#include <string> #include <stdio.h> #include <stdlib.h> #include <math.h> #include <sstream> #include <fstream> #include "SPoint2.h" #include "GSHHS.h" #include "GModel.h" #if defined(HAVE_MESH) #include "Field.h" #else class Field { public: virtual double operator() (double x, double y, double z){ return 0.; } }; #endif #if defined(_MSC_VER) inline double round(double x) { return floor(x + 0.5); } #endif class GMSH_GSHHSPlugin : public GMSH_PostPlugin { public: // ************** Inputs (readers) ************* class reader{ public: virtual int next_loop(bool &closed)=0; virtual bool next_point(SPoint3 &point)=0; virtual ~reader(){} }; class reader_loops2 : public reader{ FILE *fp; int npoints_in_loop; int ipoint; std::string filename; public: reader_loops2(std::string _filename) { filename = _filename; fp = fopen(filename.c_str(), "r"); } virtual ~reader_loops2() { fclose(fp); } int next_loop(bool & closed) { ipoint = 0; npoints_in_loop = -1; int i_closed; if(fscanf(fp, "%d %d", &npoints_in_loop, &i_closed) != 2) return 0; closed = i_closed; return npoints_in_loop; } bool next_point(SPoint3 &point) { if(ipoint >= npoints_in_loop) return false; point[2] = 0; ipoint++; if(fscanf(fp, "%le %le", &point[0], &point[1]) != 2) Msg::Error("gshhs: Error reading loops2 file."); return true; } }; class reader_gshhs : public reader{ /* $Id: GSHHS.cpp,v 1.34 2009-10-12 15:46:20 geuzaine Exp $ * * Include file defining structures used in gshhs.c * * Paul Wessel, SOEST * * Copyright (c) 1996-2008 by P. Wessel and W. H. F. Smith * See COPYING file for copying and redistribution conditions. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Contact info: www.soest.hawaii.edu/pwessel * * 14-SEP-2004. PW: Version 1.3. Header is now n * 8 bytes (n = 5) * For use with version 1.3 of GSHHS * 2-MAY-2006. PW: Version 1.4. Header is now 32 bytes (all int 4) * For use with version 1.4 of GSHHS * 31-MAR-2007. PW: Version 1.5. no format change * For use with version 1.5 of GSHHS * 28-AUG-2007. PW: Version 1.6. no format change * For use with version 1.6 of GSHHS which now has WDBII * borders and rivers. */ #define GSHHS_DATA_VERSION 6 // For v1.5 data set //define GSHHS_PROG_VERSION "1.9" #define GSHHS_SCL 1.0e-6 // COnvert micro-degrees to degrees inline unsigned int swabi4(unsigned int i4) { // For byte swapping on little-endian systems (GSHHS is defined to be bigendian) return (((i4) >> 24) + (((i4) >> 8) & 65280) + (((i4) & 65280) << 8) + (((i4) & 255) << 24)); } class POINT { /* Each lon, lat pair is stored in micro-degrees in 4-byte integer format */ public: int x; int y; }; class GSHHS { /* Global Self-consistent Hierarchical High-resolution Shorelines */ public: int id; /* Unique polygon id number, starting at 0 */ int n; /* Number of points in this polygon */ int flag; /* = level + version << 8 + greenwich << 16 + source << 24 */ /* flag contains 4 items, one in each byte, as follows: * low byte: level = flag & 255: Values: 1 land, 2 lake, 3 island_in_lake, 4 pond_in_island_in_lake * 2nd byte: version = (flag >> 8) & 255: Values: Should be 4 for GSHHS version 1.4 * 3rd byte: greenwich = (flag >> 16) & 255: Values: Greenwich is 1 if Greenwich is crossed * 4th byte: source = (flag >> 24) & 255: Values: 0 = CIA WDBII, 1 = WVS */ int west, east, south, north; /* min/max extent in micro-degrees */ int area; /* Area of polygon in 1/10 km^2 */ int area_full; /* Area of original full-resolution polygon in 1/10 km^2 */ int container; /* Id of container polygon that encloses this polygon (-1 if