// Gmsh - Copyright (C) 1997-2011 C. Geuzaine, J.-F. Remacle // // See the LICENSE.txt file for license information. Please report all // bugs and problems to <gmsh@geuz.org>. #include <string> #include "GmshConfig.h" #include "GmshMessage.h" #include "GModel.h" #if defined(HAVE_MED) #include <string.h> #include <map> #include <sstream> #include <vector> #include "MVertex.h" #include "MPoint.h" #include "MLine.h" #include "MTriangle.h" #include "MQuadrangle.h" #include "MTetrahedron.h" #include "MHexahedron.h" #include "MPrism.h" #include "MPyramid.h" #include "discreteVertex.h" extern "C" { #include <med.h> } #if (MED_MAJOR_NUM == 3) // To avoid to many ifdef's below we use defines for the bits of the // API that did not change to much between MED2 and MED3. If we remove // MED2 support at some point, please remove these defines and replace // the symbols accordingly. #define med_geometrie_element med_geometry_type #define med_maillage med_mesh_type #define MED_TAILLE_NOM MED_NAME_SIZE #define MED_TAILLE_LNOM MED_LNAME_SIZE #define MED_TAILLE_DESC MED_COMMENT_SIZE #define MED_NON_STRUCTURE MED_UNSTRUCTURED_MESH #define MED_LECTURE MED_ACC_RDONLY #define MED_CREATION MED_ACC_CREAT #define MEDouvrir MEDfileOpen #define MEDversionDonner MEDlibraryNumVersion #define MEDversionLire MEDfileNumVersionRd #define MEDnMaa MEDnMesh #define MEDfermer MEDfileClose #define MEDnFam MEDnFamily #define MEDfichDesEcr MEDfileCommentWr #endif med_geometrie_element msh2medElementType(int msh) { switch(msh) { case MSH_LIN_2: return MED_SEG2; case MSH_TRI_3: return MED_TRIA3; case MSH_QUA_4: return MED_QUAD4; case MSH_TET_4: return MED_TETRA4; case MSH_HEX_8: return MED_HEXA8; case MSH_PRI_6: return MED_PENTA6; case MSH_PYR_5: return MED_PYRA5; case MSH_LIN_3: return MED_SEG3; case MSH_TRI_6: return MED_TRIA6; case MSH_TET_10: return MED_TETRA10; case MSH_PNT: return MED_POINT1; case MSH_QUA_8: return MED_QUAD8; case MSH_HEX_20: return MED_HEXA20; case MSH_PRI_15: return MED_PENTA15; case MSH_PYR_13: return MED_PYRA13; #if (MED_MAJOR_NUM == 3) case MSH_QUA_9: return MED_QUAD9; case MSH_HEX_27: return MED_HEXA27; #endif default: return MED_NONE; } } int med2mshElementType(med_geometrie_element med) { switch(med) { case MED_SEG2: return MSH_LIN_2; case MED_TRIA3: return MSH_TRI_3; case MED_QUAD4: return MSH_QUA_4; case MED_TETRA4: return MSH_TET_4; case MED_HEXA8: return MSH_HEX_8; case MED_PENTA6: return MSH_PRI_6; case MED_PYRA5: return MSH_PYR_5; case MED_SEG3: return MSH_LIN_3; case MED_TRIA6: return MSH_TRI_6; case MED_TETRA10: return MSH_TET_10; case MED_POINT1: return MSH_PNT; case MED_QUAD8: return MSH_QUA_8; case MED_HEXA20: return MSH_HEX_20; case MED_PENTA15: return MSH_PRI_15; case MED_PYRA13: return MSH_PYR_13; #if (MED_MAJOR_NUM == 3) case MED_QUAD9: return MSH_QUA_9; case MED_HEXA27: return MSH_HEX_27; #endif default: return 0; } } int med2mshNodeIndex(med_geometrie_element med, int k) { switch(med) { case MED_POINT1: case MED_SEG2: case MED_SEG3: case MED_TRIA3: case MED_TRIA6: case MED_QUAD4: case MED_QUAD8: #if (MED_MAJOR_NUM == 3) case MED_QUAD9: #endif { // same node numbering as in Gmsh return k; } case MED_TETRA4: { static const int map[4] = {0, 2, 1, 3}; return map[k]; } case MED_TETRA10: { static const int map[10] = {0, 2, 1, 3, 6, 5, 4, 7, 8, 9}; return map[k]; } case MED_HEXA8: { static const int map[8] = {0, 3, 2, 1, 4, 7, 6, 5}; return map[k]; } case MED_HEXA20: { static