(tmp); } double MElement::getJacobian(double u, double v, double w, double jac[3][3]) { jac[0][0] = jac[0][1] = jac[0][2] = 0.; jac[1][0] = jac[1][1] = jac[1][2] = 0.; jac[2][0] = jac[2][1] = jac[2][2] = 0.; double s[3]; switch(getDim()){ case 3 : for(int i = 0; i < getNumVertices(); i++) { getGradShapeFunction(i, u, v, w, s); MVertex *p = getVertex(i); jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0]; jac[1][0] += p->x() * s[1]; jac[1][1] += p->y() * s[1]; jac[1][2] += p->z() * s[1]; jac[2][0] += p->x() * s[2]; jac[2][1] += p->y() * s[2]; jac[2][2] += p->z() * s[2]; } return fabs(jac[0][0] * jac[1][1] * jac[2][2] + jac[0][2] * jac[1][0] * jac[2][1] + jac[0][1] * jac[1][2] * jac[2][0] - jac[0][2] * jac[1][1] * jac[2][0] - jac[0][0] * jac[1][2] * jac[2][1] - jac[0][1] * jac[1][0] * jac[2][2]); case 2 : for(int i = 0; i < getNumVertices(); i++) { getGradShapeFunction(i, u, v, w, s); MVertex *p = getVertex(i); jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0]; jac[1][0] += p->x() * s[1]; jac[1][1] += p->y() * s[1]; jac[1][2] += p->z() * s[1]; } { double a[3], b[3], c[3]; a[0] = getVertex(1)->x() - getVertex(0)->x(); a[1] = getVertex(1)->y() - getVertex(0)->y(); a[2] = getVertex(1)->z() - getVertex(0)->z(); b[0] = getVertex(2)->x() - getVertex(0)->x(); b[1] = getVertex(2)->y() - getVertex(0)->y(); b[2] = getVertex(2)->z() - getVertex(0)->z(); prodve(a, b, c); jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2]; } return sqrt(SQU(jac[0][0] * jac[1][1] - jac[0][1] * jac[1][0]) + SQU(jac[0][2] * jac[1][0] - jac[0][0] * jac[1][2]) + SQU(jac[0][1] * jac[1][2] - jac[0][2] * jac[1][1])); case 1: for(int i = 0; i < getNumVertices(); i++) { getGradShapeFunction(i, u, v, w, s); MVertex *p = getVertex(i); jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0]; } { double a[3], b[3], c[3]; a[0] = getVertex(1)->x() - getVertex(0)->x(); a[1] = getVertex(1)->y() - getVertex(0)->y(); a[2] = getVertex(1)->z() - getVertex(0)->z(); if((fabs(a[0]) >= fabs(a[1]) && fabs(a[0]) >= fabs(a[2])) || (fabs(a[1]) >= fabs(a[0]) && fabs(a[1]) >= fabs(a[2]))) { b[0] = a[1]; b[1] = -a[0]; b[2] = 0.; } else { b[0] = 0.; b[1] = a[2]; b[2] = -a[1]; } prodve(a, b, c); jac[1][0] = b[0]; jac[1][1] = b[1]; jac[1][2] = b[2]; jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2]; } return sqrt(SQU(jac[0][0]) + SQU(jac[0][1]) + SQU(jac[0][2])); default: return 1.; } } void MElement::xyz2uvw(double xyz[3], double uvw[3]) { // general Newton routine for the nonlinear case (more efficient // routines are implemented for simplices, where the basis functions // are linear) uvw[0] = uvw[1] = uvw[2] = 0.; int iter = 1, maxiter = 20; double error = 1., tol = 1.e-6; while (error > tol && iter < maxiter){ double jac[3][3]; if(!getJacobian(uvw[0], uvw[1], uvw[2], jac)) break; double xn = 0., yn = 0., zn = 0.; for (int i = 0; i < getNumVertices(); i++) { double s; getShapeFunction(i, uvw[0], uvw[1], uvw[2], s); MVertex *v = getVertex(i); xn += v->x() * s; yn += v->y() * s; zn += v->z() * s; } double inv[3][3]; inv3x3(jac, inv); double un = uvw[0] + inv[0][0] * (xyz[0] - xn) + inv[1][0] * (xyz[1] - yn) + inv[2][0] * (xyz[2] - zn); double vn = uvw[1] + inv[0][1] * (xyz[0] - xn) + inv[1][1] * (xyz[1] - yn) + inv[2][1] * (xyz[2] - zn) ; double wn = uvw[2] + inv[0][2] * (xyz[0] - xn) + inv[1][2] * (xyz[1] - yn) + inv[2][2] * (xyz[2] - zn) ; error = sqrt(SQU(un - uvw[0]) + SQU(vn - uvw[1]) + SQU(wn - uvw[2])); uvw[0] = un; uvw[1] = vn; uvw[2] = wn; iter++ ; } } double MElement::interpolate(double val[], double u, double v, double w, int stride) { double sum = 0; int j = 0; for(int i = 0; i < getNumVertices(); i++){ double s; getShapeFunction(i, u, v, w, s); sum += val[j] * s; j += stride; } return sum; } void MElement::interpolateGrad(double val[], double u, double v, double w, double f[3], int stride, double invjac[3][3]) { double dfdu[3] = {0., 0., 0.}; int j = 0; for(int i = 0; i < getNumVertices(); i++){ double s[3]; getGradShapeFunction(i, u, v, w, s); dfdu[0] += val[j] * s[0]; dfdu[1] += val[j] * s[1]; dfdu[2] += val[j] * s[2]; j += stride; } if(invjac){ matvec(invjac, dfdu, f); } else{ double jac[3][3], inv[3][3]; getJacobian(u, v, w, jac); inv3x3(jac, inv); matvec(inv, dfdu, f); } } void MElement::interpolateCurl(double val[], double u, double v, double w, double f[3], int stride) { double fx[3], fy[3], fz[3], jac[3][3], inv[3][3]; getJacobian(u, v, w, jac); inv3x3(jac, inv); interpolateGrad(&val[0], u, v, w, fx, stride, inv); interpolateGrad(&val[1], u, v, w, fy, stride, inv); interpolateGrad(&val[2], u, v, w, fz, stride, inv); f[0] = fz[1] - fy[2]; f[1] = -(fz[0] - fx[2]); f[2] = fy[0] - fx[1]; } double MElement::interpolateDiv(double val[], double u, double v, double w, int stride) { double fx[3], fy[3], fz[3], jac[3][3], inv[3][3]; getJacobian(u, v, w, jac); inv3x3(jac, inv); interpolateGrad(&val[0], u, v, w, fx, stride, inv); interpolateGrad(&val[1], u, v, w, fy, stride, inv); interpolateGrad(&val[2], u, v, w, fz, stride, inv); return fx[0] + fy[1] + fz[2]; } void MElement::writeMSH(FILE *fp, double version, bool binary, int num, int elementary, int physical) { int type = getTypeForMSH(); if(!type) return; // if necessary, change the ordering of the vertices to get positive // volume setVolumePositive(); int n = getNumVertices(); if(!binary){ fprintf(fp, "%d %d", num ? num : _num, type); if(version < 2.0) fprintf(fp, " %d %d %d", abs(physical), elementary, n); else fprintf(fp, " 3 %d %d %d", abs(physical), elementary, _partition); } else{ int tags[4] = {num ? num : _num, abs(physical), elementary, _partition}; fwrite(tags, sizeof(int), 4, fp); } if(physical < 0) revert(); int verts[60]; for(int i = 0; i < n; i++) verts[i] = getVertex(i)->getIndex(); if(!binary){ for(int i = 0; i < n; i++) fprintf(fp, " %d", verts[i]); fprintf(fp, "\n"); } else{ fwrite(verts, sizeof(int), n, fp); } if(physical < 0) revert(); } void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber, bool printGamma, bool printEta, bool printRho, double scalingFactor, int elementary) { const char *str = getStringForPOS(); if(!str) return; int n = getNumVertices(); fprintf(fp, "%s(", str); for(int i = 0; i < n; i++){ if(i) fprintf(fp, ","); fprintf(fp, "%g,%g,%g", getVertex(i)->x() * scalingFactor, getVertex(i)->y() * scalingFactor, getVertex(i)->z() * scalingFactor); } fprintf(fp, "){"); bool first = true; if(printElementary){ for(int i = 0; i < n; i++){ if(first) first = false; else fprintf(fp, ","); fprintf(fp, "%d", elementary); } } if(printElementNumber){ for(int i = 0; i < n; i++){ if(first) first = false; else fprintf(fp, ","); fprintf(fp, "%d", getNum()); } } if(printGamma){ double gamma = gammaShapeMeasure(); for(int i = 0; i < n; i++){ if(first) first = false; else