diff --git a/Common/Gmsh.cpp b/Common/Gmsh.cpp
index e26ad0571c4cb446df10daef7f12d823f1fec129..477088452a4ab5461ff7c5e4b63e299a0eed3118 100644
--- a/Common/Gmsh.cpp
+++ b/Common/Gmsh.cpp
@@ -87,8 +87,8 @@ int GmshInitialize(int argc, char **argv)
   PluginManager::instance()->registerDefaultPlugins();
 #endif
 
-  // Initialize robust predicates
-  robustPredicates::exactinit();
+  // Initialize robust predicates (no static filter for now, we do not know the size of the domain)
+  robustPredicates::exactinit(0,1.0,1.0,1.0);
 
   if(dummy) delete dummy;
   return 1;
diff --git a/Geo/CMakeLists.txt b/Geo/CMakeLists.txt
index b1d3a1d9d2d281e3058bc801e92700aed7b49124..b0f5ee1961907c16044c04c7a7e150a0b9b8dfab 100644
--- a/Geo/CMakeLists.txt
+++ b/Geo/CMakeLists.txt
@@ -15,7 +15,7 @@ set(SRC
    gmshSurface.cpp
    OCCVertex.cpp OCCEdge.cpp OCCFace.cpp OCCRegion.cpp
    GenericVertex.cpp GenericEdge.cpp GenericFace.cpp GenericRegion.cpp
-    discreteEdge.cpp discreteFace.cpp discreteRegion.cpp
+    discreteEdge.cpp discreteFace.cpp discreteDiskFace.cpp discreteRegion.cpp
     fourierEdge.cpp fourierFace.cpp fourierProjectionFace.cpp
   ACISVertex.cpp
   ACISEdge.cpp
diff --git a/Geo/Curvature.cpp b/Geo/Curvature.cpp
index 4e1cb5a7d3adccd1c307172b2b70a7a4a65010bd..98d2c32368e5a3c7c1951e85c8355f21190c36fb 100644
--- a/Geo/Curvature.cpp
+++ b/Geo/Curvature.cpp
@@ -91,12 +91,17 @@ Curvature& Curvature::getInstance()
    /// -------------------------------------------------------------------------------------------
    // Loop over all faces. Check if the face is a compound. If it is, store all of its discrete
    // faces in _EntityArray
-
+   
    std::list<GFace*> global_face_list;
 
    for(GModel::fiter face_iter = _model->firstFace(); face_iter != _model->lastFace(); ++face_iter)
    {
-     if ( (*face_iter)->geomType() == GEntity::CompoundSurface )
+     if ( (*face_iter)->geomType() != GEntity::CompoundSurface ){
+       if (!(*face_iter)->getCompound()){
+	 global_face_list.push_back(*face_iter);	 
+       }       
+     }
+     else if ( (*face_iter)->geomType() == GEntity::CompoundSurface )
      {
        GFaceCompound* compound = dynamic_cast<GFaceCompound*>(*face_iter);
        std::list<GFace*> tempcompounds = compound->getCompounds();
@@ -117,7 +122,6 @@ Curvature& Curvature::getInstance()
    global_face_list.unique();
    _EntityArray.resize(global_face_list.size());
    std::copy(global_face_list.begin(),global_face_list.end(),_EntityArray.begin());
-
 #endif
  }
 
@@ -430,6 +434,14 @@ void Curvature::computeVertexNormals()
 
 //========================================================================================================
 
+SVector3 Curvature::vertexNormal (MVertex* A)
+{
+  const int V0 = _VertexToInt[A->getNum()];  //The new number of the vertex
+  return _VertexNormal[V0];
+}
+
+//========================================================================================================
+
 void Curvature::curvatureTensor()
 {
 
@@ -878,7 +890,7 @@ void Curvature::computeCurvature(GModel* model, typeOfCurvature typ)
   Msg::StatusBar(true, "(C) Done Computing Curvature (%g s)", t1-t0);
 
   //writeToMshFile("curvature.msh");
-  writeToPosFile("curvature.pos");
+  //writeToPosFile("curvature.pos");
   //writeToVtkFile("curvature.vtk");
 
 }
@@ -1039,6 +1051,7 @@ void Curvature::smoothCurvatureField(const int NbIter)
 
 void Curvature::computeCurvature_Rusinkiewicz(int isMax)
 {
+  
   retrieveCompounds();
   initializeMap();
 
@@ -1196,6 +1209,7 @@ void Curvature::computeCurvature_Rusinkiewicz(int isMax)
                      _VertexNormal[ivertex], _pdir1[ivertex], _pdir2[ivertex], _curv1[ivertex], _curv2[ivertex]);
   }
 
+
   _VertexCurve.resize( _VertexToInt.size() );
 
   for (unsigned int ivertex = 0; ivertex < _VertexToInt.size(); ++ivertex){
@@ -1216,6 +1230,7 @@ void Curvature::computeCurvature_Rusinkiewicz(int isMax)
 
 // Propagate the value of curvature from nodes close the edges of the geometry onto the edges
   correctOnEdges();
+  //  throw;
 
 } //End of the "computeCurvature_Rusinkiewicz" method
 
diff --git a/Geo/Curvature.h b/Geo/Curvature.h
index 966a015985a51149597383a28d1d007f166d2f2d..d4ca37f6fe252be7aca02a881ae842e78f4771ed 100644
--- a/Geo/Curvature.h
+++ b/Geo/Curvature.h
@@ -216,6 +216,7 @@ public:
 
   void vertexNodalValues(MVertex* A, double& c0, int isAbs=0);
   void vertexNodalValuesAndDirections(MVertex *A, SVector3* dMax, SVector3* dMin, double* cMax, double* cMin, int isAbs=0);
+  SVector3 vertexNormal (MVertex* A) ;
 
   void writeToMshFile( const std::string & filename);
 
@@ -224,9 +225,6 @@ public:
   void writeToVtkFile( const std::string & filename);
 
   void writeDirectionsToPosFile( const std::string & filename);
-
-
-
 };
 
 #endif
diff --git a/Geo/GFaceCompound.cpp b/Geo/GFaceCompound.cpp
index fdd3479dcc9004198b1367e717563ef70a879b7c..c2a5cae78ee2ac02ece336432237e8242c3c8b36 100644
--- a/Geo/GFaceCompound.cpp
+++ b/Geo/GFaceCompound.cpp
@@ -1515,6 +1515,11 @@ void GFaceCompound::parametrize(iterationStep step, typeOfMapping tom) const
   else{
 #if defined(HAVE_PETSC)
     lsys = new linearSystemPETSc<double>;
+    lsys->setParameter("petscOptions",
+    "-pc_type ilu -ksp_rtol 1.e-12 -pc_factor_levels 10");
+    
+    //    lsys->setParameter("petscOptions",
+    //    		       "-ksp_type preonly -pc_type lu -pc_factor_mat_solver_package umfpack");
 #elif defined(HAVE_GMM)
     linearSystemGmm<double> *lsysb = new linearSystemGmm<double>;
     lsysb->setGmres(1);
diff --git a/Geo/MElement.cpp b/Geo/MElement.cpp
index 533d163e7e1fa182c7c355f954270c14f702eac7..034ff4765c70fcc3c17de8d3f01974704ef6b42f 100644
--- a/Geo/MElement.cpp
+++ b/Geo/MElement.cpp
@@ -1160,9 +1160,10 @@ void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber,
   }
   if(printGamma){
     double gamma = gammaShapeMeasure();
-    for(int i = 0; i < n; i++){
+    for(int i = 0; i < n; i++){      
       if(first) first = false; else fprintf(fp, ",");
-      fprintf(fp, "%g", gamma);
+      //      fprintf(fp, "%g", gamma);  FIXME
+      fprintf(fp, "%d", getVertex(i)->getNum());
     }
   }
   if(printRho){
diff --git a/Geo/discreteFace.cpp b/Geo/discreteFace.cpp
index 9221f4785f9eddeeea001365620091a855f9052c..0f54c23b8e551164c62b3cabdf03f7f96f0d4c26 100644
--- a/Geo/discreteFace.cpp
+++ b/Geo/discreteFace.cpp
@@ -18,7 +18,7 @@ discreteFace::discreteFace(GModel *model, int num) : GFace(model, num)
 {
   Surface *s = Create_Surface(num, MSH_SURF_DISCRETE);
   Tree_Add(model->getGEOInternals()->Surfaces, &s);
-  meshStatistics.status = GFace::DONE;
+  meshStatistics.status = GFace::DONE;  
 }
 
 void discreteFace::setBoundEdges(GModel *gm, std::vector<int> tagEdges)
@@ -150,3 +150,6 @@ void discreteFace::writeGEO(FILE *fp)
   }
   fprintf(fp, "};\n");    
 }
+
+
+
diff --git a/Mesh/CMakeLists.txt b/Mesh/CMakeLists.txt
index 53c2aaca3b37f43c256d3756d416df3a7ba88a1c..d20011329d7c811b875e48c927777b0e75ec8f08 100644
--- a/Mesh/CMakeLists.txt
+++ b/Mesh/CMakeLists.txt
@@ -4,7 +4,10 @@
 # bugs and problems to the public mailing list <gmsh@geuz.org>.
 
 set(SRC
-  Generator.cpp
+   meshGRegionBoundaryRecovery.cpp
+   delaunay3d.cpp
+   delaunay_refinement.cpp
+   Generator.cpp
     meshGEdge.cpp 
       meshGEdgeExtruded.cpp
     meshGFace.cpp 
@@ -12,6 +15,7 @@ set(SRC
       meshGFaceTransfinite.cpp meshGFaceExtruded.cpp 
       meshGFaceBamg.cpp meshGFaceBDS.cpp meshGFaceDelaunayInsertion.cpp 
       meshGFaceLloyd.cpp meshGFaceOptimize.cpp 
+      meshGFaceQuadDiscrete.cpp 
       meshGFaceQuadrilateralize.cpp 
     meshGRegion.cpp 
       meshGRegionDelaunayInsertion.cpp meshGRegionTransfinite.cpp 
diff --git a/Mesh/Field.cpp b/Mesh/Field.cpp
index 7813efd189ad6dbe758c8e96962ea54f4a85b8f5..6d61ad2b3e7ee916aa44de68a20152bc16675963 100644
--- a/Mesh/Field.cpp
+++ b/Mesh/Field.cpp
@@ -1795,9 +1795,9 @@ class AttractorField : public Field
   void getCoord(double x, double y, double z, double &cx, double &cy, double &cz,
                 GEntity *ge = NULL)
   {
-    cx = _xField ? (*_xField)(x, y, z, ge) : x;
-    cy = _yField ? (*_yField)(x, y, z, ge) : y;
-    cz = _zField ? (*_zField)(x, y, z, ge) : z;
+    cx = _xField  ? (*_xField)(x, y, z, ge) : x;
+    cy = _yField  ? (*_yField)(x, y, z, ge) : y;
+    cz = _zField  ? (*_zField)(x, y, z, ge) : z;
   }
   std::pair<AttractorInfo,SPoint3> getAttractorInfo() const
   {
diff --git a/Mesh/Generator.cpp b/Mesh/Generator.cpp
index a3a2c2c5c14d1b0c7d29936cb5a5f40e581b81a4..57a1f9dd5160f607757fe87209c25308af6a78f8 100644
--- a/Mesh/Generator.cpp
+++ b/Mesh/Generator.cpp
@@ -467,6 +467,242 @@ static void FindConnectedRegions(std::vector<GRegion*> &delaunay,
             nbVolumes,connected.size());
 }
 
+template <class ITERATOR>
+void fillv_(std::multimap<MVertex*, MElement*> &vertexToElement,
+	    ITERATOR it_beg, ITERATOR it_end)
+{
+  for (ITERATOR IT = it_beg; IT != it_end ; ++IT){
+    MElement *el = *IT;
+    for(int j = 0; j < el->getNumVertices(); j++) {
+      MVertex* e = el->getVertex(j);
+      vertexToElement.insert(std::make_pair(e, el));
+    }
+  }
+}
+
+
+int LaplaceSmoothing (GRegion *gr) {
+
+  std::multimap<MVertex*, MElement*> vertexToElement;
+  fillv_(vertexToElement, (gr)->tetrahedra.begin(), (gr)->tetrahedra.end());
+  fillv_(vertexToElement, (gr)->hexahedra.begin(),  (gr)->hexahedra.end());
+  fillv_(vertexToElement, (gr)->prisms.begin(),     (gr)->prisms.end());
+  fillv_(vertexToElement, (gr)->pyramids.begin(),   (gr)->pyramids.end());
+  int N=0;
+  for (unsigned int i=0; i<gr->mesh_vertices.size();i++){
+    MVertex *v = gr->mesh_vertices[i];
+    std::multimap<MVertex*, MElement*>::iterator it = vertexToElement.lower_bound(v);
+    std::multimap<MVertex*, MElement*>::iterator it_low = it;
+    std::multimap<MVertex*, MElement*>::iterator it_up  = vertexToElement.upper_bound(v);
+    double minQual = 1.e22;
+    double volTot = 0.0;
+    double xold=v->x(), yold=v->y(), zold=v->z();
+    SPoint3 pNew (0,0,0);
+    for (; it != it_up; ++it) {
+      minQual= std::min(minQual,it->second->minSICNShapeMeasure());
+      double vol = fabs(it->second->getVolume());
+      SPoint3 cog = it->second->barycenter();
+      pNew += cog * vol;
+      volTot += vol;
+    }
+    pNew *= (1./volTot);
+    v->setXYZ (pNew.x(),pNew.y(),pNew.z());
+    double minQual2 = 1.e22;
+    for (it = it_low; it != it_up; ++it) {
+      minQual2 = std::min(minQual2,it->second->minSICNShapeMeasure());
+      if (minQual2 < minQual){	
+	v->setXYZ (xold,yold,zold);
+	break;
+      }
+    }
+    if (minQual < minQual2) N++;
+  }  
+  return N;
+}
+
+// JFR : use hex-splitting to resolve non conformity
+//     : if howto == 1 ---> split hexes
+//     : if howto == 2 ---> create transition elements
+
+/*
+ v3        v2
+  x--------x
+  |\       |
+  |  \     |
+  |    \   |
+  |      \ |
+  x--------x
+  v0       v1
+ */
+
+void buildUniqueFaces (GRegion *gr, std::set<MFace,Less_Face> &bnd)
+{
+  for (unsigned int i=0;i<gr->getNumMeshElements();i++){
+    MElement *e = gr->getMeshElement(i);
+    for(int j=0;j<e->getNumFaces();j++){
+      MFace f = e->getFace(j);
+      std::set<MFace,Less_Face>::iterator it = bnd.find(f);
+      if (it == bnd.end())bnd.insert(f);
+      else bnd.erase(it);
+    }
+  }
+}
+
+bool MakeMeshConformal   (GModel *gm, int howto) {
+
+  fs_cont search;
+  buildFaceSearchStructure(gm, search);
+  std::set<MFace,Less_Face> bnd;
+  for (GModel::riter rit = gm->firstRegion(); rit != gm->lastRegion(); ++rit){
+    GRegion *gr = *rit;
+    buildUniqueFaces (gr,bnd);
+  }
+  // bnd2 contains non conforming faces
+  
+   std::set<MFace,Less_Face> bnd2;
+  for (std::set<MFace,Less_Face>::iterator itf = bnd.begin(); itf != bnd.end(); ++itf){
+    GFace *gfound = findInFaceSearchStructure (*itf,search);
+    if (!gfound){
+      bnd2.insert(*itf);
+    }
+  }
+  bnd.clear();
+
+  Msg::Info("%d hanging faces",bnd2.size());
+
+  std::set<MFace,Less_Face> ncf;
+  for (std::set<MFace,Less_Face>::iterator itf = bnd2.begin(); itf != bnd2.end(); ++itf){
+    const MFace &f = *itf;
+    if (f.getNumVertices () == 4){ // quad face
+      std::set<MFace,Less_Face>::iterator it1 = bnd2.find (MFace(f.getVertex(0),f.getVertex(1),f.getVertex(2)));
+      std::set<MFace,Less_Face>::iterator it2 = bnd2.find (MFace(f.getVertex(2),f.getVertex(3),f.getVertex(0)));
+      if (it1 != bnd2.end() && it2 != bnd2.end()){
+	ncf.insert(MFace (f.getVertex(1),f.getVertex(2), f.getVertex(3),f.getVertex(0) )); 
+      }
+      else {
+	it1 = bnd2.find (MFace(f.getVertex(0),f.getVertex(1),f.getVertex(3)));
+	it2 = bnd2.find (MFace(f.getVertex(3),f.getVertex(1),f.getVertex(2)));
+	if (it1 != bnd2.end() && it2 != bnd2.end()){
+	  ncf.insert(MFace (f.getVertex(0),f.getVertex(1), f.getVertex(2),f.getVertex(3) )); 
+	}
+	else {
+	  Msg::Error ("MakeMeshConformal: wrong mesh topology");
+	  return false;
+	}
+      }
+    }
+  }
+  bnd2.clear();
+
+  for (GModel::riter rit = gm->firstRegion(); rit != gm->lastRegion(); ++rit){
+    GRegion *gr = *rit;
+    std::vector<MHexahedron*> remainingHexes;
+    for (unsigned int i=0;i<gr->hexahedra.size();i++){
+      MHexahedron *e = gr->hexahedra[i];
+      std::vector<MFace> faces;
+      for(int j=0;j<e->getNumFaces();j++){
+	MFace f = e->getFace(j);
+	std::set<MFace,Less_Face>::iterator it = ncf.find(f);
+	if (it == ncf.end()){
+	  faces.push_back(f);
+	}
+	else {
+	  faces.push_back(MFace(it->getVertex(0),it->getVertex(1),it->getVertex(3)));
+	  faces.push_back(MFace(it->getVertex(1),it->getVertex(2),it->getVertex(3)));	
+	}
+      }
+      // HEX IS ONLY SURROUNED BY COMPATIBLE ELEMENTS
+      if (faces.size() == e->getNumFaces()){
+	remainingHexes.push_back(e);
+      }
+      else {
+	SPoint3 pp = e->barycenter();
+	MVertex *newv = new MVertex (pp.x(),pp.y(),pp.z(),gr);
+	gr->mesh_vertices.push_back(newv);
+	for (unsigned int j=0;j<faces.size();j++){
+	  MFace &f = faces[j];
+	  if (f.getNumVertices() == 4){
+	    gr->pyramids.push_back(new MPyramid (f.getVertex(0), f.getVertex(1), f.getVertex(2), f.getVertex(3), newv));  
+	  }
+	  else {
+	    gr->tetrahedra.push_back(new MTetrahedron (f.getVertex(0), f.getVertex(1), f.getVertex(2), newv));  
+	  }
+	}
+      }    
+    }
+    gr->hexahedra = remainingHexes;
+    remainingHexes.clear();
+    std::vector<MPrism*> remainingPrisms;
+    for (unsigned int i=0;i<gr->prisms.size();i++){
+      MPrism *e = gr->prisms[i];
+      std::vector<MFace> faces;
+      for(int j=0;j<e->getNumFaces();j++){
+	MFace f = e->getFace(j);
+	std::set<MFace,Less_Face>::iterator it = ncf.find(f);
+	if (it == ncf.end()){
+	  faces.push_back(f);
+	}
+	else {
+	  faces.push_back(MFace(it->getVertex(0),it->getVertex(1),it->getVertex(3)));
+	  faces.push_back(MFace(it->getVertex(1),it->getVertex(2),it->getVertex(3)));	
+	}
+      }
+      // HEX IS ONLY SURROUNED BY COMPATIBLE ELEMENTS
+      if (faces.size() == e->getNumFaces()){
+	remainingPrisms.push_back(e);
+      }
+      else {
+	SPoint3 pp = e->barycenter();
+	MVertex *newv = new MVertex (pp.x(),pp.y(),pp.z(),gr);
+	gr->mesh_vertices.push_back(newv);
+	for (unsigned int j=0;j<faces.size();j++){
+	  MFace &f = faces[j];
+	  if (f.getNumVertices() == 4){
+	    gr->pyramids.push_back(new MPyramid (f.getVertex(0), f.getVertex(1), f.getVertex(2), f.getVertex(3), newv));  
+	  }
+	  else {
+	    gr->tetrahedra.push_back(new MTetrahedron (f.getVertex(0), f.getVertex(1), f.getVertex(2), newv));  
+	  }
+	}
+      }    
+    }
+    gr->prisms = remainingPrisms;
+  }
+
+  return true;
+}
+
+void TestConformity   (GModel *gm) {
+  fs_cont search;
+  buildFaceSearchStructure(gm, search);
+  int count = 0;
+  for (GModel::riter rit = gm->firstRegion(); rit != gm->lastRegion(); ++rit){
+    GRegion *gr = *rit;
+    std::set<MFace,Less_Face> bnd;
+    double vol = 0.0;
+    for (unsigned int i=0;i<gr->getNumMeshElements();i++){
+      MElement *e = gr->getMeshElement(i);
+      vol += fabs(e->getVolume());
+      for(int j=0;j<e->getNumFaces();j++){
+	MFace f = e->getFace(j);
+	std::set<MFace,Less_Face>::iterator it = bnd.find(f);
+	if (it == bnd.end())bnd.insert(f);
+	else bnd.erase(it);
+      }
+    }
+    printf("vol(%d) = %12.5E\n",gr->tag(),vol);
+    
+    for (std::set<MFace,Less_Face>::iterator itf = bnd.begin(); itf != bnd.end(); ++itf){
+      GFace *gfound = findInFaceSearchStructure (*itf,search);
+      if (!gfound){
+	count ++;
+      }
+    }
+  }
+  if (!count)Msg::Info("Mesh Conformity: OK");
+  else Msg::Error ("Mesh is not conforming (%d hanging faces)!",count);
+}
+
 static void Mesh3D(GModel *m)
 {
   if(TooManyElements(m, 3)) return;
@@ -531,6 +767,10 @@ static void Mesh3D(GModel *m)
       }
       if(treat_region_ok && (CTX::instance()->mesh.recombine3DAll ||
                              gr->meshAttributes.recombine3D)){
+	if (CTX::instance()->mesh.optimize){
+	  optimizeMeshGRegionGmsh opt;
+	  opt(gr);
+	}
         double a = Cpu();
         if (CTX::instance()->mesh.recombine3DLevel >= 0){
           Recombinator rec;
@@ -542,21 +782,24 @@ static void Mesh3D(GModel *m)
         }
         PostOp post;
         post.execute(gr,CTX::instance()->mesh.recombine3DLevel, CTX::instance()->mesh.recombine3DConformity); //0: no pyramid, 1: single-step, 2: two-steps (conforming), true: fill non-conformities with trihedra
+  
+	//	while(LaplaceSmoothing (gr)){
+	//	}
         nb_elements_recombination += post.get_nb_elements();
         nb_hexa_recombination += post.get_nb_hexahedra();
         vol_element_recombination += post.get_vol_elements();
         vol_hexa_recombination += post.get_vol_hexahedra();
         // partial export
-        stringstream ss;
-        ss << "yamakawa_part_";
-        ss << gr->tag();
-        ss << ".msh";
-        export_gregion_mesh(gr, ss.str().c_str());
+	//        stringstream ss;
+	//        ss << "yamakawa_part_";
+	//        ss << gr->tag();
+	//        ss << ".msh";
+	//        export_gregion_mesh(gr, ss.str().c_str());
         time_recombination += (Cpu() - a);
       }
     }
   }
-
+  
   if(CTX::instance()->mesh.recombine3DAll){
     Msg::Info("RECOMBINATION timing:");
     Msg::Info(" --- CUMULATIVE TIME RECOMBINATION : %g s.", time_recombination);
@@ -565,6 +808,8 @@ static void Mesh3D(GModel *m)
               nb_hexa_recombination*100./nb_elements_recombination);
     Msg::Info(".... Percentage of hexahedra (Vol) : %g",
               vol_hexa_recombination*100./vol_element_recombination);
+    //    MakeMeshConformal (m, 1);
+    TestConformity(m);
   }
 
   // Ensure that all volume Jacobians are positive
diff --git a/Mesh/delaunay3d.cpp b/Mesh/delaunay3d.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..73c393c315620d2866d90e341fc5312350180f5c
--- /dev/null
+++ b/Mesh/delaunay3d.cpp
@@ -0,0 +1,1001 @@
+#ifdef _OPENMP
+#include <omp.h>
+#endif
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <list>
+#include <set>
+#include <stack>
+#include <map>
+#include <vector>
+#include <algorithm>
+#include <math.h>
+#include <sys/time.h>
+#include "SBoundingBox3d.h"
+#include "delaunay3d_private.h"
+#include "delaunay3d.h"
+#include "MVertex.h"
+#include "MEdge.h"
+#include "MTetrahedron.h"
+
+const int MEASURE_BARR = 0;
+
+#ifdef _HAVE_NUMA
+#include <numa.h>
+#endif
+
+struct HilbertSortB
+{
+// The code for generating table transgc
+// from: http://graphics.stanford.edu/~seander/bithacks.html.
+  int transgc[8][3][8];
+  int tsb1mod3[8];
+  int maxDepth;
+  int Limit;
+  SBoundingBox3d bbox ;
+  void ComputeGrayCode(int n);
+  int Split(Vertex** vertices,
+	    int arraysize,int GrayCode0,int GrayCode1,
+	    double BoundingBoxXmin, double BoundingBoxXmax,
+	    double BoundingBoxYmin, double BoundingBoxYmax,
+	    double BoundingBoxZmin, double BoundingBoxZmax);
+  void Sort(Vertex** vertices, int arraysize, int e, int d,
+	   double BoundingBoxXmin, double BoundingBoxXmax,
+            double BoundingBoxYmin, double BoundingBoxYmax,
+	   double BoundingBoxZmin, double BoundingBoxZmax, int depth);
+  HilbertSortB (int m = 0, int l=2) : maxDepth(m),Limit(l)
+  {
+    ComputeGrayCode(3);
+  }
+  void MultiscaleSortHilbert(Vertex** vertices, int arraysize,
+			     int threshold, double ratio, int *depth, std::vector<int> &indices)
+  {
+    int middle;
+
+    middle = 0;
+    if (arraysize >= threshold) {
+      (*depth)++;
+      middle = (int)(arraysize * ratio);
+      MultiscaleSortHilbert(vertices, middle, threshold, ratio, depth, indices);
+    }
+    indices.push_back(middle);
+    //    printf("chunk starts at %d and size %d\n",middle, arraysize - middle);
+    Sort (&(vertices[middle]),arraysize - middle,0,0,
+	  bbox.min().x(),bbox.max().x(),
+	  bbox.min().y(),bbox.max().y(),
+	  bbox.min().z(),bbox.max().z(),0);
+  }
+  void Apply (std::vector<Vertex*> &v, std::vector<int> &indices)
+  {
+    for (size_t i=0;i<v.size();i++){
+      Vertex *pv = v[i];
+      bbox += SPoint3(pv->x(),pv->y(),pv->z());
+    }
+    bbox *= 1.01;
+    Vertex**pv = &v[0];
+    int depth;
+    //    MultiscaleSortHilbert(pv, (int)v.size(), 64, 0.125,&depth);
+    indices.clear();
+    MultiscaleSortHilbert(pv, (int)v.size(), 64, .125,&depth,indices);
+    indices.push_back(v.size());
+    //    printf("depth = %d\n",depth);
+  }
+};
+
+void HilbertSortB::ComputeGrayCode(int n)
+{
+  int gc[8], N, mask, travel_bit;
+  int e, d, f, k, g;
+  int v, c;
+  int i;
+
+  N = (n == 2) ? 4 : 8;
+  mask = (n == 2) ? 3 : 7;
+
+  // Generate the Gray code sequence.
+  for (i = 0; i < N; i++) {
+    gc[i] = i ^ (i >> 1);
+  }
+
+  for (e = 0; e < N; e++) {
+    for (d = 0; d < n; d++) {
+      // Calculate the end point (f).
+      f = e ^ (1 << d);  // Toggle the d-th bit of 'e'.
+      // travel_bit = 2**p, the bit we want to travel.
+      travel_bit = e ^ f;
+      for (i = 0; i < N; i++) {
+        // // Rotate gc[i] left by (p + 1) % n bits.
+        k = gc[i] * (travel_bit * 2);
+        g = ((k | (k / N)) & mask);
+        // Calculate the permuted Gray code by xor with the start point (e).
+        transgc[e][d][i] = (g ^ e);
+      }
+      //      assert(transgc[e][d][0] == e);
+      //      assert(transgc[e][d][N - 1] == f);
+    } // d
+  } // e
+
+  // Count the consecutive '1' bits (trailing) on the right.
+  tsb1mod3[0] = 0;
+  for (i = 1; i < N; i++) {
+    v = ~i; // Count the 0s.
+    v = (v ^ (v - 1)) >> 1; // Set v's trailing 0s to 1s and zero rest
+    for (c = 0; v; c++) {
+      v >>= 1;
+    }
+    tsb1mod3[i] = c % n;
+  }
+}
+
+
+int HilbertSortB::Split(Vertex** vertices,
+		       int arraysize,int GrayCode0,int GrayCode1,
+		       double BoundingBoxXmin, double BoundingBoxXmax,
+                       double BoundingBoxYmin, double BoundingBoxYmax,
+		       double BoundingBoxZmin, double BoundingBoxZmax)
+{
+  Vertex* swapvert;
+  int axis, d;
+  double split;
+  int i, j;
+
+  // Find the current splitting axis. 'axis' is a value 0, or 1, or 2, which
+  //   correspoding to x-, or y- or z-axis.
+  axis = (GrayCode0 ^ GrayCode1) >> 1;
+
+  // Calulate the split position along the axis.
+  if (axis == 0) {
+    split = 0.5 * (BoundingBoxXmin + BoundingBoxXmax);
+  } else if (axis == 1) {
+    split = 0.5 * (BoundingBoxYmin + BoundingBoxYmax);
+  } else { // == 2
+    split = 0.5 * (BoundingBoxZmin + BoundingBoxZmax);
+  }
+
+  // Find the direction (+1 or -1) of the axis. If 'd' is +1, the direction
+  //   of the axis is to the positive of the axis, otherwise, it is -1.
+  d = ((GrayCode0 & (1<<axis)) == 0) ? 1 : -1;
+
+
+  // Partition the vertices into left- and right-arrays such that left points
+  //   have Hilbert indices lower than the right points.
+  i = 0;
+  j = arraysize - 1;
+
+  // Partition the vertices into left- and right-arrays.
+  if (d > 0) {
+    do {
+      for (; i < arraysize; i++) {
+        if (vertices[i]->point()[axis] >= split) break;
+      }
+      for (; j >= 0; j--) {
+        if (vertices[j]->point()[axis] < split) break;
+      }
+      // Is the partition finished?
+      if (i == (j + 1)) break;
+      // Swap i-th and j-th vertices.
+      swapvert = vertices[i];
+      vertices[i] = vertices[j];
+      vertices[j] = swapvert;
+      // Continue patitioning the array;
+    } while (true);
+  } else {
+    do {
+      for (; i < arraysize; i++) {
+        if (vertices[i]->point()[axis] <= split) break;
+      }
+      for (; j >= 0; j--) {
+        if (vertices[j]->point()[axis] > split) break;
+      }
+      // Is the partition finished?
+      if (i == (j + 1)) break;
+      // Swap i-th and j-th vertices.
+      swapvert = vertices[i];
+      vertices[i] = vertices[j];
+      vertices[j] = swapvert;
+      // Continue patitioning the array;
+    } while (true);
+  }
+
+  return i;
+}
+
+// The sorting code is inspired by Tetgen 1.5
+
+void HilbertSortB::Sort(Vertex** vertices, int arraysize, int e, int d,
+		       double BoundingBoxXmin, double BoundingBoxXmax,
+                       double BoundingBoxYmin, double BoundingBoxYmax,
+		       double BoundingBoxZmin, double BoundingBoxZmax, int depth)
+{
+  double x1, x2, y1, y2, z1, z2;
+  int p[9], w, e_w, d_w, k, ei, di;
+  int n = 3, mask = 7;
+
+  p[0] = 0;
+  p[8] = arraysize;
+
+  p[4] = Split(vertices, p[8], transgc[e][d][3], transgc[e][d][4],
+	       BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
+               BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax);
+  p[2] = Split(vertices, p[4], transgc[e][d][1], transgc[e][d][2],
+	       BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
+               BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax);
+  p[1] = Split(vertices, p[2], transgc[e][d][0], transgc[e][d][1],
+	       BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
+               BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax);
+  p[3] = Split(&(vertices[p[2]]), p[4] - p[2],
+	       transgc[e][d][2], transgc[e][d][3],
+	       BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
+               BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax) + p[2];
+  p[6] = Split(&(vertices[p[4]]), p[8] - p[4],
+	       transgc[e][d][5], transgc[e][d][6],
+	       BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
+               BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax) + p[4];
+  p[5] = Split(&(vertices[p[4]]), p[6] - p[4],
+	       transgc[e][d][4], transgc[e][d][5],
+	       BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
+               BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax) + p[4];
+  p[7] = Split(&(vertices[p[6]]), p[8] - p[6],
+	       transgc[e][d][6], transgc[e][d][7],
+	       BoundingBoxXmin, BoundingBoxXmax, BoundingBoxYmin,
+               BoundingBoxYmax, BoundingBoxZmin, BoundingBoxZmax) + p[6];
+
+  if (maxDepth > 0) {
+    if ((depth + 1) == maxDepth) {
+      printf("ARGH\n");
+      return;
+    }
+  }
+
+  // Recursively sort the points in sub-boxes.
+
+  for (w = 0; w < 8; w++) {
+    if ((p[w+1] - p[w]) > Limit) {
+      if (w == 0) {
+        e_w = 0;
+      } else {
+        k = 2 * ((w - 1) / 2);
+        e_w = k ^ (k >> 1);
+      }
+      k = e_w;
+      e_w = ((k << (d+1)) & mask) | ((k >> (n-d-1)) & mask);
+      ei = e ^ e_w;
+      if (w == 0) {
+        d_w = 0;
+      } else {
+        d_w = ((w % 2) == 0) ? tsb1mod3[w - 1] : tsb1mod3[w];
+      }
+      di = (d + d_w + 1) % n;
+      if (transgc[e][d][w] & 1) {
+        x1 = 0.5 * (BoundingBoxXmin + BoundingBoxXmax);
+        x2 = BoundingBoxXmax;
+      } else {
+        x1 = BoundingBoxXmin;
+        x2 = 0.5 * (BoundingBoxXmin + BoundingBoxXmax);
+      }
+      if (transgc[e][d][w] & 2) { // y-axis
+        y1 = 0.5 * (BoundingBoxYmin + BoundingBoxYmax);
+        y2 = BoundingBoxYmax;
+      } else {
+        y1 = BoundingBoxYmin;
+        y2 = 0.5 * (BoundingBoxYmin + BoundingBoxYmax);
+      }
+      if (transgc[e][d][w] & 4) { // z-axis
+        z1 = 0.5 * (BoundingBoxZmin + BoundingBoxZmax);
+        z2 = BoundingBoxZmax;
+      } else {
+        z1 = BoundingBoxZmin;
+        z2 = 0.5 * (BoundingBoxZmin + BoundingBoxZmax);
+      }
+      Sort(&(vertices[p[w]]), p[w+1] - p[w], ei, di,
+                    x1, x2, y1, y2, z1, z2, depth+1);
+    }
+  }
+}
+
+void SortHilbert (std::vector<Vertex*>& v, std::vector<int> &indices)
+{
+  HilbertSortB h(1000);
+  h.Apply(v, indices);
+}
+
+double walltime( double *t0 )
+{
+#ifdef _OPENMP
+  return omp_get_wtime();
+#else
+  double mic, time;
+  double mega = 0.000001;
+  struct timeval tp;
+  struct timezone tzp;
+  static long base_sec = 0;
+  static long base_usec = 0;
+
+  (void) gettimeofday(&tp,&tzp);
+  if (base_sec == 0)
+    {
+      base_sec = tp.tv_sec;
+      base_usec = tp.tv_usec;
+    }
+
+  time = (double) (tp.tv_sec - base_sec);
+  mic = (double) (tp.tv_usec - base_usec);
+  time = (time + mic * mega) - *t0;
+  return(time);
+#endif
+}
+
+void computeAdjacencies (Tet *t, int iFace, connContainer &faceToTet){
+  conn c (t->getFace(iFace), iFace, t);
+  connContainer::iterator it = std::find(faceToTet.begin(),faceToTet.end(),c);
+  if (it == faceToTet.end()){
+    faceToTet.push_back(c);
+  }
+  else{
+    t->T[iFace] = it->t;
+    it->t->T[it->i] =t;
+    faceToTet.erase(it);
+  }
+}
+
+void delaunayCavity (Tet *t, 
+		     Tet *prev,
+		     Vertex *v, 
+		     cavityContainer &cavity,    
+		     connContainer &bnd, 
+		     int thread, int iPnt){
+
+  t->set(thread, iPnt); // Mark the triangle
+  cavity.push_back(t);
+  for (int iNeigh=0; iNeigh<4 ; iNeigh++){  
+    Tet *neigh = t->T[iNeigh];
+    if (neigh == NULL){
+      bnd.push_back(conn(t->getFace(iNeigh),iNeigh,NULL));
+    }
+    else if (neigh == prev){
+    }
+    else if (!neigh->inSphere(v,thread)){
+      // look if v sees face t->getFace(iNeigh)
+      Face f = t->getFace(iNeigh);      
+      bnd.push_back(conn(f,iNeigh,neigh));
+      neigh->set(thread, iPnt);
+    }
+    else if (!(neigh->isSet(thread, iPnt))) {
+      delaunayCavity (neigh, t, v, cavity,bnd,thread, iPnt); 
+    }
+  }
+}
+
+bool straddling_segment_intersects_triangle(Vertex *p1, Vertex *p2,
+					   Vertex *q1, Vertex *q2, Vertex *q3) 
+{
+  double s1 = orientationTest(p1, p2, q2, q3);
+  double s2 = orientationTest(p1, p2, q3, q1);
+  double s3 = orientationTest(p1, p2, q1, q2); 
+
+  if (s1*s2 < 0.0 || s2 * s3 < 0.0) return false;
+
+  double s4 = orientationTest(q1, q2, q3, p1);
+  double s5 = orientationTest(q3, q2, q1, p2);
+  
+  return (s4*s5 >= 0) ;
+}
+
+void print (Vertex *v){
+  printf("%3d ",v->getNum());
+}
+
+void print (Tet *t, bool recur = true){  
+  if (recur){
+    printf("PRINT TET\n");
+  }
+  if (!t){
+    printf("(NULL)\n");
+    return;
+  }
+  printf("( ");
+  print(t->V[0]);
+  print(t->V[1]);
+  print(t->V[2]);
+  print(t->V[3]);
+  printf(")\n");
+  if (recur){
+    printf("{");
+    print(t->T[0],false);
+    print(t->T[1],false);
+    print(t->T[2],false);
+    print(t->T[3],false);    
+    printf("}\n");
+  }  
+}
+
+Tet* walk (Tet *t, Vertex *v, int maxx, double &totSearch, int thread){
+  while (1){
+    totSearch++;
+    if (t == NULL) {
+      return NULL; // we should NEVER return here
+    }
+    if (t->inSphere(v,thread)) {return t;}
+    double _min = 0.0;
+    int NEIGH = -1;
+    for (int iNeigh=0; iNeigh<4; iNeigh++){
+      Face f = t->getFace (iNeigh);
+      double val =   robustPredicates::orient3d((double*)f.V[0], 
+						(double*)f.V[1], 
+						(double*)f.V[2], 
+						(double*)v);
+      if (val < _min){
+	NEIGH = iNeigh;
+	_min = val;
+      }
+    }
+    if (NEIGH >= 0){
+      t = t->T[NEIGH];
+    }
+    else {
+      Msg::Fatal("Jump-and-Walk Failed (No neighbor)");
+    }
+  }  
+  Msg::Fatal("Jump-and-Walk Failed (No neighbor)");
+}
+
+
+Tet* walk1 (Tet *t, Vertex *v, int maxx, double &totSearch, int thread){
+  int NUMSEARCH = 0;
+  int STARTER = 0;
+
+  maxx = std::max(100,maxx);
+
+  while (1){
+    if (NUMSEARCH++ > 9*maxx) {
+      if (t->T[0] && t->T[0]->T[0]) t = t->T[0]->T[0];
+      else if (t->T[1] && t->T[1]->T[0]) t = t->T[1]->T[0];
+      else if (t->T[2] && t->T[2]->T[0]) t = t->T[2]->T[0];
+      if (NUMSEARCH > 10*maxx) {
+	printf("trying to find a path from %p to %p: datastructure broken (%d searches, maxx %d)\n",v,t,NUMSEARCH,maxx);
+	NUMSEARCH=0;
+	return NULL;
+      }
+    }
+    if (t == NULL) {
+      Msg::Warning("search went through the boundary of the mesh without finding a tet");
+      return NULL; // we should NEVER return here
+    }
+    if (t->inSphere(v,thread)) {totSearch += NUMSEARCH; return t;}
+    Vertex c = t->centroid();
+    Tet *oldt=t;
+    for (int iNeigh=STARTER; iNeigh<(STARTER+4) ; iNeigh++){
+      const int NEIGH = iNeigh %4;
+      Face f = t->getFace (NEIGH);
+      bool inters = straddling_segment_intersects_triangle(&c, v, f.V[0], f.V[1], f.V[2]);
+      if (inters){
+	t = t->T[NEIGH];
+	break;
+      }
+    }
+    if (t==oldt){
+      printf("trying to find a path from %p to %p, ",v,t);
+      printf("strange : no intersection\n");
+      for (int iNeigh=0; iNeigh<20 ; iNeigh++){
+	int rr = rand()%4;
+	if (t->T[rr])t =t->T[rr]; 
+      }
+    }
+    STARTER++;
+  }
+}
+
+void print (const char *name, std::vector<Tet*> &T){
+  FILE *f = fopen(name,"w");
+  fprintf(f,"View \"\"{\n");
+  for (unsigned int i=0;i<T.size();i++){
+    if (T[i]->V[0]){
+      //      double val = robustPredicates::orient3d((double*)T[i]->V[0],(double*)T[i]->V[1],(double*)T[i]->V[2],(double*)T[i]->V[3]);
+
+      fprintf(f,"SS(%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g){%g,%g,%g,%g};\n",
+	      T[i]->V[0]->x(),T[i]->V[0]->y(),T[i]->V[0]->z(),
+	      T[i]->V[1]->x(),T[i]->V[1]->y(),T[i]->V[1]->z(),
+	      T[i]->V[2]->x(),T[i]->V[2]->y(),T[i]->V[2]->z(),
+	      T[i]->V[3]->x(),T[i]->V[3]->y(),T[i]->V[3]->z(),
+	      T[i]->V[0]->lc(),T[i]->V[1]->lc(),T[i]->V[2]->lc(),T[i]->V[3]->lc());
+    }
+  }
+  fprintf(f,"};\n");
+  fclose(f);
+}
+
+void print (std::vector<Vertex*> &V, std::vector<Tet*> &T){
+  std::map<Vertex*,int> nums;
+  for (unsigned int i=0;i<V.size();i++){
+    nums[V[i]] = i; 
+  }
+  for (unsigned int i=0;i<T.size();i++){
+    printf("%p\n",T[i]);
+    printf("%d %d %d %d\n",nums[T[i]->V[0]],nums[T[i]->V[1]],nums[T[i]->V[2]],nums[T[i]->V[3]]);
+    printf("%p %p %p %p\n",T[i]->T[0],T[i]->T[1],T[i]->T[2],T[i]->T[3]);
+  }
+}
+
+
+void print (const char *name, std::vector<Vertex*> &T){
+  FILE *f = fopen(name,"w");
+  fprintf(f,"View \"\"{\n");
+  for (unsigned int i=0;i<T.size()-1;i++){
+    fprintf(f,"SL(%g,%g,%g,%g,%g,%g){%d,%d};\n",
+	    T[i]->x(),T[i]->y(),T[i]->z(),
+	    T[i+1]->x(),T[i+1]->y(),T[i+1]->z(),i,i+1);
+  }
+  fprintf(f,"};\n");
+  fclose(f);
+}
+
+/*
+xxx10000 ok if all bits on my right are 0
+*/
+
+bool canWeProcessCavity (cavityContainer &cavity, unsigned int myThread, unsigned int iPt) {
+  unsigned int cSize = cavity.size();
+  for (unsigned int j=0; j<cSize; j++) {
+    Tet *f = cavity[j];    
+    for (unsigned int index = 0; index < myThread; index++) {
+      if(f->_bitset [index]) return false; 
+    }
+    if (iPt){
+      if ( f->_bitset[myThread]  & ((1 << iPt)-1)) return false;
+    }
+  }
+  return true;
+}
+
+static Tet* stoopidSearch (Tet *t, Vertex *v, int thread){
+  std::stack<Tet*> _stack;
+  _stack.push(t);
+  std::set<Tet*> all;
+  while(!_stack.empty()){
+    t = _stack.top();
+    all.insert(t);
+    _stack.pop();
+    if (t->inSphere(v,thread))return t;
+    for (int i=0;i<4;i++){
+      if (t->T[i]){
+	if (all.find(t->T[i]) == all.end())
+	  _stack.push(t->T[i]);
+      }
+    }
+  }
+  return NULL;
+}
+
+
+void delaunayTrgl (const unsigned int numThreads, 
+		   const unsigned int NPTS_AT_ONCE, 
+		   unsigned int Npts, 
+		   std::vector<Tet*> &T, 
+		   std::vector<Vertex*> assignTo[]){
+  double totSearchGlob=0;
+  double totCavityGlob=0;
+  int counter = 0;
+  int counterMiss = 0;
+
+  double cavitySize [numThreads];
+  int    invalidCavities [numThreads];
+  int cashMisses[numThreads];
+  for (unsigned int i=0;i<numThreads;i++)cashMisses[i] = 0;
+  
+  unsigned int maxLocSizeK = 0;
+  for (unsigned int i=0;i<numThreads*NPTS_AT_ONCE;i++){
+    unsigned int s = assignTo[i].size();
+    maxLocSizeK = std::max(maxLocSizeK,s);
+  }
+
+#pragma omp parallel num_threads(numThreads)
+  {
+    double totSearch=0;
+    double totCavity=0;
+    cavityContainer cavity[NPTS_AT_ONCE];
+    connContainer bnd[NPTS_AT_ONCE];
+    connContainer faceToTet;
+    Tet* Choice[NPTS_AT_ONCE];
+    for (unsigned int K=0;K<NPTS_AT_ONCE;K++)Choice[K] = T[0];
+
+#ifdef _OPENMP
+    int  myThread = omp_get_thread_num();
+#else
+    int  myThread = 0;
+#endif
+
+    invalidCavities [myThread] = 0;
+    unsigned int locSize=0;
+    unsigned int locSizeK[NPTS_AT_ONCE];
+    Vertex *allocatedVerts [NPTS_AT_ONCE];
+    for (unsigned int K=0;K<NPTS_AT_ONCE;K++){
+      locSizeK[K] = assignTo[K+myThread*NPTS_AT_ONCE].size();
+      locSize += locSizeK[K];
+#ifdef _HAVE_NUMA
+      allocatedVerts [K] = (Vertex*)numa_alloc_local (locSizeK[K]*sizeof(Vertex));  
+#else
+      allocatedVerts [K] = (Vertex*)calloc (locSizeK[K],sizeof(Vertex));  
+#endif
+      for (unsigned int iP=0 ; iP < locSizeK[K] ; iP++){
+	allocatedVerts[K][iP] = *(assignTo[K+myThread*NPTS_AT_ONCE][iP]);
+	if (numThreads!=1) allocatedVerts[K][iP]._thread = myThread;
+      }
+    }
+    int allocatedSize = 12*locSize;
+#ifdef _HAVE_NUMA
+    Tet    *allocatedTable = (Tet*) numa_alloc_local (allocatedSize*sizeof(Tet));
+#else
+    //    Tet    *allocatedTable = new Tet[allocatedSize];
+    std::vector<Tet*> allocatedTable;
+#endif
+
+    int newCounter = 0;
+    Vertex *vToAdd[NPTS_AT_ONCE];
+    
+#pragma omp barrier
+    ////////////////////////////////////////////////////////////////////////////////////
+    ////////////////////////// M A I N   L O O P ///////////////////////////////////////
+    ////////////////////////////////////////////////////////////////////////////////////
+
+    for (unsigned int iPGlob=0 ; iPGlob < maxLocSizeK; iPGlob++){
+#pragma omp barrier
+      cavitySize[myThread] = 0;
+      Tet *t [NPTS_AT_ONCE];
+      //	  clock_t c1 = clock();
+      for (unsigned int K=0; K< NPTS_AT_ONCE; K++) {
+	vToAdd[K] = iPGlob <  locSizeK[K] ? &allocatedVerts[K][iPGlob] : NULL;
+	if(vToAdd[K]){
+	  if (!Choice[K]->V[0]){
+	    printf("HMMM I KNOW WHAT SHOULD BE DONE\n");
+	    if (Choice[K]->T[0] && Choice[K]->T[0]->V[0])Choice[K] = Choice[K]->T[0];
+	    else if (Choice[K]->T[1] && Choice[K]->T[1]->V[0])Choice[K] = Choice[K]->T[1];
+	    else if (Choice[K]->T[2] && Choice[K]->T[2]->V[0])Choice[K] = Choice[K]->T[2];
+	    else if (Choice[K]->T[3] && Choice[K]->T[3]->V[0])Choice[K] = Choice[K]->T[3];
+	    else printf("I KNOW WHAT SHOULD BE DONE ARGH\n");
+	  }
+	  while(1){
+	    t[K] = walk ( Choice[K] , vToAdd[K], Npts, totSearch, myThread);
+	    if (t[K])break;
+	    Tet * newChoice = NULL;	    
+	    int ITT=0;
+	    while(1){
+	      newChoice = T[rand() % T.size()];
+	      if (newChoice->V[0])break;
+	      ITT ++;
+	      if (ITT > T.size()) {
+		newChoice == NULL;
+		break;
+	      }
+	    }
+	    if (newChoice == NULL)break;
+	    Choice[K] = newChoice;
+	  }
+	  if (!t[K]){
+	    Msg::Warning("Jump-and-Walk Failed (non convex domain)");
+	    t[K] = stoopidSearch (Choice[K], vToAdd[K],myThread); 
+	    if (!t[K]){	    
+	      Msg::Fatal("A point is outside the triangulation");
+	      throw;
+	    }
+	  }	
+	}
+      }	
+      //      clock_t c1 = clock();
+      for (unsigned int K=0; K< NPTS_AT_ONCE; K++) {
+	if(vToAdd[K]){
+	  cavityContainer &cavityK = cavity[K];
+	  connContainer   &bndK = bnd[K];
+	  for (unsigned int i=0; i<cavityK.size(); i++)cavityK[i]->unset(myThread,K);
+	  for (unsigned int i=0; i<   bndK.size(); i++)if(bndK[i].t)bndK[i].t->unset(myThread,K);
+	  cavityK.clear(); bndK.clear();
+	  delaunayCavity(t[K], NULL, vToAdd[K], cavityK, bndK, myThread, K);
+	  // verify the cavity
+	  for (unsigned int i=0; i< bndK.size(); i++) {
+	    double val =   robustPredicates::orient3d((double*)bndK[i].f.V[0], 
+						      (double*)bndK[i].f.V[1], 
+						      (double*)bndK[i].f.V[2], 
+						      (double*)vToAdd[K]);
+	    if (val <= 0 ) {
+	      //	      char name[245];
+	      //	      sprintf(name,"invalidCavity%d.pos",invalidCavities [myThread]);
+	      //	      print(name,cavityK);
+	      //	      printf("val = %22.15E\n",val);
+	      vToAdd[K] = NULL;
+	      invalidCavities [myThread]++;
+	      break;
+	    }
+	  }
+	  cavitySize[myThread] += (cavityK.size());
+	}
+      }
+
+
+#pragma omp barrier
+
+      bool ok[ NPTS_AT_ONCE];
+      for (unsigned int K=0; K< NPTS_AT_ONCE; K++) {      	
+	if (!vToAdd[K])ok[K]=false;
+	else ok[K] = canWeProcessCavity (cavity[K], myThread, K);
+      }
+
+      //            clock_t ck = clock();
+      //      std::set<Tet*> touched;
+      for (unsigned int K=0; K< NPTS_AT_ONCE; K++) {      	
+	if (ok[K]){
+	  cavityContainer &cavityK = cavity[K];
+	  connContainer   &bndK = bnd[K];
+	  faceToTet.clear();
+	  const unsigned int cSize = cavityK.size();
+	  const unsigned int bSize = bndK.size();
+	  totCavity+= cSize;
+	  Choice[K] = cavityK[0];
+	  for (unsigned int i=0; i<bSize; i++) {
+	    // reuse memory slots of invalid elements	    
+	    Tet *t;
+	    if (i < cSize) {
+	      t = cavityK[i];
+	    }
+	    else {
+	      t = new Tet;
+	      allocatedTable.push_back(t);
+	      newCounter = allocatedTable.size();
+	    }
+	    //	    if (newCounter >= allocatedSize){
+	    //	      Msg::Fatal("JF : write the reallocation now !");
+	    //	    }
+	    if (i < cSize && t->V[0]->_thread != myThread)cashMisses[myThread]++;
+	    int sign = t->setVertices (bndK[i].f.V[0], bndK[i].f.V[1], bndK[i].f.V[2], vToAdd[K]);
+	    if (sign <= 0){
+	      // A coplanar hull face. We need to test if this hull face is
+	      //   Delaunay or not. We test if the adjacent tet (not faked)
+	      //   of this hull face is Delaunay or not.
+	      Msg::Fatal ("JF: Fix Invalid Cavity %d",sign);
+	    }
+	    Tet *neigh = bndK[i].t;
+	    t->T[0] = neigh;
+	    t->T[1] = t->T[2] = t->T[3] = NULL;
+	    if (neigh){
+	      if      (neigh->getFace(0) == bndK[i].f)neigh->T[0] = t;
+	      else if (neigh->getFace(1) == bndK[i].f)neigh->T[1] = t;
+	      else if (neigh->getFace(2) == bndK[i].f)neigh->T[2] = t;
+	      else if (neigh->getFace(3) == bndK[i].f)neigh->T[3] = t;
+	      else {printf("oops 1\n");throw;}
+	    }
+	    computeAdjacencies (t,1,faceToTet);
+	    computeAdjacencies (t,2,faceToTet);
+	    computeAdjacencies (t,3,faceToTet);
+	  }
+	  for (unsigned int i=bSize; i<cSize; i++) {
+	    counterMiss++;
+	    cavityK[i]->V[0] = cavityK[i]->V[1] = cavityK[i]->V[2] = cavityK[i]->V[3] = NULL;
+	  }
+	}
+	else {
+	  counter++;
+	}
+      }
+    }
+    #pragma omp critical
+    {
+      totCavityGlob+= totCavity;
+      totSearchGlob+= totSearch;
+      for (int i=0;i<newCounter;i++){
+	allocatedTable[i]->setAllDeleted ();
+	if (allocatedTable[i]->V[0]){
+	  T.push_back(allocatedTable [i]);      
+	}
+      }
+      //      delete [] allocatedTable;
+      //      printf("new counter = %d\n",newCounter);
+    }
+    #pragma omp barrier
+  }
+
+  printf("%d invalid cavities\n",invalidCavities[0]);
+  
+#ifdef _VERBOSE
+  double _t2 = walltime(&_t);
+  printf("total time for %d points %12.5E seconds\n",Npts,(double)(_t2-_t1));
+  printf("%8d tets generated (%6f/sec)\n",T.size(),(double) T.size()/ ((double)(_t2-_t1)));
+  printf("average searches per point  %12.5E\n",totSearchGlob/Npts);
+  printf("average size for del cavity %12.5E\n",totCavityGlob/Npts);
+  printf("counter = %d\n",counter);
+  printf("counterMiss = %d\n",counterMiss);
+  printf("cash misses: ");
+  for (int i=0;i<numThreads;i++){
+    printf("%4d ",(int)cashMisses[i]);
+  }
+  printf("\n");
+
+#endif
+
+}
+
+
+static void initialCube (std::vector<Vertex*> &v,
+			 Vertex *box[8],
+			 std::vector<Tet*> &t){
+  SBoundingBox3d bbox ;
+  bbox += SPoint3(0,0,0);
+  bbox += SPoint3(1,1,1);
+  for (size_t i=0;i<v.size();i++){
+    Vertex *pv = v[i];
+    bbox += SPoint3(pv->x(),pv->y(),pv->z());
+  }
+  bbox *= 1.3;
+  box[0] = new Vertex (bbox.min().x(),bbox.min().y(),bbox.min().z(),bbox.diag());
+  box[1] = new Vertex (bbox.max().x(),bbox.min().y(),bbox.min().z(),bbox.diag());
+  box[2] = new Vertex (bbox.max().x(),bbox.max().y(),bbox.min().z(),bbox.diag());
+  box[3] = new Vertex (bbox.min().x(),bbox.max().y(),bbox.min().z(),bbox.diag());
+  box[4] = new Vertex (bbox.min().x(),bbox.min().y(),bbox.max().z(),bbox.diag());
+  box[5] = new Vertex (bbox.max().x(),bbox.min().y(),bbox.max().z(),bbox.diag());
+  box[6] = new Vertex (bbox.max().x(),bbox.max().y(),bbox.max().z(),bbox.diag());
+  box[7] = new Vertex (bbox.min().x(),bbox.max().y(),bbox.max().z(),bbox.diag());
+
+  /*  Tet *t0 = new Tet (box[2],box[7],box[3],box[1]);
+  Tet *t1 = new Tet (box[0],box[7],box[1],box[3]);
+  Tet *t2 = new Tet (box[6],box[1],box[7],box[2]);
+  Tet *t3 = new Tet (box[0],box[1],box[7],box[4]);
+  Tet *t4 = new Tet (box[1],box[4],box[5],box[7]);
+  Tet *t5 = new Tet (box[1],box[7],box[5],box[6]);*/
+
+  Tet *t0 = new Tet (box[7],box[2],box[3],box[1]);
+  Tet *t1 = new Tet (box[7],box[0],box[1],box[3]);
+  Tet *t2 = new Tet (box[1],box[6],box[7],box[2]);
+  Tet *t3 = new Tet (box[1],box[0],box[7],box[4]);
+  Tet *t4 = new Tet (box[4],box[1],box[5],box[7]);
+  Tet *t5 = new Tet (box[7],box[1],box[5],box[6]);
+  t.push_back(t0);
+  t.push_back(t1);
+  t.push_back(t2);
+  t.push_back(t3);
+  t.push_back(t4);
+  t.push_back(t5);
+  connContainer ctnr;
+  for (int i=0;i<4;i++){
+    computeAdjacencies (t0,i,ctnr);
+    computeAdjacencies (t1,i,ctnr);
+    computeAdjacencies (t2,i,ctnr);
+    computeAdjacencies (t3,i,ctnr);
+    computeAdjacencies (t4,i,ctnr);
+    computeAdjacencies (t5,i,ctnr);
+  }
+  //  printf("%d faces left\n",ctnr.size());
+}
+
+void delaunayTriangulation (const int numThreads, 
+			    const int nptsatonce,
+			    std::vector<Vertex*> &S, 
+			    std::vector<Tet*> &T, 
+			    Vertex *box[8]){  
+  int N = S.size();
+
+  std::vector<int> indices;
+  //  double t = 0;
+  //  double t1 = walltime(&t);
+  SortHilbert(S, indices);
+  //  double t2 = walltime(&t);
+  //    print ("sorted.pos",S);
+  //  printf("total time for sorting %d points %12.5E seconds\n",S.size(),(double)(t2-t1));
+
+  if (!T.size()){  
+    initialCube (S,box,T);
+  }  
+
+  int nbBlocks  = nptsatonce * numThreads;  
+  //  int blockSize = (nbBlocks * (N / nbBlocks))/nbBlocks;  
+  
+  
+  std::vector<Vertex*> assignTo0[1];
+  std::vector<Vertex*> assignTo [nbBlocks];
+
+  for (unsigned int i=1;i<indices.size();i++){
+    int start = indices[i-1];
+    int end = indices[i];
+    int sizePerBlock = (nbBlocks*((end-start) / nbBlocks))/nbBlocks;
+    //    printf("sizePerBlock[%3d] = %8d\n",i,sizePerBlock);
+    int currentBlock = 0;
+    int localCounter = 0;
+    // FIXME : something's wring here !!!
+    if (i < -4){
+      for (int jPt=start;jPt<end;jPt++){
+	assignTo0[0].push_back(S[jPt]);
+	S[jPt]->_thread = numThreads*(jPt-start)/(end-start);
+      }      
+    }
+    else {
+      for (int jPt=start;jPt<end;jPt++){
+	if (localCounter++ >= sizePerBlock && currentBlock != nbBlocks-1){
+	  localCounter = 0;
+	  currentBlock++;
+	}
+	assignTo[currentBlock].push_back(S[jPt]);
+      }
+    }
+  }
+
+  S.clear();
+  // double _t = 0;
+  //  double _t1 = walltime(&_t);
+  delaunayTrgl(1,1, assignTo0[0].size(),T,assignTo0);  
+  //    print ("initialTetrahedrization.pos",T);
+  delaunayTrgl(numThreads,nptsatonce, N,T,assignTo);  
+  //  _t = 0;
+  //  double _t2 = walltime(&_t);
+  //  printf("WALL CLOCK TIME %12.5E\n",_t2-_t1);
+  print ("finalTetrahedrization.pos",T);
+}
+
+
+void delaunayTriangulation (const int numThreads, 
+			    const int nptsatonce,
+			    std::vector<MVertex*> &S, 
+			    std::vector<MTetrahedron*> &T){
+  std::vector<MVertex*> _temp;
+  std::vector<Vertex*> _vertices;
+  unsigned int N = S.size(); 
+  _temp.resize(N+1+8);
+  double maxx=0, maxy=0,maxz=0;
+  for (unsigned int i=0;i<N;i++){
+    MVertex *mv = S[i];
+    maxx = std::max(maxx,fabs(mv->x()));
+    maxy = std::max(maxy,fabs(mv->y()));
+    maxz = std::max(maxz,fabs(mv->z()));
+  }
+  double d = 1*sqrt ( maxx*maxx + maxy*maxy + maxz*maxz );
+
+  for (unsigned int i=0;i<N;i++){
+    MVertex *mv = S[i];
+    // FIXME : should be zero !!!!
+    double dx = d*1.e-16 * (double)rand() / RAND_MAX;
+    double dy = d*1.e-16 * (double)rand() / RAND_MAX;
+    double dz = d*1.e-16 * (double)rand() / RAND_MAX;
+    mv->x() += dx;
+    mv->y() += dy;
+    mv->z() += dz;
+    Vertex *v = new Vertex (mv->x(),mv->y(),mv->z(),1.e22,i+1);
+    _vertices.push_back(v);
+    _temp [v->getNum()] = mv;    
+  }
+
+  robustPredicates::exactinit(1,maxx,maxy,maxz);
+  
+  std::vector<Tet*> _tets;
+  Vertex *box[8];
+  delaunayTriangulation (numThreads, nptsatonce, _vertices, _tets, box);
+
+  for (int i=0;i<8;i++){
+    Vertex *v = box[i];    
+    v->setNum(N+i+1);
+    MVertex *mv = new MVertex (v->x(),v->y(),v->z(),NULL,N+i+1);
+    //    printf("%d %g %g %g\n",v->getNum(),v->x(),v->y(),v->z());
+    _temp [v->getNum()] = mv;    
+    S.push_back(mv); 
+  }
+
+  for (unsigned int i=0;i<_tets.size();i++){
+    Tet *t =  _tets[i];
+    if (t->V[0]){
+      if (_tets[i]->V[0]->getNum() && 
+	  _tets[i]->V[1]->getNum() && 
+	  _tets[i]->V[2]->getNum() && 
+	  _tets[i]->V[3]->getNum() ) {
+	MVertex *v1 = _temp[_tets[i]->V[0]->getNum()];
+	MVertex *v2 = _temp[_tets[i]->V[1]->getNum()];
+	MVertex *v3 = _temp[_tets[i]->V[2]->getNum()];
+	MVertex *v4 = _temp[_tets[i]->V[3]->getNum()];      
+	MTetrahedron *tr = new MTetrahedron(v1,v2,v3,v4);
+	T.push_back(tr);
+      }
+      else {
+	printf("oops\n", _tets[i]->V[0]->getNum(), _tets[i]->V[1]->getNum() , _tets[i]->V[2]->getNum() , _tets[i]->V[3]->getNum());
+      }
+    }
+  }
+  // clean
+  for (unsigned int i=0;i<_vertices.size();i++)delete _vertices[i];
+  for (unsigned int i=0;i<_tets.size();i++)delete _tets[i];
+}
+
+
diff --git a/Mesh/delaunay3d.h b/Mesh/delaunay3d.h
new file mode 100644
index 0000000000000000000000000000000000000000..91736fa89e89dbcf5b3ce845affacd97a973b663
--- /dev/null
+++ b/Mesh/delaunay3d.h
@@ -0,0 +1,10 @@
+#ifndef _DELAUNAY3D_H_
+#define _DELAUNAY3D_H_
+class MVertex;
+class MTetrahedron;
+void delaunayTriangulation (const int numThreads, 
+			    const int nptsatonce,
+			    std::vector<MVertex*> &S, 
+			    std::vector<MTetrahedron*> &T);
+
+#endif
diff --git a/Mesh/delaunay3d_private.h b/Mesh/delaunay3d_private.h
new file mode 100644
index 0000000000000000000000000000000000000000..ac91bc1042efe71969d255e18982f16c058e11ee
--- /dev/null
+++ b/Mesh/delaunay3d_private.h
@@ -0,0 +1,242 @@
+#ifndef _DELAUNAY3D_H_
+#define _DELAUNAY3D_H_
+#include <vector>
+#include "SPoint3.h"
+#include <math.h>
+#include "robustPredicates.h"
+
+#ifndef MAX_NUM_THREADS_
+#define MAX_NUM_THREADS_ 1
+#endif
+
+typedef unsigned char CHECKTYPE;
+
+
+struct Vertex {
+private :
+  double _x[3];
+  double _lc;
+  unsigned int _num;
+public :
+  inline unsigned int getNum () const {return _num;}
+  inline void setNum (unsigned int n)  {_num=n;}
+  unsigned char _thread;
+  inline double x() const {return _x[0];}
+  inline double y() const {return _x[1];}
+  inline double z() const {return _x[2];}
+  inline double lc() const {return _lc;}
+  inline double &x() {return _x[0];}
+  inline double &y() {return _x[1];}
+  inline double &z() {return _x[2];}
+  inline double &lc() {return _lc;}
+  inline operator double *() { return _x; }
+  Vertex (double X, double Y, double Z, double lc, int num = 0) : _num(num), _thread(0){
+    _x[0]=X; _x[1]=Y;_x[2]=Z; _lc = lc;}
+  Vertex operator + (const Vertex &other){
+    return Vertex (x()+other.x(),y()+other.y(),z()+other.z(),other.lc() + _lc);
+  }
+  Vertex operator * (const double &other){
+    return Vertex (x()*other,y()*other,z()*other,_lc*other);
+  }
+  inline SPoint3 point() const { return SPoint3(x(), y(), z()); }
+};
+
+
+inline double orientationTestFast(double *pa, double *pb, double *pc, double *pd)
+{
+  const double adx = pa[0] - pd[0];
+  const double bdx = pb[0] - pd[0];
+  const double cdx = pc[0] - pd[0];
+  const double ady = pa[1] - pd[1];
+  const double bdy = pb[1] - pd[1];
+  const double cdy = pc[1] - pd[1];
+  const double adz = pa[2] - pd[2];
+  const double bdz = pb[2] - pd[2];
+  const double cdz = pc[2] - pd[2];
+
+  return adx * (bdy * cdz - bdz * cdy)
+       + bdx * (cdy * adz - cdz * ady)
+       + cdx * (ady * bdz - adz * bdy);
+}
+
+inline bool inSphereTest_s (Vertex *va, Vertex *vb, Vertex *vc, Vertex *vd , Vertex *ve){  
+  double val = robustPredicates::insphere ((double*)va,(double*)vb,(double*)vc,(double*)vd,(double*)ve);
+  if (val == 0.0){
+    printf("symbolic perturbation needed vol %22.15E\n",orientationTestFast((double*)va,(double*)vb,(double*)vc,(double*)vd));
+    int count;
+    // symbolic perturbation
+    Vertex *pt[5] = {va,vb,vc,vd,ve};
+    int swaps = 0;
+    int n = 5;
+    do {
+      count = 0;
+      n = n - 1;
+      for (int i = 0; i < n; i++) {
+	if (pt[i] > pt[i+1]) {
+	  Vertex *swappt = pt[i]; pt[i] = pt[i+1]; pt[i+1] = swappt;
+	  count++;
+	}
+      }
+      swaps += count;
+    } while (count > 0);
+    double oriA = robustPredicates::orient3d ((double*)pt[1], (double*)pt[2], (double*)pt[3], (double*)pt[4]);
+    if (oriA != 0.0) {
+      // Flip the sign if there are odd number of swaps.
+      if ((swaps % 2) != 0) oriA = -oriA;
+      val =  oriA;     
+    }  
+    else {
+      double oriB = -robustPredicates::orient3d ((double*)pt[0], (double*)pt[2], (double*)pt[3], (double*)pt[4]);
+      if (oriB == 0.0) {
+	Msg::Fatal("Symbolic perturbation failed in icCircle Predicate");
+      }
+      // Flip the sign if there are odd number of swaps.
+      if ((swaps % 2) != 0) oriB = -oriB;
+      val = oriB;
+    }
+  }
+  return val > 0 ? 1 : 0;
+}
+
+inline double orientationTest (Vertex *va, Vertex *vb, Vertex *vc, Vertex *vd){  
+  return robustPredicates::orient3d ((double*)va,(double*)vb,(double*)vc,(double*)vd);
+}
+
+inline double orientationTestFast (Vertex *va, Vertex *vb, Vertex *vc, Vertex *vd){  
+  return orientationTestFast ((double*)va,(double*)vb,(double*)vc,(double*)vd);
+}
+
+
+struct Edge {
+  Vertex *first,*second;
+  Edge (Vertex *v1, Vertex *v2) : first(v1), second(v2)
+  {
+  }
+  bool operator == (const Edge &e) const{
+    return e.first == first && e.second == second;
+  }
+  bool operator < (const Edge &e) const{
+    if (first < e.first) return true;
+    if (first > e.first) return false;
+    if (second < e.second) return true;
+    return false;
+  }
+};
+
+//typedef std::pair<Vertex*, Vertex*> Edge;
+
+struct Face {
+  Vertex *v[3];
+  Vertex *V[3];
+  Face (Vertex *v1, Vertex *v2, Vertex *v3){
+    V[0] = v[0] = v1;
+    V[1] = v[1] = v2;
+    V[2] = v[2] = v3;
+#define cswap(a,b) do { if(a > b) { Vertex* tmp = a; a = b; b = tmp; } } while(0)
+    cswap(v[0], v[1]);
+    cswap(v[1], v[2]);
+    cswap(v[0], v[1]);
+  }
+  bool operator == (const Face &other) const {
+    return v[0] == other.v[0] && v[1] == other.v[1] && v[2] == other.v[2];
+  }
+  bool operator < (const Face &other) const {
+    if (v[0] < other.v[0])return true;
+    if (v[0] > other.v[0])return false;
+    if (v[1] < other.v[1])return true;
+    if (v[1] > other.v[1])return false;
+    if (v[2] < other.v[2])return true;
+    return false;
+  }
+};
+
+struct Tet {
+  Tet    *T[4];
+  Vertex *V[4];
+  CHECKTYPE _bitset [MAX_NUM_THREADS_];
+  char _modified;
+  Tet ()  : _modified(true){
+    V[0] = V[1] = V[2] = V[3] = NULL;
+    T[0] = T[1] = T[2] = T[3] = NULL;
+    setAllDeleted();    
+  }
+  int setVertices (Vertex *v0, Vertex *v1, Vertex *v2, Vertex *v3){
+    _modified=true;
+    double val = robustPredicates::orient3d((double*)v0,(double*)v1,(double*)v2,(double*)v3);
+    V[0] = v0; V[1] = v1; V[2] = v2; V[3] = v3;
+    if (val > 0){
+      return 1;
+    }
+    else if (val < 0){
+      V[0] = v1; V[1] = v0; V[2] = v2; V[3] = v3;
+      return -1;
+    }
+    else {
+      return 0;
+    }
+  }
+  Tet (Vertex *v0, Vertex *v1, Vertex *v2, Vertex *v3) 
+  {
+    setVertices (v0,v1,v2,v3);
+    T[0] = T[1] = T[2] = T[3] = NULL;
+    setAllDeleted();
+  }
+  void setAllDeleted (){
+    for (int i=0;i<MAX_NUM_THREADS_;i++) _bitset [i] = 0x0;
+  }
+  inline void unset ( int thread, int iPnt ){
+    _bitset[thread]  &= ~(1 << iPnt);
+  }
+  inline void set ( int thread, int iPnt ){
+    _bitset [thread]  |=  (1 << iPnt);
+  }
+  inline CHECKTYPE isSet ( int thread, int iPnt ) const{
+    return _bitset[thread] & (1 << iPnt);
+  }
+  inline Face getFace  (int k) const {
+    const int fac[4][3] = {{0,1,2},{1,3,2},{2,3,0},{1,0,3}};
+    return Face (V[fac[k][0]],V[fac[k][1]],V[fac[k][2]]);
+  }
+  inline Edge getEdge (int k) const {
+    const int edg[6][2] = {{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}};
+    return Edge (std::min(V[edg[k][0]],V[edg[k][1]]), 
+		 std::max(V[edg[k][0]],V[edg[k][1]]));
+  }
+  inline bool inSphere (Vertex *vd, int thread) const{
+    return inSphereTest_s (V[0],V[1],V[2],V[3],vd); 
+  }
+  Vertex centroid () const {
+    return (*V[0]+*V[1]+*V[2]+*V[3])*0.25;
+  }
+
+}; 
+
+struct conn {
+  Face f;
+  int  i;
+  Tet *t;
+  conn () : f(0,0,0), i(0), t(0){}  
+  conn (Face _f, int _i, Tet *_t) : f(_f), i(_i), t(_t)  
+  {   }
+  inline bool operator == (const conn & c) const{
+    return f == c.f;
+  }  
+  inline bool operator < (const conn & c) const{
+    return f < c.f;
+  }  
+};
+
+typedef std::vector<Tet*> cavityContainer;
+typedef std::vector<conn>   connContainer;
+
+void SortHilbert (std::vector<Vertex*>& v, std::vector<int> &indices);
+void computeAdjacencies (Tet *t, int iFace, connContainer &faceToTet);
+void print (const char *name, std::vector<Tet*> &T);
+void delaunayTrgl (const unsigned int numThreads, 
+		   const unsigned int NPTS_AT_ONCE, 
+		   unsigned int Npts, 
+		   std::vector<Tet*> &T, 
+		   std::vector<Vertex*> assignTo[]);
+
+
+#endif
diff --git a/Mesh/delaunay_refinement.cpp b/Mesh/delaunay_refinement.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..40d7ac1e5933763cb9a833867383d483fd7a2720
--- /dev/null
+++ b/Mesh/delaunay_refinement.cpp
@@ -0,0 +1,427 @@
+#ifdef _OPENMP
+#include <omp.h>
+#endif
+#include <stack>
+#include <set>
+#include <vector>
+#include <algorithm>
+#include <math.h>
+#include "GmshMessage.h"
+#include "SPoint3.h"
+#include "delaunay3d_private.h"
+#include "delaunay3d.h"
+#include "rtree.h"
+#include "MVertex.h"
+#include "MTetrahedron.h"
+#include "MTriangle.h"
+#include "GRegion.h"
+#include "GFace.h"
+
+typedef  std::set< Edge > edgeContainer2;
+
+long int AVGSEARCH;
+
+struct edgeContainer
+{
+  std::set< Edge > _hash2;
+  std::vector<std::vector<Edge> > _hash;
+  edgeContainer (unsigned int N = 1000000) {
+    _hash.resize(N);
+  }
+  bool addNewEdge2 (const Edge &e) {
+    std::set< Edge >::iterator it = _hash2.find(e);
+    if (it != _hash2.end())return false;
+    _hash2.insert(e);
+    return true;
+  }
+  bool isNewEdge (const Edge &e) {
+    size_t h = (size_t) e.first >> 3;
+    std::vector<Edge> &v = _hash[h %_hash.size()];
+    AVGSEARCH+=v.size();
+    for (unsigned int i=0; i< v.size();i++)if (e == v[i]) {return false;}
+    return true;    
+  } 
+
+  bool addNewEdge (const Edge &e) 
+  {
+    size_t h = (size_t) e.first >> 3;
+    std::vector<Edge> &v = _hash[h %_hash.size()];
+    AVGSEARCH+=v.size();
+    for (unsigned int i=0; i< v.size();i++)if (e == v[i]) {return false;}
+    v.push_back(e);
+    return true;
+  }
+};
+
+struct IPT {
+  double _x1,_x2,_x3,_x4;
+  IPT(double x1, double x2, double x3, double x4) :
+    _x1(x1),_x2(x2),_x3(x3),_x4(x4){};
+};
+
+double adaptiveTrapezoidalRule (SPoint3 p1 , SPoint3 p2 , 
+				double lc1 , double lc2 , 
+				double (*f)(const SPoint3 &p, void *), 
+				void *data, std::vector< IPT > & _result, 
+				double &dl, double epsilon = 1.e-6)
+{
+  std::stack< IPT > _stack;
+  _result.clear(); 
+  // local parameters on the edge
+  double t1 = 0.0;
+  double t2 = 1.0;
+  // edge vector
+  SPoint3 dp = p2-p1;
+
+  // value of f on both sides
+  double f1 = lc1; //f(p1 + dp*t1,data);
+  double f2 = lc2; //f(p1 + dp*t2,data);
+
+  dl = p1.distance(p2);
+
+  //  printf ("edge length %g lc %g %g\n",dl,f1,f2);
+
+  // add one subsegment on the stack
+  IPT top (t1,t2,f1,f2);
+  _stack.push(top);
+  // store total value of the integral
+  double totalValue = 0.0;
+  while(!_stack.empty()){
+    IPT pp = _stack.top();
+    _stack.pop();
+    t1 = pp._x1;
+    t2 = pp._x2;
+    f1 = pp._x3;
+    f2 = pp._x4;
+    // mid point
+    double t12 = 0.5* (t1+t2);
+    SPoint3 pmid = p1 + dp*t12;
+    double fmid = 0.5* (f1+f2);//f(pmid,data);
+    double dt = t2-t1;
+    // average should be compared to mid value    
+    double f12 = 0.5* (f1+f2);
+    if (fabs (f12 - 0.5*(f1+f2)) > epsilon*dt ) {
+      IPT left  (t1,t12,f1,f12);
+      IPT right (t12,t2,f12,f2);
+      _stack.push(left);
+      _stack.push(right);
+    }
+    else {
+      _result.push_back (pp);
+      // compute the integral using trapezoidal rule on both sides
+      totalValue += 1./((0.5*f12+0.25*(f1+f2)))*dt;      
+    }
+  }
+  // take into account the real length of the edge
+  totalValue *= dl;
+  //  printf("adimensional length %g\n",totalValue);
+  return totalValue;
+}
+
+
+void saturateEdge (Edge &e, std::vector<Vertex*> &S, double (*f)(const SPoint3 &p, void *), void *data) {  
+  std::vector< IPT > _result;
+  double dl;
+  SPoint3 p1 = e.first->point();
+  SPoint3 p2 = e.second->point();
+  double dN = adaptiveTrapezoidalRule (p1,p2,e.first->lc(), e.second->lc(), f,data,_result, dl);
+  const int N = (int) (dN+0.1); 
+  double interval = dN/N;  
+  double L = 0.0;  
+  
+  //  printf("edge length %g %d intervals of size %g\n",dl,N,interval);
+
+  for (unsigned int i=0; i< _result.size() ; i++) {
+    double t1 = _result[i]._x1;
+    double t2 = _result[i]._x2;
+    double f1 = _result[i]._x3;
+    double f2 = _result[i]._x4;
+    double dL = 2.*(t2-t1) * dl / (f1+f2);
+    //    printf("%g --> %g for %g --> %g\n",L,dL,t1,t2);
+    double L0 = L;
+    while (1) {
+      double t = t1 + (L+interval-L0)*(t2-t1) / dL;
+      if (t >= t2) {
+	break;
+      }
+      else {
+	SPoint3 p = p1 * (1.-t) + p2*t; 
+	double lc = e.first->lc() * (1.-t) + e.second->lc()*t; 
+	const double dx = 1.e-16 * (double) rand() / RAND_MAX;
+	const double dy = 1.e-16 * (double) rand() / RAND_MAX;
+	const double dz = 1.e-16 * (double) rand() / RAND_MAX;
+	S.push_back(new Vertex(p.x()+dx,p.y()+dy,p.z()+dz,lc));
+	L += interval;
+      }
+    }
+  }
+  
+  //  printf("%d points added\n",S.size());
+
+  //  exit(1);
+}
+
+void saturateEdges ( edgeContainer &ec, 
+		     std::vector<Tet*> &T, 
+		     int nbThreads, 
+		     std::vector<Vertex*> &S, 
+		     double (*f)(const SPoint3 &p, void *), void *data) {
+  AVGSEARCH= 0;
+  int counter = 0;
+  for (int i=0;i<T.size();i++){
+    if (T[i]->V[0] && T[i]->_modified){
+      T[i]->_modified = false;
+      for (int iEdge=0;iEdge<6;iEdge++){
+	Edge ed = T[i]->getEdge(iEdge);
+	bool isNew = ec.addNewEdge(ed);
+	counter++;
+	if (isNew){	  
+	  saturateEdge (ed, S, f, data);
+	}
+      }
+    }
+  }    
+  //  printf("a total of %d Tets counter %d AVG %d\n",T.size(),counter,AVGSEARCH/counter);
+}
+
+/////////////////////////   F I L T E R I N G ////////////////////////////////////////////////////
+
+class volumePointWithExclusionRegion {
+public : 
+  Vertex *_v;
+  volumePointWithExclusionRegion (Vertex *v) : _v(v){
+  }
+
+  bool inExclusionZone (volumePointWithExclusionRegion *p)
+  {    
+    double d = sqrt ((p->_v->x() - _v->x()) * (p->_v->x() - _v->x())+
+		     (p->_v->y() - _v->y()) * (p->_v->y() - _v->y())+
+		     (p->_v->z() - _v->z()) * (p->_v->z() - _v->z()));
+    return d < .7*p->_v->lc();//_l;
+  }
+  void minmax (double _min[3], double _max[3]) const
+  {
+    _min[0] = _v->x() - 1.1*_v->lc();
+    _min[1] = _v->y() - 1.1*_v->lc();
+    _min[2] = _v->z() - 1.1*_v->lc();
+    _max[0] = _v->x() + 1.1*_v->lc();
+    _max[1] = _v->y() + 1.1*_v->lc();
+    _max[2] = _v->z() + 1.1*_v->lc();
+  }
+};
+
+struct my_wrapper_3D {
+  bool _tooclose;
+  volumePointWithExclusionRegion *_p;
+  my_wrapper_3D (volumePointWithExclusionRegion *sp) : 
+    _tooclose (false), _p(sp) {}
+};
+
+
+bool rtree_callback(volumePointWithExclusionRegion *neighbour,void* point)
+{
+  my_wrapper_3D *w = static_cast<my_wrapper_3D*>(point);
+
+  if (neighbour->inExclusionZone(w->_p)){
+    w->_tooclose = true;
+    return false;
+  }
+  return true;
+}
+
+class vertexFilter {
+  RTree<volumePointWithExclusionRegion*,double,3,double> _rtree;
+public: 
+  void insert (Vertex * v) {
+    volumePointWithExclusionRegion *sp = new volumePointWithExclusionRegion (v);
+    double _min[3],_max[3];
+    sp->minmax(_min,_max);
+    _rtree.Insert (_min,_max,sp);
+  }
+
+  bool inExclusionZone  (volumePointWithExclusionRegion *p)
+  {
+    my_wrapper_3D w (p);
+    double _min[3] = {p->_v->x()-1.e-8, p->_v->y()-1.e-8, p->_v->z()-1.e-8};
+    double _max[3] = {p->_v->x()+1.e-8, p->_v->y()+1.e-8, p->_v->z()+1.e-8};
+    _rtree.Search(_min,_max,rtree_callback,&w);
+    return w._tooclose;
+  }
+};
+
+void filterVertices (const int numThreads, 
+		     vertexFilter &_filter,
+		     std::vector<Vertex*> &S, 
+		     std::vector<Vertex*> &add,
+		     double (*f)(const SPoint3 &p, void *), 
+		     void *data) {
+  //  printf("before : %d points to add\n",add.size());
+
+  std::vector<Vertex*> _add = add;  
+  for (unsigned int i=0;i<S.size();i++){
+    SPoint3 p (S[i]->x(),S[i]->y(),S[i]->z());
+    double l = f (p, data);
+    _filter.insert( S[i] );
+  }
+  add.clear();
+  for (unsigned int i=0;i<_add.size();i++){
+    SPoint3 p (_add[i]->x(),_add[i]->y(),_add[i]->z());
+    volumePointWithExclusionRegion v (_add[i]);
+    if (! _filter. inExclusionZone (&v)){
+      _filter.insert( _add[i]);
+      add.push_back(_add[i]);
+    }
+    else
+      delete _add[i];
+  }  
+  //  printf("after filter : %d points to add\n",add.size());
+}
+
+
+double _fx (const SPoint3 &p, void *){
+  return fabs(0.0125 + .02*p.x());
+}
+
+
+static void _print (const char *name, std::vector<Vertex*> &T){
+  FILE *f = fopen(name,"w");
+  fprintf(f,"View \"\"{\n");
+  for (unsigned int i=0;i<T.size();i++){
+    fprintf(f,"SP(%g,%g,%g){%d};\n",
+	    T[i]->x(),T[i]->y(),T[i]->z(),i);
+  }
+  fprintf(f,"};\n");
+  fclose(f);
+}
+
+typedef std::set<conn>   connSet;
+
+void computeAdjacencies (Tet *t, int iFace, connSet &faceToTet){
+  conn c (t->getFace(iFace), iFace, t);
+  connSet::iterator it = faceToTet.find(c);
+  if (it == faceToTet.end()){
+    faceToTet.insert(c);
+  }
+  else{
+    t->T[iFace] = it->t;
+    it->t->T[it->i] =t;
+    faceToTet.erase(it);
+  }
+}
+
+
+void edgeBasedRefinement (const int numThreads, 
+			  const int nptsatonce, 
+			  GRegion *gr) {
+
+  // fill up old Datastructures
+
+  std::vector<MTetrahedron*> T = gr->tetrahedra;
+  std::vector<Tet*> _tets;
+  _tets.resize(T.size());
+  std::vector<Vertex *> _vertices;
+  edgeContainer ec;
+
+  {
+    std::set<MVertex *> all;
+    for (int i=0;i<T.size();i++){
+      for (int j=0;j<4;j++){
+	all.insert(T[i]->getVertex(j));
+      }
+    }
+
+    _vertices.resize(all.size());
+    int counter=0;
+    for (std::set<MVertex*>::iterator it = all.begin();it !=all.end(); ++it){
+      MVertex *mv = *it;
+      mv->setIndex(counter);
+      Vertex *v = new Vertex (mv->x(),mv->y(),mv->z(),1.e22, counter);
+      _vertices[counter] = v;
+      counter++;
+    }
+    connSet faceToTet;
+    for (unsigned int i=0;i<T.size();i++){
+      int i0 = T[i]->getVertex(0)->getIndex();
+      int i1 = T[i]->getVertex(1)->getIndex();
+      int i2 = T[i]->getVertex(2)->getIndex();
+      int i3 = T[i]->getVertex(3)->getIndex();
+      Tet *t = new Tet (_vertices[i0],_vertices[i1],_vertices[i2],_vertices[i3]);
+      computeAdjacencies (t,0,faceToTet);
+      computeAdjacencies (t,1,faceToTet);
+      computeAdjacencies (t,2,faceToTet);
+      computeAdjacencies (t,3,faceToTet);
+      _tets[i] = t;
+    }
+  }
+
+  // do not allow to saturate boundary edges
+  {
+    for (unsigned int i=0;i<_tets.size();i++) {
+      for (int j=0;j<4;j++){
+	if (!_tets[i]->T[j]){
+	  Face f = _tets[i]->getFace(j);
+	  for (int k=0;k<3;k++){
+	    Vertex *vi = f.V[k];
+	    Vertex *vj = f.V[(k+1)%3];
+	    double l = sqrt ((vi->x()-vj->x())*(vi->x()-vj->x())+
+			     (vi->y()-vj->y())*(vi->y()-vj->y())+
+			     (vi->z()-vj->z())*(vi->z()-vj->z()));
+	    ec.addNewEdge(Edge(vi,vj));
+	    vi->lc() = std::min (l,vi->lc() );
+	    vj->lc() = std::min (l,vj->lc() );
+	  }
+	}
+      }
+    }
+    for (unsigned int i=0;i<_tets.size();i++) {
+      for (int j=0;j<6;j++){
+	Edge e = _tets[i]->getEdge(j);
+	if(e.first->lc() == 1.e22){printf("coucou\n");e.first->lc() = e.second->lc();}
+	else if(e.second->lc() == 1.e22){printf("coucou\n");e.second->lc() = e.first->lc();}
+      }
+    }
+  }
+
+  {
+    vertexFilter _filter;
+    int iter = 1;
+
+    Msg::Info("----------------------------------- SATUR FILTR SORTH DELNY TIME  TETS");
+
+    clock_t __t__ = clock();
+    while(1){
+      char name[256];
+      //      sprintf(name,"beforeRefinement%d.pos",iter);
+      //      print (name,_tets);
+      //      printf("ITER %3d\n",iter);
+      std::vector<Vertex*> add;
+      clock_t t1 = clock();
+      saturateEdges (ec, _tets, numThreads, add, _fx, NULL);
+      //      printf("%d points to add\n",add.size());
+      //sprintf(name,"Points%d.pos",iter);
+      //     _print (name,add);
+      clock_t t2 = clock();
+      filterVertices (numThreads, _filter, _vertices, add, _fx, NULL);
+      clock_t t3 = clock();
+      if (add.empty())break;
+      std::vector<int> indices;
+      SortHilbert(add, indices);
+      clock_t t4 = clock();
+      //      sprintf(name,"PointsFiltered%d.pos",iter);
+      //      _print (name,add);
+      delaunayTrgl (1,1,add.size(), _tets, &add);  
+      clock_t t5 = clock();
+      Msg::Info("IT %3d %6d points added, timings %5.2f %5.2f %5.2f %5.2f %5.2f %5d",iter,add.size(),
+		(float)(t2-t1)/CLOCKS_PER_SEC,
+		(float)(t3-t2)/CLOCKS_PER_SEC,
+		(float)(t4-t3)/CLOCKS_PER_SEC,
+		(float)(t5-t4)/CLOCKS_PER_SEC,
+		(float)(t5-__t__)/CLOCKS_PER_SEC,
+		_tets.size());
+      iter++;
+    }
+    print ("afterRefinement.pos",_tets);
+  }
+}
+
+
diff --git a/Mesh/delaunay_refinement.h b/Mesh/delaunay_refinement.h
new file mode 100644
index 0000000000000000000000000000000000000000..a2c0012f1b2130128f946f65e4795ffd6bd84a1b
--- /dev/null
+++ b/Mesh/delaunay_refinement.h
@@ -0,0 +1,13 @@
+#ifndef _DELAUNAY_REFINEMENT_H
+#define _DELAUNAY_REFINEMENT_H
+#include "SPoint3.h"
+#include <vector>
+class Tet;
+class Vertex;
+void delaunayRefinement (const int numThreads, 
+			 const int nptsatonce, 
+			 std::vector<Vertex*> &S, 
+			 std::vector<Tet*> &T,
+			 double (*f)(const SPoint3 &p, void *), 
+			 void *data); 
+#endif
diff --git a/Mesh/meshGFace.cpp b/Mesh/meshGFace.cpp
index fdb3717b6d9fbfa4300e7f2b16dd90b3ce013046..40977c6e072ee21bd222c57417e98c6ffe17ea15 100644
--- a/Mesh/meshGFace.cpp
+++ b/Mesh/meshGFace.cpp
@@ -45,6 +45,7 @@
 #include "meshGFaceLloyd.h"
 #include "boundaryLayersData.h"
 #include "filterElements.h"
+#include "meshGFaceQuadDiscrete.h"
 