const int map[20] = {0, 3, 2, 1, 4, 7, 6, 5, 11, 8, 16, 10, 19, 9, 18, 17, 15, 12, 14, 13}; return map[k]; } #if (MED_MAJOR_NUM == 3) case MED_HEXA27: { Msg::Error("FIXME HEX27 not implemented for MED3"); return k; } #endif case MED_PENTA6: { static const int map[6] = {0, 2, 1, 3, 5, 4}; return map[k]; } case MED_PENTA15: { static const int map[15] = {0, 2, 1, 3, 5, 4, 8, 6, 12, 7, 14, 13, 11, 9, 10}; return map[k]; } case MED_PYRA5: { static const int map[5] = {0, 3, 2, 1, 4}; return map[k]; } case MED_PYRA13: { static const int map[13] = {0, 3, 2, 1, 4, 8, 5, 9, 7, 12, 6, 11, 10}; return map[k]; } default: Msg::Error("Unknown MED element type"); return k; } } int GModel::readMED(const std::string &name) { med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE); if(fid < 0) { Msg::Error("Unable to open file '%s'", name.c_str()); return 0; } med_int v[3], vf[3]; MEDversionDonner(&v[0], &v[1], &v[2]); MEDversionLire(fid, &vf[0], &vf[1], &vf[2]); Msg::Info("Reading MED file V%d.%d.%d using MED library V%d.%d.%d", vf[0], vf[1], vf[2], v[0], v[1], v[2]); if(vf[0] < 2 || (vf[0] == 2 && vf[1] < 2)){ Msg::Error("Cannot read MED file older than V2.2"); return 0; } std::vector<std::string> meshNames; for(int i = 0; i < MEDnMaa(fid); i++){ char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1]; med_int spaceDim; med_maillage meshType; #if (MED_MAJOR_NUM == 3) med_int meshDim, nStep; char dtUnit[ MED_SNAME_SIZE + 1]; char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1]; med_sorting_type sortingType; med_axis_type axisType; if(MEDmeshInfo(fid, i + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc, dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){ #else if(MEDmaaInfo(fid, i + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){ #endif Msg::Error("Unable to read mesh information"); return 0; } meshNames.push_back(meshName); } if(MEDfermer(fid) < 0){ Msg::Error("Unable to close file '%s'", (char*)name.c_str()); return 0; } int ret = 1; MVertex::resetGlobalNumber(); MElement::resetGlobalNumber(); for(unsigned int i = 0; i < meshNames.size(); i++){ GModel *m = findByName(meshNames[i]); if(!m){ for(unsigned int j = 0; j < GModel::list.size(); j++) GModel::list[j]->setVisibility(0); m = new GModel(meshNames[i]); } ret = m->readMED(name, i); if(!ret) return 0; } return ret; } int GModel::readMED(const std::string &name, int meshIndex) { med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE); if(fid < 0){ Msg::Error("Unable to open file '%s'", name.c_str()); return 0; } int numMeshes = MEDnMaa(fid); if(meshIndex >= numMeshes){ Msg::Info("Could not find mesh %d in MED file", meshIndex); return 0; } // read mesh info char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1]; med_int spaceDim; med_maillage meshType; #if (MED_MAJOR_NUM == 3) med_int meshDim, nStep; char dtUnit[MED_SNAME_SIZE + 1]; char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1]; med_sorting_type sortingType; med_axis_type axisType; if(MEDmeshInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc, dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){ #else if(MEDmaaInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){ #endif Msg::Error("Unable to read mesh information"); return 0; } setName(meshName); if(meshType == MED_NON_STRUCTURE){ Msg::Info("Reading %d-D unstructured mesh <<%s>>", spaceDim, meshName); } else{ Msg::Error("Cannot read structured mesh"); return 0; } med_int