fprintf(fp, ","); fprintf(fp, "%g", gamma); } } if(printEta){ double eta = etaShapeMeasure(); for(int i = 0; i < n; i++){ if(first) first = false; else fprintf(fp, ","); fprintf(fp, "%g", eta); } } if(printRho){ double rho = rhoShapeMeasure(); for(int i = 0; i < n; i++){ if(first) first = false; else fprintf(fp, ","); fprintf(fp, "%g", rho); } } fprintf(fp, "};\n"); } void MElement::writeSTL(FILE *fp, bool binary, double scalingFactor) { if(getNumEdges() != 3 && getNumEdges() != 4) return; int qid[3] = {0, 2, 3}; SVector3 n = getFace(0).normal(); if(!binary){ fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]); fprintf(fp, " outer loop\n"); for(int j = 0; j < 3; j++) fprintf(fp, " vertex %g %g %g\n", getVertex(j)->x() * scalingFactor, getVertex(j)->y() * scalingFactor, getVertex(j)->z() * scalingFactor); fprintf(fp, " endloop\n"); fprintf(fp, "endfacet\n"); if(getNumVertices() == 4){ fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]); fprintf(fp, " outer loop\n"); for(int j = 0; j < 3; j++) fprintf(fp, " vertex %g %g %g\n", getVertex(qid[j])->x() * scalingFactor, getVertex(qid[j])->y() * scalingFactor, getVertex(qid[j])->z() * scalingFactor); fprintf(fp, " endloop\n"); fprintf(fp, "endfacet\n"); } } else{ char data[50]; float *coords = (float*)data; coords[0] = n[0]; coords[1] = n[1]; coords[2] = n[2]; for(int j = 0; j < 3; j++){ coords[3 + 3 * j] = getVertex(j)->x() * scalingFactor; coords[3 + 3 * j + 1] = getVertex(j)->y() * scalingFactor; coords[3 + 3 * j + 2] = getVertex(j)->z() * scalingFactor; } data[48] = data[49] = 0; fwrite(data, sizeof(char), 50, fp); if(getNumVertices() == 4){ for(int j = 0; j < 3; j++){ coords[3 + 3 * j] = getVertex(qid[j])->x() * scalingFactor; coords[3 + 3 * j + 1] = getVertex(qid[j])->y() * scalingFactor; coords[3 + 3 * j + 2] = getVertex(qid[j])->z() * scalingFactor; } fwrite(data, sizeof(char), 50, fp); } } } void MElement::writeVRML(FILE *fp) { for(int i = 0; i < getNumVertices(); i++) fprintf(fp, "%d,", getVertex(i)->getIndex() - 1); fprintf(fp, "-1,\n"); } void MElement::writeVTK(FILE *fp, bool binary) { int type = getTypeForUNV(); if(!type) return; setVolumePositive(); int n = getNumVertices(); if(binary){ int verts[60]; verts[0] = n; for(int i = 0; i < n; i++) verts[i + 1] = getVertexVTK(i)->getIndex() - 1; fwrite(verts, sizeof(int), n + 1, fp); } else{ fprintf(fp, "%d", n); for(int i = 0; i < n; i++) fprintf(fp, " %d", getVertexVTK(i)->getIndex() - 1); fprintf(fp, "\n"); } } void MElement::writeUNV(FILE *fp, int num, int elementary, int physical) { int type = getTypeForUNV(); if(!type) return; setVolumePositive(); int n = getNumVertices(); int physical_property = elementary; int material_property = abs(physical); int color = 7; fprintf(fp, "%10d%10d%10d%10d%10d%10d\n", num ? num : _num, type, physical_property, material_property, color, n); if(type == 21 || type == 24) // linear beam or parabolic beam fprintf(fp, "%10d%10d%10d\n", 0, 0, 0); if(physical < 0) revert(); for(int k = 0; k < n; k++) { fprintf(fp, "%10d", getVertexUNV(k)->getIndex()); if(k % 8 == 7) fprintf(fp, "\n"); } if(n - 1 % 8 != 7) fprintf(fp, "\n"); if(physical < 0) revert(); } void MElement::writeMESH(FILE *fp, int elementary) { for(int i = 0; i < getNumVertices(); i++) fprintf(fp, " %d", getVertex(i)->getIndex()); fprintf(fp, " %d\n", elementary); } void MElement::writeBDF(FILE *fp, int format, int elementary) { const char *str = getStringForBDF(); if(!str) return; setVolumePositive(); int n = getNumVertices(); const char *cont[4] = {"E", "F", "G", "H"}; int ncont = 0; if(format == 0){ // free field format fprintf(fp, "%s,%d,%d", str, _num, elementary); for(int i = 0; i < n; i++){ fprintf(fp, ",%d", getVertexBDF(i)->getIndex()); if(i != n - 1 && !