 // define this to use the old initial delaunay
 #define OLD_CODE_DELAUNAY 1
@@ -1525,8 +1526,9 @@ bool meshGenerator(GFace *gf, int RECUR_ITER,
       bowyerWatsonParallelogramsConstrained(gf,gf->constr_vertices);
     }
     else if(gf->getMeshingAlgo() == ALGO_2D_DELAUNAY ||
-            gf->getMeshingAlgo() == ALGO_2D_AUTO)
+            gf->getMeshingAlgo() == ALGO_2D_AUTO){
       bowyerWatson(gf);
+    }
     else {
       bowyerWatson(gf,15000);
       meshGFaceBamg(gf);
@@ -2350,7 +2352,7 @@ static bool meshGeneratorPeriodic(GFace *gf, bool debug = true)
 
   if((CTX::instance()->mesh.recombineAll || gf->meshAttributes.recombine) &&
      !CTX::instance()->mesh.optimizeLloyd && CTX::instance()->mesh.algoRecombine != 2)
-    recombineIntoQuads(gf);
+    recombineIntoQuads(gf,true,false);
 
   computeElementShapes(gf, gf->meshStatistics.worst_element_shape,
                        gf->meshStatistics.average_element_shape,
@@ -2375,7 +2377,6 @@ int debugSurface = -1; //-1;
 
 void meshGFace::operator() (GFace *gf, bool print)
 {
-
   gf->model()->setCurrentMeshEntity(gf);
 
   if(debugSurface >= 0 && gf->tag() != debugSurface){
@@ -2383,7 +2384,11 @@ void meshGFace::operator() (GFace *gf, bool print)
     return;
   }
 
-  if(gf->geomType() == GEntity::DiscreteSurface) return;
+  if(gf->geomType() == GEntity::DiscreteSurface) {
+    //    meshGFaceQuadDiscrete (gf);      
+    //    gf->meshStatistics.status = GFace::DONE;
+    return;
+  }
   if(gf->geomType() == GEntity::ProjectionFace) return;
   if(gf->meshAttributes.method == MESH_NONE) return;
   if(CTX::instance()->mesh.meshOnlyVisible && !gf->getVisibility()) return;
diff --git a/Mesh/meshGFaceDelaunayInsertion.h b/Mesh/meshGFaceDelaunayInsertion.h
index 79a8c389af307c7b0225ec359d9249a0baf9f494..7637c3688a592a0f7bbc17354505f18f9d436f62 100644
--- a/Mesh/meshGFaceDelaunayInsertion.h
+++ b/Mesh/meshGFaceDelaunayInsertion.h
@@ -201,5 +201,4 @@ struct edgeXface
   }
 };
 
-
 #endif
diff --git a/Mesh/meshGFaceOptimize.cpp b/Mesh/meshGFaceOptimize.cpp
index a74eb44f4b71333c5f07ede956f1d3fa93744a6d..2cd48f1b9cf82f9c6dec1e96c77493ddade0d1b1 100644
--- a/Mesh/meshGFaceOptimize.cpp
+++ b/Mesh/meshGFaceOptimize.cpp
@@ -2985,116 +2985,6 @@ int edgeSwapPass(GFace *gf, std::set<MTri3*, compareTri3Ptr> &allTris,
 }
 
 
-void computeNeighboringTrisOfACavity(const std::vector<MTri3*> &cavity,
-                                     std::vector<MTri3*> &outside)
-{
-  outside.clear();
-  for(unsigned int i = 0; i < cavity.size(); i++){
-    for(int j = 0; j < 3; j++){
-      MTri3 * neigh = cavity[i]->getNeigh(j);
-      if(neigh){
-        bool found = false;
-        for(unsigned int k = 0; k < outside.size(); k++){
-          if(outside[k] == neigh){
-            found = true;
-            break;
-          }
-        }
-        if(!found){
-          for(unsigned int k = 0; k < cavity.size(); k++){
-            if(cavity[k] == neigh){
-              found = true;
-            }
-          }
-        }
-        if(!found) outside.push_back(neigh);
-      }
-    }
-  }
-}
-
-bool buildVertexCavity(MTri3 *t, int iLocalVertex, MVertex **v1,
-                       std::vector<MTri3*> &cavity, std::vector<MTri3*> &outside,
-                       std::vector<MVertex*> &ring)
-{
-  cavity.clear();
-  ring.clear();
-
-  *v1 = t->tri()->getVertex(iLocalVertex);
-
-  MVertex *lastinring = t->tri()->getVertex((iLocalVertex + 1) % 3);
-  ring.push_back(lastinring);
-  cavity.push_back(t);
-
-  while (1){
-    int iEdge = -1;
-    for(int i = 0; i < 3; i++){
-      MVertex *v2  = t->tri()->getVertex((i + 2) % 3);
-      MVertex *v3  = t->tri()->getVertex(i);
-      if((v2 == *v1 && v3 == lastinring) ||
-          (v2 == lastinring && v3 == *v1)){
-        iEdge = i;
-        t = t->getNeigh(i);
-        if(t == cavity[0]) {
-          computeNeighboringTrisOfACavity(cavity, outside);
-          return true;
-        }
-        if(!t) return false;
-        if(t->isDeleted()){
-          Msg::Error("Impossible to build vertex cavity");
-          return false;
-        }
-        cavity.push_back(t);
-        for(int j = 0; j < 3; j++){
-          if(t->tri()->getVertex(j) !=lastinring && t->tri()->getVertex(j) != *v1){
-            lastinring = t->tri()->getVertex(j);
-            ring.push_back(lastinring);
-            j = 100;
-          }
-        }
-        break;
-      }
-    }
-    if(iEdge == -1) {
-      Msg::Error("Impossible to build vertex cavity");
-      return false;
-    }
-  }
-}
-
-// split one triangle into 3 triangles
-void _triangleSplit (GFace *gf, MElement *t)
-{
-  MVertex *v1 = t->getVertex(0);
-  MVertex *v2 = t->getVertex(1);
-  MVertex *v3 = t->getVertex(2);
-  SPoint2 p1,p2,p3;
-
-  reparamMeshEdgeOnFace(v1, v2, gf, p1,p2);
-  reparamMeshEdgeOnFace(v1, v3, gf, p1,p3);
-
-  SPoint2 np = (p1+p2+p3)*(1./3.0);
-
-  GPoint gp = gf->point(np);
-
-  MFaceVertex *fv = new MFaceVertex(gp.x(),gp.y(),gp.z(),
-                                    gf,np.x(),np.y());
-  std::vector<MTriangle*> triangles2;
-  for(unsigned int i = 0; i < gf->triangles.size(); i++){
-    if(gf->triangles[i] != t){
-      triangles2.push_back(gf->triangles[i]);
-    }
-  }
-  delete t;
-  MTriangle *t1 = new MTriangle(v1,v2,fv);
-  MTriangle *t2 = new MTriangle(v2,v3,fv);
-  MTriangle *t3 = new MTriangle(v3,v1,fv);
-  gf->triangles = triangles2;
-  gf->triangles.push_back(t1);
-  gf->triangles.push_back(t2);
-  gf->triangles.push_back(t3);
-  gf->mesh_vertices.push_back(fv);
-}
 
 //used for meshGFaceRecombine development
 int recombineWithBlossom(GFace *gf, double dx, double dy,
diff --git a/Mesh/meshGRegion.cpp b/Mesh/meshGRegion.cpp
index 4506b336e11e50f553551cb66b4768c3bec21dcf..430a159c6970cdd4df2e1f354b6603f3256befc7 100644
--- a/Mesh/meshGRegion.cpp
+++ b/Mesh/meshGRegion.cpp
@@ -11,7 +11,7 @@
 #include "meshGFace.h"
 #include "meshGFaceOptimize.h"
 #include "boundaryLayersData.h"
-//#include "meshGRegionBoundaryRecovery.h"
+#include "meshGRegionBoundaryRecovery.h"
 #include "meshGRegionDelaunayInsertion.h"
 #include "GModel.h"
 #include "GRegion.h"
@@ -1334,26 +1334,11 @@ void MeshDelaunayVolumeTetgen(std::vector<GRegion*> &regions)
 }
 
 // uncomment this to test the new code
-//##define NEW_CODE
+//#define NEW_CODE
 
-void MeshDelaunayVolume(std::vector<GRegion*> &regions)
-{
-  if(regions.empty()) return;
-
-#if !defined(NEW_CODE) && defined(HAVE_TETGEN)
-  MeshDelaunayVolumeTetgen(regions);
-  return;
-#endif
-  /*
-  splitQuadRecovery sqr;
-
-  for(unsigned int i = 0; i < regions.size(); i++)
-    Msg::Info("Meshing volume %d (Delaunay)", regions[i]->tag());
-
-  // put all the faces in the same model
+static void MeshDelaunayVolumeNewCode(std::vector<GRegion*> &regions) {
   GRegion *gr = regions[0];
   std::list<GFace*> faces = gr->faces();
-
   std::set<GFace*> allFacesSet;
   for(unsigned int i = 0; i < regions.size(); i++){
     std::list<GFace*> f = regions[i]->faces();
@@ -1361,11 +1346,9 @@ void MeshDelaunayVolume(std::vector<GRegion*> &regions)
     f = regions[i]->embeddedFaces();
     allFacesSet.insert(f.begin(), f.end());
   }
+  
   std::list<GFace*> allFaces;
-  for(std::set<GFace*>::iterator it = allFacesSet.begin();
-      it != allFacesSet.end(); it++){
-    allFaces.push_back(*it);
-  }
+  allFaces.insert(allFaces.end(), allFacesSet.begin(), allFacesSet.end());
   gr->set(allFaces);
 
   try{
@@ -1388,20 +1371,29 @@ void MeshDelaunayVolume(std::vector<GRegion*> &regions)
   // restore the initial set of faces
   gr->set(faces);
 
-  bool _BL = modifyInitialMeshForTakingIntoAccountBoundaryLayers(gr,sqr);
 
-  // now do insertion of points
-  if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL_DEL)
-    bowyerWatsonFrontalLayers(gr, false);
-  else if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL_HEX)
-    bowyerWatsonFrontalLayers(gr, true);
-  else if(CTX::instance()->mesh.algo3d == ALGO_3D_MMG3D){
-    refineMeshMMG(gr);
-  }
-  else if(!Filler::get_nbr_new_vertices() && !LpSmoother::get_nbr_interior_vertices()){
-    insertVerticesInRegion(gr,2000000000,!_BL);
-  }
-  */
+#if 1
+  void edgeBasedRefinement (const int numThreads, 
+			    const int nptsatonce, 
+			    GRegion *gr);
+  insertVerticesInRegion(gr,0);
+  edgeBasedRefinement (1,1,gr);
+#else
+  insertVerticesInRegion(gr,200000000);
+#endif
+}
+
+
+void MeshDelaunayVolume(std::vector<GRegion*> &regions)
+{
+  if(regions.empty()) return;
+
+#if !defined(NEW_CODE) && defined(HAVE_TETGEN)
+  MeshDelaunayVolumeTetgen(regions);
+#else
+  MeshDelaunayVolumeNewCode(regions);
+#endif
+  return;
 }
 