vf[3]; MEDversionLire(fid, &vf[0], &vf[1], &vf[2]); // read nodes #if (MED_MAJOR_NUM == 3) med_bool changeOfCoord, geoTransform; med_int numNodes = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE, MED_NO_GEOTYPE, MED_COORDINATE, MED_NO_CMODE, &changeOfCoord, &geoTransform); #else med_int numNodes = MEDnEntMaa(fid, meshName, MED_COOR, MED_NOEUD, MED_NONE, MED_NOD); #endif if(numNodes < 0){ Msg::Error("Could not read number of MED nodes"); return 0; } if(numNodes == 0){ Msg::Error("No nodes in MED mesh"); return 0; } std::vector<MVertex*> verts(numNodes); std::vector<med_float> coord(spaceDim * numNodes); #if (MED_MAJOR_NUM == 3) if(MEDmeshNodeCoordinateRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_FULL_INTERLACE, &coord[0]) < 0){ #else std::vector<char> coordName(spaceDim * MED_TAILLE_PNOM + 1); std::vector<char> coordUnit(spaceDim * MED_TAILLE_PNOM + 1); med_repere rep; if(MEDcoordLire(fid, meshName, spaceDim, &coord[0], MED_FULL_INTERLACE, MED_ALL, 0, 0, &rep, &coordName[0], &coordUnit[0]) < 0){ #endif Msg::Error("Could not read MED node coordinates"); return 0; } std::vector<med_int> nodeTags(numNodes); #if (MED_MAJOR_NUM == 3) if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE, MED_NO_GEOTYPE, &nodeTags[0]) < 0) #else if(MEDnumLire(fid, meshName, &nodeTags[0], numNodes, MED_NOEUD, MED_NONE) < 0) #endif nodeTags.clear(); for(int i = 0; i < numNodes; i++) verts[i] = new MVertex(coord[spaceDim * i], (spaceDim > 1) ? coord[spaceDim * i + 1] : 0., (spaceDim > 2) ? coord[spaceDim * i + 2] : 0., 0, nodeTags.empty() ? 0 : nodeTags[i]); // read elements (loop over all possible MSH element types) for(int mshType = 0; mshType < MSH_NUM_TYPE; mshType++){ med_geometrie_element type = msh2medElementType(mshType); if(type == MED_NONE) continue; #if (MED_MAJOR_NUM == 3) med_bool changeOfCoord; med_bool geoTransform; med_int numEle = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL, type, MED_CONNECTIVITY, MED_NODAL, &changeOfCoord, &geoTransform); #else med_int numEle = MEDnEntMaa(fid, meshName, MED_CONN, MED_MAILLE, type, MED_NOD); #endif if(numEle <= 0) continue; int numNodPerEle = type % 100; std::vector<med_int> conn(numEle * numNodPerEle); #if (MED_MAJOR_NUM == 3) if(MEDmeshElementConnectivityRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL, type, MED_NODAL, MED_FULL_INTERLACE, &conn[0]) < 0){ #else if(MEDconnLire(fid, meshName, spaceDim, &conn[0], MED_FULL_INTERLACE, 0, MED_ALL, MED_MAILLE, type, MED_NOD) < 0){ #endif Msg::Error("Could not read MED elements"); return 0; } std::vector<med_int> fam(numEle); #if (MED_MAJOR_NUM == 3) if(MEDmeshEntityFamilyNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL, type, &fam[0]) < 0){ #else if(MEDfamLire(fid, meshName, &fam[0], numEle, MED_MAILLE, type) < 0){ #endif Msg::Error("Could not read MED families"); return 0; } std::vector<med_int> eleTags(numEle); #if (MED_MAJOR_NUM == 3) if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL, type, &eleTags[0]) < 0) #else if(MEDnumLire(fid, meshName, &eleTags[0], numEle, MED_MAILLE, type) < 0) #endif eleTags.clear(); std::map<int, std::vector<MElement*> > elements; MElementFactory factory; for(int j = 0; j < numEle; j++){ std::vector<MVertex*> v(numNodPerEle); for(int k = 0; k < numNodPerEle; k++) v[k] = verts[conn[numNodPerEle * j + med2mshNodeIndex(type, k)] - 1]; MElement *e = factory.create(mshType, v, eleTags.empty() ? 