none) */ int ancestor; /* Id of ancestor polygon in the full resolution set that was the source of this polygon (-1 if none) */ }; GSHHS h; POINT p; FILE *fp; int max_east,flip,ip,greenwich; bool first_loop; public: reader_gshhs(std::string filename) { fp = fopen(filename.c_str(),"rb"); max_east = 270000000; first_loop = true; } ~reader_gshhs() { fclose(fp); } int next_loop(bool &closed) { closed = true; int level = 0; ip = 0; while(level != 1){ int n_read = fread ((void *)&h, (size_t)sizeof (GSHHS), (size_t)1, fp); if(n_read != 1 || feof(fp)) return 0; level = h.flag & 255; int version = (h.flag >> 8) & 255; flip = (version != GSHHS_DATA_VERSION); /* Take as sign that byte-swabbing is needed */ if (flip) { h.id = swabi4 ((unsigned int)h.id); h.n = swabi4 ((unsigned int)h.n); h.west = swabi4 ((unsigned int)h.west); h.east = swabi4 ((unsigned int)h.east); h.south = swabi4 ((unsigned int)h.south); h.north = swabi4 ((unsigned int)h.north); h.area = swabi4 ((unsigned int)h.area); h.flag = swabi4 ((unsigned int)h.flag); } if(level!=1) fseek(fp, (size_t)(h.n * sizeof(POINT)), SEEK_CUR); if(first_loop) first_loop=false; else max_east = 180000000; /* Only Eurasiafrica needs 270 */ } greenwich = (h.flag >> 16) & 255; //int src = (h.flag >> 24) & 255; //double w = h.west * GSHHS_SCL; /* Convert from microdegrees to degrees */ //double e = h.east * GSHHS_SCL; //double s = h.south * GSHHS_SCL; //double n = h.north * GSHHS_SCL; //char source = (src == 1) ? 'W' : 'C'; /* Either WVS or CIA (WDBII) pedigree */ //int line = (h.area) ? 0 : 1; /* Either Polygon (0) or Line (1) (if no area) */ //double area = 0.1 * h.area; /* Now im km^2 */ return h.n; } bool next_point(SPoint3 &point) { if(ip >= h.n) return false; if (fread ((void *)&p, (size_t)sizeof(POINT), (size_t)1, fp) != 1) { Msg::Error("gshhs: Error reading gshhs file."); return false; } if (flip) { p.x = swabi4 ((unsigned int)p.x); p.y = swabi4 ((unsigned int)p.y); } double lon = p.x * GSHHS_SCL; if (greenwich && p.x > max_east) lon -= 360.0; double lat = p.y * GSHHS_SCL; point[0] = lon * M_PI / 180; point[1] = lat * M_PI / 180; point[2] = 0; ip++; return true; } }; // ************** Coordinate Systems ************* class coordinate_system{ public: virtual void to_cartesian(const SPoint3 coord, SPoint3 &cartesian)=0; virtual void from_cartesian(const SPoint3 cartesian, SPoint3 &coord)=0; virtual ~coordinate_system(){} }; // ************** Longitude Latitude *************** class coordinate_lonlat : public coordinate_system{ double radius; public: coordinate_lonlat(double r) { radius = r; } void to_cartesian(const SPoint3 ll, SPoint3 &xyz) { double clat = cos(ll.y()); xyz.setPosition(clat * cos(ll.x()) * radius, clat * sin(ll.x()) * radius, sin(ll.y()) * radius); } void from_cartesian(const SPoint3 xyz, SPoint3 &ll) { double r = sqrt(xyz.x() * xyz.x() + xyz.y() * xyz.y() + xyz.z() * xyz.z()); ll.setPosition(atan2(xyz.y(), xyz.x()), asin(xyz.z() / r), r); } }; // ************** Longitude Latitude (degrees) *************** class coordinate_lonlat_degrees : public coordinate_system{ coordinate_lonlat cll; SPoint3 llradian; public: coordinate_lonlat_degrees(double r) : cll(r){} void to_cartesian(const SPoint3 ll, SPoint3 &xyz) { llradian.setPosition(ll.x() * M_PI / 180, ll.y() * M_PI / 180, 0); cll.to_cartesian(llradian, xyz); } void from_cartesian(const SPoint3 xyz, SPoint3 &ll){ cll.from_cartesian(xyz, llradian); ll.setPosition(llradian.x() * 180 / M_PI, llradian.y() * 180 / M_PI, 0); } }; // ************** UTM ************** class