 #if defined(HAVE_NETGEN)
diff --git a/Mesh/meshGRegion19036.cpp b/Mesh/meshGRegion19036.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..24327daca32d81c8fda48d183c8225d5921e077a
--- /dev/null
+++ b/Mesh/meshGRegion19036.cpp
@@ -0,0 +1,1856 @@
+// Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
+//
+// See the LICENSE.txt file for license information. Please report all
+// bugs and problems to the public mailing list <gmsh@geuz.org>.
+
+#include <stdlib.h>
+#include <vector>
+#include "GmshConfig.h"
+#include "GmshMessage.h"
+#include "meshGRegion.h"
+#include "meshGFace.h"
+#include "meshGFaceOptimize.h"
+#include "boundaryLayersData.h"
+#include "meshGRegionBoundaryRecovery.h"
+#include "meshGRegionDelaunayInsertion.h"
+#include "GModel.h"
+#include "GRegion.h"
+#include "GFace.h"
+#include "GEdge.h"
+#include "gmshRegion.h"
+#include "MLine.h"
+#include "MTriangle.h"
+#include "MQuadrangle.h"
+#include "MTetrahedron.h"
+#include "MPyramid.h"
+#include "MPrism.h"
+#include "MHexahedron.h"
+#include "BDS.h"
+#include "OS.h"
+#include "Context.h"
+#include "GFaceCompound.h"
+#include "meshGRegionMMG3D.h"
+#include "simple3D.h"
+#include "Levy3D.h"
+#include "directions3D.h"
+#include "discreteFace.h"
+#include "filterElements.h"
+
+#if defined(HAVE_ANN)
+#include "ANN/ANN.h"
+#endif
+
+// hybrid mesh recovery structure
+class splitQuadRecovery {
+  std::multimap<GEntity*, std::pair<MVertex*,MFace> >_data;
+  bool _empty;
+ public :
+  std::map<MFace, MVertex*, Less_Face>_invmap;
+  std::set<MFace, Less_Face>_toDelete;
+  splitQuadRecovery() : _empty(true) {}
+  bool empty(){ return _empty; }
+  void setEmpty(bool val){ _empty = val; }
+  void add (const MFace &f, MVertex *v, GEntity*ge)
+  {
+    _data.insert(std::make_pair(ge, std::make_pair(v,f)));
+  }
+  int buildPyramids(GModel *gm)
+  {
+    if(empty()) return 0;
+    int NBPY = 0;
+    for (GModel::fiter it = gm->firstFace(); it != gm->lastFace(); ++it){
+      std::set<MFace, Less_Face> allFaces;
+      for (unsigned int i = 0; i < (*it)->triangles.size(); i++){
+        allFaces.insert ((*it)->triangles[i]->getFace(0));
+        delete (*it)->triangles[i];
+      }
+      (*it)->triangles.clear();
+      for (std::multimap<GEntity*, std::pair<MVertex*,MFace> >::iterator it2 =
+             _data.lower_bound(*it); it2 != _data.upper_bound(*it) ; ++it2){
+        const MFace &f = it2->second.second;
+	MVertex *v = it2->second.first;
+	v->onWhat()->mesh_vertices.erase(std::find(v->onWhat()->mesh_vertices.begin(),
+						   v->onWhat()->mesh_vertices.end(), v));
+	std::set<MFace, Less_Face>::iterator itf0 = allFaces.find(MFace(f.getVertex(0),
+									f.getVertex(1),v));
+	std::set<MFace, Less_Face>::iterator itf1 = allFaces.find(MFace(f.getVertex(1),
+									f.getVertex(2),v));
+	std::set<MFace, Less_Face>::iterator itf2 = allFaces.find(MFace(f.getVertex(2),
+									f.getVertex(3),v));
+	std::set<MFace, Less_Face>::iterator itf3 = allFaces.find(MFace(f.getVertex(3),
+									f.getVertex(0),v));
+	if (itf0 != allFaces.end() && itf1 != allFaces.end() &&
+	    itf2 != allFaces.end() && itf3 != allFaces.end()){
+	  (*it)->quadrangles.push_back(new MQuadrangle(f.getVertex(0), f.getVertex(1),
+						       f.getVertex(2), f.getVertex(3)));
+	  allFaces.erase(*itf0);
+	  allFaces.erase(*itf1);
+	  allFaces.erase(*itf2);
+	  allFaces.erase(*itf3);
+	  // printf("some pyramids should be created %d regions\n", (*it)->numRegions());
+	  for (int iReg = 0; iReg < (*it)->numRegions(); iReg++){
+	    if (iReg == 1) {
+	      Msg::Error("Cannot build pyramids on non manifold faces");
+	      v = new MVertex(v->x(), v->y(), v->z(), (*it)->getRegion(iReg));
+	    }
+	    else
+	      v->setEntity ((*it)->getRegion(iReg));
+	    // A quad face connected to an hex or a primsm --> leave the quad face as is
+	    if (_toDelete.find(f) == _toDelete.end()){
+	      (*it)->getRegion(iReg)->pyramids.push_back
+		(new MPyramid(f.getVertex(0), f.getVertex(1), f.getVertex(2), f.getVertex(3), v));
+	      (*it)->getRegion(iReg)->mesh_vertices.push_back(v);
+	      NBPY++;
+	    }
+	    else {
+	      delete v;
+	    }
+	  }
+	}
+      }
+      for (std::set<MFace, Less_Face>::iterator itf = allFaces.begin();
+	   itf != allFaces.end(); ++itf){
+        (*it)->triangles.push_back
+          (new MTriangle(itf->getVertex(0), itf->getVertex(1), itf->getVertex(2)));
+      }
+    }
+    return NBPY;
+  }
+};
+
+void printVoronoi(GRegion *gr,  std::set<SPoint3> &candidates)
+{
+  std::vector<MTetrahedron*> elements = gr->tetrahedra;
+  std::list<GFace*> allFaces = gr->faces();
+
+  //building maps
+  std::map<MVertex*, std::set<MTetrahedron*> > node2Tet;
+  std::map<MFace, std::vector<MTetrahedron*> , Less_Face> face2Tet;
+  for(unsigned int i = 0; i < elements.size(); i++){
+    MTetrahedron *ele = elements[i];
+    for (int j=0; j<4; j++){
+      MVertex *v = ele->getVertex(j);
+      std::map<MVertex*, std::set<MTetrahedron*> >::iterator itmap = node2Tet.find(v);
+      if (itmap == node2Tet.end()){
+  	std::set<MTetrahedron*>  oneTet;
+  	oneTet.insert(ele);
+  	node2Tet.insert(std::make_pair(v, oneTet));
+      }
+      else{
+  	std::set<MTetrahedron*>  allTets = itmap->second;
+  	allTets.insert(allTets.begin(), ele);
+  	itmap->second = allTets;
+      }
+    }
+    for (int j = 0; j < 4; j++){
+      MFace f = ele->getFace(j);
+      std::map<MFace, std::vector<MTetrahedron*>, Less_Face >::iterator itmap =
+        face2Tet.find(f);
+      if (itmap == face2Tet.end()){
+  	std::vector<MTetrahedron*>  oneTet;
+  	oneTet.push_back(ele);
+  	face2Tet.insert(std::make_pair(f, oneTet));
+      }
+      else{
+  	std::vector<MTetrahedron*>  allTets = itmap->second;
+  	allTets.insert(allTets.begin(), ele);
+  	itmap->second = allTets;
+      }
+    }
+  }
+
+  //print voronoi poles
+  FILE *outfile;
+  //smooth_normals *snorm = gr->model()->normals;
+  outfile = Fopen("nodes.pos", "w");
+  fprintf(outfile, "View \"Voronoi poles\" {\n");
+  std::map<MVertex*, std::set<MTetrahedron*> >::iterator itmap = node2Tet.begin();
+  for(; itmap != node2Tet.end(); itmap++){
+    //MVertex *v = itmap->first;
+    std::set<MTetrahedron*>  allTets = itmap->second;
+    std::set<MTetrahedron*>::const_iterator it = allTets.begin();
+    MTetrahedron *poleTet = *it;
+    double maxRadius = poleTet->getCircumRadius();
+    for(; it != allTets.end(); it++){
+      double radius =  (*it)->getCircumRadius();
+      if (radius > maxRadius){
+    	maxRadius = radius;
+    	poleTet = *it;
+      }
+    }
+    //if (v->onWhat()->dim() == 2 ){
+      SPoint3 pc = poleTet->circumcenter();
+      //double nx,ny,nz;
+      // SVector3 vN = snorm->get(v->x(), v->y(), v->z(), nx,ny,nz);
+      // SVector3 pcv(pc.x()-nx, pc.y()-ny,pc.z()-nz);
+      // printf("nx=%g ny=%g nz=%g dot=%g \n",  nx,ny,nz, dot(vN, pcv));
+      // if ( dot(vN, pcv) > 0.0 )
+      double x[3] = {pc.x(), pc.y(), pc.z()};
+      double uvw[3];
+      poleTet->xyz2uvw(x, uvw);
+      //bool inside = poleTet->isInside(uvw[0], uvw[1], uvw[2]);
+      //if (inside){
+	fprintf(outfile,"SP(%g,%g,%g)  {%g};\n",
+		pc.x(), pc.y(), pc.z(), maxRadius);
+	candidates.insert(pc);
+	//}
+    //}
+  }
+  fprintf(outfile,"};\n");
+  fclose(outfile);
+
+  //print scalar lines
+  FILE *outfile2;
+  outfile2 = Fopen("edges.pos", "w");
+  fprintf(outfile2, "View \"Voronoi edges\" {\n");
+  std::map<MFace, std::vector<MTetrahedron*> , Less_Face >::iterator itmap2 = face2Tet.begin();
+  for(; itmap2 != face2Tet.end(); itmap2++){
+    std::vector<MTetrahedron*>  allTets = itmap2->second;
+    if (allTets.size() != 2 ) continue;
+    SPoint3 pc1 = allTets[0]->circumcenter();
+    SPoint3 pc2 = allTets[1]->circumcenter();
+    //std::set<SPoint3>::const_iterator it1 = candidates.find(pc1);
+    //std::set<SPoint3>::const_iterator it2 = candidates.find(pc2);
+    //if( it1 != candidates.end() || it2 != candidates.end())
+      fprintf(outfile2,"SL(%g,%g,%g,%g,%g,%g)  {%g,%g};\n",
+	      pc1.x(), pc1.y(), pc1.z(), pc2.x(), pc2.y(), pc2.z(),
+	      allTets[0]->getCircumRadius(),allTets[1]->getCircumRadius());
+   }
+  fprintf(outfile2,"};\n");
+  fclose(outfile2);
+
+}
+
+
+void getBoundingInfoAndSplitQuads(GRegion *gr,
+                                  std::map<MFace,GEntity*,Less_Face> &allBoundingFaces,
+                                  std::set<MVertex*> &allBoundingVertices,
+                                  splitQuadRecovery &sqr)
+{
+  std::map<MFace, GEntity*, Less_Face> allBoundingFaces_temp;
+
+  // Get all the faces that are on the boundary
+  std::list<GFace*> faces = gr->faces();
+  std::list<GFace*>::iterator it = faces.begin();
+  while (it != faces.end()){
+    GFace *gf = (*it);
+    for(unsigned int i = 0; i < gf->getNumMeshElements(); i++){
+      allBoundingFaces_temp[gf->getMeshElement(i)->getFace(0)] = gf;
+    }
+    ++it;
+  }
+
+  // if some elements pre-exist in the mesh, then use the internal faces of
+  // those
+
+  for (unsigned int i=0;i<gr->getNumMeshElements();i++){
+    MElement *e = gr->getMeshElement(i);
+    for (int j = 0; j < e->getNumFaces(); j++){
+      std::map<MFace, GEntity*, Less_Face>::iterator it = allBoundingFaces_temp.find(e->getFace(j));
+      if (it == allBoundingFaces_temp.end()) allBoundingFaces_temp[e->getFace(j)] = gr;
+      else allBoundingFaces_temp.erase(it);
+    }
+  }
+
+  std::map<MFace, GEntity*, Less_Face>::iterator itx = allBoundingFaces_temp.begin();
+  for (; itx != allBoundingFaces_temp.end();++itx){
+    const MFace &f = itx->first;
+    // split the quad face into 4 triangular faces
+    if (f.getNumVertices() == 4){
+      sqr.setEmpty(false);
+      MVertex *v0 = f.getVertex(0);
+      MVertex *v1 = f.getVertex(1);
+      MVertex *v2 = f.getVertex(2);
+      MVertex *v3 = f.getVertex(3);
+      MVertex *newv = new MVertex ((v0->x() + v1->x() + v2->x() + v3->x())*0.25,
+				   (v0->y() + v1->y() + v2->y() + v3->y())*0.25,
+				   (v0->z() + v1->z() + v2->z() + v3->z())*0.25,itx->second);
+      sqr.add(f,newv,itx->second);
+      sqr._invmap[f] = newv;
+      allBoundingFaces[MFace(v0,v1,newv)] = itx->second;
+      allBoundingFaces[MFace(v1,v2,newv)] = itx->second;
+      allBoundingFaces[MFace(v2,v3,newv)] = itx->second;
+      allBoundingFaces[MFace(v3,v0,newv)] = itx->second;
+      itx->second->mesh_vertices.push_back(newv);
+      allBoundingVertices.insert(v0);
+      allBoundingVertices.insert(v1);
+      allBoundingVertices.insert(v2);
+      allBoundingVertices.insert(v3);
+      allBoundingVertices.insert(newv);
+    }
+    else{
+      allBoundingFaces[f] = itx->second;
+      allBoundingVertices.insert(f.getVertex(0));
+      allBoundingVertices.insert(f.getVertex(1));
+      allBoundingVertices.insert(f.getVertex(2));
+    }
+  }
+}
+
+#if defined(HAVE_TETGEN)
+
+#include "tetgen.h"
+
+void buildTetgenStructure(GRegion *gr, tetgenio &in, std::vector<MVertex*> &numberedV,
+                          splitQuadRecovery &sqr)
+{
+  std::set<MVertex*> allBoundingVertices;
+  std::map<MFace,GEntity*,Less_Face> allBoundingFaces;
+  getBoundingInfoAndSplitQuads(gr, allBoundingFaces, allBoundingVertices, sqr);
+
+  //// TEST
+  {
+    std::vector<MVertex*>ALL;
+    std::vector<MTetrahedron*> MESH;
+    ALL.insert(ALL.begin(),allBoundingVertices.begin(),allBoundingVertices.end());
+    //    delaunayMeshIn3D (ALL,MESH);
+    //    exit(1);
+  }
+
+  in.mesh_dim = 3;
+  in.firstnumber = 1;
+  in.numberofpoints = allBoundingVertices.size() + Filler::get_nbr_new_vertices() +
+    LpSmoother::get_nbr_interior_vertices();
+  in.pointlist = new REAL[in.numberofpoints * 3];
+  in.pointmarkerlist = NULL;
+
+  std::set<MVertex*>::iterator itv = allBoundingVertices.begin();
+  int I = 1;
+  while(itv != allBoundingVertices.end()){
+    in.pointlist[(I - 1) * 3 + 0] = (*itv)->x();
+    in.pointlist[(I - 1) * 3 + 1] = (*itv)->y();
+    in.pointlist[(I - 1) * 3 + 2] = (*itv)->z();
+    (*itv)->setIndex(I++);
+    numberedV.push_back(*itv);
+    ++itv;
+  }
+
+  for(int i=0;i<Filler::get_nbr_new_vertices();i++){
+    MVertex* v;
+    v = Filler::get_new_vertex(i);
+    in.pointlist[(I - 1) * 3 + 0] = v->x();
+    in.pointlist[(I - 1) * 3 + 1] = v->y();
+    in.pointlist[(I - 1) * 3 + 2] = v->z();
+    I++;
+  }
+
+  for(int i=0;i<LpSmoother::get_nbr_interior_vertices();i++){
+    MVertex* v;
+    v = LpSmoother::get_interior_vertex(i);
+    in.pointlist[(I - 1) * 3 + 0] = v->x();
+    in.pointlist[(I - 1) * 3 + 1] = v->y();
+    in.pointlist[(I - 1) * 3 + 2] = v->z();
+    I++;
+  }
+
+  in.numberoffacets = allBoundingFaces.size();
+  in.facetlist = new tetgenio::facet[in.numberoffacets];
+  in.facetmarkerlist = new int[in.numberoffacets];
+
+  I = 0;
+  std::map<MFace,GEntity*,Less_Face>::iterator it = allBoundingFaces.begin();
+  for (; it != allBoundingFaces.end();++it){
+    const MFace &fac = it->first;
+    tetgenio::facet *f = &in.facetlist[I];
+    tetgenio::init(f);
+    f->numberofholes = 0;
+    f->numberofpolygons = 1;
+    f->polygonlist = new tetgenio::polygon[f->numberofpolygons];
+    tetgenio::polygon *p = &f->polygonlist[0];
+    tetgenio::init(p);
+    p->numberofvertices = 3;
+    p->vertexlist = new int[p->numberofvertices];
+    p->vertexlist[0] = fac.getVertex(0)->getIndex();
+    p->vertexlist[1] = fac.getVertex(1)->getIndex();
+    p->vertexlist[2] = fac.getVertex(2)->getIndex();
+    in.facetmarkerlist[I] = (it->second->dim() == 3) ? -it->second->tag() : it->second->tag();
+    ++I;
+  }
+}
+
+void TransferTetgenMesh(GRegion *gr, tetgenio &in, tetgenio &out,
+                        std::vector<MVertex*> &numberedV)
+{
+  // improvement has to be done here : tetgen splits some of the existing edges
+  // of the mesh. If those edges are classified on some model faces, new points
+  // SHOULD be classified on the model face and get the right set of parametric
+  // coordinates.
+
+  const int initialSize = (int)numberedV.size();
+
+  for(int i = numberedV.size(); i < out.numberofpoints; i++){
+    MVertex *v = new MVertex(out.pointlist[i * 3 + 0],
+                             out.pointlist[i * 3 + 1],
+                             out.pointlist[i * 3 + 2], gr);
+    gr->mesh_vertices.push_back(v);
+    numberedV.push_back(v);
+  }
+
+  Msg::Info("%d points %d edges and %d faces in the initial mesh",
+            out.numberofpoints, out.numberofedges, out.numberoftrifaces);
+
+  // Tetgen modifies both surface & edge mesh, so we need to re-create
+  // everything
+
+  gr->model()->destroyMeshCaches();
+  std::list<GFace*> faces = gr->faces();
+  for(std::list<GFace*>::iterator it = faces.begin(); it != faces.end(); it++){
+    GFace *gf = (*it);
+    for(unsigned int i = 0; i < gf->triangles.size(); i++)
+      delete gf->triangles[i];
+    for(unsigned int i = 0; i < gf->quadrangles.size(); i++)
+      delete gf->quadrangles[i];
+    gf->triangles.clear();
+    gf->quadrangles.clear();
+    gf->deleteVertexArrays();
+  }
+
+  // TODO: re-create 1D mesh
+  /*for(int i = 0; i < out.numberofedges; i++){
+  MVertex *v[2];
+  v[0] = numberedV[out.edgelist[i * 2 + 0] - 1];
+  v[1] = numberedV[out.edgelist[i * 2 + 1] - 1];
+  //implement here the 1D mesh ...
+  }*/
+
+  bool needParam = (CTX::instance()->mesh.order > 1 &&
+                    CTX::instance()->mesh.secondOrderExperimental);
+  // re-create the triangular meshes FIXME: this can lead to hanging nodes for
+  // non manifold geometries (single surface connected to volume)
+  for(int i = 0; i < out.numberoftrifaces; i++){
+    //    printf("%d %d %d\n",i,out.numberoftrifaces,needParam);
+
+    if (out.trifacemarkerlist[i] > 0) {
+      MVertex *v[3];
+      v[0] = numberedV[out.trifacelist[i * 3 + 0] - 1];
+      v[1] = numberedV[out.trifacelist[i * 3 + 1] - 1];
+      v[2] = numberedV[out.trifacelist[i * 3 + 2] - 1];
+      // do not recover prismatic faces !!!
+      GFace *gf = gr->model()->getFaceByTag(out.trifacemarkerlist[i]);
+
+      double guess[2] = {0, 0};
+      if (needParam) {
+	int Count = 0;
+	for(int j = 0; j < 3; j++){
+	  if(!v[j]->onWhat()){
+	    Msg::Error("Uncategorized vertex %d", v[j]->getNum());
+	  }
+	  else if(v[j]->onWhat()->dim() == 2){
+	    double uu,vv;
+	    v[j]->getParameter(0, uu);
+	    v[j]->getParameter(1, vv);
+	    guess[0] += uu;
+	    guess[1] += vv;
+	    Count++;
+	  }
+	  else if(v[j]->onWhat()->dim() == 1){
+	    GEdge *ge = (GEdge*)v[j]->onWhat();
+	    double UU;
+	    v[j]->getParameter(0, UU);
+	    SPoint2 param;
+	    param = ge->reparamOnFace(gf, UU, 1);
+	    guess[0] += param.x();
+	    guess[1] += param.y();
+	    Count++;
+	  }
+	  else if(v[j]->onWhat()->dim() == 0){
+	    SPoint2 param;
+	    GVertex *gv = (GVertex*)v[j]->onWhat();
+	    param = gv->reparamOnFace(gf,1);
+	    guess[0] += param.x();
+	    guess[1] += param.y();
+	    Count++;
+	  }
+	}
+	if(Count != 0){
+	  guess[0] /= Count;
+	  guess[1] /= Count;
+	}
+      }
+
+      for(int j = 0; j < 3; j++){
+	if (out.trifacelist[i * 3 + j] - 1 >= initialSize){
+	  printf("aaaaaaaaaaaaaaargh\n");
+	  //	if(v[j]->onWhat()->dim() == 3){
+	  v[j]->onWhat()->mesh_vertices.erase
+	    (std::find(v[j]->onWhat()->mesh_vertices.begin(),
+		       v[j]->onWhat()->mesh_vertices.end(),
+		       v[j]));
+	  MVertex *v1b;
+	  if(needParam){
+	    // parametric coordinates should be set for the vertex !  (this is
+	    // not 100 % safe yet, so we reserve that operation for high order
+	    // meshes)
+	    GPoint gp = gf->closestPoint(SPoint3(v[j]->x(), v[j]->y(), v[j]->z()), guess);
+	    if(gp.g()){
+	      v1b = new MFaceVertex(gp.x(), gp.y(), gp.z(), gf, gp.u(), gp.v());
+	    }
+	    else{
+	      v1b = new MVertex(v[j]->x(), v[j]->y(), v[j]->z(), gf);
+	      Msg::Warning("The point was not projected back to the surface (%g %g %g)",
+			   v[j]->x(), v[j]->y(), v[j]->z());
+	    }
+	  }
+	  else{
+	    v1b = new MVertex(v[j]->x(), v[j]->y(), v[j]->z(), gf);
+	  }
+
+	  gf->mesh_vertices.push_back(v1b);
+	  numberedV[out.trifacelist[i * 3 + j] - 1] = v1b;
+	  delete v[j];
+	  v[j] = v1b;
+	}
+      }
+      //      printf("new triangle %d %d %d\n",v[0]->onWhat()->dim(), v[1]->onWhat()->dim(), v[2]->onWhat()->dim());
+      MTriangle *t = new MTriangle(v[0], v[1], v[2]);
+      gf->triangles.push_back(t);
+    }// do not do anything with prismatic faces
+  }
+
+
+  for(int i = 0; i < out.numberoftetrahedra; i++){
+    MVertex *v1 = numberedV[out.tetrahedronlist[i * 4 + 0] - 1];
+    MVertex *v2 = numberedV[out.tetrahedronlist[i * 4 + 1] - 1];
+    MVertex *v3 = numberedV[out.tetrahedronlist[i * 4 + 2] - 1];
+    MVertex *v4 = numberedV[out.tetrahedronlist[i * 4 + 3] - 1];
+    MTetrahedron *t = new  MTetrahedron(v1, v2, v3, v4);
+    gr->tetrahedra.push_back(t);
+  }
+}
+
+#endif
+
+static void addOrRemove(const MFace &f,
+			MElement *e,
+			std::map<MFace,MElement*,Less_Face> & bfaces,
+			splitQuadRecovery &sqr)
+{
+  {
+    std::map<MFace, MVertex*, Less_Face>::const_iterator it = sqr._invmap.find(f);
+    if (it != sqr._invmap.end()){
+      addOrRemove (MFace(it->second, f.getVertex(0),f.getVertex(1)),e,bfaces,sqr);
+      addOrRemove (MFace(it->second, f.getVertex(1),f.getVertex(2)),e,bfaces,sqr);
+      addOrRemove (MFace(it->second, f.getVertex(2),f.getVertex(3)),e,bfaces,sqr);
+      addOrRemove (MFace(it->second, f.getVertex(3),f.getVertex(0)),e,bfaces,sqr);
+      return;
+    }
+  }
+
+  std::map<MFace,MElement*,Less_Face>::iterator it = bfaces.find(f);
+  if (it == bfaces.end())bfaces.insert(std::make_pair(f,e));
+  else bfaces.erase(it);
+}
+
+
+/*
+  here, we have a list of elements that actually do not form a mesh
+  --> a set boundary layer elements (prism, hexes, pyramids (and soon tets)
+  --> a set of tetrahedra that respect the external boundary of the BL mesh,
+  yet possiblty containing elements that are on the other side of the boundary
+  and therefore overlapping those elements. We have to extract the good ones !
+
+
+
+*/
+
+static bool AssociateElementsToModelRegionWithBoundaryLayers (GRegion *gr,
+							      std::vector<MTetrahedron*> &tets,
+							      std::vector<MHexahedron*> &hexes,
+							      std::vector<MPrism*> &prisms,
+							      std::vector<MPyramid*> &pyramids,
+							      splitQuadRecovery & sqr)
+{
+  std::set<MElement*> all;
+  all.insert(hexes.begin(),hexes.end());
+  all.insert(prisms.begin(),prisms.end());
+  all.insert(pyramids.begin(),pyramids.end());
+  // start with one BL element !
+  MElement *FIRST = all.size() ? *(all.begin()) : 0;
+  if (!FIRST) return true;
+  all.insert(tets.begin(),tets.end());
+
+  //  printf("coucou1 %d eleemnts\n",all.size());
+  fs_cont search;
+  buildFaceSearchStructure(gr->model(), search);
+
+  // create the graph face 2 elements for the region
+  std::map<MFace,std::pair<MElement*,MElement*> ,Less_Face> myGraph;
+
+  for (std::set<MElement*>::iterator it = all.begin(); it != all.end(); ++it){
+    MElement *t = *it;
+    const int nbf = t->getNumFaces();
+    for (int j=0;j<nbf;j++){
+      MFace f = t->getFace(j);
+      std::map<MFace,std::pair<MElement*,MElement*>,Less_Face>::iterator itf = myGraph.find(f);
+      if (itf == myGraph.end())myGraph.insert (std::make_pair (f, std::make_pair (t,(MElement*)0)));
+      else {
+	// what to do ??????
+	// two tets and one prism --> the prism should be
+	// geometrically on the other side of the tet
+	if (itf->second.second) {
+	  MElement *prism=0, *t1=0, *t2=0;
+	  if (itf->second.second->getType () == TYPE_PRI || itf->second.second->getType () == TYPE_PYR) {
+	    prism = itf->second.second;
+	    t1 =  itf->second.first;
+	    t2 = t;
+	  }
+	  else if (itf->second.first->getType () == TYPE_PRI || itf->second.first->getType () == TYPE_PYR) {
+	    prism = itf->second.first;
+	    t1 =  itf->second.second;
+	    t2 = t;
+	  }
+	  else if (t->getType () == TYPE_PRI || t->getType () == TYPE_PYR) {
+	    prism = t;
+	    t1 =  itf->second.second;
+	    t2 = itf->second.first;
+	  }
+	  else {
+	    printf("types %d %d %d\n",t->getType () ,itf->second.first->getType (),itf->second.second->getType () );
+	  }
+	  if (!t1 || !t2 || !prism){
+	    gr->model()->writeMSH("ooops.msh");
+	    Msg::Error ("Wrong BL configuration");
+	    return false;
+	  }
+	  SVector3 n = f.normal();
+	  SPoint3 c = f.barycenter();
+	  MVertex *v_prism = 0, *v_t1 = 0, *v_t2 = 0;
+	  for (int i=0;i<4;i++){
+	    if (t1->getVertex(i) != f.getVertex(0) &&
+		t1->getVertex(i) != f.getVertex(1) &&
+		t1->getVertex(i) != f.getVertex(2))v_t1 = t1->getVertex(i);
+	    if (t2->getVertex(i) != f.getVertex(0) &&
+		t2->getVertex(i) != f.getVertex(1) &&
+		t2->getVertex(i) != f.getVertex(2))v_t2 = t2->getVertex(i);
+	  }
+	  for (int i=0;i<prism->getNumVertices();i++){
+	    if (prism->getVertex(i) != f.getVertex(0) &&
+		prism->getVertex(i) != f.getVertex(1) &&
+		prism->getVertex(i) != f.getVertex(2)) v_prism = prism->getVertex(i);
+	  }
+	  SVector3 vf1 (v_t1->x() - c.x(),v_t1->y() - c.y(),v_t1->z() - c.z());
+	  SVector3 vf2 (v_t2->x() - c.x(),v_t2->y() - c.y(),v_t2->z() - c.z());
+	  SVector3 vfp (v_prism->x() - c.x(),v_prism->y() - c.y(),v_prism->z() - c.z());
+	  //	  printf("%12.5E %12.5E%12.5E\n",dot(vf1,n),dot(vf2,n),dot(vfp,n));
+	  if (dot (vf1,n) * dot (vfp,n) > 0){itf->second.first = prism;itf->second.second=t2; /*delete t1;*/}
+	  else if (dot (vf2,n) * dot (vfp,n) > 0){itf->second.first = prism;itf->second.second=t1; /*delete t2;*/}
+	  //	  else if (dot (vf2,vfp) > 0){itf->second.first = prism;itf->second.second=t2;}
+	  else Msg::Fatal("Impossible Geom Config");
+	}
+	else itf->second.second = t;
+      }
+    }
+  }
+
+  std::stack<MElement*> myStack;
+  std::set<MElement*> connected;
+  std::set<GFace*> faces_bound;
+  myStack.push(FIRST);
+  while (!myStack.empty()){
+    FIRST = myStack.top();
+    myStack.pop();
+    connected.insert(FIRST);
+    for (int i=0;i<FIRST->getNumFaces();i++){
+      MFace f = FIRST->getFace(i);
+      std::map<MFace, MVertex*, Less_Face>::iterator it = sqr._invmap.find(f);
+      GFace* gfound = 0;
+      if (it != sqr._invmap.end()){
+	gfound = (GFace*)it->second->onWhat();
+	// one pyramid is useless because one element with a quad face impacts the
+	// boundary of the domain.
+	sqr._toDelete.insert(f);
+      }
+      else gfound = findInFaceSearchStructure (f,search);
+      if (!gfound){
+	std::map<MFace,std::pair<MElement*,MElement*>,Less_Face>::iterator
+	  itf = myGraph.find(f);
+	MElement *t_neigh = itf->second.first == FIRST ?
+	  itf->second.second :  itf->second.first;
+	if (!t_neigh)printf("oulalalalalalalala %d vertices\n",f.getNumVertices());
+	if (connected.find(t_neigh) == connected.end())myStack.push(t_neigh);
+      }
+      else {
+	//	if (faces_bound.find(gfound) == faces_bound.end())printf("face %d\n",gfound->tag());
+	faces_bound.insert(gfound);
+      }
+    }
+  }
+
+  //  printf ("found a set of %d elements that are connected with %d bounding faces\n",connected.size(),faces_bound.size());
+  GRegion *myGRegion = getRegionFromBoundingFaces(gr->model(), faces_bound);
+  //  printf("REGION %d %d\n",myGRegion->tag(),gr->tag());
+  if (myGRegion == gr){
+    //    printf("one region %d is found : %d elements\n",myGRegion->tag(),connected.size());
+    myGRegion->tetrahedra.clear();
+    for (std::set<MElement*>::iterator it = connected.begin(); it != connected.end(); ++it){
+      MElement *t = *it;
+      std::set<MVertex*> _mesh_vertices;
+      for (int i=0;i<t->getNumVertices();i++){
+	MVertex *_v = t->getVertex(i);
+	if (_v->onWhat() == gr){
+	  _mesh_vertices.insert(_v);
+	}
+      }
+      //      myGRegion->mesh_vertices.insert(myGRegion->mesh_vertices.end(),_mesh_vertices.begin(),_mesh_vertices.end());
+
+      if (t->getType() == TYPE_TET)
+	myGRegion->tetrahedra.push_back((MTetrahedron*)t);
+      else if (t->getType() == TYPE_HEX)
+	myGRegion->hexahedra.push_back((MHexahedron*)t);
+      else if (t->getType() == TYPE_PRI)
+	myGRegion->prisms.push_back((MPrism*)t);
+      else if (t->getType() == TYPE_PYR)
+	myGRegion->pyramids.push_back((MPyramid*)t);
+    }
+  }
+  else {
+    return false;
+  }
+  return true;
+}
+
+static int getWedge(BoundaryLayerColumns* _columns, MVertex *v1, MVertex *v2,
+                    int indicesVert1 [], int indicesVert2 [])
+{
+  int N1 = _columns->getNbColumns(v1) ;
+  int N2 = _columns->getNbColumns(v2) ;
+  int fanSize = 4;
+  int NW1 = 0;
+  int NW2 = 0;
+  for (int i=0;i<N1;i++){
+    const BoundaryLayerData & c1 = _columns->getColumn(v1,i);
+    if (c1._joint.size())NW1++;
+  }
+  for (int i=0;i<N2;i++){
+    const BoundaryLayerData & c2 = _columns->getColumn(v2,i);
+    if (c2._joint.size())NW2++;
+  }
+
+  std::map<int,int> one2two;
+  for (int i=0;i<NW1;i++){
+    const BoundaryLayerData & c1 = _columns->getColumn(v1,i);
+    for (int j=0;j<NW2;j++){
+      const BoundaryLayerData & c2 = _columns->getColumn(v2,j);
+      for (unsigned int k=0;k<c2._joint.size();k++){
+	if (std::find(c1._joint.begin(),c1._joint.end(),c2._joint[k]) !=
+	    c1._joint.end()) {
+	  one2two[i] = j;
+	}
+      }
+    }
+  }
+
+  //  printf("%d %d %d %d \n",N1,N2,NW1,NW2);
+  //  for (std::map<int,int>::iterator it = one2two.begin(); it != one2two.end(); it++){
+  //    printf("one2two[%d] = %d\n",it->first,it->second);
+  //  }
+  if (one2two.size() != 2)return 0;
+
+  int vert1Start,vert1End;
+  int vert2Start,vert2End;
+  std::map<int,int>::iterator it = one2two.begin();
+  vert1Start = it->first;
+  vert2Start = it->second;
+  ++it;
+  vert1End   = it->first;
+  vert2End   = it->second;
+
+
+  int INDEX1 = 0, count = 0;
+  for (int i=0;i<NW1;i++){
+    for (int j=i+1;j<NW1;j++){
+      if ((vert1Start == i && vert1End == j) ||
+	  (vert1Start == j && vert1End == i))
+	{
+	  INDEX1 = count;
+	}
+      count++;
+    }
+  }
+  int INDEX2 = 0;
+  count = 0;
+  for (int i=0;i<NW2;i++){
+    for (int j=i+1;j<NW2;j++){
+      if ((vert2Start == i && vert2End == j) ||
+	  (vert2Start == j && vert2End == i))
+	{
+	  INDEX2 = count;
+	}
+      count++;
+    }
+  }
+
+  int indexVert1Start = NW1 + fanSize * ( 0 + INDEX1);
+  int indexVert1End   = NW1 + fanSize * ( 1 + INDEX1);
+
+  int indexVert2Start = NW2 + fanSize * ( 0 + INDEX2);
+  int indexVert2End   = NW2 + fanSize * ( 1 + INDEX2);
+
+  indicesVert1[0]         = vert1Start;
+  int k=1;
+  for (int i=indexVert1Start;i< indexVert1End;++i)indicesVert1[k++] = i;
+  indicesVert1[fanSize+1] = vert1End;
+
+  indicesVert2[0]         = vert2Start;
+  k = 1;
+  if (indexVert2End > indexVert2Start){
+    for (int i=indexVert2Start;i< indexVert2End;++i)indicesVert2[k++] = i;
+  }
+  else {
+    for (int i=indexVert2Start-1;i<= indexVert2End;--i)indicesVert2[k++] = i;
+  }
+  indicesVert2[fanSize+1] = vert2End;
+
+
+  //  printf("%d %d %d %d %d %d %d %d\n",vert1Start,vert1End,vert2Start,vert2End,indexVert1Start,indexVert1End,indexVert2Start,indexVert2End);
+  //  return 0;
+
+  return fanSize  + 2;
+}
+
+
+static bool modifyInitialMeshForTakingIntoAccountBoundaryLayers(GRegion *gr, splitQuadRecovery & sqr)
+{
+  if (getBLField(gr->model())) insertVerticesInRegion(gr,-1);
+  if (!buildAdditionalPoints3D (gr)) return false;
+  BoundaryLayerColumns* _columns = gr->getColumns();
+  std::map<MFace,MElement*,Less_Face> bfaces;
+
+  std::vector<MPrism*> blPrisms;
+  std::vector<MHexahedron*> blHexes;
+  std::vector<MPyramid*> blPyrs;
+  std::list<GFace*> faces = gr->faces();
+
+  std::list<GFace*> embedded_faces = gr->embeddedFaces();
+  faces.insert(faces.begin(), embedded_faces.begin(),embedded_faces.end());
+  std::set<MVertex*> verts;
+
+  {
+    std::list<GFace*>::iterator itf = faces.begin();
+    while(itf != faces.end()){
+      for(unsigned int i = 0; i< (*itf)->getNumMeshElements(); i++){
+	MElement *e = (*itf)->getMeshElement(i);
+	addOrRemove (e->getFace(0),0,bfaces,sqr);
+      }
+      ++itf;
+    }
+  }
+
+  std::list<GFace*>::iterator itf = faces.begin();
+  while(itf != faces.end()){
+    for(unsigned int i = 0; i< (*itf)->triangles.size(); i++){
+      MVertex *v1 = (*itf)->triangles[i]->getVertex(0);
+      MVertex *v2 = (*itf)->triangles[i]->getVertex(1);
+      MVertex *v3 = (*itf)->triangles[i]->getVertex(2);
+      MFace dv (v1,v2,v3);
+      for (unsigned int SIDE = 0 ; SIDE < _columns->_normals3D.count(dv); SIDE ++){
+	faceColumn fc =  _columns->getColumns(*itf,v1, v2, v3, SIDE);
+	const BoundaryLayerData & c1 = fc._c1;
+	const BoundaryLayerData & c2 = fc._c2;
+	const BoundaryLayerData & c3 = fc._c3;
+	int N = std::min(c1._column.size(),std::min(c2._column.size(),c3._column.size()));
+
+	//	double distMax = getDistMax (v1, v2, v3, c1._n, c2._n, c3._n);
+	MFace f_low (v1,v2,v3);
+	SVector3 n_low = f_low.normal();
+	//	printf("%d Layers\n",N);
+	std::vector<MElement*> myCol;
+	for (int l=0;l < N ;++l){
+	  MVertex *v11,*v12,*v13,*v21,*v22,*v23;
+	  v21 = c1._column[l];
+	  v22 = c2._column[l];
+	  v23 = c3._column[l];
+	  if (l == 0){
+	    v11 = v1;
+	    v12 = v2;
+	    v13 = v3;
+	  }
+	  else {
+	    v11 = c1._column[l-1];
+	    v12 = c2._column[l-1];
+	    v13 = c3._column[l-1];
+	  }
+	  MFace f_up (v21,v22,v23);
+	  SVector3 n_up = f_up.normal();
+	  double dotProd = dot(n_up,n_low);
+	  MPrism *prism = new MPrism(v11,v12,v13,v21,v22,v23);
+	  if (dotProd > 0.2 && prism->skewness() > 0.1){
+	    blPrisms.push_back(prism);
+	    myCol.push_back(prism);
+	  }
+	  else {
+	    delete prism;
+	    l = N+1;
+	  }
+	}
+	if (!myCol.empty()){
+	  for (unsigned int l=0;l<myCol.size();l++)_columns->_toFirst[myCol[l]] = myCol[0];
+	  _columns->_elemColumns[myCol[0]] = myCol;
+	}
+      }
+    }
+    ++itf;
+  }
+
+  std::set<MEdge,Less_Edge> edges;
+  {
+    std::list<GEdge*> gedges = gr->edges();
+    for (std::list<GEdge*>::iterator it = gedges.begin(); it != gedges.end() ; ++it){
+      for (unsigned int i=0;i<(*it)->lines.size();++i){
+	edges.insert(MEdge((*it)->lines[i]->getVertex(0),(*it)->lines[i]->getVertex(1)));
+      }
+    }
+  }
+
+  // now treat the Wedges
+  // we have to know the two target GFaces that are concerned with a GEdge
+  std::set<MEdge>::iterator ite =  edges.begin();
+  while(ite != edges.end()){
+    MEdge e = *ite;
+    MVertex *v1 = e.getVertex(0);
+    MVertex *v2 = e.getVertex(1);
+    if (v1 != v2){
+      int indices1[256];
+      int indices2[256];
+      int NbW = getWedge (_columns, v1, v2, indices1,indices2);
+      for (int i=0;i<NbW-1;i++){
+	int i11 = indices1[i];
+	int i12 = indices1[i+1];
+	int i21 = indices2[i];
+	int i22 = indices2[i+1];
+	BoundaryLayerData c11 = _columns->getColumn(v1,i11);
+	BoundaryLayerData c12 = _columns->getColumn(v1,i12);
+	BoundaryLayerData c21 = _columns->getColumn(v2,i21);
+	BoundaryLayerData c22 = _columns->getColumn(v2,i22);
+	int N = std::min(c11._column.size(),
+			 std::min(c12._column.size(),
+				  std::min(c21._column.size(), c22._column.size())));
+	std::vector<MElement*> myCol;
+	for (int l=0;l < N ;++l){
+	  MVertex *v11,*v12,*v13,*v14;
+	  MVertex *v21,*v22,*v23,*v24;
+	  v21 = c11._column[l];
+	  v22 = c12._column[l];
+	  v23 = c22._column[l];
+	  v24 = c21._column[l];
+	  if (l == 0){
+	    v11 = v12 = v1;
+	    v13 = v14 = v2;
+	  }
+	  else {
+	    v11 = c11._column[l-1];
+	    v12 = c12._column[l-1];
+	    v13 = c22._column[l-1];
+	    v14 = c21._column[l-1];
+	  }
+
+	  if (l == 0){
+	    MPrism *prism = new MPrism(v12,v21,v22,v13,v24,v23);
+	    // store the layer the element belongs
+	    myCol.push_back(prism);
+
+	    blPrisms.push_back(prism);
+	  }
+	  else {
+	    MHexahedron *hex = new MHexahedron(v11,v12,v13,v14,v21,v22,v23,v24);
+	    // store the layer the element belongs
+	    myCol.push_back(hex);
+	    blHexes.push_back(hex);
+	  }
+	}
+	if (!myCol.empty()){
+	  for (unsigned int l=0;l<myCol.size();l++)_columns->_toFirst[myCol[l]] = myCol[0];
+	  _columns->_elemColumns[myCol[0]] = myCol;
+	}
+      }
+    }
+    ++ite;
+  }
+  // ------------------------------------------------------------------------------------
+  // FIXME : NOT 100 % CORRECT
+  //    filterOverlappingElements (blPrisms,blHexes,_columns->_elemColumns,_columns->_toFirst);
+  // ------------------------------------------------------------------------------------
+  {
+    FILE *ff2 = fopen ("tato3D.pos","w");
+    fprintf(ff2,"View \" \"{\n");
+    for (unsigned int i = 0; i < blPrisms.size();i++){
+      blPrisms[i]->writePOS(ff2,1,0,0,0,0,0);
+    }
+    for (unsigned int i = 0; i < blHexes.size();i++){
+      blHexes[i]->writePOS(ff2,1,0,0,0,0,0);
+    }
+    fprintf(ff2,"};\n");
+    fclose(ff2);
+  }
+
+  for (unsigned int i = 0; i < blPrisms.size();i++){
+    for (unsigned int j=0;j<5;j++)
+      addOrRemove(blPrisms[i]->getFace(j),blPrisms[i],bfaces,sqr);
+    for (int j = 0; j < 6; j++)
+      if(blPrisms[i]->getVertex(j)->onWhat() == gr)verts.insert(blPrisms[i]->getVertex(j));
+  }
+  for (unsigned int i = 0; i < blHexes.size();i++){
+    for (unsigned int j=0;j<6;j++)
+      addOrRemove(blHexes[i]->getFace(j),blHexes[i],bfaces, sqr);
+    for (int j = 0; j < 8; j++)
+      if(blHexes[i]->getVertex(j)->onWhat() == gr)verts.insert(blHexes[i]->getVertex(j));
+  }
+
+  discreteFace *nf = new discreteFace(gr->model(), 444444);
+  gr->model()->add (nf);
+  std::list<GFace*> hop;
+  std::map<MFace,MElement*,Less_Face>::iterator it =  bfaces.begin();
+
+  FILE *ff = fopen ("toto3D.pos","w");
+  fprintf(ff,"View \" \"{\n");
+  for (; it != bfaces.end(); ++it){
+    if (it->first.getNumVertices() == 3){
+      nf->triangles.push_back(new MTriangle (it->first.getVertex(0),it->first.getVertex(1),it->first.getVertex(2)));
+      fprintf(ff,"ST (%g,%g,%g,%g,%g,%g,%g,%g,%g){1,1,1};\n",
+	      it->first.getVertex(0)->x(),it->first.getVertex(0)->y(),it->first.getVertex(0)->z(),
+	      it->first.getVertex(1)->x(),it->first.getVertex(1)->y(),it->first.getVertex(1)->z(),
+	      it->first.getVertex(2)->x(),it->first.getVertex(2)->y(),it->first.getVertex(2)->z());
+    }
+    else {
+
+      // we have a quad face --> create a pyramid
+
+      MElement *e = it->second;
+
+      // compute the center of the face;
+      SPoint3 center (0.25*(it->first.getVertex(0)->x()+it->first.getVertex(1)->x()+it->first.getVertex(2)->x()+it->first.getVertex(3)->x()),
+		      0.25*(it->first.getVertex(0)->y()+it->first.getVertex(1)->y()+it->first.getVertex(2)->y()+it->first.getVertex(3)->y()),
+		      0.25*(it->first.getVertex(0)->z()+it->first.getVertex(1)->z()+it->first.getVertex(2)->z()+it->first.getVertex(3)->z()));
+      // compute the center of the opposite face;
+      SPoint3 opposite (0,0,0);
+      int counter=0;
+      for (int i=0;i<e->getNumVertices();i++){
+	MVertex *vv = e->getVertex(i);
+	bool found = false;
+	for (int j=0;j<4;j++){
+	  MVertex *ww = it->first.getVertex(j);
+	  if (ww == vv)found = true;
+	}
+	if (!found){
+	  counter ++;
+	  opposite += SPoint3(vv->x(),vv->y(),vv->z());
+	}
+      }
+      //      printf("counter = %d\n",counter);
+      if(counter)
+        opposite /= (double)counter;
+
+      SVector3 dir = center - opposite;
+      MTriangle temp (it->first.getVertex(0),it->first.getVertex(1),it->first.getVertex(2));
+      double D = temp.minEdge();
+      dir.normalize();
+      const double eps = D*1.e-2;
+      MVertex *newv = new MVertex (center.x() + eps * dir.x(),center.y() + eps * dir.y(), center.z() + eps * dir.z(), gr);
+
+      MPyramid *pyr = new MPyramid (it->first.getVertex(0),it->first.getVertex(1),it->first.getVertex(2),it->first.getVertex(3),newv);
+      verts.insert(newv);
+      blPyrs.push_back(pyr);
+
+      nf->triangles.push_back(new MTriangle (it->first.getVertex(0),it->first.getVertex(1),newv));
+      nf->triangles.push_back(new MTriangle (it->first.getVertex(1),it->first.getVertex(2),newv));
+      nf->triangles.push_back(new MTriangle (it->first.getVertex(2),it->first.getVertex(3),newv));
+      nf->triangles.push_back(new MTriangle (it->first.getVertex(3),it->first.getVertex(0),newv));
+
+      fprintf(ff,"ST (%g,%g,%g,%g,%g,%g,%g,%g,%g){2,2,2};\n",
+	      it->first.getVertex(0)->x(),it->first.getVertex(0)->y(),it->first.getVertex(0)->z(),
+	      it->first.getVertex(1)->x(),it->first.getVertex(1)->y(),it->first.getVertex(1)->z(),
+	      newv->x(),newv->y(),newv->z());
+
+      fprintf(ff,"ST (%g,%g,%g,%g,%g,%g,%g,%g,%g){2,2,2};\n",
+	      it->first.getVertex(1)->x(),it->first.getVertex(1)->y(),it->first.getVertex(1)->z(),
+	      it->first.getVertex(2)->x(),it->first.getVertex(2)->y(),it->first.getVertex(2)->z(),
+	      newv->x(),newv->y(),newv->z());
+
+      fprintf(ff,"ST (%g,%g,%g,%g,%g,%g,%g,%g,%g){2,2,2};\n",
+	      it->first.getVertex(2)->x(),it->first.getVertex(2)->y(),it->first.getVertex(2)->z(),
+	      it->first.getVertex(3)->x(),it->first.getVertex(3)->y(),it->first.getVertex(3)->z(),
+	      newv->x(),newv->y(),newv->z());
+      fprintf(ff,"ST (%g,%g,%g,%g,%g,%g,%g,%g,%g){2,2,2};\n",
+	      it->first.getVertex(3)->x(),it->first.getVertex(3)->y(),it->first.getVertex(3)->z(),
+	      it->first.getVertex(0)->x(),it->first.getVertex(0)->y(),it->first.getVertex(0)->z(),
+	      newv->x(),newv->y(),newv->z());
+
+      fprintf(ff,"SQ (%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g){3,3,3,3};\n",
+	      it->first.getVertex(0)->x(),it->first.getVertex(0)->y(),it->first.getVertex(0)->z(),
+	      it->first.getVertex(1)->x(),it->first.getVertex(1)->y(),it->first.getVertex(1)->z(),
+	      it->first.getVertex(2)->x(),it->first.getVertex(2)->y(),it->first.getVertex(2)->z(),
+	      it->first.getVertex(3)->x(),it->first.getVertex(3)->y(),it->first.getVertex(3)->z());
+    }
+  }
+  fprintf(ff,"};\n");
+  fclose(ff);
+
+  printf("discrete face with %d %d elems\n", (int)nf->triangles.size(),
+         (int)nf->quadrangles.size());
+  hop.push_back(nf);
+
+  for(unsigned int i = 0; i < gr->tetrahedra.size(); i++) delete gr->tetrahedra[i];
+  gr->tetrahedra.clear();
+
+  gr->set(hop);
+  CreateAnEmptyVolumeMesh(gr);
+  printf("%d tets\n", (int)gr->tetrahedra.size());
+  deMeshGFace _kill;
+  _kill (nf);
+  //<<<<<<< .mine
+  gr->model()->remove(nf);
+  //  delete nf;
+  //=======
+  //>>>>>>> .r18259
+  delete nf;
+
+  gr->set(faces);
+  gr->mesh_vertices.insert(gr->mesh_vertices.begin(),verts.begin(),verts.end());
+
+  gr->model()->writeMSH("BL_start.msh");
+
+  AssociateElementsToModelRegionWithBoundaryLayers (gr, gr->tetrahedra , blHexes, blPrisms, blPyrs, sqr);
+
+  gr->model()->writeMSH("BL_start2.msh");
+
+  return true;
+}
+
+void _relocateVertex(MVertex *ver,
+		     const std::vector<MElement*> &lt)
+{
+  if(ver->onWhat()->dim() != 3) return;
+  double x = 0, y=0, z=0;
+  int N = 0;
+  bool isPyramid = false;
+  for(unsigned int i = 0; i < lt.size(); i++){
+    double XCG=0,YCG=0,ZCG=0;
+    for (int j=0;j<lt[i]->getNumVertices();j++){
+      XCG += lt[i]->getVertex(j)->x();
+      YCG += lt[i]->getVertex(j)->y();
+      ZCG += lt[i]->getVertex(j)->z();
+    }
+    x += XCG;
+    y += YCG;
+    z += ZCG;
+    if (lt[i]->getNumVertices() == 5) isPyramid = true;
+    N += lt[i]->getNumVertices();
+  }
+  if (isPyramid){
+    ver->x() = x / N;
+    ver->y() = y / N;
+    ver->z() = z / N;
+  }
+}
+
+#if defined(HAVE_TETGEN)
+bool CreateAnEmptyVolumeMesh(GRegion *gr)
+{
+  printf("creating an empty volume mesh\n");
+  splitQuadRecovery sqr;
+  tetgenio in, out;
+  std::vector<MVertex*> numberedV;
+  char opts[128];
+  buildTetgenStructure(gr, in, numberedV, sqr);
+  printf("tetgen structure created\n");
+  sprintf(opts, "-Ype%c",
+	  (Msg::GetVerbosity() < 3) ? 'Q':
+	  (Msg::GetVerbosity() > 6) ? 'V': '\0');
+  try{
+    tetrahedralize(opts, &in, &out);
+  }
+  catch (int error){
+    Msg::Error("Self intersecting surface mesh");
+    return false;
+  }
+  printf("creating an empty volume mesh done\n");
+  TransferTetgenMesh(gr, in, out, numberedV);
+  return true;
+}
+
+#else
+
+bool CreateAnEmptyVolumeMesh(GRegion *gr)
+{
+  Msg::Error("You should compile with TETGEN in order to create an empty volume mesh");
+  return false;
+}
+
+#endif
+
+void MeshDelaunayVolumeTetgen(std::vector<GRegion*> &regions)
+{
+  if(regions.empty()) return;
+
+#if !defined(HAVE_TETGEN)
+  Msg::Error("Tetgen is not compiled in this version of Gmsh");
+#else
+
+  for(unsigned int i = 0; i < regions.size(); i++)
+    Msg::Info("Meshing volume %d (Delaunay)", regions[i]->tag());
+
+  // put all the faces in the same model
+  GRegion *gr = regions[0];
+  std::list<GFace*> faces = gr->faces();
+
+  std::set<GFace*> allFacesSet;
+  for(unsigned int i = 0; i < regions.size(); i++){
+    std::list<GFace*> f = regions[i]->faces();
+    allFacesSet.insert(f.begin(), f.end());
+    f = regions[i]->embeddedFaces();
+    allFacesSet.insert(f.begin(), f.end());
+  }
+  std::list<GFace*> allFaces;
+  for(std::set<GFace*>::iterator it = allFacesSet.begin(); it != allFacesSet.end(); it++){
+    allFaces.push_back(*it);
+  }
+  gr->set(allFaces);
+
+  // mesh with tetgen, possibly changing the mesh on boundaries (leave
+  // this in block, so in/out are destroyed before we refine the mesh)
+  splitQuadRecovery sqr;
+  {
+    tetgenio in, out;
+    std::vector<MVertex*> numberedV;
+    char opts[128];
+    buildTetgenStructure(gr, in, numberedV, sqr);
+    if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL_DEL ||
+       CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL_HEX ||
+       CTX::instance()->mesh.algo3d == ALGO_3D_MMG3D ||
+       CTX::instance()->mesh.algo2d == ALGO_2D_FRONTAL_QUAD ||
+       CTX::instance()->mesh.algo2d == ALGO_2D_BAMG){
+      sprintf(opts, "Ype%c",  (Msg::GetVerbosity() < 3) ? 'Q':
+	      (Msg::GetVerbosity() > 6) ? 'V': '\0');
+      // removed -q because mesh sizes at new vertices are wrong
+      // sprintf(opts, "-q1.5pY%c",  (Msg::GetVerbosity() < 3) ? 'Q':
+      // 	 (Msg::GetVerbosity() > 6) ? 'V': '\0');
+    }
+    else if (CTX::instance()->mesh.algo3d == ALGO_3D_RTREE){
+       sprintf(opts, "S0Ype%c",  (Msg::GetVerbosity() < 3) ? 'Q':
+	       (Msg::GetVerbosity() > 6) ? 'V': '\0');
+    }
+    else {
+      sprintf(opts, "Ype%c",
+              (Msg::GetVerbosity() < 3) ? 'Q':
+              (Msg::GetVerbosity() > 6) ? 'V': '\0');
+      // removed -q because mesh sizes at new vertices are wrong
+      // sprintf(opts, "-q3.5Ype%c", (Msg::GetVerbosity() < 3) ? 'Q':
+      //        (Msg::GetVerbosity() > 6) ? 'V': '\0');*/
+    }
+    try{
+      tetrahedralize(opts, &in, &out);
+    }
+    catch (int error){
+      Msg::Error("Self intersecting surface mesh, computing intersections "
+                 "(this could take a while)");
+      sprintf(opts, "dV");
+      try{
+        tetrahedralize(opts, &in, &out);
+        Msg::Info("%d intersecting faces have been saved into 'intersect.pos'",
+                  out.numberoftrifaces);
+        FILE *fp = Fopen("intersect.pos", "w");
+        if(fp){
+          fprintf(fp, "View \"intersections\" {\n");
+          for(int i = 0; i < out.numberoftrifaces; i++){
+            MVertex *v1 = numberedV[out.trifacelist[i * 3 + 0] - 1];
+            MVertex *v2 = numberedV[out.trifacelist[i * 3 + 1] - 1];
+            MVertex *v3 = numberedV[out.trifacelist[i * 3 + 2] - 1];
+            int surf = out.trifacemarkerlist[i];
+            fprintf(fp, "ST(%g,%g,%g,%g,%g,%g,%g,%g,%g){%d,%d,%d};\n",
+                    v1->x(), v1->y(), v1->z(), v2->x(), v2->y(), v2->z(),
+                    v3->x(), v3->y(), v3->z(), surf, surf, surf);
+          }
+          fprintf(fp, "};\n");
+          fclose(fp);
+        }
+        else
+          Msg::Error("Could not open file 'intersect.pos'");
+      }
+      catch (int error2){
+        Msg::Error("Surface mesh is wrong, cannot do the 3D mesh");
+      }
+      gr->set(faces);
+      return;
+    }
+    TransferTetgenMesh(gr, in, out, numberedV);
+  }
+
+
+   // sort triangles in all model faces in order to be able to search in vectors
+  std::list<GFace*>::iterator itf =  allFaces.begin();
+  while(itf != allFaces.end()){
+    compareMTriangleLexicographic cmp;
+    std::sort((*itf)->triangles.begin(), (*itf)->triangles.end(), cmp);
+    ++itf;
+  }
+
+  // restore the initial set of faces
+  gr->set(faces);
+
+  bool _BL = modifyInitialMeshForTakingIntoAccountBoundaryLayers(gr,sqr);
+
+  // now do insertion of points
+  if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL_DEL)
+    bowyerWatsonFrontalLayers(gr, false);
+  else if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL_HEX)
+    bowyerWatsonFrontalLayers(gr, true);
+  else if(CTX::instance()->mesh.algo3d == ALGO_3D_MMG3D){
+    refineMeshMMG(gr);
+  }
+  else
+    if(!Filler::get_nbr_new_vertices() && !LpSmoother::get_nbr_interior_vertices()){
+      insertVerticesInRegion(gr,2000000000,!_BL);
+    }
+
+  //emi test frame field
+  // int NumSmooth = 10;//CTX::instance()->mesh.smoothCrossField
+  // std::cout << "NumSmooth = " << NumSmooth << std::endl;
+  // if(NumSmooth && (gr->dim() == 3)){
+  //   double scale = gr->bounds().diag()*1e-2;
+  //   Frame_field::initRegion(gr,NumSmooth);
+  //   Frame_field::saveCrossField("cross0.pos",scale);
+  //   //Frame_field::smoothRegion(gr,NumSmooth);
+  //   //Frame_field::saveCrossField("cross1.pos",scale);
+  //   GFace *gf = GModel::current()->getFaceByTag(2);
+  //   Frame_field::continuousCrossField(gr,gf);
+  //   Frame_field::saveCrossField("cross2.pos",scale);
+  // }
+  // Frame_field::init_region(gr);
+  // Frame_field::clear();
+  // exit(1);
+  //fin test emi
+
+ if (sqr.buildPyramids (gr->model())){
+   // relocate vertices if pyramids
+   for(unsigned int k = 0; k < regions.size(); k++){
+     v2t_cont adj;
+     buildVertexToElement(regions[k]->tetrahedra, adj);
+     buildVertexToElement(regions[k]->pyramids, adj);
+     v2t_cont::iterator it = adj.begin();
+     while (it != adj.end()){
+       _relocateVertex( it->first, it->second);
+       ++it;
+     }
+   }
+ }
+#endif
+}
+
+// uncomment this to test the new code
+//##define NEW_CODE
+
+void MeshDelaunayVolume(std::vector<GRegion*> &regions)
+{
+  if(regions.empty()) return;
+
+#if !defined(NEW_CODE) && defined(HAVE_TETGEN)
+  MeshDelaunayVolumeTetgen(regions);
+  return;
+#endif
+  splitQuadRecovery sqr;
+
+  for(unsigned int i = 0; i < regions.size(); i++)
+    Msg::Info("Meshing volume %d (Delaunay)", regions[i]->tag());
+
+  // put all the faces in the same model
+  GRegion *gr = regions[0];
+  std::list<GFace*> faces = gr->faces();
+
+  std::set<GFace*> allFacesSet;
+  for(unsigned int i = 0; i < regions.size(); i++){
+    std::list<GFace*> f = regions[i]->faces();
+    allFacesSet.insert(f.begin(), f.end());
+    f = regions[i]->embeddedFaces();
+    allFacesSet.insert(f.begin(), f.end());
+  }
+  std::list<GFace*> allFaces;
+  for(std::set<GFace*>::iterator it = allFacesSet.begin();
+      it != allFacesSet.end(); it++){
+    allFaces.push_back(*it);
+  }
+  gr->set(allFaces);
+
+  try{
+    meshGRegionBoundaryRecovery *init = new meshGRegionBoundaryRecovery();
+    init->reconstructmesh(gr);
+    delete init;
+  }
+  catch(int err){
+    Msg::Error("Could not recover boundary: error %d", err);
+  }
+
+  // sort triangles in all model faces in order to be able to search in vectors
+  std::list<GFace*>::iterator itf =  allFaces.begin();
+  while(itf != allFaces.end()){
+    compareMTriangleLexicographic cmp;
+    std::sort((*itf)->triangles.begin(), (*itf)->triangles.end(), cmp);
+    ++itf;
+  }
+
+  // restore the initial set of faces
+  gr->set(faces);
+
+  bool _BL = modifyInitialMeshForTakingIntoAccountBoundaryLayers(gr,sqr);
+
+  // now do insertion of points
+  if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL_DEL)
+    bowyerWatsonFrontalLayers(gr, false);
+  else if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL_HEX)
+    bowyerWatsonFrontalLayers(gr, true);
+  else if(CTX::instance()->mesh.algo3d == ALGO_3D_MMG3D){
+    refineMeshMMG(gr);
+  }
+  else if(!Filler::get_nbr_new_vertices() && !LpSmoother::get_nbr_interior_vertices()){
+    insertVerticesInRegion(gr,2000000000,!_BL);
+  }
+}
+
+#if defined(HAVE_NETGEN)
+
+namespace nglib {
+#include "nglib_gmsh.h"
+}
+using namespace nglib;
+
+static void getAllBoundingVertices(GRegion *gr, std::set<MVertex*> &allBoundingVertices)
+{
+  std::list<GFace*> faces = gr->faces();
+  std::list<GFace*>::iterator it = faces.begin();
+
+  while (it != faces.end()){
+    GFace *gf = (*it);
+    for(unsigned int i = 0; i < gf->triangles.size(); i++){
+      MTriangle *t = gf->triangles[i];
+      for(int k = 0; k < 3; k++)
+        if(allBoundingVertices.find(t->getVertex(k)) ==  allBoundingVertices.end())
+          allBoundingVertices.insert(t->getVertex(k));
+    }
+    ++it;
+  }
+}
+
+Ng_Mesh *buildNetgenStructure(GRegion *gr, bool importVolumeMesh,
+                              std::vector<MVertex*> &numberedV)
+{
+  Ng_Init();
+  Ng_Mesh *ngmesh = Ng_NewMesh();
+
+  std::set<MVertex*> allBoundingVertices;
+  getAllBoundingVertices(gr, allBoundingVertices);
+
+  std::set<MVertex*>::iterator itv = allBoundingVertices.begin();
+  int I = 1;
+  while(itv != allBoundingVertices.end()){
+    double tmp[3];
+    tmp[0] = (*itv)->x();
+    tmp[1] = (*itv)->y();
+    tmp[2] = (*itv)->z();
+    (*itv)->setIndex(I++);
+    numberedV.push_back(*itv);
+    Ng_AddPoint(ngmesh, tmp);
+    ++itv;
+  }
+
+  if(importVolumeMesh){
+    for(unsigned int i = 0; i < gr->mesh_vertices.size(); i++){
+      double tmp[3];
+      tmp[0] = gr->mesh_vertices[i]->x();
+      tmp[1] = gr->mesh_vertices[i]->y();
+      tmp[2] = gr->mesh_vertices[i]->z();
+      gr->mesh_vertices[i]->setIndex(I++);
+      Ng_AddPoint(ngmesh, tmp);
+    }
+  }
+  std::list<GFace*> faces = gr->faces();
+  std::list<GFace*>::iterator it = faces.begin();
+  while(it != faces.end()){
+    GFace *gf = (*it);
+    for(unsigned int i = 0; i< gf->triangles.size(); i++){
+      MTriangle *t = gf->triangles[i];
+      int tmp[3];
+      tmp[0] = t->getVertex(0)->getIndex();
+      tmp[1] = t->getVertex(1)->getIndex();
+      tmp[2] = t->getVertex(2)->getIndex();
+      Ng_AddSurfaceElement(ngmesh, NG_TRIG, tmp);
+    }
+    ++it;
+  }
+
+  if(importVolumeMesh){
+    for(unsigned int i = 0; i< gr->tetrahedra.size(); i++){
+      MTetrahedron *t = gr->tetrahedra[i];
+      // netgen expects tet with negative volume
+      if(t->getVolumeSign() > 0) t->reverse();
+      int tmp[4];
+      tmp[0] = t->getVertex(0)->getIndex();
+      tmp[1] = t->getVertex(1)->getIndex();
+      tmp[2] = t->getVertex(2)->getIndex();
+      tmp[3] = t->getVertex(3)->getIndex();
+      Ng_AddVolumeElement(ngmesh, NG_TET, tmp);
+    }
+  }
+
+  return ngmesh;
+}
+
+void TransferVolumeMesh(GRegion *gr, Ng_Mesh *ngmesh,
+                        std::vector<MVertex*> &numberedV)
+{
+  // Gets total number of vertices of Netgen's mesh
+  int nbv = Ng_GetNP(ngmesh);
+  if(!nbv) return;
+
+  int nbpts = numberedV.size();
+
+  // Create new volume vertices
+  for(int i = nbpts; i < nbv; i++){
+    double tmp[3];
+    Ng_GetPoint(ngmesh, i + 1, tmp);
+    MVertex *v = new MVertex (tmp[0], tmp[1], tmp[2], gr);
+    numberedV.push_back(v);
+    gr->mesh_vertices.push_back(v);
+  }
+
+  // Get total number of simplices of Netgen's mesh
+  int nbe = Ng_GetNE(ngmesh);
+
+  // Create new volume simplices
+  for(int i = 0; i < nbe; i++){
+    int tmp[4];
+    Ng_GetVolumeElement(ngmesh, i + 1, tmp);
+    MTetrahedron *t = new MTetrahedron(numberedV[tmp[0] - 1],
+                                       numberedV[tmp[1] - 1],
+                                       numberedV[tmp[2] - 1],
+                                       numberedV[tmp[3] - 1]);
+    gr->tetrahedra.push_back(t);
+  }
+}
+
+#endif
+
+void deMeshGRegion::operator() (GRegion *gr)
+{
+  if(gr->geomType() == GEntity::DiscreteVolume) return;
+  gr->deleteMesh();
+}
+
+/// X_1 (1-u-v) + X_2 u + X_3 v = P_x + t N_x
+/// Y_1 (1-u-v) + Y_2 u + Y_3 v = P_y + t N_y
+/// Z_1 (1-u-v) + Z_2 u + Z_3 v = P_z + t N_z
+
+int intersect_line_triangle(double X[3], double Y[3], double Z[3] ,
+                            double P[3], double N[3], const double eps_prec)
+{
+  double mat[3][3], det;
+  double b[3], res[3];
+
+  mat[0][0] = X[1] - X[0];
+  mat[0][1] = X[2] - X[0];
+  mat[0][2] = N[0];
+
+  mat[1][0] = Y[1] - Y[0];
+  mat[1][1] = Y[2] - Y[0];
+  mat[1][2] = N[1];
+
+  mat[2][0] = Z[1] - Z[0];
+  mat[2][1] = Z[2] - Z[0];
+  mat[2][2] = N[2];
+
+  b[0] = P[0] - X[0];
+  b[1] = P[1] - Y[0];
+  b[2] = P[2] - Z[0];
+
+  if(!sys3x3_with_tol(mat, b, res, &det))
+    {
+      return 0;
+    }
+  //  printf("coucou %g %g %g\n",res[0],res[1],res[2]);
+  if(res[0] >= eps_prec && res[0] <= 1.0 - eps_prec &&
+     res[1] >= eps_prec && res[1] <= 1.0 - eps_prec &&
+     1 - res[0] - res[1] >= eps_prec && 1 - res[0] - res[1] <= 1.0 - eps_prec){
+    // the line clearly intersects the triangle
+    return (res[2] > 0) ? 1 : 0;
+  }
+  else if(res[0] < -eps_prec || res[0] > 1.0 + eps_prec ||
+          res[1] < -eps_prec || res[1] > 1.0 + eps_prec ||
+          1 - res[0] - res[1] < -eps_prec || 1 - res[0] - res[1] > 1.0 + eps_prec){
+    // the line clearly does NOT intersect the triangle
+    return 0;
+  }
+  else{
+    printf("non robust stuff\n");
+    // the intersection is not robust, try another triangle
+    return -10000;
+  }
+}
+
+void setRand(double r[6])
+{
+  for(int i = 0; i < 6; i++)
+    r[i] = 0.0001 * ((double)rand() / (double)RAND_MAX);
+}
+
+void meshNormalsPointOutOfTheRegion(GRegion *gr)
+{
+  std::list<GFace*> faces = gr->faces();
+  std::list<GFace*>::iterator it = faces.begin();
+
+  //for (std::list<GFace*>::iterator itb = faces.begin(); itb != faces.end(); itb ++)
+  //  printf("face=%d size =%d\n", (*itb)->tag(), faces.size());
+
+  double rrr[6];
+  setRand(rrr);
+
+  while(it != faces.end()){
+    GFace *gf = (*it);
+    int nb_intersect = 0;
+    for(unsigned int i = 0; i < gf->triangles.size(); i++){
+      MTriangle *t = gf->triangles[i];
+      double X[3] = {t->getVertex(0)->x(), t->getVertex(1)->x(), t->getVertex(2)->x()};
+      double Y[3] = {t->getVertex(0)->y(), t->getVertex(1)->y(), t->getVertex(2)->y()};
+      double Z[3] = {t->getVertex(0)->z(), t->getVertex(1)->z(), t->getVertex(2)->z()};
+      double P[3] = {(X[0] + X[1] + X[2]) / 3.,
+                     (Y[0] + Y[1] + Y[2]) / 3.,
+                     (Z[0] + Z[1] + Z[2]) / 3.};
+      double v1[3] = {X[0] - X[1], Y[0] - Y[1], Z[0] - Z[1]};
+      double v2[3] = {X[2] - X[1], Y[2] - Y[1], Z[2] - Z[1]};
+      double N[3];
+      prodve(v1, v2, N);
+      norme(v1);
+      norme(v2);
+      norme(N);
+      N[0] += rrr[0] * v1[0] + rrr[1] * v2[0];
+      N[1] += rrr[2] * v1[1] + rrr[3] * v2[1];
+      N[2] += rrr[4] * v1[2] + rrr[5] * v2[2];
+      norme(N);
+      std::list<GFace*>::iterator it_b = faces.begin();
+      while(it_b != faces.end()){
+        GFace *gf_b = (*it_b);
+        for(unsigned int i_b = 0; i_b < gf_b->triangles.size(); i_b++){
+          MTriangle *t_b = gf_b->triangles[i_b];
+          if(t_b != t){
+            double X_b[3] = {t_b->getVertex(0)->x(), t_b->getVertex(1)->x(),
+                             t_b->getVertex(2)->x()};
+            double Y_b[3] = {t_b->getVertex(0)->y(), t_b->getVertex(1)->y(),
+                             t_b->getVertex(2)->y()};
+            double Z_b[3] = {t_b->getVertex(0)->z(), t_b->getVertex(1)->z(),
+                             t_b->getVertex(2)->z()};
+            int inters = intersect_line_triangle(X_b, Y_b, Z_b, P, N, 1.e-9);
+            nb_intersect += inters;
+          }
+        }
+        ++it_b;
+      }
+      Msg::Info("Region %d Face %d, %d intersect", gr->tag(), gf->tag(), nb_intersect);
+      if(nb_intersect >= 0) break; // negative value means intersection is not "robust"
+    }
+
+    if(nb_intersect < 0){
+      setRand(rrr);
+    }
+    else{
+      if(nb_intersect % 2 == 1){
+        // odd nb of intersections: the normal points inside the region
+        for(unsigned int i = 0; i < gf->triangles.size(); i++){
+          gf->triangles[i]->reverse();
+        }
+      }
+      ++it;
+    }
+  }
+
+  // FILE *fp = Fopen("debug.pos", "w");
+  // fprintf(fp, "View \"debug\" {\n");
+  // for(std::list<GFace*>::iterator it = faces.begin(); it != faces.end(); it++)
+  //   for(unsigned int i = 0; i < (*it)->triangles.size(); i++)
+  //     (*it)->triangles[i]->writePOS(fp, 1., (*it)->tag());
+  // fprintf(fp, "};\n");
+  // fclose(fp);
+}
+
+void meshGRegion::operator() (GRegion *gr)
+{
+
+  gr->model()->setCurrentMeshEntity(gr);
+
+  if(gr->geomType() == GEntity::DiscreteVolume) return;
+  if(gr->meshAttributes.method == MESH_NONE) return;
+  if(CTX::instance()->mesh.meshOnlyVisible && !gr->getVisibility()) return;
+
+  ExtrudeParams *ep = gr->meshAttributes.extrude;
+  if(ep && ep->mesh.ExtrudeMesh) return;
+
+  // destroy the mesh if it exists
+  deMeshGRegion dem;
+  dem(gr);
+
+  if(MeshTransfiniteVolume(gr)) return;
+
+  std::list<GFace*> faces = gr->faces();
+
+  // sanity check for frontal algo
+  if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL){
+    for(std::list<GFace*>::iterator it = faces.begin(); it != faces.end(); it++){
+      if((*it)->quadrangles.size()){
+	Msg::Error("Cannot use frontal 3D algorithm with quadrangles on boundary");
+	return;
+      }
+    }
+  }
+
+  // replace discreteFaces by their compounds
+  {
+    std::set<GFace*> mySet;
+    std::list<GFace*>::iterator it = faces.begin();
+    while(it != faces.end()){
+      if((*it)->getCompound())
+        mySet.insert((*it)->getCompound());
+      else
+        mySet.insert(*it);
+      ++it;
+    }
+    faces.clear();
+    faces.insert(faces.begin(), mySet.begin(), mySet.end());
+    gr->set(faces);
+  }
+
+  if(CTX::instance()->mesh.algo3d != ALGO_3D_FRONTAL){
+    delaunay.push_back(gr);
+  }
+  else if(CTX::instance()->mesh.algo3d == ALGO_3D_FRONTAL){
+#if !defined(HAVE_NETGEN)
+    Msg::Error("Netgen is not compiled in this version of Gmsh");
+#else
+    Msg::Info("Meshing volume %d (Frontal)", gr->tag());
+    // orient the triangles of with respect to this region
+    meshNormalsPointOutOfTheRegion(gr);
+    std::vector<MVertex*> numberedV;
+    Ng_Mesh *ngmesh = buildNetgenStructure(gr, false, numberedV);
+    Ng_GenerateVolumeMesh(ngmesh, CTX::instance()->mesh.lcMax);
+    TransferVolumeMesh(gr, ngmesh, numberedV);
+    Ng_DeleteMesh(ngmesh);
+    Ng_Exit();
+#endif
+  }
+
+}
+
+void optimizeMeshGRegionNetgen::operator() (GRegion *gr)
+{
+  gr->model()->setCurrentMeshEntity(gr);
+
+  if(gr->geomType() == GEntity::DiscreteVolume) return;
+
+  // don't optimize transfinite or extruded meshes
+  if(gr->meshAttributes.method == MESH_TRANSFINITE) return;
+  ExtrudeParams *ep = gr->meshAttributes.extrude;
+  if(ep && ep->mesh.ExtrudeMesh && ep->geo.Mode == EXTRUDED_ENTITY) return;
+
+#if !defined(HAVE_NETGEN)
+  Msg::Error("Netgen is not compiled in this version of Gmsh");
+#else
+  Msg::Info("Optimizing volume %d", gr->tag());
+  // import mesh into netgen, including volume tets
+  std::vector<MVertex*> numberedV;
+  Ng_Mesh *ngmesh = buildNetgenStructure(gr, true, numberedV);
+  // delete volume vertices and tets
+  deMeshGRegion dem;
+  dem(gr);
+  // optimize mesh
+  Ng_OptimizeVolumeMesh(ngmesh, CTX::instance()->mesh.lcMax);
+  TransferVolumeMesh(gr, ngmesh, numberedV);
+  Ng_DeleteMesh(ngmesh);
+  Ng_Exit();
+#endif
+}
+
+void optimizeMeshGRegionGmsh::operator() (GRegion *gr)
+{
+  gr->model()->setCurrentMeshEntity(gr);
+
+  if(gr->geomType() == GEntity::DiscreteVolume) return;
+
+  // don't optimize extruded meshes
+  if(gr->meshAttributes.method == MESH_TRANSFINITE) return;
+  ExtrudeParams *ep = gr->meshAttributes.extrude;
+  if(ep && ep->mesh.ExtrudeMesh && ep->geo.Mode == EXTRUDED_ENTITY) return;
+
+  Msg::Info("Optimizing volume %d", gr->tag());
+  optimizeMesh(gr, QMTET_2);
+}
+
+
+bool buildFaceSearchStructure(GModel *model, fs_cont &search)
+{
+  search.clear();
+
+  std::set<GFace*> faces_to_consider;
+  GModel::riter rit = model->firstRegion();
+  while(rit != model->lastRegion()){
+    std::list <GFace *> _faces = (*rit)->faces();
+    faces_to_consider.insert( _faces.begin(),_faces.end());
+    rit++;
+  }
+
+  std::set<GFace*>::iterator fit = faces_to_consider.begin();
+  while(fit != faces_to_consider.end()){
+    for(unsigned int i = 0; i < (*fit)->getNumMeshElements(); i++){
+      MFace ff = (*fit)->getMeshElement(i)->getFace(0);
+      search[ff] = *fit;
+    }
+    ++fit;
+  }
+  return true;
+}
+
+bool buildEdgeSearchStructure(GModel *model, es_cont &search)
+{
+  search.clear();
+
+  GModel::eiter eit = model->firstEdge();
+  while(eit != model->lastEdge()){
+    for(unsigned int i = 0; i < (*eit)->lines.size(); i++){
+      MVertex *p1 = (*eit)->lines[i]->getVertex(0);
+      MVertex *p2 = (*eit)->lines[i]->getVertex(1);
+      MVertex *p = std::min(p1, p2);
+      search.insert(std::pair<MVertex*, std::pair<MLine*, GEdge*> >
+                    (p, std::pair<MLine*, GEdge*>((*eit)->lines[i], *eit)));
+    }
+    ++eit;
+  }
+  return true;
+}
+
+GFace *findInFaceSearchStructure(MVertex *p1, MVertex *p2, MVertex *p3,
+                                 const fs_cont &search)
+{
+  MFace ff(p1,p2,p3);
+  fs_cont::const_iterator it = search.find(ff);
+  if (it == search.end())return 0;
+  return it->second;
+}
+
+GFace *findInFaceSearchStructure(const MFace &ff,
+                                 const fs_cont &search)
+{
+  fs_cont::const_iterator it = search.find(ff);
+  if (it == search.end())return 0;
+  return it->second;
+}
+
+
+GEdge *findInEdgeSearchStructure(MVertex *p1, MVertex *p2, const es_cont &search)
+{
+  MVertex *p = std::min(p1, p2);
+
+  for(es_cont::const_iterator it = search.lower_bound(p);
+      it != search.upper_bound(p);
+      ++it){
+    MLine *l = it->second.first;
+    GEdge *ge = it->second.second;
+    if((l->getVertex(0) == p1 || l->getVertex(0) == p2) &&
+       (l->getVertex(1) == p1 || l->getVertex(1) == p2))
+      return ge;
+  }
+  return 0;
+}
diff --git a/Mesh/meshGRegionBoundaryRecovery.cpp b/Mesh/meshGRegionBoundaryRecovery.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..b68cb6009622eec02c141d37d45e61f40c8a3186
--- /dev/null
+++ b/Mesh/meshGRegionBoundaryRecovery.cpp
@@ -0,0 +1,15170 @@
+// Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
+//
+// See the LICENSE.txt file for license information. Please report all
+// bugs and problems to the public mailing list <gmsh@geuz.org>.
+//
+// Contributed by Hang Si
+
+#include <stdio.h>
+#include <math.h>
+#include <assert.h>
+#include <string.h>
+#include "meshGRegionBoundaryRecovery.h"
+#include "robustPredicates.h"
+#include "GFace.h"
+#include "MVertex.h"
+#include "MLine.h"
+#include "MTriangle.h"
+#include "MTetrahedron.h"
+#include "meshGRegionDelaunayInsertion.h"
+#include "OS.h"
+
+#define orient3d robustPredicates::orient3d
+#define insphere robustPredicates::insphere
+
+#ifdef _MSC_VER // Microsoft Visual C++
+#  ifdef _WIN64
+     typedef __int64 intptr_t;
+     typedef unsigned __int64 uintptr_t;
+#  else // not _WIN64
+     typedef int intptr_t;
+     typedef unsigned int uintptr_t;
+#  endif
+#else // not Visual C++
+#  include <stdint.h>
+#endif
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// Primitives for tetrahedra                                                 //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+inline meshGRegionBoundaryRecovery::tetrahedron
+  meshGRegionBoundaryRecovery::encode(triface& t) {
+  return (tetrahedron) ((uintptr_t) (t).tet | (uintptr_t) (t).ver);
+}
+
+inline meshGRegionBoundaryRecovery::tetrahedron
+  meshGRegionBoundaryRecovery::encode2(tetrahedron* ptr, int ver) {
+  return (tetrahedron) ((uintptr_t) (ptr) | (uintptr_t) (ver));
+}
+
+inline void meshGRegionBoundaryRecovery::decode(tetrahedron ptr, triface& t) {
+  (t).ver = (int) ((uintptr_t) (ptr) & (uintptr_t) 15);
+  (t).tet = (tetrahedron *) ((uintptr_t) (ptr) ^ (uintptr_t) (t).ver);
+}
+
+inline void meshGRegionBoundaryRecovery::bond(triface& t1, triface& t2) {
+  t1.tet[t1.ver & 3] = encode2(t2.tet, bondtbl[t1.ver][t2.ver]);
+  t2.tet[t2.ver & 3] = encode2(t1.tet, bondtbl[t2.ver][t1.ver]);
+}
+
+inline void meshGRegionBoundaryRecovery::dissolve(triface& t) {
+  t.tet[t.ver & 3] = NULL;
+}
+
+inline void meshGRegionBoundaryRecovery::enext(triface& t1, triface& t2) {
+  t2.tet = t1.tet;
+  t2.ver = enexttbl[t1.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::enextself(triface& t) {
+  t.ver = enexttbl[t.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::eprev(triface& t1, triface& t2) {
+  t2.tet = t1.tet;
+  t2.ver = eprevtbl[t1.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::eprevself(triface& t) {
+  t.ver = eprevtbl[t.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::esym(triface& t1, triface& t2) {
+  (t2).tet = (t1).tet;
+  (t2).ver = esymtbl[(t1).ver];
+}
+
+inline void meshGRegionBoundaryRecovery::esymself(triface& t) {
+  (t).ver = esymtbl[(t).ver];
+}
+
+inline void meshGRegionBoundaryRecovery::enextesym(triface& t1, triface& t2) {
+  t2.tet = t1.tet;
+  t2.ver = enextesymtbl[t1.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::enextesymself(triface& t) {
+  t.ver = enextesymtbl[t.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::eprevesym(triface& t1, triface& t2) {
+  t2.tet = t1.tet;
+  t2.ver = eprevesymtbl[t1.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::eprevesymself(triface& t) {
+  t.ver = eprevesymtbl[t.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::eorgoppo(triface& t1, triface& t2) {
+  t2.tet = t1.tet;
+  t2.ver = eorgoppotbl[t1.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::eorgoppoself(triface& t) {
+  t.ver = eorgoppotbl[t.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::edestoppo(triface& t1, triface& t2) {
+  t2.tet = t1.tet;
+  t2.ver = edestoppotbl[t1.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::edestoppoself(triface& t) {
+  t.ver = edestoppotbl[t.ver];
+}
+
+inline void meshGRegionBoundaryRecovery::fsym(triface& t1, triface& t2) {
+  decode((t1).tet[(t1).ver & 3], t2);
+  t2.ver = fsymtbl[t1.ver][t2.ver];
+}
+
+#define fsymself(t) \
+  t1ver = (t).ver; \
+  decode((t).tet[(t).ver & 3], (t));\
+  (t).ver = fsymtbl[t1ver][(t).ver]
+
+inline void meshGRegionBoundaryRecovery::fnext(triface& t1, triface& t2) {
+  decode(t1.tet[facepivot1[t1.ver]], t2);
+  t2.ver = facepivot2[t1.ver][t2.ver];
+}
+
+#define fnextself(t) \
+  t1ver = (t).ver; \
+  decode((t).tet[facepivot1[(t).ver]], (t)); \
+  (t).ver = facepivot2[t1ver][(t).ver]
+
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::org(triface& t) {
+  return (point) (t).tet[orgpivot[(t).ver]];
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery:: dest(triface& t) {
+  return (point) (t).tet[destpivot[(t).ver]];
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::apex(triface& t) {
+  return (point) (t).tet[apexpivot[(t).ver]];
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::oppo(triface& t) {
+  return (point) (t).tet[oppopivot[(t).ver]];
+}
+
+inline void meshGRegionBoundaryRecovery::setorg(triface& t, point p) {
+  (t).tet[orgpivot[(t).ver]] = (tetrahedron) (p);
+}
+
+inline void meshGRegionBoundaryRecovery::setdest(triface& t, point p) {
+  (t).tet[destpivot[(t).ver]] = (tetrahedron) (p);
+}
+
+inline void meshGRegionBoundaryRecovery:: setapex(triface& t, point p) {
+  (t).tet[apexpivot[(t).ver]] = (tetrahedron) (p);
+}
+
+inline void meshGRegionBoundaryRecovery::setoppo(triface& t, point p) {
+  (t).tet[oppopivot[(t).ver]] = (tetrahedron) (p);
+}
+
+#define setvertices(t, torg, tdest, tapex, toppo) \
+  (t).tet[orgpivot[(t).ver]] = (tetrahedron) (torg);\
+  (t).tet[destpivot[(t).ver]] = (tetrahedron) (tdest); \
+  (t).tet[apexpivot[(t).ver]] = (tetrahedron) (tapex); \
+  (t).tet[oppopivot[(t).ver]] = (tetrahedron) (toppo)
+
+inline REAL meshGRegionBoundaryRecovery::elemattribute(tetrahedron* ptr,
+  int attnum) {
+  return ((REAL *) (ptr))[elemattribindex + attnum];
+}
+
+inline void meshGRegionBoundaryRecovery::setelemattribute(tetrahedron* ptr,
+  int attnum,
+  REAL value) {
+  ((REAL *) (ptr))[elemattribindex + attnum] = value;
+}
+
+inline REAL meshGRegionBoundaryRecovery::volumebound(tetrahedron* ptr) {
+  return ((REAL *) (ptr))[volumeboundindex];
+}
+
+inline void meshGRegionBoundaryRecovery::setvolumebound(tetrahedron* ptr,
+  REAL value) {
+  ((REAL *) (ptr))[volumeboundindex] = value;
+}
+
+inline int meshGRegionBoundaryRecovery::elemindex(tetrahedron* ptr) {
+  int *iptr = (int *) &(ptr[10]);
+  return iptr[0];
+}
+
+inline void meshGRegionBoundaryRecovery::setelemindex(tetrahedron* ptr,
+  int value) {
+  int *iptr = (int *) &(ptr[10]);
+  iptr[0] = value;
+}
+
+inline int meshGRegionBoundaryRecovery::elemmarker(tetrahedron* ptr) {
+  return ((int *) (ptr))[elemmarkerindex];
+}
+
+inline void meshGRegionBoundaryRecovery::setelemmarker(tetrahedron* ptr,
+  int value) {
+  ((int *) (ptr))[elemmarkerindex] = value;
+}
+
+inline void meshGRegionBoundaryRecovery::infect(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] |= 1;
+}
+
+inline void meshGRegionBoundaryRecovery::uninfect(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] &= ~1;
+}
+
+inline bool meshGRegionBoundaryRecovery::infected(triface& t) {
+  return (((int *) (t.tet))[elemmarkerindex] & 1) != 0;
+}
+
+inline void meshGRegionBoundaryRecovery::marktest(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] |= 2;
+}
+
+inline void meshGRegionBoundaryRecovery::unmarktest(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] &= ~2;
+}
+
+inline bool meshGRegionBoundaryRecovery::marktested(triface& t) {
+  return (((int *) (t.tet))[elemmarkerindex] & 2) != 0;
+}
+
+inline void meshGRegionBoundaryRecovery::markface(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] |= (4 << (t.ver & 3));
+}
+
+inline void meshGRegionBoundaryRecovery::unmarkface(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] &= ~(4 << (t.ver & 3));
+}
+
+inline bool meshGRegionBoundaryRecovery::facemarked(triface& t) {
+  return (((int *) (t.tet))[elemmarkerindex] & (4 << (t.ver & 3))) != 0;
+}
+
+inline void meshGRegionBoundaryRecovery::markedge(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] |= (int) (64 << ver2edge[(t).ver]);
+}
+
+inline void meshGRegionBoundaryRecovery::unmarkedge(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] &= ~(int) (64 << ver2edge[(t).ver]);
+}
+
+inline bool meshGRegionBoundaryRecovery::edgemarked(triface& t) {
+  return (((int *) (t.tet))[elemmarkerindex] &
+           (int) (64 << ver2edge[(t).ver])) != 0;
+}
+
+inline void meshGRegionBoundaryRecovery::marktest2(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] |= (int) (4096);
+}
+
+inline void meshGRegionBoundaryRecovery::unmarktest2(triface& t) {
+  ((int *) (t.tet))[elemmarkerindex] &= ~(int) (4096);
+}
+
+inline bool meshGRegionBoundaryRecovery::marktest2ed(triface& t) {
+  return (((int *) (t.tet))[elemmarkerindex] & (int) (4096)) != 0;
+}
+
+inline int meshGRegionBoundaryRecovery::elemcounter(triface& t) {
+  return (((int *) (t.tet))[elemmarkerindex]) >> 16;
+}
+
+inline void meshGRegionBoundaryRecovery::setelemcounter(triface& t, int value) {
+  int c = ((int *) (t.tet))[elemmarkerindex];
+  // Clear the old counter while keep the other flags.
+  c &= 65535; // sum_{i=0^15} 2^i
+  c |= (value << 16);
+  ((int *) (t.tet))[elemmarkerindex] = c;
+}
+
+inline void meshGRegionBoundaryRecovery::increaseelemcounter(triface& t) {
+  int c = elemcounter(t);
+  setelemcounter(t, c + 1);
+}
+
+inline void meshGRegionBoundaryRecovery::decreaseelemcounter(triface& t) {
+  int c = elemcounter(t);
+  setelemcounter(t, c - 1);
+}
+
+inline bool meshGRegionBoundaryRecovery::ishulltet(triface& t) {
+  return (point) (t).tet[7] == dummypoint;
+}
+
+inline bool meshGRegionBoundaryRecovery::isdeadtet(triface& t) {
+  return ((t.tet == NULL) || (t.tet[4] == NULL));
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// Primitives for subfaces and subsegments                                   //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+inline void meshGRegionBoundaryRecovery::sdecode(shellface sptr, face& s) {
+  s.shver = (int) ((uintptr_t) (sptr) & (uintptr_t) 7);
+  s.sh = (shellface *) ((uintptr_t) (sptr) ^ (uintptr_t) (s.shver));
+}
+
+inline meshGRegionBoundaryRecovery::shellface
+  meshGRegionBoundaryRecovery::sencode(face& s) {
+  return (shellface) ((uintptr_t) s.sh | (uintptr_t) s.shver);
+}
+
+inline meshGRegionBoundaryRecovery::shellface
+  meshGRegionBoundaryRecovery::sencode2(shellface *sh, int shver) {
+  return (shellface) ((uintptr_t) sh | (uintptr_t) shver);
+}
+
+inline void meshGRegionBoundaryRecovery::sbond(face& s1, face& s2) {
+  s1.sh[s1.shver >> 1] = sencode(s2);
+  s2.sh[s2.shver >> 1] = sencode(s1);
+}
+
+inline void meshGRegionBoundaryRecovery::sbond1(face& s1, face& s2) {
+  s1.sh[s1.shver >> 1] = sencode(s2);
+}
+
+inline void meshGRegionBoundaryRecovery::sdissolve(face& s) {
+  s.sh[s.shver >> 1] = NULL;
+}
+
+inline void meshGRegionBoundaryRecovery::spivot(face& s1, face& s2) {
+  shellface sptr = s1.sh[s1.shver >> 1];
+  sdecode(sptr, s2);
+}
+
+inline void meshGRegionBoundaryRecovery::spivotself(face& s) {
+  shellface sptr = s.sh[s.shver >> 1];
+  sdecode(sptr, s);
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::sorg(face& s) {
+  return (point) s.sh[sorgpivot[s.shver]];
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::sdest(face& s) {
+  return (point) s.sh[sdestpivot[s.shver]];
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::sapex(face& s) {
+  return (point) s.sh[sapexpivot[s.shver]];
+}
+
+inline void meshGRegionBoundaryRecovery::setsorg(face& s, point pointptr) {
+  s.sh[sorgpivot[s.shver]] = (shellface) pointptr;
+}
+
+inline void meshGRegionBoundaryRecovery::setsdest(face& s, point pointptr) {
+  s.sh[sdestpivot[s.shver]] = (shellface) pointptr;
+}
+
+inline void meshGRegionBoundaryRecovery::setsapex(face& s, point pointptr) {
+  s.sh[sapexpivot[s.shver]] = (shellface) pointptr;
+}
+
+#define setshvertices(s, pa, pb, pc)\
+  setsorg(s, pa);\
+  setsdest(s, pb);\
+  setsapex(s, pc)
+
+inline void meshGRegionBoundaryRecovery::sesym(face& s1, face& s2) {
+  s2.sh = s1.sh;
+  s2.shver = (s1.shver ^ 1);  // Inverse the last bit.
+}
+
+inline void meshGRegionBoundaryRecovery::sesymself(face& s) {
+  s.shver ^= 1;
+}
+
+inline void meshGRegionBoundaryRecovery::senext(face& s1, face& s2) {
+  s2.sh = s1.sh;
+  s2.shver = snextpivot[s1.shver];
+}
+
+inline void meshGRegionBoundaryRecovery::senextself(face& s) {
+  s.shver = snextpivot[s.shver];
+}
+
+inline void meshGRegionBoundaryRecovery::senext2(face& s1, face& s2) {
+  s2.sh = s1.sh;
+  s2.shver = snextpivot[snextpivot[s1.shver]];
+}
+
+inline void meshGRegionBoundaryRecovery::senext2self(face& s) {
+  s.shver = snextpivot[snextpivot[s.shver]];
+}
+
+
+inline REAL meshGRegionBoundaryRecovery::areabound(face& s) {
+  return ((REAL *) (s.sh))[areaboundindex];
+}
+
+inline void meshGRegionBoundaryRecovery::setareabound(face& s, REAL value) {
+  ((REAL *) (s.sh))[areaboundindex] = value;
+}
+
+inline int meshGRegionBoundaryRecovery::shellmark(face& s) {
+  return ((int *) (s.sh))[shmarkindex];
+}
+
+inline void meshGRegionBoundaryRecovery::setshellmark(face& s, int value) {
+  ((int *) (s.sh))[shmarkindex] = value;
+}
+
+inline void meshGRegionBoundaryRecovery::sinfect(face& s) {
+  ((int *) ((s).sh))[shmarkindex+1] =
+    (((int *) ((s).sh))[shmarkindex+1] | (int) 1);
+}
+
+inline void meshGRegionBoundaryRecovery::suninfect(face& s) {
+  ((int *) ((s).sh))[shmarkindex+1] =
+    (((int *) ((s).sh))[shmarkindex+1] & ~(int) 1);
+}
+
+inline bool meshGRegionBoundaryRecovery::sinfected(face& s) {
+  return (((int *) ((s).sh))[shmarkindex+1] & (int) 1) != 0;
+}
+
+inline void meshGRegionBoundaryRecovery::smarktest(face& s) {
+  ((int *) ((s).sh))[shmarkindex+1] =
+    (((int *)((s).sh))[shmarkindex+1] | (int) 2);
+}
+
+inline void meshGRegionBoundaryRecovery::sunmarktest(face& s) {
+  ((int *) ((s).sh))[shmarkindex+1] =
+    (((int *)((s).sh))[shmarkindex+1] & ~(int)2);
+}
+
+inline bool meshGRegionBoundaryRecovery::smarktested(face& s) {
+  return ((((int *) ((s).sh))[shmarkindex+1] & (int) 2) != 0);
+}
+
+inline void meshGRegionBoundaryRecovery::smarktest2(face& s) {
+  ((int *) ((s).sh))[shmarkindex+1] =
+    (((int *)((s).sh))[shmarkindex+1] | (int) 4);
+}
+
+inline void meshGRegionBoundaryRecovery::sunmarktest2(face& s) {
+  ((int *) ((s).sh))[shmarkindex+1] =
+    (((int *)((s).sh))[shmarkindex+1] & ~(int)4);
+}
+
+inline bool meshGRegionBoundaryRecovery::smarktest2ed(face& s) {
+  return ((((int *) ((s).sh))[shmarkindex+1] & (int) 4) != 0);
+}
+
+inline void meshGRegionBoundaryRecovery::smarktest3(face& s) {
+  ((int *) ((s).sh))[shmarkindex+1] =
+    (((int *)((s).sh))[shmarkindex+1] | (int) 8);
+}
+
+inline void meshGRegionBoundaryRecovery::sunmarktest3(face& s) {
+  ((int *) ((s).sh))[shmarkindex+1] =
+    (((int *)((s).sh))[shmarkindex+1] & ~(int)8);
+}
+
+inline bool meshGRegionBoundaryRecovery::smarktest3ed(face& s) {
+  return ((((int *) ((s).sh))[shmarkindex+1] & (int) 8) != 0);
+}
+
+inline void meshGRegionBoundaryRecovery::setfacetindex(face& s, int value) {
+  ((int *) (s.sh))[shmarkindex + 2] = value;
+}
+
+inline int meshGRegionBoundaryRecovery::getfacetindex(face& s) {
+  return ((int *) (s.sh))[shmarkindex + 2];
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// Primitives for interacting between tetrahedra and subfaces                //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+inline void meshGRegionBoundaryRecovery::tsbond(triface& t, face& s) {
+  if ((t).tet[9] == NULL) {
+    // Allocate space for this tet.
+    (t).tet[9] = (tetrahedron) tet2subpool->alloc();
+    // Initialize.
+    for (int i = 0; i < 4; i++) {
+      ((shellface *) (t).tet[9])[i] = NULL;
+    }
+  }
+  // Bond t <== s.
+  ((shellface *) (t).tet[9])[(t).ver & 3] =
+    sencode2((s).sh, tsbondtbl[t.ver][s.shver]);
+  // Bond s <== t.
+  s.sh[9 + ((s).shver & 1)] =
+    (shellface) encode2((t).tet, stbondtbl[t.ver][s.shver]);
+}
+
+inline void meshGRegionBoundaryRecovery::tspivot(triface& t, face& s) {
+  if ((t).tet[9] == NULL) {
+    (s).sh = NULL;
+    return;
+  }
+  // Get the attached subface s.
+  sdecode(((shellface *) (t).tet[9])[(t).ver & 3], (s));
+  (s).shver = tspivottbl[t.ver][s.shver];
+}
+
+// Quickly check if the handle (t, v) is a subface.
+#define issubface(t) \
+  ((t).tet[9] && ((t).tet[9])[(t).ver & 3])
+
+inline void meshGRegionBoundaryRecovery::stpivot(face& s, triface& t) {
+  decode((tetrahedron) s.sh[9 + (s.shver & 1)], t);
+  if ((t).tet == NULL) {