0 : eleTags[j]); if(e) elements[-fam[j]].push_back(e); } _storeElementsInEntities(elements); } _associateEntityWithMeshVertices(); _storeVerticesInEntities(verts); // read family info med_int numFamilies = MEDnFam(fid, meshName); if(numFamilies < 0){ Msg::Error("Could not read MED families"); return 0; } for(int i = 0; i < numFamilies; i++){ #if (MED_MAJOR_NUM == 3) med_int numAttrib = (vf[0] == 3) ? 0 : MEDnFamily23Attribute(fid, meshName, i + 1); med_int numGroups = MEDnFamilyGroup(fid, meshName, i + 1); #else med_int numAttrib = MEDnAttribut(fid, meshName, i + 1); med_int numGroups = MEDnGroupe(fid, meshName, i + 1); #endif if(numAttrib < 0 || numGroups < 0){ Msg::Error("Could not read MED groups or attributes"); return 0; } std::vector<med_int> attribId(numAttrib + 1); std::vector<med_int> attribVal(numAttrib + 1); std::vector<char> attribDes(MED_TAILLE_DESC * numAttrib + 1); std::vector<char> groupNames(MED_TAILLE_LNOM * numGroups + 1); char familyName[MED_TAILLE_NOM + 1]; med_int familyNum; #if (MED_MAJOR_NUM == 3) if(vf[0] == 3){ // MED3 file if(MEDfamilyInfo(fid, meshName, i + 1, familyName, &familyNum, &groupNames[0]) < 0){ Msg::Error("Could not read info for MED3 family %d", i + 1); continue; } } else{ if(MEDfamily23Info(fid, meshName, i + 1, familyName, &attribId[0], &attribVal[0], &attribDes[0], &familyNum, &groupNames[0]) < 0){ Msg::Error("Could not read info for MED2 family %d", i + 1); continue; } } #else if(MEDfamInfo(fid, meshName, i + 1, familyName, &familyNum, &attribId[0], &attribVal[0], &attribDes[0], &numAttrib, &groupNames[0], &numGroups) < 0){ Msg::Error("Could not read info for MED family %d", i + 1); continue; } #endif // family tags are unique (for all dimensions) GEntity *ge; if((ge = getRegionByTag(-familyNum))){} else if((ge = getFaceByTag(-familyNum))){} else if((ge = getEdgeByTag(-familyNum))){} else ge = getVertexByTag(-familyNum); if(ge){ elementaryNames[std::pair<int, int>(ge->dim(), -familyNum)] = familyName; if(numGroups > 0){ for(int j = 0; j < numGroups; j++){ char tmp[MED_TAILLE_LNOM + 1]; strncpy(tmp, &groupNames[j * MED_TAILLE_LNOM], MED_TAILLE_LNOM); tmp[MED_TAILLE_LNOM] = '\0'; ge->physicals.push_back(setPhysicalName(tmp, ge->dim())); } } } } // check if we need to read some post-processing data later #if (MED_MAJOR_NUM == 3) bool postpro = (MEDnField(fid) > 0) ? true : false; #else bool postpro = (MEDnChamp(fid, 0) > 0) ? true : false; #endif if(MEDfermer(fid) < 0){ Msg::Error("Unable to close file '%s'", (char*)name.c_str()); return 0; } return postpro ? 2 : 1; } template<class T> static void fillElementsMED(med_int family, std::vector<T*> &elements, std::vector<med_int> &conn, std::vector<med_int> &fam, med_geometrie_element &type) { type = MED_NONE; if(elements.empty()) return; type = msh2medElementType(elements[0]->getTypeForMSH()); if(type == MED_NONE){ Msg::Warning("Unsupported element type in MED format"); return; } for(unsigned int i = 0; i < elements.size(); i++){ elements[i]->setVolumePositive(); for(int j = 0; j < elements[i]->getNumVertices(); j++) conn.push_back(elements[i]->getVertex(med2mshNodeIndex(type, j))->getIndex()); fam.push_back(family); } } static void writeElementsMED(med_idt &fid, char *meshName, std::vector<med_int> &conn, std::vector<med_int> &fam, med_geometrie_element type) { if(fam.empty()) return; #if (MED_MAJOR_NUM == 3) if(MEDmeshElementWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_CELL, type, MED_NODAL, MED_FULL_INTERLACE, (med_int)fam.size(), &conn[0], MED_FALSE, 