coordinate_utm : public coordinate_system{ int zone; coordinate_lonlat ll_conv; SPoint3 ll; double a, b, n, n2, n3, n4, n5, e, e2, e1, e12, e13, e14, J1, J2, J3, J4, Ap, Bp, Cp, Dp, Ep, e4, e6, ep, ep2, ep4, k0, mu_fact; public: static int get_zone_from_longitude(double lon) { return (int)ceil((lon / M_PI + 1) * 30); } double meridionalarc(double lon, double lat) { return Ap * lat + Bp * sin(2 * lat) + Cp * sin(4 * lat) + Dp * sin(6 * lat) + Ep; } void from_cartesian(const SPoint3 xyz,SPoint3 &utm) { ll_conv.from_cartesian(xyz,ll); double S = meridionalarc(ll.x(),ll.y()); double slat = sin(ll.y()); double clat = cos(ll.y()); double slat2 = slat * slat; double clat2 = clat * clat; double clat3 = clat2 * clat; double clat4 = clat3 * clat; double tlat2 = slat2 / clat2; double nu = a / sqrt(1 - e * e * slat2); double p = ll.x() - ((zone - 0.5) / 30 - 1) * M_PI; double p2 = p * p; double p3 = p * p2; double p4 = p2 * p2; utm.setPosition(k0 * nu * clat * p + (k0 * nu * clat3 / 6) * (1 - tlat2 + ep2 * clat2) * p3 + 5e5, S * k0 + k0 * nu * slat * clat / 2 * p2 + k0 * nu * slat * clat3 / 24 * (5 - tlat2 + 9 * ep2 * clat2 + 4 * ep4 * clat4) * p4, 0); } void to_cartesian(const SPoint3 utm, SPoint3 &xyz) { double mu = utm.y() * mu_fact; double fp = mu + J1 * sin(2 * mu) + J2 * sin(4 * mu) + J3 * sin(6 * mu) + J4 * sin(8 * mu); double cfp = cos(fp); double cfp2 = cfp * cfp; double sfp = sin(fp); double sfp2 = sfp * sfp; double c1 = ep2 * cfp2; double c12 = c1 * c1; double t1 = sfp2 / cfp2; double t12 = t1 * t1; double r1 = a * (1 - e2) / pow((1 - e2 * sfp2), 1.5); double n1 = a / sqrt(1 - e2 * sfp2); double d = (utm.x() - 5e5) / (n1 * k0); double d2 = d * d; double d3 = d2 * d; double d4 = d2 * d2; double d5 = d4 * d; double d6 = d4 * d2; ll.setPosition( ((zone - 0.5) / 30 - 1) * M_PI + (d - (1 + 2 * t1 + c1) * d3 / 6 + (5 - 2 * c1 + 28 * t1 - 3 * c12 + 8 * ep2 + 24 * t12) * d5 / 120) / cfp, fp - n1 * sfp / cfp / r1 * (d2 / 2 - (5 + 3 * t1 + 10 * c1 - 4 * c12 - 9 * ep2) * d4 / 24 + (61 + 90 * t1 + 298 * c1 + 45 * t12 - 3 * c12 - 252 * ep2) * d6 / 720), 0); ll_conv.to_cartesian(ll,xyz); } coordinate_utm(int _zone,double ll_radius, double _a = 6378137, double _b = 6356752.3142) : ll_conv(ll_radius) { /* see http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM */ a = _a; /* Equatorial Radius*/ b = _b; /* Rayon Polar Radius*/ zone=_zone; n = (a - b) / (a + b); n2 = n * n; n3 = n * n * n; n4 = n * n * n * n; n5 = n * n * n * n * n; e = sqrt(1 - b * b / a / a); e2 = e * e; e1 = (1 - sqrt(1 - e2)) / (1 + sqrt(1 - e2)); e12 = e1 * e1; e13 = e1 * e1 * e1; e14 = e1 * e1 * e1 * e1; J1 = (3 * e1 / 2 - 27 * e13 / 32); J2 = (21 * e12 / 16 - 55 * e14 / 32); J3 = 151 * e13 / 96; J4 = 1097 * e14 / 512; Ap = a * (1 - n + (5. / 4.) * (n2 - n3) + (81. / 64.) * (n4 - n5)); Bp = -3 * a * n / 2 * (1 - n + (7. / 8.) * (n2 - n3) + (55. / 64.) * (n4 - n5)); Cp = 14 * a * n2 / 16 * (1 - n + (3. / 4) * (n2 - n3)); Dp = -35 * a * n3 / 48 * (1 - n + 11. / 16. * (n2 - n3)); Ep = +315 * a * n4 / 51 * (1 - n); e4 = e2 * e2; e6 = e2 * e2 * e2; ep = e * a / b; ep2 = ep * ep; ep4 = ep2 * ep2; k0 = 0.9996; mu_fact = 1 / (k0 * a * (1 - e2 / 4 - 3 * e4 / 64 - 5 * e6 / 256)); } }; /********** classes and functions to ensure minimal distance and angle between points **********/ class box; class loop; class point{ public: SPoint3 v; std::list<point>::iterator it_loop; std::list<point*>::iterator it_box; box *b; double min_dist; loop *l; point(double _x,double _y,double _z,Field *f) : b(0), min_dist(0.), l(0) { v[0]=_x; v[1]=_y; v[2]=_z; if(f) min_dist=(*f)(v[0],v[1],v[2]); } point(double _x,double _y,double _z,double _min_dist) : b(0), l(0) { v[0]=_x; v[1]=_y; v[2]=_z; min_dist=_min_dist; } double dist(point p) { return sqrt((v[0]-p.v[0])*(v[0]-p.v[0]) +(v[1]-p.v[1])*(v[1]-p.v[1]) +(v[2]-p.v[2])*(v[2]-p.v[2])); } void to_stereo(double &xp,double &yp,bool inverse_stereo=false) { double r=sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]); if(inverse_stereo){ xp=v[1]/(r-v[2]); yp=v[0]/(r-v[2]); } else{ xp=-v[0]/(r+v[2]); yp=-v[1]/(r+v[2]); } } void to_latlon(double &lat,double &lon) { lat=asin(v[2]); lon=atan2(v[1],v[0]); if(lon<-15*M_PI/16)lon+=2*M_PI; } }; class box{ public: box *sub_boxes[2]; point min,max; int max_n; double min_size,size; bool splitted; std::list<point*> list; int cut_dim,ndim; int n; box(point _min,point _max,int _max_n=100,double _min_size=0,int _cut_dim=0):min(_min),max(_max),max_n(_max_n) { n=0; min_size=_min_size; size=0; ndim=3; for(int i=0;i<ndim;i++) size=std::max(size,fabs(max.v[i]-min.v[i])); splitted=false; cut_dim=_cut_dim; } void add(point &p) { if(!splitted){ list.push_back(&p); p.it_box=list.end(); p.it_box--; p.b=this; n++; if(n>max_n && size>=min_size){ point mid0(min); point mid1(max); mid1.v[cut_dim]=mid0.v[cut_dim]=(min.v[cut_dim]+max.v[cut_dim])/2; int newdim=(cut_dim+1)%ndim; sub_boxes[0]=new box(min,mid1,max_n,min_size,newdim); sub_boxes[1]=new box(mid0,max,max_n,min_size,newdim); splitted=true; for(std::list<point*>::iterator it=list.begin();it!=list.end();it++) add(**it); list.clear(); } } else{ int ix=(p.v[cut_dim]-min.v[cut_dim])>(max.v[cut_dim]-min.v[cut_dim])/2; sub_boxes[ix]->add(p); } } void remove(point *p) { if(p->b!=this) p->b->remove(p); else{ list.erase(p->it_box); n--; } } void find_closest(point p,int nc,double *d,point **cp) { int i=(cut_dim+ndim-1)%ndim; if(p.v[i]<min.v[i]-d[nc-1] || p.v[i]>max.v[i]+d[nc-1]) return; if(splitted){ for(int i=0;i<2;i++) sub_boxes[i]->find_closest(p,nc,d,cp); }else for(std::list<point*>::iterator it=list.begin();it!=list.end();it++){ double dd=p.dist(**it); if(dd<d[nc-1]){ int j; for(j=nc-2;j>=0;j--){ if(dd>d[j])break; d[j+1]=d[j]; cp[j+1]=cp[j]; } d[j+1]=dd; cp[j+1]=*it; } } } }; static double get_angle(double x0,double y0,double x1,double y1,double x2,double y2) { double dx0=x1-x0; double dx1=x2-x1; double dy0=y1-y0; double dy1=y2-y1; return atan2(dx0*dy1-dx1*dy0,dx1*dx0+dy1*dy0); } static double get_angle(point &p0,point &p1,point &p2) { double dx0=p1.v[0]-p0.v[0]; double dy0=p1.v[1]-p0.v[1]; double dz0=p1.v[2]-p0.v[2]; double dx1=p2.v[0]-p1.v[0]; double dy1=p2.v[1]-p1.v[1]; double dz1=p2.v[2]-p1.v[2]; double scalar=dx0*dx1+dy0*dy1+dz0*dz1; double vectx=dy0*dz1-dy1*dz0; double vecty=dz0*dx1-dz1*dx0; double vectz=dx0*dy1-dx1*dy0; int sign=vectx*p1.v[0]+vecty*p1.v[1]+vectz*p1.v[2]<0?-1:1; double vect=sqrt(vectx*vectx+vecty*vecty+vectz*vectz); return atan2(-vect*sign,scalar); } // angle (01,12) class loop:public std::list<point>{ public: bool closed; loop(){ closed=true; } inline iterator next(iterator i) { ++i; if(i==end()){ i=begin(); } return i; } inline iterator prev(iterator i) { if(i==begin()) i=end(); --i; return i; } iterator remove_range(loop::iterator i0,loop::iterator i1) { //remove [id0, id1] and replace it by a single point at (id0+id1)/2; for(int i=0;i<3;i++) i1->v[i]=(i0->v[i]+i1->v[i])/2; while(i0!