((i + 3) % 8)){ fprintf(fp, ",+%s%d\n+%s%d", cont[ncont], _num, cont[ncont], _num); ncont++; } } if(n == 2) // CBAR fprintf(fp, ",0.,0.,0."); fprintf(fp, "\n"); } else{ // small or large field format fprintf(fp, "%-8s%-8d%-8d", str, _num, elementary); for(int i = 0; i < n; i++){ fprintf(fp, "%-8d", getVertexBDF(i)->getIndex()); if(i != n - 1 && !((i + 3) % 8)){ fprintf(fp, "+%s%-6d\n+%s%-6d", cont[ncont], _num, cont[ncont], _num); ncont++; } } if(n == 2) // CBAR fprintf(fp, "%-8s%-8s%-8s", "0.", "0.", "0."); fprintf(fp, "\n"); } } void MTriangle::jac(int ord, MVertex *vs[], double uu, double vv, double ww, double j[2][3]) { #if defined(HAVE_GMSH_EMBEDDED) return; #else double grads[256][2]; int nf = getNumFaceVertices(); if (!nf){ switch(ord){ case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, ww, grads); break; case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, ww, grads); break; case 3: gmshFunctionSpaces::find(MSH_TRI_9).df(uu, vv, ww, grads); break; case 4: gmshFunctionSpaces::find(MSH_TRI_12).df(uu, vv, ww, grads); break; case 5: gmshFunctionSpaces::find(MSH_TRI_15I).df(uu, vv, ww, grads); break; default: Msg::Error("Order %d triangle jac not implemented", ord); break; } } else{ switch(ord){ case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, ww,grads); break; case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, ww,grads); break; case 3: gmshFunctionSpaces::find(MSH_TRI_10).df(uu, vv, ww,grads); break; case 4: gmshFunctionSpaces::find(MSH_TRI_15).df(uu, vv, ww,grads); break; case 5: gmshFunctionSpaces::find(MSH_TRI_21).df(uu, vv, ww,grads); break; default: Msg::Error("Order %d triangle jac not implemented", ord); break; } } j[0][0] = 0 ; for(int i = 0; i < 3; i++) j[0][0] += grads [i][0] * _v[i]->x(); j[1][0] = 0 ; for(int i = 0; i < 3; i++) j[1][0] += grads [i][1] * _v[i]->x(); j[0][1] = 0 ; for(int i = 0; i < 3; i++) j[0][1] += grads [i][0] * _v[i]->y(); j[1][1] = 0 ; for(int i = 0; i < 3; i++) j[1][1] += grads [i][1] * _v[i]->y(); j[0][2] = 0 ; for(int i = 0; i < 3; i++) j[0][2] += grads [i][0] * _v[i]->z(); j[1][2] = 0 ; for(int i = 0; i < 3; i++) j[1][2] += grads [i][1] * _v[i]->z(); if (ord == 1) return; for(int i = 3; i < 3 * ord + nf; i++) j[0][0] += grads[i][0] * vs[i - 3]->x(); for(int i = 3; i < 3 * ord + nf; i++) j[1][0] += grads[i][1] * vs[i - 3]->x(); for(int i = 3; i < 3 * ord + nf; i++) j[0][1] += grads[i][0] * vs[i - 3]->y(); for(int i = 3; i < 3 * ord + nf; i++) j[1][1] += grads[i][1] * vs[i - 3]->y(); for(int i = 3; i < 3 * ord + nf; i++) j[0][2] += grads[i][0] * vs[i - 3]->z(); for(int i = 3; i < 3 * ord + nf; i++) j[1][2] += grads[i][1] * vs[i - 3]->z(); #endif } void MTriangle::pnt(int ord, MVertex *vs[], double uu, double vv, double ww, SPoint3 &p) { #if !defined(HAVE_GMSH_EMBEDDED) double sf[256]; int nf = getNumFaceVertices(); // printf("%d %d\n",nf,ord); if (!nf){ switch(ord){ case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv,sf); break; case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv,sf); break; case 