0, MED_FALSE, 0, MED_TRUE, &fam[0]) < 0) #else if(MEDelementsEcr(fid, meshName, (med_int)3, &conn[0], MED_FULL_INTERLACE, 0, MED_FAUX, 0, MED_FAUX, &fam[0], (med_int)fam.size(), MED_MAILLE, type, MED_NOD) < 0) #endif Msg::Error("Could not write elements"); } int GModel::writeMED(const std::string &name, bool saveAll, double scalingFactor) { med_idt fid = MEDouvrir((char*)name.c_str(), MED_CREATION); if(fid < 0){ Msg::Error("Unable to open file '%s'", name.c_str()); return 0; } // write header if(MEDfichDesEcr(fid, (char*)"MED file generated by Gmsh") < 0){ Msg::Error("Unable to write MED descriptor"); return 0; } char *meshName = (char*)getName().c_str(); // Gmsh always writes 3D unstructured meshes #if (MED_MAJOR_NUM == 3) char dtUnit[MED_SNAME_SIZE + 1] = ""; char axisName[3 * MED_SNAME_SIZE + 1] = ""; char axisUnit[3 * MED_SNAME_SIZE + 1] = ""; if(MEDmeshCr(fid, meshName, 3, 3, MED_UNSTRUCTURED_MESH, "Mesh created with Gmsh", dtUnit, MED_SORT_DTIT, MED_CARTESIAN, axisName, axisUnit) < 0){ #else if(MEDmaaCr(fid, meshName, 3, MED_NON_STRUCTURE, (char*)"Mesh created with Gmsh") < 0){ #endif Msg::Error("Could not create MED mesh"); return 0; } // if there are no physicals we save all the elements if(noPhysicalGroups()) saveAll = true; // index the vertices we save in a continuous sequence (MED // connectivity is given in terms of vertex indices) indexMeshVertices(saveAll); // get a vector containing all the geometrical entities in the // model (the ordering of the entities must be the same as the one // used during the indexing of the vertices) std::vector<GEntity*> entities; getEntities(entities); std::map<GEntity*, int> families; // write the families { // always create a "0" family, with no groups or attributes #if (MED_MAJOR_NUM == 3) if(MEDfamilyCr(fid, meshName, "F_0", 0, 0, "") < 0) #else if(MEDfamCr(fid, meshName, (char*)"F_0", 0, 0, 0, 0, 0, 0, 0) < 0) #endif Msg::Error("Could not create MED family 0"); // create one family per elementary entity, with one group per // physical entity and no attributes for(unsigned int i = 0; i < entities.size(); i++){ if(saveAll || entities[i]->physicals.size()){ int num = - ((int)families.size() + 1); families[entities[i]] = num; std::ostringstream fs; fs << entities[i]->dim() << "D_" << entities[i]->tag(); std::string familyName = "F_" + fs.str(); std::string groupName; for(unsigned j = 0; j < entities[i]->physicals.size(); j++){ std::string tmp = getPhysicalName (entities[i]->dim(), entities[i]->physicals[j]); if(tmp.empty()){ // create unique name std::ostringstream gs; gs << entities[i]->dim() << "D_" << entities[i]->physicals[j]; groupName += "G_" + gs.str(); } else groupName += tmp; groupName.resize((j + 1) * MED_TAILLE_LNOM, ' '); } #if (MED_MAJOR_NUM == 3) if(MEDfamilyCr(fid, meshName, familyName.c_str(), (med_int)num, (med_int)entities[i]->physicals.size(), groupName.c_str()) < 0) #else if(MEDfamCr(fid, meshName, (char*)familyName.c_str(), (med_int)num, 0, 0, 0, 0, (char*)groupName.c_str(), (med_int)entities[i]->physicals.size()) < 0) #endif Msg::Error("Could not create MED family %d", num); } } } // write the nodes { std::vector<med_float> coord; std::vector<med_int> fam; for(unsigned int i = 0; i < entities.size(); i++){ for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){ MVertex *v = entities[i]->mesh_vertices[j]; if(v->getIndex() >= 0){ coord.push_back(v->x() * scalingFactor); coord.push_back(v->y() * scalingFactor); coord.push_back(v->z() * scalingFactor); fam.push_back(0); // we never create node families } } } if(fam.empty()){ Msg::Error("No nodes to write in MED mesh"); return 0; } #if (MED_MAJOR_NUM == 3) if(MEDmeshNodeWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_FULL_INTERLACE, (med_int)fam.size(), &coord[0], MED_FALSE, "", MED_FALSE, 0, MED_TRUE, &fam[0]) < 0) #else char coordName[3 * MED_TAILLE_PNOM + 1] = "x y z "; char coordUnit[3 * MED_TAILLE_PNOM + 1] = "unknown unknown unknown "; if(MEDnoeudsEcr(fid, meshName, (med_int)3, &coord[0], MED_FULL_INTERLACE, MED_CART, coordName, coordUnit, 0, MED_FAUX, 0, MED_FAUX, &fam[0], (med_int)fam.size()) < 0) #endif Msg::Error("Could not write nodes"); } // write the elements { med_geometrie_element typ = MED_NONE; { // points std::vector<med_int> conn, fam; for(viter it = firstVertex(); it != lastVertex(); it++) if(saveAll || (*it)->physicals.size()) fillElementsMED(families[*it], (*it)->points, conn, fam, typ); writeElementsMED(fid, meshName, conn, fam, typ); } { // lines std::vector<med_int> conn, fam; for(eiter it = firstEdge(); it != lastEdge(); it++) if(saveAll || (*it)->physicals.size()) fillElementsMED(families[*it], (*it)->lines, conn, fam, typ); writeElementsMED(fid, meshName, conn, fam, typ); } { // triangles std::vector<med_int> conn, fam; for(fiter it = firstFace(); it != lastFace(); it++) if(saveAll || (*it)->physicals.size()) fillElementsMED(families[*it], (*it)->triangles, conn, fam, typ); writeElementsMED(fid, meshName, conn, fam, typ); } { // quads std::vector<med_int> conn, fam; for(fiter it = firstFace(); it != lastFace(); it++) if(saveAll || (*it)->physicals.size()) fillElementsMED(families[*it], (*it)->quadrangles, conn, fam, typ); writeElementsMED(fid, meshName, conn, fam, typ); } { // tets std::vector<med_int> conn, fam; for(riter it = firstRegion(); it != lastRegion(); it++) if(saveAll || (*it)->physicals.size()) fillElementsMED(families[*it], (*it)->tetrahedra, conn, fam, typ); writeElementsMED(fid, meshName, conn, fam, typ); } { // hexas std::vector<med_int> conn, fam; for(riter it = firstRegion(); it != lastRegion(); it++) if(saveAll || (*it)->physicals.size()) fillElementsMED(families[*it], (*it)->hexahedra, conn, fam, typ); writeElementsMED(fid, meshName, conn, fam, typ); } { // prisms std::vector<med_int> conn, fam; for(riter it = firstRegion(); it != lastRegion(); it++) if(saveAll || (*it)->physicals.size()) fillElementsMED(families[*it], (*it)->prisms, conn, fam, typ); writeElementsMED(fid, meshName, conn, fam, typ); } { // pyramids std::vector<med_int> conn, fam; for(riter it = firstRegion(); it != lastRegion(); it++) if(saveAll || (*it)->physicals.size()) fillElementsMED(families[*it], (*it)->pyramids, conn, fam, typ); writeElementsMED(fid, meshName, conn, fam, typ); } } if(MEDfermer(fid) < 0){ Msg::Error("Unable to close file '%s'", (char*)name.c_str()); return 0; } return 1; } #else int GModel::readMED(const std::string &name) { Msg::Error("Gmsh must be compiled with MED support to read '%s'", name.c_str()); return 0; } int GModel::readMED(const std::string &name, int meshIndex) { Msg::Error("Gmsh must be compiled with MED support to read '%s'", name.c_str()); return 0; } int GModel::writeMED(const std::string &name, bool saveAll, double scalingFactor) { Msg::Error("Gmsh must be compiled with MED support to write '%s'", name.c_str()); return 0; } #endif