=i1){ if(i0->b) i0->b->remove(&*i0); i0=erase(i0); if(i0==end()) i0=begin(); } return i1; } int orientation(iterator i0, iterator i1,bool reverse_stereo=false) { if(next(i0)==i1) return 0; double alpha=0; double x[3],y[3]; i1->to_stereo(x[0],y[0],reverse_stereo); i0->to_stereo(x[1],y[1],reverse_stereo); iterator p=i0; do{ p=next(p); p->to_stereo(x[2],y[2],reverse_stereo); alpha+=get_angle(x[0],y[0],x[1],y[1],x[2],y[2]); x[0]=x[1];y[0]=y[1]; x[1]=x[2];y[1]=y[2]; }while(p!=i1); i0->to_stereo(x[2],y[2],reverse_stereo); alpha+=get_angle(x[0],y[0],x[1],y[1],x[2],y[2]); return (int)round(alpha/(M_PI*2)); } int length(iterator i0,iterator i1) { int l=1; while(i0!=i1){ i0=next(i0); l++; } return l; } void insert_range(iterator i,iterator j0,iterator j1) { iterator n=j0; do{ j0=n; iterator is=insert(i,*j0); is->it_loop=is; is->l=this; *(j0->it_box)=&*is; n=j0->l->next(j0); }while(j0!=j1); } }; class loops:public std::list<loop>{ public: void print_gnuplot(std::ostream &stream) { double lat,lon; for(iterator il=begin();il!=end();il++){ stream<<"\n"; for(loop::iterator ip=il->begin();ip!=il->end();ip++){ ip->to_latlon(lat,lon); stream<<lon*180/M_PI<<" "<<lat*180/M_PI<<"\n"; } il->front().to_latlon(lat,lon); stream<<lon*180/M_PI<<" "<<lat*180/M_PI<<"\n"; } } }; double stereo_cross_product(point p00,point p01, point p10,point p11) { double x[4],y[4]; p00.to_stereo(x[0],y[0]); p01.to_stereo(x[1],y[1]); p10.to_stereo(x[2],y[2]); p11.to_stereo(x[3],y[3]); return (x[1]-x[0])*(y[3]-y[2])-(y[1]-y[0])*(x[3]-x[2]); } bool is_intersected(point p00,point p01, point p10,point p11) { if(stereo_cross_product(p00,p01,p00,p10)*stereo_cross_product(p00,p01,p00,p11)>0) return false; if(stereo_cross_product(p10,p11,p10,p00)*stereo_cross_product(p10,p11,p10,p01)>0) return false; return true; } void loop_fill_box(loop *l,box &b) { for(loop::iterator ip=l->begin();ip!=l->end();ip++){ ip->l=l; ip->it_loop=ip; b.add(*ip); } } bool loop_check_intersections(loop *l,box &b) { // Check for intersections bool result=false; for(loop::iterator i00=l->begin();i00!=l->end();++i00){ loop::iterator i01=l->next(i00); if(i01==l->begin() && !l->closed) break; double length0=i00->dist(*i01); #define NP 5 double d[NP*2]={length0*1.0001}; for(int i=0;i<NP*2;i++) d[i]=DBL_MAX; point *cp[NP*2]; b.find_closest(*i00,NP,d,cp); b.find_closest(*i01,NP,d+NP,cp+NP); for(int i=0;i<NP*2;i++){ if(d[i]>length0) break; if(i00!=cp[i]->it_loop && i01!=cp[i]->it_loop){ loop::iterator i10=cp[i]->it_loop; loop::iterator i11=l->next(i10); if((i11!=l->begin() || l->closed) &&(i11 != i00 && i11 != i01)) if(is_intersected(*i00,*i01,*i10,*i11)){ if(l->length(i11,i00)<l->length(i01,i10)) i00=l->remove_range(i11,i00); else i00=l->remove_range(i01,i10); result=true; if(i00!=l->begin()) i00--; break; } i11=i10; i10=l->prev(i11); if((i11!=l->begin() || l->closed) &&(i10 != i00 && i10 != i01)) if(is_intersected(*i00,*i01,*i10,*i11)){ if(l->length(i11,i00)<l->length(i01,i10)) i00=l->remove_range(i11,i00); else i00=l->remove_range(i01,i10); result=true; if(i00!=l->begin()) i00--; break; } } } } return result; } bool loop_check_close_points_self(loop *l,box &b) { bool result=false; int orientation = l->orientation(l->begin(), --l->end()); for(loop::iterator i=l->begin();i!=l->end();){ double d[2]={i->min_dist*1.001,i->min_dist*1.001}; point *cp[2]; b.find_closest(*i,2,d,cp); if(d[1]<i->min_dist){ loop::iterator id1=cp[1]->it_loop; int not_a_loop=-1; if(!l->closed){ loop::iterator ii; for(ii=i;ii!=l->end() && ii!=id1;ii++); not_a_loop= ii==l->end()?0:1; } if(not_a_loop!=0 && (l->orientation(i,id1)!=orientation || l->length(i,id1)<3)){ i=l->remove_range(i,id1); result=true; } if(not_a_loop!=1 && (l->orientation(id1,i)!