3: gmshFunctionSpaces::find(MSH_TRI_9).f(uu, vv,sf); break; case 4: gmshFunctionSpaces::find(MSH_TRI_12).f(uu, vv,sf); break; case 5: gmshFunctionSpaces::find(MSH_TRI_15I).f(uu, vv,sf); break; default: Msg::Error("Order %d triangle pnt not implemented", ord); break; } } else{ switch(ord){ case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv,sf); break; case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv,sf); break; case 3: gmshFunctionSpaces::find(MSH_TRI_10).f(uu, vv,sf); break; case 4: gmshFunctionSpaces::find(MSH_TRI_15).f(uu, vv,sf); break; case 5: gmshFunctionSpaces::find(MSH_TRI_21).f(uu, vv,sf); break; default: Msg::Error("Order %d triangle pnt not implemented", ord); break; } } // printf("coucou\n"); double x = 0 ; for(int i = 0; i < 3; i++) x += sf[i] * _v[i]->x(); double y = 0 ; for(int i = 0; i < 3; i++) y += sf[i] * _v[i]->y(); double z = 0 ; for(int i = 0; i < 3; i++) z += sf[i] * _v[i]->z(); for(int i = 3; i < 3 * ord + nf; i++) x += sf[i] * vs[i - 3]->x(); for(int i = 3; i < 3 * ord + nf; i++) y += sf[i] * vs[i - 3]->y(); for(int i = 3; i < 3 * ord + nf; i++) z += sf[i] * vs[i - 3]->z(); p = SPoint3(x,y,z); #endif } void MTetrahedron::pnt(int ord, MVertex *vs[], double uu, double vv, double ww,SPoint3 &p) { #if !defined(HAVE_GMSH_EMBEDDED) double sf[256]; int nv = getNumVolumeVertices(); if (!nv){ switch(ord){ case 1: gmshFunctionSpaces::find(MSH_TET_4).f(uu, vv, ww,sf); break; case 2: gmshFunctionSpaces::find(MSH_TET_10).f(uu, vv, ww,sf); break; case 3: gmshFunctionSpaces::find(MSH_TET_20).f(uu, vv, ww,sf); break; case 4: gmshFunctionSpaces::find(MSH_TET_34).f(uu, vv, ww,sf); break; case 5: gmshFunctionSpaces::find(MSH_TET_52).f(uu, vv, ww,sf); break; default: Msg::Error("Order %d tetrahedron pnt not implemented", ord); break; } } else{ switch(ord){ case 4: gmshFunctionSpaces::find(MSH_TET_35).f(uu, vv, ww,sf); break; case 5: gmshFunctionSpaces::find(MSH_TET_56).f(uu, vv, ww,sf); break; default: Msg::Error("Order %d tetrahedron pnt not implemented", ord); break; } } double x = 0 ; for(int i = 0; i < 4; i++) x += sf[i] * _v[i]->x(); double y = 0 ; for(int i = 0; i < 4; i++) y += sf[i] * _v[i]->y(); double z = 0 ; for(int i = 0; i < 4; i++) z += sf[i] * _v[i]->z(); const int N = (ord+1)*(ord+2)*(ord+3)/6; for(int i = 4; i < N; i++) x += sf[i] * vs[i - 4]->x(); for(int i = 4; i < N; i++) y += sf[i] * vs[i - 4]->y(); for(int i = 4; i < N; i++) z += sf[i] * vs[i - 4]->z(); p = SPoint3(x,y,z); #endif } void MTetrahedron::pnt(int ord, std::vector<MVertex *> & vs, double uu, double vv, double ww,SPoint3 &p) { #if !defined(HAVE_GMSH_EMBEDDED) double sf[256]; switch(ord){ case 1: gmshFunctionSpaces::find(MSH_TET_4) .f(uu, vv, ww,sf); break; case 2: gmshFunctionSpaces::find(MSH_TET_10).f(uu, vv, ww,sf); break; case 3: gmshFunctionSpaces::find(MSH_TET_20).f(uu, vv, ww,sf); break; case 4: gmshFunctionSpaces::find(MSH_TET_35).f(uu, vv, ww,sf); break; case 5: gmshFunctionSpaces::find(MSH_TET_56).f(uu, vv, ww,sf); break; default: Msg::Error("Order %d tetrahedron pnt not implemented", ord); break; } double x = 0 ; for(int i = 0; i < 4; i++) x += sf[i] * _v[i]->x(); double y = 0 ; for(int i = 0; i < 4; i++) y += sf[i] * _v[i]->y(); double z = 0 ; for(int i = 0; i < 4; i++) z += sf[i] * _v[i]->z(); const int N = (ord+1)*(ord+2)*(ord+3)/6; for(int i = 4; i < N; i++) x += sf[i] * vs[i - 