+    return;
+  }
+  (t).ver = stpivottbl[t.ver][s.shver];
+}
+
+#define isshtet(s) \
+  ((s).sh[9 + ((s).shver & 1)])
+
+inline void meshGRegionBoundaryRecovery::tsdissolve(triface& t) {
+  if ((t).tet[9] != NULL) {
+    ((shellface *) (t).tet[9])[(t).ver & 3] = NULL;
+  }
+}
+
+inline void meshGRegionBoundaryRecovery::stdissolve(face& s) {
+  (s).sh[9] = NULL;
+  (s).sh[10] = NULL;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// Primitives for interacting between subfaces and segments                  //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+inline void meshGRegionBoundaryRecovery::ssbond(face& s, face& edge) {
+  s.sh[6 + (s.shver >> 1)] = sencode(edge);
+  edge.sh[0] = sencode(s);
+}
+
+inline void meshGRegionBoundaryRecovery::ssbond1(face& s, face& edge) {
+  s.sh[6 + (s.shver >> 1)] = sencode(edge);
+  //edge.sh[0] = sencode(s);
+}
+
+inline void meshGRegionBoundaryRecovery::ssdissolve(face& s) {
+  s.sh[6 + (s.shver >> 1)] = NULL;
+}
+
+inline void meshGRegionBoundaryRecovery::sspivot(face& s, face& edge) {
+  sdecode((shellface) s.sh[6 + (s.shver >> 1)], edge);
+}
+
+#define isshsubseg(s) \
+  ((s).sh[6 + ((s).shver >> 1)])
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// Primitives for interacting between tetrahedra and segments                //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+inline void meshGRegionBoundaryRecovery::tssbond1(triface& t, face& s) {
+  if ((t).tet[8] == NULL) {
+    // Allocate space for this tet.
+    (t).tet[8] = (tetrahedron) tet2segpool->alloc();
+    // Initialization.
+    for (int i = 0; i < 6; i++) {
+      ((shellface *) (t).tet[8])[i] = NULL;
+    }
+  }
+  ((shellface *) (t).tet[8])[ver2edge[(t).ver]] = sencode((s));
+}
+
+inline void meshGRegionBoundaryRecovery::sstbond1(face& s, triface& t) {
+  ((tetrahedron *) (s).sh)[9] = encode(t);
+}
+
+inline void meshGRegionBoundaryRecovery::tssdissolve1(triface& t) {
+  if ((t).tet[8] != NULL) {
+    ((shellface *) (t).tet[8])[ver2edge[(t).ver]] = NULL;
+  }
+}
+
+inline void meshGRegionBoundaryRecovery::sstdissolve1(face& s) {
+  ((tetrahedron *) (s).sh)[9] = NULL;
+}
+
+inline void meshGRegionBoundaryRecovery::tsspivot1(triface& t, face& s) {
+  if ((t).tet[8] != NULL) {
+    sdecode(((shellface *) (t).tet[8])[ver2edge[(t).ver]], s);
+  } else {
+    (s).sh = NULL;
+  }
+}
+
+#define issubseg(t) \
+  ((t).tet[8] && ((t).tet[8])[ver2edge[(t).ver]])
+
+inline void meshGRegionBoundaryRecovery::sstpivot1(face& s, triface& t) {
+  decode((tetrahedron) s.sh[9], t);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// Primitives for points                                                     //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+inline int meshGRegionBoundaryRecovery::pointmark(point pt) {
+  return ((int *) (pt))[pointmarkindex];
+}
+
+inline void meshGRegionBoundaryRecovery::setpointmark(point pt, int value) {
+  ((int *) (pt))[pointmarkindex] = value;
+}
+
+
+inline enum meshGRegionBoundaryRecovery::verttype
+  meshGRegionBoundaryRecovery::pointtype(point pt) {
+  return (enum verttype) (((int *) (pt))[pointmarkindex + 1] >> (int) 8);
+}
+
+inline void meshGRegionBoundaryRecovery::setpointtype(point pt,
+  enum verttype value) {
+  ((int *) (pt))[pointmarkindex + 1] =
+    ((int) value << 8) + (((int *) (pt))[pointmarkindex + 1] & (int) 255);
+}
+
+inline int meshGRegionBoundaryRecovery::pointgeomtag(point pt) {
+  return ((int *) (pt))[pointmarkindex + 2];
+}
+
+inline void meshGRegionBoundaryRecovery::setpointgeomtag(point pt, int value) {
+  ((int *) (pt))[pointmarkindex + 2] = value;
+}
+
+inline REAL meshGRegionBoundaryRecovery::pointgeomuv(point pt, int i) {
+  return pt[pointparamindex + i];
+}
+
+inline void meshGRegionBoundaryRecovery::setpointgeomuv(point pt, int i,
+  REAL value) {
+  pt[pointparamindex + i] = value;
+}
+
+inline void meshGRegionBoundaryRecovery::pinfect(point pt) {
+  ((int *) (pt))[pointmarkindex + 1] |= (int) 1;
+}
+
+inline void meshGRegionBoundaryRecovery::puninfect(point pt) {
+  ((int *) (pt))[pointmarkindex + 1] &= ~(int) 1;
+}
+
+inline bool meshGRegionBoundaryRecovery::pinfected(point pt) {
+  return (((int *) (pt))[pointmarkindex + 1] & (int) 1) != 0;
+}
+
+inline void meshGRegionBoundaryRecovery::pmarktest(point pt) {
+  ((int *) (pt))[pointmarkindex + 1] |= (int) 2;
+}
+
+inline void meshGRegionBoundaryRecovery::punmarktest(point pt) {
+  ((int *) (pt))[pointmarkindex + 1] &= ~(int) 2;
+}
+
+inline bool meshGRegionBoundaryRecovery::pmarktested(point pt) {
+  return (((int *) (pt))[pointmarkindex + 1] & (int) 2) != 0;
+}
+
+inline void meshGRegionBoundaryRecovery::pmarktest2(point pt) {
+  ((int *) (pt))[pointmarkindex + 1] |= (int) 4;
+}
+
+inline void meshGRegionBoundaryRecovery::punmarktest2(point pt) {
+  ((int *) (pt))[pointmarkindex + 1] &= ~(int) 4;
+}
+
+inline bool meshGRegionBoundaryRecovery::pmarktest2ed(point pt) {
+  return (((int *) (pt))[pointmarkindex + 1] & (int) 4) != 0;
+}
+
+inline void meshGRegionBoundaryRecovery::pmarktest3(point pt) {
+  ((int *) (pt))[pointmarkindex + 1] |= (int) 8;
+}
+
+inline void meshGRegionBoundaryRecovery::punmarktest3(point pt) {
+  ((int *) (pt))[pointmarkindex + 1] &= ~(int) 8;
+}
+
+inline bool meshGRegionBoundaryRecovery::pmarktest3ed(point pt) {
+  return (((int *) (pt))[pointmarkindex + 1] & (int) 8) != 0;
+}
+
+inline meshGRegionBoundaryRecovery::tetrahedron
+  meshGRegionBoundaryRecovery::point2tet(point pt) {
+  return ((tetrahedron *) (pt))[point2simindex];
+}
+
+inline void meshGRegionBoundaryRecovery::setpoint2tet(point pt,
+  tetrahedron value) {
+  ((tetrahedron *) (pt))[point2simindex] = value;
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::point2ppt(point pt) {
+  return (point) ((tetrahedron *) (pt))[point2simindex + 1];
+}
+
+inline void meshGRegionBoundaryRecovery::setpoint2ppt(point pt, point value) {
+  ((tetrahedron *) (pt))[point2simindex + 1] = (tetrahedron) value;
+}
+
+inline meshGRegionBoundaryRecovery::shellface
+  meshGRegionBoundaryRecovery::point2sh(point pt) {
+  return (shellface) ((tetrahedron *) (pt))[point2simindex + 2];
+}
+
+inline void meshGRegionBoundaryRecovery::setpoint2sh(point pt,
+  shellface value) {
+  ((tetrahedron *) (pt))[point2simindex + 2] = (tetrahedron) value;
+}
+
+
+inline meshGRegionBoundaryRecovery::tetrahedron
+  meshGRegionBoundaryRecovery::point2bgmtet(point pt) {
+  return ((tetrahedron *) (pt))[point2simindex + 3];
+}
+
+inline void meshGRegionBoundaryRecovery::setpoint2bgmtet(point pt,
+  tetrahedron value) {
+  ((tetrahedron *) (pt))[point2simindex + 3] = value;
+}
+
+inline void meshGRegionBoundaryRecovery::setpointinsradius(point pt,
+  REAL value) {
+  pt[pointmtrindex + sizeoftensor - 1] = value;
+}
+
+inline REAL meshGRegionBoundaryRecovery::getpointinsradius(point pt) {
+  return pt[pointmtrindex + sizeoftensor - 1];
+}
+
+inline bool meshGRegionBoundaryRecovery::issteinerpoint(point pt) {
+ return (pointtype(pt) == FREESEGVERTEX) || (pointtype(pt) == FREEFACETVERTEX)
+        || (pointtype(pt) == FREEVOLVERTEX);
+}
+
+inline void meshGRegionBoundaryRecovery::point2tetorg(point pa,
+  triface& searchtet) {
+  decode(point2tet(pa), searchtet);
+  if ((point) searchtet.tet[4] == pa) {
+    searchtet.ver = 11;
+  } else if ((point) searchtet.tet[5] == pa) {
+    searchtet.ver = 3;
+  } else if ((point) searchtet.tet[6] == pa) {
+    searchtet.ver = 7;
+  } else {
+    //assert((point) searchtet.tet[7] == pa); // SELF_CHECK
+    searchtet.ver = 0;
+  }
+}
+
+inline void meshGRegionBoundaryRecovery::point2shorg(point pa, face& searchsh){
+  sdecode(point2sh(pa), searchsh);
+  if ((point) searchsh.sh[3] == pa) {
+    searchsh.shver = 0;
+  } else if ((point) searchsh.sh[4] == pa) {
+    searchsh.shver = (searchsh.sh[5] != NULL ? 2 : 1);
+  } else {
+    //assert((point) searchsh.sh[5] == pa); // SELF_CHECK
+    searchsh.shver = 4;
+  }
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::farsorg(face& s) {
+  face travesh, neighsh;
+  travesh = s;
+  while (1) {
+    senext2(travesh, neighsh);
+    spivotself(neighsh);
+    if (neighsh.sh == NULL) break;
+    if (sorg(neighsh) != sorg(travesh)) sesymself(neighsh);
+    senext2(neighsh, travesh);
+  }
+  return sorg(travesh);
+}
+
+inline meshGRegionBoundaryRecovery::point
+  meshGRegionBoundaryRecovery::farsdest(face& s) {
+  face travesh, neighsh;
+  travesh = s;
+  while (1) {
+    senext(travesh, neighsh);
+    spivotself(neighsh);
+    if (neighsh.sh == NULL) break;
+    if (sdest(neighsh) != sdest(travesh)) sesymself(neighsh);
+    senext(neighsh, travesh);
+  }
+  return sdest(travesh);
+}
+
+// dot() returns the dot product: v1 dot v2.
+inline REAL meshGRegionBoundaryRecovery::dot(REAL* v1, REAL* v2)
+{
+  return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
+}
+
+// cross() computes the cross product: n = v1 cross v2.
+inline void meshGRegionBoundaryRecovery::cross(REAL* v1, REAL* v2, REAL* n)
+{
+  n[0] =   v1[1] * v2[2] - v2[1] * v1[2];
+  n[1] = -(v1[0] * v2[2] - v2[0] * v1[2]);
+  n[2] =   v1[0] * v2[1] - v2[0] * v1[1];
+}
+
+// distance() computes the Euclidean distance between two points.
+inline REAL meshGRegionBoundaryRecovery::distance(REAL* p1, REAL* p2)
+{
+  return sqrt((p2[0] - p1[0]) * (p2[0] - p1[0]) +
+              (p2[1] - p1[1]) * (p2[1] - p1[1]) +
+              (p2[2] - p1[2]) * (p2[2] - p1[2]));
+}
+
+inline REAL meshGRegionBoundaryRecovery::norm2(REAL x, REAL y, REAL z)
+{
+  return (x) * (x) + (y) * (y) + (z) * (z);
+}
+
+//// mempool_cxx //////////////////////////////////////////////////////////////
+////                                                                       ////
+////                                                                       ////
+
+int meshGRegionBoundaryRecovery::bondtbl[12][12] = {{0,},};
+int meshGRegionBoundaryRecovery::enexttbl[12] = {0,};
+int meshGRegionBoundaryRecovery::eprevtbl[12] = {0,};
+int meshGRegionBoundaryRecovery::enextesymtbl[12] = {0,};
+int meshGRegionBoundaryRecovery::eprevesymtbl[12] = {0,};
+int meshGRegionBoundaryRecovery::eorgoppotbl[12] = {0,};
+int meshGRegionBoundaryRecovery::edestoppotbl[12] = {0,};
+int meshGRegionBoundaryRecovery::fsymtbl[12][12] = {{0,},};
+int meshGRegionBoundaryRecovery::facepivot1[12] = {0,};
+int meshGRegionBoundaryRecovery::facepivot2[12][12] = {{0,},};
+int meshGRegionBoundaryRecovery::tsbondtbl[12][6] = {{0,},};
+int meshGRegionBoundaryRecovery::stbondtbl[12][6] = {{0,},};
+int meshGRegionBoundaryRecovery::tspivottbl[12][6] = {{0,},};
+int meshGRegionBoundaryRecovery::stpivottbl[12][6] = {{0,},};
+
+int meshGRegionBoundaryRecovery::esymtbl[12] =
+  {9, 6, 11, 4, 3, 7, 1, 5, 10, 0, 8, 2};
+int meshGRegionBoundaryRecovery:: orgpivot[12] =
+  {7, 7, 5, 5, 6, 4, 4, 6, 5, 6, 7, 4};
+int meshGRegionBoundaryRecovery::destpivot[12] =
+  {6, 4, 4, 6, 5, 6, 7, 4, 7, 7, 5, 5};
+int meshGRegionBoundaryRecovery::apexpivot[12] =
+  {5, 6, 7, 4, 7, 7, 5, 5, 6, 4, 4, 6};
+int meshGRegionBoundaryRecovery::oppopivot[12] =
+  {4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7};
+int meshGRegionBoundaryRecovery::ver2edge[12] =
+  {0, 1, 2, 3, 3, 5, 1, 5, 4, 0, 4, 2};
+int meshGRegionBoundaryRecovery::edge2ver[ 6] = {0, 1, 2, 3, 8, 5};
+int meshGRegionBoundaryRecovery::epivot[12] =
+  {4, 5, 2, 11, 4, 5, 2, 11, 4, 5, 2, 11};
+int meshGRegionBoundaryRecovery::snextpivot[6] = {2, 5, 4, 1, 0, 3};
+int meshGRegionBoundaryRecovery::sorgpivot [6] = {3, 4, 4, 5, 5, 3};
+int meshGRegionBoundaryRecovery::sdestpivot[6] = {4, 3, 5, 4, 3, 5};
+int meshGRegionBoundaryRecovery::sapexpivot[6] = {5, 5, 3, 3, 4, 4};
+
+void meshGRegionBoundaryRecovery::inittables()
+{
+  int i, j;
+
+  // i = t1.ver; j = t2.ver;
+  for (i = 0; i < 12; i++) {
+    for (j = 0; j < 12; j++) {
+      bondtbl[i][j] = (j & 3) + (((i & 12) + (j & 12)) % 12);
+    }
+  }
+
+  // i = t1.ver; j = t2.ver
+  for (i = 0; i < 12; i++) {
+    for (j = 0; j < 12; j++) {
+      fsymtbl[i][j] = (j + 12 - (i & 12)) % 12;
+    }
+  }
+
+  for (i = 0; i < 12; i++) {
+    facepivot1[i] = (esymtbl[i] & 3);
+  }
+
+  for (i = 0; i < 12; i++) {
+    for (j = 0; j < 12; j++) {
+      facepivot2[i][j] = fsymtbl[esymtbl[i]][j];
+    }
+  }
+
+  for (i = 0; i < 12; i++) {
+    enexttbl[i] = (i + 4) % 12;
+    eprevtbl[i] = (i + 8) % 12;
+  }
+
+  for (i = 0; i < 12; i++) {
+    enextesymtbl[i] = esymtbl[enexttbl[i]];
+    eprevesymtbl[i] = esymtbl[eprevtbl[i]];
+  }
+
+  for (i = 0; i < 12; i++) {
+    eorgoppotbl [i] = eprevtbl[esymtbl[enexttbl[i]]];
+    edestoppotbl[i] = enexttbl[esymtbl[eprevtbl[i]]];
+  }
+
+  int soffset, toffset;
+
+  // i = t.ver, j = s.shver
+  for (i = 0; i < 12; i++) {
+    for (j = 0; j < 6; j++) {
+      if ((j & 1) == 0) {
+        soffset = (6 - ((i & 12) >> 1)) % 6;
+        toffset = (12 - ((j & 6) << 1)) % 12;
+      } else {
+        soffset = (i & 12) >> 1;
+        toffset = (j & 6) << 1;
+      }
+      tsbondtbl[i][j] = (j & 1) + (((j & 6) + soffset) % 6);
+      stbondtbl[i][j] = (i & 3) + (((i & 12) + toffset) % 12);
+    }
+  }
+
+  // i = t.ver, j = s.shver
+  for (i = 0; i < 12; i++) {
+    for (j = 0; j < 6; j++) {
+      if ((j & 1) == 0) {
+        soffset = (i & 12) >> 1;
+        toffset = (j & 6) << 1;
+      } else {
+        soffset = (6 - ((i & 12) >> 1)) % 6;
+        toffset = (12 - ((j & 6) << 1)) % 12;
+      }
+      tspivottbl[i][j] = (j & 1) + (((j & 6) + soffset) % 6);
+      stpivottbl[i][j] = (i & 3) + (((i & 12) + toffset) % 12);
+    }
+  }
+}
+
+void meshGRegionBoundaryRecovery::arraypool::restart()
+{
+  objects = 0l;
+}
+
+void meshGRegionBoundaryRecovery::arraypool::poolinit(int sizeofobject,
+  int log2objperblk)
+{
+  // Each object must be at least one byte long.
+  objectbytes = sizeofobject > 1 ? sizeofobject : 1;
+
+  log2objectsperblock = log2objperblk;
+  // Compute the number of objects in each block.
+  objectsperblock = ((int) 1) << log2objectsperblock;
+  objectsperblockmark = objectsperblock - 1;
+
+  // No memory has been allocated.
+  totalmemory = 0l;
+  // The top array has not been allocated yet.
+  toparray = (char **) NULL;
+  toparraylen = 0;
+
+  // Ready all indices to be allocated.
+  restart();
+}
+
+meshGRegionBoundaryRecovery::arraypool::arraypool(int sizeofobject,
+  int log2objperblk)
+{
+  poolinit(sizeofobject, log2objperblk);
+}
+
+meshGRegionBoundaryRecovery::arraypool::~arraypool()
+{
+  int i;
+
+  // Has anything been allocated at all?
+  if (toparray != (char **) NULL) {
+    // Walk through the top array.
+    for (i = 0; i < toparraylen; i++) {
+      // Check every pointer; NULLs may be scattered randomly.
+      if (toparray[i] != (char *) NULL) {
+        // Free an allocated block.
+        free((void *) toparray[i]);
+      }
+    }
+    // Free the top array.
+    free((void *) toparray);
+  }
+
+  // The top array is no longer allocated.
+  toparray = (char **) NULL;
+  toparraylen = 0;
+  objects = 0;
+  totalmemory = 0;
+}
+
+char* meshGRegionBoundaryRecovery::arraypool::getblock(int objectindex)
+{
+  char **newarray;
+  char *block;
+  int newsize;
+  int topindex;
+  int i;
+
+  // Compute the index in the top array (upper bits).
+  topindex = objectindex >> log2objectsperblock;
+  // Does the top array need to be allocated or resized?
+  if (toparray == (char **) NULL) {
+    // Allocate the top array big enough to hold 'topindex', and NULL out
+    //   its contents.
+    newsize = topindex + 128;
+    toparray = (char **) malloc((size_t) (newsize * sizeof(char *)));
+    toparraylen = newsize;
+    for (i = 0; i < newsize; i++) {
+      toparray[i] = (char *) NULL;
+    }
+    // Account for the memory.
+    totalmemory = newsize * (uintptr_t) sizeof(char *);
+  } else if (topindex >= toparraylen) {
+    // Resize the top array, making sure it holds 'topindex'.
+    newsize = 3 * toparraylen;
+    if (topindex >= newsize) {
+      newsize = topindex + 128;
+    }
+    // Allocate the new array, copy the contents, NULL out the rest, and
+    //   free the old array.
+    newarray = (char **) malloc((size_t) (newsize * sizeof(char *)));
+    for (i = 0; i < toparraylen; i++) {
+      newarray[i] = toparray[i];
+    }
+    for (i = toparraylen; i < newsize; i++) {
+      newarray[i] = (char *) NULL;
+    }
+    free(toparray);
+    // Account for the memory.
+    totalmemory += (newsize - toparraylen) * sizeof(char *);
+    toparray = newarray;
+    toparraylen = newsize;
+  }
+
+  // Find the block, or learn that it hasn't been allocated yet.
+  block = toparray[topindex];
+  if (block == (char *) NULL) {
+    // Allocate a block at this index.
+    block = (char *) malloc((size_t) (objectsperblock * objectbytes));
+    toparray[topindex] = block;
+    // Account for the memory.
+    totalmemory += objectsperblock * objectbytes;
+  }
+
+  // Return a pointer to the block.
+  return block;
+}
+
+void* meshGRegionBoundaryRecovery::arraypool::lookup(int objectindex)
+{
+  char *block;
+  int topindex;
+
+  // Has the top array been allocated yet?
+  if (toparray == (char **) NULL) {
+    return (void *) NULL;
+  }
+
+  // Compute the index in the top array (upper bits).
+  topindex = objectindex >> log2objectsperblock;
+  // Does the top index fit in the top array?
+  if (topindex >= toparraylen) {
+    return (void *) NULL;
+  }
+
+  // Find the block, or learn that it hasn't been allocated yet.
+  block = toparray[topindex];
+  if (block == (char *) NULL) {
+    return (void *) NULL;
+  }
+
+  // Compute a pointer to the object with the given index.  Note that
+  //   'objectsperblock' is a power of two, so the & operation is a bit mask
+  //   that preserves the lower bits.
+  return (void *)(block + (objectindex & (objectsperblock - 1)) * objectbytes);
+}
+
+int meshGRegionBoundaryRecovery::arraypool::newindex(void **newptr)
+{
+  // Allocate an object at index 'firstvirgin'.
+  int newindex = objects;
+  *newptr = (void *) (getblock(objects) +
+    (objects & (objectsperblock - 1)) * objectbytes);
+  objects++;
+
+  return newindex;
+}
+
+
+meshGRegionBoundaryRecovery::memorypool::memorypool()
+{
+  firstblock = nowblock = (void **) NULL;
+  nextitem = (void *) NULL;
+  deaditemstack = (void *) NULL;
+  pathblock = (void **) NULL;
+  pathitem = (void *) NULL;
+  alignbytes = 0;
+  itembytes = itemwords = 0;
+  itemsperblock = 0;
+  items = maxitems = 0l;
+  unallocateditems = 0;
+  pathitemsleft = 0;
+}
+
+meshGRegionBoundaryRecovery::memorypool::memorypool(int bytecount,
+  int itemcount, int wsize, int alignment)
+{
+  poolinit(bytecount, itemcount, wsize, alignment);
+}
+
+meshGRegionBoundaryRecovery::memorypool::~memorypool()
+{
+  while (firstblock != (void **) NULL) {
+    nowblock = (void **) *(firstblock);
+    free(firstblock);
+    firstblock = nowblock;
+  }
+}
+
+void meshGRegionBoundaryRecovery::memorypool::poolinit(int bytecount,
+  int itemcount,int wordsize, int alignment)
+{
+  // Find the proper alignment, which must be at least as large as:
+  //   - The parameter `alignment'.
+  //   - The primary word type, to avoid unaligned accesses.
+  //   - sizeof(void *), so the stack of dead items can be maintained
+  //       without unaligned accesses.
+  if (alignment > wordsize) {
+    alignbytes = alignment;
+  } else {
+    alignbytes = wordsize;
+  }
+  if ((int) sizeof(void *) > alignbytes) {
+    alignbytes = (int) sizeof(void *);
+  }
+  itemwords = ((bytecount + alignbytes - 1) /  alignbytes)
+            * (alignbytes / wordsize);
+  itembytes = itemwords * wordsize;
+  itemsperblock = itemcount;
+
+  // Allocate a block of items.  Space for `itemsperblock' items and one
+  //   pointer (to point to the next block) are allocated, as well as space
+  //   to ensure alignment of the items.
+  firstblock = (void **) malloc(itemsperblock * itembytes + sizeof(void *)
+                                + alignbytes);
+  if (firstblock == (void **) NULL) {
+    terminateBoundaryRecovery(NULL, 1);
+  }
+  // Set the next block pointer to NULL.
+  *(firstblock) = (void *) NULL;
+  restart();
+}
+
+void meshGRegionBoundaryRecovery::memorypool::restart()
+{
+  uintptr_t alignptr;
+
+  items = 0;
+  maxitems = 0;
+
+  // Set the currently active block.
+  nowblock = firstblock;
+  // Find the first item in the pool.  Increment by the size of (void *).
+  alignptr = (uintptr_t) (nowblock + 1);
+  // Align the item on an `alignbytes'-byte boundary.
+  nextitem = (void *)
+    (alignptr + (uintptr_t) alignbytes -
+     (alignptr % (uintptr_t) alignbytes));
+  // There are lots of unallocated items left in this block.
+  unallocateditems = itemsperblock;
+  // The stack of deallocated items is empty.
+  deaditemstack = (void *) NULL;
+}
+
+void* meshGRegionBoundaryRecovery::memorypool::alloc()
+{
+  void *newitem;
+  void **newblock;
+  uintptr_t alignptr;
+
+  // First check the linked list of dead items.  If the list is not
+  //   empty, allocate an item from the list rather than a fresh one.
+  if (deaditemstack != (void *) NULL) {
+    newitem = deaditemstack;                     // Take first item in list.
+    deaditemstack = * (void **) deaditemstack;
+  } else {
+    // Check if there are any free items left in the current block.
+    if (unallocateditems == 0) {
+      // Check if another block must be allocated.
+      if (*nowblock == (void *) NULL) {
+        // Allocate a new block of items, pointed to by the previous block.
+        newblock = (void **) malloc(itemsperblock * itembytes + sizeof(void *)
+                                    + alignbytes);
+        if (newblock == (void **) NULL) {
+          terminateBoundaryRecovery(NULL, 1);
+        }
+        *nowblock = (void *) newblock;
+        // The next block pointer is NULL.
+        *newblock = (void *) NULL;
+      }
+      // Move to the new block.
+      nowblock = (void **) *nowblock;
+      // Find the first item in the block.
+      //   Increment by the size of (void *).
+      alignptr = (uintptr_t) (nowblock + 1);
+      // Align the item on an `alignbytes'-byte boundary.
+      nextitem = (void *)
+        (alignptr + (uintptr_t) alignbytes -
+         (alignptr % (uintptr_t) alignbytes));
+      // There are lots of unallocated items left in this block.
+      unallocateditems = itemsperblock;
+    }
+    // Allocate a new item.
+    newitem = nextitem;
+    // Advance `nextitem' pointer to next free item in block.
+    nextitem = (void *) ((uintptr_t) nextitem + itembytes);
+    unallocateditems--;
+    maxitems++;
+  }
+  items++;
+  return newitem;
+}
+
+void meshGRegionBoundaryRecovery::memorypool::dealloc(void *dyingitem)
+{
+  // Push freshly killed item onto stack.
+  *((void **) dyingitem) = deaditemstack;
+  deaditemstack = dyingitem;
+  items--;
+}
+
+void meshGRegionBoundaryRecovery::memorypool::traversalinit()
+{
+  uintptr_t alignptr;
+
+  // Begin the traversal in the first block.
+  pathblock = firstblock;
+  // Find the first item in the block.  Increment by the size of (void *).
+  alignptr = (uintptr_t) (pathblock + 1);
+  // Align with item on an `alignbytes'-byte boundary.
+  pathitem = (void *)
+    (alignptr + (uintptr_t) alignbytes -
+     (alignptr % (uintptr_t) alignbytes));
+  // Set the number of items left in the current block.
+  pathitemsleft = itemsperblock;
+}
+
+void* meshGRegionBoundaryRecovery::memorypool::traverse()
+{
+  void *newitem;
+  uintptr_t alignptr;
+
+  // Stop upon exhausting the list of items.
+  if (pathitem == nextitem) {
+    return (void *) NULL;
+  }
+  // Check whether any untraversed items remain in the current block.
+  if (pathitemsleft == 0) {
+    // Find the next block.
+    pathblock = (void **) *pathblock;
+    // Find the first item in the block.  Increment by the size of (void *).
+    alignptr = (uintptr_t) (pathblock + 1);
+    // Align with item on an `alignbytes'-byte boundary.
+    pathitem = (void *)
+      (alignptr + (uintptr_t) alignbytes -
+       (alignptr % (uintptr_t) alignbytes));
+    // Set the number of items left in the current block.
+    pathitemsleft = itemsperblock;
+  }
+  newitem = pathitem;
+  // Find the next item in the block.
+  pathitem = (void *) ((uintptr_t) pathitem + itembytes);
+  pathitemsleft--;
+  return newitem;
+}
+
+void meshGRegionBoundaryRecovery::makeindex2pointmap(point*& idx2verlist)
+{
+  point pointloop;
+  int idx;
+
+  Msg::Debug("  Constructing mapping from indices to points.");
+
+  idx2verlist = new point[points->items + 1];
+
+  points->traversalinit();
+  pointloop = pointtraverse();
+  idx =  in->firstnumber;
+  while (pointloop != (point) NULL) {
+    idx2verlist[idx++] = pointloop;
+    pointloop = pointtraverse();
+  }
+}
+
+void meshGRegionBoundaryRecovery::makepoint2submap(memorypool* pool,
+  int*& idx2faclist, face*& facperverlist)
+{
+  face shloop;
+  int i, j, k;
+
+  Msg::Debug("  Making a map from points to subfaces.");
+
+  // Initialize 'idx2faclist'.
+  idx2faclist = new int[points->items + 1];
+  for (i = 0; i < points->items + 1; i++) idx2faclist[i] = 0;
+
+  // Loop all subfaces, counter the number of subfaces incident at a vertex.
+  pool->traversalinit();
+  shloop.sh = shellfacetraverse(pool);
+  while (shloop.sh != (shellface *) NULL) {
+    // Increment the number of incident subfaces for each vertex.
+    j = pointmark((point) shloop.sh[3]) - in->firstnumber;
+    idx2faclist[j]++;
+    j = pointmark((point) shloop.sh[4]) - in->firstnumber;
+    idx2faclist[j]++;
+    // Skip the third corner if it is a segment.
+    if (shloop.sh[5] != NULL) {
+      j = pointmark((point) shloop.sh[5]) - in->firstnumber;
+      idx2faclist[j]++;
+    }
+    shloop.sh = shellfacetraverse(pool);
+  }
+
+  // Calculate the total length of array 'facperverlist'.
+  j = idx2faclist[0];
+  idx2faclist[0] = 0;  // Array starts from 0 element.
+  for (i = 0; i < points->items; i++) {
+    k = idx2faclist[i + 1];
+    idx2faclist[i + 1] = idx2faclist[i] + j;
+    j = k;
+  }
+
+  // The total length is in the last unit of idx2faclist.
+  facperverlist = new face[idx2faclist[i]];
+
+  // Loop all subfaces again, remember the subfaces at each vertex.
+  pool->traversalinit();
+  shloop.sh = shellfacetraverse(pool);
+  while (shloop.sh != (shellface *) NULL) {
+    j = pointmark((point) shloop.sh[3]) - in->firstnumber;
+    shloop.shver = 0; // save the origin.
+    facperverlist[idx2faclist[j]] = shloop;
+    idx2faclist[j]++;
+    // Is it a subface or a subsegment?
+    if (shloop.sh[5] != NULL) {
+      j = pointmark((point) shloop.sh[4]) - in->firstnumber;
+      shloop.shver = 2; // save the origin.
+      facperverlist[idx2faclist[j]] = shloop;
+      idx2faclist[j]++;
+      j = pointmark((point) shloop.sh[5]) - in->firstnumber;
+      shloop.shver = 4; // save the origin.
+      facperverlist[idx2faclist[j]] = shloop;
+      idx2faclist[j]++;
+    } else {
+      j = pointmark((point) shloop.sh[4]) - in->firstnumber;
+      shloop.shver = 1; // save the origin.
+      facperverlist[idx2faclist[j]] = shloop;
+      idx2faclist[j]++;
+    }
+    shloop.sh = shellfacetraverse(pool);
+  }
+
+  // Contents in 'idx2faclist' are shifted, now shift them back.
+  for (i = points->items - 1; i >= 0; i--) {
+    idx2faclist[i + 1] = idx2faclist[i];
+  }
+  idx2faclist[0] = 0;
+}
+
+void meshGRegionBoundaryRecovery::tetrahedrondealloc(tetrahedron
+  *dyingtetrahedron)
+{
+  // Set tetrahedron's vertices to NULL. This makes it possible to detect
+  //   dead tetrahedra when traversing the list of all tetrahedra.
+  dyingtetrahedron[4] = (tetrahedron) NULL;
+
+  // Dealloc the space to subfaces/subsegments.
+  if (dyingtetrahedron[8] != NULL) {
+    tet2segpool->dealloc((shellface *) dyingtetrahedron[8]);
+  }
+  if (dyingtetrahedron[9] != NULL) {
+    tet2subpool->dealloc((shellface *) dyingtetrahedron[9]);
+  }
+
+  tetrahedrons->dealloc((void *) dyingtetrahedron);
+}
+
+meshGRegionBoundaryRecovery::tetrahedron*
+  meshGRegionBoundaryRecovery::tetrahedrontraverse()
+{
+  tetrahedron *newtetrahedron;
+
+  do {
+    newtetrahedron = (tetrahedron *) tetrahedrons->traverse();
+    if (newtetrahedron == (tetrahedron *) NULL) {
+      return (tetrahedron *) NULL;
+    }
+  } while ((newtetrahedron[4] == (tetrahedron) NULL) ||
+           ((point) newtetrahedron[7] == dummypoint));
+  return newtetrahedron;
+}
+
+meshGRegionBoundaryRecovery::tetrahedron*
+  meshGRegionBoundaryRecovery::alltetrahedrontraverse()
+{
+  tetrahedron *newtetrahedron;
+
+  do {
+    newtetrahedron = (tetrahedron *) tetrahedrons->traverse();
+    if (newtetrahedron == (tetrahedron *) NULL) {
+      return (tetrahedron *) NULL;
+    }
+  } while (newtetrahedron[4] == (tetrahedron) NULL); // Skip dead ones.
+  return newtetrahedron;
+}
+
+void meshGRegionBoundaryRecovery::shellfacedealloc(memorypool *pool,
+  shellface *dyingsh)
+{
+  // Set shellface's vertices to NULL. This makes it possible to detect dead
+  //   shellfaces when traversing the list of all shellfaces.
+  dyingsh[3] = (shellface) NULL;
+  pool->dealloc((void *) dyingsh);
+}
+
+meshGRegionBoundaryRecovery::shellface* meshGRegionBoundaryRecovery::shellfacetraverse(memorypool *pool)
+{
+  shellface *newshellface;
+
+  do {
+    newshellface = (shellface *) pool->traverse();
+    if (newshellface == (shellface *) NULL) {
+      return (shellface *) NULL;
+    }
+  } while (newshellface[3] == (shellface) NULL);          // Skip dead ones.
+  return newshellface;
+}
+
+void meshGRegionBoundaryRecovery::pointdealloc(point dyingpoint)
+{
+  // Mark the point as dead. This  makes it possible to detect dead points
+  //   when traversing the list of all points.
+  setpointtype(dyingpoint, DEADVERTEX);
+  points->dealloc((void *) dyingpoint);
+}
+
+meshGRegionBoundaryRecovery::point meshGRegionBoundaryRecovery::pointtraverse()
+{
+  point newpoint;
+
+  do {
+    newpoint = (point) points->traverse();
+    if (newpoint == (point) NULL) {
+      return (point) NULL;
+    }
+  } while (pointtype(newpoint) == DEADVERTEX);            // Skip dead ones.
+  return newpoint;
+}
+
+void meshGRegionBoundaryRecovery::maketetrahedron(triface *newtet)
+{
+  newtet->tet = (tetrahedron *) tetrahedrons->alloc();
+
+  // Initialize the four adjoining tetrahedra to be "outer space".
+  newtet->tet[0] = NULL;
+  newtet->tet[1] = NULL;
+  newtet->tet[2] = NULL;
+  newtet->tet[3] = NULL;
+  // Four NULL vertices.
+  newtet->tet[4] = NULL;
+  newtet->tet[5] = NULL;
+  newtet->tet[6] = NULL;
+  newtet->tet[7] = NULL;
+  // No attached segments and subfaces yet.
+  newtet->tet[8] = NULL;
+  newtet->tet[9] = NULL;
+  // Initialize the marker (clear all flags).
+  setelemmarker(newtet->tet, 0);
+  for (int i = 0; i < numelemattrib; i++) {
+    setelemattribute(newtet->tet, i, 0.0);
+  }
+  if (b->varvolume) {
+    setvolumebound(newtet->tet, -1.0);
+  }
+
+  // Initialize the version to be Zero.
+  newtet->ver = 11;
+}
+
+void meshGRegionBoundaryRecovery::makeshellface(memorypool *pool, face *newface)
+{
+  newface->sh = (shellface *) pool->alloc();
+
+  // No adjointing subfaces.
+  newface->sh[0] = NULL;
+  newface->sh[1] = NULL;
+  newface->sh[2] = NULL;
+  // Three NULL vertices.
+  newface->sh[3] = NULL;
+  newface->sh[4] = NULL;
+  newface->sh[5] = NULL;
+  // No adjoining subsegments.
+  newface->sh[6] = NULL;
+  newface->sh[7] = NULL;
+  newface->sh[8] = NULL;
+  // No adjoining tetrahedra.
+  newface->sh[9] = NULL;
+  newface->sh[10] = NULL;
+  if (checkconstraints) {
+    // Initialize the maximum area bound.
+    setareabound(*newface, 0.0);
+  }
+  // Clear the infection and marktest bits.
+  ((int *) (newface->sh))[shmarkindex + 1] = 0;
+  if (useinsertradius) {
+    setfacetindex(*newface, 0);
+  }
+  // Set the boundary marker to zero.
+  setshellmark(*newface, 0);
+
+  newface->shver = 0;
+}
+
+void meshGRegionBoundaryRecovery::makepoint(point* pnewpoint,
+  enum verttype vtype)
+{
+  int i;
+
+  *pnewpoint = (point) points->alloc();
+
+  // Initialize the point attributes.
+  for (i = 0; i < numpointattrib; i++) {
+    (*pnewpoint)[3 + i] = 0.0;
+  }
+  // Initialize the metric tensor.
+  for (i = 0; i < sizeoftensor; i++) {
+    (*pnewpoint)[pointmtrindex + i] = 0.0;
+  }
+  setpoint2tet(*pnewpoint, NULL);
+  setpoint2ppt(*pnewpoint, NULL);
+  if (b->plc || b->refine) {
+    // Initialize the point-to-simplex field.
+    setpoint2sh(*pnewpoint, NULL);
+    if (b->metric && (bgm != NULL)) {
+      setpoint2bgmtet(*pnewpoint, NULL);
+    }
+  }
+  // Initialize the point marker (starting from in->firstnumber).
+  setpointmark(*pnewpoint, (int) (points->items) - (!in->firstnumber));
+  // Clear all flags.
+  ((int *) (*pnewpoint))[pointmarkindex + 1] = 0;
+  // Initialize (set) the point type.
+  setpointtype(*pnewpoint, vtype);
+}
+
+void meshGRegionBoundaryRecovery::initializepools()
+{
+  int pointsize = 0, elesize = 0, shsize = 0;
+  int i;
+
+  Msg::Debug("  Initializing memorypools.");
+  Msg::Debug("  tetrahedron per block: %d.", b->tetrahedraperblock);
+
+  inittables();
+
+  if (b->plc || b->refine) {
+    // Save the insertion radius for Steiner points if boundaries
+    //   are allowed be split.
+    if (!b->nobisect || checkconstraints) {
+      useinsertradius = 1;
+    }
+  }
+
+  // The index within each point at which its metric tensor is found.
+  // Each vertex has three coordinates.
+  if (b->psc) {
+    // '-s' option (PSC), the u,v coordinates are provided.
+    pointmtrindex = 5 + numpointattrib;
+    // The index within each point at which its u, v coordinates are found.
+    // Comment: They are saved after the list of point attributes.
+    pointparamindex = pointmtrindex - 2;
+  } else {
+    pointmtrindex = 3 + numpointattrib;
+  }
+  // The index within each point at which an element pointer is found, where
+  //   the index is measured in pointers. Ensure the index is aligned to a
+  //   sizeof(tetrahedron)-byte address.
+  point2simindex = ((pointmtrindex + sizeoftensor) * sizeof(REAL)
+                 + sizeof(tetrahedron) - 1) / sizeof(tetrahedron);
+  if (b->plc || b->refine || b->voroout) {
+    // Increase the point size by three pointers, which are:
+    //   - a pointer to a tet, read by point2tet();
+    //   - a pointer to a parent point, read by point2ppt()).
+    //   - a pointer to a subface or segment, read by point2sh();
+    if (b->metric && (bgm != NULL)) {
+      // Increase one pointer into the background mesh, point2bgmtet().
+      pointsize = (point2simindex + 4) * sizeof(tetrahedron);
+    } else {
+      pointsize = (point2simindex + 3) * sizeof(tetrahedron);
+    }
+  } else {
+    // Increase the point size by two pointer, which are:
+    //   - a pointer to a tet, read by point2tet();
+    //   - a pointer to a parent point, read by point2ppt()). -- Used by btree.
+    pointsize = (point2simindex + 2) * sizeof(tetrahedron);
+  }
+  // The index within each point at which the boundary marker is found,
+  //   Ensure the point marker is aligned to a sizeof(int)-byte address.
+  pointmarkindex = (pointsize + sizeof(int) - 1) / sizeof(int);
+  // Now point size is the ints (indicated by pointmarkindex) plus:
+  //   - an integer for boundary marker;
+  //   - an integer for vertex type;
+  //   - an integer for geometry tag (optional, -s option).
+  pointsize = (pointmarkindex + 2 + (b->psc ? 1 : 0)) * sizeof(tetrahedron);
+
+  // Initialize the pool of vertices.
+points = new memorypool(pointsize, b->vertexperblock, sizeof(REAL), 0);
+
+Msg::Debug("  Size of a point: %d bytes.", points->itembytes);
+
+  // Initialize the infinite vertex.
+  dummypoint = (point) new char[pointsize];
+  // Initialize all fields of this point.
+  dummypoint[0] = 0.0;
+  dummypoint[1] = 0.0;
+  dummypoint[2] = 0.0;
+  for (i = 0; i < numpointattrib; i++) {
+    dummypoint[3 + i] = 0.0;
+  }
+  // Initialize the metric tensor.
+  for (i = 0; i < sizeoftensor; i++) {
+    dummypoint[pointmtrindex + i] = 0.0;
+  }
+  setpoint2tet(dummypoint, NULL);
+  setpoint2ppt(dummypoint, NULL);
+  if (b->plc || b->psc || b->refine) {
+    // Initialize the point-to-simplex field.
+    setpoint2sh(dummypoint, NULL);
+    if (b->metric && (bgm != NULL)) {
+      setpoint2bgmtet(dummypoint, NULL);
+    }
+  }
+  // Initialize the point marker (starting from in->firstnumber).
+  setpointmark(dummypoint, -1); // The unique marker for dummypoint.
+  // Clear all flags.
+  ((int *) (dummypoint))[pointmarkindex + 1] = 0;
+  // Initialize (set) the point type.
+  setpointtype(dummypoint, UNUSEDVERTEX); // Does not matter.
+
+  elesize = 12 * sizeof(tetrahedron);
+
+  // The index to find the element markers. An integer containing varies
+  //   flags and element counter.
+  assert(sizeof(int) <= sizeof(tetrahedron));
+  assert((sizeof(tetrahedron) % sizeof(int)) == 0);
+  elemmarkerindex = (elesize - sizeof(tetrahedron)) / sizeof(int);
+
+  // The actual number of element attributes. Note that if the
+  //   `b->regionattrib' flag is set, an additional attribute will be added.
+  //numelemattrib = in->numberoftetrahedronattributes + (b->regionattrib > 0);
+  numelemattrib = (b->regionattrib > 0);
+
+  // The index within each element at which its attributes are found, where
+  //   the index is measured in REALs.
+  elemattribindex = (elesize + sizeof(REAL) - 1) / sizeof(REAL);
+  // The index within each element at which the maximum volume bound is
+  //   found, where the index is measured in REALs.
+  volumeboundindex = elemattribindex + numelemattrib;
+  // If element attributes or an constraint are needed, increase the number
+  //   of bytes occupied by an element.
+  if (b->varvolume) {
+    elesize = (volumeboundindex + 1) * sizeof(REAL);
+  } else if (numelemattrib > 0) {
+    elesize = volumeboundindex * sizeof(REAL);
+  }
+
+
+  // Having determined the memory size of an element, initialize the pool.
+  tetrahedrons = new memorypool(elesize, b->tetrahedraperblock, sizeof(void *),
+                                16);
+
+  Msg::Debug("  Size of a tetrahedron: %d (%d) bytes.\n", elesize,
+	     tetrahedrons->itembytes);
+
+  if (b->plc || b->refine) { // if (b->useshelles) {
+    // The number of bytes occupied by a subface.  The list of pointers
+    //   stored in a subface are: three to other subfaces, three to corners,
+    //   three to subsegments, two to tetrahedra.
+    shsize = 11 * sizeof(shellface);
+    // The index within each subface at which the maximum area bound is
+    //   found, where the index is measured in REALs.
+    areaboundindex = (shsize + sizeof(REAL) - 1) / sizeof(REAL);
+    // If -q switch is in use, increase the number of bytes occupied by
+    //   a subface for saving maximum area bound.
+    if (checkconstraints) {
+      shsize = (areaboundindex + 1) * sizeof(REAL);
+    } else {
+      shsize = areaboundindex * sizeof(REAL);
+    }
+    // The index within subface at which the facet marker is found. Ensure
+    //   the marker is aligned to a sizeof(int)-byte address.
+    shmarkindex = (shsize + sizeof(int) - 1) / sizeof(int);
+    // Increase the number of bytes by two or three integers, one for facet
+    //   marker, one for shellface type, and optionally one for pbc group.
+    shsize = (shmarkindex + 2) * sizeof(shellface);
+    if (useinsertradius) {
+      // Increase the number of byte by one integer for storing facet index.
+      //    set/read by setfacetindex() and getfacetindex.
+      shsize = (shmarkindex + 3) * sizeof(shellface);
+    }
+
+    // Initialize the pool of subfaces. Each subface record is eight-byte
+    //   aligned so it has room to store an edge version (from 0 to 5) in
+    //   the least three bits.
+    subfaces = new memorypool(shsize, b->shellfaceperblock, sizeof(void *), 8);
+
+    Msg::Debug("  Size of a shellface: %d (%d) bytes.", shsize,
+	       subfaces->itembytes);
+
+    // Initialize the pool of subsegments. The subsegment's record is same
+    //   with subface.
+    subsegs = new memorypool(shsize, b->shellfaceperblock, sizeof(void *), 8);
+
+    // Initialize the pool for tet-subseg connections.
+    tet2segpool = new memorypool(6 * sizeof(shellface), b->shellfaceperblock,
+                                 sizeof(void *), 0);
+    // Initialize the pool for tet-subface connections.
+    tet2subpool = new memorypool(4 * sizeof(shellface), b->shellfaceperblock,
+                                 sizeof(void *), 0);
+
+    // Initialize arraypools for segment & facet recovery.
+    subsegstack = new arraypool(sizeof(face), 10);
+    subfacstack = new arraypool(sizeof(face), 10);
+    subvertstack = new arraypool(sizeof(point), 8);
+
+    // Initialize arraypools for surface point insertion/deletion.
+    caveshlist = new arraypool(sizeof(face), 8);
+    caveshbdlist = new arraypool(sizeof(face), 8);
+    cavesegshlist = new arraypool(sizeof(face), 4);
+
+    cavetetshlist = new arraypool(sizeof(face), 8);
+    cavetetseglist = new arraypool(sizeof(face), 8);
+    caveencshlist = new arraypool(sizeof(face), 8);
+    caveencseglist = new arraypool(sizeof(face), 8);
+  }
+
+  // Initialize the pools for flips.
+  flippool = new memorypool(sizeof(badface), 1024, sizeof(void *), 0);
+  unflipqueue = new arraypool(sizeof(badface), 10);
+
+  // Initialize the arraypools for point insertion.
+  cavetetlist = new arraypool(sizeof(triface), 10);
+  cavebdrylist = new arraypool(sizeof(triface), 10);
+  caveoldtetlist = new arraypool(sizeof(triface), 10);
+  cavetetvertlist = new arraypool(sizeof(point), 10);
+}
+
+////                                                                       ////
+////                                                                       ////
+//// mempool_cxx //////////////////////////////////////////////////////////////
+
+//// geom_cxx /////////////////////////////////////////////////////////////////
+////                                                                       ////
+////                                                                       ////
+
+REAL meshGRegionBoundaryRecovery::PI = 3.14159265358979323846264338327950288419716939937510582;
+
+REAL meshGRegionBoundaryRecovery::insphere_s(REAL* pa, REAL* pb, REAL* pc,
+  REAL* pd, REAL* pe)
+{
+  REAL sign;
+
+  sign = insphere(pa, pb, pc, pd, pe);
+  if (sign != 0.0) {
+    return sign;
+  }
+
+  // Symbolic perturbation.
+  point pt[5], swappt;
+  REAL oriA, oriB;
+  int swaps, count;
+  int n, i;
+
+  pt[0] = pa;
+  pt[1] = pb;
+  pt[2] = pc;
+  pt[3] = pd;
+  pt[4] = pe;
+
+  // Sort the five points such that their indices are in the increasing
+  //   order. An optimized bubble sort algorithm is used, i.e., it has
+  //   the worst case O(n^2) runtime, but it is usually much faster.
+  swaps = 0; // Record the total number of swaps.
+  n = 5;
+  do {
+    count = 0;
+    n = n - 1;
+    for (i = 0; i < n; i++) {
+      if (pointmark(pt[i]) > pointmark(pt[i+1])) {
+        swappt = pt[i]; pt[i] = pt[i+1]; pt[i+1] = swappt;
+        count++;
+      }
+    }
+    swaps += count;
+  } while (count > 0); // Continue if some points are swapped.
+
+  oriA = orient3d(pt[1], pt[2], pt[3], pt[4]);
+  if (oriA != 0.0) {
+    // Flip the sign if there are odd number of swaps.
+    if ((swaps % 2) != 0) oriA = -oriA;
+    return oriA;
+  }
+
+  oriB = -orient3d(pt[0], pt[2], pt[3], pt[4]);
+  assert(oriB != 0.0); // SELF_CHECK
+  // Flip the sign if there are odd number of swaps.
+  if ((swaps % 2) != 0) oriB = -oriB;
+  return oriB;
+}
+
+inline REAL orient4dfast(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe,
+			 REAL aheight, REAL bheight, REAL cheight,
+			 REAL dheight, REAL eheight)
+{
+ const REAL aex = pa[0] - pe[0];
+ const REAL bex = pb[0] - pe[0];
+ const REAL cex = pc[0] - pe[0];
+ const REAL dex = pd[0] - pe[0];
+ const REAL aey = pa[1] - pe[1];
+ const REAL bey = pb[1] - pe[1];
+ const REAL cey = pc[1] - pe[1];
+ const REAL dey = pd[1] - pe[1];
+ const REAL aez = pa[2] - pe[2];
+ const REAL bez = pb[2] - pe[2];
+ const REAL cez = pc[2] - pe[2];
+ const REAL dez = pd[2] - pe[2];
+ const REAL aeheight = aheight - eheight;
+ const REAL beheight = bheight - eheight;
+ const REAL ceheight = cheight - eheight;
+ const REAL deheight = dheight - eheight;
+
+ const REAL aexbey = aex * bey;
+ const REAL bexaey = bex * aey;
+ const REAL ab = aexbey - bexaey;
+ const REAL bexcey = bex * cey;
+ const REAL cexbey = cex * bey;
+ const REAL bc = bexcey - cexbey;
+ const REAL cexdey = cex * dey;
+ const REAL dexcey = dex * cey;
+ const REAL cd = cexdey - dexcey;
+ const REAL dexaey = dex * aey;
+ const REAL aexdey = aex * dey;
+ const REAL da = dexaey - aexdey;
+
+ const REAL aexcey = aex * cey;
+ const REAL cexaey = cex * aey;
+ const REAL ac = aexcey - cexaey;
+ const REAL bexdey = bex * dey;
+ const REAL dexbey = dex * bey;
+ const REAL bd = bexdey - dexbey;
+
+ const REAL abc = aez * bc - bez * ac + cez * ab;
+ const REAL bcd = bez * cd - cez * bd + dez * bc;
+ const REAL cda = cez * da + dez * ac + aez * cd;
+ const REAL dab = dez * ab + aez * bd + bez * da;
+
+ const REAL det = (deheight * abc - ceheight * dab) + (beheight * cda - aeheight * bcd);
+
+ return det;
+}
+
+#define SETVECTOR3(V, a0, a1, a2) (V)[0] = (a0); (V)[1] = (a1); (V)[2] = (a2)
+
+#define SWAP2(a0, a1, tmp) (tmp) = (a0); (a0) = (a1); (a1) = (tmp)
+
+int meshGRegionBoundaryRecovery::tri_edge_2d(point A, point B, point C,
+  point P, point Q, point R, int level, int *types, int *pos)
+{
+  point U[3], V[3];  // The permuted vectors of points.
+  int pu[3], pv[3];  // The original positions of points.
+  REAL abovept[3];
+  REAL sA, sB, sC;
+  REAL s1, s2, s3, s4;
+  int z1;
+
+  if (R == NULL) {
+    // Calculate a lift point.
+    if (1) {
+      REAL n[3], len;
+      // Calculate a lift point, saved in dummypoint.
+      facenormal(A, B, C, n, 1, NULL);
+      len = sqrt(dot(n, n));
+      if (len != 0) {
+        n[0] /= len;
+        n[1] /= len;
+        n[2] /= len;
+        len = distance(A, B);
+        len += distance(B, C);
+        len += distance(C, A);
+        len /= 3.0;
+        R = abovept; //dummypoint;
+        R[0] = A[0] + len * n[0];
+        R[1] = A[1] + len * n[1];
+        R[2] = A[2] + len * n[2];
+      } else {
+        // The triangle [A,B,C] is (nearly) degenerate, i.e., it is (close)
+        //   to a line.  We need a line-line intersection test.
+        //assert(0);
+        // !!! A non-save return value.!!!
+        return 0;  // DISJOINT
+      }
+    }
+  }
+
+  // Test A's, B's, and C's orientations wrt plane PQR.
+  sA = orient3d(P, Q, R, A);
+  sB = orient3d(P, Q, R, B);
+  sC = orient3d(P, Q, R, C);
+
+
+  if (sA < 0) {
+    if (sB < 0) {
+      if (sC < 0) { // (---).
+        return 0;
+      } else {
+        if (sC > 0) { // (--+).
+          // All points are in the right positions.
+          SETVECTOR3(U, A, B, C);  // I3
+          SETVECTOR3(V, P, Q, R);  // I2
+          SETVECTOR3(pu, 0, 1, 2);
+          SETVECTOR3(pv, 0, 1, 2);
+          z1 = 0;
+        } else { // (--0).
+          SETVECTOR3(U, A, B, C);  // I3
+          SETVECTOR3(V, P, Q, R);  // I2
+          SETVECTOR3(pu, 0, 1, 2);
+          SETVECTOR3(pv, 0, 1, 2);
+          z1 = 1;
+        }
+      }
+    } else {
+      if (sB > 0) {
+        if (sC < 0) { // (-+-).
+          SETVECTOR3(U, C, A, B);  // PT = ST
+          SETVECTOR3(V, P, Q, R);  // I2
+          SETVECTOR3(pu, 2, 0, 1);
+          SETVECTOR3(pv, 0, 1, 2);
+          z1 = 0;
+        } else {
+          if (sC > 0) { // (-++).
+            SETVECTOR3(U, B, C, A);  // PT = ST x ST
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 1, 2, 0);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 0;
+          } else { // (-+0).
+            SETVECTOR3(U, C, A, B);  // PT = ST
+            SETVECTOR3(V, P, Q, R);  // I2
+            SETVECTOR3(pu, 2, 0, 1);
+            SETVECTOR3(pv, 0, 1, 2);
+            z1 = 2;
+          }
+        }
+      } else {
+        if (sC < 0) { // (-0-).
+          SETVECTOR3(U, C, A, B);  // PT = ST
+          SETVECTOR3(V, P, Q, R);  // I2
+          SETVECTOR3(pu, 2, 0, 1);
+          SETVECTOR3(pv, 0, 1, 2);
+          z1 = 1;
+        } else {
+          if (sC > 0) { // (-0+).
+            SETVECTOR3(U, B, C, A);  // PT = ST x ST
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 1, 2, 0);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 2;
+          } else { // (-00).
+            SETVECTOR3(U, B, C, A);  // PT = ST x ST
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 1, 2, 0);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 3;
+          }
+        }
+      }
+    }
+  } else {
+    if (sA > 0) {
+      if (sB < 0) {
+        if (sC < 0) { // (+--).
+          SETVECTOR3(U, B, C, A);  // PT = ST x ST
+          SETVECTOR3(V, P, Q, R);  // I2
+          SETVECTOR3(pu, 1, 2, 0);
+          SETVECTOR3(pv, 0, 1, 2);
+          z1 = 0;
+        } else {
+          if (sC > 0) { // (+-+).
+            SETVECTOR3(U, C, A, B);  // PT = ST
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 2, 0, 1);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 0;
+          } else { // (+-0).
+            SETVECTOR3(U, C, A, B);  // PT = ST
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 2, 0, 1);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 2;
+          }
+        }
+      } else {
+        if (sB > 0) {
+          if (sC < 0) { // (++-).
+            SETVECTOR3(U, A, B, C);  // I3
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 0, 1, 2);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 0;
+          } else {
+            if (sC > 0) { // (+++).
+              return 0;
+            } else { // (++0).
+              SETVECTOR3(U, A, B, C);  // I3
+              SETVECTOR3(V, Q, P, R);  // PL = SL
+              SETVECTOR3(pu, 0, 1, 2);
+              SETVECTOR3(pv, 1, 0, 2);
+              z1 = 1;
+            }
+          }
+        } else { // (+0#)
+          if (sC < 0) { // (+0-).
+            SETVECTOR3(U, B, C, A);  // PT = ST x ST
+            SETVECTOR3(V, P, Q, R);  // I2
+            SETVECTOR3(pu, 1, 2, 0);
+            SETVECTOR3(pv, 0, 1, 2);
+            z1 = 2;
+          } else {
+            if (sC > 0) { // (+0+).
+              SETVECTOR3(U, C, A, B);  // PT = ST
+              SETVECTOR3(V, Q, P, R);  // PL = SL
+              SETVECTOR3(pu, 2, 0, 1);
+              SETVECTOR3(pv, 1, 0, 2);
+              z1 = 1;
+            } else { // (+00).
+              SETVECTOR3(U, B, C, A);  // PT = ST x ST
+              SETVECTOR3(V, P, Q, R);  // I2
+              SETVECTOR3(pu, 1, 2, 0);
+              SETVECTOR3(pv, 0, 1, 2);
+              z1 = 3;
+            }
+          }
+        }
+      }
+    } else {
+      if (sB < 0) {
+        if (sC < 0) { // (0--).
+          SETVECTOR3(U, B, C, A);  // PT = ST x ST
+          SETVECTOR3(V, P, Q, R);  // I2
+          SETVECTOR3(pu, 1, 2, 0);
+          SETVECTOR3(pv, 0, 1, 2);
+          z1 = 1;
+        } else {
+          if (sC > 0) { // (0-+).
+            SETVECTOR3(U, A, B, C);  // I3
+            SETVECTOR3(V, P, Q, R);  // I2
+            SETVECTOR3(pu, 0, 1, 2);
+            SETVECTOR3(pv, 0, 1, 2);
+            z1 = 2;
+          } else { // (0-0).
+            SETVECTOR3(U, C, A, B);  // PT = ST
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 2, 0, 1);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 3;
+          }
+        }
+      } else {
+        if (sB > 0) {
+          if (sC < 0) { // (0+-).
+            SETVECTOR3(U, A, B, C);  // I3
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 0, 1, 2);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 2;
+          } else {
+            if (sC > 0) { // (0++).
+              SETVECTOR3(U, B, C, A);  // PT = ST x ST
+              SETVECTOR3(V, Q, P, R);  // PL = SL
+              SETVECTOR3(pu, 1, 2, 0);
+              SETVECTOR3(pv, 1, 0, 2);
+              z1 = 1;
+            } else { // (0+0).
+              SETVECTOR3(U, C, A, B);  // PT = ST
+              SETVECTOR3(V, P, Q, R);  // I2
+              SETVECTOR3(pu, 2, 0, 1);
+              SETVECTOR3(pv, 0, 1, 2);
+              z1 = 3;
+            }
+          }
+        } else { // (00#)
+          if (sC < 0) { // (00-).
+            SETVECTOR3(U, A, B, C);  // I3
+            SETVECTOR3(V, Q, P, R);  // PL = SL
+            SETVECTOR3(pu, 0, 1, 2);
+            SETVECTOR3(pv, 1, 0, 2);
+            z1 = 3;
+          } else {
+            if (sC > 0) { // (00+).
+              SETVECTOR3(U, A, B, C);  // I3
+              SETVECTOR3(V, P, Q, R);  // I2
+              SETVECTOR3(pu, 0, 1, 2);
+              SETVECTOR3(pv, 0, 1, 2);
+              z1 = 3;
+            } else { // (000)
+              // Not possible unless ABC is degenerate.
+              // Avoiding compiler warnings.
+              SETVECTOR3(U, A, B, C);  // I3
+              SETVECTOR3(V, P, Q, R);  // I2
+              SETVECTOR3(pu, 0, 1, 2);
+              SETVECTOR3(pv, 0, 1, 2);
+              z1 = 4;
+            }
+          }
+        }
+      }
+    }
+  }
+
+  s1 = orient3d(U[0], U[2], R, V[1]);  // A, C, R, Q
+  s2 = orient3d(U[1], U[2], R, V[0]);  // B, C, R, P
+
+  if (s1 > 0) {
+    return 0;
+  }
+  if (s2 < 0) {
+    return 0;
+  }
+
+  if (level == 0) {
+    return 1;  // They are intersected.
+  }
+
+  assert(z1 != 4); // SELF_CHECK
+
+  if (z1 == 1) {
+    if (s1 == 0) {  // (0###)
+      // C = Q.
+      types[0] = (int) SHAREVERT;
+      pos[0] = pu[2]; // C
+      pos[1] = pv[1]; // Q
+      types[1] = (int) DISJOINT;
+    } else {
+      if (s2 == 0) { // (#0##)
+        // C = P.
+        types[0] = (int) SHAREVERT;
+        pos[0] = pu[2]; // C
+        pos[1] = pv[0]; // P
+        types[1] = (int) DISJOINT;
+      } else { // (-+##)
+        // C in [P, Q].
+        types[0] = (int) ACROSSVERT;
+        pos[0] = pu[2]; // C
+        pos[1] = pv[0]; // [P, Q]
+        types[1] = (int) DISJOINT;
+      }
+    }
+    return 4;
+  }
+
+  s3 = orient3d(U[0], U[2], R, V[0]);  // A, C, R, P
+  s4 = orient3d(U[1], U[2], R, V[1]);  // B, C, R, Q
+
+  if (z1 == 0) {  // (tritri-03)
+    if (s1 < 0) {
+      if (s3 > 0) {
+        assert(s2 > 0); // SELF_CHECK
+        if (s4 > 0) {
+          // [P, Q] overlaps [k, l] (-+++).
+          types[0] = (int) ACROSSEDGE;
+          pos[0] = pu[2]; // [C, A]
+          pos[1] = pv[0]; // [P, Q]
+          types[1] = (int) TOUCHFACE;
+          pos[2] = 3;     // [A, B, C]
+          pos[3] = pv[1]; // Q
+        } else {
+          if (s4 == 0) {
+            // Q = l, [P, Q] contains [k, l] (-++0).
+            types[0] = (int) ACROSSEDGE;
+            pos[0] = pu[2]; // [C, A]
+            pos[1] = pv[0]; // [P, Q]
+            types[1] = (int) TOUCHEDGE;
+            pos[2] = pu[1]; // [B, C]
+            pos[3] = pv[1]; // Q
+          } else { // s4 < 0
+            // [P, Q] contains [k, l] (-++-).
+            types[0] = (int) ACROSSEDGE;
+            pos[0] = pu[2]; // [C, A]
+            pos[1] = pv[0]; // [P, Q]
+            types[1] = (int) ACROSSEDGE;
+            pos[2] = pu[1]; // [B, C]
+            pos[3] = pv[0]; // [P, Q]
+          }
+        }
+      } else {
+        if (s3 == 0) {
+          assert(s2 > 0); // SELF_CHECK
+          if (s4 > 0) {
+            // P = k, [P, Q] in [k, l] (-+0+).
+            types[0] = (int) TOUCHEDGE;
+            pos[0] = pu[2]; // [C, A]
+            pos[1] = pv[0]; // P
+            types[1] = (int) TOUCHFACE;
+            pos[2] = 3;     // [A, B, C]
+            pos[3] = pv[1]; // Q
+          } else {
+            if (s4 == 0) {
+              // [P, Q] = [k, l] (-+00).
+              types[0] = (int) TOUCHEDGE;
+              pos[0] = pu[2]; // [C, A]
+              pos[1] = pv[0]; // P
+              types[1] = (int) TOUCHEDGE;
+              pos[2] = pu[1]; // [B, C]
+              pos[3] = pv[1]; // Q
+            } else {
+              // P = k, [P, Q] contains [k, l] (-+0-).
+              types[0] = (int) TOUCHEDGE;
+              pos[0] = pu[2]; // [C, A]
+              pos[1] = pv[0]; // P
+              types[1] = (int) ACROSSEDGE;
+              pos[2] = pu[1]; // [B, C]
+              pos[3] = pv[0]; // [P, Q]
+            }
+          }
+        } else { // s3 < 0
+          if (s2 > 0) {
+            if (s4 > 0) {
+              // [P, Q] in [k, l] (-+-+).
+              types[0] = (int) TOUCHFACE;
+              pos[0] = 3;     // [A, B, C]
+              pos[1] = pv[0]; // P
+              types[1] = (int) TOUCHFACE;
+              pos[2] = 3;     // [A, B, C]
+              pos[3] = pv[1]; // Q
+            } else {
+              if (s4 == 0) {
+                // Q = l, [P, Q] in [k, l] (-+-0).
+                types[0] = (int) TOUCHFACE;
+                pos[0] = 3;     // [A, B, C]
+                pos[1] = pv[0]; // P
+                types[1] = (int) TOUCHEDGE;
+                pos[2] = pu[1]; // [B, C]
+                pos[3] = pv[1]; // Q
+              } else { // s4 < 0
+                // [P, Q] overlaps [k, l] (-+--).
+                types[0] = (int) TOUCHFACE;
+                pos[0] = 3;     // [A, B, C]
+                pos[1] = pv[0]; // P
+                types[1] = (int) ACROSSEDGE;
+                pos[2] = pu[1]; // [B, C]
+                pos[3] = pv[0]; // [P, Q]
+              }
+            }
+          } else { // s2 == 0
+            // P = l (#0##).
+            types[0] = (int) TOUCHEDGE;
+            pos[0] = pu[1]; // [B, C]
+            pos[1] = pv[0]; // P
+            types[1] = (int) DISJOINT;
+          }
+        }
+      }
+    } else { // s1 == 0
+      // Q = k (0####)
+      types[0] = (int) TOUCHEDGE;
+      pos[0] = pu[2]; // [C, A]
+      pos[1] = pv[1]; // Q
+      types[1] = (int) DISJOINT;
+    }
+  } else if (z1 == 2) {  // (tritri-23)
+    if (s1 < 0) {
+      if (s3 > 0) {
+        assert(s2 > 0); // SELF_CHECK
+        if (s4 > 0) {
+          // [P, Q] overlaps [A, l] (-+++).
+          types[0] = (int) ACROSSVERT;
+          pos[0] = pu[0]; // A
+          pos[1] = pv[0]; // [P, Q]
+          types[1] = (int) TOUCHFACE;
+          pos[2] = 3;     // [A, B, C]
+          pos[3] = pv[1]; // Q
+        } else {
+          if (s4 == 0) {
+            // Q = l, [P, Q] contains [A, l] (-++0).
+            types[0] = (int) ACROSSVERT;
+            pos[0] = pu[0]; // A
+            pos[1] = pv[0]; // [P, Q]
+            types[1] = (int) TOUCHEDGE;
+            pos[2] = pu[1]; // [B, C]
+            pos[3] = pv[1]; // Q
+          } else { // s4 < 0
+            // [P, Q] contains [A, l] (-++-).
+            types[0] = (int) ACROSSVERT;
+            pos[0] = pu[0]; // A
+            pos[1] = pv[0]; // [P, Q]
+            types[1] = (int) ACROSSEDGE;
+            pos[2] = pu[1]; // [B, C]
+            pos[3] = pv[0]; // [P, Q]
+          }
+        }
+      } else {
+        if (s3 == 0) {
+          assert(s2 > 0); // SELF_CHECK
+          if (s4 > 0) {
+            // P = A, [P, Q] in [A, l] (-+0+).
+            types[0] = (int) SHAREVERT;
+            pos[0] = pu[0]; // A
+            pos[1] = pv[0]; // P
+            types[1] = (int) TOUCHFACE;
+            pos[2] = 3;     // [A, B, C]
+            pos[3] = pv[1]; // Q
+          } else {
+            if (s4 == 0) {
+              // [P, Q] = [A, l] (-+00).
+              types[0] = (int) SHAREVERT;
+              pos[0] = pu[0]; // A
+              pos[1] = pv[0]; // P
+              types[1] = (int) TOUCHEDGE;
+              pos[2] = pu[1]; // [B, C]
+              pos[3] = pv[1]; // Q
+            } else { // s4 < 0
+              // Q = l, [P, Q] in [A, l] (-+0-).
+              types[0] = (int) SHAREVERT;
+              pos[0] = pu[0]; // A
+              pos[1] = pv[0]; // P
+              types[1] = (int) ACROSSEDGE;
+              pos[2] = pu[1]; // [B, C]
+              pos[3] = pv[0]; // [P, Q]
+            }
+          }
+        } else { // s3 < 0
+          if (s2 > 0) {
+            if (s4 > 0) {
+              // [P, Q] in [A, l] (-+-+).
+              types[0] = (int) TOUCHFACE;
+              pos[0] = 3;     // [A, B, C]
+              pos[1] = pv[0]; // P
+              types[0] = (int) TOUCHFACE;
+              pos[0] = 3;     // [A, B, C]
+              pos[1] = pv[1]; // Q
+            } else {
+              if (s4 == 0) {
+                // Q = l, [P, Q] in [A, l] (-+-0).
+                types[0] = (int) TOUCHFACE;
+                pos[0] = 3;     // [A, B, C]
+                pos[1] = pv[0]; // P
+                types[0] = (int) TOUCHEDGE;
+                pos[0] = pu[1]; // [B, C]
+                pos[1] = pv[1]; // Q
+              } else { // s4 < 0
+                // [P, Q] overlaps [A, l] (-+--).
+                types[0] = (int) TOUCHFACE;
+                pos[0] = 3;     // [A, B, C]
+                pos[1] = pv[0]; // P
+                types[0] = (int) ACROSSEDGE;
+                pos[0] = pu[1]; // [B, C]
+                pos[1] = pv[0]; // [P, Q]
+              }
+            }
+          } else { // s2 == 0
+            // P = l (#0##).
+            types[0] = (int) TOUCHEDGE;
+            pos[0] = pu[1]; // [B, C]
+            pos[1] = pv[0]; // P
+            types[1] = (int) DISJOINT;
+          }
+        }
+      }
+    } else { // s1 == 0
+      // Q = A (0###).
+      types[0] = (int) SHAREVERT;
+      pos[0] = pu[0]; // A
+      pos[1] = pv[1]; // Q
+      types[1] = (int) DISJOINT;
+    }
+  } else if (z1 == 3) {  // (tritri-33)
+    if (s1 < 0) {
+      if (s3 > 0) {
+        assert(s2 > 0); // SELF_CHECK
+        if (s4 > 0) {
+          // [P, Q] overlaps [A, B] (-+++).
+          types[0] = (int) ACROSSVERT;
+          pos[0] = pu[0]; // A
+          pos[1] = pv[0]; // [P, Q]
+          types[1] = (int) TOUCHEDGE;
+          pos[2] = pu[0]; // [A, B]
+          pos[3] = pv[1]; // Q
+        } else {
+          if (s4 == 0) {
+            // Q = B, [P, Q] contains [A, B] (-++0).
+            types[0] = (int) ACROSSVERT;
+            pos[0] = pu[0]; // A
+            pos[1] = pv[0]; // [P, Q]
+            types[1] = (int) SHAREVERT;
+            pos[2] = pu[1]; // B
+            pos[3] = pv[1]; // Q
+          } else { // s4 < 0
+            // [P, Q] contains [A, B] (-++-).
+            types[0] = (int) ACROSSVERT;
+            pos[0] = pu[0]; // A
+            pos[1] = pv[0]; // [P, Q]
+            types[1] = (int) ACROSSVERT;
+            pos[2] = pu[1]; // B
+            pos[3] = pv[0]; // [P, Q]
+          }
+        }
+      } else {
+        if (s3 == 0) {
+          assert(s2 > 0); // SELF_CHECK
+          if (s4 > 0) {
+            // P = A, [P, Q] in [A, B] (-+0+).
+            types[0] = (int) SHAREVERT;
+            pos[0] = pu[0]; // A
+            pos[1] = pv[0]; // P
+            types[1] = (int) TOUCHEDGE;
+            pos[2] = pu[0]; // [A, B]
+            pos[3] = pv[1]; // Q
+          } else {
+            if (s4 == 0) {
+              // [P, Q] = [A, B] (-+00).
+              types[0] = (int) SHAREEDGE;
+              pos[0] = pu[0]; // [A, B]
+              pos[1] = pv[0]; // [P, Q]
+              types[1] = (int) DISJOINT;
+            } else { // s4 < 0
+              // P= A, [P, Q] in [A, B] (-+0-).
+              types[0] = (int) SHAREVERT;
+              pos[0] = pu[0]; // A
+              pos[1] = pv[0]; // P
+              types[1] = (int) ACROSSVERT;
+              pos[2] = pu[1]; // B
+              pos[3] = pv[0]; // [P, Q]
+            }
+          }
+        } else { // s3 < 0
+          if (s2 > 0) {
+            if (s4 > 0) {
+              // [P, Q] in [A, B] (-+-+).
+              types[0] = (int) TOUCHEDGE;
+              pos[0] = pu[0]; // [A, B]
+              pos[1] = pv[0]; // P
+              types[1] = (int) TOUCHEDGE;
+              pos[2] = pu[0]; // [A, B]
+              pos[3] = pv[1]; // Q
+            } else {
+              if (s4 == 0) {
+                // Q = B, [P, Q] in [A, B] (-+-0).
+                types[0] = (int) TOUCHEDGE;
+                pos[0] = pu[0]; // [A, B]
+                pos[1] = pv[0]; // P
+                types[1] = (int) SHAREVERT;
+                pos[2] = pu[1]; // B
+                pos[3] = pv[1]; // Q
+              } else { // s4 < 0
+                // [P, Q] overlaps [A, B] (-+--).
+                types[0] = (int) TOUCHEDGE;
+                pos[0] = pu[0]; // [A, B]
+                pos[1] = pv[0]; // P
+                types[1] = (int) ACROSSVERT;
+                pos[2] = pu[1]; // B
+                pos[3] = pv[0]; // [P, Q]
+              }
+            }
+          } else { // s2 == 0
+            // P = B (#0##).
+            types[0] = (int) SHAREVERT;
+            pos[0] = pu[1]; // B
+            pos[1] = pv[0]; // P
+            types[1] = (int) DISJOINT;
+          }
+        }
+      }
+    } else { // s1 == 0
+      // Q = A (0###).
+      types[0] = (int) SHAREVERT;
+      pos[0] = pu[0]; // A
+      pos[1] = pv[1]; // Q
+      types[1] = (int) DISJOINT;
+    }
+  }
+
+  return 4;
+}
+
+int meshGRegionBoundaryRecovery::tri_edge_tail(point A,point B,point C,point P,
+  point Q,point R, REAL sP,REAL sQ,int level,int *types,int *pos)
+{
+  point U[3], V[3]; //, Ptmp;
+  int pu[3], pv[3]; //, itmp;
+  REAL s1, s2, s3;
+  int z1;
+
+
+  if (sP < 0) {
+    if (sQ < 0) { // (--) disjoint
+      return 0;
+    } else {
+      if (sQ > 0) { // (-+)
+        SETVECTOR3(U, A, B, C);
+        SETVECTOR3(V, P, Q, R);
+        SETVECTOR3(pu, 0, 1, 2);
+        SETVECTOR3(pv, 0, 1, 2);
+        z1 = 0;
+      } else { // (-0)
+        SETVECTOR3(U, A, B, C);
+        SETVECTOR3(V, P, Q, R);
+        SETVECTOR3(pu, 0, 1, 2);
+        SETVECTOR3(pv, 0, 1, 2);
+        z1 = 1;
+      }
+    }
+  } else {
+    if (sP > 0) { // (+-)
+      if (sQ < 0) {
+        SETVECTOR3(U, A, B, C);
+        SETVECTOR3(V, Q, P, R);  // P and Q are flipped.
+        SETVECTOR3(pu, 0, 1, 2);
+        SETVECTOR3(pv, 1, 0, 2);
+        z1 = 0;
+      } else {
+        if (sQ > 0) { // (++) disjoint
+          return 0;
+        } else { // (+0)
+          SETVECTOR3(U, B, A, C); // A and B are flipped.
+          SETVECTOR3(V, P, Q, R);
+          SETVECTOR3(pu, 1, 0, 2);
+          SETVECTOR3(pv, 0, 1, 2);
+          z1 = 1;
+        }
+      }
+    } else { // sP == 0
+      if (sQ < 0) { // (0-)
+        SETVECTOR3(U, A, B, C);
+        SETVECTOR3(V, Q, P, R);  // P and Q are flipped.
+        SETVECTOR3(pu, 0, 1, 2);
+        SETVECTOR3(pv, 1, 0, 2);
+        z1 = 1;
+      } else {
+        if (sQ > 0) { // (0+)
+          SETVECTOR3(U, B, A, C);  // A and B are flipped.
+          SETVECTOR3(V, Q, P, R);  // P and Q are flipped.
+          SETVECTOR3(pu, 1, 0, 2);
+          SETVECTOR3(pv, 1, 0, 2);
+          z1 = 1;
+        } else { // (00)
+          // A, B, C, P, and Q are coplanar.
+          z1 = 2;
+        }
+      }
+    }
+  }
+
+  if (z1 == 2) {
+    // The triangle and the edge are coplanar.
+    return tri_edge_2d(A, B, C, P, Q, R, level, types, pos);
+  }
+
+  s1 = orient3d(U[0], U[1], V[0], V[1]);
+  if (s1 < 0) {
+    return 0;
+  }
+
+  s2 = orient3d(U[1], U[2], V[0], V[1]);
+  if (s2 < 0) {
+    return 0;
+  }
+
+  s3 = orient3d(U[2], U[0], V[0], V[1]);
+  if (s3 < 0) {
+    return 0;
+  }
+
+  if (level == 0) {
+    return 1;  // The are intersected.
+  }
+
+  types[1] = (int) DISJOINT; // No second intersection point.
+
+  if (z1 == 0) {
+    if (s1 > 0) {
+      if (s2 > 0) {
+        if (s3 > 0) { // (+++)
+          // [P, Q] passes interior of [A, B, C].
+          types[0] = (int) ACROSSFACE;
+          pos[0] = 3;  // interior of [A, B, C]
+          pos[1] = 0;  // [P, Q]
+        } else { // s3 == 0 (++0)
+          // [P, Q] intersects [C, A].
+          types[0] = (int) ACROSSEDGE;
+          pos[0] = pu[2];  // [C, A]
+          pos[1] = 0;  // [P, Q]
+        }
+      } else { // s2 == 0
+        if (s3 > 0) { // (+0+)
+          // [P, Q] intersects [B, C].
+          types[0] = (int) ACROSSEDGE;
+          pos[0] = pu[1];  // [B, C]
+          pos[1] = 0;  // [P, Q]
+        } else { // s3 == 0 (+00)
+          // [P, Q] passes C.
+          types[0] = (int) ACROSSVERT;
+          pos[0] = pu[2];  // C
+          pos[1] = 0;  // [P, Q]
+        }
+      }
+    } else { // s1 == 0
+      if (s2 > 0) {
+        if (s3 > 0) { // (0++)
+          // [P, Q] intersects [A, B].
+          types[0] = (int) ACROSSEDGE;
+          pos[0] = pu[0];  // [A, B]
+          pos[1] = 0;  // [P, Q]
+        } else { // s3 == 0 (0+0)
+          // [P, Q] passes A.
+          types[0] = (int) ACROSSVERT;
+          pos[0] = pu[0];  // A
+          pos[1] = 0;  // [P, Q]
+        }
+      } else { // s2 == 0
+        if (s3 > 0) { // (00+)
+          // [P, Q] passes B.
+          types[0] = (int) ACROSSVERT;
+          pos[0] = pu[1];  // B
+          pos[1] = 0;  // [P, Q]
+        } else { // s3 == 0 (000)
+          // Impossible.
+          assert(0);
+        }
+      }
+    }
+  } else { // z1 == 1
+    if (s1 > 0) {
+      if (s2 > 0) {
+        if (s3 > 0) { // (+++)
+          // Q lies in [A, B, C].
+          types[0] = (int) TOUCHFACE;
+          pos[0] = 0; // [A, B, C]
+          pos[1] = pv[1]; // Q
+        } else { // s3 == 0 (++0)
+          // Q lies on [C, A].
+          types[0] = (int) TOUCHEDGE;
+          pos[0] = pu[2]; // [C, A]
+          pos[1] = pv[1]; // Q
+        }
+      } else { // s2 == 0
+        if (s3 > 0) { // (+0+)
+          // Q lies on [B, C].
+          types[0] = (int) TOUCHEDGE;
+          pos[0] = pu[1]; // [B, C]
+          pos[1] = pv[1]; // Q
+        } else { // s3 == 0 (+00)
+          // Q = C.
+          types[0] = (int) SHAREVERT;
+          pos[0] = pu[2]; // C
+          pos[1] = pv[1]; // Q
+        }
+      }
+    } else { // s1 == 0
+      if (s2 > 0) {
+        if (s3 > 0) { // (0++)
+          // Q lies on [A, B].
+          types[0] = (int) TOUCHEDGE;
+          pos[0] = pu[0]; // [A, B]
+          pos[1] = pv[1]; // Q
+        } else { // s3 == 0 (0+0)
+          // Q = A.
+          types[0] = (int) SHAREVERT;
+          pos[0] = pu[0]; // A
+          pos[1] = pv[1]; // Q
+        }
+      } else { // s2 == 0
+        if (s3 > 0) { // (00+)
+          // Q = B.
+          types[0] = (int) SHAREVERT;
+          pos[0] = pu[1]; // B
+          pos[1] = pv[1]; // Q
+        } else { // s3 == 0 (000)
+          // Impossible.
+          assert(0);
+        }
+      }
+    }
+  }
+
+  // T and E intersect in a single point.
+  return 2;
+}
+
+int meshGRegionBoundaryRecovery::tri_edge_test(point A, point B, point C,
+  point P, point Q, point R, int level, int *types, int *pos)
+{
+  REAL sP, sQ;
+
+  // Test the locations of P and Q with respect to ABC.
+  sP = orient3d(A, B, C, P);
+  sQ = orient3d(A, B, C, Q);
+
+  return tri_edge_tail(A, B, C, P, Q, R, sP, sQ, level, types, pos);
+}
+
+bool meshGRegionBoundaryRecovery::lu_decmp(REAL lu[4][4], int n, int* ps,
+  REAL* d, int N)
+{
+  REAL scales[4];
+  REAL pivot, biggest, mult, tempf;
+  int pivotindex = 0;
+  int i, j, k;
+
+  *d = 1.0;                                      // No row interchanges yet.
+
+  for (i = N; i < n + N; i++) {                             // For each row.
+    // Find the largest element in each row for row equilibration
+    biggest = 0.0;
+    for (j = N; j < n + N; j++)
+      if (biggest < (tempf = fabs(lu[i][j])))
+        biggest  = tempf;
+    if (biggest != 0.0)
+      scales[i] = 1.0 / biggest;
+    else {
+      scales[i] = 0.0;
+      return false;                            // Zero row: singular matrix.
+    }
+    ps[i] = i;                                 // Initialize pivot sequence.
+  }
+
+  for (k = N; k < n + N - 1; k++) {                      // For each column.
+    // Find the largest element in each column to pivot around.
+    biggest = 0.0;
+    for (i = k; i < n + N; i++) {
+      if (biggest < (tempf = fabs(lu[ps[i]][k]) * scales[ps[i]])) {
+        biggest = tempf;
+        pivotindex = i;
+      }
+    }
+    if (biggest == 0.0) {
+      return false;                         // Zero column: singular matrix.
+    }
+    if (pivotindex != k) {                         // Update pivot sequence.
+      j = ps[k];
+      ps[k] = ps[pivotindex];
+      ps[pivotindex] = j;
+      *d = -(*d);                          // ...and change the parity of d.
+    }
+
+    // Pivot, eliminating an extra variable  each time
+    pivot = lu[ps[k]][k];
+    for (i = k + 1; i < n + N; i++) {
+      lu[ps[i]][k] = mult = lu[ps[i]][k] / pivot;
+      if (mult != 0.0) {
+        for (j = k + 1; j < n + N; j++)
+          lu[ps[i]][j] -= mult * lu[ps[k]][j];
+      }
+    }
+  }
+
+  // (lu[ps[n + N - 1]][n + N - 1] == 0.0) ==> A is singular.
+  return lu[ps[n + N - 1]][n + N - 1] != 0.0;
+}
+
+void meshGRegionBoundaryRecovery::lu_solve(REAL lu[4][4], int n, int* ps,
+  REAL* b, int N)
+{
+  int i, j;
+  REAL X[4], dot;
+
+  for (i = N; i < n + N; i++) X[i] = 0.0;
+
+  // Vector reduction using U triangular matrix.
+  for (i = N; i < n + N; i++) {
+    dot = 0.0;
+    for (j = N; j < i + N; j++)
+      dot += lu[ps[i]][j] * X[j];
+    X[i] = b[ps[i]] - dot;
+  }
+
+  // Back substitution, in L triangular matrix.
+  for (i = n + N - 1; i >= N; i--) {
+    dot = 0.0;
+    for (j = i + 1; j < n + N; j++)
+      dot += lu[ps[i]][j] * X[j];
+    X[i] = (X[i] - dot) / lu[ps[i]][i];
+  }
+
+  for (i = N; i < n + N; i++) b[i] = X[i];
+}
+
+REAL meshGRegionBoundaryRecovery::incircle3d(point pa, point pb, point pc,
+  point pd)
+{
+  REAL area2[2], n1[3], n2[3], c[3];
+  REAL sign, r, d;
+
+  // Calculate the areas of the two triangles [a, b, c] and [b, a, d].
+  facenormal(pa, pb, pc, n1, 1, NULL);
+  area2[0] = dot(n1, n1);
+  facenormal(pb, pa, pd, n2, 1, NULL);
+  area2[1] = dot(n2, n2);
+
+  if (area2[0] > area2[1]) {
+    // Choose [a, b, c] as the base triangle.
+    circumsphere(pa, pb, pc, NULL, c, &r);
+    d = distance(c, pd);
+  } else {
+    // Choose [b, a, d] as the base triangle.
+    if (area2[1] > 0) {
+      circumsphere(pb, pa, pd, NULL, c, &r);
+      d = distance(c, pc);
+    } else {
+      // The four points are collinear. This case only happens on the boundary.
+      return 0; // Return "not inside".
+    }
+  }
+
+  sign = d - r;
+  if (fabs(sign) / r < b->epsilon) {
+    sign = 0;
+  }
+
+  return sign;
+}
+
+void meshGRegionBoundaryRecovery::facenormal(point pa, point pb, point pc,
+  REAL *n, int pivot, REAL* lav)
+{
+  REAL v1[3], v2[3], v3[3], *pv1, *pv2;
+  REAL L1, L2, L3;
+
+  v1[0] = pb[0] - pa[0];  // edge vector v1: a->b
+  v1[1] = pb[1] - pa[1];
+  v1[2] = pb[2] - pa[2];
+  v2[0] = pa[0] - pc[0];  // edge vector v2: c->a
+  v2[1] = pa[1] - pc[1];
+  v2[2] = pa[2] - pc[2];
+
+  // Default, normal is calculated by: v1 x (-v2) (see Fig. fnormal).
+  if (pivot > 0) {
+    // Choose edge vectors by Burdakov's algorithm.
+    v3[0] = pc[0] - pb[0];  // edge vector v3: b->c
+    v3[1] = pc[1] - pb[1];
+    v3[2] = pc[2] - pb[2];
+    L1 = dot(v1, v1);
+    L2 = dot(v2, v2);
+    L3 = dot(v3, v3);
+    // Sort the three edge lengths.
+    if (L1 < L2) {
+      if (L2 < L3) {
+        pv1 = v1; pv2 = v2; // n = v1 x (-v2).
+      } else {
+        pv1 = v3; pv2 = v1; // n = v3 x (-v1).
+      }
+    } else {
+      if (L1 < L3) {
+        pv1 = v1; pv2 = v2; // n = v1 x (-v2).
+      } else {
+        pv1 = v2; pv2 = v3; // n = v2 x (-v3).
+      }
+    }
+    if (lav) {
+      // return the average edge length.
+      *lav = (sqrt(L1) + sqrt(L2) + sqrt(L3)) / 3.0;
+    }
+  } else {
+    pv1 = v1; pv2 = v2; // n = v1 x (-v2).
+  }
+
+  // Calculate the face normal.
+  cross(pv1, pv2, n);
+  // Inverse the direction;
+  n[0] = -n[0];
+  n[1] = -n[1];
+  n[2] = -n[2];
+}
+
+REAL meshGRegionBoundaryRecovery::orient3dfast(REAL *pa, REAL *pb, REAL *pc,
+  REAL *pd)
+{
+  REAL adx, bdx, cdx;
+  REAL ady, bdy, cdy;
+  REAL adz, bdz, cdz;
+
+  adx = pa[0] - pd[0];
+  bdx = pb[0] - pd[0];
+  cdx = pc[0] - pd[0];
+  ady = pa[1] - pd[1];
+  bdy = pb[1] - pd[1];
+  cdy = pc[1] - pd[1];
+  adz = pa[2] - pd[2];
+  bdz = pb[2] - pd[2];
+  cdz = pc[2] - pd[2];
+
+  return adx * (bdy * cdz - bdz * cdy)
+       + bdx * (cdy * adz - cdz * ady)
+       + cdx * (ady * bdz - adz * bdy);
+}
+
+bool meshGRegionBoundaryRecovery::tetalldihedral(point pa, point pb, point pc,
+  point pd, REAL* cosdd, REAL* cosmaxd, REAL* cosmind)
+{
+  REAL N[4][3], vol, cosd, len;
+  int f1 = 0, f2 = 0, i, j;
+
+  vol = 0; // Check if the tet is valid or not.
+
+  // Get four normals of faces of the tet.
+  tetallnormal(pa, pb, pc, pd, N, &vol);
+
+  if (vol > 0) {
+    // Normalize the normals.
+    for (i = 0; i < 4; i++) {
+      len = sqrt(dot(N[i], N[i]));
+      if (len != 0.0) {
+        for (j = 0; j < 3; j++) N[i][j] /= len;
+      } else {
+        // There are degeneracies, such as duplicated vertices.
+        vol = 0; //assert(0);
+      }
+    }
+  }
+
+  if (vol <= 0) { // if (vol == 0.0) {
+    // A degenerated tet or an inverted tet.
+    facenormal(pc, pb, pd, N[0], 1, NULL);
+    facenormal(pa, pc, pd, N[1], 1, NULL);
+    facenormal(pb, pa, pd, N[2], 1, NULL);
+    facenormal(pa, pb, pc, N[3], 1, NULL);
+    // Normalize the normals.
+    for (i = 0; i < 4; i++) {
+      len = sqrt(dot(N[i], N[i]));
+      if (len != 0.0) {
+        for (j = 0; j < 3; j++) N[i][j] /= len;
+      } else {
+        // There are degeneracies, such as duplicated vertices.
+        break; // Not a valid normal.
+      }
+    }
+    if (i < 4) {
+      // Do not calculate dihedral angles.
+      // Set all angles be 0 degree. There will be no quality optimization for
+      //   this tet! Use volume optimization to correct it.
+      if (cosdd != NULL) {
+        for (i = 0; i < 6; i++) {
+          cosdd[i] = -1.0; // 180 degree.
+        }
+      }
+      // This tet has zero volume.
+      if (cosmaxd != NULL) {
+        *cosmaxd = -1.0; // 180 degree.
+      }
+      if (cosmind != NULL) {
+        *cosmind = -1.0; // 180 degree.
+      }
+      return false;
+    }
+  }
+
+  // Calculate the cosine of the dihedral angles of the edges.
+  for (i = 0; i < 6; i++) {
+    switch (i) {
+    case 0: f1 = 0; f2 = 1; break; // [c,d].
+    case 1: f1 = 1; f2 = 2; break; // [a,d].
+    case 2: f1 = 2; f2 = 3; break; // [a,b].
+    case 3: f1 = 0; f2 = 3; break; // [b,c].
+    case 4: f1 = 2; f2 = 0; break; // [b,d].
+    case 5: f1 = 1; f2 = 3; break; // [a,c].
+    }
+    cosd = -dot(N[f1], N[f2]);
+    if (cosd < -1.0) cosd = -1.0; // Rounding.
+    if (cosd >  1.0) cosd =  1.0; // Rounding.
+    if (cosdd) cosdd[i] = cosd;
+    if (cosmaxd || cosmind) {
+      if (i == 0) {
+        if (cosmaxd) *cosmaxd = cosd;
+        if (cosmind) *cosmind = cosd;
+      } else {
+        if (cosmaxd) *cosmaxd = cosd < *cosmaxd ? cosd : *cosmaxd;
+        if (cosmind) *cosmind = cosd > *cosmind ? cosd : *cosmind;
+      }
+    }
+  }
+
+  return true;
+}
+
+void meshGRegionBoundaryRecovery::tetallnormal(point pa, point pb, point pc,
+  point pd, REAL N[4][3], REAL* volume)
+{
+  REAL A[4][4], rhs[4], D;
+  int indx[4];
+  int i, j;
+
+  // get the entries of A[3][3].
+  for (i = 0; i < 3; i++) A[0][i] = pa[i] - pd[i];  // d->a vec
+  for (i = 0; i < 3; i++) A[1][i] = pb[i] - pd[i];  // d->b vec
+  for (i = 0; i < 3; i++) A[2][i] = pc[i] - pd[i];  // d->c vec
+
+  // Compute the inverse of matrix A, to get 3 normals of the 4 faces.
+  if (lu_decmp(A, 3, indx, &D, 0)) { // Decompose the matrix just once.
+    if (volume != NULL) {
+      // Get the volume of the tet.
+      *volume = fabs((A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2])) / 6.0;
+    }
+    for (j = 0; j < 3; j++) {
+      for (i = 0; i < 3; i++) rhs[i] = 0.0;
+      rhs[j] = 1.0;  // Positive means the inside direction
+      lu_solve(A, 3, indx, rhs, 0);
+      for (i = 0; i < 3; i++) N[j][i] = rhs[i];
+    }
+    // Get the fourth normal by summing up the first three.
+    for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i];
+  } else {
+    // The tet is degenerated.
+    if (volume != NULL) {
+      *volume = 0;
+    }
+  }
+}
+
+REAL meshGRegionBoundaryRecovery::tetaspectratio(point pa, point pb, point pc,
+  point pd)
+{
+  REAL vda[3], vdb[3], vdc[3];
+  REAL N[4][3], A[4][4], rhs[4], D;
+  REAL H[4], volume, radius2, minheightinv;
+  int indx[4];
+  int i, j;
+
+  // Set the matrix A = [vda, vdb, vdc]^T.
+  for (i = 0; i < 3; i++) A[0][i] = vda[i] = pa[i] - pd[i];
+  for (i = 0; i < 3; i++) A[1][i] = vdb[i] = pb[i] - pd[i];
+  for (i = 0; i < 3; i++) A[2][i] = vdc[i] = pc[i] - pd[i];
+  // Lu-decompose the matrix A.