=orientation || l->length(id1,i)<3)){ i=l->remove_range(id1,i); result=true; }else i++; }else i++; } return result; } bool loop_check_small_angles(loop *l) { bool removed=false; for(loop::iterator i=l->begin();i!=l->end();++i){ loop::iterator i1=l->next(i); loop::iterator i2=l->next(i1); if((!l->closed) && i2==l->begin()) break; double alpha=get_angle(*i,*i1,*i2); if(alpha>3*M_PI/4){ i1->b->remove(&*i1); i=l->erase(i1); removed=true; } } return removed; } bool loop_check_close_points(loop *l,box &b) { #define NPD 10 for(loop::iterator i=l->begin();i!=l->end();){ double d[NPD]; point *cp[NPD]; for(int j=0;j<NPD;j++){ d[j]=i->min_dist*1.001; cp[j]=NULL; } b.find_closest(*i,NPD,d,cp); bool merged=false; for(int j=0;j<NPD;j++){ if(!cp[j])break; if(i->l!=cp[j]->l){ double lat,lon; i->to_latlon(lat,lon); loop::iterator f0=i; loop::iterator f1=cp[j]->it_loop; double newx[3],dx[3],crossx[3]; for(int k=0;k<3;k++){ newx[k]=(f0->v[k]+f1->v[k])/2; dx[k]=(f1->v[k]-f0->v[k])/2; } for(int k=0;k<3;k++){ int k1=(k+1)%3; int k2=(k+2)%3; crossx[k]=newx[k1]*dx[k2]-newx[k2]*dx[k1]; } double norm=sqrt(crossx[0]*crossx[0]+crossx[1]*crossx[1]+crossx[2]*crossx[2]); for(int k=0;k<3;k++){ crossx[k]*=i->min_dist*0.1/norm; f0->v[k]=newx[k]-crossx[k]; f1->v[k]=newx[k]+crossx[k]; } l->insert_range(++f0,f1->l->next(f1),f1); cp[j]->l->clear(); merged=true; break; } } if(!merged) i++; } return true; } class GeoEarthImport { std::ostringstream loop_buff, surface_buff;; std::string filename; std::ofstream *file; int il, ip, is, ill, ifi; int first_point_in_loop, first_point_in_surface,first_point_in_attractor; bool empty_surface; void new_attractor() { first_point_in_attractor = ip; } void new_surface() { surface_buff.str(""); surface_buff << "Plane Surface( IS + " << is++ << " ) = { "; first_point_in_surface = ip; empty_surface = true; } void new_loop() { loop_buff.str(""); first_point_in_loop = ip; } int _write_polar_sphere; public: GeoEarthImport(const std::string _filename, int write_polar_sphere,double radius) { _write_polar_sphere = write_polar_sphere; filename = _filename; file=new std::ofstream(filename.c_str()); loop_buff.precision(16); std::ostringstream buff; il = ip = ill = is = ifi = 0; buff << "IP = newp;\n"; buff << "IL = newl;\n"; buff << "ILL = newll;\n"; buff << "IS = news;\n"; buff << "IFI = newf;\n"; if(write_polar_sphere > 0){ buff << "Point ( IP + " << ip++ << " ) = {0, 0, 0 };\n"; buff << "Point ( IP + " << ip++ <<" ) = {0, 0,"<<radius<<"};\n"; buff << "PolarSphere ( IS + " << is++ << " ) = {IP , IP+1};\n"; } *file << buff.str(); new_surface(); new_attractor(); new_loop(); } ~GeoEarthImport() { //file << "Euclidian Coordinates;"; file->close(); } void add_point(SPoint3 point) { double r=sqrt(point.x()*point.x()+point.y()*point.y()+point.z()*point.z()); SPoint2 stereo(-point.x() / (r + point.z()), -point.y() / (r + point.z())); if (_write_polar_sphere == -2){ stereo = SPoint2(2 * r * point.x() / (r + point.z()), 2 * r * point.y() / (r + point.z())); } loop_buff << "Point ( IP + " << ip++ << " ) = {" << stereo. x() << ", " << stereo.y() << ", " << 0 << " };\n"; } void end_loop(bool closed) { if(ip - first_point_in_loop > 3) { loop_buff<<"LoopStart"<<il<<" = IP + "<< first_point_in_loop<<";\n"; loop_buff<<"LoopEnd"<<il<<" = IP + "<< ip - 1<<";\n"; loop_buff << "BSpline ( IL + " << il++ << " ) = { IP + " << first_point_in_loop << " : IP + " << ip - 1 ; if(closed) loop_buff<< ", IP + " << first_point_in_loop; loop_buff<< " };\n"; if(closed){ loop_buff << "Line Loop ( ILL + " << ill++ << " ) = { IL + " << il - 1 << " };"; } *file << loop_buff.str(); if(closed){ if(!empty_surface) surface_buff << ", "; surface_buff << "ILL + " << ill - 1; empty_surface = false; } } else { ip = first_point_in_loop; } new_loop(); } void end_surface() { if(!empty_surface) { surface_buff << "};\n"; surface_buff.str(""); *file << surface_buff.str()<<"\n"; } new_surface(); } void end_attractor() { *file << "Field [ IFI + " << ifi << "] = Attractor;\n"; *file << "Field [ IFI + " << ifi++ << "].NodesList = { IP + " << first_point_in_attractor << " : IP + " << ip - 1 << " };"; new_attractor(); } }; std::string getName() const { return "GSHHS"; } std::string getShortHelp() const { return "Import and process GSHHS data sets"; } std::string getHelp() const; std::string getAuthor() const { return "J. Lambrechts"; } int getNbOptions() const; int getNbOptionsStr() const; StringXNumber *getOption(int iopt); StringXString *getOptionStr(int iopt); PView *execute(PView *); }; // ************** MAIN PLUGIN ************** StringXNumber GSHHSOptions_Number[] = { {GMSH_FULLRC, "iField", NULL, -1.}, {GMSH_FULLRC, "UTMZone", NULL, 0}, {GMSH_FULLRC, "UTMEquatorialRadius", NULL, 6378137}, {GMSH_FULLRC, "UTMPolarRadius", NULL, 6356752.3142}, {GMSH_FULLRC, "radius", NULL,6371009}, {GMSH_FULLRC, "WritePolarSphere",NULL,1}, {GMSH_FULLRC, "MinStraitsFactor",NULL,1} }; StringXString GSHHSOptions_String[] = { {GMSH_FULLRC, "InFileName", NULL, "gshhs_c.b"}, {GMSH_FULLRC, "OutFileName", NULL, "earth.geo"}, {GMSH_FULLRC, "Format", NULL, "gshhs"}, {GMSH_FULLRC, "Coordinate", NULL, "cartesian"} }; extern "C" { GMSH_Plugin *GMSH_RegisterGSHHSPlugin() { return new GMSH_GSHHSPlugin(); } } std::string GMSH_GSHHSPlugin::getHelp() const { return "Plugin(GSHHS) read different kind of contour lines data " "and write a .geo file on the surface of a sphere (the Earth).\n\n" "The principal application is to load GSHHS data\n (see " "http://www.soest.hawaii.edu/wessel/gshhs/gshhs.html).\n\n" "Valid values for \"Format\" are:\n\n" "- \"gshhs\": open GSHHS file\n\n" "- \"loops2\": import 2D contour lines in simple text format:\n\n" "NB_POINTS_IN_FIRST_LOOP FIRST_LOOP_IS_CLOSED\n" "COORD1 COORD2\n" "COORD1 COORD2\n" "... ...\n" "NB_POINTS_IN_SECOND_LOOP SECOND_LOOP_IS_CLOSED\n" "...\n\n" "(LOOP_IS_CLOSED specifies if this coast line describes a closed " "curve (0=no, 1=yes)).\n\n" "In the case of \"loops2\" format, you " "can specify the coordinate system used in the input file " "with the \"Coordinate\" option. Valid values are\n\n" "- \"lonlat\" for longitude-latidute radian,\n\n" "- \"lonlat_degrees\" for longitude-latitude degrees,\n\n" "- \"UTM\" for universal transverse mercartor (\"UTMZone\" " "option should be specified)\n\n" "- \"cartesian\" for full 3D coordinates\n\n" "- \"radius\" specify the earth radius.\n\n" "If the \"iField\" option is set, consecutive points closer " "than the value of the field iField (in meters) will not be " "added.\n\n" "If \"MinStraitsFactor\" > 0 and if a field iField is " "provided, coastlines closer than MinStraitsFactor * " "field(IField) are merged and inner corners which form an " "angle < pi/3 are removed.\n\n" "The output is always in stereographic coordinates, if " "the \"WritePolarSphere\" option is greater than 0, a sphere is " "added to the geo file.