4]->x(); for(int i = 4; i < N; i++) y += sf[i] * vs[i - 4]->y(); for(int i = 4; i < N; i++) z += sf[i] * vs[i - 4]->z(); p = SPoint3(x,y,z); #endif } void MTetrahedron::pnt(double uu, double vv ,double ww, SPoint3& p) { return pnt(1,0,uu,vv,ww,p); } void MTetrahedron::jac(int ord, MVertex *vs[], double uu, double vv, double ww, double j[3][3]) { #if defined(HAVE_GMSH_EMBEDDED) return; #else double grads[256][3]; switch(ord){ case 1: gmshFunctionSpaces::find(MSH_TET_4) .df(uu, vv, ww, grads); break; case 2: gmshFunctionSpaces::find(MSH_TET_10).df(uu, vv, ww, grads); break; case 3: gmshFunctionSpaces::find(MSH_TET_20).df(uu, vv, ww, grads); break; case 4: gmshFunctionSpaces::find(MSH_TET_35).df(uu, vv, ww, grads); break; case 5: gmshFunctionSpaces::find(MSH_TET_56).df(uu, vv, ww, grads); break; default: Msg::Error("Order %d tetrahedron jac not implemented", ord); break; } j[0][0] = 0 ; for(int i = 0; i < 4; i++) j[0][0] += grads [i][0] * _v[i]->x(); j[1][0] = 0 ; for(int i = 0; i < 4; i++) j[1][0] += grads [i][1] * _v[i]->x(); j[2][0] = 0 ; for(int i = 0; i < 4; i++) j[2][0] += grads [i][2] * _v[i]->x(); j[0][1] = 0 ; for(int i = 0; i < 4; i++) j[0][1] += grads [i][0] * _v[i]->y(); j[1][1] = 0 ; for(int i = 0; i < 4; i++) j[1][1] += grads [i][1] * _v[i]->y(); j[2][1] = 0 ; for(int i = 0; i < 4; i++) j[2][1] += grads [i][2] * _v[i]->y(); j[0][2] = 0 ; for(int i = 0; i < 4; i++) j[0][2] += grads [i][0] * _v[i]->z(); j[1][2] = 0 ; for(int i = 0; i < 4; i++) j[1][2] += grads [i][1] * _v[i]->z(); j[2][2] = 0 ; for(int i = 0; i < 4; i++) j[2][2] += grads [i][2] * _v[i]->z(); if (ord == 1) return; const int N = (ord+1)*(ord+2)*(ord+3)/6; for(int i = 4; i < N; i++) j[0][0] += grads[i][0] * vs[i - 4]->x(); for(int i = 4; i < N; i++) j[1][0] += grads[i][1] * vs[i - 4]->x(); for(int i = 4; i < N; i++) j[2][0] += grads[i][2] * vs[i - 4]->x(); for(int i = 4; i < N; i++) j[0][1] += grads[i][0] * vs[i - 4]->y(); for(int i = 4; i < N; i++) j[1][1] += grads[i][1] * vs[i - 4]->y(); for(int i = 4; i < N; i++) j[2][1] += grads[i][2] * vs[i - 4]->y(); for(int i = 4; i < N; i++) j[0][2] += grads[i][0] * vs[i - 4]->z(); for(int i = 4; i < N; i++) j[1][2] += grads[i][1] * vs[i - 4]->z(); for(int i = 4; i < N; i++) j[2][2] += grads[i][2] * vs[i - 4]->z(); #endif } void MTetrahedron::jac(int ord, std::vector<MVertex *>& vs, double uu, double vv, double ww, double j[3][3]) { #if defined(HAVE_GMSH_EMBEDDED) return; #else double grads[256][3]; switch(ord){ case 1: gmshFunctionSpaces::find(MSH_TET_4).df(uu, vv, ww,grads); break; case 2: gmshFunctionSpaces::find(MSH_TET_10).df(uu, vv, ww, grads); break; case 3: gmshFunctionSpaces::find(MSH_TET_20).df(uu, vv, ww, grads); break; case 4: gmshFunctionSpaces::find(MSH_TET_35).df(uu, vv, ww, grads); break; case 5: gmshFunctionSpaces::find(MSH_TET_56).df(uu, vv, ww, grads); break; default: Msg::Error("Order %d tetrahedron jac not implemented", ord); break; } j[0][0] = 0 ; for(int i = 0; i < 4; i++) j[0][0] += grads [i][0] * _v[i]->x(); j[1][0] = 0 ; for(int i = 0; i < 4; i++) j[1][0] += grads [i][1] * _v[i]->x(); j[2][0] = 0 ; for(int i = 0; i < 4; i++) j[2][0] += grads [i][2] * _v[i]->x(); j[0][1] = 0 ; for(int i = 0; i < 4; i++) j[0][1] += grads [i][0] * _v[i]->y(); j[1][1] = 0 ; for(int i = 0; i < 4; i++) j[1][1] += grads [i][1] * _v[i]->y(); j[2][1] = 0 ; for(int i = 0; i < 4; i++) j[2][1] += grads [i][2] * _v[i]->y(); j[0][2] = 0 ; for(int i = 0; i < 4; i++) j[0][2] += grads [i][0] * _v[i]->z(); j[1][2] = 0 ; for(int i = 0; i < 4; i++) j[1][2] += grads [i][1] * _v[i]->z(); j[2][2] = 0 ; for(int i = 0; i < 4; i++) j[2][2] += grads [i][2] * _v[i]->z(); if (ord == 1) return; const int N = (ord+1)*(ord+2)*(ord+3)/6; for(int i = 4; i < N; i++) j[0][0] += grads[i][0] * vs[i - 4]->x(); for(int i = 4; i < N; i++) j[1][0] += grads[i][1] * vs[i - 4]->x(); for(int i = 4; i < N; i++) j[2][0] += grads[i][2] * vs[i - 4]->x(); for(int i = 4; i < N; i++) j[0][1] += grads[i][0] * vs[i - 4]->y(); for(int i = 4; i < N; i++) j[1][1] += grads[i][1] * vs[i - 4]->y(); for(int i = 4; i < N; i++) j[2][1] += grads[i][2] * vs[i - 4]->y(); for(int i = 4; i < N; i++) j[0][2] += grads[i][0] * vs[i - 4]->z(); for(int i = 4; i < N; i++) j[1][2] += grads[i][1] * vs[i - 4]->z(); for(int i = 4; i < N; i++) j[2][2] += grads[i][2] * vs[i - 4]->z(); #endif } void MTetrahedron::jac( double uu, double vv, double ww, double j[3][3]) { return jac(1,0,uu,vv,ww,j); } const int numSubEdges = 6; int MTriangleN::getNumFacesRep(){ return numSubEdges * numSubEdges; } void MTriangleN::getFaceRep(int num, double *x, double *y, double *z, SVector3 *n){ // on the first layer, we have (numSubEdges-1) * 2 + 1 triangles // on the second layer, we have (numSubEdges-2) * 2 + 1 triangles // on the ith layer, we have (numSubEdges-1-i) * 2 + 1 triangles int ix, iy; int nbt = 0; for (int i=0;i<numSubEdges;i++){ int nbl = (numSubEdges-i-1)*2 + 1; nbt += nbl; if (nbt > num){ iy = i; ix = nbl-(nbt-num); break; } } const double d = 1./numSubEdges; SPoint3 pnt1, pnt2, pnt3; double J1[2][3],J2[2][3],J3[2][3]; if (ix %2 == 0){ pnt(ix/2*d, iy*d, 0,pnt1); pnt((ix/2+1)*d, iy*d, 0,pnt2); pnt(ix/2*d, (iy+1)*d, 0,pnt3); jac(ix/2*d, iy*d, 0,J1); jac((ix/2+1)*d, iy*d, 0,J2); jac(ix/2*d, (iy+1)*d, 0,J3); } else{ pnt((ix/2+1)*d, iy*d, 0,pnt1); pnt((ix/2+1)*d, (iy+1)*d, 0,pnt2); pnt(ix/2*d, (iy+1)*d, 0,pnt3); jac((ix/2+1)*d, iy*d, 0,J1); jac((ix/2+1)*d, (iy+1)*d, 0,J2); jac(ix/2*d, (iy+1)*d, 0,J3); } { SVector3 d1 (J1[0][0],J1[0][1],J1[0][2]); SVector3 d2 (J1[1][0],J1[1][1],J1[1][2]); n[0] = crossprod(d1,d2); n[0].normalize(); } { SVector3 d1 (J2[0][0],J2[0][1],J2[0][2]); SVector3 d2 (J2[1][0],J2[1][1],J2[1][2]); n[1] = crossprod(d1,d2); n[1].normalize(); } { SVector3 d1 (J3[0][0],J3[0][1],J3[0][2]); SVector3 d2 (J3[1][0],J3[1][1],J3[1][2]); n[2] = crossprod(d1,d2); n[2].normalize(); } x[0] = pnt1.x(); x[1] = pnt2.x(); x[2] = pnt3.x(); y[0] = pnt1.y(); y[1] = pnt2.y(); y[2] = pnt3.y(); z[0] = pnt1.z(); z[1] = pnt2.z(); z[2] = pnt3.z(); } int MTriangleN::getNumEdgesRep(){ return 3 * numSubEdges; } void MTriangleN::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n) { n[0] = n[1] = getFace(0).normal(); int N = getNumEdgesRep() / 3; if (num < N){ SPoint3 pnt1, pnt2; pnt((double)num / N, 0., 0,pnt1); pnt((double)(num + 1) / N, 0., 0,pnt2); x[0] = pnt1.x(); x[1] = pnt2.x(); y[0] = pnt1.y(); y[1] = pnt2.y(); z[0] = pnt1.z(); z[1] = pnt2.z(); return; } if (num < 2 * N){ SPoint3 pnt1, pnt2; num -= N; pnt(1. - (double)num / N, (double)num / N, 0,pnt1); pnt(1. - (double)(num + 1) / N, (double)(num + 1) / N, 0,pnt2); x[0] = pnt1.x(); x[1] = pnt2.x(); y[0] = pnt1.y(); y[1] = pnt2.y(); z[0] = pnt1.z(); z[1] = pnt2.z(); return ; } { SPoint3 pnt1, pnt2; num -= 2 * N; pnt(0, (double)num / N, 