+  lu_decmp(A, 3, indx, &D, 0);
+  // Get the volume of abcd.
+  volume = (A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2]) / 6.0;
+  // Check if it is zero.
+  if (volume == 0.0) return 1.0e+200; // A degenerate tet.
+  // if (volume < 0.0) volume = -volume;
+  // Check the radiu-edge ratio of the tet.
+  rhs[0] = 0.5 * dot(vda, vda);
+  rhs[1] = 0.5 * dot(vdb, vdb);
+  rhs[2] = 0.5 * dot(vdc, vdc);
+  lu_solve(A, 3, indx, rhs, 0);
+  // Get the circumcenter.
+  // for (i = 0; i < 3; i++) circumcent[i] = pd[i] + rhs[i];
+  // Get the square of the circumradius.
+  radius2 = dot(rhs, rhs);
+
+  // Compute the 4 face normals (N[0], ..., N[3]).
+  for (j = 0; j < 3; j++) {
+    for (i = 0; i < 3; i++) rhs[i] = 0.0;
+    rhs[j] = 1.0;  // Positive means the inside direction
+    lu_solve(A, 3, indx, rhs, 0);
+    for (i = 0; i < 3; i++) N[j][i] = rhs[i];
+  }
+  // Get the fourth normal by summing up the first three.
+  for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i];
+  // Normalized the normals.
+  for (i = 0; i < 4; i++) {
+    // H[i] is the inverse of the height of its corresponding face.
+    H[i] = sqrt(dot(N[i], N[i]));
+    // if (H[i] > 0.0) {
+    //   for (j = 0; j < 3; j++) N[i][j] /= H[i];
+    // }
+  }
+  // Get the radius of the inscribed sphere.
+  // insradius = 1.0 / (H[0] + H[1] + H[2] + H[3]);
+  // Get the biggest H[i] (corresponding to the smallest height).
+  minheightinv = H[0];
+  for (i = 1; i < 4; i++) {
+    if (H[i] > minheightinv) minheightinv = H[i];
+  }
+
+  return sqrt(radius2) * minheightinv;
+}
+
+bool meshGRegionBoundaryRecovery::circumsphere(REAL* pa, REAL* pb, REAL* pc,
+  REAL* pd, REAL* cent, REAL* radius)
+{
+  REAL A[4][4], rhs[4], D;
+  int indx[4];
+
+  // Compute the coefficient matrix A (3x3).
+  A[0][0] = pb[0] - pa[0];
+  A[0][1] = pb[1] - pa[1];
+  A[0][2] = pb[2] - pa[2];
+  A[1][0] = pc[0] - pa[0];
+  A[1][1] = pc[1] - pa[1];
+  A[1][2] = pc[2] - pa[2];
+  if (pd != NULL) {
+    A[2][0] = pd[0] - pa[0];
+    A[2][1] = pd[1] - pa[1];
+    A[2][2] = pd[2] - pa[2];
+  } else {
+    cross(A[0], A[1], A[2]);
+  }
+
+  // Compute the right hand side vector b (3x1).
+  rhs[0] = 0.5 * dot(A[0], A[0]);
+  rhs[1] = 0.5 * dot(A[1], A[1]);
+  if (pd != NULL) {
+    rhs[2] = 0.5 * dot(A[2], A[2]);
+  } else {
+    rhs[2] = 0.0;
+  }
+
+  // Solve the 3 by 3 equations use LU decomposition with partial pivoting
+  //   and backward and forward substitute..
+  if (!lu_decmp(A, 3, indx, &D, 0)) {
+    if (radius != (REAL *) NULL) *radius = 0.0;
+    return false;
+  }
+  lu_solve(A, 3, indx, rhs, 0);
+  if (cent != (REAL *) NULL) {
+    cent[0] = pa[0] + rhs[0];
+    cent[1] = pa[1] + rhs[1];
+    cent[2] = pa[2] + rhs[2];
+  }
+  if (radius != (REAL *) NULL) {
+    *radius = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]);
+  }
+  return true;
+}
+
+void meshGRegionBoundaryRecovery::planelineint(REAL* pa, REAL* pb, REAL* pc,
+  REAL* e1, REAL* e2, REAL* ip, REAL* u)
+{
+  REAL n[3], det, det1;
+
+  // Calculate N.
+  facenormal(pa, pb, pc, n, 1, NULL);
+  // Calculate N dot (e2 - e1).
+  det = n[0] * (e2[0] - e1[0]) + n[1] * (e2[1] - e1[1])
+      + n[2] * (e2[2] - e1[2]);
+  if (det != 0.0) {
+    // Calculate N dot (pa - e1)
+    det1 = n[0] * (pa[0] - e1[0]) + n[1] * (pa[1] - e1[1])
+         + n[2] * (pa[2] - e1[2]);
+    *u = det1 / det;
+    ip[0] = e1[0] + *u * (e2[0] - e1[0]);
+    ip[1] = e1[1] + *u * (e2[1] - e1[1]);
+    ip[2] = e1[2] + *u * (e2[2] - e1[2]);
+  } else {
+    *u = 0.0;
+  }
+}
+
+int meshGRegionBoundaryRecovery::linelineint(REAL* A, REAL* B, REAL* C,
+  REAL* D, REAL* P, REAL* Q, REAL* tp, REAL* tq)
+{
+  REAL vab[3], vcd[3], vca[3];
+  REAL vab_vab, vcd_vcd, vab_vcd;
+  REAL vca_vab, vca_vcd;
+  REAL det, eps;
+  int i;
+
+  for (i = 0; i < 3; i++) {
+    vab[i] = B[i] - A[i];
+    vcd[i] = D[i] - C[i];
+    vca[i] = A[i] - C[i];
+  }
+
+  vab_vab = dot(vab, vab);
+  vcd_vcd = dot(vcd, vcd);
+  vab_vcd = dot(vab, vcd);
+
+  det = vab_vab * vcd_vcd - vab_vcd * vab_vcd;
+  // Round the result.
+  eps = det / (fabs(vab_vab * vcd_vcd) + fabs(vab_vcd * vab_vcd));
+  if (eps < b->epsilon) {
+    return 0;
+  }
+
+  vca_vab = dot(vca, vab);
+  vca_vcd = dot(vca, vcd);
+
+  *tp = (vcd_vcd * (- vca_vab) + vab_vcd * vca_vcd) / det;
+  *tq = (vab_vcd * (- vca_vab) + vab_vab * vca_vcd) / det;
+
+  for (i = 0; i < 3; i++) P[i] = A[i] + (*tp) * vab[i];
+  for (i = 0; i < 3; i++) Q[i] = C[i] + (*tq) * vcd[i];
+
+  return 1;
+}
+
+REAL meshGRegionBoundaryRecovery::tetprismvol(REAL* p0, REAL* p1, REAL* p2,
+  REAL* p3)
+{
+  REAL *p4, *p5, *p6, *p7;
+  REAL w4, w5, w6, w7;
+  REAL vol[4];
+
+  p4 = p0;
+  p5 = p1;
+  p6 = p2;
+  p7 = p3;
+
+  // TO DO: these weights can be pre-calculated!
+  w4 = dot(p0, p0);
+  w5 = dot(p1, p1);
+  w6 = dot(p2, p2);
+  w7 = dot(p3, p3);
+
+  // Calculate the volume of the tet-prism.
+  vol[0] = orient4dfast(p5, p6, p4, p3, p7, w5, w6, w4, 0, w7);
+  vol[1] = orient4dfast(p3, p6, p2, p0, p1,  0, w6,  0, 0,  0);
+  vol[2] = orient4dfast(p4, p6, p3, p0, p1, w4, w6,  0, 0,  0);
+  vol[3] = orient4dfast(p6, p5, p4, p3, p1, w6, w5, w4, 0,  0);
+
+  return fabs(vol[0]) + fabs(vol[1]) + fabs(vol[2]) + fabs(vol[3]);
+}
+
+void meshGRegionBoundaryRecovery::calculateabovepoint4(point pa, point pb,
+  point pc, point pd)
+{
+  REAL n1[3], n2[3], *norm;
+  REAL len, len1, len2;
+
+  // Select a base.
+  facenormal(pa, pb, pc, n1, 1, NULL);
+  len1 = sqrt(dot(n1, n1));
+  facenormal(pa, pb, pd, n2, 1, NULL);
+  len2 = sqrt(dot(n2, n2));
+  if (len1 > len2) {
+    norm = n1;
+    len = len1;
+  } else {
+    norm = n2;
+    len = len2;
+  }
+  assert(len > 0);
+  norm[0] /= len;
+  norm[1] /= len;
+  norm[2] /= len;
+  len = distance(pa, pb);
+  dummypoint[0] = pa[0] + len * norm[0];
+  dummypoint[1] = pa[1] + len * norm[1];
+  dummypoint[2] = pa[2] + len * norm[2];
+}
+
+////                                                                       ////
+////                                                                       ////
+//// geom_cxx /////////////////////////////////////////////////////////////////
+
+//// flip_cxx /////////////////////////////////////////////////////////////////
+////                                                                       ////
+////                                                                       ////
+
+void meshGRegionBoundaryRecovery::flip23(triface* fliptets, int hullflag, flipconstraints *fc)
+{
+  triface topcastets[3], botcastets[3];
+  triface newface, casface;
+  point pa, pb, pc, pd, pe;
+  REAL attrib, volume;
+  int dummyflag = 0;  // range = {-1, 0, 1, 2}.
+  int i;
+
+  if (hullflag > 0) {
+    // Check if e is dummypoint.
+    if (oppo(fliptets[1]) == dummypoint) {
+      // Swap the two old tets.
+      newface = fliptets[0];
+      fliptets[0] = fliptets[1];
+      fliptets[1] = newface;
+      dummyflag = -1;  // d is dummypoint.
+    } else {
+      // Check if either a or b is dummypoint.
+      if (org(fliptets[0]) == dummypoint) {
+        dummyflag = 1; // a is dummypoint.
+        enextself(fliptets[0]);
+        eprevself(fliptets[1]);
+      } else if (dest(fliptets[0]) == dummypoint) {
+        dummyflag = 2; // b is dummypoint.
+        eprevself(fliptets[0]);
+        enextself(fliptets[1]);
+      } else {
+        dummyflag = 0; // either c or d may be dummypoint.
+      }
+    }
+  }
+
+  pa =  org(fliptets[0]);
+  pb = dest(fliptets[0]);
+  pc = apex(fliptets[0]);
+  pd = oppo(fliptets[0]);
+  pe = oppo(fliptets[1]);
+
+  flip23count++;
+
+  // Get the outer boundary faces.
+  for (i = 0; i < 3; i++) {
+    fnext(fliptets[0], topcastets[i]);
+    enextself(fliptets[0]);
+  }
+  for (i = 0; i < 3; i++) {
+    fnext(fliptets[1], botcastets[i]);
+    eprevself(fliptets[1]);
+  }
+
+  // Re-use fliptets[0] and fliptets[1].
+  fliptets[0].ver = 11;
+  fliptets[1].ver = 11;
+  setelemmarker(fliptets[0].tet, 0); // Clear all flags.
+  setelemmarker(fliptets[1].tet, 0);
+  // NOTE: the element attributes and volume constraint remain unchanged.
+  if (checksubsegflag) {
+    // Dealloc the space to subsegments.
+    if (fliptets[0].tet[8] != NULL) {
+      tet2segpool->dealloc((shellface *) fliptets[0].tet[8]);
+      fliptets[0].tet[8] = NULL;
+    }
+    if (fliptets[1].tet[8] != NULL) {
+      tet2segpool->dealloc((shellface *) fliptets[1].tet[8]);
+      fliptets[1].tet[8] = NULL;
+    }
+  }
+  if (checksubfaceflag) {
+    // Dealloc the space to subfaces.
+    if (fliptets[0].tet[9] != NULL) {
+      tet2subpool->dealloc((shellface *) fliptets[0].tet[9]);
+      fliptets[0].tet[9] = NULL;
+    }
+    if (fliptets[1].tet[9] != NULL) {
+      tet2subpool->dealloc((shellface *) fliptets[1].tet[9]);
+      fliptets[1].tet[9] = NULL;
+    }
+  }
+  // Create a new tet.
+  maketetrahedron(&(fliptets[2]));
+  // The new tet have the same attributes from the old tet.
+  for (i = 0; i < numelemattrib; i++) {
+    attrib = elemattribute(fliptets[0].tet, i);
+    setelemattribute(fliptets[2].tet, i, attrib);
+  }
+  if (b->varvolume) {
+    volume = volumebound(fliptets[0].tet);
+    setvolumebound(fliptets[2].tet, volume);
+  }
+
+  if (hullflag > 0) {
+    // Check if d is dummytet.
+    if (pd != dummypoint) {
+      setvertices(fliptets[0], pe, pd, pa, pb); // [e,d,a,b] *
+      setvertices(fliptets[1], pe, pd, pb, pc); // [e,d,b,c] *
+      // Check if c is dummypoint.
+      if (pc != dummypoint) {
+        setvertices(fliptets[2], pe, pd, pc, pa);  // [e,d,c,a] *
+      } else {
+        setvertices(fliptets[2], pd, pe, pa, pc); // [d,e,a,c]
+        esymself(fliptets[2]);                    // [e,d,c,a] *
+      }
+      // The hullsize does not change.
+    } else {
+      // d is dummypoint.
+      setvertices(fliptets[0], pa, pb, pe, pd); // [a,b,e,d]
+      setvertices(fliptets[1], pb, pc, pe, pd); // [b,c,e,d]
+      setvertices(fliptets[2], pc, pa, pe, pd); // [c,a,e,d]
+      // Adjust the faces to [e,d,a,b], [e,d,b,c], [e,d,c,a] *
+      for (i = 0; i < 3; i++) {
+        eprevesymself(fliptets[i]);
+        enextself(fliptets[i]);
+      }
+      // We deleted one hull tet, and created three hull tets.
+      hullsize += 2;
+    }
+  } else {
+    setvertices(fliptets[0], pe, pd, pa, pb); // [e,d,a,b] *
+    setvertices(fliptets[1], pe, pd, pb, pc); // [e,d,b,c] *
+    setvertices(fliptets[2], pe, pd, pc, pa); // [e,d,c,a] *
+  }
+
+  if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol
+    REAL volneg[2], volpos[3], vol_diff;
+    if (pd != dummypoint) {
+      if (pc != dummypoint) {
+        volpos[0] = tetprismvol(pe, pd, pa, pb);
+        volpos[1] = tetprismvol(pe, pd, pb, pc);
+        volpos[2] = tetprismvol(pe, pd, pc, pa);
+        volneg[0] = tetprismvol(pa, pb, pc, pd);
+        volneg[1] = tetprismvol(pb, pa, pc, pe);
+      } else { // pc == dummypoint
+        volpos[0] = tetprismvol(pe, pd, pa, pb);
+        volpos[1] = 0.;
+        volpos[2] = 0.;
+        volneg[0] = 0.;
+        volneg[1] = 0.;
+      }
+    } else { // pd == dummypoint.
+      volpos[0] = 0.;
+      volpos[1] = 0.;
+      volpos[2] = 0.;
+      volneg[0] = 0.;
+      volneg[1] = tetprismvol(pb, pa, pc, pe);
+    }
+    vol_diff = volpos[0] + volpos[1] + volpos[2] - volneg[0] - volneg[1];
+    fc->tetprism_vol_sum  += vol_diff; // Update the total sum.
+  }
+
+  // Bond three new tets together.
+  for (i = 0; i < 3; i++) {
+    esym(fliptets[i], newface);
+    bond(newface, fliptets[(i + 1) % 3]);
+  }
+  // Bond to top outer boundary faces (at [a,b,c,d]).
+  for (i = 0; i < 3; i++) {
+    eorgoppo(fliptets[i], newface); // At edges [b,a], [c,b], [a,c].
+    bond(newface, topcastets[i]);
+  }
+  // Bond bottom outer boundary faces (at [b,a,c,e]).
+  for (i = 0; i < 3; i++) {
+    edestoppo(fliptets[i], newface); // At edges [a,b], [b,c], [c,a].
+    bond(newface, botcastets[i]);
+  }
+
+  if (checksubsegflag) {
+    // Bond subsegments if there are.
+    // Each new tet has 5 edges to be checked (except the edge [e,d]).
+    face checkseg;
+    // The middle three: [a,b], [b,c], [c,a].
+    for (i = 0; i < 3; i++) {
+      if (issubseg(topcastets[i])) {
+        tsspivot1(topcastets[i], checkseg);
+        eorgoppo(fliptets[i], newface);
+        tssbond1(newface, checkseg);
+        sstbond1(checkseg, newface);
+        if (fc->chkencflag & 1) {
+          //enqueuesubface(badsubsegs, &checkseg);
+        }
+      }
+    }
+    // The top three: [d,a], [d,b], [d,c]. Two tets per edge.
+    for (i = 0; i < 3; i++) {
+      eprev(topcastets[i], casface);
+      if (issubseg(casface)) {
+        tsspivot1(casface, checkseg);
+        enext(fliptets[i], newface);
+        tssbond1(newface, checkseg);
+        sstbond1(checkseg, newface);
+        esym(fliptets[(i + 2) % 3], newface);
+        eprevself(newface);
+        tssbond1(newface, checkseg);
+        sstbond1(checkseg, newface);
+        if (fc->chkencflag & 1) {
+          //enqueuesubface(badsubsegs, &checkseg);
+        }
+      }
+    }
+    // The bot three: [a,e], [b,e], [c,e]. Two tets per edge.
+    for (i = 0; i < 3; i++) {
+      enext(botcastets[i], casface);
+      if (issubseg(casface)) {
+        tsspivot1(casface, checkseg);
+        eprev(fliptets[i], newface);
+        tssbond1(newface, checkseg);
+        sstbond1(checkseg, newface);
+        esym(fliptets[(i + 2) % 3], newface);
+        enextself(newface);
+        tssbond1(newface, checkseg);
+        sstbond1(checkseg, newface);
+        if (fc->chkencflag & 1) {
+          //enqueuesubface(badsubsegs, &checkseg);
+        }
+      }
+    }
+  } // if (checksubsegflag)
+
+  if (checksubfaceflag) {
+    // Bond 6 subfaces if there are.
+    face checksh;
+    for (i = 0; i < 3; i++) {
+      if (issubface(topcastets[i])) {
+        tspivot(topcastets[i], checksh);
+        eorgoppo(fliptets[i], newface);
+        sesymself(checksh);
+        tsbond(newface, checksh);
+        if (fc->chkencflag & 2) {
+          //enqueuesubface(badsubfacs, &checksh);
+        }
+      }
+    }
+    for (i = 0; i < 3; i++) {
+      if (issubface(botcastets[i])) {
+        tspivot(botcastets[i], checksh);
+        edestoppo(fliptets[i], newface);
+        sesymself(checksh);
+        tsbond(newface, checksh);
+        if (fc->chkencflag & 2) {
+          //enqueuesubface(badsubfacs, &checksh);
+        }
+      }
+    }
+  } // if (checksubfaceflag)
+
+  if (fc->chkencflag & 4) {
+    // Put three new tets into check list.
+    for (i = 0; i < 3; i++) {
+      //enqueuetetrahedron(&(fliptets[i]));
+    }
+  }
+
+  // Update the point-to-tet map.
+  setpoint2tet(pa, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pb, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pc, (tetrahedron) fliptets[1].tet);
+  setpoint2tet(pd, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pe, (tetrahedron) fliptets[0].tet);
+
+  if (hullflag > 0) {
+    if (dummyflag != 0) {
+      // Restore the original position of the points (for flipnm()).
+      if (dummyflag == -1) {
+        // Reverse the edge.
+        for (i = 0; i < 3; i++) {
+          esymself(fliptets[i]);
+        }
+        // Swap the last two new tets.
+        newface = fliptets[1];
+        fliptets[1] = fliptets[2];
+        fliptets[2] = newface;
+      } else {
+        // either a or b were swapped.
+        if (dummyflag == 1) {
+          // a is dummypoint.
+          newface = fliptets[0];
+          fliptets[0] = fliptets[2];
+          fliptets[2] = fliptets[1];
+          fliptets[1] = newface;
+        } else { // dummyflag == 2
+          // b is dummypoint.
+          newface = fliptets[0];
+          fliptets[0] = fliptets[1];
+          fliptets[1] = fliptets[2];
+          fliptets[2] = newface;
+        }
+      }
+    }
+  }
+
+  if (fc->enqflag > 0) {
+    // Queue faces which may be locally non-Delaunay.
+    for (i = 0; i < 3; i++) {
+      eprevesym(fliptets[i], newface);
+      flippush(flipstack, &newface);
+    }
+    if (fc->enqflag > 1) {
+      for (i = 0; i < 3; i++) {
+        enextesym(fliptets[i], newface);
+        flippush(flipstack, &newface);
+      }
+    }
+  }
+
+  recenttet = fliptets[0];
+}
+
+void meshGRegionBoundaryRecovery::flip32(triface* fliptets, int hullflag, flipconstraints *fc)
+{
+  triface topcastets[3], botcastets[3];
+  triface newface, casface;
+  face flipshs[3];
+  face checkseg;
+  point pa, pb, pc, pd, pe;
+  REAL attrib, volume;
+  int dummyflag = 0;  // Rangle = {-1, 0, 1, 2}
+  int spivot = -1, scount = 0; // for flip22()
+  int t1ver;
+  int i, j;
+
+  if (hullflag > 0) {
+    // Check if e is 'dummypoint'.
+    if (org(fliptets[0]) == dummypoint) {
+      // Reverse the edge.
+      for (i = 0; i < 3; i++) {
+        esymself(fliptets[i]);
+      }
+      // Swap the last two tets.
+      newface = fliptets[1];
+      fliptets[1] = fliptets[2];
+      fliptets[2] = newface;
+      dummyflag = -1; // e is dummypoint.
+    } else {
+      // Check if a or b is the 'dummypoint'.
+      if (apex(fliptets[0]) == dummypoint) {
+        dummyflag = 1;  // a is dummypoint.
+        newface = fliptets[0];
+        fliptets[0] = fliptets[1];
+        fliptets[1] = fliptets[2];
+        fliptets[2] = newface;
+      } else if (apex(fliptets[1]) == dummypoint) {
+        dummyflag = 2;  // b is dummypoint.
+        newface = fliptets[0];
+        fliptets[0] = fliptets[2];
+        fliptets[2] = fliptets[1];
+        fliptets[1] = newface;
+      } else {
+        dummyflag = 0;  // either c or d may be dummypoint.
+      }
+    }
+  }
+
+  pa = apex(fliptets[0]);
+  pb = apex(fliptets[1]);
+  pc = apex(fliptets[2]);
+  pd = dest(fliptets[0]);
+  pe = org(fliptets[0]);
+
+  flip32count++;
+
+  // Get the outer boundary faces.
+  for (i = 0; i < 3; i++) {
+    eorgoppo(fliptets[i], casface);
+    fsym(casface, topcastets[i]);
+  }
+  for (i = 0; i < 3; i++) {
+    edestoppo(fliptets[i], casface);
+    fsym(casface, botcastets[i]);
+  }
+
+  if (checksubfaceflag) {
+    // Check if there are interior subfaces at the edge [e,d].
+    for (i = 0; i < 3; i++) {
+      tspivot(fliptets[i], flipshs[i]);
+      if (flipshs[i].sh != NULL) {
+        // Found an interior subface.
+        stdissolve(flipshs[i]); // Disconnect the sub-tet bond.
+        scount++;
+      } else {
+        spivot = i;
+      }
+    }
+  }
+
+  // Re-use fliptets[0] and fliptets[1].
+  fliptets[0].ver = 11;
+  fliptets[1].ver = 11;
+  setelemmarker(fliptets[0].tet, 0); // Clear all flags.
+  setelemmarker(fliptets[1].tet, 0);
+  if (checksubsegflag) {
+    // Dealloc the space to subsegments.
+    if (fliptets[0].tet[8] != NULL) {
+      tet2segpool->dealloc((shellface *) fliptets[0].tet[8]);
+      fliptets[0].tet[8] = NULL;
+    }
+    if (fliptets[1].tet[8] != NULL) {
+      tet2segpool->dealloc((shellface *) fliptets[1].tet[8]);
+      fliptets[1].tet[8] = NULL;
+    }
+  }
+  if (checksubfaceflag) {
+    // Dealloc the space to subfaces.
+    if (fliptets[0].tet[9] != NULL) {
+      tet2subpool->dealloc((shellface *) fliptets[0].tet[9]);
+      fliptets[0].tet[9] = NULL;
+    }
+    if (fliptets[1].tet[9] != NULL) {
+      tet2subpool->dealloc((shellface *) fliptets[1].tet[9]);
+      fliptets[1].tet[9] = NULL;
+    }
+  }
+  if (checksubfaceflag) {
+    if (scount > 0) {
+      // The element attributes and volume constraint must be set correctly.
+      // There are two subfaces involved in this flip. The three tets are
+      //   separated into two different regions, one may be exterior. The
+      //   first region has two tets, and the second region has only one.
+      //   The two created tets must be in the same region as the first region.
+      //   The element attributes and volume constraint must be set correctly.
+      //assert(spivot != -1);
+      // The tet fliptets[spivot] is in the first region.
+      for (j = 0; j < 2; j++) {
+        for (i = 0; i < numelemattrib; i++) {
+          attrib = elemattribute(fliptets[spivot].tet, i);
+          setelemattribute(fliptets[j].tet, i, attrib);
+        }
+        if (b->varvolume) {
+          volume = volumebound(fliptets[spivot].tet);
+          setvolumebound(fliptets[j].tet, volume);
+        }
+      }
+    }
+  }
+  // Delete an old tet.
+  tetrahedrondealloc(fliptets[2].tet);
+
+  if (hullflag > 0) {
+    // Check if c is dummypointc.
+    if (pc != dummypoint) {
+      // Check if d is dummypoint.
+      if (pd != dummypoint) {
+        // No hull tet is involved.
+      } else {
+        // We deleted three hull tets, and created one hull tet.
+        hullsize -= 2;
+      }
+      setvertices(fliptets[0], pa, pb, pc, pd);
+      setvertices(fliptets[1], pb, pa, pc, pe);
+    } else {
+      // c is dummypoint. The two new tets are hull tets.
+      setvertices(fliptets[0], pb, pa, pd, pc);
+      setvertices(fliptets[1], pa, pb, pe, pc);
+      // Adjust badc -> abcd.
+      esymself(fliptets[0]);
+      // Adjust abec -> bace.
+      esymself(fliptets[1]);
+      // The hullsize does not change.
+    }
+  } else {
+    setvertices(fliptets[0], pa, pb, pc, pd);
+    setvertices(fliptets[1], pb, pa, pc, pe);
+  }
+
+  if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol
+    REAL volneg[3], volpos[2], vol_diff;
+    if (pc != dummypoint) {
+      if (pd != dummypoint) {
+        volneg[0] = tetprismvol(pe, pd, pa, pb);
+        volneg[1] = tetprismvol(pe, pd, pb, pc);
+        volneg[2] = tetprismvol(pe, pd, pc, pa);
+        volpos[0] = tetprismvol(pa, pb, pc, pd);
+        volpos[1] = tetprismvol(pb, pa, pc, pe);
+      } else { // pd == dummypoint
+        volneg[0] = 0.;
+        volneg[1] = 0.;
+        volneg[2] = 0.;
+        volpos[0] = 0.;
+        volpos[1] = tetprismvol(pb, pa, pc, pe);
+      }
+    } else { // pc == dummypoint.
+      volneg[0] = tetprismvol(pe, pd, pa, pb);
+      volneg[1] = 0.;
+      volneg[2] = 0.;
+      volpos[0] = 0.;
+      volpos[1] = 0.;
+    }
+    vol_diff = volpos[0] + volpos[1] - volneg[0] - volneg[1] - volneg[2];
+    fc->tetprism_vol_sum  += vol_diff; // Update the total sum.
+  }
+
+  // Bond abcd <==> bace.
+  bond(fliptets[0], fliptets[1]);
+  // Bond new faces to top outer boundary faces (at abcd).
+  for (i = 0; i < 3; i++) {
+    esym(fliptets[0], newface);
+    bond(newface, topcastets[i]);
+    enextself(fliptets[0]);
+  }
+  // Bond new faces to bottom outer boundary faces (at bace).
+  for (i = 0; i < 3; i++) {
+    esym(fliptets[1], newface);
+    bond(newface, botcastets[i]);
+    eprevself(fliptets[1]);
+  }
+
+  if (checksubsegflag) {
+    // Bond 9 segments to new (flipped) tets.
+    for (i = 0; i < 3; i++) { // edges a->b, b->c, c->a.
+      if (issubseg(topcastets[i])) {
+        tsspivot1(topcastets[i], checkseg);
+        tssbond1(fliptets[0], checkseg);
+        sstbond1(checkseg, fliptets[0]);
+        tssbond1(fliptets[1], checkseg);
+        sstbond1(checkseg, fliptets[1]);
+        if (fc->chkencflag & 1) {
+          //enqueuesubface(badsubsegs, &checkseg);
+        }
+      }
+      enextself(fliptets[0]);
+      eprevself(fliptets[1]);
+    }
+    // The three top edges.
+    for (i = 0; i < 3; i++) { // edges b->d, c->d, a->d.
+      esym(fliptets[0], newface);
+      eprevself(newface);
+      enext(topcastets[i], casface);
+      if (issubseg(casface)) {
+        tsspivot1(casface, checkseg);
+        tssbond1(newface, checkseg);
+        sstbond1(checkseg, newface);
+        if (fc->chkencflag & 1) {
+          //enqueuesubface(badsubsegs, &checkseg);
+        }
+      }
+      enextself(fliptets[0]);
+    }
+    // The three bot edges.
+    for (i = 0; i < 3; i++) { // edges b<-e, c<-e, a<-e.
+      esym(fliptets[1], newface);
+      enextself(newface);
+      eprev(botcastets[i], casface);
+      if (issubseg(casface)) {
+        tsspivot1(casface, checkseg);
+        tssbond1(newface, checkseg);
+        sstbond1(checkseg, newface);
+        if (fc->chkencflag & 1) {
+          //enqueuesubface(badsubsegs, &checkseg);
+        }
+      }
+      eprevself(fliptets[1]);
+    }
+  } // if (checksubsegflag)
+
+  if (checksubfaceflag) {
+    face checksh;
+    // Bond the top three casing subfaces.
+    for (i = 0; i < 3; i++) { // At edges [b,a], [c,b], [a,c]
+      if (issubface(topcastets[i])) {
+        tspivot(topcastets[i], checksh);
+        esym(fliptets[0], newface);
+        sesymself(checksh);
+        tsbond(newface, checksh);
+        if (fc->chkencflag & 2) {
+          //enqueuesubface(badsubfacs, &checksh);
+        }
+      }
+      enextself(fliptets[0]);
+    }
+    // Bond the bottom three casing subfaces.
+    for (i = 0; i < 3; i++) { // At edges [a,b], [b,c], [c,a]
+      if (issubface(botcastets[i])) {
+        tspivot(botcastets[i], checksh);
+        esym(fliptets[1], newface);
+        sesymself(checksh);
+        tsbond(newface, checksh);
+        if (fc->chkencflag & 2) {
+          //enqueuesubface(badsubfacs, &checksh);
+        }
+      }
+      eprevself(fliptets[1]);
+    }
+
+    if (scount > 0) {
+      face flipfaces[2];
+      // Perform a 2-to-2 flip in subfaces.
+      flipfaces[0] = flipshs[(spivot + 1) % 3];
+      flipfaces[1] = flipshs[(spivot + 2) % 3];
+      sesymself(flipfaces[1]);
+      flip22(flipfaces, 0, fc->chkencflag);
+      // Connect the flipped subfaces to flipped tets.
+      // First go to the corresponding flipping edge.
+      //   Re-use top- and botcastets[0].
+      topcastets[0] = fliptets[0];
+      botcastets[0] = fliptets[1];
+      for (i = 0; i < ((spivot + 1) % 3); i++) {
+        enextself(topcastets[0]);
+        eprevself(botcastets[0]);
+      }
+      // Connect the top subface to the top tets.
+      esymself(topcastets[0]);
+      sesymself(flipfaces[0]);
+      // Check if there already exists a subface.
+      tspivot(topcastets[0], checksh);
+      if (checksh.sh == NULL) {
+        tsbond(topcastets[0], flipfaces[0]);
+        fsymself(topcastets[0]);
+        sesymself(flipfaces[0]);
+        tsbond(topcastets[0], flipfaces[0]);
+      } else {
+        // An invalid 2-to-2 flip. Report a bug.
+        terminateBoundaryRecovery(this, 2);
+      }
+      // Connect the bot subface to the bottom tets.
+      esymself(botcastets[0]);
+      sesymself(flipfaces[1]);
+      // Check if there already exists a subface.
+      tspivot(botcastets[0], checksh);
+      if (checksh.sh == NULL) {
+        tsbond(botcastets[0], flipfaces[1]);
+        fsymself(botcastets[0]);
+        sesymself(flipfaces[1]);
+        tsbond(botcastets[0], flipfaces[1]);
+      } else {
+        // An invalid 2-to-2 flip. Report a bug.
+        terminateBoundaryRecovery(this, 2);
+      }
+    } // if (scount > 0)
+  } // if (checksubfaceflag)
+
+  if (fc->chkencflag & 4) {
+    // Put two new tets into check list.
+    for (i = 0; i < 2; i++) {
+      //enqueuetetrahedron(&(fliptets[i]));
+    }
+  }
+
+  setpoint2tet(pa, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pb, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pc, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pd, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pe, (tetrahedron) fliptets[1].tet);
+
+  if (hullflag > 0) {
+    if (dummyflag != 0) {
+      // Restore the original position of the points (for flipnm()).
+      if (dummyflag == -1) {
+        // e were dummypoint. Swap the two new tets.
+        newface = fliptets[0];
+        fliptets[0] = fliptets[1];
+        fliptets[1] = newface;
+      } else {
+        // a or b was dummypoint.
+        if (dummyflag == 1) {
+          eprevself(fliptets[0]);
+          enextself(fliptets[1]);
+        } else { // dummyflag == 2
+          enextself(fliptets[0]);
+          eprevself(fliptets[1]);
+        }
+      }
+    }
+  }
+
+  if (fc->enqflag > 0) {
+    // Queue faces which may be locally non-Delaunay.
+    // pa = org(fliptets[0]); // 'a' may be a new vertex.
+    enextesym(fliptets[0], newface);
+    flippush(flipstack, &newface);
+    eprevesym(fliptets[1], newface);
+    flippush(flipstack, &newface);
+    if (fc->enqflag > 1) {
+      //pb = dest(fliptets[0]);
+      eprevesym(fliptets[0], newface);
+      flippush(flipstack, &newface);
+      enextesym(fliptets[1], newface);
+      flippush(flipstack, &newface);
+      //pc = apex(fliptets[0]);
+      esym(fliptets[0], newface);
+      flippush(flipstack, &newface);
+      esym(fliptets[1], newface);
+      flippush(flipstack, &newface);
+    }
+  }
+
+  recenttet = fliptets[0];
+}
+
+void meshGRegionBoundaryRecovery::flip41(triface* fliptets, int hullflag, flipconstraints *fc)
+{
+  triface topcastets[3], botcastet;
+  triface newface, neightet;
+  face flipshs[4];
+  point pa, pb, pc, pd, pp;
+  int dummyflag = 0; // in {0, 1, 2, 3, 4}
+  int spivot = -1, scount = 0;
+  int t1ver;
+  int i;
+
+  pa =  org(fliptets[3]);
+  pb = dest(fliptets[3]);
+  pc = apex(fliptets[3]);
+  pd = dest(fliptets[0]);
+  pp =  org(fliptets[0]); // The removing vertex.
+
+  flip41count++;
+
+  // Get the outer boundary faces.
+  for (i = 0; i < 3; i++) {
+    enext(fliptets[i], topcastets[i]);
+    fnextself(topcastets[i]); // [d,a,b,#], [d,b,c,#], [d,c,a,#]
+    enextself(topcastets[i]); // [a,b,d,#], [b,c,d,#], [c,a,d,#]
+  }
+  fsym(fliptets[3], botcastet); // [b,a,c,#]
+
+  if (checksubfaceflag) {
+    // Check if there are three subfaces at 'p'.
+    //   Re-use 'newface'.
+    for (i = 0; i < 3; i++) {
+      fnext(fliptets[3], newface); // [a,b,p,d],[b,c,p,d],[c,a,p,d].
+      tspivot(newface, flipshs[i]);
+      if (flipshs[i].sh != NULL) {
+        spivot = i; // Remember this subface.
+        scount++;
+      }
+      enextself(fliptets[3]);
+    }
+    if (scount > 0) {
+      // There are three subfaces connecting at p.
+      if (scount < 3) {
+        // The new subface is one of {[a,b,d], [b,c,d], [c,a,d]}.
+        assert(scount == 1); // spivot >= 0
+        // Go to the tet containing the three subfaces.
+        fsym(topcastets[spivot], neightet);
+        // Get the three subfaces connecting at p.
+        for (i = 0; i < 3; i++) {
+          esym(neightet, newface);
+          tspivot(newface, flipshs[i]);
+          assert(flipshs[i].sh != NULL);
+          eprevself(neightet);
+        }
+      } else {
+        spivot = 3; // The new subface is [a,b,c].
+      }
+    }
+  } // if (checksubfaceflag)
+
+
+  // Re-use fliptets[0] for [a,b,c,d].
+  fliptets[0].ver = 11;
+  setelemmarker(fliptets[0].tet, 0); // Clean all flags.
+  // NOTE: the element attributes and volume constraint remain unchanged.
+  if (checksubsegflag) {
+    // Dealloc the space to subsegments.
+    if (fliptets[0].tet[8] != NULL) {
+      tet2segpool->dealloc((shellface *) fliptets[0].tet[8]);
+      fliptets[0].tet[8] = NULL;
+    }
+  }
+  if (checksubfaceflag) {
+    // Dealloc the space to subfaces.
+    if (fliptets[0].tet[9] != NULL) {
+      tet2subpool->dealloc((shellface *) fliptets[0].tet[9]);
+      fliptets[0].tet[9] = NULL;
+    }
+  }
+  // Delete the other three tets.
+  for (i = 1; i < 4; i++) {
+    tetrahedrondealloc(fliptets[i].tet);
+  }
+
+  if (pp != dummypoint) {
+    // Mark the point pp as unused.
+    setpointtype(pp, UNUSEDVERTEX);
+    unuverts++;
+  }
+
+  // Create the new tet [a,b,c,d].
+  if (hullflag > 0) {
+    // One of the five vertices may be 'dummypoint'.
+    if (pa == dummypoint) {
+      // pa is dummypoint.
+      setvertices(fliptets[0], pc, pb, pd, pa);
+      esymself(fliptets[0]);  // [b,c,a,d]
+      eprevself(fliptets[0]); // [a,b,c,d]
+      dummyflag = 1;
+    } else if (pb == dummypoint) {
+      setvertices(fliptets[0], pa, pc, pd, pb);
+      esymself(fliptets[0]);  // [c,a,b,d]
+      enextself(fliptets[0]); // [a,b,c,d]
+      dummyflag = 2;
+    } else if (pc == dummypoint) {
+      setvertices(fliptets[0], pb, pa, pd, pc);
+      esymself(fliptets[0]);  // [a,b,c,d]
+      dummyflag = 3;
+    } else if (pd == dummypoint) {
+      setvertices(fliptets[0], pa, pb, pc, pd);
+      dummyflag = 4;
+    } else {
+      setvertices(fliptets[0], pa, pb, pc, pd);
+      if (pp == dummypoint) {
+        dummyflag = -1;
+      } else {
+        dummyflag = 0;
+      }
+    }
+    if (dummyflag > 0) {
+      // We deleted 3 hull tets, and create 1 hull tet.
+      hullsize -= 2;
+    } else if (dummyflag < 0) {
+      // We deleted 4 hull tets.
+      hullsize -= 4;
+      // meshedges does not change.
+    }
+  } else {
+    setvertices(fliptets[0], pa, pb, pc, pd);
+  }
+
+  if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol
+    REAL volneg[4], volpos[1], vol_diff;
+    if (dummyflag > 0) {
+      if (pa == dummypoint) {
+        volneg[0] = 0.;
+        volneg[1] = tetprismvol(pp, pd, pb, pc);
+        volneg[2] = 0.;
+        volneg[3] = 0.;
+      } else if (pb == dummypoint) {
+        volneg[0] = 0.;
+        volneg[1] = 0.;
+        volneg[2] = tetprismvol(pp, pd, pc, pa);
+        volneg[3] = 0.;
+      } else if (pc == dummypoint) {
+        volneg[0] = tetprismvol(pp, pd, pa, pb);
+        volneg[1] = 0.;
+        volneg[2] = 0.;
+        volneg[3] = 0.;
+      } else { // pd == dummypoint
+        volneg[0] = 0.;
+        volneg[1] = 0.;
+        volneg[2] = 0.;
+        volneg[3] = tetprismvol(pa, pb, pc, pp);
+      }
+      volpos[0] = 0.;
+    } else if (dummyflag < 0) {
+      volneg[0] = 0.;
+      volneg[1] = 0.;
+      volneg[2] = 0.;
+      volneg[3] = 0.;
+      volpos[0] = tetprismvol(pa, pb, pc, pd);
+    } else {
+      volneg[0] = tetprismvol(pp, pd, pa, pb);
+      volneg[1] = tetprismvol(pp, pd, pb, pc);
+      volneg[2] = tetprismvol(pp, pd, pc, pa);
+      volneg[3] = tetprismvol(pa, pb, pc, pp);
+      volpos[0] = tetprismvol(pa, pb, pc, pd);
+    }
+    vol_diff = volpos[0] - volneg[0] - volneg[1] - volneg[2] - volneg[3];
+    fc->tetprism_vol_sum  += vol_diff; // Update the total sum.
+  }
+
+  // Bond the new tet to adjacent tets.
+  for (i = 0; i < 3; i++) {
+    esym(fliptets[0], newface); // At faces [b,a,d], [c,b,d], [a,c,d].
+    bond(newface, topcastets[i]);
+    enextself(fliptets[0]);
+  }
+  bond(fliptets[0], botcastet);
+
+  if (checksubsegflag) {
+    face checkseg;
+    // Bond 6 segments (at edges of [a,b,c,d]) if there there are.
+    for (i = 0; i < 3; i++) {
+      eprev(topcastets[i], newface); // At edges [d,a],[d,b],[d,c].
+      if (issubseg(newface)) {
+        tsspivot1(newface, checkseg);
+        esym(fliptets[0], newface);
+        enextself(newface); // At edges [a,d], [b,d], [c,d].
+        tssbond1(newface, checkseg);
+        sstbond1(checkseg, newface);
+        if (fc->chkencflag & 1) {
+          //enqueuesubface(badsubsegs, &checkseg);
+        }
+      }
+      enextself(fliptets[0]);
+    }
+    for (i = 0; i < 3; i++) {
+      if (issubseg(topcastets[i])) {
+        tsspivot1(topcastets[i], checkseg); // At edges [a,b],[b,c],[c,a].
+        tssbond1(fliptets[0], checkseg);
+        sstbond1(checkseg, fliptets[0]);
+        if (fc->chkencflag & 1) {
+          //enqueuesubface(badsubsegs, &checkseg);
+        }
+      }
+      enextself(fliptets[0]);
+    }
+  }
+
+  if (checksubfaceflag) {
+    face checksh;
+    // Bond 4 subfaces (at faces of [a,b,c,d]) if there are.
+    for (i = 0; i < 3; i++) {
+      if (issubface(topcastets[i])) {
+        tspivot(topcastets[i], checksh); // At faces [a,b,d],[b,c,d],[c,a,d]
+        esym(fliptets[0], newface); // At faces [b,a,d],[c,b,d],[a,c,d]
+        sesymself(checksh);
+        tsbond(newface, checksh);
+        if (fc->chkencflag & 2) {
+          //enqueuesubface(badsubfacs, &checksh);
+        }
+      }
+      enextself(fliptets[0]);
+    }
+    if (issubface(botcastet)) {
+      tspivot(botcastet, checksh); // At face [b,a,c]
+      sesymself(checksh);
+      tsbond(fliptets[0], checksh);
+      if (fc->chkencflag & 2) {
+        //enqueuesubface(badsubfacs, &checksh);
+      }
+    }
+
+    if (spivot >= 0) {
+      // Perform a 3-to-1 flip in surface triangulation.
+      // Depending on the value of 'spivot', the three subfaces are:
+      //   - 0: [a,b,p], [b,d,p], [d,a,p]
+      //   - 1: [b,c,p], [c,d,p], [d,b,p]
+      //   - 2: [c,a,p], [a,d,p], [d,c,p]
+      //   - 3: [a,b,p], [b,c,p], [c,a,p]
+      // Adjust the three subfaces such that their origins are p, i.e.,
+      //   - 3: [p,a,b], [p,b,c], [p,c,a]. (Required by the flip31()).
+      for (i = 0; i < 3; i++) {
+        senext2self(flipshs[i]);
+      }
+      flip31(flipshs, 0);
+      // Delete the three old subfaces.
+      for (i = 0; i < 3; i++) {
+        shellfacedealloc(subfaces, flipshs[i].sh);
+      }
+      if (spivot < 3) {
+        // // Bond the new subface to the new tet [a,b,c,d].
+        tsbond(topcastets[spivot], flipshs[3]);
+        fsym(topcastets[spivot], newface);
+        sesym(flipshs[3], checksh);
+        tsbond(newface, checksh);
+      } else {
+        // Bound the new subface [a,b,c] to the new tet [a,b,c,d].
+        tsbond(fliptets[0], flipshs[3]);
+        fsym(fliptets[0], newface);
+        sesym(flipshs[3], checksh);
+        tsbond(newface, checksh);
+      }
+    } // if (spivot > 0)
+  } // if (checksubfaceflag)
+
+  if (fc->chkencflag & 4) {
+    //enqueuetetrahedron(&(fliptets[0]));
+  }
+
+  // Update the point-to-tet map.
+  setpoint2tet(pa, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pb, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pc, (tetrahedron) fliptets[0].tet);
+  setpoint2tet(pd, (tetrahedron) fliptets[0].tet);
+
+  if (fc->enqflag > 0) {
+    // Queue faces which may be locally non-Delaunay.
+    flippush(flipstack, &(fliptets[0])); // [a,b,c] (opposite to new point).
+    if (fc->enqflag > 1) {
+      for (i = 0; i < 3; i++) {
+        esym(fliptets[0], newface);
+        flippush(flipstack, &newface);
+        enextself(fliptets[0]);
+      }
+    }
+  }
+
+  recenttet = fliptets[0];
+}
+
+int meshGRegionBoundaryRecovery::flipnm(triface* abtets, int n, int level, int abedgepivot,
+                       flipconstraints* fc)
+{
+  triface fliptets[3], spintet, flipedge;
+  triface *tmpabtets, *parytet;
+  point pa, pb, pc, pd, pe, pf;
+  REAL ori;
+  int hullflag, hulledgeflag;
+  int reducflag, rejflag;
+  int reflexlinkedgecount;
+  int edgepivot;
+  int n1, nn;
+  int t1ver;
+  int i, j;
+
+  pa = org(abtets[0]);
+  pb = dest(abtets[0]);
+
+  if (n > 3) {
+    // Try to reduce the size of the Star(ab) by flipping a face in it.
+    reflexlinkedgecount = 0;
+
+    for (i = 0; i < n; i++) {
+      // Let the face of 'abtets[i]' be [a,b,c].
+      if (checksubfaceflag) {
+        if (issubface(abtets[i])) {
+          continue; // Skip a subface.
+        }
+      }
+      // Do not flip this face if it is involved in two Stars.
+      if ((elemcounter(abtets[i]) > 1) ||
+          (elemcounter(abtets[(i - 1 + n) % n]) > 1)) {
+        continue;
+      }
+
+      pc = apex(abtets[i]);
+      pd = apex(abtets[(i + 1) % n]);
+      pe = apex(abtets[(i - 1 + n) % n]);
+      if ((pd == dummypoint) || (pe == dummypoint)) {
+        continue; // [a,b,c] is a hull face.
+      }
+
+
+      // Decide whether [a,b,c] is flippable or not.
+      reducflag = 0;
+
+      hullflag = (pc == dummypoint); // pc may be dummypoint.
+      hulledgeflag = 0;
+      if (hullflag == 0) {
+        ori = orient3d(pb, pc, pd, pe); // Is [b,c] locally convex?
+        if (ori > 0) {
+          ori = orient3d(pc, pa, pd, pe); // Is [c,a] locally convex?
+          if (ori > 0) {
+            // Test if [a,b] is locally convex OR flat.
+            ori = orient3d(pa, pb, pd, pe);
+            if (ori > 0) {
+              // Found a 2-to-3 flip: [a,b,c] => [e,d]
+              reducflag = 1;
+            } else if (ori == 0) {
+              // [a,b] is flat.
+              if (n == 4) {
+                // The "flat" tet can be removed immediately by a 3-to-2 flip.
+                reducflag = 1;
+                // Check if [e,d] is a hull edge.
+                pf = apex(abtets[(i + 2) % n]);
+                hulledgeflag = (pf == dummypoint);
+              }
+            }
+          }
+        }
+        if (!reducflag) {
+          reflexlinkedgecount++;
+        }
+      } else {
+        // 'c' is dummypoint.
+        if (n == 4) {
+          // Let the vertex opposite to 'c' is 'f'.
+          // A 4-to-4 flip is possible if the two tets [d,e,f,a] and [e,d,f,b]
+          //   are valid tets.
+          // Note: When the mesh is not convex, it is possible that [a,b] is
+          //   locally non-convex (at hull faces [a,b,e] and [b,a,d]).
+          //   In this case, an edge flip [a,b] to [e,d] is still possible.
+          pf = apex(abtets[(i + 2) % n]);
+          assert(pf != dummypoint);
+          ori = orient3d(pd, pe, pf, pa);
+          if (ori < 0) {
+            ori = orient3d(pe, pd, pf, pb);
+            if (ori < 0) {
+              // Found a 4-to-4 flip: [a,b] => [e,d]
+              reducflag = 1;
+              ori = 0; // Signal as a 4-to-4 flip (like a co-planar case).
+              hulledgeflag = 1; // [e,d] is a hull edge.
+            }
+          }
+        }
+      } // if (hullflag)
+
+      if (reducflag) {
+        if (nonconvex && hulledgeflag) {
+          // We will create a hull edge [e,d]. Make sure it does not exist.
+          if (getedge(pe, pd, &spintet)) {
+            // The 2-to-3 flip is not a topological valid flip.
+            reducflag = 0;
+          }
+        }
+      }
+
+      if (reducflag) {
+        // [a,b,c] could be removed by a 2-to-3 flip.
+        rejflag = 0;
+        if (fc->checkflipeligibility) {
+          // Check if the flip can be performed.
+          rejflag = checkflipeligibility(1, pa, pb, pc, pd, pe, level,
+                                         abedgepivot, fc);
+        }
+        if (!rejflag) {
+          // Do flip: [a,b,c] => [e,d].
+          fliptets[0] = abtets[i];
+          fsym(fliptets[0], fliptets[1]); // abtets[i-1].
+          flip23(fliptets, hullflag, fc);
+
+          // Shrink the array 'abtets', maintain the original order.
+          //   Two tets 'abtets[i-1] ([a,b,e,c])' and 'abtets[i] ([a,b,c,d])'
+          //   are flipped, i.e., they do not in Star(ab) anymore.
+          //   'fliptets[0]' ([e,d,a,b]) is in Star(ab), it is saved in
+          //   'abtets[i-1]' (adjust it to be [a,b,e,d]), see below:
+          //
+          //            before                   after
+          //     [0] |___________|        [0] |___________|
+          //     ... |___________|        ... |___________|
+          //   [i-1] |_[a,b,e,c]_|      [i-1] |_[a,b,e,d]_|
+          //     [i] |_[a,b,c,d]_| -->    [i] |_[a,b,d,#]_|
+          //   [i+1] |_[a,b,d,#]_|      [i+1] |_[a,b,#,*]_|
+          //     ... |___________|        ... |___________|
+          //   [n-2] |___________|      [n-2] |___________|
+          //   [n-1] |___________|      [n-1] |_[i]_2-t-3_|
+          //
+          edestoppoself(fliptets[0]); // [a,b,e,d]
+          // Increase the counter of this new tet (it is in Star(ab)).
+          increaseelemcounter(fliptets[0]);
+          abtets[(i - 1 + n) % n] = fliptets[0];
+          for (j = i; j < n - 1; j++) {
+            abtets[j] = abtets[j + 1];  // Upshift
+          }
+          // The last entry 'abtets[n-1]' is empty. It is used in two ways:
+          //   (i) it remembers the vertex 'c' (in 'abtets[n-1].tet'), and
+          //  (ii) it remembers the position [i] where this flip took place.
+          // These informations let us to either undo this flip or recover
+          //   the original edge link (for collecting new created tets).
+          //abtets[n - 1] = fliptets[1]; // [e,d,b,c] is remembered.
+          abtets[n - 1].tet = (tetrahedron *) pc;
+          abtets[n - 1].ver = 0; // Clear it.
+          // 'abtets[n - 1].ver' is in range [0,11] -- only uses 4 bits.
+          // Use the 5th bit in 'abtets[n - 1].ver' to signal a 2-to-3 flip.
+          abtets[n - 1].ver |= (1 << 4);
+          // The poisition [i] of this flip is saved above the 7th bit.
+          abtets[n - 1].ver |= (i << 6);
+
+          if (fc->collectnewtets) {
+            // Push the two new tets [e,d,b,c] and [e,d,c,a] into a stack.
+            //   Re-use the global array 'cavetetlist'.
+            for (j = 1; j < 3; j++) {
+              cavetetlist->newindex((void **) &parytet);
+              *parytet = fliptets[j]; // fliptets[1], fliptets[2].
+            }
+          }
+
+          // Star(ab) is reduced. Try to flip the edge [a,b].
+          nn = flipnm(abtets, n - 1, level, abedgepivot, fc);
+
+          if (nn == 2) {
+            // The edge has been flipped.
+            return nn;
+          } else { // if (nn > 2)
+            // The edge is not flipped.
+            if (fc->unflip || (ori == 0)) {
+              // Undo the previous 2-to-3 flip, i.e., do a 3-to-2 flip to
+              //   transform [e,d] => [a,b,c].
+              // 'ori == 0' means that the previous flip created a degenerated
+              //   tet. It must be removed.
+              // Remember that 'abtets[i-1]' is [a,b,e,d]. We can use it to
+              //   find another two tets [e,d,b,c] and [e,d,c,a].
+              fliptets[0] = abtets[(i-1 + (n-1)) % (n-1)]; // [a,b,e,d]
+              edestoppoself(fliptets[0]); // [e,d,a,b]
+              fnext(fliptets[0], fliptets[1]); // [1] is [e,d,b,c]
+              fnext(fliptets[1], fliptets[2]); // [2] is [e,d,c,a]
+              assert(apex(fliptets[0]) == oppo(fliptets[2])); // SELF_CHECK
+              // Restore the two original tets in Star(ab).
+              flip32(fliptets, hullflag, fc);
+              // Marktest the two restored tets in Star(ab).
+              for (j = 0; j < 2; j++) {
+                increaseelemcounter(fliptets[j]);
+              }
+              // Expand the array 'abtets', maintain the original order.
+              for (j = n - 2; j>= i; j--) {
+                abtets[j + 1] = abtets[j];  // Downshift
+              }
+              // Insert the two new tets 'fliptets[0]' [a,b,c,d] and
+              //  'fliptets[1]' [b,a,c,e] into the (i-1)-th and i-th entries,
+              //  respectively.
+              esym(fliptets[1], abtets[(i - 1 + n) % n]); // [a,b,e,c]
+              abtets[i] = fliptets[0]; // [a,b,c,d]
+              nn++;
+              if (fc->collectnewtets) {
+                // Pop two (flipped) tets from the stack.
+                cavetetlist->objects -= 2;
+              }
+            } // if (unflip || (ori == 0))
+          } // if (nn > 2)
+
+          if (!fc->unflip) {
+            // The flips are not reversed. The current Star(ab) can not be
+            //   further reduced. Return its current size (# of tets).
+            return nn;
+          }
+          // unflip is set.
+          // Continue the search for flips.
+        }
+      } // if (reducflag)
+    } // i
+
+    // The Star(ab) is not reduced.
+    if (reflexlinkedgecount > 0) {
+      // There are reflex edges in the Link(ab).
+      if (((b->fliplinklevel < 0) && (level < autofliplinklevel)) ||
+          ((b->fliplinklevel >= 0) && (level < b->fliplinklevel))) {
+        // Try to reduce the Star(ab) by flipping a reflex edge in Link(ab).
+        for (i = 0; i < n; i++) {
+          // Do not flip this face [a,b,c] if there are two Stars involved.
+          if ((elemcounter(abtets[i]) > 1) ||
+              (elemcounter(abtets[(i - 1 + n) % n]) > 1)) {
+            continue;
+          }
+          pc = apex(abtets[i]);
+          if (pc == dummypoint) {
+            continue; // [a,b] is a hull edge.
+          }
+          pd = apex(abtets[(i + 1) % n]);
+          pe = apex(abtets[(i - 1 + n) % n]);
+          if ((pd == dummypoint) || (pe == dummypoint)) {
+            continue; // [a,b,c] is a hull face.
+          }
+
+
+          edgepivot = 0; // No edge is selected yet.
+
+          // Test if [b,c] is locally convex or flat.
+          ori = orient3d(pb, pc, pd, pe);
+          if (ori <= 0) {
+            // Select the edge [c,b].
+            enext(abtets[i], flipedge); // [b,c,a,d]
+            edgepivot = 1;
+          }
+          if (!edgepivot) {
+            // Test if [c,a] is locally convex or flat.
+            ori = orient3d(pc, pa, pd, pe);
+            if (ori <= 0) {
+              // Select the edge [a,c].
+              eprev(abtets[i], flipedge); // [c,a,b,d].
+              edgepivot = 2;
+            }
+          }
+
+          if (!edgepivot) continue;
+
+          // An edge is selected.
+          if (checksubsegflag) {
+            // Do not flip it if it is a segment.
+            if (issubseg(flipedge)) {
+              if (fc->collectencsegflag) {
+                face checkseg, *paryseg;
+                tsspivot1(flipedge, checkseg);
+                if (!sinfected(checkseg)) {
+                  // Queue this segment in list.
+                  sinfect(checkseg);
+                  caveencseglist->newindex((void **) &paryseg);
+                  *paryseg = checkseg;
+                }
+              }
+              continue;
+            }
+          }
+
+          // Try to flip the selected edge ([c,b] or [a,c]).
+          esymself(flipedge);
+          // Count the number of tets at the edge.
+          n1 = 0;
+          j = 0; // Sum of the star counters.
+          spintet = flipedge;
+          while (1) {
+            n1++;
+            j += (elemcounter(spintet));
+            fnextself(spintet);
+            if (spintet.tet == flipedge.tet) break;
+          }
+          assert(n1 >= 3);
+          if (j > 2) {
+            // The Star(flipedge) overlaps other Stars.
+            continue; // Do not flip this edge.
+          }
+          // Only two tets can be marktested.
+          assert(j == 2);
+
+          if ((b->flipstarsize > 0) && (n1 > b->flipstarsize)) {
+            // The star size exceeds the given limit.
+            continue; // Do not flip it.
+          }
+
+          // Allocate spaces for Star(flipedge).
+          tmpabtets = new triface[n1];
+          // Form the Star(flipedge).
+          j = 0;
+          spintet = flipedge;
+          while (1) {
+            tmpabtets[j] = spintet;
+            // Increase the star counter of this tet.
+            increaseelemcounter(tmpabtets[j]);
+            j++;
+            fnextself(spintet);
+            if (spintet.tet == flipedge.tet) break;
+          }
+
+          // Try to flip the selected edge away.
+          nn = flipnm(tmpabtets, n1, level + 1, edgepivot, fc);
+
+          if (nn == 2) {
+            // The edge is flipped. Star(ab) is reduced.
+            // Shrink the array 'abtets', maintain the original order.
+            if (edgepivot == 1) {
+              // 'tmpabtets[0]' is [d,a,e,b] => contains [a,b].
+              spintet = tmpabtets[0]; // [d,a,e,b]
+              enextself(spintet);
+              esymself(spintet);
+              enextself(spintet); // [a,b,e,d]
+            } else {
+              // 'tmpabtets[1]' is [b,d,e,a] => contains [a,b].
+              spintet = tmpabtets[1]; // [b,d,e,a]
+              eprevself(spintet);
+              esymself(spintet);
+              eprevself(spintet); // [a,b,e,d]
+            } // edgepivot == 2
+            assert(elemcounter(spintet) == 0); // It's a new tet.
+            increaseelemcounter(spintet); // It is in Star(ab).
+            // Put the new tet at [i-1]-th entry.
+            abtets[(i - 1 + n) % n] = spintet;
+            for (j = i; j < n - 1; j++) {
+              abtets[j] = abtets[j + 1];  // Upshift
+            }
+            // Remember the flips in the last entry of the array 'abtets'.
+            // They can be used to recover the flipped edge.
+            abtets[n - 1].tet = (tetrahedron *) tmpabtets; // The star(fedge).
+            abtets[n - 1].ver = 0; // Clear it.
+            // Use the 1st and 2nd bit to save 'edgepivot' (1 or 2).
+            abtets[n - 1].ver |= edgepivot;
+            // Use the 6th bit to signal this n1-to-m1 flip.
+            abtets[n - 1].ver |= (1 << 5);
+            // The poisition [i] of this flip is saved from 7th to 19th bit.
+            abtets[n - 1].ver |= (i << 6);
+            // The size of the star 'n1' is saved from 20th bit.
+            abtets[n - 1].ver |= (n1 << 19);
+
+            // Remember the flipped link vertex 'c'. It can be used to recover
+            //   the original edge link of [a,b], and to collect new tets.
+            tmpabtets[0].tet = (tetrahedron *) pc;
+            tmpabtets[0].ver = (1 << 5); // Flag it as a vertex handle.
+
+            // Continue to flip the edge [a,b].
+            nn = flipnm(abtets, n - 1, level, abedgepivot, fc);
+
+            if (nn == 2) {
+              // The edge has been flipped.
+              return nn;
+            } else { // if (nn > 2) {
+              // The edge is not flipped.
+              if (fc->unflip) {
+                // Recover the flipped edge ([c,b] or [a,c]).
+                assert(nn == (n - 1));
+                // The sequence of flips are saved in 'tmpabtets'.
+                // abtets[(i-1) % (n-1)] is [a,b,e,d], i.e., the tet created by
+                //   the flipping of edge [c,b] or [a,c].It must still exist in
+                //   Star(ab). It is the start tet to recover the flipped edge.
+                if (edgepivot == 1) {
+                  // The flip edge is [c,b].
+                  tmpabtets[0] = abtets[((i-1)+(n-1))%(n-1)]; // [a,b,e,d]
+                  eprevself(tmpabtets[0]);
+                  esymself(tmpabtets[0]);
+                  eprevself(tmpabtets[0]); // [d,a,e,b]
+                  fsym(tmpabtets[0], tmpabtets[1]); // [a,d,e,c]
+                } else {
+                  // The flip edge is [a,c].
+                  tmpabtets[1] = abtets[((i-1)+(n-1))%(n-1)]; // [a,b,e,d]
+                  enextself(tmpabtets[1]);
+                  esymself(tmpabtets[1]);
+                  enextself(tmpabtets[1]); // [b,d,e,a]
+                  fsym(tmpabtets[1], tmpabtets[0]); // [d,b,e,c]
+                } // if (edgepivot == 2)
+
+                // Recover the flipped edge ([c,b] or [a,c]).
+                flipnm_post(tmpabtets, n1, 2, edgepivot, fc);
+
+                // Insert the two recovered tets into Star(ab).
+                for (j = n - 2; j >= i; j--) {
+                  abtets[j + 1] = abtets[j];  // Downshift
+                }
+                if (edgepivot == 1) {
+                  // tmpabtets[0] is [c,b,d,a] ==> contains [a,b]
+                  // tmpabtets[1] is [c,b,a,e] ==> contains [a,b]
+                  // tmpabtets[2] is [c,b,e,d]
+                  fliptets[0] = tmpabtets[1];
+                  enextself(fliptets[0]);
+                  esymself(fliptets[0]); // [a,b,e,c]
+                  fliptets[1] = tmpabtets[0];
+                  esymself(fliptets[1]);
+                  eprevself(fliptets[1]); // [a,b,c,d]
+                } else {
+                  // tmpabtets[0] is [a,c,d,b] ==> contains [a,b]
+                  // tmpabtets[1] is [a,c,b,e] ==> contains [a,b]
+                  // tmpabtets[2] is [a,c,e,d]
+                  fliptets[0] = tmpabtets[1];
+                  eprevself(fliptets[0]);
+                  esymself(fliptets[0]); // [a,b,e,c]
+                  fliptets[1] = tmpabtets[0];
+                  esymself(fliptets[1]);
+                  enextself(fliptets[1]); // [a,b,c,d]
+                } // edgepivot == 2
+                for (j = 0; j < 2; j++) {
+                  increaseelemcounter(fliptets[j]);
+                }
+                // Insert the two recovered tets into Star(ab).
+                abtets[(i - 1 + n) % n] = fliptets[0];
+                abtets[i] = fliptets[1];
+                nn++;
+                // Release the allocated spaces.
+                delete [] tmpabtets;
+              } // if (unflip)
+            } // if (nn > 2)
+
+            if (!fc->unflip) {
+              // The flips are not reversed. The current Star(ab) can not be
+              //   further reduced. Return its size (# of tets).
+              return nn;
+            }
+            // unflip is set.
+            // Continue the search for flips.
+          } else {
+            // The selected edge is not flipped.
+            if (fc->unflip) {
+              // The memory should already be freed.
+              assert(nn == n1);
+            } else {
+              // Release the memory used in this attempted flip.
+              flipnm_post(tmpabtets, n1, nn, edgepivot, fc);
+            }
+            // Decrease the star counters of tets in Star(flipedge).
+            for (j = 0; j < nn; j++) {
+              assert(elemcounter(tmpabtets[j]) > 0); // SELF_CHECK
+              decreaseelemcounter(tmpabtets[j]);
+            }
+            // Release the allocated spaces.
+            delete [] tmpabtets;
+          }
+        } // i
+      } // if (level...)
+    } // if (reflexlinkedgecount > 0)
+  } else {
+    // Check if a 3-to-2 flip is possible.
+    // Let the three apexes be c, d,and e. Hull tets may be involved. If so,
+    //   we rearrange them such that the vertex e is dummypoint.
+    hullflag = 0;
+
+    if (apex(abtets[0]) == dummypoint) {
+      pc = apex(abtets[1]);
+      pd = apex(abtets[2]);
+      pe = apex(abtets[0]);
+      hullflag = 1;
+    } else if (apex(abtets[1]) == dummypoint) {
+      pc = apex(abtets[2]);
+      pd = apex(abtets[0]);
+      pe = apex(abtets[1]);
+      hullflag = 2;
+    } else {
+      pc = apex(abtets[0]);
+      pd = apex(abtets[1]);
+      pe = apex(abtets[2]);
+      hullflag = (pe == dummypoint) ? 3 : 0;
+    }
+
+    reducflag = 0;
+    rejflag = 0;
+
+
+    if (hullflag == 0) {
+      // Make sure that no inverted tet will be created, i.e. the new tets
+      //   [d,c,e,a] and [c,d,e,b] must be valid tets.
+      ori = orient3d(pd, pc, pe, pa);
+      if (ori < 0) {
+        ori = orient3d(pc, pd, pe, pb);
+        if (ori < 0) {
+          reducflag = 1;
+        }
+      }
+    } else {
+      // [a,b] is a hull edge.
+      //   Note: This can happen when it is in the middle of a 4-to-4 flip.
+      //   Note: [a,b] may even be a non-convex hull edge.
+      if (!nonconvex) {
+        //  The mesh is convex, only do flip if it is a coplanar hull edge.
+        ori = orient3d(pa, pb, pc, pd);
+        if (ori == 0) {
+          reducflag = 1;
+        }
+      } else { // nonconvex
+        reducflag = 1;
+      }
+      if (reducflag == 1) {
+        // [a,b], [a,b,c] and [a,b,d] are on the convex hull.
+        // Make sure that no inverted tet will be created.
+        point searchpt = NULL, chkpt;
+        REAL bigvol = 0.0, ori1, ori2;
+        // Search an interior vertex which is an apex of edge [c,d].
+        //   In principle, it can be arbitrary interior vertex.  To avoid
+        //   numerical issue, we choose the vertex which belongs to a tet
+        //   't' at edge [c,d] and 't' has the biggest volume.
+        fliptets[0] = abtets[hullflag % 3]; // [a,b,c,d].
+        eorgoppoself(fliptets[0]);  // [d,c,b,a]
+        spintet = fliptets[0];
+        while (1) {
+          fnextself(spintet);
+          chkpt = oppo(spintet);
+          if (chkpt == pb) break;
+          if ((chkpt != dummypoint) && (apex(spintet) != dummypoint)) {
+            ori = -orient3d(pd, pc, apex(spintet), chkpt);
+            assert(ori > 0);
+            if (ori > bigvol) {
+              bigvol = ori;
+              searchpt = chkpt;
+            }
+          }
+        }
+        if (searchpt != NULL) {
+          // Now valid the configuration.
+          ori1 = orient3d(pd, pc, searchpt, pa);
+          ori2 = orient3d(pd, pc, searchpt, pb);
+          if (ori1 * ori2 >= 0.0) {
+            reducflag = 0; // Not valid.
+          } else {
+            ori1 = orient3d(pa, pb, searchpt, pc);
+            ori2 = orient3d(pa, pb, searchpt, pd);
+            if (ori1 * ori2 >= 0.0) {
+              reducflag = 0; // Not valid.
+            }
+          }
+        } else {
+          // No valid searchpt is found.
+          reducflag = 0; // Do not flip it.
+        }
+      } // if (reducflag == 1)
+    } // if (hullflag == 1)
+
+    if (reducflag) {
+      // A 3-to-2 flip is possible.
+      if (checksubfaceflag) {
+        // This edge (must not be a segment) can be flipped ONLY IF it belongs
+        //   to either 0 or 2 subfaces.  In the latter case, a 2-to-2 flip in
+        //   the surface mesh will be automatically performed within the
+        //   3-to-2 flip.
+        nn = 0;
+        edgepivot = -1; // Re-use it.
+        for (j = 0; j < 3; j++) {
+          if (issubface(abtets[j])) {
+            nn++; // Found a subface.
+          } else {
+            edgepivot = j;
+          }
+        }
+        assert(nn < 3);
+        if (nn == 1) {
+          // Found only 1 subface containing this edge. This can happen in
+          //   the boundary recovery phase. The neighbor subface is not yet
+          //   recovered. This edge should not be flipped at this moment.
+          rejflag = 1;
+        } else if (nn == 2) {
+          // Found two subfaces. A 2-to-2 flip is possible. Validate it.
+          // Below we check if the two faces [p,q,a] and [p,q,b] are subfaces.
+          eorgoppo(abtets[(edgepivot + 1) % 3], spintet); // [q,p,b,a]
+          if (issubface(spintet)) {
+            rejflag = 1; // Conflict to a 2-to-2 flip.
+          } else {
+            esymself(spintet);
+            if (issubface(spintet)) {
+              rejflag = 1; // Conflict to a 2-to-2 flip.
+            }
+          }
+        }
+      }
+      if (!rejflag && fc->checkflipeligibility) {
+        // Here we must exchange 'a' and 'b'. Since in the check... function,
+        //   we assume the following point sequence, 'a,b,c,d,e', where
+        //   the face [a,b,c] will be flipped and the edge [e,d] will be
+        //   created. The two new tets are [a,b,c,d] and [b,a,c,e].
+        rejflag = checkflipeligibility(2, pc, pd, pe, pb, pa, level,
+                                       abedgepivot, fc);
+      }
+      if (!rejflag) {
+        // Do flip: [a,b] => [c,d,e]
+        flip32(abtets, hullflag, fc);
+        if (fc->remove_ndelaunay_edge) {
+          if (level == 0) {
+            // It is the desired removing edge. Check if we have improved
+            //   the objective function.
+            if ((fc->tetprism_vol_sum >= 0.0) ||
+                (fabs(fc->tetprism_vol_sum) < fc->bak_tetprism_vol)) {
+              // No improvement! flip back: [c,d,e] => [a,b].
+              flip23(abtets, hullflag, fc);
+              // Increase the element counter -- They are in cavity.
+              for (j = 0; j < 3; j++) {
+                increaseelemcounter(abtets[j]);
+              }
+              return 3;
+            }
+          } // if (level == 0)
+        }
+        if (fc->collectnewtets) {
+          // Collect new tets.
+          if (level == 0) {
+            // Push the two new tets into stack.
+            for (j = 0; j < 2; j++) {
+              cavetetlist->newindex((void **) &parytet);
+              *parytet = abtets[j];
+            }
+          } else {
+            // Only one of the new tets is collected. The other one is inside
+            //   the reduced edge star. 'abedgepivot' is either '1' or '2'.
+            cavetetlist->newindex((void **) &parytet);
+            if (abedgepivot == 1) { // [c,b]
+              *parytet = abtets[1];
+            } else {
+              assert(abedgepivot == 2); // [a,c]
+              *parytet = abtets[0];
+            }
+          }
+        } // if (fc->collectnewtets)
+        return 2;
+      }
+    } // if (reducflag)
+  } // if (n == 3)
+
+  // The current (reduced) Star size.
+  return n;
+}
+
+int meshGRegionBoundaryRecovery::flipnm_post(triface* abtets, int n, int nn,
+  int abedgepivot, flipconstraints* fc)
+{
+  triface fliptets[3], flipface;
+  triface *tmpabtets;
+  int fliptype;
+  int edgepivot;
+  int t, n1;
+  int i, j;
+
+
+  if (nn == 2) {
+    // The edge [a,b] has been flipped.
+    // 'abtets[0]' is [c,d,e,b] or [#,#,#,b].
+    // 'abtets[1]' is [d,c,e,a] or [#,#,#,a].
+    if (fc->unflip) {
+      // Do a 2-to-3 flip to recover the edge [a,b]. There may be hull tets.
+      flip23(abtets, 1, fc);
+      if (fc->collectnewtets) {
+        // Pop up new (flipped) tets from the stack.
+        if (abedgepivot == 0) {
+          // Two new tets were collected.
+          cavetetlist->objects -= 2;
+        } else {
+          // Only one of the two new tets was collected.
+          cavetetlist->objects -= 1;
+        }
+      }
+    }
+    // The initial size of Star(ab) is 3.
+    nn++;
+  }
+
+  // Walk through the performed flips.
+  for (i = nn; i < n; i++) {
+    // At the beginning of each step 'i', the size of the Star([a,b]) is 'i'.
+    // At the end of this step, the size of the Star([a,b]) is 'i+1'.
+    // The sizes of the Link([a,b]) are the same.
+    fliptype = ((abtets[i].ver >> 4) & 3); // 0, 1, or 2.
+    if (fliptype == 1) {
+      // It was a 2-to-3 flip: [a,b,c]->[e,d].
+      t = (abtets[i].ver >> 6);
+      assert(t <= i);
+      if (fc->unflip) {
+        if (b->verbose > 2) {
+          printf("      Recover a 2-to-3 flip at f[%d].\n", t);
+        }
+        // 'abtets[(t-1)%i]' is the tet [a,b,e,d] in current Star(ab), i.e.,
+        //   it is created by a 2-to-3 flip [a,b,c] => [e,d].
+        fliptets[0] = abtets[((t - 1) + i) % i]; // [a,b,e,d]
+        eprevself(fliptets[0]);
+        esymself(fliptets[0]);
+        enextself(fliptets[0]); // [e,d,a,b]
+        fnext(fliptets[0], fliptets[1]); // [e,d,b,c]
+        fnext(fliptets[1], fliptets[2]); // [e,d,c,a]
+        // Do a 3-to-2 flip: [e,d] => [a,b,c].
+        // NOTE: hull tets may be invloved.
+        flip32(fliptets, 1, fc);
+        // Expand the array 'abtets', maintain the original order.
+        // The new array length is (i+1).
+        for (j = i - 1; j >= t; j--) {
+          abtets[j + 1] = abtets[j];  // Downshift
+        }
+        // The tet abtets[(t-1)%i] is deleted. Insert the two new tets
+        //   'fliptets[0]' [a,b,c,d] and 'fliptets[1]' [b,a,c,e] into
+        //   the (t-1)-th and t-th entries, respectively.
+        esym(fliptets[1], abtets[((t-1) + (i+1)) % (i+1)]); // [a,b,e,c]
+        abtets[t] = fliptets[0]; // [a,b,c,d]
+        if (fc->collectnewtets) {
+          // Pop up two (flipped) tets from the stack.
+          cavetetlist->objects -= 2;
+        }
+      }
+    } else if (fliptype == 2) {
+      tmpabtets = (triface *) (abtets[i].tet);
+      n1 = ((abtets[i].ver >> 19) & 8191); // \sum_{i=0^12}{2^i} = 8191
+      edgepivot = (abtets[i].ver & 3);
+      t = ((abtets[i].ver >> 6) & 8191);
+      assert(t <= i);
+      if (fc->unflip) {
+        if (b->verbose > 2) {
+          printf("      Recover a %d-to-m flip at e[%d] of f[%d].\n", n1,
+                 edgepivot, t);
+        }
+        // Recover the flipped edge ([c,b] or [a,c]).
+        // abtets[(t - 1 + i) % i] is [a,b,e,d], i.e., the tet created by
+        //   the flipping of edge [c,b] or [a,c]. It must still exist in
+        //   Star(ab). Use it to recover the flipped edge.
+        if (edgepivot == 1) {
+          // The flip edge is [c,b].
+          tmpabtets[0] = abtets[(t - 1 + i) % i]; // [a,b,e,d]
+          eprevself(tmpabtets[0]);
+          esymself(tmpabtets[0]);
+          eprevself(tmpabtets[0]); // [d,a,e,b]
+          fsym(tmpabtets[0], tmpabtets[1]); // [a,d,e,c]
+        } else {
+          // The flip edge is [a,c].
+          tmpabtets[1] = abtets[(t - 1 + i) % i]; // [a,b,e,d]
+          enextself(tmpabtets[1]);
+          esymself(tmpabtets[1]);
+          enextself(tmpabtets[1]); // [b,d,e,a]
+          fsym(tmpabtets[1], tmpabtets[0]); // [d,b,e,c]
+        } // if (edgepivot == 2)
+
+        // Do a n1-to-m1 flip to recover the flipped edge ([c,b] or [a,c]).
+        flipnm_post(tmpabtets, n1, 2, edgepivot, fc);
+
+        // Insert the two recovered tets into the original Star(ab).
+        for (j = i - 1; j >= t; j--) {
+          abtets[j + 1] = abtets[j];  // Downshift
+        }
+        if (edgepivot == 1) {
+          // tmpabtets[0] is [c,b,d,a] ==> contains [a,b]
+          // tmpabtets[1] is [c,b,a,e] ==> contains [a,b]
+          // tmpabtets[2] is [c,b,e,d]
+          fliptets[0] = tmpabtets[1];
+          enextself(fliptets[0]);
+          esymself(fliptets[0]); // [a,b,e,c]
+          fliptets[1] = tmpabtets[0];
+          esymself(fliptets[1]);
+          eprevself(fliptets[1]); // [a,b,c,d]
+        } else {
+          // tmpabtets[0] is [a,c,d,b] ==> contains [a,b]
+          // tmpabtets[1] is [a,c,b,e] ==> contains [a,b]
+          // tmpabtets[2] is [a,c,e,d]
+          fliptets[0] = tmpabtets[1];
+          eprevself(fliptets[0]);
+          esymself(fliptets[0]); // [a,b,e,c]
+          fliptets[1] = tmpabtets[0];
+          esymself(fliptets[1]);
+          enextself(fliptets[1]); // [a,b,c,d]
+        } // edgepivot == 2
+        // Insert the two recovered tets into Star(ab).
+        abtets[((t-1) + (i+1)) % (i+1)] = fliptets[0];
+        abtets[t] = fliptets[1];
+      }
+      else {
+        // Only free the spaces.
+        flipnm_post(tmpabtets, n1, 2, edgepivot, fc);
+      } // if (!unflip)
+      if (b->verbose > 2) {
+        printf("      Release %d spaces at f[%d].\n", n1, i);
+      }
+      delete [] tmpabtets;
+    }
+  } // i
+
+  return 1;
+}
+
+int meshGRegionBoundaryRecovery::insertpoint(point insertpt,
+  triface *searchtet, face *splitsh, face *splitseg, insertvertexflags *ivf)
+{
+  arraypool *swaplist;
+  triface *cavetet, spintet, neightet, neineitet, *parytet;
+  triface oldtet, newtet, newneitet;
+  face checksh, neighsh, *parysh;
+  face checkseg, *paryseg;
+  point *pts, pa, pb, pc, *parypt;
+  enum locateresult loc = OUTSIDE;
+  REAL sign, ori;
+  REAL attrib, volume;
+  bool enqflag;
+  int t1ver;
+  int i, j, k, s;
+
+  if (b->verbose > 2) {
+    printf("      Insert point %d\n", pointmark(insertpt));
+  }
+
+  // Locate the point.
+  if (searchtet->tet != NULL) {
+    loc = (enum locateresult) ivf->iloc;
+  }
+
+  if (loc == OUTSIDE) {
+    if (searchtet->tet == NULL) {
+      if (!b->weighted) {
+        randomsample(insertpt, searchtet);
+      } else {
+        // Weighted DT. There may exist dangling vertex.
+        *searchtet = recenttet;
+      }
+    }
+    // Locate the point.
+    loc = locate(insertpt, searchtet);
+  }
+
+  ivf->iloc = (int) loc; // The return value.
+
+  /*
+  if (b->weighted) {
+    if (loc != OUTSIDE) {
+      // Check if this vertex is regular.
+      pts = (point *) searchtet->tet;
+      assert(pts[7] != dummypoint);
+      sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt,
+                        pts[4][3], pts[5][3], pts[6][3], pts[7][3],
+                        insertpt[3]);
+      if (sign > 0) {
+        // This new vertex does not lie below the lower hull. Skip it.
+        setpointtype(insertpt, NREGULARVERTEX);
+        nonregularcount++;
+        ivf->iloc = (int) NONREGULAR;
+        return 0;
+      }
+    }
+  }
+  */
+
+  // Create the initial cavity C(p) which contains all tetrahedra that
+  //   intersect p. It may include 1, 2, or n tetrahedra.
+  // If p lies on a segment or subface, also create the initial sub-cavity
+  //   sC(p) which contains all subfaces (and segment) which intersect p.
+
+  if (loc == OUTSIDE) {
+    flip14count++;
+    // The current hull will be enlarged.
+    // Add four adjacent boundary tets into list.
+    for (i = 0; i < 4; i++) {
+      decode(searchtet->tet[i], neightet);
+      neightet.ver = epivot[neightet.ver];
+      cavebdrylist->newindex((void **) &parytet);
+      *parytet = neightet;
+    }
+    infect(*searchtet);
+    caveoldtetlist->newindex((void **) &parytet);
+    *parytet = *searchtet;
+  } else if (loc == INTETRAHEDRON) {
+    flip14count++;
+    // Add four adjacent boundary tets into list.
+    for (i = 0; i < 4; i++) {
+      decode(searchtet->tet[i], neightet);
+      neightet.ver = epivot[neightet.ver];
+      cavebdrylist->newindex((void **) &parytet);
+      *parytet = neightet;
+    }
+    infect(*searchtet);
+    caveoldtetlist->newindex((void **) &parytet);
+    *parytet = *searchtet;
+  } else if (loc == ONFACE) {
+    flip26count++;
+    // Add six adjacent boundary tets into list.
+    j = (searchtet->ver & 3); // The current face number.
+    for (i = 1; i < 4; i++) {
+      decode(searchtet->tet[(j + i) % 4], neightet);
+      neightet.ver = epivot[neightet.ver];
+      cavebdrylist->newindex((void **) &parytet);
+      *parytet = neightet;
+    }
+    decode(searchtet->tet[j], spintet);
+    j = (spintet.ver & 3); // The current face number.
+    for (i = 1; i < 4; i++) {
+      decode(spintet.tet[(j + i) % 4], neightet);
+      neightet.ver = epivot[neightet.ver];
+      cavebdrylist->newindex((void **) &parytet);
+      *parytet = neightet;
+    }
+    infect(spintet);
+    caveoldtetlist->newindex((void **) &parytet);
+    *parytet = spintet;
+    infect(*searchtet);
+    caveoldtetlist->newindex((void **) &parytet);
+    *parytet = *searchtet;
+
+    if (ivf->splitbdflag) {
+      if ((splitsh != NULL) && (splitsh->sh != NULL)) {
+        // Create the initial sub-cavity sC(p).
+        smarktest(*splitsh);
+        caveshlist->newindex((void **) &parysh);
+        *parysh = *splitsh;
+      }
+    } // if (splitbdflag)
+  } else if (loc == ONEDGE) {
+    flipn2ncount++;
+    // Add all adjacent boundary tets into list.
+    spintet = *searchtet;
+    while (1) {
+      eorgoppo(spintet, neightet);
+      decode(neightet.tet[neightet.ver & 3], neightet);
+      neightet.ver = epivot[neightet.ver];
+      cavebdrylist->newindex((void **) &parytet);
+      *parytet = neightet;
+      edestoppo(spintet, neightet);
+      decode(neightet.tet[neightet.ver & 3], neightet);
+      neightet.ver = epivot[neightet.ver];
+      cavebdrylist->newindex((void **) &parytet);
+      *parytet = neightet;
+      infect(spintet);
+      caveoldtetlist->newindex((void **) &parytet);
+      *parytet = spintet;
+      fnextself(spintet);
+      if (spintet.tet == searchtet->tet) break;
+    } // while (1)
+
+    if (ivf->splitbdflag) {
+      // Create the initial sub-cavity sC(p).
+      if ((splitseg != NULL) && (splitseg->sh != NULL)) {
+        smarktest(*splitseg);
+        splitseg->shver = 0;
+        spivot(*splitseg, *splitsh);
+      }
+      if (splitsh != NULL) {
+        if (splitsh->sh != NULL) {
+          // Collect all subfaces share at this edge.
+          pa = sorg(*splitsh);
+          neighsh = *splitsh;
+          while (1) {
+            // Adjust the origin of its edge to be 'pa'.
+            if (sorg(neighsh) != pa) {
+              sesymself(neighsh);
+            }
+            // Add this face into list (in B-W cavity).
+            smarktest(neighsh);
+            caveshlist->newindex((void **) &parysh);
+            *parysh = neighsh;
+            // Add this face into face-at-splitedge list.
+            cavesegshlist->newindex((void **) &parysh);
+            *parysh = neighsh;
+            // Go to the next face at the edge.
+            spivotself(neighsh);
+            // Stop if all faces at the edge have been visited.
+            if (neighsh.sh == splitsh->sh) break;
+            if (neighsh.sh == NULL) break;
+          } // while (1)
+        } // if (not a dangling segment)
+      }
+    } // if (splitbdflag)
+  } else if (loc == INSTAR) {
+    // We assume that all tets in the star are given in 'caveoldtetlist',
+    //   and they are all infected.
+    assert(caveoldtetlist->objects > 0);
+    // Collect the boundary faces of the star.
+    for (i = 0; i < caveoldtetlist->objects; i++) {
+      cavetet = (triface *) fastlookup(caveoldtetlist, i);
+      // Check its 4 neighbor tets.
+      for (j = 0; j < 4; j++) {
+        decode(cavetet->tet[j], neightet);
+        if (!infected(neightet)) {
+          // It's a boundary face.
+          neightet.ver = epivot[neightet.ver];
+          cavebdrylist->newindex((void **) &parytet);
+          *parytet = neightet;
+        }
+      }
+    }
+  } else if (loc == ONVERTEX) {
+    // The point already exist. Do nothing and return.
+    return 0;
+  }
+
+  /*
+  if (ivf->assignmeshsize) {
+    // Assign mesh size for the new point.
+    if (bgm != NULL) {
+      // Interpolate the mesh size from the background mesh.
+      bgm->decode(point2bgmtet(org(*searchtet)), neightet);
+      int bgmloc = (int) bgm->scoutpoint(insertpt, &neightet, 0);
+      if (bgmloc != (int) OUTSIDE) {
+        insertpt[pointmtrindex] =
+          bgm->getpointmeshsize(insertpt, &neightet, bgmloc);
+        setpoint2bgmtet(insertpt, bgm->encode(neightet));
+      }
+    } else {
+      insertpt[pointmtrindex] = getpointmeshsize(insertpt,searchtet,(int)loc);
+    }
+  } // if (assignmeshsize)
+  */
+
+  if (ivf->bowywat) {
+    // Update the cavity C(p) using the Bowyer-Watson algorithm.
+    swaplist = cavetetlist;
+    cavetetlist = cavebdrylist;
+    cavebdrylist = swaplist;
+    for (i = 0; i < cavetetlist->objects; i++) {
+      // 'cavetet' is an adjacent tet at outside of the cavity.
+      cavetet = (triface *) fastlookup(cavetetlist, i);
+      // The tet may be tested and included in the (enlarged) cavity.
+      if (!infected(*cavetet)) {
+        // Check for two possible cases for this tet:
+        //   (1) It is a cavity tet, or
+        //   (2) it is a cavity boundary face.
+        enqflag = false;
+        if (!marktested(*cavetet)) {
+          // Do Delaunay (in-sphere) test.
+          pts = (point *) cavetet->tet;
+          if (pts[7] != dummypoint) {
+            // A volume tet. Operate on it.
+            if (b->weighted) {
+              /*
+              sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt,
+                                pts[4][3], pts[5][3], pts[6][3], pts[7][3],
+                                insertpt[3]);
+              */
+            } else {
+              sign = insphere_s(pts[4], pts[5], pts[6], pts[7], insertpt);
+            }
+            enqflag = (sign < 0.0);
+          } else {
+            if (!nonconvex) {
+              // Test if this hull face is visible by the new point.
+              ori = orient3d(pts[4], pts[5], pts[6], insertpt);
+              if (ori < 0) {
+                // A visible hull face.
+                //if (!nonconvex) {
+                // Include it in the cavity. The convex hull will be enlarged.
+                enqflag = true; // (ori < 0.0);
+		        //}
+              } else if (ori == 0.0) {
+                // A coplanar hull face. We need to test if this hull face is
+                //   Delaunay or not. We test if the adjacent tet (not faked)
+                //   of this hull face is Delaunay or not.
+                decode(cavetet->tet[3], neineitet);
+                if (!infected(neineitet)) {
+                  if (!marktested(neineitet)) {
+                    // Do Delaunay test on this tet.
+                    pts = (point *) neineitet.tet;
+                    assert(pts[7] != dummypoint);
+                    if (b->weighted) {
+                      /*
+                      sign = orient4d_s(pts[4],pts[5],pts[6],pts[7], insertpt,
+                                        pts[4][3], pts[5][3], pts[6][3],
+                                        pts[7][3], insertpt[3]);
+                      */
+                    } else {
+                      sign = insphere_s(pts[4],pts[5],pts[6],pts[7], insertpt);
+                    }
+                    enqflag = (sign < 0.0);
+                  }
+                } else {
+                  // The adjacent tet is non-Delaunay. The hull face is non-
+                  //   Delaunay as well. Include it in the cavity.
+                  enqflag = true;
+                } // if (!infected(neineitet))
+              } // if (ori == 0.0)
+            } else {
+              // A hull face (must be a subface).
+              // We FIRST include it in the initial cavity if the adjacent tet
+              //   (not faked) of this hull face is not Delaunay wrt p.
+              //   Whether it belongs to the final cavity will be determined
+              //   during the validation process. 'validflag'.