\n\n" "WARNING: this plugin is still experimental and needs " "polishing and error-handling. In particular, it will " "probably crash if an inexistant field id is given or if " "the input/output cannot be open."; } int GMSH_GSHHSPlugin::getNbOptions() const { return sizeof(GSHHSOptions_Number) / sizeof(StringXNumber); } int GMSH_GSHHSPlugin::getNbOptionsStr() const { return sizeof(GSHHSOptions_String) / sizeof(StringXString); } StringXNumber *GMSH_GSHHSPlugin::getOption(int iopt) { return &GSHHSOptions_Number[iopt]; } StringXString *GMSH_GSHHSPlugin::getOptionStr(int iopt) { return &GSHHSOptions_String[iopt]; } PView *GMSH_GSHHSPlugin::execute(PView * v) { void projector(SPoint2,SPoint3); int iField = (int)GSHHSOptions_Number[0].def; char *filename = (char *)GSHHSOptions_String[0].def.c_str(); char *outfilename = (char *)GSHHSOptions_String[1].def.c_str(); std::string format(GSHHSOptions_String[2].def); std::string coordinate_name(GSHHSOptions_String[3].def); int utm_zone=(int)GSHHSOptions_Number[1].def; double utm_equatorial_radius=(double)GSHHSOptions_Number[2].def; double utm_polar_radius=(double)GSHHSOptions_Number[3].def; double radius=(double)GSHHSOptions_Number[4].def; int write_polar_sphere = (int)GSHHSOptions_Number[5].def; double straits_factor = (double)GSHHSOptions_Number[6].def; coordinate_lonlat lonlat(radius); coordinate_lonlat_degrees lonlat_degrees(radius); coordinate_utm utm(utm_zone, radius,utm_equatorial_radius, utm_polar_radius); GeoEarthImport geo_import(outfilename,write_polar_sphere,radius); coordinate_system *c_syst=NULL; if(coordinate_name == "lonlat") c_syst=&lonlat; else if(coordinate_name == "lonlat_degrees") c_syst=&lonlat_degrees; else if(coordinate_name == "utm") c_syst=&utm; else if(coordinate_name != "cartesian"){ Msg::Error("gshhs: Unknown coordinate system %s.\n", coordinate_name.c_str()); return NULL; } Field *field = NULL; #if defined(HAVE_MESH) if (iField != -1) { field = GModel::current()->getFields()->get(iField); if(!field){ Msg::Error("Field[%d] does not exist", iField); return NULL; } } #endif SPoint3 p; reader *read=0; if(format == "loops2") { read=new reader_loops2(filename); } else if(format == "gshhs") { c_syst=&lonlat; read=new reader_gshhs(filename); } loops ll; bool closed; while(read->next_loop(closed)!=0){ loop l; l.closed=closed; point oldp(0,0,0,0.); while(read->next_point(p)){ if(c_syst) c_syst->to_cartesian(p,p); point newp(p[0],p[1],p[2],field); if(newp.min_dist<0){ while(!l.empty() && l.back().dist(l.front())<l.back().min_dist) l.pop_back(); l.closed=false; if(l.size()>=3) ll.push_back(l); l.clear(); } else if (l.empty() || oldp.dist(newp)>newp.min_dist){ l.push_back(newp); oldp=newp; } } while(!l.empty() && l.back().dist(l.front())<l.back().min_dist) l.pop_back(); if(l.size()>=3) ll.push_back(l); } delete read; if(straits_factor>0 && iField !=0){ for(loops::iterator il=ll.begin();il!=ll.end();il++) for(loop::iterator ip=il->begin();ip!=il->end();ip++) ip->min_dist*=straits_factor; box *b=new box(point(-radius,-radius,-radius,0.),point(radius,radius,radius,0.)); for(loops::iterator il=ll.begin();il!=ll.end();il++) loop_fill_box(&*il,*b); for(loops::iterator il=ll.begin();il!=ll.end();il++) loop_check_close_points(&*il,*b); delete b; for(loops::iterator il=ll.begin();il!=ll.end();il++){ box b(point(-radius,-radius,-radius,0.),point(radius,radius,radius,0.)); loop_fill_box(&*il,b); while(false || loop_check_small_angles(&*il) || loop_check_close_points_self(&*il,b) || loop_check_intersections(&*il,b) ); } } for(std::list<loop>::iterator l=ll.begin();l!=ll.end();l++){ for(loop::iterator p=l->begin();p!=l->end();p++) geo_import.add_point(p->v); geo_import.end_loop(l->closed); } geo_import.end_surface(); geo_import.end_attractor(); return NULL; }