0,pnt1); pnt(0, (double)(num + 1) / N, 0,pnt2); x[0] = pnt1.x(); x[1] = pnt2.x(); y[0] = pnt1.y(); y[1] = pnt2.y(); z[0] = pnt1.z(); z[1] = pnt2.z(); } } MElement *MElementFactory::create(int type, std::vector<MVertex*> &v, int num, int part) { switch (type) { case MSH_PNT: return 0; case MSH_LIN_2: return new MLine(v, num, part); case MSH_LIN_3: return new MLine3(v, num, part); case MSH_LIN_4: return new MLineN(v, num, part); case MSH_LIN_5: return new MLineN(v, num, part); case MSH_LIN_6: return new MLineN(v, num, part); case MSH_TRI_3: return new MTriangle(v, num, part); case MSH_TRI_6: return new MTriangle6(v, num, part); case MSH_TRI_9: return new MTriangleN(v, 3, num, part); case MSH_TRI_10: return new MTriangleN(v, 3, num, part); case MSH_TRI_12: return new MTriangleN(v, 4, num, part); case MSH_TRI_15: return new MTriangleN(v, 4, num, part); case MSH_TRI_15I:return new MTriangleN(v, 5, num, part); case MSH_TRI_21: return new MTriangleN(v, 5, num, part); case MSH_QUA_4: return new MQuadrangle(v, num, part); case MSH_QUA_8: return new MQuadrangle8(v, num, part); case MSH_QUA_9: return new MQuadrangle9(v, num, part); case MSH_TET_4: return new MTetrahedron(v, num, part); case MSH_TET_10: return new MTetrahedron10(v, num, part); case MSH_HEX_8: return new MHexahedron(v, num, part); case MSH_HEX_20: return new MHexahedron20(v, num, part); case MSH_HEX_27: return new MHexahedron27(v, num, part); case MSH_PRI_6: return new MPrism(v, num, part); case MSH_PRI_15: return new MPrism15(v, num, part); case MSH_PRI_18: return new MPrism18(v, num, part); case MSH_PYR_5: return new MPyramid(v, num, part); case MSH_PYR_13: return new MPyramid13(v, num, part); case MSH_PYR_14: return new MPyramid14(v, num, part); case MSH_TET_20: return new MTetrahedronN(v, 3, num, part); case MSH_TET_34: return new MTetrahedronN(v, 3, num, part); case MSH_TET_35: return new MTetrahedronN(v, 4, num, part); case MSH_TET_52: return new MTetrahedronN(v, 5, num, part); case MSH_TET_56: return new MTetrahedronN(v, 5, num, part); default: return 0; } } extern int getNGQTPts(int order); extern IntPt *getGQTPts (int order); extern int getNGQTetPts(int order); extern IntPt *getGQTetPts(int order); extern int getNGQQPts(int order); extern IntPt *getGQQPts(int order); extern int getNGQHPts(int order); extern IntPt *getGQHPts(int order); IntPt GQL[100]; void MLine::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const { #if !defined(HAVE_GMSH_EMBEDDED) double *t, *w; int nbP = pOrder / 2 + 1; gmshGaussLegendre1D(nbP, &t, &w); for (int i = 0; i < nbP; i++){ GQL[i].pt[0] = t[i]; GQL[i].pt[1] = 0; GQL[i].pt[2] = 0; GQL[i].weight = w[i]; } *npts = nbP; *pts = GQL; #endif } void MTriangle:: getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const { #if !defined(HAVE_GMSH_EMBEDDED) *npts = getNGQTPts(pOrder); *pts = getGQTPts(pOrder); #endif } void MTetrahedron::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const { #if !defined(HAVE_GMSH_EMBEDDED) *npts = getNGQTetPts(pOrder); *pts = getGQTetPts(pOrder); #endif } void MHexahedron::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const { #if !defined(HAVE_GMSH_EMBEDDED) *npts = getNGQHPts(pOrder); *pts = getGQHPts(pOrder); #endif } void MQuadrangle::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const { #if !defined(HAVE_GMSH_EMBEDDED) *npts = getNGQQPts(pOrder); *pts = getGQQPts(pOrder); #endif }