+              decode(cavetet->tet[3], neineitet);
+              if (!infected(neineitet)) {
+                if (!marktested(neineitet)) {
+                  // Do Delaunay test on this tet.
+                  pts = (point *) neineitet.tet;
+                  assert(pts[7] != dummypoint);
+                  if (b->weighted) {
+                    /*
+                    sign = orient4d_s(pts[4],pts[5],pts[6],pts[7], insertpt,
+                                      pts[4][3], pts[5][3], pts[6][3],
+                                      pts[7][3], insertpt[3]);
+                    */
+                  } else {
+                    sign = insphere_s(pts[4],pts[5],pts[6],pts[7], insertpt);
+                  }
+                  enqflag = (sign < 0.0);
+                }
+              } else {
+                // The adjacent tet is non-Delaunay. The hull face is non-
+                //   Delaunay as well. Include it in the cavity.
+                enqflag = true;
+              } // if (infected(neineitet))
+            } // if (nonconvex)
+          } // if (pts[7] != dummypoint)
+          marktest(*cavetet); // Only test it once.
+        } // if (!marktested(*cavetet))
+
+        if (enqflag) {
+          // Found a tet in the cavity. Put other three faces in check list.
+          k = (cavetet->ver & 3); // The current face number
+          for (j = 1; j < 4; j++) {
+            decode(cavetet->tet[(j + k) % 4], neightet);
+            cavetetlist->newindex((void **) &parytet);
+            *parytet = neightet;
+          }
+          infect(*cavetet);
+          caveoldtetlist->newindex((void **) &parytet);
+          *parytet = *cavetet;
+        } else {
+          // Found a boundary face of the cavity.
+          cavetet->ver = epivot[cavetet->ver];
+          cavebdrylist->newindex((void **) &parytet);
+          *parytet = *cavetet;
+        }
+      } // if (!infected(*cavetet))
+    } // i
+
+    cavetetlist->restart(); // Clear the working list.
+  } // if (ivf->bowywat)
+
+  if (checksubsegflag) {
+    // Collect all segments of C(p).
+    shellface *ssptr;
+    for (i = 0; i < caveoldtetlist->objects; i++) {
+      cavetet = (triface *) fastlookup(caveoldtetlist, i);
+      if ((ssptr = (shellface*) cavetet->tet[8]) != NULL) {
+        for (j = 0; j < 6; j++) {
+          if (ssptr[j]) {
+            sdecode(ssptr[j], checkseg);
+            if (!sinfected(checkseg)) {
+              sinfect(checkseg);
+              cavetetseglist->newindex((void **) &paryseg);
+              *paryseg = checkseg;
+            }
+          }
+        } // j
+      }
+    } // i
+    // Uninfect collected segments.
+    for (i = 0; i < cavetetseglist->objects; i++) {
+      paryseg = (face *) fastlookup(cavetetseglist, i);
+      suninfect(*paryseg);
+    }
+
+    /*
+    if (ivf->rejflag & 1) {
+      // Reject this point if it encroaches upon any segment.
+      face *paryseg1;
+      for (i = 0; i < cavetetseglist->objects; i++) {
+        paryseg1 = (face *) fastlookup(cavetetseglist, i);
+        if (checkseg4encroach((point) paryseg1->sh[3], (point) paryseg1->sh[4],
+                              insertpt)) {
+          encseglist->newindex((void **) &paryseg);
+          *paryseg = *paryseg1;
+        }
+      } // i
+      if (encseglist->objects > 0) {
+        insertpoint_abort(splitseg, ivf);
+        ivf->iloc = (int) ENCSEGMENT;
+        return 0;
+      }
+    }
+    */
+  } // if (checksubsegflag)
+
+  if (checksubfaceflag) {
+    // Collect all subfaces of C(p).
+    shellface *sptr;
+    for (i = 0; i < caveoldtetlist->objects; i++) {
+      cavetet = (triface *) fastlookup(caveoldtetlist, i);
+      if ((sptr = (shellface*) cavetet->tet[9]) != NULL) {
+        for (j = 0; j < 4; j++) {
+          if (sptr[j]) {
+            sdecode(sptr[j], checksh);
+            if (!sinfected(checksh)) {
+              sinfect(checksh);
+              cavetetshlist->newindex((void **) &parysh);
+              *parysh = checksh;
+            }
+          }
+        } // j
+      }
+    } // i
+    // Uninfect collected subfaces.
+    for (i = 0; i < cavetetshlist->objects; i++) {
+      parysh = (face *) fastlookup(cavetetshlist, i);
+      suninfect(*parysh);
+    }
+
+    /*
+    if (ivf->rejflag & 2) {
+      REAL rd, cent[3];
+      badface *bface;
+      // Reject this point if it encroaches upon any subface.
+      for (i = 0; i < cavetetshlist->objects; i++) {
+        parysh = (face *) fastlookup(cavetetshlist, i);
+        if (checkfac4encroach((point) parysh->sh[3], (point) parysh->sh[4],
+                              (point) parysh->sh[5], insertpt, cent, &rd)) {
+          encshlist->newindex((void **) &bface);
+          bface->ss = *parysh;
+          bface->forg = (point) parysh->sh[3]; // Not a dad one.
+          for (j = 0; j < 3; j++) bface->cent[j] = cent[j];
+          bface->key = rd;
+        }
+      }
+      if (encshlist->objects > 0) {
+        insertpoint_abort(splitseg, ivf);
+        ivf->iloc = (int) ENCSUBFACE;
+        return 0;
+      }
+    }
+    */
+  } // if (checksubfaceflag)
+
+  if ((ivf->iloc == (int) OUTSIDE) && ivf->refineflag) {
+    // The vertex lies outside of the domain. And it does not encroach
+    //   upon any boundary segment or subface. Do not insert it.
+    insertpoint_abort(splitseg, ivf);
+    return 0;
+  }
+
+  if (ivf->splitbdflag) {
+    // The new point locates in surface mesh. Update the sC(p).
+    // We have already 'smarktested' the subfaces which directly intersect
+    //   with p in 'caveshlist'. From them, we 'smarktest' their neighboring
+    //   subfaces which are included in C(p). Do not across a segment.
+    for (i = 0; i < caveshlist->objects; i++) {
+      parysh = (face *) fastlookup(caveshlist, i);
+      assert(smarktested(*parysh));
+      checksh = *parysh;
+      for (j = 0; j < 3; j++) {
+        if (!isshsubseg(checksh)) {
+          spivot(checksh, neighsh);
+          assert(neighsh.sh != NULL);
+          if (!smarktested(neighsh)) {
+            stpivot(neighsh, neightet);
+            if (infected(neightet)) {
+              fsymself(neightet);
+              if (infected(neightet)) {
+                // This subface is inside C(p).
+                // Check if its diametrical circumsphere encloses 'p'.
+                //   The purpose of this check is to avoid forming invalid
+                //   subcavity in surface mesh.
+                sign = incircle3d(sorg(neighsh), sdest(neighsh),
+                                  sapex(neighsh), insertpt);
+                if (sign < 0) {
+                  smarktest(neighsh);
+                  caveshlist->newindex((void **) &parysh);
+                  *parysh = neighsh;
+                }
+              }
+            }
+          }
+        }
+        senextself(checksh);
+      } // j
+    } // i
+  } // if (ivf->splitbdflag)
+
+  if (ivf->validflag) {
+    // Validate C(p) and update it if it is not star-shaped.
+    int cutcount = 0;
+
+    if (ivf->respectbdflag) {
+      // The initial cavity may include subfaces which are not on the facets
+      //   being splitting. Find them and make them as boundary of C(p).
+      // Comment: We have already 'smarktested' the subfaces in sC(p). They
+      //   are completely inside C(p).
+      for (i = 0; i < cavetetshlist->objects; i++) {
+        parysh = (face *) fastlookup(cavetetshlist, i);
+        stpivot(*parysh, neightet);
+        if (infected(neightet)) {
+          fsymself(neightet);
+          if (infected(neightet)) {
+            // Found a subface inside C(p).
+            if (!smarktested(*parysh)) {
+              // It is possible that this face is a boundary subface.
+              // Check if it is a hull face.
+              //assert(apex(neightet) != dummypoint);
+              if (oppo(neightet) != dummypoint) {
+                fsymself(neightet);
+              }
+              if (oppo(neightet) != dummypoint) {
+                ori = orient3d(org(neightet), dest(neightet), apex(neightet),
+                               insertpt);
+                if (ori < 0) {
+                  // A visible face, get its neighbor face.
+                  fsymself(neightet);
+                  ori = -ori; // It must be invisible by p.
+                }
+              } else {
+                // A hull tet. It needs to be cut.
+                ori = 1;
+              }
+              // Cut this tet if it is either invisible by or coplanar with p.
+              if (ori >= 0) {
+                uninfect(neightet);
+                unmarktest(neightet);
+                cutcount++;
+                neightet.ver = epivot[neightet.ver];
+                cavebdrylist->newindex((void **) &parytet);
+                *parytet = neightet;
+                // Add three new faces to find new boundaries.
+                for (j = 0; j < 3; j++) {
+                  esym(neightet, neineitet);
+                  neineitet.ver = epivot[neineitet.ver];
+                  cavebdrylist->newindex((void **) &parytet);
+                  *parytet = neineitet;
+                  enextself(neightet);
+                }
+              } // if (ori >= 0)
+            }
+          }
+        }
+      } // i
+
+      // The initial cavity may include segments in its interior. We need to
+      //   Update the cavity so that these segments are on the boundary of
+      //   the cavity.
+      for (i = 0; i < cavetetseglist->objects; i++) {
+        paryseg = (face *) fastlookup(cavetetseglist, i);
+        // Check this segment if it is not a splitting segment.
+        if (!smarktested(*paryseg)) {
+          sstpivot1(*paryseg, neightet);
+          spintet = neightet;
+          while (1) {
+            if (!infected(spintet)) break;
+            fnextself(spintet);
+            if (spintet.tet == neightet.tet) break;
+          }
+          if (infected(spintet)) {
+            // Find an adjacent tet at this segment such that both faces
+            //   at this segment are not visible by p.
+            pa = org(neightet);
+            pb = dest(neightet);
+            spintet = neightet;
+            j = 0;
+            while (1) {
+              // Check if this face is visible by p.
+              pc = apex(spintet);
+              if (pc != dummypoint) {
+                ori = orient3d(pa, pb, pc, insertpt);
+                if (ori >= 0) {
+                  // Not visible. Check another face in this tet.
+                  esym(spintet, neineitet);
+                  pc = apex(neineitet);
+                  if (pc != dummypoint) {
+                    ori = orient3d(pb, pa, pc, insertpt);
+                    if (ori >= 0) {
+                      // Not visible. Found this face.
+                      j = 1; // Flag that it is found.
+                      break;
+                    }
+                  }
+                }
+              }
+              fnextself(spintet);
+              if (spintet.tet == neightet.tet) break;
+            }
+            if (j == 0) {
+              // Not found such a face.
+              assert(0); // debug this case.
+            }
+            neightet = spintet;
+            if (b->verbose > 3) {
+               printf("        Cut tet (%d, %d, %d, %d)\n",
+                      pointmark(org(neightet)), pointmark(dest(neightet)),
+                      pointmark(apex(neightet)), pointmark(oppo(neightet)));
+            }
+            uninfect(neightet);
+            unmarktest(neightet);
+            cutcount++;
+            neightet.ver = epivot[neightet.ver];
+            cavebdrylist->newindex((void **) &parytet);
+            *parytet = neightet;
+            // Add three new faces to find new boundaries.
+            for (j = 0; j < 3; j++) {
+              esym(neightet, neineitet);
+              neineitet.ver = epivot[neineitet.ver];
+              cavebdrylist->newindex((void **) &parytet);
+              *parytet = neineitet;
+              enextself(neightet);
+            }
+          }
+        }
+      } // i
+    } // if (ivf->respectbdflag)
+
+    // Update the cavity by removing invisible faces until it is star-shaped.
+    for (i = 0; i < cavebdrylist->objects; i++) {
+      cavetet = (triface *) fastlookup(cavebdrylist, i);
+      // 'cavetet' is an exterior tet adjacent to the cavity.
+      // Check if its neighbor is inside C(p).
+      fsym(*cavetet, neightet);
+      if (infected(neightet)) {
+        if (apex(*cavetet) != dummypoint) {
+          // It is a cavity boundary face. Check its visibility.
+          if (oppo(neightet) != dummypoint) {
+            ori = orient3d(org(*cavetet), dest(*cavetet), apex(*cavetet),
+                           insertpt);
+            enqflag = (ori > 0);
+            // Comment: if ori == 0 (coplanar case), we also cut the tet.
+          } else {
+            // It is a hull face. And its adjacent tet (at inside of the
+            //   domain) has been cut from the cavity. Cut it as well.
+            //assert(nonconvex);
+            enqflag = false;
+          }
+        } else {
+          enqflag = true; // A hull edge.
+        }
+        if (enqflag) {
+          // This face is valid, save it.
+          cavetetlist->newindex((void **) &parytet);
+          *parytet = *cavetet;
+        } else {
+          uninfect(neightet);
+          unmarktest(neightet);
+          cutcount++;
+          // Add three new faces to find new boundaries.
+          for (j = 0; j < 3; j++) {
+            esym(neightet, neineitet);
+            neineitet.ver = epivot[neineitet.ver];
+            cavebdrylist->newindex((void **) &parytet);
+            *parytet = neineitet;
+            enextself(neightet);
+          }
+          // 'cavetet' is not on the cavity boundary anymore.
+          unmarktest(*cavetet);
+        }
+      } else {
+        // 'cavetet' is not on the cavity boundary anymore.
+        unmarktest(*cavetet);
+      }
+    } // i
+
+    if (cutcount > 0) {
+      // The cavity has been updated.
+      // Update the cavity boundary faces.
+      cavebdrylist->restart();
+      for (i = 0; i < cavetetlist->objects; i++) {
+        cavetet = (triface *) fastlookup(cavetetlist, i);
+        // 'cavetet' was an exterior tet adjacent to the cavity.
+        fsym(*cavetet, neightet);
+        if (infected(neightet)) {
+          // It is a cavity boundary face.
+          cavebdrylist->newindex((void **) &parytet);
+          *parytet = *cavetet;
+        } else {
+          // Not a cavity boundary face.
+          unmarktest(*cavetet);
+        }
+      }
+
+      // Update the list of old tets.
+      cavetetlist->restart();
+      for (i = 0; i < caveoldtetlist->objects; i++) {
+        cavetet = (triface *) fastlookup(caveoldtetlist, i);
+        if (infected(*cavetet)) {
+          cavetetlist->newindex((void **) &parytet);
+          *parytet = *cavetet;
+        }
+      }
+      // Swap 'cavetetlist' and 'caveoldtetlist'.
+      swaplist = caveoldtetlist;
+      caveoldtetlist = cavetetlist;
+      cavetetlist = swaplist;
+
+      // The cavity should contain at least one tet.
+      if (caveoldtetlist->objects == 0l) {
+        insertpoint_abort(splitseg, ivf);
+        ivf->iloc = (int) BADELEMENT;
+        return 0;
+      }
+
+      if (ivf->splitbdflag) {
+        int cutshcount = 0;
+        // Update the sub-cavity sC(p).
+        for (i = 0; i < caveshlist->objects; i++) {
+          parysh = (face *) fastlookup(caveshlist, i);
+          if (smarktested(*parysh)) {
+            enqflag = false;
+            stpivot(*parysh, neightet);
+            if (infected(neightet)) {
+              fsymself(neightet);
+              if (infected(neightet)) {
+                enqflag = true;
+              }
+            }
+            if (!enqflag) {
+              sunmarktest(*parysh);
+              // Use the last entry of this array to fill this entry.
+              j = caveshlist->objects - 1;
+              checksh = * (face *) fastlookup(caveshlist, j);
+              *parysh = checksh;
+              cutshcount++;
+              caveshlist->objects--; // The list is shrinked.
+              i--;
+            }
+          }
+        }
+
+        if (cutshcount > 0) {
+          i = 0; // Count the number of invalid subfaces/segments.
+          // Valid the updated sub-cavity sC(p).
+          if (loc == ONFACE) {
+            if ((splitsh != NULL) && (splitsh->sh != NULL)) {
+              // The to-be split subface should be in sC(p).
+              if (!smarktested(*splitsh)) i++;
+            }
+          } else if (loc == ONEDGE) {
+            if ((splitseg != NULL) && (splitseg->sh != NULL)) {
+              // The to-be split segment should be in sC(p).
+              if (!smarktested(*splitseg)) i++;
+            }
+            if ((splitsh != NULL) && (splitsh->sh != NULL)) {
+              // All subfaces at this edge should be in sC(p).
+              pa = sorg(*splitsh);
+              neighsh = *splitsh;
+              while (1) {
+                // Adjust the origin of its edge to be 'pa'.
+                if (sorg(neighsh) != pa) {
+                  sesymself(neighsh);
+                }
+                // Add this face into list (in B-W cavity).
+                if (!smarktested(neighsh)) i++;
+                // Go to the next face at the edge.
+                spivotself(neighsh);
+                // Stop if all faces at the edge have been visited.
+                if (neighsh.sh == splitsh->sh) break;
+                if (neighsh.sh == NULL) break;
+              } // while (1)
+            }
+          }
+
+          if (i > 0) {
+            // The updated sC(p) is invalid. Do not insert this vertex.
+            insertpoint_abort(splitseg, ivf);
+            ivf->iloc = (int) BADELEMENT;
+            return 0;
+          }
+        } // if (cutshcount > 0)
+      } // if (ivf->splitbdflag)
+    } // if (cutcount > 0)
+
+  } // if (ivf->validflag)
+
+  if (ivf->refineflag) {
+    // The new point is inserted by Delaunay refinement, i.e., it is the
+    //   circumcenter of a tetrahedron, or a subface, or a segment.
+    //   Do not insert this point if the tetrahedron, or subface, or segment
+    //   is not inside the final cavity.
+    if (((ivf->refineflag == 1) && !infected(ivf->refinetet)) ||
+        ((ivf->refineflag == 2) && !smarktested(ivf->refinesh))) {
+      insertpoint_abort(splitseg, ivf);
+      ivf->iloc = (int) BADELEMENT;
+      return 0;
+    }
+  } // if (ivf->refineflag)
+
+  if (b->plc && (loc != INSTAR)) {
+    // Reject the new point if it lies too close to an existing point (b->plc),
+    // or it lies inside a protecting ball of near vertex (ivf->rejflag & 4).
+    // Collect the list of vertices of the initial cavity.
+    if (loc == OUTSIDE) {
+      pts = (point *) &(searchtet->tet[4]);
+      for (i = 0; i < 3; i++) {
+        cavetetvertlist->newindex((void **) &parypt);
+        *parypt = pts[i];
+      }
+    } else if (loc == INTETRAHEDRON) {
+      pts = (point *) &(searchtet->tet[4]);
+      for (i = 0; i < 4; i++) {
+        cavetetvertlist->newindex((void **) &parypt);
+        *parypt = pts[i];
+      }
+    } else if (loc == ONFACE) {
+      pts = (point *) &(searchtet->tet[4]);
+      for (i = 0; i < 3; i++) {
+        cavetetvertlist->newindex((void **) &parypt);
+        *parypt = pts[i];
+      }
+      if (pts[3] != dummypoint) {
+        cavetetvertlist->newindex((void **) &parypt);
+        *parypt = pts[3];
+      }
+      fsym(*searchtet, spintet);
+      if (oppo(spintet) != dummypoint) {
+        cavetetvertlist->newindex((void **) &parypt);
+        *parypt = oppo(spintet);
+      }
+    } else if (loc == ONEDGE) {
+      spintet = *searchtet;
+      cavetetvertlist->newindex((void **) &parypt);
+      *parypt = org(spintet);
+      cavetetvertlist->newindex((void **) &parypt);
+      *parypt = dest(spintet);
+      while (1) {
+        if (apex(spintet) != dummypoint) {
+          cavetetvertlist->newindex((void **) &parypt);
+          *parypt = apex(spintet);
+        }
+        fnextself(spintet);
+        if (spintet.tet == searchtet->tet) break;
+      }
+    }
+
+    int rejptflag = (ivf->rejflag & 4);
+    REAL rd;
+    pts = NULL;
+
+    for (i = 0; i < cavetetvertlist->objects; i++) {
+      parypt = (point *) fastlookup(cavetetvertlist, i);
+      rd = distance(*parypt, insertpt);
+      // Is the point very close to an existing point?
+      if (rd < b->minedgelength) {
+        pts = parypt;
+        loc = NEARVERTEX;
+        break;
+      }
+      if (rejptflag) {
+        // Is the point encroaches upon an existing point?
+        if (rd < (0.5 * (*parypt)[pointmtrindex])) {
+          pts = parypt;
+          loc = ENCVERTEX;
+          break;
+        }
+      }
+    }
+    cavetetvertlist->restart(); // Clear the work list.
+
+    if (pts != NULL) {
+      // The point is either too close to an existing vertex (NEARVERTEX)
+      //   or encroaches upon (inside the protecting ball) of that vertex.
+      if (loc == NEARVERTEX) {
+        if (b->nomergevertex) { // -M0/1 option.
+          // In this case, we still insert this vertex. Although it is very
+          //   close to an existing vertex. Give a warning, anyway.
+	  Msg::Warning("Warning:  Two points, %d and %d, are very close.",
+		       pointmark(insertpt), pointmark(*pts));
+	  Msg::Warning("  Creating a very short edge (len = %g) (< %g).",
+		       rd, b->minedgelength);
+	  Msg::Warning("  You may try a smaller tolerance (-T) (current is %g)",
+		       b->epsilon);
+          Msg::Warning("  to avoid this warning.");
+	} else {
+          insertpt[3] = rd; // Only for reporting.
+          setpoint2ppt(insertpt, *pts);
+          insertpoint_abort(splitseg, ivf);
+          ivf->iloc = (int) loc;
+          return 0;
+        }
+      } else { // loc == ENCVERTEX
+        // The point lies inside the protection ball.
+        setpoint2ppt(insertpt, *pts);
+        insertpoint_abort(splitseg, ivf);
+        ivf->iloc = (int) loc;
+        return 0;
+      }
+    }
+} // if (b->plc && (loc != INSTAR))
+
+  if (b->weighted || ivf->cdtflag || ivf->smlenflag
+      ) {
+    // There may be other vertices inside C(p). We need to find them.
+    // Collect all vertices of C(p).
+    for (i = 0; i < caveoldtetlist->objects; i++) {
+      cavetet = (triface *) fastlookup(caveoldtetlist, i);
+      //assert(infected(*cavetet));
+      pts = (point *) &(cavetet->tet[4]);
+      for (j = 0; j < 4; j++) {
+        if (pts[j] != dummypoint) {
+          if (!pinfected(pts[j])) {
+            pinfect(pts[j]);
+            cavetetvertlist->newindex((void **) &parypt);
+            *parypt = pts[j];
+          }
+        }
+      } // j
+    } // i
+    // Uninfect all collected (cavity) vertices.
+    for (i = 0; i < cavetetvertlist->objects; i++) {
+      parypt = (point *) fastlookup(cavetetvertlist, i);
+      puninfect(*parypt);
+    }
+    if (ivf->smlenflag) {
+      REAL len;
+      // Get the length of the shortest edge connecting to 'newpt'.
+      parypt = (point *) fastlookup(cavetetvertlist, 0);
+      ivf->smlen = distance(*parypt, insertpt);
+      ivf->parentpt = *parypt;
+      for (i = 1; i < cavetetvertlist->objects; i++) {
+        parypt = (point *) fastlookup(cavetetvertlist, i);
+        len = distance(*parypt, insertpt);
+        if (len < ivf->smlen) {
+          ivf->smlen = len;
+          ivf->parentpt = *parypt;
+        }
+      }
+    }
+  }
+
+
+  if (ivf->cdtflag) {
+    // Unmark tets.
+    for (i = 0; i < caveoldtetlist->objects; i++) {
+      cavetet = (triface *) fastlookup(caveoldtetlist, i);
+      unmarktest(*cavetet);
+    }
+    for (i = 0; i < cavebdrylist->objects; i++) {
+      cavetet = (triface *) fastlookup(cavebdrylist, i);
+      unmarktest(*cavetet);
+    }
+    // Clean up arrays which are not needed.
+    cavetetlist->restart();
+    if (checksubsegflag) {
+      cavetetseglist->restart();
+    }
+    if (checksubfaceflag) {
+      cavetetshlist->restart();
+    }
+    return 1;
+  }
+
+  // Before re-mesh C(p). Process the segments and subfaces which are on the
+  //   boundary of C(p). Make sure that each such segment or subface is
+  //   connecting to a tet outside C(p). So we can re-connect them to the
+  //   new tets inside the C(p) later.
+
+  if (checksubsegflag) {
+    for (i = 0; i < cavetetseglist->objects; i++) {
+      paryseg = (face *) fastlookup(cavetetseglist, i);
+      // Operate on it if it is not the splitting segment, i.e., in sC(p).
+      if (!smarktested(*paryseg)) {
+        // Check if the segment is inside the cavity.
+        //   'j' counts the num of adjacent tets of this seg.
+        //   'k' counts the num of adjacent tets which are 'sinfected'.
+        j = k = 0;
+        sstpivot1(*paryseg, neightet);
+        spintet = neightet;
+        while (1) {
+          j++;
+          if (!infected(spintet)) {
+            neineitet = spintet; // An outer tet. Remember it.
+          } else {
+            k++; // An in tet.
+          }
+          fnextself(spintet);
+          if (spintet.tet == neightet.tet) break;
+        }
+        // assert(j > 0);
+        if (k == 0) {
+          // The segment is not connect to C(p) anymore. Remove it by
+          //   Replacing it by the last entry of this list.
+          s = cavetetseglist->objects - 1;
+          checkseg = * (face *) fastlookup(cavetetseglist, s);
+          *paryseg = checkseg;
+          cavetetseglist->objects--;
+          i--;
+        } else if (k < j) {
+          // The segment is on the boundary of C(p).
+          sstbond1(*paryseg, neineitet);
+        } else { // k == j
+          // The segment is inside C(p).
+          if (!ivf->splitbdflag) {
+            checkseg = *paryseg;
+            sinfect(checkseg); // Flag it as an interior segment.
+            caveencseglist->newindex((void **) &paryseg);
+            *paryseg = checkseg;
+          } else {
+            assert(0); // Not possible.
+          }
+        }
+      } else {
+        // assert(smarktested(*paryseg));
+        // Flag it as an interior segment. Do not queue it, since it will
+        //   be deleted after the segment splitting.
+        sinfect(*paryseg);
+      }
+    } // i
+  } // if (checksubsegflag)
+
+  if (checksubfaceflag) {
+    for (i = 0; i < cavetetshlist->objects; i++) {
+      parysh = (face *) fastlookup(cavetetshlist, i);
+      // Operate on it if it is not inside the sub-cavity sC(p).
+      if (!smarktested(*parysh)) {
+        // Check if this subface is inside the cavity.
+        k = 0;
+        for (j = 0; j < 2; j++) {
+          stpivot(*parysh, neightet);
+          if (!infected(neightet)) {
+            checksh = *parysh; // Remember this side.
+          } else {
+            k++;
+          }
+          sesymself(*parysh);
+        }
+        if (k == 0) {
+          // The subface is not connected to C(p). Remove it.
+          s = cavetetshlist->objects - 1;
+          checksh = * (face *) fastlookup(cavetetshlist, s);
+          *parysh = checksh;
+          cavetetshlist->objects--;
+          i--;
+        } else if (k == 1) {
+          // This side is the outer boundary of C(p).
+          *parysh = checksh;
+        } else { // k == 2
+          if (!ivf->splitbdflag) {
+            checksh = *parysh;
+            sinfect(checksh); // Flag it.
+            caveencshlist->newindex((void **) &parysh);
+            *parysh = checksh;
+          } else {
+            assert(0); // Not possible.
+          }
+        }
+      } else {
+        // assert(smarktested(*parysh));
+        // Flag it as an interior subface. Do not queue it. It will be
+        //   deleted after the facet point insertion.
+        sinfect(*parysh);
+      }
+    } // i
+  } // if (checksubfaceflag)
+
+  // Create new tetrahedra to fill the cavity.
+
+  for (i = 0; i < cavebdrylist->objects; i++) {
+    cavetet = (triface *) fastlookup(cavebdrylist, i);
+    neightet = *cavetet;
+    unmarktest(neightet); // Unmark it.
+    // Get the oldtet (inside the cavity).
+    fsym(neightet, oldtet);
+    if (apex(neightet) != dummypoint) {
+      // Create a new tet in the cavity.
+      maketetrahedron(&newtet);
+      setorg(newtet, dest(neightet));
+      setdest(newtet, org(neightet));
+      setapex(newtet, apex(neightet));
+      setoppo(newtet, insertpt);
+    } else {
+      // Create a new hull tet.
+      hullsize++;
+      maketetrahedron(&newtet);
+      setorg(newtet, org(neightet));
+      setdest(newtet, dest(neightet));
+      setapex(newtet, insertpt);
+      setoppo(newtet, dummypoint); // It must opposite to face 3.
+      // Adjust back to the cavity bounday face.
+      esymself(newtet);
+    }
+    // The new tet inherits attribtes from the old tet.
+    for (j = 0; j < numelemattrib; j++) {
+      attrib = elemattribute(oldtet.tet, j);
+      setelemattribute(newtet.tet, j, attrib);
+    }
+    if (b->varvolume) {
+      volume = volumebound(oldtet.tet);
+      setvolumebound(newtet.tet, volume);
+    }
+    // Connect newtet <==> neightet, this also disconnect the old bond.
+    bond(newtet, neightet);
+    // oldtet still connects to neightet.
+    *cavetet = oldtet; // *cavetet = newtet;
+  } // i
+
+  // Set a handle for speeding point location.
+  recenttet = newtet;
+  //setpoint2tet(insertpt, encode(newtet));
+  setpoint2tet(insertpt, (tetrahedron) (newtet.tet));
+
+  // Re-use this list to save new interior cavity faces.
+  cavetetlist->restart();
+
+  // Connect adjacent new tetrahedra together.
+  for (i = 0; i < cavebdrylist->objects; i++) {
+    cavetet = (triface *) fastlookup(cavebdrylist, i);
+    // cavtet is an oldtet, get the newtet at this face.
+    oldtet = *cavetet;
+    fsym(oldtet, neightet);
+    fsym(neightet, newtet);
+    // Comment: oldtet and newtet must be at the same directed edge.
+    // Connect the three other faces of this newtet.
+    for (j = 0; j < 3; j++) {
+      esym(newtet, neightet); // Go to the face.
+      if (neightet.tet[neightet.ver & 3] == NULL) {
+        // Find the adjacent face of this newtet.
+        spintet = oldtet;
+        while (1) {
+          fnextself(spintet);
+          if (!infected(spintet)) break;
+        }
+        fsym(spintet, newneitet);
+        esymself(newneitet);
+        assert(newneitet.tet[newneitet.ver & 3] == NULL);
+        bond(neightet, newneitet);
+        if (ivf->lawson > 1) {
+          cavetetlist->newindex((void **) &parytet);
+          *parytet = neightet;
+        }
+      }
+      //setpoint2tet(org(newtet), encode(newtet));
+      setpoint2tet(org(newtet), (tetrahedron) (newtet.tet));
+      enextself(newtet);
+      enextself(oldtet);
+    }
+    *cavetet = newtet; // Save the new tet.
+  } // i
+
+  if (checksubfaceflag) {
+    // Connect subfaces on the boundary of the cavity to the new tets.
+    for (i = 0; i < cavetetshlist->objects; i++) {
+      parysh = (face *) fastlookup(cavetetshlist, i);
+      // Connect it if it is not a missing subface.
+      if (!sinfected(*parysh)) {
+        stpivot(*parysh, neightet);
+        fsym(neightet, spintet);
+        sesymself(*parysh);
+        tsbond(spintet, *parysh);
+      }
+    }
+  }
+
+  if (checksubsegflag) {
+    // Connect segments on the boundary of the cavity to the new tets.
+    for (i = 0; i < cavetetseglist->objects; i++) {
+      paryseg = (face *) fastlookup(cavetetseglist, i);
+      // Connect it if it is not a missing segment.
+      if (!sinfected(*paryseg)) {
+        sstpivot1(*paryseg, neightet);
+        spintet = neightet;
+        while (1) {
+          tssbond1(spintet, *paryseg);
+          fnextself(spintet);
+          if (spintet.tet == neightet.tet) break;
+        }
+      }
+    }
+  }
+
+  if (((splitsh != NULL) && (splitsh->sh != NULL)) ||
+      ((splitseg != NULL) && (splitseg->sh != NULL))) {
+    // Split a subface or a segment.
+    sinsertvertex(insertpt, splitsh, splitseg, ivf->sloc, ivf->sbowywat, 0);
+  }
+
+  if (checksubfaceflag) {
+    if (ivf->splitbdflag) {
+      // Recover new subfaces in C(p).
+      for (i = 0; i < caveshbdlist->objects; i++) {
+        // Get an old subface at edge [a, b].
+        parysh = (face *) fastlookup(caveshbdlist, i);
+        spivot(*parysh, checksh); // The new subface [a, b, p].
+        // Do not recover a deleted new face (degenerated).
+        if (checksh.sh[3] != NULL) {
+          // Note that the old subface still connects to adjacent old tets
+          //   of C(p), which still connect to the tets outside C(p).
+          stpivot(*parysh, neightet);
+          assert(infected(neightet));
+          // Find the adjacent tet containing the edge [a,b] outside C(p).
+          spintet = neightet;
+          while (1) {
+            fnextself(spintet);
+            if (!infected(spintet)) break;
+            assert(spintet.tet != neightet.tet);
+          }
+          // The adjacent tet connects to a new tet in C(p).
+          fsym(spintet, neightet);
+          assert(!infected(neightet));
+          // Find the tet containing the face [a, b, p].
+          spintet = neightet;
+          while (1) {
+            fnextself(spintet);
+            if (apex(spintet) == insertpt) break;
+            assert(spintet.tet != neightet.tet);
+          }
+          // Adjust the edge direction in spintet and checksh.
+          if (sorg(checksh) != org(spintet)) {
+            sesymself(checksh);
+            assert(sorg(checksh) == org(spintet));
+          }
+          assert(sdest(checksh) == dest(spintet));
+          // Connect the subface to two adjacent tets.
+          tsbond(spintet, checksh);
+          fsymself(spintet);
+          sesymself(checksh);
+          tsbond(spintet, checksh);
+        } // if (checksh.sh[3] != NULL)
+      }
+      // There should be no missing interior subfaces in C(p).
+      assert(caveencshlist->objects == 0l);
+    } else {
+      // The Boundary recovery phase.
+      // Put all new subfaces into stack for recovery.
+      for (i = 0; i < caveshbdlist->objects; i++) {
+        // Get an old subface at edge [a, b].
+        parysh = (face *) fastlookup(caveshbdlist, i);
+        spivot(*parysh, checksh); // The new subface [a, b, p].
+        // Do not recover a deleted new face (degenerated).
+        if (checksh.sh[3] != NULL) {
+          subfacstack->newindex((void **) &parysh);
+          *parysh = checksh;
+        }
+      }
+      // Put all interior subfaces into stack for recovery.
+      for (i = 0; i < caveencshlist->objects; i++) {
+        parysh = (face *) fastlookup(caveencshlist, i);
+        assert(sinfected(*parysh));
+        // Some subfaces inside C(p) might be split in sinsertvertex().
+        //   Only queue those faces which are not split.
+        if (!smarktested(*parysh)) {
+          checksh = *parysh;
+          suninfect(checksh);
+          stdissolve(checksh); // Detach connections to old tets.
+          subfacstack->newindex((void **) &parysh);
+          *parysh = checksh;
+        }
+      }
+    }
+  } // if (checksubfaceflag)
+
+  if (checksubsegflag) {
+    if (ivf->splitbdflag) {
+      if (splitseg != NULL) {
+        // Recover the two new subsegments in C(p).
+        for (i = 0; i < cavesegshlist->objects; i++) {
+          paryseg = (face *) fastlookup(cavesegshlist, i);
+          // Insert this subsegment into C(p).
+          checkseg = *paryseg;
+          // Get the adjacent new subface.
+          checkseg.shver = 0;
+          spivot(checkseg, checksh);
+          if (checksh.sh != NULL) {
+            // Get the adjacent new tetrahedron.
+            stpivot(checksh, neightet);
+          } else {
+            // It's a dangling segment.
+            point2tetorg(sorg(checkseg), neightet);
+            finddirection(&neightet, sdest(checkseg));
+            assert(dest(neightet) == sdest(checkseg));
+          }
+          assert(!infected(neightet));
+          sstbond1(checkseg, neightet);
+          spintet = neightet;
+          while (1) {
+            tssbond1(spintet, checkseg);
+            fnextself(spintet);
+            if (spintet.tet == neightet.tet) break;
+          }
+        }
+      } // if (splitseg != NULL)
+      // There should be no interior segment in C(p).
+      assert(caveencseglist->objects == 0l);
+    } else {
+      // The Boundary Recovery Phase.
+      // Queue missing segments in C(p) for recovery.
+      if (splitseg != NULL) {
+        // Queue two new subsegments in C(p) for recovery.
+        for (i = 0; i < cavesegshlist->objects; i++) {
+          paryseg = (face *) fastlookup(cavesegshlist, i);
+          checkseg = *paryseg;
+          //sstdissolve1(checkseg); // It has not been connected yet.
+          s = randomnation(subsegstack->objects + 1);
+          subsegstack->newindex((void **) &paryseg);
+          *paryseg = * (face *) fastlookup(subsegstack, s);
+          paryseg = (face *) fastlookup(subsegstack, s);
+          *paryseg = checkseg;
+        }
+      } // if (splitseg != NULL)
+      for (i = 0; i < caveencseglist->objects; i++) {
+        paryseg = (face *) fastlookup(caveencseglist, i);
+        assert(sinfected(*paryseg));
+        if (!smarktested(*paryseg)) { // It may be split.
+          checkseg = *paryseg;
+          suninfect(checkseg);
+          sstdissolve1(checkseg); // Detach connections to old tets.
+          s = randomnation(subsegstack->objects + 1);
+          subsegstack->newindex((void **) &paryseg);
+          *paryseg = * (face *) fastlookup(subsegstack, s);
+          paryseg = (face *) fastlookup(subsegstack, s);
+          *paryseg = checkseg;
+        }
+      }
+    }
+  } // if (checksubsegflag)
+
+  if (b->weighted
+      ) {
+    // Some vertices may be completed inside the cavity. They must be
+    //   detected and added to recovering list.
+    // Since every "live" vertex must contain a pointer to a non-dead
+    //   tetrahedron, we can check for each vertex this pointer.
+    for (i = 0; i < cavetetvertlist->objects; i++) {
+      pts = (point *) fastlookup(cavetetvertlist, i);
+      decode(point2tet(*pts), *searchtet);
+      assert(searchtet->tet != NULL); // No tet has been deleted yet.
+      if (infected(*searchtet)) {
+        if (b->weighted) {
+	  Msg::Debug("    Point #%d is non-regular after the insertion of #%d.",
+		     pointmark(*pts), pointmark(insertpt));
+          setpointtype(*pts, NREGULARVERTEX);
+          nonregularcount++;
+        }
+      }
+    }
+  }
+
+  if (ivf->chkencflag & 1) {
+    // Queue all segment outside C(p).
+    for (i = 0; i < cavetetseglist->objects; i++) {
+      paryseg = (face *) fastlookup(cavetetseglist, i);
+      // Skip if it is the split segment.
+      if (!sinfected(*paryseg)) {
+        //enqueuesubface(badsubsegs, paryseg);
+      }
+    }
+    if (splitseg != NULL) {
+      // Queue the two new subsegments inside C(p).
+      for (i = 0; i < cavesegshlist->objects; i++) {
+        paryseg = (face *) fastlookup(cavesegshlist, i);
+        //enqueuesubface(badsubsegs, paryseg);
+      }
+    }
+  } // if (chkencflag & 1)
+
+  if (ivf->chkencflag & 2) {
+    // Queue all subfaces outside C(p).
+    for (i = 0; i < cavetetshlist->objects; i++) {
+      parysh = (face *) fastlookup(cavetetshlist, i);
+      // Skip if it is a split subface.
+      if (!sinfected(*parysh)) {
+        //enqueuesubface(badsubfacs, parysh);
+      }
+    }
+    // Queue all new subfaces inside C(p).
+    for (i = 0; i < caveshbdlist->objects; i++) {
+      // Get an old subface at edge [a, b].
+      parysh = (face *) fastlookup(caveshbdlist, i);
+      spivot(*parysh, checksh); // checksh is a new subface [a, b, p].
+      // Do not recover a deleted new face (degenerated).
+      if (checksh.sh[3] != NULL) {
+        //enqueuesubface(badsubfacs, &checksh);
+      }
+    }
+  } // if (chkencflag & 2)
+
+  if (ivf->chkencflag & 4) {
+    // Queue all new tetrahedra in C(p).
+    for (i = 0; i < cavebdrylist->objects; i++) {
+      cavetet = (triface *) fastlookup(cavebdrylist, i);
+      //enqueuetetrahedron(cavetet);
+    }
+  }
+
+  // C(p) is re-meshed successfully.
+
+  // Delete the old tets in C(p).
+  for (i = 0; i < caveoldtetlist->objects; i++) {
+    searchtet = (triface *) fastlookup(caveoldtetlist, i);
+    if (ishulltet(*searchtet)) {
+      hullsize--;
+    }
+    tetrahedrondealloc(searchtet->tet);
+  }
+
+  if (((splitsh != NULL) && (splitsh->sh != NULL)) ||
+      ((splitseg != NULL) && (splitseg->sh != NULL))) {
+    // Delete the old subfaces in sC(p).
+    for (i = 0; i < caveshlist->objects; i++) {
+      parysh = (face *) fastlookup(caveshlist, i);
+      if (checksubfaceflag) {//if (bowywat == 2) {
+        // It is possible that this subface still connects to adjacent
+        //   tets which are not in C(p). If so, clear connections in the
+        //   adjacent tets at this subface.
+        stpivot(*parysh, neightet);
+        if (neightet.tet != NULL) {
+          if (neightet.tet[4] != NULL) {
+            // Found an adjacent tet. It must be not in C(p).
+            assert(!infected(neightet));
+            tsdissolve(neightet);
+            fsymself(neightet);
+            assert(!infected(neightet));
+            tsdissolve(neightet);
+          }
+        }
+      }
+      shellfacedealloc(subfaces, parysh->sh);
+    }
+    if ((splitseg != NULL) && (splitseg->sh != NULL)) {
+      // Delete the old segment in sC(p).
+      shellfacedealloc(subsegs, splitseg->sh);
+    }
+  }
+
+  if (ivf->lawson) {
+    for (i = 0; i < cavebdrylist->objects; i++) {
+      searchtet = (triface *) fastlookup(cavebdrylist, i);
+      flippush(flipstack, searchtet);
+    }
+    if (ivf->lawson > 1) {
+      for (i = 0; i < cavetetlist->objects; i++) {
+        searchtet = (triface *) fastlookup(cavetetlist, i);
+        flippush(flipstack, searchtet);
+      }
+    }
+  }
+
+
+  // Clean the working lists.
+
+  caveoldtetlist->restart();
+  cavebdrylist->restart();
+  cavetetlist->restart();
+
+  if (checksubsegflag) {
+    cavetetseglist->restart();
+    caveencseglist->restart();
+  }
+
+  if (checksubfaceflag) {
+    cavetetshlist->restart();
+    caveencshlist->restart();
+  }
+
+  if (b->weighted || ivf->validflag) {
+    cavetetvertlist->restart();
+  }
+
+  if (((splitsh != NULL) && (splitsh->sh != NULL)) ||
+      ((splitseg != NULL) && (splitseg->sh != NULL))) {
+    caveshlist->restart();
+    caveshbdlist->restart();
+    cavesegshlist->restart();
+  }
+
+  return 1; // Point is inserted.
+}
+
+void meshGRegionBoundaryRecovery::insertpoint_abort(face *splitseg, insertvertexflags *ivf)
+{
+  triface *cavetet;
+  face *parysh;
+  int i;
+
+  for (i = 0; i < caveoldtetlist->objects; i++) {
+    cavetet = (triface *) fastlookup(caveoldtetlist, i);
+    uninfect(*cavetet);
+    unmarktest(*cavetet);
+  }
+  for (i = 0; i < cavebdrylist->objects; i++) {
+    cavetet = (triface *) fastlookup(cavebdrylist, i);
+    unmarktest(*cavetet);
+  }
+  cavetetlist->restart();
+  cavebdrylist->restart();
+  caveoldtetlist->restart();
+  cavetetseglist->restart();
+  cavetetshlist->restart();
+  if (ivf->splitbdflag) {
+    if ((splitseg != NULL) && (splitseg->sh != NULL)) {
+      sunmarktest(*splitseg);
+    }
+    for (i = 0; i < caveshlist->objects; i++) {
+      parysh = (face *) fastlookup(caveshlist, i);
+      assert(smarktested(*parysh));
+      sunmarktest(*parysh);
+    }
+    caveshlist->restart();
+    cavesegshlist->restart();
+  }
+}
+
+////                                                                       ////
+////                                                                       ////
+//// flip_cxx /////////////////////////////////////////////////////////////////
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// hilbert_init()    Initialize the Gray code permutation table.             //
+//                                                                           //
+// The table 'transgc' has 8 x 3 x 8 entries. It contains all possible Gray  //
+// code sequences traveled by the 1st order Hilbert curve in 3 dimensions.   //
+// The first column is the Gray code of the entry point of the curve, and    //
+// the second column is the direction (0, 1, or 2, 0 means the x-axis) where //
+// the exit point of curve lies.                                             //
+//                                                                           //
+// The table 'tsb1mod3' contains the numbers of trailing set '1' bits of the //
+// indices from 0 to 7, modulo by '3'. The code for generating this table is //
+// from: http://graphics.stanford.edu/~seander/bithacks.html.                //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+void meshGRegionBoundaryRecovery::hilbert_init(int n)
+{
+  int gc[8], N, mask, travel_bit;
+  int e, d, f, k, g;
+  int v, c;
+  int i;
+
+  N = (n == 2) ? 4 : 8;
+  mask = (n == 2) ? 3 : 7;
+
+  // Generate the Gray code sequence.
+  for (i = 0; i < N; i++) {
+    gc[i] = i ^ (i >> 1);
+  }
+
+  for (e = 0; e < N; e++) {
+    for (d = 0; d < n; d++) {
+      // Calculate the end point (f).
+      f = e ^ (1 << d);  // Toggle the d-th bit of 'e'.
+      // travel_bit = 2**p, the bit we want to travel.
+      travel_bit = e ^ f;
+      for (i = 0; i < N; i++) {
+        // // Rotate gc[i] left by (p + 1) % n bits.
+        k = gc[i] * (travel_bit * 2);
+        g = ((k | (k / N)) & mask);
+        // Calculate the permuted Gray code by xor with the start point (e).
+        transgc[e][d][i] = (g ^ e);
+      }
+      assert(transgc[e][d][0] == e);
+      assert(transgc[e][d][N - 1] == f);
+    } // d
+  } // e
+
+  // Count the consecutive '1' bits (trailing) on the right.
+  tsb1mod3[0] = 0;
+  for (i = 1; i < N; i++) {
+    v = ~i; // Count the 0s.
+    v = (v ^ (v - 1)) >> 1; // Set v's trailing 0s to 1s and zero rest
+    for (c = 0; v; c++) {
+      v >>= 1;
+    }
+    tsb1mod3[i] = c % n;
+  }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// hilbert_sort3()    Sort points using the 3d Hilbert curve.                //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+int meshGRegionBoundaryRecovery::hilbert_split(point* vertexarray,int arraysize,int gc0,int gc1,
+                              REAL bxmin, REAL bxmax, REAL bymin, REAL bymax,
+                              REAL bzmin, REAL bzmax)
+{
+  point swapvert;
+  int axis, d;
+  REAL split;
+  int i, j;
+
+
+  // Find the current splitting axis. 'axis' is a value 0, or 1, or 2, which
+  //   correspoding to x-, or y- or z-axis.
+  axis = (gc0 ^ gc1) >> 1;
+
+  // Calulate the split position along the axis.
+  if (axis == 0) {
+    split = 0.5 * (bxmin + bxmax);
+  } else if (axis == 1) {
+    split = 0.5 * (bymin + bymax);
+  } else { // == 2
+    split = 0.5 * (bzmin + bzmax);
+  }
+
+  // Find the direction (+1 or -1) of the axis. If 'd' is +1, the direction
+  //   of the axis is to the positive of the axis, otherwise, it is -1.
+  d = ((gc0 & (1<<axis)) == 0) ? 1 : -1;
+
+
+  // Partition the vertices into left- and right-arrays such that left points
+  //   have Hilbert indices lower than the right points.
+  i = 0;
+  j = arraysize - 1;
+
+  // Partition the vertices into left- and right-arrays.
+  if (d > 0) {
+    do {
+      for (; i < arraysize; i++) {
+        if (vertexarray[i][axis] >= split) break;
+      }
+      for (; j >= 0; j--) {
+        if (vertexarray[j][axis] < split) break;
+      }
+      // Is the partition finished?
+      if (i == (j + 1)) break;
+      // Swap i-th and j-th vertices.
+      swapvert = vertexarray[i];
+      vertexarray[i] = vertexarray[j];
+      vertexarray[j] = swapvert;
+      // Continue patitioning the array;
+    } while (true);
+  } else {
+    do {
+      for (; i < arraysize; i++) {
+        if (vertexarray[i][axis] <= split) break;
+      }
+      for (; j >= 0; j--) {
+        if (vertexarray[j][axis] > split) break;
+      }
+      // Is the partition finished?
+      if (i == (j + 1)) break;
+      // Swap i-th and j-th vertices.
+      swapvert = vertexarray[i];
+      vertexarray[i] = vertexarray[j];
+      vertexarray[j] = swapvert;
+      // Continue patitioning the array;
+    } while (true);
+  }
+
+  return i;
+}
+
+void meshGRegionBoundaryRecovery::hilbert_sort3(point* vertexarray, int arraysize, int e, int d,
+                               REAL bxmin, REAL bxmax, REAL bymin, REAL bymax,
+                               REAL bzmin, REAL bzmax, int depth)
+{
+  REAL x1, x2, y1, y2, z1, z2;
+  int p[9], w, e_w, d_w, k, ei, di;
+  int n = 3, mask = 7;
+
+  p[0] = 0;
+  p[8] = arraysize;
+
+  // Sort the points according to the 1st order Hilbert curve in 3d.
+  p[4] = hilbert_split(vertexarray, p[8], transgc[e][d][3], transgc[e][d][4],
+                       bxmin, bxmax, bymin, bymax, bzmin, bzmax);
+  p[2] = hilbert_split(vertexarray, p[4], transgc[e][d][1], transgc[e][d][2],
+                       bxmin, bxmax, bymin, bymax, bzmin, bzmax);
+  p[1] = hilbert_split(vertexarray, p[2], transgc[e][d][0], transgc[e][d][1],
+                       bxmin, bxmax, bymin, bymax, bzmin, bzmax);
+  p[3] = hilbert_split(&(vertexarray[p[2]]), p[4] - p[2],
+                       transgc[e][d][2], transgc[e][d][3],
+                       bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[2];
+  p[6] = hilbert_split(&(vertexarray[p[4]]), p[8] - p[4],
+                       transgc[e][d][5], transgc[e][d][6],
+                       bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[4];
+  p[5] = hilbert_split(&(vertexarray[p[4]]), p[6] - p[4],
+                       transgc[e][d][4], transgc[e][d][5],
+                       bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[4];
+  p[7] = hilbert_split(&(vertexarray[p[6]]), p[8] - p[6],
+                       transgc[e][d][6], transgc[e][d][7],
+                       bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[6];
+
+  if (b->hilbert_order > 0) {
+    // A maximum order is prescribed.
+    if ((depth + 1) == b->hilbert_order) {
+      // The maximum prescribed order is reached.
+      return;
+    }
+  }
+
+  // Recursively sort the points in sub-boxes.
+  for (w = 0; w < 8; w++) {
+    // w is the local Hilbert index (NOT Gray code).
+    // Sort into the sub-box either there are more than 2 points in it, or
+    //   the prescribed order of the curve is not reached yet.
+    //if ((p[w+1] - p[w] > b->hilbert_limit) || (b->hilbert_order > 0)) {
+    if ((p[w+1] - p[w]) > b->hilbert_limit) {
+      // Calculcate the start point (ei) of the curve in this sub-box.
+      //   update e = e ^ (e(w) left_rotate (d+1)).
+      if (w == 0) {
+        e_w = 0;
+      } else {
+        //   calculate e(w) = gc(2 * floor((w - 1) / 2)).
+        k = 2 * ((w - 1) / 2);
+        e_w = k ^ (k >> 1); // = gc(k).
+      }
+      k = e_w;
+      e_w = ((k << (d+1)) & mask) | ((k >> (n-d-1)) & mask);
+      ei = e ^ e_w;
+      // Calulcate the direction (di) of the curve in this sub-box.
+      //   update d = (d + d(w) + 1) % n
+      if (w == 0) {
+        d_w = 0;
+      } else {
+        d_w = ((w % 2) == 0) ? tsb1mod3[w - 1] : tsb1mod3[w];
+      }
+      di = (d + d_w + 1) % n;
+      // Calculate the bounding box of the sub-box.
+      if (transgc[e][d][w] & 1) { // x-axis
+        x1 = 0.5 * (bxmin + bxmax);
+        x2 = bxmax;
+      } else {
+        x1 = bxmin;
+        x2 = 0.5 * (bxmin + bxmax);
+      }
+      if (transgc[e][d][w] & 2) { // y-axis
+        y1 = 0.5 * (bymin + bymax);
+        y2 = bymax;
+      } else {
+        y1 = bymin;
+        y2 = 0.5 * (bymin + bymax);
+      }
+      if (transgc[e][d][w] & 4) { // z-axis
+        z1 = 0.5 * (bzmin + bzmax);
+        z2 = bzmax;
+      } else {
+        z1 = bzmin;
+        z2 = 0.5 * (bzmin + bzmax);
+      }
+      hilbert_sort3(&(vertexarray[p[w]]), p[w+1] - p[w], ei, di,
+                    x1, x2, y1, y2, z1, z2, depth+1);
+    } // if (p[w+1] - p[w] > 1)
+  } // w
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// brio_multiscale_sort()    Sort the points using BRIO and Hilbert curve.   //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+void meshGRegionBoundaryRecovery::brio_multiscale_sort(point* vertexarray, int arraysize,
+                                      int threshold, REAL ratio, int *depth)
+{
+  int middle;
+
+  middle = 0;
+  if (arraysize >= threshold) {
+    (*depth)++;
+    middle = arraysize * ratio;
+    brio_multiscale_sort(vertexarray, middle, threshold, ratio, depth);
+  }
+  // Sort the right-array (rnd-th round) using the Hilbert curve.
+  hilbert_sort3(&(vertexarray[middle]), arraysize - middle, 0, 0, // e, d
+                xmin, xmax, ymin, ymax, zmin, zmax, 0); // depth.
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// randomnation()    Generate a random number between 0 and 'choices' - 1.   //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+unsigned long meshGRegionBoundaryRecovery::randomnation(unsigned int choices)
+{
+  unsigned long newrandom;
+
+  if (choices >= 714025l) {
+    newrandom = (randomseed * 1366l + 150889l) % 714025l;
+    randomseed = (newrandom * 1366l + 150889l) % 714025l;
+    newrandom = newrandom * (choices / 714025l) + randomseed;
+    if (newrandom >= choices) {
+      return newrandom - choices;
+    } else {
+      return newrandom;
+    }
+  } else {
+    randomseed = (randomseed * 1366l + 150889l) % 714025l;
+    return randomseed % choices;
+  }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// randomsample()    Randomly sample the tetrahedra for point loation.       //
+//                                                                           //
+// Searching begins from one of handles:  the input 'searchtet', a recently  //
+// encountered tetrahedron 'recenttet',  or from one chosen from a random    //
+// sample.  The choice is made by determining which one's origin is closest  //
+// to the point we are searching for.                                        //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+void meshGRegionBoundaryRecovery::randomsample(point searchpt,triface *searchtet)
+{
+  tetrahedron *firsttet, *tetptr;
+  point torg;
+  void **sampleblock;
+  uintptr_t alignptr;
+  long sampleblocks, samplesperblock, samplenum;
+  long tetblocks, i, j;
+  REAL searchdist, dist;
+
+  if (b->verbose > 2) {
+    printf("      Random sampling tetrahedra for searching point %d.\n",
+           pointmark(searchpt));
+  }
+
+  if (!nonconvex) {
+    if (searchtet->tet == NULL) {
+      // A null tet. Choose the recenttet as the starting tet.
+      *searchtet = recenttet;
+      // Recenttet should not be dead.
+      assert(recenttet.tet[4] != NULL);
+    }
+
+    // 'searchtet' should be a valid tetrahedron. Choose the base face
+    //   whose vertices must not be 'dummypoint'.
+    searchtet->ver = 3;
+    // Record the distance from its origin to the searching point.
+    torg = org(*searchtet);
+    searchdist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) +
+                 (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) +
+                 (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]);
+
+    // If a recently encountered tetrahedron has been recorded and has not
+    //   been deallocated, test it as a good starting point.
+    if (recenttet.tet != searchtet->tet) {
+      recenttet.ver = 3;
+      torg = org(recenttet);
+      dist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) +
+             (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) +
+             (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]);
+      if (dist < searchdist) {
+        *searchtet = recenttet;
+        searchdist = dist;
+      }
+    }
+  } else {
+    // The mesh is non-convex. Do not use 'recenttet'.
+    assert(samples >= 1l); // Make sure at least 1 sample.
+    searchdist = longest;
+  }
+
+  // Select "good" candidate using k random samples, taking the closest one.
+  //   The number of random samples taken is proportional to the fourth root
+  //   of the number of tetrahedra in the mesh.
+  while (samples * samples * samples * samples < tetrahedrons->items) {
+    samples++;
+  }
+  // Find how much blocks in current tet pool.
+  tetblocks = (tetrahedrons->maxitems + b->tetrahedraperblock - 1)
+            / b->tetrahedraperblock;
+  // Find the average samples per block. Each block at least have 1 sample.
+  samplesperblock = 1 + (samples / tetblocks);
+  sampleblocks = samples / samplesperblock;
+  sampleblock = tetrahedrons->firstblock;
+  for (i = 0; i < sampleblocks; i++) {
+    alignptr = (uintptr_t) (sampleblock + 1);
+    firsttet = (tetrahedron *)
+               (alignptr + (uintptr_t) tetrahedrons->alignbytes
+               - (alignptr % (uintptr_t) tetrahedrons->alignbytes));
+    for (j = 0; j < samplesperblock; j++) {
+      if (i == tetblocks - 1) {
+        // This is the last block.
+        samplenum = randomnation((int)
+                      (tetrahedrons->maxitems - (i * b->tetrahedraperblock)));
+      } else {
+        samplenum = randomnation(b->tetrahedraperblock);
+      }
+      tetptr = (tetrahedron *)
+               (firsttet + (samplenum * tetrahedrons->itemwords));
+      torg = (point) tetptr[4];
+      if (torg != (point) NULL) {
+        dist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) +
+               (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) +
+               (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]);
+        if (dist < searchdist) {
+          searchtet->tet = tetptr;
+          searchtet->ver = 11; // torg = org(t);
+          searchdist = dist;
+        }
+      } else {
+        // A dead tet. Re-sample it.
+        if (i != tetblocks - 1) j--;
+      }
+    }
+    sampleblock = (void **) *sampleblock;
+  }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// locate()    Find a tetrahedron containing a given point.                  //
+//                                                                           //
+// Begins its search from 'searchtet', assume there is a line segment L from //
+// a vertex of 'searchtet' to the query point 'searchpt', and simply walk    //
+// towards 'searchpt' by traversing all faces intersected by L.              //
+//                                                                           //
+// On completion, 'searchtet' is a tetrahedron that contains 'searchpt'. The //
+// returned value indicates one of the following cases:                      //
+//   - ONVERTEX, the search point lies on the origin of 'searchtet'.         //
+//   - ONEDGE, the search point lies on an edge of 'searchtet'.              //
+//   - ONFACE, the search point lies on a face of 'searchtet'.               //
+//   - INTET, the search point lies in the interior of 'searchtet'.          //
+//   - OUTSIDE, the search point lies outside the mesh. 'searchtet' is a     //
+//              hull face which is visible by the search point.              //
+//                                                                           //
+// WARNING: This routine is designed for convex triangulations, and will not //
+// generally work after the holes and concavities have been carved.          //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+enum meshGRegionBoundaryRecovery::locateresult meshGRegionBoundaryRecovery::locate(point searchpt,
+                                                 triface* searchtet)
+{
+  point torg, tdest, tapex, toppo;
+  enum {ORGMOVE, DESTMOVE, APEXMOVE} nextmove;
+  REAL ori, oriorg, oridest, oriapex;
+  enum locateresult loc = OUTSIDE;
+  int t1ver;
+  int s;
+
+  if (searchtet->tet == NULL) {
+    // A null tet. Choose the recenttet as the starting tet.
+    searchtet->tet = recenttet.tet;
+  }
+
+  // Check if we are in the outside of the convex hull.
+  if (ishulltet(*searchtet)) {
+    // Get its adjacent tet (inside the hull).
+    searchtet->ver = 3;
+    fsymself(*searchtet);
+  }
+
+  // Let searchtet be the face such that 'searchpt' lies above to it.
+  for (searchtet->ver = 0; searchtet->ver < 4; searchtet->ver++) {
+    torg = org(*searchtet);
+    tdest = dest(*searchtet);
+    tapex = apex(*searchtet);
+    ori = orient3d(torg, tdest, tapex, searchpt);
+    if (ori < 0.0) break;
+  }
+  assert(searchtet->ver != 4);
+
+  // Walk through tetrahedra to locate the point.
+  while (true) {
+
+    toppo = oppo(*searchtet);
+
+    // Check if the vertex is we seek.
+    if (toppo == searchpt) {
+      // Adjust the origin of searchtet to be searchpt.
+      esymself(*searchtet);
+      eprevself(*searchtet);
+      loc = ONVERTEX; // return ONVERTEX;
+      break;
+    }
+
+    // We enter from one of serarchtet's faces, which face do we exit?
+    oriorg = orient3d(tdest, tapex, toppo, searchpt);
+    oridest = orient3d(tapex, torg, toppo, searchpt);
+    oriapex = orient3d(torg, tdest, toppo, searchpt);
+
+    // Now decide which face to move. It is possible there are more than one
+    //   faces are viable moves. If so, randomly choose one.
+    if (oriorg < 0) {
+      if (oridest < 0) {
+        if (oriapex < 0) {
+          // All three faces are possible.
+          s = randomnation(3); // 's' is in {0,1,2}.
+          if (s == 0) {
+            nextmove = ORGMOVE;
+          } else if (s == 1) {
+            nextmove = DESTMOVE;
+          } else {
+            nextmove = APEXMOVE;
+          }
+        } else {
+          // Two faces, opposite to origin and destination, are viable.
+          //s = randomnation(2); // 's' is in {0,1}.
+          if (randomnation(2)) {
+            nextmove = ORGMOVE;
+          } else {
+            nextmove = DESTMOVE;
+          }
+        }
+      } else {
+        if (oriapex < 0) {
+          // Two faces, opposite to origin and apex, are viable.
+          //s = randomnation(2); // 's' is in {0,1}.
+          if (randomnation(2)) {
+            nextmove = ORGMOVE;
+          } else {
+            nextmove = APEXMOVE;
+          }
+        } else {
+          // Only the face opposite to origin is viable.
+          nextmove = ORGMOVE;
+        }
+      }
+    } else {
+      if (oridest < 0) {
+        if (oriapex < 0) {
+          // Two faces, opposite to destination and apex, are viable.
+          //s = randomnation(2); // 's' is in {0,1}.
+          if (randomnation(2)) {
+            nextmove = DESTMOVE;
+          } else {
+            nextmove = APEXMOVE;
+          }
+        } else {
+          // Only the face opposite to destination is viable.
+          nextmove = DESTMOVE;
+        }
+      } else {
+        if (oriapex < 0) {
+          // Only the face opposite to apex is viable.
+          nextmove = APEXMOVE;
+        } else {
+          // The point we seek must be on the boundary of or inside this
+          //   tetrahedron. Check for boundary cases.
+          if (oriorg == 0) {
+            // Go to the face opposite to origin.
+            enextesymself(*searchtet);
+            if (oridest == 0) {
+              eprevself(*searchtet); // edge oppo->apex
+              if (oriapex == 0) {
+                // oppo is duplicated with p.
+                loc = ONVERTEX; // return ONVERTEX;
+                break;
+              }
+              loc = ONEDGE; // return ONEDGE;
+              break;
+            }
+            if (oriapex == 0) {
+              enextself(*searchtet); // edge dest->oppo
+              loc = ONEDGE; // return ONEDGE;
+              break;
+            }
+            loc = ONFACE; // return ONFACE;
+            break;
+          }
+          if (oridest == 0) {
+            // Go to the face opposite to destination.
+            eprevesymself(*searchtet);
+            if (oriapex == 0) {
+              eprevself(*searchtet); // edge oppo->org
+              loc = ONEDGE; // return ONEDGE;
+              break;
+            }
+            loc = ONFACE; // return ONFACE;
+            break;
+          }
+          if (oriapex == 0) {
+            // Go to the face opposite to apex
+            esymself(*searchtet);
+            loc = ONFACE; // return ONFACE;
+            break;
+          }
+          loc = INTETRAHEDRON; // return INTETRAHEDRON;
+          break;
+        }
+      }
+    }
+
+    // Move to the selected face.
+    if (nextmove == ORGMOVE) {
+      enextesymself(*searchtet);
+    } else if (nextmove == DESTMOVE) {
+      eprevesymself(*searchtet);
+    } else {
+      esymself(*searchtet);
+    }
+    // Move to the adjacent tetrahedron (maybe a hull tetrahedron).
+    fsymself(*searchtet);
+    if (oppo(*searchtet) == dummypoint) {
+      loc = OUTSIDE; // return OUTSIDE;
+      break;
+    }
+
+    // Retreat the three vertices of the base face.
+    torg = org(*searchtet);
+    tdest = dest(*searchtet);
+    tapex = apex(*searchtet);
+
+  } // while (true)
+
+  return loc;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// flippush()    Push a face (possibly will be flipped) into flipstack.      //
+//                                                                           //
+// The face is marked. The flag is used to check the validity of the face on //
+// its popup.  Some other flips may change it already.                       //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+void meshGRegionBoundaryRecovery::flippush(badface*& fstack, triface* flipface)
+{
+  if (!facemarked(*flipface)) {
+    badface *newflipface = (badface *) flippool->alloc();
+    newflipface->tt = *flipface;
+    markface(newflipface->tt);
+    // Push this face into stack.
+    newflipface->nextitem = fstack;
+    fstack = newflipface;
+  }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+//                                                                           //
+// initialdelaunay()    Create an initial Delaunay tetrahedralization.       //
+//                                                                           //
+// The tetrahedralization contains only one tetrahedron abcd, and four hull  //
+// tetrahedra. The points pa, pb, pc, and pd must be linearly independent.   //
+//                                                                           //
+///////////////////////////////////////////////////////////////////////////////
+
+void meshGRegionBoundaryRecovery::initialdelaunay(point pa, point pb, point pc, point pd)
+{
+  triface firsttet, tetopa, tetopb, tetopc, tetopd;
+  triface worktet, worktet1;
+
+  if (b->verbose > 2) {
+    printf("      Create init tet (%d, %d, %d, %d)\n", pointmark(pa),
+           pointmark(pb), pointmark(pc), pointmark(pd));
+  }
+
+  // Create the first tetrahedron.
+  maketetrahedron(&firsttet);
+  setvertices(firsttet, pa, pb, pc, pd);
+  // Create four hull tetrahedra.
+  maketetrahedron(&tetopa);
+  setvertices(tetopa, pb, pc, pd, dummypoint);
+  maketetrahedron(&tetopb);
+  setvertices(tetopb, pc, pa, pd, dummypoint);
+  maketetrahedron(&tetopc);
+  setvertices(tetopc, pa, pb, pd, dummypoint);
+  maketetrahedron(&tetopd);
+  setvertices(tetopd, pb, pa, pc, dummypoint);
+  hullsize += 4;
+
+  // Connect hull tetrahedra to firsttet (at four faces of firsttet).
+  bond(firsttet, tetopd);
+  esym(firsttet, worktet);
+  bond(worktet, tetopc); // ab
+  enextesym(firsttet, worktet);
+  bond(worktet, tetopa); // bc
+  eprevesym(firsttet, worktet);
+  bond(worktet, tetopb); // ca
+
+  // Connect hull tetrahedra together (at six edges of firsttet).
+  esym(tetopc, worktet);
+  esym(tetopd, worktet1);
+  bond(worktet, worktet1); // ab
+  esym(tetopa, worktet);
+  eprevesym(tetopd, worktet1);
+  bond(worktet, worktet1); // bc
+  esym(tetopb, worktet);
+  enextesym(tetopd, worktet1);
+  bond(worktet, worktet1); // ca
+  eprevesym(tetopc, worktet);
+  enextesym(tetopb, worktet1);
+  bond(worktet, worktet1); // da
+  eprevesym(tetopa, worktet);
+  enextesym(tetopc, worktet1);
+  bond(worktet, worktet1); // db
+  eprevesym(tetopb, worktet);
+  enextesym(tetopa, worktet1);
+  bond(worktet, worktet1); // dc
+
+  // Set the vertex type.
+  if (pointtype(pa) == UNUSEDVERTEX) {
+    setpointtype(pa, VOLVERTEX);
+  }
+  if (pointtype(pb) == UNUSEDVERTEX) {
+    setpointtype(pb, VOLVERTEX);
+  }
+  if (pointtype(pc) == UNUSEDVERTEX) {
+    setpointtype(pc, VOLVERTEX);
+  }
+  if (pointtype(pd) == UNUSEDVERTEX) {
+    setpointtype(pd, VOLVERTEX);
+  }
+
+  setpoint2tet(pa, encode(firsttet));
+  setpoint2tet(pb, encode(firsttet));
+  setpoint2tet(pc, encode(firsttet));
+  setpoint2tet(pd, encode(firsttet));
+
+  // Remember the first tetrahedron.
+  recenttet = firsttet;
+}
+
+////                                                                       ////
+////                                                                       ////
+//// delaunay_cxx /////////////////////////////////////////////////////////////
+
+//// surface_cxx //////////////////////////////////////////////////////////////
+////                                                                       ////
+////                                                                       ////
+
+void meshGRegionBoundaryRecovery::flipshpush(face* flipedge)
+{
+  badface *newflipface;
+
+  newflipface = (badface *) flippool->alloc();
+  newflipface->ss = *flipedge;
+  newflipface->forg = sorg(*flipedge);
+  newflipface->fdest = sdest(*flipedge);
+  newflipface->nextitem = flipstack;
+  flipstack = newflipface;
+}
+
+void meshGRegionBoundaryRecovery::flip22(face* flipfaces, int flipflag,
+  int chkencflag)
+{
+  face bdedges[4], outfaces[4], infaces[4];
+  face bdsegs[4];
+  face checkface;
+  point pa, pb, pc, pd;
+  int i;
+
+  pa = sorg(flipfaces[0]);
+  pb = sdest(flipfaces[0]);
+  pc = sapex(flipfaces[0]);
+  pd = sapex(flipfaces[1]);
+
+  if (sorg(flipfaces[1]) != pb) {
+    sesymself(flipfaces[1]);
+  }
+
+  flip22count++;
+
+  // Collect the four boundary edges.
+  senext(flipfaces[0], bdedges[0]);
+  senext2(flipfaces[0], bdedges[1]);
+  senext(flipfaces[1], bdedges[2]);
+  senext2(flipfaces[1], bdedges[3]);
+
+  // Collect outer boundary faces.
+  for (i = 0; i < 4; i++) {
+    spivot(bdedges[i], outfaces[i]);
+    infaces[i] = outfaces[i];
+    sspivot(bdedges[i], bdsegs[i]);
+    if (outfaces[i].sh != NULL) {
+      if (isshsubseg(bdedges[i])) {
+        spivot(infaces[i], checkface);
+        while (checkface.sh != bdedges[i].sh) {
+          infaces[i] = checkface;
+          spivot(infaces[i], checkface);
+        }
+      }
+    }
+  }
+
+  // The flags set in these two subfaces do not change.
+  // Shellmark does not change.
+  // area constraint does not change.
+
+  // Transform [a,b,c] -> [c,d,b].
+  setshvertices(flipfaces[0], pc, pd, pb);
+  // Transform [b,a,d] -> [d,c,a].
+  setshvertices(flipfaces[1], pd, pc, pa);
+
+  // Update the point-to-subface map.
+  if (pointtype(pa) == FREEFACETVERTEX) {
+    setpoint2sh(pa, sencode(flipfaces[1]));
+  }
+  if (pointtype(pb) == FREEFACETVERTEX) {
+    setpoint2sh(pb, sencode(flipfaces[0]));
+  }
+  if (pointtype(pc) == FREEFACETVERTEX) {
+    setpoint2sh(pc, sencode(flipfaces[0]));
+  }
+  if (pointtype(pd) == FREEFACETVERTEX) {
+    setpoint2sh(pd, sencode(flipfaces[0]));
+  }
+
+  // Reconnect boundary edges to outer boundary faces.
+  for (i = 0; i < 4; i++) {
+    if (outfaces[(3 + i) % 4].sh != NULL) {
+      // Make sure that the subface has the ori as the segment.
+      if (bdsegs[(3 + i) % 4].sh != NULL) {
+        bdsegs[(3 + i) % 4].shver = 0;
+        if (sorg(bdedges[i]) != sorg(bdsegs[(3 + i) % 4])) {
+          sesymself(bdedges[i]);
+        }
+      }
+      sbond1(bdedges[i], outfaces[(3 + i) % 4]);
+      sbond1(infaces[(3 + i) % 4], bdedges[i]);
+    } else {
+      sdissolve(bdedges[i]);
+    }
+    if (bdsegs[(3 + i) % 4].sh != NULL) {
+      ssbond(bdedges[i], bdsegs[(3 + i) % 4]);
+      if (chkencflag & 1) {
+        // Queue this segment for encroaching check.
+        //enqueuesubface(badsubsegs, &(bdsegs[(3 + i) % 4]));
+      }
+    } else {
+      ssdissolve(bdedges[i]);
+    }
+  }
+
+  if (chkencflag & 2) {
+    // Queue the flipped subfaces for quality/encroaching checks.
+    for (i = 0; i < 2; i++) {
+      //enqueuesubface(badsubfacs, &(flipfaces[i]));
+    }
+  }
+
+  recentsh = flipfaces[0];
+
+  if (flipflag) {
+    // Put the boundary edges into flip stack.
+    for (i = 0; i < 4; i++) {
+      flipshpush(&(bdedges[i]));
+    }
+  }
+}
+
+void meshGRegionBoundaryRecovery::flip31(face* flipfaces, int flipflag)
+{
+  face bdedges[3], outfaces[3], infaces[3];
+  face bdsegs[3];
+  face checkface;
+  point pa, pb, pc;
+  int i;
+
+  pa = sdest(flipfaces[0]);
+  pb = sdest(flipfaces[1]);
+  pc = sdest(flipfaces[2]);
+
+  flip31count++;
+
+  // Collect all infos at the three boundary edges.
+  for (i = 0; i < 3; i++) {
+    senext(flipfaces[i], bdedges[i]);
+    spivot(bdedges[i], outfaces[i]);
+    infaces[i] = outfaces[i];
+    sspivot(bdedges[i], bdsegs[i]);
+    if (outfaces[i].sh != NULL) {
+      if (isshsubseg(bdedges[i])) {
+        spivot(infaces[i], checkface);
+        while (checkface.sh != bdedges[i].sh) {
+          infaces[i] = checkface;
+          spivot(infaces[i], checkface);
+        }
+      }
+    }
+  } // i
+
+  // Create a new subface.
+  makeshellface(subfaces, &(flipfaces[3]));
+  setshvertices(flipfaces[3], pa, pb,pc);
+  setshellmark(flipfaces[3], shellmark(flipfaces[0]));
+  if (checkconstraints) {
+    //area = areabound(flipfaces[0]);
+    setareabound(flipfaces[3], areabound(flipfaces[0]));
+  }
+  if (useinsertradius) {
+    setfacetindex(flipfaces[3], getfacetindex(flipfaces[0]));
+  }
+
+  // Update the point-to-subface map.
+  if (pointtype(pa) == FREEFACETVERTEX) {
+    setpoint2sh(pa, sencode(flipfaces[3]));
+  }
+  if (pointtype(pb) == FREEFACETVERTEX) {
+    setpoint2sh(pb, sencode(flipfaces[3]));
+  }
+  if (pointtype(pc) == FREEFACETVERTEX) {
+    setpoint2sh(pc, sencode(flipfaces[3]));
+  }
+
+  // Update the three new boundary edges.
+  bdedges[0] = flipfaces[3];         // [a,b]
+  senext(flipfaces[3], bdedges[1]);  // [b,c]
+  senext2(flipfaces[3], bdedges[2]); // [c,a]
+
+  // Reconnect boundary edges to outer boundary faces.
+  for (i = 0; i < 3; i++) {
+    if (outfaces[i].sh != NULL) {
+      // Make sure that the subface has the ori as the segment.
+      if (bdsegs[i].sh != NULL) {
+        bdsegs[i].shver = 0;
+        if (sorg(bdedges[i]) != sorg(bdsegs[i])) {
+          sesymself(bdedges[i]);
+        }
+      }
+      sbond1(bdedges[i], outfaces[i]);
+      sbond1(infaces[i], bdedges[i]);
+    }
+    if (bdsegs[i].sh != NULL) {
+      ssbond(bdedges[i], bdsegs[i]);
+    }
+  }
+
+  recentsh = flipfaces[3];
+
+  if (flipflag) {
+    // Put the boundary edges into flip stack.
+    for (i = 0; i < 3; i++) {
+      flipshpush(&(bdedges[i]));
+    }
+  }
+}
+
+long meshGRegionBoundaryRecovery::lawsonflip()
+{
+  badface *popface;
+  face flipfaces[2];
+  point pa, pb, pc, pd;
+  REAL sign;
+  long flipcount = 0;
+
+  if (b->verbose > 2) {
+    printf("      Lawson flip %ld edges.\n", flippool->items);
+  }
+
+  while (flipstack != (badface *) NULL) {
+
+    // Pop an edge from the stack.
+    popface = flipstack;
+    flipfaces[0] = popface->ss;
+    pa = popface->forg;
+    pb = popface->fdest;
+    flipstack = popface->nextitem; // The next top item in stack.
+    flippool->dealloc((void *) popface);
+
+    // Skip it if it is dead.
+    if (flipfaces[0].sh[3] == NULL) continue;
+    // Skip it if it is not the same edge as we saved.
+    if ((sorg(flipfaces[0]) != pa) || (sdest(flipfaces[0]) != pb)) continue;
+    // Skip it if it is a subsegment.
+    if (isshsubseg(flipfaces[0])) continue;
+
+    // Get the adjacent face.
+    spivot(flipfaces[0], flipfaces[1]);
+    if (flipfaces[1].sh == NULL) continue; // Skip a hull edge.
+    pc = sapex(flipfaces[0]);
+    pd = sapex(flipfaces[1]);
+
+    sign = incircle3d(pa, pb, pc, pd);
+
+    if (sign < 0) {
+      // It is non-locally Delaunay. Flip it.
+      flip22(flipfaces, 1, 0);
+      flipcount++;
+    }
+  }
+
+  if (b->verbose > 2) {
+    printf("      Performed %ld flips.\n", flipcount);
+  }
+
+  return flipcount;
+}
+
+int meshGRegionBoundaryRecovery::sinsertvertex(point insertpt, face *searchsh,
+  face *splitseg, int iloc, int bowywat, int rflag)
+{
+  face cavesh, neighsh, *parysh;
+  face newsh, casout, casin;
+  face checkseg;
+  point pa, pb;
+  enum locateresult loc = OUTSIDE;
+  REAL sign, ori;
+  int i, j;
+
+  if (b->verbose > 2) {
+    printf("      Insert facet point %d.\n", pointmark(insertpt));
+  }
+
+  if (bowywat == 3) {
+    loc = INSTAR;
+  }
+
+  if ((splitseg != NULL) && (splitseg->sh != NULL)) {
+    // A segment is going to be split, no point location.
+    spivot(*splitseg, *searchsh);
+    if (loc != INSTAR) loc = ONEDGE;
+  } else {
+    if (loc != INSTAR) loc = (enum locateresult) iloc;
+    if (loc == OUTSIDE) {
+      // Do point location in surface mesh.
+      if (searchsh->sh == NULL) {
+        *searchsh = recentsh;
+      }
+      // Search the vertex. An above point must be provided ('aflag' = 1).
+      loc = slocate(insertpt, searchsh, 1, 1, rflag);
+    }
+  }
+
+
+  // Form the initial sC(p).
+  if (loc == ONFACE) {
+    // Add the face into list (in B-W cavity).
+    smarktest(*searchsh);
+    caveshlist->newindex((void **) &parysh);
+    *parysh = *searchsh;
+  } else if (loc == ONEDGE) {
+    if ((splitseg != NULL) && (splitseg->sh != NULL)) {
+      splitseg->shver = 0;
+      pa = sorg(*splitseg);
+    } else {
+      pa = sorg(*searchsh);
+    }
+    if (searchsh->sh != NULL) {
+      // Collect all subfaces share at this edge.
+      neighsh = *searchsh;
+      while (1) {
+        // Adjust the origin of its edge to be 'pa'.
+        if (sorg(neighsh) != pa) sesymself(neighsh);
+        // Add this face into list (in B-W cavity).
+        smarktest(neighsh);
+        caveshlist->newindex((void **) &parysh);
+        *parysh = neighsh;
+        // Add this face into face-at-splitedge list.
+        cavesegshlist->newindex((void **) &parysh);
+        *parysh = neighsh;
+        // Go to the next face at the edge.
+        spivotself(neighsh);
+        // Stop if all faces at the edge have been visited.
+        if (neighsh.sh == searchsh->sh) break;
+        if (neighsh.sh == NULL) break;
+      }
+    } // If (not a non-dangling segment).
+  } else if (loc == ONVERTEX) {
+    return (int) loc;
+  } else if (loc == OUTSIDE) {
+    // Comment: This should only happen during the surface meshing step.
+    // Enlarge the convex hull of the triangulation by including p.
+    // An above point of the facet is set in 'dummypoint' to replace
+    // orient2d tests by orient3d tests.
+    // Imagine that the current edge a->b (in 'searchsh') is horizontal in a
+    //   plane, and a->b is directed from left to right, p lies above a->b.
+    //   Find the right-most edge of the triangulation which is visible by p.
+    neighsh = *searchsh;
+    while (1) {
+      senext2self(neighsh);
+      spivot(neighsh, casout);
+      if (casout.sh == NULL) {
+        // A convex hull edge. Is it visible by p.
+        ori = orient3d(sorg(neighsh), sdest(neighsh), dummypoint, insertpt);
+        if (ori < 0) {
+          *searchsh = neighsh; // Visible, update 'searchsh'.
+        } else {
+          break; // 'searchsh' is the right-most visible edge.
+        }
+      } else {
+        if (sorg(casout) != sdest(neighsh)) sesymself(casout);
+        neighsh = casout;
+      }
+    }
+    // Create new triangles for all visible edges of p (from right to left).
+    casin.sh = NULL;  // No adjacent face at right.
+    pa = sorg(*searchsh);
+    pb = sdest(*searchsh);
+    while (1) {
+      // Create a new subface on top of the (visible) edge.
+      makeshellface(subfaces, &newsh);
+      setshvertices(newsh, pb, pa, insertpt);
+      setshellmark(newsh, shellmark(*searchsh));
+      if (checkconstraints) {
+        //area = areabound(*searchsh);
+        setareabound(newsh, areabound(*searchsh));
+      }
+      if (useinsertradius) {
+        setfacetindex(newsh, getfacetindex(*searchsh));
+      }
+      // Connect the new subface to the bottom subfaces.
+      sbond1(newsh, *searchsh);
+      sbond1(*searchsh, newsh);
+      // Connect the new subface to its right-adjacent subface.
+      if (casin.sh != NULL) {
+        senext(newsh, casout);
+        sbond1(casout, casin);
+        sbond1(casin, casout);
+      }
+      // The left-adjacent subface has not been created yet.
+      senext2(newsh, casin);
+      // Add the new face into list (inside the B-W cavity).
+      smarktest(newsh);
+      caveshlist->newindex((void **) &parysh);
+      *parysh = newsh;
+      // Move to the convex hull edge at the left of 'searchsh'.
+      neighsh = *searchsh;
+      while (1) {
+        senextself(neighsh);
+        spivot(neighsh, casout);
+        if (casout.sh == NULL) {
+          *searchsh = neighsh;
+          break;
+        }
+        if (sorg(casout) != sdest(neighsh)) sesymself(casout);
+        neighsh = casout;
+      }
+      // A convex hull edge. Is it visible by p.
+      pa = sorg(*searchsh);
+      pb = sdest(*searchsh);
+      ori = orient3d(pa, pb, dummypoint, insertpt);
+      // Finish the process if p is not visible by the hull edge.
+      if (ori >= 0) break;
+    }
+  } else if (loc == INSTAR) {
+    // Under this case, the sub-cavity sC(p) has already been formed in
+    //   insertvertex().
+  }
+
+  // Form the Bowyer-Watson cavity sC(p).
+  for (i = 0; i < caveshlist->objects; i++) {
+    cavesh = * (face *) fastlookup(caveshlist, i);
+    for (j = 0; j < 3; j++) {
+      if (!isshsubseg(cavesh)) {
+        spivot(cavesh, neighsh);
+        if (neighsh.sh != NULL) {
+          // The adjacent face exists.
+          if (!smarktested(neighsh)) {
+            if (bowywat) {
+              if (loc == INSTAR) { // if (bowywat > 2) {
+                // It must be a boundary edge.
+                sign = 1;
+              } else {
+                // Check if this subface is connected to adjacent tet(s).
+                if (!isshtet(neighsh)) {
+                  // Check if the subface is non-Delaunay wrt. the new pt.
+                  sign = incircle3d(sorg(neighsh), sdest(neighsh),
+                                    sapex(neighsh), insertpt);
+                } else {
+                  // It is connected to an adjacent tet. A boundary edge.
+                  sign = 1;
+                }
+              }
+              if (sign < 0) {
+                // Add the adjacent face in list (in B-W cavity).
+                smarktest(neighsh);
+                caveshlist->newindex((void **) &parysh);
+                *parysh = neighsh;
+              }
+            } else {
+              sign = 1; // A boundary edge.
+            }
+          } else {
+            sign = -1; // Not a boundary edge.
+          }
+        } else {
+          // No adjacent face. It is a hull edge.
+          if (loc == OUTSIDE) {
+            // It is a boundary edge if it does not contain p.
+            if ((sorg(cavesh) == insertpt) || (sdest(cavesh) == insertpt)) {
+              sign = -1; // Not a boundary edge.
+            } else {
+              sign = 1; // A boundary edge.
+            }
+          } else {
+            sign = 1; // A boundary edge.
+          }
+        }
+      } else {
+        // Do not across a segment. It is a boundary edge.
+        sign = 1;
+      }
+      if (sign >= 0) {
+        // Add a boundary edge.
+        caveshbdlist->newindex((void **) &parysh);
+        *parysh = cavesh;
+      }
+      senextself(cavesh);
+    } // j
+  } // i
+
+
+  // Creating new subfaces.
+  for (i = 0; i < caveshbdlist->objects; i++) {
+    parysh = (face *) fastlookup(caveshbdlist, i);
+    sspivot(*parysh, checkseg);
+    if ((parysh->shver & 01) != 0) sesymself(*parysh);
+    pa = sorg(*parysh);
+    pb = sdest(*parysh);
+    // Create a new subface.
+    makeshellface(subfaces, &newsh);
+    setshvertices(newsh, pa, pb, insertpt);
+    setshellmark(newsh, shellmark(*parysh));
+    if (checkconstraints) {
+      //area = areabound(*parysh);
+      setareabound(newsh, areabound(*parysh));
+    }
+    if (useinsertradius) {
+      setfacetindex(newsh, getfacetindex(*parysh));
+    }
+    // Update the point-to-subface map.
+    if (pointtype(pa) == FREEFACETVERTEX) {
+      setpoint2sh(pa, sencode(newsh));
+    }
+    if (pointtype(pb) == FREEFACETVERTEX) {
+      setpoint2sh(pb, sencode(newsh));
+    }
+    // Connect newsh to outer subfaces.
+    spivot(*parysh, casout);
+    if (casout.sh != NULL) {
+      casin = casout;
+      if (checkseg.sh != NULL) {
+        // Make sure that newsh has the right ori at this segment.
+        checkseg.shver = 0;
+        if (sorg(newsh) != sorg(checkseg)) {
+          sesymself(newsh);
+          sesymself(*parysh); // This side should also be inverse.
+        }
+        spivot(casin, neighsh);
+        while (neighsh.sh != parysh->sh) {
+          casin = neighsh;
+          spivot(casin, neighsh);
+        }
+      }
+      sbond1(newsh, casout);
+      sbond1(casin, newsh);
+    }
+    if (checkseg.sh != NULL) {
+      ssbond(newsh, checkseg);
+    }
+    // Connect oldsh <== newsh (for connecting adjacent new subfaces).
+    //   *parysh and newsh point to the same edge and the same ori.
+    sbond1(*parysh, newsh);
+  }
+
+  if (newsh.sh != NULL) {
+    // Set a handle for searching.
+    recentsh = newsh;
+  }
+
+  // Update the point-to-subface map.
+  if (pointtype(insertpt) == FREEFACETVERTEX) {
+    setpoint2sh(insertpt, sencode(newsh));
+  }
+
+  // Connect adjacent new subfaces together.
+  for (i = 0; i < caveshbdlist->objects; i++) {
+    // Get an old subface at edge [a, b].
+    parysh = (face *) fastlookup(caveshbdlist, i);
+    spivot(*parysh, newsh); // The new subface [a, b, p].
+    senextself(newsh); // At edge [b, p].
+    spivot(newsh, neighsh);
+    if (neighsh.sh == NULL) {
+      // Find the adjacent new subface at edge [b, p].
+      pb = sdest(*parysh);
+      neighsh = *parysh;
+      while (1) {
+        senextself(neighsh);
+        spivotself(neighsh);
+        if (neighsh.sh == NULL) break;
+        if (!smarktested(neighsh)) break;
+        if (sdest(neighsh) != pb) sesymself(neighsh);
+      }
+      if (neighsh.sh != NULL) {
+        // Now 'neighsh' is a new subface at edge [b, #].
+        if (sorg(neighsh) != pb) sesymself(neighsh);
+        senext2self(neighsh); // Go to the open edge [p, b].
+        sbond(newsh, neighsh);
+      } else {
+        // There is no adjacent new face at this side.
+        assert(loc == OUTSIDE); // SELF_CHECK
+      }
+    }
+    spivot(*parysh, newsh); // The new subface [a, b, p].
+    senext2self(newsh); // At edge [p, a].
+    spivot(newsh, neighsh);
+    if (neighsh.sh == NULL) {
+      // Find the adjacent new subface at edge [p, a].
+      pa = sorg(*parysh);
+      neighsh = *parysh;
+      while (1) {
+        senext2self(neighsh);
+        spivotself(neighsh);
+        if (neighsh.sh == NULL) break;
+        if (!smarktested(neighsh)) break;
+        if (sorg(neighsh) != pa) sesymself(neighsh);
+      }
+      if (neighsh.sh != NULL) {
+        // Now 'neighsh' is a new subface at edge [#, a].
+        if (sdest(neighsh) != pa) sesymself(neighsh);
+        senextself(neighsh); // Go to the open edge [a, p].
+        sbond(newsh, neighsh);
+      } else {
+        // There is no adjacent new face at this side.
+        assert(loc == OUTSIDE); // SELF_CHECK
+      }
+    }
+  }
+
+  if ((loc == ONEDGE) || ((splitseg != NULL) && (splitseg->sh != NULL))
+      || (cavesegshlist->objects > 0l)) {
+    // An edge is being split. We distinguish two cases:
+    //   (1) the edge is not on the boundary of the cavity;
+    //   (2) the edge is on the boundary of the cavity.
+    // In case (2), the edge is either a segment or a hull edge. There are
+    //   degenerated new faces in the cavity. They must be removed.
+    face aseg, bseg, aoutseg, boutseg;
+
+    for (i = 0; i < cavesegshlist->objects; i++) {
+      // Get the saved old subface.
+      parysh = (face *) fastlookup(cavesegshlist, i);
+      // Get a possible new degenerated subface.
+      spivot(*parysh, cavesh);
+      if (sapex(cavesh) == insertpt) {
+        // Found a degenerated new subface, i.e., case (2).
+        if (cavesegshlist->objects > 1) {
+          // There are more than one subface share at this edge.
+          j = (i + 1) % (int) cavesegshlist->objects;
+          parysh = (face *) fastlookup(cavesegshlist, j);
+          spivot(*parysh, neighsh);
+          // Adjust cavesh and neighsh both at edge a->b, and has p as apex.
+          if (sorg(neighsh) != sorg(cavesh)) {
+            sesymself(neighsh);
+            assert(sorg(neighsh) == sorg(cavesh)); // SELF_CHECK
+          }
+          assert(sapex(neighsh) == insertpt); // SELF_CHECK
+          // Connect adjacent faces at two other edges of cavesh and neighsh.
+          //   As a result, the two degenerated new faces are squeezed from the
+          //   new triangulation of the cavity. Note that the squeezed faces
+          //   still hold the adjacent informations which will be used in
+          //   re-connecting subsegments (if they exist).
+          for (j = 0; j < 2; j++) {
+            senextself(cavesh);
+            senextself(neighsh);
+            spivot(cavesh, newsh);
+            spivot(neighsh, casout);
+            sbond1(newsh, casout); // newsh <- casout.
+          }
+        } else {
+          // There is only one subface containing this edge [a,b]. Squeeze the
+          //   degenerated new face [a,b,c] by disconnecting it from its two
+          //   adjacent subfaces at edges [b,c] and [c,a]. Note that the face
+          //   [a,b,c] still hold the connection to them.
+          for (j = 0; j < 2; j++) {
+            senextself(cavesh);
+            spivot(cavesh, newsh);
+            sdissolve(newsh);
+          }
+        }
+        //recentsh = newsh;
+        // Update the point-to-subface map.
+        if (pointtype(insertpt) == FREEFACETVERTEX) {
+          setpoint2sh(insertpt, sencode(newsh));
+        }
+      }
+    }
+
+    if ((splitseg != NULL) && (splitseg->sh != NULL)) {
+      if (loc != INSTAR) { // if (bowywat < 3) {
+        smarktest(*splitseg); // Mark it as being processed.
+      }
+
+      aseg = *splitseg;
+      pa = sorg(*splitseg);
+      pb = sdest(*splitseg);
+
+      // Insert the new point p.
+      makeshellface(subsegs, &aseg);
+      makeshellface(subsegs, &bseg);
+
+      setshvertices(aseg, pa, insertpt, NULL);
+      setshvertices(bseg, insertpt, pb, NULL);
+      setshellmark(aseg, shellmark(*splitseg));
+      setshellmark(bseg, shellmark(*splitseg));
+      if (checkconstraints) {
+        setareabound(aseg, areabound(*splitseg));
+        setareabound(bseg, areabound(*splitseg));
+      }
+      if (useinsertradius) {
+        setfacetindex(aseg, getfacetindex(*splitseg));
+        setfacetindex(bseg, getfacetindex(*splitseg));
+      }
+
+      // Connect [#, a]<->[a, p].
+      senext2(*splitseg, boutseg); // Temporarily use boutseg.
+      spivotself(boutseg);
+      if (boutseg.sh != NULL) {
+        senext2(aseg, aoutseg);
+        sbond(boutseg, aoutseg);
+      }
+      // Connect [p, b]<->[b, #].
+      senext(*splitseg, aoutseg);
+      spivotself(aoutseg);
+      if (aoutseg.sh != NULL) {
+        senext(bseg, boutseg);
+        sbond(boutseg, aoutseg);
+      }
+      // Connect [a, p] <-> [p, b].
+      senext(aseg, aoutseg);
+      senext2(bseg, boutseg);
+      sbond(aoutseg, boutseg);
+
+      // Connect subsegs [a, p] and [p, b] to adjacent new subfaces.
+      // Although the degenerated new faces have been squeezed. They still
+      //   hold the connections to the actual new faces.
+      for (i = 0; i < cavesegshlist->objects; i++) {
+        parysh = (face *) fastlookup(cavesegshlist, i);
+        spivot(*parysh, neighsh);
+        // neighsh is a degenerated new face.
+        if (sorg(neighsh) != pa) {
+          sesymself(neighsh);
+        }
+        senext2(neighsh, newsh);
+        spivotself(newsh); // The edge [p, a] in newsh
+        ssbond(newsh, aseg);
+        senext(neighsh, newsh);
+        spivotself(newsh); // The edge [b, p] in newsh
+        ssbond(newsh, bseg);
+      }
+
+
+      // Let the point remember the segment it lies on.
+      if (pointtype(insertpt) == FREESEGVERTEX) {
+        setpoint2sh(insertpt, sencode(aseg));
+      }
+      // Update the point-to-seg map.
+      if (pointtype(pa) == FREESEGVERTEX) {
+        setpoint2sh(pa, sencode(aseg));
+      }
+      if (pointtype(pb) == FREESEGVERTEX) {
+        setpoint2sh(pb, sencode(bseg));
+      }
+    } // if ((splitseg != NULL) && (splitseg->sh != NULL))
+
+    // Delete all degenerated new faces.
+    for (i = 0; i < cavesegshlist->objects; i++) {
+      parysh = (face *) fastlookup(cavesegshlist, i);
+      spivotself(*parysh);
+      if (sapex(*parysh) == insertpt) {
+        shellfacedealloc(subfaces, parysh->sh);
+      }
+    }
+    cavesegshlist->restart();
+
+    if ((splitseg != NULL) && (splitseg->sh != NULL)) {
+      // Return the two new subsegments (for further process).
+      //   Re-use 'cavesegshlist'.
+      cavesegshlist->newindex((void **) &parysh);
+      *parysh = aseg;
+      cavesegshlist->newindex((void **) &parysh);
+      *parysh = bseg;
+    }
+  } // if (loc == ONEDGE)
+
+
+  return (int) loc;
+}
+
+int meshGRegionBoundaryRecovery::sremovevertex(point delpt, face* parentsh,
+  face* parentseg, int lawson)
+{
+  face flipfaces[4], spinsh, *parysh;
+  point pa, pb, pc, pd;
+  REAL ori1, ori2;
+  int it, i, j;
+
+  if (parentseg != NULL) {
+    // 'delpt' (p) should be a Steiner point inserted in a segment [a,b],
+    //   where 'parentseg' should be [p,b]. Find the segment [a,p].
+    face startsh, neighsh, nextsh;
+    face abseg, prevseg, checkseg;
+    face adjseg1, adjseg2;
+    face fakesh;
+    senext2(*parentseg, prevseg);
+    spivotself(prevseg);
+    prevseg.shver = 0;
+    assert(sdest(prevseg) == delpt);
+    // Restore the original segment [a,b].
+    pa = sorg(prevseg);
+    pb = sdest(*parentseg);
+    if (b->verbose > 2) {
+      printf("      Remove vertex %d from segment [%d, %d].\n",
+             pointmark(delpt), pointmark(pa), pointmark(pb));
+    }
+    makeshellface(subsegs, &abseg);
+    setshvertices(abseg, pa, pb, NULL);
+    setshellmark(abseg, shellmark(*parentseg));
+    if (checkconstraints) {
+      setareabound(abseg, areabound(*parentseg));
+    }
+    if (useinsertradius) {
+      setfacetindex(abseg, getfacetindex(*parentseg));
+    }
+    // Connect [#, a]<->[a, b].
+    senext2(prevseg, adjseg1);
+    spivotself(adjseg1);
+    if (adjseg1.sh != NULL) {
+      adjseg1.shver = 0;
+      assert(sdest(adjseg1) == pa);
+      senextself(adjseg1);
+      senext2(abseg, adjseg2);
+      sbond(adjseg1, adjseg2);
+    }
+    // Connect [a, b]<->[b, #].
+    senext(*parentseg, adjseg1);
+    spivotself(adjseg1);
+    if (adjseg1.sh != NULL) {
+      adjseg1.shver = 0;
+      assert(sorg(adjseg1) == pb);
+      senext2self(adjseg1);
+      senext(abseg, adjseg2);
+      sbond(adjseg1, adjseg2);
+    }
+    // Update the point-to-segment map.
+    setpoint2sh(pa, sencode(abseg));
+    setpoint2sh(pb, sencode(abseg));
+
+    // Get the faces in face ring at segment [p, b].
+    //   Re-use array 'caveshlist'.
+    spivot(*parentseg, *parentsh);
+    if (parentsh->sh != NULL) {
+      spinsh = *parentsh;
+      while (1) {
+        // Save this face in list.
+        caveshlist->newindex((void **) &parysh);
+        *parysh = spinsh;
+        // Go to the next face in the ring.
+        spivotself(spinsh);
+        if (spinsh.sh == parentsh->sh) break;
+      }
+    }
+
+    // Create the face ring of the new segment [a,b]. Each face in the ring
+    //   is [a,b,p] (degenerated!). It will be removed (automatically).
+    for (i = 0; i < caveshlist->objects; i++) {
+      parysh = (face *) fastlookup(caveshlist, i);
+      startsh = *parysh;
+      if (sorg(startsh) != delpt) {
+        sesymself(startsh);
+        assert(sorg(startsh) == delpt);
+      }
+      // startsh is [p, b, #1], find the subface [a, p, #2].
+      neighsh = startsh;
+      while (1) {
+        senext2self(neighsh);
+        sspivot(neighsh, checkseg);
+        if (checkseg.sh != NULL) {
+          // It must be the segment [a, p].
+          assert(checkseg.sh == prevseg.sh);
+          break;
+        }
+        spivotself(neighsh);
+        assert(neighsh.sh != NULL);
+        if (sorg(neighsh) != delpt) sesymself(neighsh);
+      }
+      // Now neighsh is [a, p, #2].
+      if (neighsh.sh != startsh.sh) {
+        // Detach the two subsegments [a,p] and [p,b] from subfaces.
+        ssdissolve(startsh);
+        ssdissolve(neighsh);
+        // Create a degenerated subface [a,b,p]. It is used to: (1) hold the
+        //   new segment [a,b]; (2) connect to the two adjacent subfaces
+        //   [p,b,#] and [a,p,#].
+        makeshellface(subfaces, &fakesh);
+        setshvertices(fakesh, pa, pb, delpt);
+        setshellmark(fakesh, shellmark(startsh));
+        // Connect fakesh to the segment [a,b].
+        ssbond(fakesh, abseg);
+        // Connect fakesh to adjacent subfaces: [p,b,#1] and [a,p,#2].
+        senext(fakesh, nextsh);
+        sbond(nextsh, startsh);
+        senext2(fakesh, nextsh);
+        sbond(nextsh, neighsh);
+        smarktest(fakesh); // Mark it as faked.
+      } else {
+        // Special case. There exists already a degenerated face [a,b,p]!
+        //   There is no need to create a faked subface here.
+        senext2self(neighsh); // [a,b,p]
+        assert(sapex(neighsh) == delpt);
+        // Since we will re-connect the face ring using the faked subfaces.
+        //   We put the adjacent face of [a,b,p] to the list.
+        spivot(neighsh, startsh); // The original adjacent subface.
+        if (sorg(startsh) != pa) sesymself(startsh);
+        sdissolve(startsh);
+        // Connect fakesh to the segment [a,b].
+        ssbond(startsh, abseg);
+        fakesh = startsh; // Do not mark it!
+        // Delete the degenerated subface.
+        shellfacedealloc(subfaces, neighsh.sh);
+      }
+      // Save the fakesh in list (for re-creating the face ring).
+      cavesegshlist->newindex((void **) &parysh);
+      *parysh = fakesh;
+    } // i
+    caveshlist->restart();
+
+    // Re-create the face ring.
+    if (cavesegshlist->objects > 1) {
+      for (i = 0; i < cavesegshlist->objects; i++) {
+        parysh = (face *) fastlookup(cavesegshlist, i);
+        fakesh = *parysh;
+        // Get the next face in the ring.
+        j = (i + 1) % cavesegshlist->objects;
+        parysh = (face *) fastlookup(cavesegshlist, j);
+        nextsh = *parysh;
+        sbond1(fakesh, nextsh);
+      }
+    }
+
+    // Delete the two subsegments containing p.
+    shellfacedealloc(subsegs, parentseg->sh);
+    shellfacedealloc(subsegs, prevseg.sh);
+    // Return the new segment.
+    *parentseg = abseg;
+  } else {
+    // p is inside the surface.
+    if (b->verbose > 2) {
+      printf("      Remove vertex %d from surface.\n", pointmark(delpt));
+    }
+    assert(sorg(*parentsh) == delpt);
+    // Let 'delpt' be its apex.
+    senextself(*parentsh);
+    // For unifying the code, we add parentsh to list.
+    cavesegshlist->newindex((void **) &parysh);
+    *parysh = *parentsh;
+  }
+
+  // Remove the point (p).
+
+  for (it = 0; it < cavesegshlist->objects; it++) {
+    parentsh = (face *) fastlookup(cavesegshlist, it); // [a,b,p]
+    senextself(*parentsh); // [b,p,a].
+    spivotself(*parentsh);
+    if (sorg(*parentsh) != delpt) sesymself(*parentsh);
+    // now parentsh is [p,b,#].
+    if (sorg(*parentsh) != delpt) {
+      // The vertex has already been removed in above special case.
+      assert(!smarktested(*parentsh));
+      continue;
+    }
+
+    while (1) {
+      // Initialize the flip edge list. Re-use 'caveshlist'.
+      spinsh = *parentsh; // [p, b, #]
+      while (1) {
+        caveshlist->newindex((void **) &parysh);
+        *parysh = spinsh;
+        senext2self(spinsh);
+        spivotself(spinsh);
+        assert(spinsh.sh != NULL);
+        if (spinsh.sh == parentsh->sh) break;
+        if (sorg(spinsh) != delpt) sesymself(spinsh);
+        assert(sorg(spinsh) == delpt);
+      } // while (1)
+
+      if (caveshlist->objects == 3) {
+        // Delete the point by a 3-to-1 flip.
+        for (i = 0; i < 3; i++) {
+          parysh = (face *) fastlookup(caveshlist, i);
+          flipfaces[i] = *parysh;
+        }
+        flip31(flipfaces, lawson);
+        for (i = 0; i < 3; i++) {
+          shellfacedealloc(subfaces, flipfaces[i].sh);
+        }
+        caveshlist->restart();
+        // Save the new subface.
+        caveshbdlist->newindex((void **) &parysh);
+        *parysh = flipfaces[3];
+        // The vertex is removed.
+        break;
+      }
+
+      // Search an edge to flip.
+      for (i = 0; i < caveshlist->objects; i++) {
+        parysh = (face *) fastlookup(caveshlist, i);
+        flipfaces[0] = *parysh;
+        spivot(flipfaces[0], flipfaces[1]);
+        if (sorg(flipfaces[0]) != sdest(flipfaces[1]))
+          sesymself(flipfaces[1]);
+        // Skip this edge if it belongs to a faked subface.
+        if (!smarktested(flipfaces[0]) && !smarktested(flipfaces[1])) {
+          pa = sorg(flipfaces[0]);
+          pb = sdest(flipfaces[0]);
+          pc = sapex(flipfaces[0]);
+          pd = sapex(flipfaces[1]);
+          calculateabovepoint4(pa, pb, pc, pd);
+          // Check if a 2-to-2 flip is possible.
+          ori1 = orient3d(pc, pd, dummypoint, pa);
+          ori2 = orient3d(pc, pd, dummypoint, pb);
+          if (ori1 * ori2 < 0) {
+            // A 2-to-2 flip is found.
+            flip22(flipfaces, lawson, 0);
+            // The i-th edge is flipped. The i-th and (i-1)-th subfaces are
+            //   changed. The 'flipfaces[1]' contains p as its apex.
+            senext2(flipfaces[1], *parentsh);
+            // Save the new subface.
+            caveshbdlist->newindex((void **) &parysh);
+            *parysh = flipfaces[0];
+            break;
+          }
+        } //
+      } // i
+
+      if (i == caveshlist->objects) {
+        // This can happen only if there are 4 edges at p, and they are
+        //   orthogonal to each other, see Fig. 2010-11-01.
+        assert(caveshlist->objects == 4);
+        // Do a flip22 and a flip31 to remove p.
+        parysh = (face *) fastlookup(caveshlist, 0);
+        flipfaces[0] = *parysh;
+        spivot(flipfaces[0], flipfaces[1]);
+        if (sorg(flipfaces[0]) != sdest(flipfaces[1])) {
+          sesymself(flipfaces[1]);
+        }
+        flip22(flipfaces, lawson, 0);
+        senext2(flipfaces[1], *parentsh);
+        // Save the new subface.
+        caveshbdlist->newindex((void **) &parysh);
+        *parysh = flipfaces[0];
+      }
+
+      // The edge list at p are changed.
+      caveshlist->restart();
+    } // while (1)
+
+  } // it
+
+  cavesegshlist->restart();
+
+  if (b->verbose > 2) {
+    printf("      Created %ld new subfaces.\n", caveshbdlist->objects);
+  }
+
+
+  if (lawson) {
+    lawsonflip();
+  }
+
+  return 0;
+}
+
+enum meshGRegionBoundaryRecovery::locateresult
+  meshGRegionBoundaryRecovery::slocate(point searchpt, face* searchsh,
+  int aflag, int cflag, int rflag)
+{
+  face neighsh;
+  point pa, pb, pc;
+  enum locateresult loc;
+  enum {MOVE_BC, MOVE_CA} nextmove;
+  REAL ori, ori_bc, ori_ca;
+  int i;
+
+  pa = sorg(*searchsh);
+  pb = sdest(*searchsh);
+  pc = sapex(*searchsh);
+
+  if (!aflag) {
+    // No above point is given. Calculate an above point for this facet.
+    calculateabovepoint4(pa, pb, pc, searchpt);
+  }
+
+  // 'dummypoint' is given. Make sure it is above [a,b,c]
+  ori = orient3d(pa, pb, pc, dummypoint);
+  assert(ori != 0); // SELF_CHECK
+  if (ori > 0) {
+    sesymself(*searchsh); // Reverse the face orientation.
+  }
+
+  // Find an edge of the face s.t. p lies on its right-hand side (CCW).
+  for (i = 0; i < 3; i++) {
+    pa = sorg(*searchsh);
+    pb = sdest(*searchsh);
+    ori = orient3d(pa, pb, dummypoint, searchpt);
+    if (ori > 0) break;
+    senextself(*searchsh);
+  }
+  assert(i < 3); // SELF_CHECK
+
+  pc = sapex(*searchsh);
+
+  if (pc == searchpt) {
+    senext2self(*searchsh);
+    return ONVERTEX;
+  }
+
+  while (1) {
+
+    ori_bc = orient3d(pb, pc, dummypoint, searchpt);
+    ori_ca = orient3d(pc, pa, dummypoint, searchpt);
+
+    if (ori_bc < 0) {
+      if (ori_ca < 0) { // (--)
+        // Any of the edges is a viable move.
+        if (randomnation(2)) {
+          nextmove = MOVE_CA;
+        } else {
+          nextmove = MOVE_BC;
+        }
+      } else { // (-#)
+        // Edge [b, c] is viable.
+        nextmove = MOVE_BC;
+      }
+    } else {
+      if (ori_ca < 0) { // (#-)
+        // Edge [c, a] is viable.
+        nextmove = MOVE_CA;
+      } else {
+        if (ori_bc > 0) {
+          if (ori_ca > 0) { // (++)
+            loc = ONFACE;  // Inside [a, b, c].
+            break;
+          } else { // (+0)
+            senext2self(*searchsh); // On edge [c, a].
+            loc = ONEDGE;
+            break;
+          }
+        } else { // ori_bc == 0
+          if (ori_ca > 0) { // (0+)
+            senextself(*searchsh); // On edge [b, c].
+            loc = ONEDGE;
+            break;
+          } else { // (00)
+            // p is coincident with vertex c.
+            senext2self(*searchsh);
+            return ONVERTEX;
+          }
+        }
+      }
+    }
+
+    // Move to the next face.
+    if (nextmove == MOVE_BC) {
+      senextself(*searchsh);
+    } else {
+      senext2self(*searchsh);
+    }
+    if (!cflag) {
+      // NON-convex case. Check if we will cross a boundary.
+      if (isshsubseg(*searchsh)) {
+        return ENCSEGMENT;
+      }
+    }
+    spivot(*searchsh, neighsh);
+    if (neighsh.sh == NULL) {
+      return OUTSIDE; // A hull edge.
+    }
+    // Adjust the edge orientation.
+    if (sorg(neighsh) != sdest(*searchsh)) {
+      sesymself(neighsh);
+    }
+    assert(sorg(neighsh) == sdest(*searchsh)); // SELF_CHECK
+
+    // Update the newly discovered face and its endpoints.
+    *searchsh = neighsh;
+    pa = sorg(*searchsh);
+    pb = sdest(*searchsh);
+    pc = sapex(*searchsh);
+
+    if (pc == searchpt) {
+      senext2self(*searchsh);
+      return ONVERTEX;
+    }
+
+  } // while (1)
+
+  // assert(loc == ONFACE || loc == ONEDGE);
+
+
+  if (rflag) {
+    // Round the locate result before return.
+    REAL n[3], area_abc, area_abp, area_bcp, area_cap;
+
+    pa = sorg(*searchsh);
+    pb = sdest(*searchsh);
+    pc = sapex(*searchsh);
+
+    facenormal(pa, pb, pc, n, 1, NULL);
+    area_abc = sqrt(dot(n, n));
+
+    facenormal(pb, pc, searchpt, n, 1, NULL);
+    area_bcp = sqrt(dot(n, n));
+    if ((area_bcp / area_abc) < b->epsilon) {
+      area_bcp = 0; // Rounding.
+    }
+
+    facenormal(pc, pa, searchpt, n, 1, NULL);
+    area_cap = sqrt(dot(n, n));
+    if ((area_cap / area_abc) < b->epsilon) {
+      area_cap = 0; // Rounding
+    }
+
+    if ((loc == ONFACE) || (loc == OUTSIDE)) {
+      facenormal(pa, pb, searchpt, n, 1, NULL);
+      area_abp = sqrt(dot(n, n));
+      if ((area_abp / area_abc) < b->epsilon) {
+        area_abp = 0; // Rounding
+      }
+    } else { // loc == ONEDGE
+      area_abp = 0;
+    }
+
+    if (area_abp == 0) {
+      if (area_bcp == 0) {
+        assert(area_cap != 0);
+        senextself(*searchsh);
+        loc = ONVERTEX; // p is close to b.
+      } else {
+        if (area_cap == 0) {
+          loc = ONVERTEX; // p is close to a.
+        } else {
+          loc = ONEDGE; // p is on edge [a,b].
+        }
+      }
+    } else if (area_bcp == 0) {
+      if (area_cap == 0) {
+        senext2self(*searchsh);
+        loc = ONVERTEX; // p is close to c.
+      } else {
+        senextself(*searchsh);
+        loc = ONEDGE; // p is on edge [b,c].
+      }
+    } else if (area_cap == 0) {
+      senext2self(*searchsh);
+      loc = ONEDGE; // p is on edge [c,a].
+    } else {
+      loc = ONFACE; // p is on face [a,b,c].
+    }
+  } // if (rflag)
+
+  return loc;
+}
+
+////                                                                       ////
+////                                                                       ////
+//// surface_cxx //////////////////////////////////////////////////////////////
+
+//// steiner_cxx //////////////////////////////////////////////////////////////
+////                                                                       ////
+////                                                                       ////
+
+enum meshGRegionBoundaryRecovery::interresult
+  meshGRegionBoundaryRecovery::finddirection(triface* searchtet, point endpt)
+{
+  triface neightet;
+  point pa, pb, pc, pd;
+  enum {HMOVE, RMOVE, LMOVE} nextmove;
+  REAL hori, rori, lori;
+  int t1ver;
+  int s;
+
+  // The origin is fixed.
+  pa = org(*searchtet);
+  if ((point) searchtet->tet[7] == dummypoint) {
+    // A hull tet. Choose the neighbor of its base face.
+    decode(searchtet->tet[3], *searchtet);
+    // Reset the origin to be pa.
+    if ((point) searchtet->tet[4] == pa) {
+      searchtet->ver = 11;
+    } else if ((point) searchtet->tet[5] == pa) {
+      searchtet->ver = 3;
+    } else if ((point) searchtet->tet[6] == pa) {
+      searchtet->ver = 7;
+    } else {
+      assert((point) searchtet->tet[7] == pa);
+      searchtet->ver = 0;
+    }
+  }
+
+  pb = dest(*searchtet);
+  // Check whether the destination or apex is 'endpt'.
+  if (pb == endpt) {
+    // pa->pb is the search edge.
+    return ACROSSVERT;
+  }
+
+  pc = apex(*searchtet);
+  if (pc == endpt) {
+    // pa->pc is the search edge.
+    eprevesymself(*searchtet);
+    return ACROSSVERT;
+  }
+
+  // Walk through tets around pa until the right one is found.
+  while (1) {
+
+    pd = oppo(*searchtet);
+    // Check whether the opposite vertex is 'endpt'.
+    if (pd == endpt) {
+      // pa->pd is the search edge.
+      esymself(*searchtet);
+      enextself(*searchtet);
+      return ACROSSVERT;
+    }
+    // Check if we have entered outside of the domain.
+    if (pd == dummypoint) {
+      // This is possible when the mesh is non-convex.
+      assert(nonconvex);
+      return ACROSSSUB; // Hit a bounday.
+    }
+
+    // Now assume that the base face abc coincides with the horizon plane,
+    //   and d lies above the horizon.  The search point 'endpt' may lie
+    //   above or below the horizon.  We test the orientations of 'endpt'
+    //   with respect to three planes: abc (horizon), bad (right plane),
+    //   and acd (left plane).
+    hori = orient3d(pa, pb, pc, endpt);
+    rori = orient3d(pb, pa, pd, endpt);
+    lori = orient3d(pa, pc, pd, endpt);
+
+    // Now decide the tet to move.  It is possible there are more than one
+    //   tets are viable moves. Is so, randomly choose one.
+    if (hori > 0) {
+      if (rori > 0) {
+        if (lori > 0) {
+          // Any of the three neighbors is a viable move.
+          s = randomnation(3);
+          if (s == 0) {
+            nextmove = HMOVE;
+          } else if (s == 1) {
+            nextmove = RMOVE;
+          } else {
+            nextmove = LMOVE;
+          }
+        } else {
+          // Two tets, below horizon and below right, are viable.
+          //s = randomnation(2);
+          if (randomnation(2)) {
+            nextmove = HMOVE;
+          } else {
+            nextmove = RMOVE;
+          }
+        }
+      } else {
+        if (lori > 0) {
+          // Two tets, below horizon and below left, are viable.
+          //s = randomnation(2);
+          if (randomnation(2)) {
+            nextmove = HMOVE;
+          } else {
+            nextmove = LMOVE;
+          }
+        } else {
+          // The tet below horizon is chosen.
+          nextmove = HMOVE;
+        }
+      }
+    } else {
+      if (rori > 0) {
+        if (lori > 0) {
+          // Two tets, below right and below left, are viable.
+          //s = randomnation(2);
+          if (randomnation(2)) {
+            nextmove = RMOVE;
+          } else {
+            nextmove = LMOVE;
+          }
+        } else {
+          // The tet below right is chosen.
+          nextmove = RMOVE;
+        }
+      } else {
+        if (lori > 0) {
+          // The tet below left is chosen.
+          nextmove = LMOVE;
+        } else {
+          // 'endpt' lies either on the plane(s) or across face bcd.
+          if (hori == 0) {
+            if (rori == 0) {
+              // pa->'endpt' is COLLINEAR with pa->pb.
+              return ACROSSVERT;
+            }
+            if (lori == 0) {
+              // pa->'endpt' is COLLINEAR with pa->pc.
+              eprevesymself(*searchtet); // // [a,c,d]
+              return ACROSSVERT;
+            }
+            // pa->'endpt' crosses the edge pb->pc.
+            return ACROSSEDGE;
+          }
+          if (rori == 0) {
+            if (lori == 0) {
+              // pa->'endpt' is COLLINEAR with pa->pd.
+              esymself(*searchtet); // face bad.
+              enextself(*searchtet); // face [a,d,b]
+              return ACROSSVERT;
+            }
+            // pa->'endpt' crosses the edge pb->pd.
+            esymself(*searchtet); // face bad.
+            enextself(*searchtet); // face adb
+            return ACROSSEDGE;
+          }
+          if (lori == 0) {
+            // pa->'endpt' crosses the edge pc->pd.
+            eprevesymself(*searchtet); // [a,c,d]
+            return ACROSSEDGE;
+          }
+          // pa->'endpt' crosses the face bcd.
+          return ACROSSFACE;
+        }
+      }
+    }
+
+    // Move to the next tet, fix pa as its origin.
+    if (nextmove == RMOVE) {
+      fnextself(*searchtet);
+    } else if (nextmove == LMOVE) {
+      eprevself(*searchtet);
+      fnextself(*searchtet);
+      enextself(*searchtet);
+    } else { // HMOVE
+      fsymself(*searchtet);
+      enextself(*searchtet);
+    }
+    assert(org(*searchtet) == pa);
+    pb = dest(*searchtet);
+    pc = apex(*searchtet);
+
+  } // while (1)
+}
+
+int meshGRegionBoundaryRecovery::checkflipeligibility(int fliptype, point pa,
+  point pb, point pc, point pd, point pe, int level, int edgepivot,
+  flipconstraints* fc)
+{
+  point tmppts[3];
+  enum interresult dir;
+  int types[2], poss[4];
+  int intflag;
+  int rejflag = 0;
+  int i;
+
+  if (fc->seg[0] != NULL) {
+    // A constraining edge is given (e.g., for edge recovery).
+    if (fliptype == 1) {
+      // A 2-to-3 flip: [a,b,c] => [e,d,a], [e,d,b], [e,d,c].
+      tmppts[0] = pa;
+      tmppts[1] = pb;
+      tmppts[2] = pc;
+      for (i = 0; i < 3 && !rejflag; i++) {
+        if (tmppts[i] != dummypoint) {
+          // Test if the face [e,d,#] intersects the edge.
+          intflag = tri_edge_test(pe, pd, tmppts[i], fc->seg[0], fc->seg[1],
+                                  NULL, 1, types, poss);
+          if (intflag == 2) {
+            // They intersect at a single point.
+            dir = (enum interresult) types[0];
+            if (dir == ACROSSFACE) {
+              // The interior of [e,d,#] intersect the segment.
+              rejflag = 1;
+            } else if (dir == ACROSSEDGE) {
+              if (poss[0] == 0) {
+                // The interior of [e,d] intersect the segment.
+                // Since [e,d] is the newly created edge. Reject this flip.
+                rejflag = 1;
+              }
+            }
+          } else if (intflag == 4) {
+            // They may intersect at either a point or a line segment.
+            dir = (enum interresult) types[0];
+            if (dir == ACROSSEDGE) {
+              if (poss[0] == 0) {
+                // The interior of [e,d] intersect the segment.
+                // Since [e,d] is the newly created edge. Reject this flip.
+                rejflag = 1;
+              }
+            }
+          }
+        } // if (tmppts[0] != dummypoint)
+      } // i
+    } else if (fliptype == 2) {
+      // A 3-to-2 flip: [e,d,a], [e,d,b], [e,d,c] => [a,b,c]
+      if (pc != dummypoint) {
+        // Check if the new face [a,b,c] intersect the edge in its interior.
+        intflag = tri_edge_test(pa, pb, pc, fc->seg[0], fc->seg[1], NULL,
+                                1, types, poss);
+        if (intflag == 2) {
+          // They intersect at a single point.
+          dir = (enum interresult) types[0];
+          if (dir == ACROSSFACE) {
+            // The interior of [a,b,c] intersect the segment.
+            rejflag = 1; // Do not flip.
+          }
+        } else if (intflag == 4) {
+          // [a,b,c] is coplanar with the edge.
+          dir = (enum interresult) types[0];
+          if (dir == ACROSSEDGE) {
+            // The boundary of [a,b,c] intersect the segment.
+            rejflag = 1; // Do not flip.
+          }
+        }
+      } // if (pc != dummypoint)
+    }
+  } // if (fc->seg[0] != NULL)
+
+  if ((fc->fac[0] != NULL) && !rejflag) {
+    // A constraining face is given (e.g., for face recovery).
+    if (fliptype == 1) {
+      // A 2-to-3 flip.
+      // Test if the new edge [e,d] intersects the face.
+      intflag = tri_edge_test(fc->fac[0], fc->fac[1], fc->fac[2], pe, pd,
+                              NULL, 1, types, poss);
+      if (intflag == 2) {
+        // They intersect at a single point.
+        dir = (enum interresult) types[0];
+        if (dir == ACROSSFACE) {
+          rejflag = 1;
+        } else if (dir == ACROSSEDGE) {
+          rejflag = 1;
+        }
+      } else if (intflag == 4) {
+        // The edge [e,d] is coplanar with the face.
+        // There may be two intersections.
+        for (i = 0; i < 2 && !rejflag; i++) {
+          dir = (enum interresult) types[i];
+          if (dir == ACROSSFACE) {
+            rejflag = 1;
+          } else if (dir == ACROSSEDGE) {
+            rejflag = 1;
+          }
+        }
+      }
+    } // if (fliptype == 1)
+  } // if (fc->fac[0] != NULL)
+
+  if ((fc->remvert != NULL) && !rejflag) {
+    // The vertex is going to be removed. Do not create a new edge which
+    //   contains this vertex.
+    if (fliptype == 1) {
+      // A 2-to-3 flip.
+      if ((pd == fc->remvert) || (pe == fc->remvert)) {
+        rejflag = 1;
+      }
+    }
+  }
+
+  if (fc->remove_large_angle && !rejflag) {
+    // Remove a large dihedral angle. Do not create a new small angle.
+    REAL cosmaxd = 0, diff;
+    if (fliptype == 1) {
+      // We assume that neither 'a' nor 'b' is dummypoint.
+      assert((pa != dummypoint) && (pb != dummypoint)); // SELF_CHECK
+      // A 2-to-3 flip: [a,b,c] => [e,d,a], [e,d,b], [e,d,c].
+      // The new tet [e,d,a,b] will be flipped later. Only two new tets:
+      //   [e,d,b,c] and [e,d,c,a] need to be checked.
+      if ((pc != dummypoint) && (pe != dummypoint) && (pd != dummypoint)) {
+        // Get the largest dihedral angle of [e,d,b,c].
+        tetalldihedral(pe, pd, pb, pc, NULL, &cosmaxd, NULL);
+        diff = cosmaxd - fc->cosdihed_in;
+        if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding.
+        if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) {
+          rejflag = 1;
+        } else {
+          // Record the largest new angle.
+          if (cosmaxd < fc->cosdihed_out) {
+            fc->cosdihed_out = cosmaxd;
+          }
+          // Get the largest dihedral angle of [e,d,c,a].
+          tetalldihedral(pe, pd, pc, pa, NULL, &cosmaxd, NULL);
+          diff = cosmaxd - fc->cosdihed_in;
+          if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding.
+          if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) {
+            rejflag = 1;
+          } else {
+            // Record the largest new angle.
+            if (cosmaxd < fc->cosdihed_out) {
+              fc->cosdihed_out = cosmaxd;
+            }
+          }
+        }
+      } // if (pc != dummypoint && ...)
+    } else if (fliptype == 2) {
+      // A 3-to-2 flip: [e,d,a], [e,d,b], [e,d,c] => [a,b,c]
+      // We assume that neither 'e' nor 'd' is dummypoint.
+      assert((pe != dummypoint) && (pd != dummypoint)); // SELF_CHECK
+      if (level == 0) {
+        // Both new tets [a,b,c,d] and [b,a,c,e] are new tets.
+        if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) {
+          // Get the largest dihedral angle of [a,b,c,d].
+          tetalldihedral(pa, pb, pc, pd, NULL, &cosmaxd, NULL);
+          diff = cosmaxd - fc->cosdihed_in;
+          if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding
+          if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) {
+            rejflag = 1;
+          } else {
+            // Record the largest new angle.
+            if (cosmaxd < fc->cosdihed_out) {
+              fc->cosdihed_out = cosmaxd;
+            }
+            // Get the largest dihedral angle of [b,a,c,e].
+            tetalldihedral(pb, pa, pc, pe, NULL, &cosmaxd, NULL);
+            diff = cosmaxd - fc->cosdihed_in;
+            if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding
+            if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) {
+              rejflag = 1;
+            } else {
+              // Record the largest new angle.
+              if (cosmaxd < fc->cosdihed_out) {
+                fc->cosdihed_out = cosmaxd;
+              }
+            }
+          }
+        }
+      } else { // level > 0
+        assert(edgepivot != 0);
+        if (edgepivot == 1) {
+          // The new tet [a,b,c,d] will be flipped. Only check [b,a,c,e].
+          if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) {
+            // Get the largest dihedral angle of [b,a,c,e].
+            tetalldihedral(pb, pa, pc, pe, NULL, &cosmaxd, NULL);
+            diff = cosmaxd - fc->cosdihed_in;
+            if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding
+            if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) {
+              rejflag = 1;
+            } else {
+              // Record the largest new angle.
+              if (cosmaxd < fc->cosdihed_out) {
+                fc->cosdihed_out = cosmaxd;
+              }
+            }
+          }
+        } else {
+          assert(edgepivot == 2);
+          // The new tet [b,a,c,e] will be flipped. Only check [a,b,c,d].
+          if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) {
+            // Get the largest dihedral angle of [b,a,c,e].
+            tetalldihedral(pa, pb, pc, pd, NULL, &cosmaxd, NULL);
+            diff = cosmaxd - fc->cosdihed_in;
+            if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding
+            if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) {
+              rejflag = 1;
+            } else {
+              // Record the largest new angle.
+              if (cosmaxd < fc->cosdihed_out) {
+                fc->cosdihed_out = cosmaxd;
+              }
+            }
+          }
+        } // edgepivot
+      } // level
+    }
+  }
+
+  return rejflag;
+}
+
+int meshGRegionBoundaryRecovery::removeedgebyflips(triface *flipedge, flipconstraints* fc)
+{
+  triface *abtets, spintet;
+  int t1ver;
+  int n, nn, i;
+
+
+  if (checksubsegflag) {
+    // Do not flip a segment.
+    if (issubseg(*flipedge)) {
+      if (fc->collectencsegflag) {
+        face checkseg, *paryseg;
+        tsspivot1(*flipedge, checkseg);
+        if (!sinfected(checkseg)) {
+          // Queue this segment in list.
+          sinfect(checkseg);
+          caveencseglist->newindex((void **) &paryseg);
+          *paryseg = checkseg;
+        }
+      }
+      return 0;
+    }
+  }
+
+  // Count the number of tets at edge [a,b].
+  n = 0;
+  spintet = *flipedge;
+  while (1) {
+    n++;
+    fnextself(spintet);
+    if (spintet.tet == flipedge->tet) break;
+  }
+  assert(n >= 3);
+
+  if ((b->flipstarsize > 0) && (n > b->flipstarsize)) {
+    // The star size exceeds the limit.
+    return 0; // Do not flip it.
+  }
+
+  // Allocate spaces.
+  abtets = new triface[n];
+  // Collect the tets at edge [a,b].
+  spintet = *flipedge;
+  i = 0;
+  while (1) {
+    abtets[i] = spintet;
+    setelemcounter(abtets[i], 1);
+    i++;
+    fnextself(spintet);
+    if (spintet.tet == flipedge->tet) break;
+  }
+
+
+  // Try to flip the edge (level = 0, edgepivot = 0).
+  nn = flipnm(abtets, n, 0, 0, fc);
+
+
+  if (nn > 2) {
+    // Edge is not flipped. Unmarktest the remaining tets in Star(ab).
+    for (i = 0; i < nn; i++) {
+      setelemcounter(abtets[i], 0);
+    }
+    // Restore the input edge (needed by Lawson's flip).
+    *flipedge = abtets[0];
+  }
+
+  // Release the temporary allocated spaces.
+  // NOTE: fc->unflip must be 0.
+  int bakunflip = fc->unflip;
+  fc->unflip = 0;
+  flipnm_post(abtets, n, nn, 0, fc);
+  fc->unflip = bakunflip;
+
+  delete [] abtets;
+
+  return nn;
+}
+
+int meshGRegionBoundaryRecovery::removefacebyflips(triface *flipface, flipconstraints* fc)
+{
+  if (checksubfaceflag) {
+    if (issubface(*flipface)) {
+      return 0;
+    }
+  }
+
+  triface fliptets[3], flipedge;
+  point pa, pb, pc, pd, pe;
+  REAL ori;
+  int reducflag = 0;
+
+  fliptets[0] = *flipface;
+  fsym(*flipface, fliptets[1]);
+  pa = org(fliptets[0]);
+  pb = dest(fliptets[0]);
+  pc = apex(fliptets[0]);
+  pd = oppo(fliptets[0]);
+  pe = oppo(fliptets[1]);
+
+  ori = orient3d(pa, pb, pd, pe);
+  if (ori > 0) {
+    ori = orient3d(pb, pc, pd, pe);
+    if (ori > 0) {
+      ori = orient3d(pc, pa, pd, pe);
+      if (ori > 0) {
+        // Found a 2-to-3 flip.
+        reducflag = 1;
+      } else {
+        eprev(*flipface, flipedge); // [c,a]
+      }
+    } else {
+      enext(*flipface, flipedge); // [b,c]
+    }
+  } else {
+    flipedge = *flipface; // [a,b]
+  }
+
+  if (reducflag) {
+    // A 2-to-3 flip is found.
+    flip23(fliptets, 0, fc);
+    return 1;
+  } else {
+    // Try to flip the selected edge of this face.
+    if (removeedgebyflips(&flipedge, fc) == 2) {
+      return 1;
+    }
+  }
+
+  // Face is not removed.
+  return 0;
+}
+
+int meshGRegionBoundaryRecovery::recoveredgebyflips(point startpt,
+  point endpt, triface* searchtet, int fullsearch)
+{
+  flipconstraints fc;
+  enum interresult dir;
+
+  fc.seg[0] = startpt;
+  fc.seg[1] = endpt;
+  fc.checkflipeligibility = 1;
+
+  // The mainloop of the edge reocvery.
+  while (1) { // Loop I
+
+    // Search the edge from 'startpt'.
+    point2tetorg(startpt, *searchtet);
+    dir = finddirection(searchtet, endpt);
+    if (dir == ACROSSVERT) {
+      if (dest(*searchtet) == endpt) {
+        return 1; // Edge is recovered.
+      } else {
+        terminateBoundaryRecovery(this, 3); // // It may be a PLC problem.
+      }
+    }
+
+    // The edge is missing.
+
+    // Try to flip the first intersecting face/edge.
+    enextesymself(*searchtet); // Go to the opposite face.
+    if (dir == ACROSSFACE) {
+      // A face is intersected with the segment. Try to flip it.
+      if (removefacebyflips(searchtet, &fc)) {
+        continue;
+      }
+    } else if (dir == ACROSSEDGE) {
+      // An edge is intersected with the segment. Try to flip it.
+      if (removeedgebyflips(searchtet, &fc) == 2) {
+        continue;
+      }
+    } else {
+      terminateBoundaryRecovery(this, 3); // It may be a PLC problem.
+    }
+
+    // The edge is missing.
+
+    if (fullsearch) {
+      // Try to flip one of the faces/edges which intersects the edge.
+      triface neightet, spintet;
+      point pa, pb, pc, pd;
+      badface bakface;
+      enum interresult dir1;
+      int types[2], poss[4], pos = 0;
+      int success = 0;
+      int t1ver;
+      int i, j;
+
+      // Loop through the sequence of intersecting faces/edges from
+      //   'startpt' to 'endpt'.
+      point2tetorg(startpt, *searchtet);
+      dir = finddirection(searchtet, endpt);
+      //assert(dir != ACROSSVERT);
+
+      // Go to the face/edge intersecting the searching edge.
+      enextesymself(*searchtet); // Go to the opposite face.
+      // This face/edge has been tried in previous step.
+
+      while (1) { // Loop I-I
+
+        // Find the next intersecting face/edge.
+        fsymself(*searchtet);
+        if (dir == ACROSSFACE) {
+          neightet = *searchtet;
+          j = (neightet.ver & 3); // j is the current face number.
+          for (i = j + 1; i < j + 4; i++) {
+            neightet.ver = (i % 4);
+            pa = org(neightet);
+            pb = dest(neightet);
+            pc = apex(neightet);
+            pd = oppo(neightet); // The above point.
+            if (tri_edge_test(pa,pb,pc,startpt,endpt, pd, 1, types, poss)) {
+              dir = (enum interresult) types[0];
+              pos = poss[0];
+              break;
+            } else {
+              dir = DISJOINT;
+              pos = 0;
+            }
+          } // i
+          // There must be an intersection face/edge.
+          assert(dir != DISJOINT);  // SELF_CHECK
+        } else {
+          assert(dir == ACROSSEDGE);
+          while (1) { // Loop I-I-I
+            // Check the two opposite faces (of the edge) in 'searchtet'.
+            for (i = 0; i < 2; i++) {
+              if (i == 0) {
+                enextesym(*searchtet, neightet);
+              } else {
+                eprevesym(*searchtet, neightet);
+              }
+              pa = org(neightet);
+              pb = dest(neightet);
+              pc = apex(neightet);
+              pd = oppo(neightet); // The above point.
+              if (tri_edge_test(pa,pb,pc,startpt,endpt,pd,1, types, poss)) {
+                dir = (enum interresult) types[0];
+                pos = poss[0];
+                break; // for loop
+              } else {
+                dir = DISJOINT;
+                pos = 0;
+              }
+            } // i
+            if (dir != DISJOINT) {
+              // Find an intersection face/edge.
+              break;  // Loop I-I-I
+            }
+            // No intersection. Rotate to the next tet at the edge.
+            fnextself(*searchtet);
+          } // while (1) // Loop I-I-I
+        }
+
+        // Adjust to the intersecting edge/vertex.
+        for (i = 0; i < pos; i++) {
+          enextself(neightet);
+        }
+
+        if (dir == SHAREVERT) {
+          // Check if we have reached the 'endpt'.
+          pd = org(neightet);
+          if (pd == endpt) {
+            // Failed to recover the edge.
+            break; // Loop I-I
+          } else {
+            // We need to further check this case. It might be a PLC problem
+            //   or a Steiner point that was added at a bad location.
+            assert(0);
+          }
+        }
+
+        // The next to be flipped face/edge.
+        *searchtet = neightet;
+
+        // Bakup this face (tetrahedron).
+        bakface.forg = org(*searchtet);
+        bakface.fdest = dest(*searchtet);
+        bakface.fapex = apex(*searchtet);
+        bakface.foppo = oppo(*searchtet);
+
+        // Try to flip this intersecting face/edge.
+        if (dir == ACROSSFACE) {
+          if (removefacebyflips(searchtet, &fc)) {
+            success = 1;
+            break; // Loop I-I
+          }
+        } else if (dir == ACROSSEDGE) {
+          if (removeedgebyflips(searchtet, &fc) == 2) {
+            success = 1;
+            break; // Loop I-I
+          }
+        } else {
+          assert(0); // A PLC problem.
+        }
+
+        // The face/edge is not flipped.
+        if ((searchtet->tet == NULL) ||
+            (org(*searchtet) != bakface.forg) ||
+            (dest(*searchtet) != bakface.fdest) ||
+            (apex(*searchtet) != bakface.fapex) ||
+            (oppo(*searchtet) != bakface.foppo)) {
+          // 'searchtet' was flipped. We must restore it.
+          point2tetorg(bakface.forg, *searchtet);
+          dir1 = finddirection(searchtet, bakface.fdest);
+          if (dir1 == ACROSSVERT) {
+            assert(dest(*searchtet) == bakface.fdest);
+            spintet = *searchtet;
+            while (1) {
+              if (apex(spintet) == bakface.fapex) {
+                // Found the face.
+                *searchtet = spintet;
+                break;
+              }
+              fnextself(spintet);
+              if (spintet.tet == searchtet->tet) {
+                searchtet->tet = NULL;
+                break; // Not find.
+              }
+	        } // while (1)
+            if (searchtet->tet != NULL) {
+              if (oppo(*searchtet) != bakface.foppo) {
+                fsymself(*searchtet);
+                if (oppo(*searchtet) != bakface.foppo) {
+                  assert(0); // Check this case.
+                  searchtet->tet = NULL;
+                  break; // Not find.
+                }
+              }
+            }
+          } else {
+            searchtet->tet = NULL; // Not find.
+          }
+          if (searchtet->tet == NULL) {
+            success = 0; // This face/edge has been destroyed.
+            break; // Loop I-I
+          }
+        }
+      } // while (1) // Loop I-I
+
+      if (success) {
+        // One of intersecting faces/edges is flipped.
+        continue;
+      }
+
+    } // if (fullsearch)
+
+    // The edge is missing.
+    break; // Loop I
+
+  } // while (1) // Loop I
+
+  return 0;
+}
+
+int meshGRegionBoundaryRecovery::
+  add_steinerpt_in_schoenhardtpoly(triface *abtets, int n, int chkencflag)
+{
+  triface worktet, *parytet;
+  triface faketet1, faketet2;
+  point pc, pd, steinerpt;
+  insertvertexflags ivf;
+  optparameters opm;
+  REAL vcd[3], sampt[3], smtpt[3];
+  REAL maxminvol = 0.0, minvol = 0.0, ori;
+  int success, maxidx = 0;
+  int it, i;
+
+
+  pc = apex(abtets[0]);   // pc = p0
+  pd = oppo(abtets[n-1]); // pd = p_(n-1)
+
+
+  // Find an optimial point in edge [c,d]. It is visible by all outer faces
+  //   of 'abtets', and it maxmizes the min volume.
+
+  // initialize the list of 2n boundary faces.
+  for (i = 0; i < n; i++) {
+    edestoppo(abtets[i], worktet); // [p_i,p_i+1,a]
+    cavetetlist->newindex((void **) &parytet);
+    *parytet = worktet;
+    eorgoppo(abtets[i], worktet);  // [p_i+1,p_i,b]
+    cavetetlist->newindex((void **) &parytet);
+    *parytet = worktet;
+  }
+
+  int N = 100;
+  REAL stepi = 0.01;
+
+  // Search the point along the edge [c,d].
+  for (i = 0; i < 3; i++) vcd[i] = pd[i] - pc[i];
+
+  // Sample N points in edge [c,d].
+  for (it = 1; it < N; it++) {
+    for (i = 0; i < 3; i++) {
+      sampt[i] = pc[i] + (stepi * (double) it) * vcd[i];
+    }
+    for (i = 0; i < cavetetlist->objects; i++) {
+      parytet = (triface *) fastlookup(cavetetlist, i);
+      ori = orient3d(dest(*parytet), org(*parytet), apex(*parytet), sampt);
+      if (i == 0) {
+        minvol = ori;
+      } else {
+        if (minvol > ori) minvol = ori;
+      }
+    } // i
+    if (it == 1) {
+      maxminvol = minvol;
+      maxidx = it;
+    } else {
+      if (maxminvol < minvol) {
+        maxminvol = minvol;
+        maxidx = it;
+      }
+    }
+  } // it
+
+  if (maxminvol <= 0) {
+    cavetetlist->restart();
+    return 0;
+  }
+
+  for (i = 0; i < 3; i++) {
+    smtpt[i] = pc[i] + (stepi * (double) maxidx) * vcd[i];
+  }
+
+  // Create two faked tets to hold the two non-existing boundary faces:
+  //   [d,c,a] and [c,d,b].
+  maketetrahedron(&faketet1);
+  setvertices(faketet1, pd, pc, org(abtets[0]), dummypoint);
+  cavetetlist->newindex((void **) &parytet);
+  *parytet = faketet1;
+  maketetrahedron(&faketet2);
+  setvertices(faketet2, pc, pd, dest(abtets[0]), dummypoint);
+  cavetetlist->newindex((void **) &parytet);
+  *parytet = faketet2;
+
+  // Point smooth options.
+  opm.max_min_volume = 1;
+  opm.numofsearchdirs = 20;
+  opm.searchstep = 0.001;
+  opm.maxiter = 100; // Limit the maximum iterations.
+  opm.initval = 0.0; // Initial volume is zero.
+
+  // Try to relocate the point into the inside of the polyhedron.
+  success = smoothpoint(smtpt, cavetetlist, 1, &opm);
+
+  if (success) {
+    while (opm.smthiter == 100) {
+      // It was relocated and the prescribed maximum iteration reached.
+      // Try to increase the search stepsize.
+      opm.searchstep *= 10.0;
+      //opm.maxiter = 100; // Limit the maximum iterations.
+      opm.initval = opm.imprval;
+      opm.smthiter = 0; // Init.
+      smoothpoint(smtpt, cavetetlist, 1, &opm);
+    }
+  } // if (success)
+
+  // Delete the two faked tets.
+  tetrahedrondealloc(faketet1.tet);
+  tetrahedrondealloc(faketet2.tet);
+
+  cavetetlist->restart();
+
+  if (!success) {
+    return 0;
+  }
+
+
+  // Insert the Steiner point.
+  makepoint(&steinerpt, FREEVOLVERTEX);
+  for (i = 0; i < 3; i++) steinerpt[i] = smtpt[i];
+
+  // Insert the created Steiner point.
+  for (i = 0; i < n; i++) {
+    infect(abtets[i]);
+    caveoldtetlist->newindex((void **) &parytet);
+    *parytet = abtets[i];
+  }
+  worktet = abtets[0]; // No need point location.
+  ivf.iloc = (int) INSTAR;
+  ivf.chkencflag = chkencflag;
+  ivf.assignmeshsize = b->metric;
+  if (ivf.assignmeshsize) {
+    // Search the tet containing 'steinerpt' for size interpolation.
+    locate(steinerpt, &(abtets[0]));
+    worktet = abtets[0];
+  }
+
+  // Insert the new point into the tetrahedralization T.
+  // Note that T is convex (nonconvex = 0).
+  if (insertpoint(steinerpt, &worktet, NULL, NULL, &ivf)) {
+    // The vertex has been inserted.
+    st_volref_count++;
+    if (steinerleft > 0) steinerleft--;
+    return 1;
+  } else {
+    // Not inserted.
+    pointdealloc(steinerpt);
+    return 0;
+  }
+}
+
+int meshGRegionBoundaryRecovery::add_steinerpt_in_segment(face* misseg,
+  int searchlevel)
+{
+  triface searchtet;
+  face *paryseg, candseg;
+  point startpt, endpt, pc, pd;
+  flipconstraints fc;
+  enum interresult dir;
+  REAL P[3], Q[3], tp, tq;
+  REAL len, smlen = 0, split = 0, split_q = 0;
+  int success;
+  int i;
+
+  startpt = sorg(*misseg);
+  endpt = sdest(*misseg);
+
+  fc.seg[0] = startpt;
+  fc.seg[1] = endpt;
+  fc.checkflipeligibility = 1;
+  fc.collectencsegflag = 1;
+
+  point2tetorg(startpt, searchtet);
+  dir = finddirection(&searchtet, endpt);
+  //assert(dir != ACROSSVERT);
+
+  // Try to flip the first intersecting face/edge.
+  enextesymself(searchtet); // Go to the opposite face.
+
+  int bak_fliplinklevel = b->fliplinklevel;
+  b->fliplinklevel = searchlevel;
+
+  if (dir == ACROSSFACE) {
+    // A face is intersected with the segment. Try to flip it.
+    success = removefacebyflips(&searchtet, &fc);
+    assert(success == 0);
+  } else if (dir == ACROSSEDGE) {
+    // An edge is intersected with the segment. Try to flip it.
+    success = removeedgebyflips(&searchtet, &fc);
+    assert(success != 2);
+  } else {
+    terminateBoundaryRecovery(this, 3); // It may be a PLC problem.
+  }
+
+  split = 0;
+  for (i = 0; i < caveencseglist->objects; i++) {
+    paryseg = (face *) fastlookup(caveencseglist, i);
+    suninfect(*paryseg);
+    // Calculate the shortest edge between the two lines.
+    pc = sorg(*paryseg);
+    pd = sdest(*paryseg);
+    tp = tq = 0;
+    if (linelineint(startpt, endpt, pc, pd, P, Q, &tp, &tq)) {
+      // Does the shortest edge lie between the two segments?
+      // Round tp and tq.
+      if ((tp > 0) && (tq < 1)) {
+        if (tp < 0.5) {
+          if (tp < (b->epsilon * 1e+3)) tp = 0.0;
+        } else {
+          if ((1.0 - tp) < (b->epsilon * 1e+3)) tp = 1.0;
+        }
+      }
+      if ((tp <= 0) || (tp >= 1)) continue;
+      if ((tq > 0) && (tq < 1)) {
+        if (tq < 0.5) {
+          if (tq < (b->epsilon * 1e+3)) tq = 0.0;
+        } else {
+          if ((1.0 - tq) < (b->epsilon * 1e+3)) tq = 1.0;
+        }
+      }
+      if ((tq <= 0) || (tq >= 1)) continue;
+      // It is a valid shortest edge. Calculate its length.
+      len = distance(P, Q);
+      if (split == 0) {
+        smlen = len;
+        split = tp;
+        split_q = tq;
+        candseg = *paryseg;
+      } else {
+        if (len < smlen) {
+          smlen = len;
+          split = tp;
+          split_q = tq;
+          candseg = *paryseg;
+        }
+      }
+    }
+  }
+
+  caveencseglist->restart();
+  b->fliplinklevel = bak_fliplinklevel;
+
+  if (split == 0) {
+    // Found no crossing segment.
+    return 0;
+  }
+
+  face splitsh;
+  face splitseg;
+  point steinerpt, *parypt;
+  insertvertexflags ivf;
+
+  if (b->addsteiner_algo == 1) {
+    // Split the segment at the closest point to a near segment.
+    makepoint(&steinerpt, FREESEGVERTEX);
+    for (i = 0; i < 3; i++) {
+      steinerpt[i] = startpt[i] + split * (endpt[i] - startpt[i]);
+    }
+  } else { // b->addsteiner_algo == 2
+    for (i = 0; i < 3; i++) {
+      P[i] = startpt[i] + split * (endpt[i] - startpt[i]);
+    }
+    pc = sorg(candseg);
+    pd = sdest(candseg);
+    for (i = 0; i < 3; i++) {
+      Q[i] = pc[i] + split_q * (pd[i] - pc[i]);
+    }
+    makepoint(&steinerpt, FREEVOLVERTEX);
+    for (i = 0; i < 3; i++) {
+      steinerpt[i] = 0.5 * (P[i] + Q[i]);
+    }
+  }
+
+  // We need to locate the point. Start searching from 'searchtet'.
+  if (split < 0.5) {
+    point2tetorg(startpt, searchtet);
+  } else {
+    point2tetorg(endpt, searchtet);
+  }
+  if (b->addsteiner_algo == 1) {
+    splitseg = *misseg;
+    spivot(*misseg, splitsh);
+  } else {
+    splitsh.sh = NULL;
+    splitseg.sh = NULL;
+  }
+  ivf.iloc = (int) OUTSIDE;
+  ivf.bowywat = 1;
+  ivf.lawson = 0;
+  ivf.rejflag = 0;
+  ivf.chkencflag = 0;
+  ivf.sloc = (int) ONEDGE;
+  ivf.sbowywat = 1;
+  ivf.splitbdflag = 0;
+  ivf.validflag = 1;
+  ivf.respectbdflag = 1;
+  ivf.assignmeshsize = b->metric;
+
+  if (!insertpoint(steinerpt, &searchtet, &splitsh, &splitseg, &ivf)) {
+    pointdealloc(steinerpt);
+    return 0;
+  }
+
+  if (b->addsteiner_algo == 1) {
+    // Save this Steiner point (for removal).
+    //   Re-use the array 'subvertstack'.
+    subvertstack->newindex((void **) &parypt);
+    *parypt = steinerpt;
+    st_segref_count++;
+  } else { // b->addsteiner_algo == 2
+    // Queue the segment for recovery.
+    subsegstack->newindex((void **) &paryseg);
+    *paryseg = *misseg;
+    st_volref_count++;
+  }
+  if (steinerleft > 0) steinerleft--;
+
+  return 1;
+}
+
+int meshGRegionBoundaryRecovery::addsteiner4recoversegment(face* misseg,
+  int splitsegflag)
+{
+  triface *abtets, searchtet, spintet;
+  face splitsh;
+  face *paryseg;
+  point startpt, endpt;
+  point pa, pb, pd, steinerpt, *parypt;
+  enum interresult dir;
+  insertvertexflags ivf;
+  int types[2], poss[4];
+  int n, endi, success;
+  int t1ver;
+  int i;
+
+  startpt = sorg(*misseg);
+  if (pointtype(startpt) == FREESEGVERTEX) {
+    sesymself(*misseg);
+    startpt = sorg(*misseg);
+  }
+  endpt = sdest(*misseg);
+
+  // Try to recover the edge by adding Steiner points.
+  point2tetorg(startpt, searchtet);
+  dir = finddirection(&searchtet, endpt);
+  enextself(searchtet);
+  //assert(apex(searchtet) == startpt);
+
+  if (dir == ACROSSFACE) {
+    // The segment is crossing at least 3 faces. Find the common edge of
+    //   the first 3 crossing faces.
+    esymself(searchtet);
+    fsym(searchtet, spintet);
+    pd = oppo(spintet);
+    for (i = 0; i < 3; i++) {
+      pa = org(spintet);
+      pb = dest(spintet);
+      //pc = apex(neightet);
+      if (tri_edge_test(pa, pb, pd, startpt, endpt, NULL, 1, types, poss)) {
+        break; // Found the edge.
+      }
+      enextself(spintet);
+      eprevself(searchtet);
+    }
+    assert(i < 3);
+    esymself(searchtet);
+  } else {
+    assert(dir == ACROSSEDGE);
+    // PLC check.
+    if (issubseg(searchtet)) {
+      face checkseg;
+      tsspivot1(searchtet, checkseg);
+      Msg::Debug("Found two segments intersect each other.");
+      pa = farsorg(*misseg);
+      pb = farsdest(*misseg);
+      Msg::Debug("  1st: [%d,%d] %d.", pointmark(pa), pointmark(pb),
+             shellmark(*misseg));
+      pa = farsorg(checkseg);
+      pb = farsdest(checkseg);
+      Msg::Debug("  2nd: [%d,%d] %d.", pointmark(pa), pointmark(pb),
+             shellmark(checkseg));
+      terminateBoundaryRecovery(this, 3);
+    }
+  }
+  assert(apex(searchtet) == startpt);
+
+  spintet = searchtet;
+  n = 0; endi = -1;
+  while (1) {
+    // Check if the endpt appears in the star.
+    if (apex(spintet) == endpt) {
+      endi = n; // Remember the position of endpt.
+    }
+    n++; // Count a tet in the star.
+    fnextself(spintet);
+    if (spintet.tet == searchtet.tet) break;
+  }
+  assert(n >= 3);
+
+  if (endi > 0) {
+    // endpt is also in the edge star
+    // Get all tets in the edge star.
+    abtets = new triface[n];
+    spintet = searchtet;
+    for (i = 0; i < n; i++) {
+      abtets[i] = spintet;
+      fnextself(spintet);
+    }
+
+    success = 0;
+
+    if (dir == ACROSSFACE) {
+      // Find a Steiner points inside the polyhedron.
+      if (add_steinerpt_in_schoenhardtpoly(abtets, endi, 0)) {
+        success = 1;
+      }
+    } else if (dir == ACROSSEDGE) {
+      if (n > 4) {
+        // In this case, 'abtets' is separated by the plane (containing the
+        //   two intersecting edges) into two parts, P1 and P2, where P1
+        //   consists of 'endi' tets: abtets[0], abtets[1], ...,
+        //   abtets[endi-1], and P2 consists of 'n - endi' tets:
+        //   abtets[endi], abtets[endi+1], abtets[n-1].
+        if (endi > 2) { // P1
+          // There are at least 3 tets in the first part.
+          if (add_steinerpt_in_schoenhardtpoly(abtets, endi, 0)) {
+            success++;
+          }
+        }
+        if ((n - endi) > 2) { // P2
+          // There are at least 3 tets in the first part.
+          if (add_steinerpt_in_schoenhardtpoly(&(abtets[endi]), n - endi, 0)) {
+            success++;
+          }
+        }
+      } else {
+        // In this case, a 4-to-4 flip should be re-cover the edge [c,d].
+        //   However, there will be invalid tets (either zero or negtive
+        //   volume). Otherwise, [c,d] should already be recovered by the
+        //   recoveredge() function.
+        terminateBoundaryRecovery(this, 2); // Report a bug.
+      }
+    } else {
+      terminateBoundaryRecovery(this, 10); // A PLC problem.
+    }
+
+    delete [] abtets;
+
+    if (success) {
+      // Add the missing segment back to the recovering list.
+      subsegstack->newindex((void **) &paryseg);
+      *paryseg = *misseg;
+      return 1;
+    }
+  } // if (endi > 0)
+
+  if (!splitsegflag) {
+    return 0;
+  }
+
+  if (b->verbose > 2) {
+    printf("      Splitting segment (%d, %d)\n", pointmark(startpt),
+           pointmark(endpt));
+  }
+  steinerpt = NULL;
+
+  if (b->addsteiner_algo > 0) { // -Y/1 or -Y/2
+    if (add_steinerpt_in_segment(misseg, 3)) {
+      return 1;
+    }
+    sesymself(*misseg);
+    if (add_steinerpt_in_segment(misseg, 3)) {
+      return 1;
+    }
+    sesymself(*misseg);
+  }
+
+
+
+
+  if (steinerpt == NULL) {
+    // Split the segment at its midpoint.
+    makepoint(&steinerpt, FREESEGVERTEX);
+    for (i = 0; i < 3; i++) {
+      steinerpt[i] = 0.5 * (startpt[i] + endpt[i]);
+    }
+
+    // We need to locate the point.
+    assert(searchtet.tet != NULL); // Start searching from 'searchtet'.
+    spivot(*misseg, splitsh);
+    ivf.iloc = (int) OUTSIDE;
+    ivf.bowywat = 1;
+    ivf.lawson = 0;
+    ivf.rejflag = 0;
+    ivf.chkencflag = 0;
+    ivf.sloc = (int) ONEDGE;
+    ivf.sbowywat = 1;
+    ivf.splitbdflag = 0;
+    ivf.validflag = 1;
+    ivf.respectbdflag = 1;
+    ivf.assignmeshsize = b->metric;
+    if (!insertpoint(steinerpt, &searchtet, &splitsh, misseg, &ivf)) {
+      assert(0);
+    }
+  } // if (endi > 0)
+
+  // Save this Steiner point (for removal).
+  //   Re-use the array 'subvertstack'.
+  subvertstack->newindex((void **) &parypt);
+  *parypt = steinerpt;
+
+  st_segref_count++;
+  if (steinerleft > 0) steinerleft--;
+
+  return 1;
+}
+
+int meshGRegionBoundaryRecovery::recoversegments(arraypool *misseglist,
+  int fullsearch, int steinerflag)
+{
+  triface searchtet, spintet;
+  face sseg, *paryseg;
+  point startpt, endpt;
+  int success;
+  int t1ver;
+  long bak_inpoly_count = st_volref_count;
+  long bak_segref_count = st_segref_count;
+
+  if (b->verbose > 1) {
+    printf("    Recover segments [%s level = %2d] #:  %ld.\n",
+           (b->fliplinklevel > 0) ? "fixed" : "auto",
+           (b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel,
+           subsegstack->objects);
+  }
+
+  // Loop until 'subsegstack' is empty.
+  while (subsegstack->objects > 0l) {
+    // seglist is used as a stack.
+    subsegstack->objects--;
+    paryseg = (face *) fastlookup(subsegstack, subsegstack->objects);
+    sseg = *paryseg;
+
+    // Check if this segment has been recovered.
+    sstpivot1(sseg, searchtet);
+    if (searchtet.tet != NULL) {
+      continue; // Not a missing segment.
+    }
+
+    startpt = sorg(sseg);
+    endpt = sdest(sseg);
+
+    if (b->verbose > 2) {
+      printf("      Recover segment (%d, %d).\n", pointmark(startpt),
+             pointmark(endpt));
+    }
+
+    success = 0;
+
+    if (recoveredgebyflips(startpt, endpt, &searchtet, 0)) {
+      success = 1;
+    } else {
+      // Try to recover it from the other direction.
+      if (recoveredgebyflips(endpt, startpt, &searchtet, 0)) {
+        success = 1;
+      }
+    }
+
+    if (!success && fullsearch) {
+      if (recoveredgebyflips(startpt, endpt, &searchtet, fullsearch)) {
+        success = 1;
+      }
+    }
+
+    if (success) {
+      // Segment is recovered. Insert it.
+      // Let the segment remember an adjacent tet.
+      sstbond1(sseg, searchtet);
+      // Bond the segment to all tets containing it.
+      spintet = searchtet;
+      do {
+        tssbond1(spintet, sseg);
+        fnextself(spintet);
+      } while (spintet.tet != searchtet.tet);
+    } else {
+      if (steinerflag > 0) {
+        // Try to recover the segment but do not split it.
+        if (addsteiner4recoversegment(&sseg, 0)) {
+          success = 1;
+        }
+        if (!success && (steinerflag > 1)) {
+          // Split the segment.
+          addsteiner4recoversegment(&sseg, 1);
+          success = 1;
+        }
+      }
+      if (!success) {
+        if (misseglist != NULL) {
+          // Save this segment.
+          misseglist->newindex((void **) &paryseg);
+          *paryseg = sseg;
+        }
+      }
+    }
+
+  } // while (subsegstack->objects > 0l)
+
+  if (steinerflag) {
+    if (b->verbose > 1) {
+      // Report the number of added Steiner points.
+      if (st_volref_count > bak_inpoly_count) {
+        Msg::Debug("    Add %ld Steiner points in volume.",
+               st_volref_count - bak_inpoly_count);
+      }
+      if (st_segref_count > bak_segref_count) {
+        Msg::Debug("    Add %ld Steiner points in segments.",
+               st_segref_count - bak_segref_count);
+      }
+    }
+  }
+
+  return 0;
+}
+
+int meshGRegionBoundaryRecovery::recoverfacebyflips(point pa, point pb,
+  point pc, face *searchsh, triface* searchtet)
+{
+  triface spintet, flipedge;
+  point pd, pe;
+  enum interresult dir;
+  flipconstraints fc;
+  int types[2], poss[4], intflag;
+  int success, success1;
+  int t1ver;
+  int i, j;
+
+
+  fc.fac[0] = pa;
+  fc.fac[1] = pb;
+  fc.fac[2] = pc;
+  fc.checkflipeligibility = 1;
+  success = 0;
+
+  for (i = 0; i < 3 && !success; i++) {
+    while (1) {
+      // Get a tet containing the edge [a,b].
+      point2tetorg(fc.fac[i], *searchtet);
+      dir = finddirection(searchtet, fc.fac[(i+1)%3]);
+      //assert(dir == ACROSSVERT);
+      assert(dest(*searchtet) == fc.fac[(i+1)%3]);
+      // Search the face [a,b,c]
+      spintet = *searchtet;
+      while (1) {
+        if (apex(spintet) == fc.fac[(i+2)%3]) {
+          // Found the face.
+          *searchtet = spintet;
+          // Return the face [a,b,c].
+          for (j = i; j > 0; j--) {
+            eprevself(*searchtet);
+          }
+          success = 1;
+          break;
+        }
+        fnextself(spintet);
+        if (spintet.tet == searchtet->tet) break;
+      } // while (1)
+      if (success) break;
+      // The face is missing. Try to recover it.
+      success1 = 0;
+      // Find a crossing edge of this face.
+      spintet = *searchtet;
+      while (1) {
+        pd = apex(spintet);
+        pe = oppo(spintet);
+        if ((pd != dummypoint) && (pe != dummypoint)) {
+          // Check if [d,e] intersects [a,b,c]
+          intflag = tri_edge_test(pa, pb, pc, pd, pe, NULL, 1, types, poss);
+          if (intflag > 0) {
+            // By our assumptions, they can only intersect at a single point.
+            if (intflag == 2) {
+              // Check the intersection type.
+              dir = (enum interresult) types[0];
+              if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) {
+                // Go to the edge [d,e].
+                edestoppo(spintet, flipedge); // [d,e,a,b]
+                if (searchsh != NULL) {
+                  // Check if [e,d] is a segment.
+                  if (issubseg(flipedge)) {
+                    if (!b->quiet) {
+                      face checkseg;
+                      tsspivot1(flipedge, checkseg);
+                      Msg::Debug("Found a segment and a subface intersect.");
+                      pd = farsorg(checkseg);
+                      pe = farsdest(checkseg);
+                      Msg::Debug("  1st: [%d, %d] %d.",  pointmark(pd),
+                             pointmark(pe), shellmark(checkseg));
+                      Msg::Debug("  2nd: [%d,%d,%d] %d", pointmark(pa),
+                        pointmark(pb), pointmark(pc), shellmark(*searchsh));
+	                }
+                    terminateBoundaryRecovery(this, 3);
+		          }
+                }
+                // Try to flip the edge [d,e].
+                success1 = (removeedgebyflips(&flipedge, &fc) == 2);
+              } else {
+                if (dir == TOUCHFACE) {
+                  point touchpt, *parypt;
+                  if (poss[1] == 0) {
+                    touchpt = pd; // pd is a coplanar vertex.
+                  } else {
+                    touchpt = pe; // pe is a coplanar vertex.
+                  }
+                  if (pointtype(touchpt) == FREEVOLVERTEX) {
+                    // A volume Steiner point was added in this subface.
+                    // Split this subface by this point.
+                    face checksh, *parysh;
+                    int siloc = (int) ONFACE;
+                    int sbowat = 0; // Only split this subface.
+                    setpointtype(touchpt, FREEFACETVERTEX);
+                    sinsertvertex(touchpt, searchsh, NULL, siloc, sbowat, 0);
+                    st_volref_count--;
+                    st_facref_count++;
+                    // Queue this vertex for removal.
+                    subvertstack->newindex((void **) &parypt);
+                    *parypt = touchpt;
+                    // Queue new subfaces for recovery.
+                    // Put all new subfaces into stack for recovery.
+                    for (i = 0; i < caveshbdlist->objects; i++) {
+                      // Get an old subface at edge [a, b].
+                      parysh = (face *) fastlookup(caveshbdlist, i);
+                      spivot(*parysh, checksh); // The new subface [a, b, p].
+                      // Do not recover a deleted new face (degenerated).
+                      if (checksh.sh[3] != NULL) {
+                        subfacstack->newindex((void **) &parysh);
+                        *parysh = checksh;
+                      }
+                    }
+                    // Delete the old subfaces in sC(p).
+                    assert(caveshlist->objects == 1);
+                    for (i = 0; i < caveshlist->objects; i++) {
+                      parysh = (face *) fastlookup(caveshlist, i);
+                      shellfacedealloc(subfaces, parysh->sh);
+                    }
+                    // Clear working lists.
+                    caveshlist->restart();
+                    caveshbdlist->restart();
+                    cavesegshlist->restart();
+                    // We can return this function.
+                    searchsh->sh = NULL; // It has been split.
+                    success1 = 0;
+                    success = 1;
+                  } else {
+                    // It should be a PLC problem.
+                    if (pointtype(touchpt) == FREESEGVERTEX) {
+                      // A segment and a subface intersect.
+                    } else if (pointtype(touchpt) == FREEFACETVERTEX) {
+                      // Two facets self-intersect.
+                    }
+                    terminateBoundaryRecovery(this, 3);
+                  }
+                } else {
+                  assert(0); // Unknown cases. Debug.
+                }
+              }
+              break;
+            } else { // intflag == 4. Coplanar case.
+              // This may be an input PLC error.
+              assert(0);
+            }
+          } // if (intflag > 0)
+        }
+        fnextself(spintet);
+        assert(spintet.tet != searchtet->tet);
+      } // while (1)
+      if (!success1) break;
+    } // while (1)
+  } // i
+
+  return success;
+}
+
+int meshGRegionBoundaryRecovery::recoversubfaces(arraypool *misshlist,
+  int steinerflag)
+{
+  triface searchtet, neightet, spintet;
+  face searchsh, neighsh, neineish, *parysh;
+  face bdsegs[3];
+  point startpt, endpt, apexpt, *parypt;
+  point steinerpt;
+  enum interresult dir;
+  insertvertexflags ivf;
+  int success;
+  int t1ver;
+  int i, j;
+
+  if (b->verbose > 1) {
+    printf("    Recover subfaces [%s level = %2d] #:  %ld.\n",
+           (b->fliplinklevel > 0) ? "fixed" : "auto",
+           (b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel,
+           subfacstack->objects);
+  }
+
+  // Loop until 'subfacstack' is empty.
+  while (subfacstack->objects > 0l) {
+
+    subfacstack->objects--;
+    parysh = (face *) fastlookup(subfacstack, subfacstack->objects);
+    searchsh = *parysh;
+
+    if (searchsh.sh[3] == NULL) continue; // Skip a dead subface.
+
+    stpivot(searchsh, neightet);
+    if (neightet.tet != NULL) continue; // Skip a recovered subface.
+
+
+    if (b->verbose > 2) {
+      printf("      Recover subface (%d, %d, %d).\n",pointmark(sorg(searchsh)),
+             pointmark(sdest(searchsh)), pointmark(sapex(searchsh)));
+    }
+
+    // The three edges of the face need to be existed first.
+    for (i = 0; i < 3; i++) {
+      sspivot(searchsh, bdsegs[i]);
+      if (bdsegs[i].sh != NULL) {
+        // The segment must exist.
+        sstpivot1(bdsegs[i], searchtet);
+        if (searchtet.tet == NULL) {
+          assert(0);
+        }
+      } else {
+        // This edge is not a segment (due to a Steiner point).
+        // Check whether it exists or not.
+        success = 0;
+        startpt = sorg(searchsh);
+        endpt = sdest(searchsh);
+        point2tetorg(startpt, searchtet);
+        dir = finddirection(&searchtet, endpt);
+        if (dir == ACROSSVERT) {
+          if (dest(searchtet) == endpt) {
+            success = 1;
+          } else {
+            //assert(0); // A PLC problem.
+            terminateBoundaryRecovery(this, 3);
+          }
+        } else {
+          // The edge is missing. Try to recover it.
+          if (recoveredgebyflips(startpt, endpt, &searchtet, 0)) {
+            success = 1;
+          } else {
+            if (recoveredgebyflips(endpt, startpt, &searchtet, 0)) {
+              success = 1;
+            }
+          }
+        }
+        if (success) {
+          // Insert a temporary segment to protect this edge.
+          makeshellface(subsegs, &(bdsegs[i]));
+          setshvertices(bdsegs[i], startpt, endpt, NULL);
+          smarktest2(bdsegs[i]); // It's a temporary segment.
+          // Insert this segment into surface mesh.
+          ssbond(searchsh, bdsegs[i]);
+          spivot(searchsh, neighsh);
+          if (neighsh.sh != NULL) {
+            ssbond(neighsh, bdsegs[i]);
+          }
+          // Insert this segment into tetrahedralization.
+          sstbond1(bdsegs[i], searchtet);
+          // Bond the segment to all tets containing it.
+          spintet = searchtet;
+          do {
+            tssbond1(spintet, bdsegs[i]);
+            fnextself(spintet);
+          } while (spintet.tet != searchtet.tet);
+        } else {
+          // An edge of this subface is missing. Can't recover this subface.
+          // Delete any temporary segment that has been created.
+          for (j = (i - 1); j >= 0; j--) {
+            if (smarktest2ed(bdsegs[j])) {
+              spivot(bdsegs[j], neineish);
+              assert(neineish.sh != NULL);
+              //if (neineish.sh != NULL) {
+                ssdissolve(neineish);
+                spivot(neineish, neighsh);
+                if (neighsh.sh != NULL) {
+                  ssdissolve(neighsh);
+                  // There should be only two subfaces at this segment.
+                  spivotself(neighsh); // SELF_CHECK
+                  assert(neighsh.sh == neineish.sh);
+                }
+	          //}
+              sstpivot1(bdsegs[j], searchtet);
+              assert(searchtet.tet != NULL);
+              //if (searchtet.tet != NULL) {
+                spintet = searchtet;
+                while (1) {
+                  tssdissolve1(spintet);
+                  fnextself(spintet);
+                  if (spintet.tet == searchtet.tet) break;
+                }
+	          //}
+              shellfacedealloc(subsegs, bdsegs[j].sh);
+            }
+          } // j
+          if (steinerflag) {
+            // Add a Steiner point at the midpoint of this edge.
+            if (b->verbose > 2) {
+              printf("      Add a Steiner point in subedge (%d, %d).\n",
+                     pointmark(startpt), pointmark(endpt));
+            }
+            makepoint(&steinerpt, FREEFACETVERTEX);
+            for (j = 0; j < 3; j++) {
+              steinerpt[j] = 0.5 * (startpt[j] + endpt[j]);
+            }
+
+            point2tetorg(startpt, searchtet); // Start from 'searchtet'.
+            ivf.iloc = (int) OUTSIDE; // Need point location.
+            ivf.bowywat = 1;
+            ivf.lawson = 0;
+            ivf.rejflag = 0;
+            ivf.chkencflag = 0;
+            ivf.sloc = (int) ONEDGE;
+            ivf.sbowywat = 1; // Allow flips in facet.
+            ivf.splitbdflag = 0;
+            ivf.validflag = 1;
+            ivf.respectbdflag = 1;
+            ivf.assignmeshsize = b->metric;
+            if (!insertpoint(steinerpt, &searchtet, &searchsh, NULL, &ivf)) {
+              assert(0);
+            }
+            // Save this Steiner point (for removal).
+            //   Re-use the array 'subvertstack'.
+            subvertstack->newindex((void **) &parypt);
+            *parypt = steinerpt;
+
+            st_facref_count++;
+            if (steinerleft > 0) steinerleft--;
+          } // if (steinerflag)
+          break;
+        }
+      }
+      senextself(searchsh);
+    } // i
+
+    if (i == 3) {
+      // Recover the subface.
+      startpt = sorg(searchsh);
+      endpt   = sdest(searchsh);
+      apexpt  = sapex(searchsh);
+
+      success = recoverfacebyflips(startpt,endpt,apexpt,&searchsh,&searchtet);
+
+      // Delete any temporary segment that has been created.
+      for (j = 0; j < 3; j++) {
+        if (smarktest2ed(bdsegs[j])) {
+          spivot(bdsegs[j], neineish);
+          assert(neineish.sh != NULL);
+          //if (neineish.sh != NULL) {
+            ssdissolve(neineish);
+            spivot(neineish, neighsh);
+            if (neighsh.sh != NULL) {
+              ssdissolve(neighsh);
+              // There should be only two subfaces at this segment.
+              spivotself(neighsh); // SELF_CHECK
+              assert(neighsh.sh == neineish.sh);
+            }
+	      //}
+          sstpivot1(bdsegs[j], neightet);
+          assert(neightet.tet != NULL);
+          //if (neightet.tet != NULL) {
+            spintet = neightet;
+            while (1) {
+              tssdissolve1(spintet);
+              fnextself(spintet);
+              if (spintet.tet == neightet.tet) break;
+            }
+	      //}
+          shellfacedealloc(subsegs, bdsegs[j].sh);
+        }
+      } // j
+
+      if (success) {
+        if (searchsh.sh != NULL) {
+          // Face is recovered. Insert it.
+          tsbond(searchtet, searchsh);
+          fsymself(searchtet);
+          sesymself(searchsh);
+          tsbond(searchtet, searchsh);
+        }
+      } else {
+        if (steinerflag) {
+          // Add a Steiner point at the barycenter of this subface.
+          if (b->verbose > 2) {
+            printf("      Add a Steiner point in subface (%d, %d, %d).\n",
+                   pointmark(startpt), pointmark(endpt), pointmark(apexpt));
+          }
+          makepoint(&steinerpt, FREEFACETVERTEX);
+          for (j = 0; j < 3; j++) {
+            steinerpt[j] = (startpt[j] + endpt[j] + apexpt[j]) / 3.0;
+          }
+
+          point2tetorg(startpt, searchtet); // Start from 'searchtet'.
+          ivf.iloc = (int) OUTSIDE; // Need point location.
+          ivf.bowywat = 1;
+          ivf.lawson = 0;
+          ivf.rejflag = 0;
+          ivf.chkencflag = 0;
+          ivf.sloc = (int) ONFACE;
+          ivf.sbowywat = 1; // Allow flips in facet.
+          ivf.splitbdflag = 0;
+          ivf.validflag = 1;
+          ivf.respectbdflag = 1;
+          ivf.assignmeshsize = b->metric;
+          if (!insertpoint(steinerpt, &searchtet, &searchsh, NULL, &ivf)) {
+            assert(0);
+          }
+          // Save this Steiner point (for removal).
+          //   Re-use the array 'subvertstack'.
+          subvertstack->newindex((void **) &parypt);
+          *parypt = steinerpt;
+
+          st_facref_count++;
+          if (steinerleft > 0) steinerleft--;
+        } // if (steinerflag)
+      }
+    } else {
+      success = 0;
+    }
+
+    if (!success) {
+      if (misshlist != NULL) {
+        // Save this subface.
+        misshlist->newindex((void **) &parysh);
+        *parysh = searchsh;
+      }
+    }
+
+  } // while (subfacstack->objects > 0l)
+
+  return 0;
+}
+
+int meshGRegionBoundaryRecovery::getvertexstar(int fullstar, point searchpt,
+  arraypool* tetlist, arraypool* vertlist, arraypool* shlist)
+{
+  triface searchtet, neightet, *parytet;
+  face checksh, *parysh;
+  point pt, *parypt;
+  int collectflag;
+  int t1ver;
+  int i, j;
+
+  point2tetorg(searchpt, searchtet);
+
+  // Go to the opposite face (the link face) of the vertex.
+  enextesymself(searchtet);
+  //assert(oppo(searchtet) == searchpt);
+  infect(searchtet); // Collect this tet (link face).
+  tetlist->newindex((void **) &parytet);
+  *parytet = searchtet;
+  if (vertlist != NULL) {
+    // Collect three (link) vertices.
+    j = (searchtet.ver & 3); // The current vertex index.
+    for (i = 1; i < 4; i++) {
+      pt = (point) searchtet.tet[4 + ((j + i) % 4)];
+      pinfect(pt);
+      vertlist->newindex((void **) &parypt);
+      *parypt = pt;
+    }
+  }
+
+  collectflag = 1;
+  esym(searchtet, neightet);
+  if (issubface(neightet)) {
+    if (shlist != NULL) {
+      tspivot(neightet, checksh);
+      if (!sinfected(checksh)) {
+        // Collect this subface (link edge).
+        sinfected(checksh);
+        shlist->newindex((void **) &parysh);
+        *parysh = checksh;
+      }
+    }
+    if (!fullstar) {
+      collectflag = 0;
+    }
+  }
+  if (collectflag) {
+    fsymself(neightet); // Goto the adj tet of this face.
+    esymself(neightet); // Goto the oppo face of this vertex.
+    // assert(oppo(neightet) == searchpt);
+    infect(neightet); // Collect this tet (link face).
+    tetlist->newindex((void **) &parytet);
+    *parytet = neightet;
+    if (vertlist != NULL) {
+      // Collect its apex.
+      pt = apex(neightet);
+      pinfect(pt);
+      vertlist->newindex((void **) &parypt);
+      *parypt = pt;
+    }
+  } // if (collectflag)
+
+  // Continue to collect all tets in the star.
+  for (i = 0; i < tetlist->objects; i++) {
+    searchtet = * (triface *) fastlookup(tetlist, i);
+    // Note that 'searchtet' is a face opposite to 'searchpt', and the neighbor
+    //   tet at the current edge is already collected.
+    // Check the neighbors at the other two edges of this face.
+    for (j = 0; j < 2; j++) {
+      collectflag = 1;
+      enextself(searchtet);
+      esym(searchtet, neightet);
+      if (issubface(neightet)) {
+        if (shlist != NULL) {
+          tspivot(neightet, checksh);
+          if (!sinfected(checksh)) {
+            // Collect this subface (link edge).
+            sinfected(checksh);
+            shlist->newindex((void **) &parysh);
+            *parysh = checksh;
+          }
+        }
+        if (!fullstar) {
+          collectflag = 0;
+        }
+      }
+      if (collectflag) {
+        fsymself(neightet);
+        if (!infected(neightet)) {
+          esymself(neightet); // Go to the face opposite to 'searchpt'.
+          infect(neightet);
+          tetlist->newindex((void **) &parytet);
+          *parytet = neightet;
+          if (vertlist != NULL) {
+            // Check if a vertex is collected.
+            pt = apex(neightet);
+            if (!pinfected(pt)) {
+              pinfect(pt);
+              vertlist->newindex((void **) &parypt);
+              *parypt = pt;
+            }
+          }
+        } // if (!infected(neightet))
+      } // if (collectflag)
+    } // j
+  } // i
+
+
+  // Uninfect the list of tets and vertices.
+  for (i = 0; i < tetlist->objects; i++) {
+    parytet = (triface *) fastlookup(tetlist, i);
+    uninfect(*parytet);
+  }
+
+  if (vertlist != NULL) {
+    for (i = 0; i < vertlist->objects; i++) {
+      parypt = (point *) fastlookup(vertlist, i);
+      puninfect(*parypt);
+    }
+  }
+
+  if (shlist != NULL) {
+    for (i = 0; i < shlist->objects; i++) {
+      parysh = (face *) fastlookup(shlist, i);
+      suninfect(*parysh);
+    }
+  }
+
+  return (int) tetlist->objects;
+}
+
+int meshGRegionBoundaryRecovery::getedge(point e1, point e2, triface *tedge)
+{
+  triface searchtet, neightet, *parytet;
+  point pt;
+  int done;
+  int i, j;
+
+  if (b->verbose > 2) {
+    printf("      Get edge from %d to %d.\n", pointmark(e1), pointmark(e2));
+  }
+
+  // Quickly check if 'tedge' is just this edge.
+  if (!isdeadtet(*tedge)) {
+    if (org(*tedge) == e1) {
+      if (dest(*tedge) == e2) {
+        return 1;
+      }
+    } else if (org(*tedge) == e2) {
+      if (dest(*tedge) == e1) {
+        esymself(*tedge);
+        return 1;
+      }
+    }
+  }
+
+  // Search for the edge [e1, e2].
+  point2tetorg(e1, *tedge);
+  finddirection(tedge, e2);
+  if (dest(*tedge) == e2) {
+    return 1;
+  } else {
+    // Search for the edge [e2, e1].
+    point2tetorg(e2, *tedge);
+    finddirection(tedge, e1);
+    if (dest(*tedge) == e1) {
+      esymself(*tedge);
+      return 1;
+    }
+  }
+
+
+  // Go to the link face of e1.
+  point2tetorg(e1, searchtet);
+  enextesymself(searchtet);
+  //assert(oppo(searchtet) == e1);
+
+  assert(cavebdrylist->objects == 0l); // It will re-use this list.
+  arraypool *tetlist = cavebdrylist;
+
+  // Search e2.
+  for (i = 0; i < 3; i++) {
+    pt = apex(searchtet);
+    if (pt == e2) {
+      // Found. 'searchtet' is [#,#,e2,e1].
+      eorgoppo(searchtet, *tedge); // [e1,e2,#,#].
+      return 1;
+    }
+    enextself(searchtet);
+  }
+
+  // Get the adjacent link face at 'searchtet'.
+  fnext(searchtet, neightet);
+  esymself(neightet);
+  // assert(oppo(neightet) == e1);
+  pt = apex(neightet);
+  if (pt == e2) {
+    // Found. 'neightet' is [#,#,e2,e1].
+    eorgoppo(neightet, *tedge); // [e1,e2,#,#].
+    return 1;
+  }
+
+  // Continue searching in the link face of e1.
+  infect(searchtet);
+  tetlist->newindex((void **) &parytet);
+  *parytet = searchtet;
+  infect(neightet);
+  tetlist->newindex((void **) &parytet);
+  *parytet = neightet;
+
+  done = 0;
+
+  for (i = 0; (i < tetlist->objects) && !done; i++) {
+    parytet = (triface *) fastlookup(tetlist, i);
+    searchtet = *parytet;
+    for (j = 0; (j < 2) && !done; j++) {
+      enextself(searchtet);
+      fnext(searchtet, neightet);
+      if (!infected(neightet)) {
+        esymself(neightet);
+        pt = apex(neightet);
+        if (pt == e2) {
+          // Found. 'neightet' is [#,#,e2,e1].
+          eorgoppo(neightet, *tedge);
+          done = 1;
+        } else {
+          infect(neightet);
+          tetlist->newindex((void **) &parytet);
+          *parytet = neightet;
+        }
+      }
+    } // j
+  } // i
+
+  // Uninfect the list of visited tets.
+  for (i = 0; i < tetlist->objects; i++) {
+    parytet = (triface *) fastlookup(tetlist, i);
+    uninfect(*parytet);
+  }
+  tetlist->restart();
+
+  return done;
+}
+
+int meshGRegionBoundaryRecovery::reduceedgesatvertex(point startpt,
+  arraypool* endptlist)
+{
+  triface searchtet;
+  point *pendpt, *parypt;
+  enum interresult dir;
+  flipconstraints fc;
+  int reduceflag;
+  int count;
+  int n, i, j;
+
+
+  fc.remvert = startpt;
+  fc.checkflipeligibility = 1;
+
+  while (1) {
+
+    count = 0;
+
+    for (i = 0; i < endptlist->objects; i++) {
+      pendpt = (point *) fastlookup(endptlist, i);
+      if (*pendpt == dummypoint) {
+        continue; // Do not reduce a virtual edge.
+      }
+      reduceflag = 0;
+      // Find the edge.
+      if (nonconvex) {
+        if (getedge(startpt, *pendpt, &searchtet)) {
+          dir = ACROSSVERT;
+        } else {
+          // The edge does not exist (was flipped).
+          dir = INTERSECT;
+        }
+      } else {
+        point2tetorg(startpt, searchtet);
+        dir = finddirection(&searchtet, *pendpt);
+      }
+      if (dir == ACROSSVERT) {
+        if (dest(searchtet) == *pendpt) {
+          // Do not flip a segment.
+          if (!issubseg(searchtet)) {
+            n = removeedgebyflips(&searchtet, &fc);
+            if (n == 2) {
+              reduceflag = 1;
+            }
+          }
+        } else {
+          assert(0); // A plc problem.
+        }
+      } else {
+        // The edge has been flipped.
+        reduceflag = 1;
+      }
+      if (reduceflag) {
+        count++;
+        // Move the last vertex into this slot.
+        j = endptlist->objects - 1;
+        parypt = (point *) fastlookup(endptlist, j);
+        *pendpt = *parypt;
+        endptlist->objects--;
+        i--;
+      }
+    } // i
+
+    if (count == 0) {
+      // No edge is reduced.
+      break;
+    }
+
+  } // while (1)
+
+  return (int) endptlist->objects;
+}
+
+int meshGRegionBoundaryRecovery::removevertexbyflips(point steinerpt)
+{
+  triface *fliptets = NULL, wrktets[4];
+  triface searchtet, spintet, neightet;
+  face parentsh, spinsh, checksh;
+  face leftseg, rightseg, checkseg;
+  point lpt = NULL, rpt = NULL, apexpt; //, *parypt;
+  flipconstraints fc;
+  enum verttype vt;
+  enum locateresult loc;
+  int valence, removeflag;
+  int slawson;
+  int t1ver;
+  int n, i;
+
+  vt = pointtype(steinerpt);
+
+  if (vt == FREESEGVERTEX) {
+    sdecode(point2sh(steinerpt), leftseg);
+    assert(leftseg.sh != NULL);
+    leftseg.shver = 0;
+    if (sdest(leftseg) == steinerpt) {
+      senext(leftseg, rightseg);
+      spivotself(rightseg);
+      assert(rightseg.sh != NULL);
+      rightseg.shver = 0;
+      assert(sorg(rightseg) == steinerpt);
+    } else {
+      assert(sorg(leftseg) == steinerpt);
+      rightseg = leftseg;
+      senext2(rightseg, leftseg);
+      spivotself(leftseg);
+      assert(leftseg.sh != NULL);
+      leftseg.shver = 0;
+      assert(sdest(leftseg) == steinerpt);
+    }
+    lpt = sorg(leftseg);
+    rpt = sdest(rightseg);
+    if (b->verbose > 2) {
+      printf("      Removing Steiner point %d in segment (%d, %d).\n",
+             pointmark(steinerpt), pointmark(lpt), pointmark(rpt));
+
+    }
+  } else if (vt == FREEFACETVERTEX) {
+    if (b->verbose > 2) {
+      printf("      Removing Steiner point %d in facet.\n",
+             pointmark(steinerpt));
+    }
+  } else if (vt == FREEVOLVERTEX) {
+    if (b->verbose > 2) {
+      printf("      Removing Steiner point %d in volume.\n",
+             pointmark(steinerpt));
+    }
+  } else if (vt == VOLVERTEX) {
+    if (b->verbose > 2) {
+      printf("      Removing a point %d in volume.\n",
+             pointmark(steinerpt));
+    }
+  } else {
+    // It is not a Steiner point.
+    return 0;
+  }
+
+  // Try to reduce the number of edges at 'p' by flips.
+  getvertexstar(1, steinerpt, cavetetlist, cavetetvertlist, NULL);
+  cavetetlist->restart(); // This list may be re-used.
+  if (cavetetvertlist->objects > 3l) {
+    valence = reduceedgesatvertex(steinerpt, cavetetvertlist);
+  } else {
+    valence = cavetetvertlist->objects;
+  }
+  assert(cavetetlist->objects == 0l);
+  cavetetvertlist->restart();
+
+  removeflag = 0;
+
+  if (valence == 4) {
+    // Only 4 vertices (4 tets) left! 'p' is inside the convex hull of the 4
+    //   vertices. This case is due to that 'p' is not exactly on the segment.
+    point2tetorg(steinerpt, searchtet);
+    loc = INTETRAHEDRON;
+    removeflag = 1;
+  } else if (valence == 5) {
+    // There are 5 edges.
+    if (vt == FREESEGVERTEX) {
+      sstpivot1(leftseg, searchtet);
+      if (org(searchtet) != steinerpt) {
+        esymself(searchtet);
+      }
+      assert(org(searchtet) == steinerpt);
+      assert(dest(searchtet) == lpt);
+      i = 0; // Count the numbe of tet at the edge [p,lpt].
+      neightet.tet = NULL; // Init the face.
+      spintet = searchtet;
+      while (1) {
+        i++;
+        if (apex(spintet) == rpt) {
+          // Remember the face containing the edge [lpt, rpt].
+          neightet = spintet;
+        }
+        fnextself(spintet);
+        if (spintet.tet == searchtet.tet) break;
+      }
+      if (i == 3) {
+        // This case has been checked below.
+      } else if (i == 4) {
+        // There are 4 tets sharing at [p,lpt]. There must be 4 tets sharing
+        //   at [p,rpt].  There must be a face [p, lpt, rpt].
+        if (apex(neightet) == rpt) {
+          // The edge (segment) has been already recovered!
+          // Check if a 6-to-2 flip is possible (to remove 'p').
+          // Let 'searchtet' be [p,d,a,b]
+          esym(neightet, searchtet);
+          enextself(searchtet);
+          // Check if there are exactly three tets at edge [p,d].
+          wrktets[0] = searchtet; // [p,d,a,b]
+          for (i = 0; i < 2; i++) {
+            fnext(wrktets[i], wrktets[i+1]); // [p,d,b,c], [p,d,c,a]
+          }
+          if (apex(wrktets[0]) == oppo(wrktets[2])) {
+            loc = ONFACE;
+            removeflag = 1;
+          }
+        }
+      }
+    } else if (vt == FREEFACETVERTEX) {
+      // It is possible to do a 6-to-2 flip to remove the vertex.
+      point2tetorg(steinerpt, searchtet);
+      // Get the three faces of 'searchtet' which share at p.
+      //    All faces has p as origin.
+      wrktets[0] = searchtet;
+      wrktets[1] = searchtet;
+      esymself(wrktets[1]);
+      enextself(wrktets[1]);
+      wrktets[2] = searchtet;
+      eprevself(wrktets[2]);
+      esymself(wrktets[2]);
+      // All internal edges of the six tets have valance either 3 or 4.
+      // Get one edge which has valance 3.
+      searchtet.tet = NULL;
+      for (i = 0; i < 3; i++) {
+        spintet = wrktets[i];
+        valence = 0;
+        while (1) {
+          valence++;
+          fnextself(spintet);
+          if (spintet.tet == wrktets[i].tet) break;
+        }
+        if (valence == 3) {
+          // Found the edge.
+          searchtet = wrktets[i];
+          break;
+        } else {
+          assert(valence == 4);
+        }
+      }
+      assert(searchtet.tet != NULL);
+      // Note, we do not detach the three subfaces at p.
+      // They will be removed within a 4-to-1 flip.
+      loc = ONFACE;
+      removeflag = 1;
+    } else {
+      // assert(0); DEBUG IT
+    }
+    //removeflag = 1;
+  }
+
+  if (!removeflag) {
+    if (vt == FREESEGVERTEX) {
+      // Check is it possible to recover the edge [lpt,rpt].
+      // The condition to check is:  Whether each tet containing 'leftseg' is
+      //   adjacent to a tet containing 'rightseg'.
+      sstpivot1(leftseg, searchtet);
+      if (org(searchtet) != steinerpt) {
+        esymself(searchtet);
+      }
+      assert(org(searchtet) == steinerpt);
+      assert(dest(searchtet) == lpt);
+      spintet = searchtet;
+      while (1) {
+        // Go to the bottom face of this tet.
+        eprev(spintet, neightet);
+        esymself(neightet);  // [steinerpt, p1, p2, lpt]
+        // Get the adjacent tet.
+        fsymself(neightet);  // [p1, steinerpt, p2, rpt]
+        if (oppo(neightet) != rpt) {
+          // Found a non-matching adjacent tet.
+          break;
+        }
+        fnextself(spintet);
+        if (spintet.tet == searchtet.tet) {
+          // 'searchtet' is [p,d,p1,p2].
+          loc = ONEDGE;
+          removeflag = 1;
+          break;
+        }
+      }
+    } // if (vt == FREESEGVERTEX)
+  }
+
+  if (!removeflag) {
+    if (vt == FREESEGVERTEX) {
+      // Check if the edge [lpt, rpt] exists.
+      if (getedge(lpt, rpt, &searchtet)) {
+        // We have recovered this edge. Shift the vertex into the volume.
+        // We can recover this edge if the subfaces are not recovered yet.
+        if (!checksubfaceflag) {
+          // Remove the vertex from the surface mesh.
+          //   This will re-create the segment [lpt, rpt] and re-triangulate
+          //   all the facets at the segment.
+          // Detach the subsegments from their surrounding tets.
+          for (i = 0; i < 2; i++) {
+            checkseg = (i == 0) ? leftseg : rightseg;
+            sstpivot1(checkseg, neightet);
+            spintet = neightet;
+            while (1) {
+              tssdissolve1(spintet);
+              fnextself(spintet);
+              if (spintet.tet == neightet.tet) break;
+            }
+            sstdissolve1(checkseg);
+          } // i
+          slawson = 1; // Do lawson flip after removal.
+          spivot(rightseg, parentsh); // 'rightseg' has p as its origin.
+          sremovevertex(steinerpt, &parentsh, &rightseg, slawson);
+          // Clear the list for new subfaces.
+          caveshbdlist->restart();
+          // Insert the new segment.
+          assert(org(searchtet) == lpt);
+          assert(dest(searchtet) == rpt);
+          sstbond1(rightseg, searchtet);
+          spintet = searchtet;
+          while (1) {
+            tsspivot1(spintet, checkseg); // FOR DEBUG ONLY
+            assert(checkseg.sh == NULL);  // FOR DEBUG ONLY
+            tssbond1(spintet, rightseg);
+            fnextself(spintet);
+            if (spintet.tet == searchtet.tet) break;
+          }
+          // The Steiner point has been shifted into the volume.
+          setpointtype(steinerpt, FREEVOLVERTEX);
+          st_segref_count--;
+          st_volref_count++;
+          return 1;
+        } // if (!checksubfaceflag)
+      } // if (getedge(...))
+    } // if (vt == FREESEGVERTEX)
+  } // if (!removeflag)
+
+  if (!removeflag) {
+    return 0;
+  }
+
+  assert(org(searchtet) == steinerpt);
+
+  if (vt == FREESEGVERTEX) {
+    // Detach the subsegments from their surronding tets.
+    for (i = 0; i < 2; i++) {
+      checkseg = (i == 0) ? leftseg : rightseg;
+      sstpivot1(checkseg, neightet);
+      spintet = neightet;
+      while (1) {
+        tssdissolve1(spintet);
+        fnextself(spintet);
+        if (spintet.tet == neightet.tet) break;
+      }
+      sstdissolve1(checkseg);
+    } // i
+    if (checksubfaceflag) {
+      // Detach the subfaces at the subsegments from their attached tets.
+      for (i = 0; i < 2; i++) {
+        checkseg = (i == 0) ? leftseg : rightseg;
+        spivot(checkseg, parentsh);
+        if (parentsh.sh != NULL) {
+          spinsh = parentsh;
+          while (1) {
+            stpivot(spinsh, neightet);
+            if (neightet.tet != NULL) {
+              tsdissolve(neightet);
+            }
+            sesymself(spinsh);
+            stpivot(spinsh, neightet);
+            if (neightet.tet != NULL) {
+              tsdissolve(neightet);
+            }
+            stdissolve(spinsh);
+            spivotself(spinsh); // Go to the next subface.
+            if (spinsh.sh == parentsh.sh) break;
+          }
+        }
+      } // i
+    } // if (checksubfaceflag)
+  }
+
+  if (loc == INTETRAHEDRON) {
+    // Collect the four tets containing 'p'.
+    fliptets = new triface[4];
+    fliptets[0] = searchtet; // [p,d,a,b]
+    for (i = 0; i < 2; i++) {
+      fnext(fliptets[i], fliptets[i+1]); // [p,d,b,c], [p,d,c,a]
+    }
+    eprev(fliptets[0], fliptets[3]);
+    fnextself(fliptets[3]); // it is [a,p,b,c]
+    eprevself(fliptets[3]);
+    esymself(fliptets[3]); // [a,b,c,p].
+    // Remove p by a 4-to-1 flip.
+    //flip41(fliptets, 1, 0, 0);
+    flip41(fliptets, 1, &fc);
+    //recenttet = fliptets[0];
+  } else if (loc == ONFACE) {
+    // Let the original two tets be [a,b,c,d] and [b,a,c,e]. And p is in
+    //   face [a,b,c].  Let 'searchtet' be the tet [p,d,a,b].
+    // Collect the six tets containing 'p'.
+    fliptets = new triface[6];
+    fliptets[0] = searchtet; // [p,d,a,b]
+    for (i = 0; i < 2; i++) {
+      fnext(fliptets[i], fliptets[i+1]); // [p,d,b,c], [p,d,c,a]
+    }
+    eprev(fliptets[0], fliptets[3]);
+    fnextself(fliptets[3]); // [a,p,b,e]
+    esymself(fliptets[3]);  // [p,a,e,b]
+    eprevself(fliptets[3]); // [e,p,a,b]
+    for (i = 3; i < 5; i++) {
+      fnext(fliptets[i], fliptets[i+1]); // [e,p,b,c], [e,p,c,a]
+    }
+    if (vt == FREEFACETVERTEX) {
+      // We need to determine the location of three subfaces at p.
+      valence = 0; // Re-use it.
+      // Check if subfaces are all located in the lower three tets.
+      //   i.e., [e,p,a,b], [e,p,b,c], and [e,p,c,a].
+      for (i = 3; i < 6; i++) {
+        if (issubface(fliptets[i])) valence++;
+      }
+      if (valence > 0) {
+        assert(valence == 2);
+        // We must do 3-to-2 flip in the upper part. We simply re-arrange
+        //   the six tets.
+        for (i = 0; i < 3; i++) {
+          esym(fliptets[i+3], wrktets[i]);
+          esym(fliptets[i], fliptets[i+3]);
+          fliptets[i] = wrktets[i];
+        }
+        // Swap the last two pairs, i.e., [1]<->[[2], and [4]<->[5]
+        wrktets[1] = fliptets[1];
+        fliptets[1] = fliptets[2];
+        fliptets[2] = wrktets[1];
+        wrktets[1] = fliptets[4];
+        fliptets[4] = fliptets[5];
+        fliptets[5] = wrktets[1];
+      }
+    }
+    // Remove p by a 6-to-2 flip, which is a combination of two flips:
+    //   a 3-to-2 (deletes the edge [e,p]), and
+    //   a 4-to-1 (deletes the vertex p).
+    // First do a 3-to-2 flip on [e,p,a,b],[e,p,b,c],[e,p,c,a]. It creates
+    //   two new tets: [a,b,c,p] and [b,a,c,e].  The new tet [a,b,c,p] is
+    //   degenerate (has zero volume). It will be deleted in the followed
+    //   4-to-1 flip.
+    //flip32(&(fliptets[3]), 1, 0, 0);
+    flip32(&(fliptets[3]), 1, &fc);
+    // Second do a 4-to-1 flip on [p,d,a,b],[p,d,b,c],[p,d,c,a],[a,b,c,p].
+    //   This creates a new tet [a,b,c,d].
+    //flip41(fliptets, 1, 0, 0);
+    flip41(fliptets, 1, &fc);
+    //recenttet = fliptets[0];
+  } else if (loc == ONEDGE) {
+    // Let the original edge be [e,d] and p is in [e,d]. Assume there are n
+    //   tets sharing at edge [e,d] originally.  We number the link vertices
+    //   of [e,d]: p_0, p_1, ..., p_n-1. 'searchtet' is [p,d,p_0,p_1].
+    // Count the number of tets at edge [e,p] and [p,d] (this is n).
+    n = 0;
+    spintet = searchtet;
+    while (1) {
+      n++;
+      fnextself(spintet);
+      if (spintet.tet == searchtet.tet) break;
+    }
+    assert(n >= 3);
+    // Collect the 2n tets containing 'p'.
+    fliptets = new triface[2 * n];
+    fliptets[0] = searchtet; // [p,b,p_0,p_1]
+    for (i = 0; i < (n - 1); i++) {
+      fnext(fliptets[i], fliptets[i+1]); // [p,d,p_i,p_i+1].
+    }
+    eprev(fliptets[0], fliptets[n]);
+    fnextself(fliptets[n]); // [p_0,p,p_1,e]
+    esymself(fliptets[n]);  // [p,p_0,e,p_1]
+    eprevself(fliptets[n]); // [e,p,p_0,p_1]
+    for (i = n; i <  (2 * n - 1); i++) {
+      fnext(fliptets[i], fliptets[i+1]); // [e,p,p_i,p_i+1].
+    }
+    // Remove p by a 2n-to-n flip, it is a sequence of n flips:
+    // - Do a 2-to-3 flip on
+    //     [p_0,p_1,p,d] and
+    //     [p,p_1,p_0,e].
+    //   This produces:
+    //     [e,d,p_0,p_1],
+    //     [e,d,p_1,p] (degenerated), and
+    //     [e,d,p,p_0] (degenerated).
+    wrktets[0] = fliptets[0]; // [p,d,p_0,p_1]
+    eprevself(wrktets[0]);    // [p_0,p,d,p_1]
+    esymself(wrktets[0]);     // [p,p_0,p_1,d]
+    enextself(wrktets[0]);    // [p_0,p_1,p,d] [0]
+    wrktets[1] = fliptets[n]; // [e,p,p_0,p_1]
+    enextself(wrktets[1]);    // [p,p_0,e,p_1]
+    esymself(wrktets[1]);     // [p_0,p,p_1,e]
+    eprevself(wrktets[1]);    // [p_1,p_0,p,e] [1]
+    //flip23(wrktets, 1, 0, 0);
+    flip23(wrktets, 1, &fc);
+    // Save the new tet [e,d,p,p_0] (degenerated).
+    fliptets[n] = wrktets[2];
+    // Save the new tet [e,d,p_0,p_1].
+    fliptets[0] = wrktets[0];
+    // - Repeat from i = 1 to n-2: (n - 2) flips
+    //   - Do a 3-to-2 flip on
+    //       [p,p_i,d,e],
+    //       [p,p_i,e,p_i+1], and
+    //       [p,p_i,p_i+1,d].
+    //     This produces:
+    //       [d,e,p_i+1,p_i], and
+    //       [e,d,p_i+1,p] (degenerated).
+    for (i = 1; i < (n - 1); i++) {
+      wrktets[0] = wrktets[1]; // [e,d,p_i,p] (degenerated).
+      enextself(wrktets[0]);   // [d,p_i,e,p] (...)
+      esymself(wrktets[0]);    // [p_i,d,p,e] (...)
+      eprevself(wrktets[0]);   // [p,p_i,d,e] (degenerated) [0].
+      wrktets[1] = fliptets[n+i];  // [e,p,p_i,p_i+1]
+      enextself(wrktets[1]);       // [p,p_i,e,p_i+1] [1]
+      wrktets[2] = fliptets[i]; // [p,d,p_i,p_i+1]
+      eprevself(wrktets[2]);    // [p_i,p,d,p_i+1]
+      esymself(wrktets[2]);     // [p,p_i,p_i+1,d] [2]
+      //flip32(wrktets, 1, 0, 0);
+      flip32(wrktets, 1, &fc);
+      // Save the new tet [e,d,p_i,p_i+1].         // FOR DEBUG ONLY
+      fliptets[i] = wrktets[0]; // [d,e,p_i+1,p_i] // FOR DEBUG ONLY
+      esymself(fliptets[i]);    // [e,d,p_i,p_i+1] // FOR DEBUG ONLY
+    }
+    // - Do a 4-to-1 flip on
+    //     [p,p_0,e,d],     [d,e,p_0,p],
+    //     [p,p_0,d,p_n-1], [e,p_n-1,p_0,p],
+    //     [p,p_0,p_n-1,e], [p_0,p_n-1,d,p], and
+    //     [e,d,p_n-1,p].
+    //   This produces
+    //     [e,d,p_n-1,p_0] and
+    //     deletes p.
+    wrktets[3] = wrktets[1];  // [e,d,p_n-1,p] (degenerated) [3]
+    wrktets[0] = fliptets[n]; // [e,d,p,p_0] (degenerated)
+    eprevself(wrktets[0]);    // [p,e,d,p_0] (...)
+    esymself(wrktets[0]);     // [e,p,p_0,d] (...)
+    enextself(wrktets[0]);    // [p,p_0,e,d] (degenerated) [0]
+    wrktets[1] = fliptets[n-1];   // [p,d,p_n-1,p_0]
+    esymself(wrktets[1]);         // [d,p,p_0,p_n-1]
+    enextself(wrktets[1]);        // [p,p_0,d,p_n-1] [1]
+    wrktets[2] = fliptets[2*n-1]; // [e,p,p_n-1,p_0]
+    enextself(wrktets[2]);        // [p_p_n-1,e,p_0]
+    esymself(wrktets[2]);         // [p_n-1,p,p_0,e]
+    enextself(wrktets[2]);        // [p,p_0,p_n-1,e] [2]
+    //flip41(wrktets, 1, 0, 0);
+    flip41(wrktets, 1, &fc);
+    // Save the new tet [e,d,p_n-1,p_0]             // FOR DEBUG ONLY
+    fliptets[n-1] = wrktets[0];  // [e,d,p_n-1,p_0] // FOR DEBUG ONLY
+    //recenttet = fliptets[0];
+  } else {
+    assert(0); // Unknown location.
+  } // if (iloc == ...)
+
+  delete [] fliptets;
+
+  if (vt == FREESEGVERTEX) {
+    // Remove the vertex from the surface mesh.
+    //   This will re-create the segment [lpt, rpt] and re-triangulate
+    //   all the facets at the segment.
+    // Only do lawson flip when subfaces are not recovery yet.
+    slawson = (checksubfaceflag ? 0 : 1);
+    spivot(rightseg, parentsh); // 'rightseg' has p as its origin.
+    sremovevertex(steinerpt, &parentsh, &rightseg, slawson);
+
+    // The original segment is returned in 'rightseg'.
+    rightseg.shver = 0;
+    assert(sorg(rightseg) == lpt);
+    assert(sdest(rightseg) == rpt);
+
+    // Insert the new segment.
+    point2tetorg(lpt, searchtet);
+    finddirection(&searchtet, rpt);
+    assert(dest(searchtet) == rpt);
+    sstbond1(rightseg, searchtet);
+    spintet = searchtet;
+    while (1) {
+      tsspivot1(spintet, checkseg); // FOR DEBUG ONLY
+      assert(checkseg.sh == NULL);  // FOR DEBUG ONLY
+      tssbond1(spintet, rightseg);
+      fnextself(spintet);
+      if (spintet.tet == searchtet.tet) break;
+    }
+
+    if (checksubfaceflag) {
+      // Insert subfaces at segment [lpt,rpt] into the tetrahedralization.
+      spivot(rightseg, parentsh);
+      if (parentsh.sh != NULL) {
+        spinsh = parentsh;
+        while (1) {
+          if (sorg(spinsh) != lpt) {
+            sesymself(spinsh);
+            assert(sorg(spinsh) == lpt);
+          }
+          assert(sdest(spinsh) == rpt);
+          apexpt = sapex(spinsh);
+          // Find the adjacent tet of [lpt,rpt,apexpt];
+          spintet = searchtet;
+          while (1) {
+            if (apex(spintet) == apexpt) {
+              tsbond(spintet, spinsh);
+              sesymself(spinsh); // Get to another side of this face.
+              fsym(spintet, neightet);
+              tsbond(neightet, spinsh);
+              sesymself(spinsh); // Get back to the original side.
+              break;
+            }
+            fnextself(spintet);
+            assert(spintet.tet != searchtet.tet);
+            //if (spintet.tet == searchtet.tet) break;
+          }
+          spivotself(spinsh);
+          if (spinsh.sh == parentsh.sh) break;
+        }
+      }
+    } // if (checksubfaceflag)
+
+    // Clear the set of new subfaces.
+    caveshbdlist->restart();
+  } // if (vt == FREESEGVERTEX)
+
+  // The point has been removed.
+  if (pointtype(steinerpt) != UNUSEDVERTEX) {
+    setpointtype(steinerpt, UNUSEDVERTEX);
+    unuverts++;
+  }
+  if (vt != VOLVERTEX) {
+    // Update the correspinding counters.
+    if (vt == FREESEGVERTEX) {
+      st_segref_count--;
+    } else if (vt == FREEFACETVERTEX) {
+      st_facref_count--;
+    } else if (vt == FREEVOLVERTEX) {
+      st_volref_count--;
+    }
+    if (steinerleft > 0) steinerleft++;
+  }
+
+  return 1;
+}
+
+int meshGRegionBoundaryRecovery::suppressbdrysteinerpoint(point steinerpt)
+{
+  face parentsh, spinsh, *parysh;
+  face leftseg, rightseg;
+  point lpt = NULL, rpt = NULL;
+  int i;
+
+  verttype vt = pointtype(steinerpt);
+
+  if (vt == FREESEGVERTEX) {
+    sdecode(point2sh(steinerpt), leftseg);
+    leftseg.shver = 0;
+    if (sdest(leftseg) == steinerpt) {
+      senext(leftseg, rightseg);
+      spivotself(rightseg);
+      assert(rightseg.sh != NULL);
+      rightseg.shver = 0;
+      assert(sorg(rightseg) == steinerpt);
+    } else {
+      assert(sorg(leftseg) == steinerpt);
+      rightseg = leftseg;
+      senext2(rightseg, leftseg);
+      spivotself(leftseg);
+      assert(leftseg.sh != NULL);
+      leftseg.shver = 0;
+      assert(sdest(leftseg) == steinerpt);
+    }
+    lpt = sorg(leftseg);
+    rpt = sdest(rightseg);
+    if (b->verbose > 2) {
+      printf("      Suppressing Steiner point %d in segment (%d, %d).\n",
+             pointmark(steinerpt), pointmark(lpt), pointmark(rpt));
+    }
+    // Get all subfaces at the left segment [lpt, steinerpt].
+    spivot(leftseg, parentsh);
+    spinsh = parentsh;
+    while (1) {
+      cavesegshlist->newindex((void **) &parysh);
+      *parysh = spinsh;
+      // Orient the face consistently.
+      if (sorg(*parysh)!= sorg(parentsh)) sesymself(*parysh);
+      spivotself(spinsh);
+      if (spinsh.sh == NULL) break;
+      if (spinsh.sh == parentsh.sh) break;
+    }
+    if (cavesegshlist->objects < 2) {
+      // It is a single segment. Not handle it yet.
+      cavesegshlist->restart();
+      return 0;
+    }
+  } else if (vt == FREEFACETVERTEX) {
+    if (b->verbose > 2) {
+      printf("      Suppressing Steiner point %d from facet.\n",
+             pointmark(steinerpt));
+    }
+    sdecode(point2sh(steinerpt), parentsh);
+    // A facet Steiner point. There are exactly two sectors.
+    for (i = 0; i < 2; i++) {
+      cavesegshlist->newindex((void **) &parysh);
+      *parysh = parentsh;
+      sesymself(parentsh);
+    }
+  } else {
+    return 0;
+  }
+
+  triface searchtet, neightet, *parytet;
+  point pa, pb, pc, pd;
+  REAL v1[3], v2[3], len, u;
+
+  REAL startpt[3] = {0,}, samplept[3] = {0,}, candpt[3] = {0,};
+  REAL ori, minvol, smallvol;
+  int samplesize;
+  int it, j, k;
+
+  int n = (int) cavesegshlist->objects;
+  point *newsteiners = new point[n];
+  for (i = 0; i < n; i++) newsteiners[i] = NULL;
+
+  // Search for each sector an interior vertex.
+  for (i = 0; i < cavesegshlist->objects; i++) {
+    parysh = (face *) fastlookup(cavesegshlist, i);
+    stpivot(*parysh, searchtet);
+    // Skip it if it is outside.
+    if (ishulltet(searchtet)) continue;
+    // Get the "half-ball". Tets in 'cavetetlist' all contain 'steinerpt' as
+    //   opposite.  Subfaces in 'caveshlist' all contain 'steinerpt' as apex.
+    //   Moreover, subfaces are oriented towards the interior of the ball.
+    setpoint2tet(steinerpt, encode(searchtet));
+    getvertexstar(0, steinerpt, cavetetlist, NULL, caveshlist);
+    // Calculate the searching vector.
+    pa = sorg(*parysh);
+    pb = sdest(*parysh);
+    pc = sapex(*parysh);
+    facenormal(pa, pb, pc, v1, 1, NULL);
+    len = sqrt(dot(v1, v1));
+    assert(len > 0.0);
+    v1[0] /= len;
+    v1[1] /= len;
+    v1[2] /= len;
+    if (vt == FREESEGVERTEX) {
+      parysh = (face *) fastlookup(cavesegshlist, (i + 1) % n);
+      pd = sapex(*parysh);
+      facenormal(pb, pa, pd, v2, 1, NULL);
+      len = sqrt(dot(v2, v2));
+      assert(len > 0.0);
+      v2[0] /= len;
+      v2[1] /= len;
+      v2[2] /= len;
+      // Average the two vectors.
+      v1[0] = 0.5 * (v1[0] + v2[0]);
+      v1[1] = 0.5 * (v1[1] + v2[1]);
+      v1[2] = 0.5 * (v1[2] + v2[2]);
+    }
+    // Search the intersection of the ray starting from 'steinerpt' to
+    //   the search direction 'v1' and the shell of the half-ball.
+    // - Construct an endpoint.
+    len = distance(pa, pb);
+    v2[0] = steinerpt[0] + len * v1[0];
+    v2[1] = steinerpt[1] + len * v1[1];
+    v2[2] = steinerpt[2] + len * v1[2];
+    for (j = 0; j < cavetetlist->objects; j++) {
+      parytet = (triface *) fastlookup(cavetetlist, j);
+      pa = org(*parytet);
+      pb = dest(*parytet);
+      pc = apex(*parytet);
+      // Test if the ray startpt->v2 lies in the cone: where 'steinerpt'
+      //   is the apex, and three sides are defined by the triangle
+      //   [pa, pb, pc].
+      ori = orient3d(steinerpt, pa, pb, v2);
+      if (ori >= 0) {
+        ori = orient3d(steinerpt, pb, pc, v2);
+        if (ori >= 0) {
+          ori = orient3d(steinerpt, pc, pa, v2);
+          if (ori >= 0) {
+            // Found! Calculate the intersection.
+            planelineint(pa, pb, pc, steinerpt, v2, startpt, &u);
+            assert(u != 0.0);
+            break;
+          }
+        }
+      }
+    } // j
+    assert(j < cavetetlist->objects); // There must be an intersection.
+    // Close the ball by adding the subfaces.
+    for (j = 0; j < caveshlist->objects; j++) {
+      parysh = (face *) fastlookup(caveshlist, j);
+      stpivot(*parysh, neightet);
+      cavetetlist->newindex((void **) &parytet);
+      *parytet = neightet;
+    }
+    // Search a best point inside the segment [startpt, steinerpt].
+    it = 0;
+    samplesize = 100;
+    v1[0] = steinerpt[0] - startpt[0];
+    v1[1] = steinerpt[1] - startpt[1];
+    v1[2] = steinerpt[2] - startpt[2];
+    minvol = -1.0;
+    while (it < 3) {
+      for (j = 1; j < samplesize - 1; j++) {
+        samplept[0] = startpt[0] + ((REAL) j / (REAL) samplesize) * v1[0];
+        samplept[1] = startpt[1] + ((REAL) j / (REAL) samplesize) * v1[1];
+        samplept[2] = startpt[2] + ((REAL) j / (REAL) samplesize) * v1[2];
+        // Find the minimum volume for 'samplept'.
+        smallvol = -1;
+        for (k = 0; k < cavetetlist->objects; k++) {
+          parytet = (triface *) fastlookup(cavetetlist, k);
+          pa = org(*parytet);
+          pb = dest(*parytet);
+          pc = apex(*parytet);
+          ori = orient3d(pb, pa, pc, samplept);
+          if (ori <= 0) {
+            break; // An invalid tet.
+          }
+          if (smallvol == -1) {
+            smallvol = ori;
+          } else {
+            if (ori < smallvol) smallvol = ori;
+          }
+        } // k
+        if (k == cavetetlist->objects) {
+          // Found a valid point. Remember it.
+          if (minvol == -1.0) {
+            candpt[0] = samplept[0];
+            candpt[1] = samplept[1];
+            candpt[2] = samplept[2];
+            minvol = smallvol;
+          } else {
+            if (minvol < smallvol) {
+              // It is a better location. Remember it.
+              candpt[0] = samplept[0];
+              candpt[1] = samplept[1];
+              candpt[2] = samplept[2];
+              minvol = smallvol;
+            } else {
+              // No improvement of smallest volume.
+              // Since we are searching along the line [startpt, steinerpy],
+              // The smallest volume can only be decreased later.
+              break;
+            }
+          }
+        }
+      } // j
+      if (minvol > 0) break;
+      samplesize *= 10;
+      it++;
+    } // while (it < 3)
+    if (minvol == -1.0) {
+      // Failed to find a valid point.
+      cavetetlist->restart();
+      caveshlist->restart();
+      break;
+    }
+    // Create a new Steiner point inside this section.
+    makepoint(&(newsteiners[i]), FREEVOLVERTEX);
+    newsteiners[i][0] = candpt[0];
+    newsteiners[i][1] = candpt[1];
+    newsteiners[i][2] = candpt[2];
+    cavetetlist->restart();
+    caveshlist->restart();
+  } // i
+
+  if (i < cavesegshlist->objects) {
+    // Failed to suppress the vertex.
+    for (; i > 0; i--) {
+      if (newsteiners[i - 1] != NULL) {
+        pointdealloc(newsteiners[i - 1]);
+      }
+    }
+    delete [] newsteiners;
+    cavesegshlist->restart();
+    return 0;
+  }
+
+  // Remove p from the segment or the facet.
+  triface newtet, newface, spintet;
+  face newsh, neighsh;
+  face *splitseg, checkseg;
+  int slawson = 0; // Do not do flip afterword.
+  int t1ver;
+
+  if (vt == FREESEGVERTEX) {
+    // Detach 'leftseg' and 'rightseg' from their adjacent tets.
+    //   These two subsegments will be deleted.
+    sstpivot1(leftseg, neightet);
+    spintet = neightet;
+    while (1) {
+      tssdissolve1(spintet);
+      fnextself(spintet);
+      if (spintet.tet == neightet.tet) break;
+    }
+    sstpivot1(rightseg, neightet);
+    spintet = neightet;
+    while (1) {
+      tssdissolve1(spintet);
+      fnextself(spintet);
+      if (spintet.tet == neightet.tet) break;
+    }
+  }
+
+  // Loop through all sectors bounded by facets at this segment.
+  //   Within each sector, create a new Steiner point 'np', and replace 'p'
+  //   by 'np' for all tets in this sector.
+  for (i = 0; i < cavesegshlist->objects; i++) {
+    parysh = (face *) fastlookup(cavesegshlist, i);
+    // 'parysh' is the face [lpt, steinerpt, #].
+    stpivot(*parysh, neightet);
+    // Get all tets in this sector.
+    setpoint2tet(steinerpt, encode(neightet));
+    getvertexstar(0, steinerpt, cavetetlist, NULL, caveshlist);
+    if (!ishulltet(neightet)) {
+      // Within each tet in the ball, replace 'p' by 'np'.
+      for (j = 0; j < cavetetlist->objects; j++) {
+        parytet = (triface *) fastlookup(cavetetlist, j);
+        setoppo(*parytet, newsteiners[i]);
+      } // j
+      // Point to a parent tet.
+      parytet = (triface *) fastlookup(cavetetlist, 0);
+      setpoint2tet(newsteiners[i], (tetrahedron) (parytet->tet));
+      st_volref_count++;
+      if (steinerleft > 0) steinerleft--;
+    }
+    // Disconnect the set of boundary faces. They're temporarily open faces.
+    //   They will be connected to the new tets after 'p' is removed.
+    for (j = 0; j < caveshlist->objects; j++) {
+      // Get a boundary face.
+      parysh = (face *) fastlookup(caveshlist, j);
+      stpivot(*parysh, neightet);
+      //assert(apex(neightet) == newpt);
+      // Clear the connection at this face.
+      dissolve(neightet);
+      tsdissolve(neightet);
+    }
+    // Clear the working lists.
+    cavetetlist->restart();
+    caveshlist->restart();
+  } // i
+  cavesegshlist->restart();
+
+  if (vt == FREESEGVERTEX) {
+    spivot(rightseg, parentsh); // 'rightseg' has p as its origin.
+    splitseg = &rightseg;
+  } else {
+    if (sdest(parentsh) == steinerpt) {
+      senextself(parentsh);
+    } else if (sapex(parentsh) == steinerpt) {
+      senext2self(parentsh);
+    }
+    assert(sorg(parentsh) == steinerpt);
+    splitseg = NULL;
+  }
+  sremovevertex(steinerpt, &parentsh, splitseg, slawson);
+
+  if (vt == FREESEGVERTEX) {
+    // The original segment is returned in 'rightseg'.
+    rightseg.shver = 0;
+  }
+
+  // For each new subface, create two new tets at each side of it.
+  //   Both of the two new tets have its opposite be dummypoint.
+  for (i = 0; i < caveshbdlist->objects; i++) {
+    parysh = (face *) fastlookup(caveshbdlist, i);
+    sinfect(*parysh); // Mark it for connecting new tets.
+    newsh = *parysh;
+    pa = sorg(newsh);
+    pb = sdest(newsh);
+    pc = sapex(newsh);
+    maketetrahedron(&newtet);
+    maketetrahedron(&neightet);
+    setvertices(newtet, pa, pb, pc, dummypoint);
+    setvertices(neightet, pb, pa, pc, dummypoint);
+    bond(newtet, neightet);
+    tsbond(newtet, newsh);
+    sesymself(newsh);
+    tsbond(neightet, newsh);
+  }
+  // Temporarily increase the hullsize.
+  hullsize += (caveshbdlist->objects * 2l);
+
+  if (vt == FREESEGVERTEX) {
+    // Connecting new tets at the recovered segment.
+    spivot(rightseg, parentsh);
+    assert(parentsh.sh != NULL);
+    spinsh = parentsh;
+    while (1) {
+      if (sorg(spinsh) != lpt) sesymself(spinsh);
+      // Get the new tet at this subface.
+      stpivot(spinsh, newtet);
+      tssbond1(newtet, rightseg);
+      // Go to the other face at this segment.
+      spivot(spinsh, neighsh);
+      if (sorg(neighsh) != lpt) sesymself(neighsh);
+      sesymself(neighsh);
+      stpivot(neighsh, neightet);
+      tssbond1(neightet, rightseg);
+      sstbond1(rightseg, neightet);
+      // Connecting two adjacent tets at this segment.
+      esymself(newtet);
+      esymself(neightet);
+      // Connect the two tets (at rightseg) together.
+      bond(newtet, neightet);
+      // Go to the next subface.
+      spivotself(spinsh);
+      if (spinsh.sh == parentsh.sh) break;
+    }
+  }
+
+  // Connecting new tets at new subfaces together.
+  for (i = 0; i < caveshbdlist->objects; i++) {
+    parysh = (face *) fastlookup(caveshbdlist, i);
+    newsh = *parysh;
+    //assert(sinfected(newsh));
+    // Each new subface contains two new tets.
+    for (k = 0; k < 2; k++) {
+      stpivot(newsh, newtet);
+      for (j = 0; j < 3; j++) {
+        // Check if this side is open.
+        esym(newtet, newface);
+        if (newface.tet[newface.ver & 3] == NULL) {
+          // An open face. Connect it to its adjacent tet.
+          sspivot(newsh, checkseg);
+          if (checkseg.sh != NULL) {
+            // A segment. It must not be the recovered segment.
+            tssbond1(newtet, checkseg);
+            sstbond1(checkseg, newtet);
+          }
+          spivot(newsh, neighsh);
+          if (neighsh.sh != NULL) {
+            // The adjacent subface exists. It's not a dangling segment.
+            if (sorg(neighsh) != sdest(newsh)) sesymself(neighsh);
+            stpivot(neighsh, neightet);
+            if (sinfected(neighsh)) {
+              esymself(neightet);
+              assert(neightet.tet[neightet.ver & 3] == NULL);
+            } else {
+              // Search for an open face at this edge.
+              spintet = neightet;
+              while (1) {
+                esym(spintet, searchtet);
+                fsym(searchtet, spintet);
+                if (spintet.tet == NULL) break;
+                assert(spintet.tet != neightet.tet);
+              }
+              // Found an open face at 'searchtet'.
+              neightet = searchtet;
+            }
+          } else {
+            // The edge (at 'newsh') is a dangling segment.
+            assert(checkseg.sh != NULL);
+            // Get an adjacent tet at this segment.
+            sstpivot1(checkseg, neightet);
+            assert(!isdeadtet(neightet));
+            if (org(neightet) != sdest(newsh)) esymself(neightet);
+            assert((org(neightet) == sdest(newsh)) &&
+                   (dest(neightet) == sorg(newsh)));
+            // Search for an open face at this edge.
+            spintet = neightet;
+            while (1) {
+              esym(spintet, searchtet);
+              fsym(searchtet, spintet);
+              if (spintet.tet == NULL) break;
+              assert(spintet.tet != neightet.tet);
+            }
+            // Found an open face at 'searchtet'.
+            neightet = searchtet;
+          }
+          pc = apex(newface);
+          if (apex(neightet) == steinerpt) {
+            // Exterior case. The 'neightet' is a hull tet which contain
+            //   'steinerpt'. It will be deleted after 'steinerpt' is removed.
+            assert(pc == dummypoint);
+            caveoldtetlist->newindex((void **) &parytet);
+            *parytet = neightet;
+            // Connect newface to the adjacent hull tet of 'neightet', which
+            //   has the same edge as 'newface', and does not has 'steinerpt'.
+            fnextself(neightet);
+          } else {
+            if (pc == dummypoint) {
+              if (apex(neightet) != dummypoint) {
+                setapex(newface, apex(neightet));
+                // A hull tet has turned into an interior tet.
+                hullsize--; // Must update the hullsize.
+              }
+            }
+          }
+          bond(newface, neightet);
+        } // if (newface.tet[newface.ver & 3] == NULL)
+        enextself(newtet);
+        senextself(newsh);
+      } // j
+      sesymself(newsh);
+    } // k
+  } // i
+
+  // Unmark all new subfaces.
+  for (i = 0; i < caveshbdlist->objects; i++) {
+    parysh = (face *) fastlookup(caveshbdlist, i);
+    suninfect(*parysh);
+  }
+  caveshbdlist->restart();
+
+  if (caveoldtetlist->objects > 0l) {
+    // Delete hull tets which contain 'steinerpt'.
+    for (i = 0; i < caveoldtetlist->objects; i++) {
+      parytet = (triface *) fastlookup(caveoldtetlist, i);
+      tetrahedrondealloc(parytet->tet);
+    }
+    // Must update the hullsize.
+    hullsize -= caveoldtetlist->objects;
+    caveoldtetlist->restart();
+  }
+
+  setpointtype(steinerpt, UNUSEDVERTEX);
+  unuverts++;
+  if (vt == FREESEGVERTEX) {
+    st_segref_count--;
+  } else { // vt == FREEFACETVERTEX
+    st_facref_count--;
+  }
+  if (steinerleft > 0) steinerleft++;  // We've removed a Steiner points.
+
+
+  point *parypt;
+  int steinercount = 0;
+
+  int bak_fliplinklevel = b->fliplinklevel;
+  b->fliplinklevel = 100000; // Unlimited flip level.
+
+  // Try to remove newly added Steiner points.
+  for (i = 0; i < n; i++) {
+    if (newsteiners[i] != NULL) {
+      if (!removevertexbyflips(newsteiners[i])) {
+        if (b->nobisect_param > 0) { // Not -Y0
+          // Save it in subvertstack for removal.
+          subvertstack->newindex((void **) &parypt);
+          *parypt = newsteiners[i];
+        }
+        steinercount++;
+      }
+    }
+  }
+
+  b->fliplinklevel = bak_fliplinklevel;
+
+  if (steinercount > 0) {
+    if (b->verbose > 2) {
+      printf("      Added %d interior Steiner points.\n", steinercount);
+    }
+  }
+
+  delete [] newsteiners;
+
+  return 1;
+}
+
+
+int meshGRegionBoundaryRecovery::suppresssteinerpoints()
+{
+
+  Msg::Info(" --> Suppressing Steiner points ...");
+  point rempt, *parypt;
+
+  int bak_fliplinklevel = b->fliplinklevel;
+  b->fliplinklevel = 100000; // Unlimited flip level.
+  int suppcount = 0, remcount = 0;
+  int i;
+
+  // Try to suppress boundary Steiner points.
+  for (i = 0; i < subvertstack->objects; i++) {
+    parypt = (point *) fastlookup(subvertstack, i);
+    rempt = *parypt;
+    if (pointtype(rempt) != UNUSEDVERTEX) {
+      if ((pointtype(rempt) == FREESEGVERTEX) ||
+          (pointtype(rempt) == FREEFACETVERTEX)) {
+        if (suppressbdrysteinerpoint(rempt)) {
+          suppcount++;
+        }
+      }
+    }
+  } // i
+
+  if (suppcount > 0) {
+    Msg::Info("  Suppressed %d boundary Steiner points.", suppcount);
+  }
+
+  if (b->nobisect_param > 0) { // -Y1
+    for (i = 0; i < subvertstack->objects; i++) {
+      parypt = (point *) fastlookup(subvertstack, i);
+      rempt = *parypt;
+      if (pointtype(rempt) != UNUSEDVERTEX) {
+        if (pointtype(rempt) == FREEVOLVERTEX) {
+          if (removevertexbyflips(rempt)) {
+            remcount++;
+          }
+        }
+      }
+    }
+  }
+
+  if (remcount > 0) {
+    if (b->verbose) {
+      printf("  Removed %d interior Steiner points.\n", remcount);
+    }
+  }
+
+  b->fliplinklevel = bak_fliplinklevel;
+
+  if (b->nobisect_param > 1) { // -Y2
+    // Smooth interior Steiner points.
+    optparameters opm;
+    triface *parytet;
+    point *ppt;
+    REAL ori;
+    int smtcount, count, ivcount;
+    int nt, j;
+
+    // Point smooth options.
+    opm.max_min_volume = 1;
+    opm.numofsearchdirs = 20;
+    opm.searchstep = 0.001;
+    opm.maxiter = 30; // Limit the maximum iterations.
+
+    smtcount = 0;
+
+    do {
+
+      nt = 0;
+
+      while (1) {
+        count = 0;
+        ivcount = 0; // Clear the inverted count.
+
+        for (i = 0; i < subvertstack->objects; i++) {
+          parypt = (point *) fastlookup(subvertstack, i);
+          rempt = *parypt;
+          if (pointtype(rempt) == FREEVOLVERTEX) {
+            getvertexstar(1, rempt, cavetetlist, NULL, NULL);
+            // Calculate the initial smallest volume (maybe zero or negative).
+            for (j = 0; j < cavetetlist->objects; j++) {
+              parytet = (triface *) fastlookup(cavetetlist, j);
+              ppt = (point *) &(parytet->tet[4]);
+              ori = orient3dfast(ppt[1], ppt[0], ppt[2], ppt[3]);
+              if (j == 0) {
+                opm.initval = ori;
+              } else {
+                if (opm.initval > ori) opm.initval = ori;
+              }
+            }
+            if (smoothpoint(rempt, cavetetlist, 1, &opm)) {
+              count++;
+            }
+            if (opm.imprval <= 0.0) {
+              ivcount++; // The mesh contains inverted elements.
+            }
+            cavetetlist->restart();
+          }
+        } // i
+
+        smtcount += count;
+
+        if (count == 0) {
+          // No point has been smoothed.
+          break;
+        }
+
+        nt++;
+        if (nt > 2) {
+          break; // Already three iterations.
+        }
+      } // while
+
+      if (ivcount > 0) {
+        // There are inverted elements!
+        if (opm.maxiter > 0) {
+          // Set unlimited smoothing steps. Try again.
+          opm.numofsearchdirs = 30;
+          opm.searchstep = 0.0001;
+          opm.maxiter = -1;
+          continue;
+        }
+      }
+
+      break;
+    } while (1); // Additional loop for (ivcount > 0)
+
+    if (ivcount > 0) {
+      printf("BUG Report!  The mesh contain inverted elements.\n");
+    }
+
+    if (b->verbose) {
+      if (smtcount > 0) {
+        printf("  Smoothed %d Steiner points.\n", smtcount);
+      }
+    }
+  } // -Y2
+
+  subvertstack->restart();
+
+  return 1;
+}
+
+void meshGRegionBoundaryRecovery::recoverboundary(clock_t&)
+{
+  arraypool *misseglist, *misshlist;
+  arraypool *bdrysteinerptlist;
+  face searchsh, *parysh;
+  face searchseg, *paryseg;
+  point rempt, *parypt;
+  long ms; // The number of missing segments/subfaces.
+  int nit; // The number of iterations.
+  int s, i;
+
+  // Counters.
+  long bak_segref_count, bak_facref_count, bak_volref_count;
+
+  if (!b->quiet) {
+    Msg::Info(" --> Recovering boundaries ...");
+  }
+
+
+  if (b->verbose) {
+    Msg::Info(" --> Recovering segments ...");
+  }
+
+  // Segments will be introduced.
+  checksubsegflag = 1;
+
+  misseglist = new arraypool(sizeof(face), 8);
+  bdrysteinerptlist = new arraypool(sizeof(point), 8);
+
+  // In random order.
+  subsegs->traversalinit();
+  for (i = 0; i < subsegs->items; i++) {
+    s = randomnation(i + 1);
+    // Move the s-th seg to the i-th.
+    subsegstack->newindex((void **) &paryseg);
+    *paryseg = * (face *) fastlookup(subsegstack, s);
+    // Put i-th seg to be the s-th.
+    searchseg.sh = shellfacetraverse(subsegs);
+    paryseg = (face *) fastlookup(subsegstack, s);
+    *paryseg = searchseg;
+  }
+
+  // The init number of missing segments.
+  ms = subsegs->items;
+  nit = 0;
+  if (b->fliplinklevel < 0) {
+    autofliplinklevel = 1; // Init value.
+  }
+
+  // First, trying to recover segments by only doing flips.
+  while (1) {
+    recoversegments(misseglist, 0, 0);
+
+    if (misseglist->objects > 0) {
+      if (b->fliplinklevel >= 0) {
+        break;
+      } else {
+        if (misseglist->objects >= ms) {
+          nit++;
+          if (nit >= 3) {
+            //break;
+            // Do the last round with unbounded flip link level.
+            b->fliplinklevel = 100000;
+          }
+        } else {
+          ms = misseglist->objects;
+          if (nit > 0) {
+            nit--;
+          }
+        }
+        for (i = 0; i < misseglist->objects; i++) {
+          subsegstack->newindex((void **) &paryseg);
+          *paryseg = * (face *) fastlookup(misseglist, i);
+        }
+        misseglist->restart();
+        autofliplinklevel+=b->fliplinklevelinc;
+      }
+    } else {
+      // All segments are recovered.
+      break;
+    }
+  } // while (1)
+
+  if (b->verbose) {
+    printf("  %ld (%ld) segments are recovered (missing).\n",
+           subsegs->items - misseglist->objects, misseglist->objects);
+  }
+
+  if (misseglist->objects > 0) {
+    // Second, trying to recover segments by doing more flips (fullsearch).
+    while (misseglist->objects > 0) {
+      ms = misseglist->objects;
+      for (i = 0; i < misseglist->objects; i++) {
+        subsegstack->newindex((void **) &paryseg);
+        *paryseg = * (face *) fastlookup(misseglist, i);
+      }
+      misseglist->restart();
+
+      recoversegments(misseglist, 1, 0);
+
+      if (misseglist->objects < ms) {
+        // The number of missing segments is reduced.
+        continue;
+      } else {
+        break;
+      }
+    }
+    if (b->verbose) {
+      printf("  %ld (%ld) segments are recovered (missing).\n",
+             subsegs->items - misseglist->objects, misseglist->objects);
+    }
+  }
+
+  if (misseglist->objects > 0) {
+    // Third, trying to recover segments by doing more flips (fullsearch)
+    //   and adding Steiner points in the volume.
+    while (misseglist->objects > 0) {
+      ms = misseglist->objects;
+      for (i = 0; i < misseglist->objects; i++) {
+        subsegstack->newindex((void **) &paryseg);
+        *paryseg = * (face *) fastlookup(misseglist, i);
+      }
+      misseglist->restart();
+
+      recoversegments(misseglist, 1, 1);
+
+      if (misseglist->objects < ms) {
+        // The number of missing segments is reduced.
+        continue;
+      } else {
+        break;
+      }
+    }
+    if (b->verbose) {
+      printf("  Added %ld Steiner points in volume.\n", st_volref_count);
+    }
+  }
+
+  if (misseglist->objects > 0) {
+    // Last, trying to recover segments by doing more flips (fullsearch),
+    //   and adding Steiner points in the volume, and splitting segments.
+    long bak_inpoly_count = st_volref_count; //st_inpoly_count;
+    for (i = 0; i < misseglist->objects; i++) {
+      subsegstack->newindex((void **) &paryseg);
+      *paryseg = * (face *) fastlookup(misseglist, i);
+    }
+    misseglist->restart();
+
+    recoversegments(misseglist, 1, 2);
+
+    if (b->verbose) {
+      printf("  Added %ld Steiner points in segments.\n", st_segref_count);
+      if (st_volref_count > bak_inpoly_count) {
+        printf("  Added another %ld Steiner points in volume.\n",
+               st_volref_count - bak_inpoly_count);
+      }
+    }
+    assert(misseglist->objects == 0l);
+  }
+
+
+  if (st_segref_count > 0) {
+    // Try to remove the Steiner points added in segments.
+    bak_segref_count = st_segref_count;
+    bak_volref_count = st_volref_count;
+    for (i = 0; i < subvertstack->objects; i++) {
+      // Get the Steiner point.
+      parypt = (point *) fastlookup(subvertstack, i);
+      rempt = *parypt;
+      if (!removevertexbyflips(rempt)) {
+        // Save it in list.
+        bdrysteinerptlist->newindex((void **) &parypt);
+        *parypt = rempt;
+      }
+    }
+    if (b->verbose) {
+      if (st_segref_count < bak_segref_count) {
+        if (bak_volref_count < st_volref_count) {
+          printf("  Suppressed %ld Steiner points in segments.\n",
+                 st_volref_count - bak_volref_count);
+        }
+        if ((st_segref_count + (st_volref_count - bak_volref_count)) <
+            bak_segref_count) {
+          printf("  Removed %ld Steiner points in segments.\n",
+                 bak_segref_count -
+                   (st_segref_count + (st_volref_count - bak_volref_count)));
+        }
+      }
+    }
+    subvertstack->restart();
+  }
+
+
+  if (b->verbose) {
+    printf("  Recovering facets.\n");
+  }
+
+  // Subfaces will be introduced.
+  checksubfaceflag = 1;
+
+  misshlist = new arraypool(sizeof(face), 8);
+
+  // Randomly order the subfaces.
+  subfaces->traversalinit();
+  for (i = 0; i < subfaces->items; i++) {
+    s = randomnation(i + 1);
+    // Move the s-th subface to the i-th.
+    subfacstack->newindex((void **) &parysh);
+    *parysh = * (face *) fastlookup(subfacstack, s);
+    // Put i-th subface to be the s-th.
+    searchsh.sh = shellfacetraverse(subfaces);
+    parysh = (face *) fastlookup(subfacstack, s);
+    *parysh = searchsh;
+  }
+
+  ms = subfaces->items;
+  nit = 0;
+  b->fliplinklevel = -1; // Init.
+  if (b->fliplinklevel < 0) {
+    autofliplinklevel = 1; // Init value.
+  }
+
+  while (1) {
+    recoversubfaces(misshlist, 0);
+
+    if (misshlist->objects > 0) {
+      if (b->fliplinklevel >= 0) {
+        break;
+      } else {
+        if (misshlist->objects >= ms) {
+          nit++;
+          if (nit >= 3) {
+            //break;
+            // Do the last round with unbounded flip link level.
+            b->fliplinklevel = 100000;
+          }
+        } else {
+          ms = misshlist->objects;
+          if (nit > 0) {
+            nit--;
+          }
+        }
+        for (i = 0; i < misshlist->objects; i++) {
+          subfacstack->newindex((void **) &parysh);
+          *parysh = * (face *) fastlookup(misshlist, i);
+        }
+        misshlist->restart();
+        autofliplinklevel+=b->fliplinklevelinc;
+      }
+    } else {
+      // All subfaces are recovered.
+      break;
+    }
+  } // while (1)
+
+  if (b->verbose) {
+    printf("  %ld (%ld) subfaces are recovered (missing).\n",
+           subfaces->items - misshlist->objects, misshlist->objects);
+  }
+
+  if (misshlist->objects > 0) {
+    // There are missing subfaces. Add Steiner points.
+    for (i = 0; i < misshlist->objects; i++) {
+      subfacstack->newindex((void **) &parysh);
+      *parysh = * (face *) fastlookup(misshlist, i);
+    }
+    misshlist->restart();
+
+    recoversubfaces(NULL, 1);
+
+    if (b->verbose) {
+      printf("  Added %ld Steiner points in facets.\n", st_facref_count);
+    }
+  }
+
+
+  if (st_facref_count > 0) {
+    // Try to remove the Steiner points added in facets.
+    bak_facref_count = st_facref_count;
+    for (i = 0; i < subvertstack->objects; i++) {
+      // Get the Steiner point.
+      parypt = (point *) fastlookup(subvertstack, i);
+      rempt = *parypt;
+      if (!removevertexbyflips(*parypt)) {
+        // Save it in list.
+        bdrysteinerptlist->newindex((void **) &parypt);
+        *parypt = rempt;
+      }
+    }
+    if (b->verbose) {
+      if (st_facref_count < bak_facref_count) {
+        printf("  Removed %ld Steiner points in facets.\n",
+               bak_facref_count - st_facref_count);
+      }
+    }
+    subvertstack->restart();
+  }
+
+
+  if (bdrysteinerptlist->objects > 0) {
+    if (b->verbose) {
+      printf("  %ld Steiner points remained in boundary.\n",
+             bdrysteinerptlist->objects);
+    }
+  } // if
+
+
+  // Accumulate the dynamic memory.
+  totalworkmemory += (misseglist->totalmemory + misshlist->totalmemory +
+                      bdrysteinerptlist->totalmemory);
+
+  delete bdrysteinerptlist;
+  delete misseglist;
+  delete misshlist;
+}
+
+////                                                                       ////
+////                                                                       ////
+//// steiner_cxx //////////////////////////////////////////////////////////////
+
+
+//// reconstruct_cxx //////////////////////////////////////////////////////////
+////                                                                       ////
+////                                                                       ////
+
+void meshGRegionBoundaryRecovery::carveholes()
+{
+  arraypool *tetarray, *hullarray;
+  triface tetloop, neightet, *parytet, *parytet1;
+  triface *regiontets = NULL;
+  face checksh, *parysh;
+  face checkseg;
+  point ptloop, *parypt;
+  int t1ver;
+  int i, j, k;
+
+  if (!b->quiet) {
+    if (b->convex) {
+      Msg::Info(" --> Marking exterior tetrahedra ...");
+    } else {
+      Msg::Info(" --> Removing exterior tetrahedra ...");
+    }
+  }
+
+  // Initialize the pool of exterior tets.
+  tetarray = new arraypool(sizeof(triface), 10);
+  hullarray = new arraypool(sizeof(triface), 10);
+
+  // Collect unprotected tets and hull tets.
+  tetrahedrons->traversalinit();
+  tetloop.ver = 11; // The face opposite to dummypoint.
+  tetloop.tet = alltetrahedrontraverse();
+  while (tetloop.tet != (tetrahedron *) NULL) {
+    if (ishulltet(tetloop)) {
+      // Is this side protected by a subface?
+      if (!issubface(tetloop)) {
+        // Collect an unprotected hull tet and tet.
+        infect(tetloop);
+        hullarray->newindex((void **) &parytet);
+        *parytet = tetloop;
+        // tetloop's face number is 11 & 3 = 3.
+        decode(tetloop.tet[3], neightet);
+        if (!infected(neightet)) {
+          infect(neightet);
+          tetarray->newindex((void **) &parytet);
+          *parytet = neightet;
+        }
+      }
+    }
+    tetloop.tet = alltetrahedrontraverse();
+  }
+
+  // Collect all exterior tets (in concave place and in holes).
+  for (i = 0; i < tetarray->objects; i++) {
+    parytet = (triface *) fastlookup(tetarray, i);
+    j = (parytet->ver & 3); // j is the current face number.
+    // Check the other three adjacent tets.
+    for (k = 1; k < 4; k++) {
+      decode(parytet->tet[(j + k) % 4], neightet);
+      // neightet may be a hull tet.
+      if (!infected(neightet)) {
+        // Is neightet protected by a subface.
+        if (!issubface(neightet)) {
+          // Not proected. Collect it. (It must not be a hull tet).
+          infect(neightet);
+          tetarray->newindex((void **) &parytet1);
+          *parytet1 = neightet;
+        } else {
+          // Protected. Check if it is a hull tet.
+          if (ishulltet(neightet)) {
+            // A hull tet. Collect it.
+            infect(neightet);
+            hullarray->newindex((void **) &parytet1);
+            *parytet1 = neightet;
+            // Both sides of this subface are exterior.
+            tspivot(neightet, checksh);
+            // Queue this subface (to be deleted later).
+            assert(!sinfected(checksh));
+            sinfect(checksh); // Only queue it once.
+            subfacstack->newindex((void **) &parysh);
+            *parysh = checksh;
+          }
+        }
+      } else {
+        // Both sides of this face are in exterior.
+        // If there is a subface. It should be collected.
+        if (issubface(neightet)) {
+          tspivot(neightet, checksh);
+          if (!sinfected(checksh)) {
+            sinfect(checksh);
+            subfacstack->newindex((void **) &parysh);
+            *parysh = checksh;
+          }
+        }
+      }
+    } // j, k
+  } // i
+
+  // Collect vertices which point to infected tets. These vertices
+  //   may get deleted after the removal of exterior tets.
+  //   If -Y1 option is used, collect all Steiner points for removal.
+  //   The lists 'cavetetvertlist' and 'subvertstack' are re-used.
+  points->traversalinit();
+  ptloop = pointtraverse();
+  while (ptloop != NULL) {
+    if ((pointtype(ptloop) != UNUSEDVERTEX) &&
+        (pointtype(ptloop) != DUPLICATEDVERTEX)) {
+      decode(point2tet(ptloop), neightet);
+      if (infected(neightet)) {
+        cavetetvertlist->newindex((void **) &parypt);
+        *parypt = ptloop;
+      }
+      if (b->nobisect && (b->nobisect_param > 0)) { // -Y1
+        // Queue it if it is a Steiner point.
+        //if (pointmark(ptloop) >
+        //      (in->numberofpoints - (in->firstnumber ? 0 : 1))) {
+        if (issteinerpoint(ptloop)) {
+          subvertstack->newindex((void **) &parypt);
+          *parypt = ptloop;
+        }
+      }
+    }
+    ptloop = pointtraverse();
+  }
+
+  if (!b->convex && (tetarray->objects > 0l)) { // No -c option.
+    // Remove exterior tets. Hull tets are updated.
+    arraypool *newhullfacearray;
+    triface hulltet, casface;
+    point pa, pb, pc;
+
+    newhullfacearray = new arraypool(sizeof(triface), 10);
+
+    // Create and save new hull tets.
+    for (i = 0; i < tetarray->objects; i++) {
+      parytet = (triface *) fastlookup(tetarray, i);
+      for (j = 0; j < 4; j++) {
+        decode(parytet->tet[j], tetloop);
+        if (!infected(tetloop)) {
+          // Found a new hull face (must be a subface).
+          tspivot(tetloop, checksh);
+          maketetrahedron(&hulltet);
+          pa = org(tetloop);
+          pb = dest(tetloop);
+          pc = apex(tetloop);
+          setvertices(hulltet, pb, pa, pc, dummypoint);
+          bond(tetloop, hulltet);
+          // Update the subface-to-tet map.
+          sesymself(checksh);
+          tsbond(hulltet, checksh);
+          // Update the segment-to-tet map.
+          for (k = 0; k < 3; k++) {
+            if (issubseg(tetloop)) {
+              tsspivot1(tetloop, checkseg);
+              tssbond1(hulltet, checkseg);
+              sstbond1(checkseg, hulltet);
+            }
+            enextself(tetloop);
+            eprevself(hulltet);
+          }
+          // Update the point-to-tet map.
+          setpoint2tet(pa, (tetrahedron) tetloop.tet);
+          setpoint2tet(pb, (tetrahedron) tetloop.tet);
+          setpoint2tet(pc, (tetrahedron) tetloop.tet);
+          // Save the exterior tet at this hull face. It still holds pointer
+          //   to the adjacent interior tet. Use it to connect new hull tets.
+          newhullfacearray->newindex((void **) &parytet1);
+          parytet1->tet = parytet->tet;
+          parytet1->ver = j;
+        } // if (!infected(tetloop))
+      } // j
+    } // i
+
+    // Connect new hull tets.
+    for (i = 0; i < newhullfacearray->objects; i++) {
+      parytet = (triface *) fastlookup(newhullfacearray, i);
+      fsym(*parytet, neightet);
+      // Get the new hull tet.
+      fsym(neightet, hulltet);
+      for (j = 0; j < 3; j++) {
+        esym(hulltet, casface);
+        if (casface.tet[casface.ver & 3] == NULL) {
+          // Since the boundary of the domain may not be a manifold, we
+          //   find the adjacent hull face by traversing the tets in the
+          //   exterior (which are all infected tets).
+          neightet = *parytet;
+          while (1) {
+            fnextself(neightet);
+            if (!infected(neightet)) break;
+          }
+          if (!ishulltet(neightet)) {
+            // An interior tet. Get the new hull tet.
+            fsymself(neightet);
+            esymself(neightet);
+          }
+          // Bond them together.
+          bond(casface, neightet);
+        }
+        enextself(hulltet);
+        enextself(*parytet);
+      } // j
+    } // i
+
+    if (subfacstack->objects > 0l) {
+      // Remove all subfaces which do not attach to any tetrahedron.
+      //   Segments which are not attached to any subfaces and tets
+      //   are deleted too.
+      face casingout, casingin;
+      long delsegcount = 0l;
+
+      for (i = 0; i < subfacstack->objects; i++) {
+        parysh = (face *) fastlookup(subfacstack, i);
+        if (i == 0) {
+          if (b->verbose) {
+            printf("Warning:  Removing an open face (%d, %d, %d)\n",
+                   pointmark(sorg(*parysh)), pointmark(sdest(*parysh)),
+                   pointmark(sapex(*parysh)));
+          }
+        }
+        // Dissolve this subface from face links.
+        for (j = 0; j < 3; j++) {
+          spivot(*parysh, casingout);
+          sspivot(*parysh, checkseg);
+          if (casingout.sh != NULL) {
+            casingin = casingout;
+            while (1) {
+              spivot(casingin, checksh);
+              if (checksh.sh == parysh->sh) break;
+              casingin = checksh;
+            }
+            if (casingin.sh != casingout.sh) {
+              // Update the link: ... -> casingin -> casingout ->...
+              sbond1(casingin, casingout);
+            } else {
+              // Only one subface at this edge is left.
+              sdissolve(casingout);
+            }
+            if (checkseg.sh != NULL) {
+              // Make sure the segment does not connect to a dead one.
+              ssbond(casingout, checkseg);
+            }
+          } else {
+            if (checkseg.sh != NULL) {
+              // The segment is also dead.
+              if (delsegcount == 0) {
+                if (b->verbose) {
+                  printf("Warning:  Removing a dangling segment (%d, %d)\n",
+                       pointmark(sorg(checkseg)), pointmark(sdest(checkseg)));
+                }
+              }
+              shellfacedealloc(subsegs, checkseg.sh);
+              delsegcount++;
+            }
+          }
+          senextself(*parysh);
+        } // j
+        // Delete this subface.
+        shellfacedealloc(subfaces, parysh->sh);
+      } // i
+      if (b->verbose) {
+        printf("  Deleted %ld subfaces.\n", subfacstack->objects);
+        if (delsegcount > 0) {
+          printf("  Deleted %ld segments.\n", delsegcount);
+        }
+      }
+      subfacstack->restart();
+    } // if (subfacstack->objects > 0l)
+
+    if (cavetetvertlist->objects > 0l) {
+      // Some vertices may lie in exterior. Marke them as UNUSEDVERTEX.
+      long delvertcount = unuverts;
+      long delsteinercount = 0l;
+
+      for (i = 0; i < cavetetvertlist->objects; i++) {
+        parypt = (point *) fastlookup(cavetetvertlist, i);
+        decode(point2tet(*parypt), neightet);
+        if (infected(neightet)) {
+          // Found an exterior vertex.
+          //if (pointmark(*parypt) >
+          //      (in->numberofpoints - (in->firstnumber ? 0 : 1))) {
+          if (issteinerpoint(*parypt)) {
+            // A Steiner point.
+            if (pointtype(*parypt) == FREESEGVERTEX) {
+              st_segref_count--;
+            } else if (pointtype(*parypt) == FREEFACETVERTEX) {
+              st_facref_count--;
+            } else {
+              assert(pointtype(*parypt) == FREEVOLVERTEX);
+              st_volref_count--;
+            }
+            delsteinercount++;
+            if (steinerleft > 0) steinerleft++;
+          }
+          setpointtype(*parypt, UNUSEDVERTEX);
+          unuverts++;
+        }
+      }
+
+      if (b->verbose) {
+        if (unuverts > delvertcount) {
+          if (delsteinercount > 0l) {
+            if (unuverts > (delvertcount + delsteinercount)) {
+              printf("  Removed %ld exterior input vertices.\n",
+                     unuverts - delvertcount - delsteinercount);
+            }
+            printf("  Removed %ld exterior Steiner vertices.\n",
+                   delsteinercount);
+          } else {
+            printf("  Removed %ld exterior input vertices.\n",
+                   unuverts - delvertcount);
+          }
+        }
+      }
+      cavetetvertlist->restart();
+      // Comment: 'subvertstack' will be cleaned in routine
+      //   suppresssteinerpoints().
+    } // if (cavetetvertlist->objects > 0l)
+
+    // Update the hull size.
+    hullsize += (newhullfacearray->objects - hullarray->objects);
+
+    // Delete all exterior tets and old hull tets.
+    for (i = 0; i < tetarray->objects; i++) {
+      parytet = (triface *) fastlookup(tetarray, i);
+      tetrahedrondealloc(parytet->tet);
+    }
+    tetarray->restart();
+
+    for (i = 0; i < hullarray->objects; i++) {
+      parytet = (triface *) fastlookup(hullarray, i);
+      tetrahedrondealloc(parytet->tet);
+    }
+    hullarray->restart();
+
+    delete newhullfacearray;
+  } // if (!b->convex && (tetarray->objects > 0l))
+
+  if (b->convex && (tetarray->objects > 0l)) { // With -c option
+    // In this case, all exterior tets get a region marker '-1'.
+    assert(b->regionattrib > 0); // -A option must be enabled.
+    int attrnum = numelemattrib - 1;
+
+    for (i = 0; i < tetarray->objects; i++) {
+      parytet = (triface *) fastlookup(tetarray, i);
+      setelemattribute(parytet->tet, attrnum, -1);
+    }
+    tetarray->restart();
+
+    for (i = 0; i < hullarray->objects; i++) {
+      parytet = (triface *) fastlookup(hullarray, i);
+      uninfect(*parytet);
+    }
+    hullarray->restart();
+
+    if (subfacstack->objects > 0l) {
+      for (i = 0; i < subfacstack->objects; i++) {
+        parysh = (face *) fastlookup(subfacstack, i);
+        suninfect(*parysh);
+      }
+      subfacstack->restart();
+    }
+
+    if (cavetetvertlist->objects > 0l) {
+      cavetetvertlist->restart();
+    }
+  } // if (b->convex && (tetarray->objects > 0l))
+
+  if (b->regionattrib) { // With -A option.
+    if (!b->quiet) {
+      Msg::Info(" --> Spreading region attributes ...");
+    }
+    REAL volume;
+    int attr, maxattr = 0; // Choose a small number here.
+    int attrnum = numelemattrib - 1;
+    // Comment: The element region marker is at the end of the list of
+    //   the element attributes.
+    int regioncount = 0;
+
+    // Set attributes for all tetrahedra.
+    attr = maxattr + 1;
+    tetrahedrons->traversalinit();
+    tetloop.tet = tetrahedrontraverse();
+    while (tetloop.tet != (tetrahedron *) NULL) {
+      if (!infected(tetloop)) {
+        // An unmarked region.
+        tetarray->restart(); // Re-use this array.
+        infect(tetloop);
+        tetarray->newindex((void **) &parytet);
+        *parytet = tetloop;
+        // Find and mark all tets.
+        for (j = 0; j < tetarray->objects; j++) {
+          parytet = (triface *) fastlookup(tetarray, j);
+          tetloop = *parytet;
+          setelemattribute(tetloop.tet, attrnum, attr);
+          for (k = 0; k < 4; k++) {
+            decode(tetloop.tet[k], neightet);
+            // Is the adjacent tet already checked?
+            if (!infected(neightet)) {
+              // Is this side protected by a subface?
+              if (!issubface(neightet)) {
+                infect(neightet);
+                tetarray->newindex((void **) &parytet);
+                *parytet = neightet;
+              }
+            }
+          } // k
+        } // j
+        attr++; // Increase the attribute.
+        regioncount++;
+      }
+      tetloop.tet = tetrahedrontraverse();
+    }
+    // Until here, every tet has a region attribute.
+
+    // Uninfect processed tets.
+    tetrahedrons->traversalinit();
+    tetloop.tet = tetrahedrontraverse();
+    while (tetloop.tet != (tetrahedron *) NULL) {
+      uninfect(tetloop);
+      tetloop.tet = tetrahedrontraverse();
+    }
+
+    if (b->verbose) {
+      //assert(regioncount > 0);
+      if (regioncount > 1) {
+        printf("  Found %d subdomains.\n", regioncount);
+      } else {
+        printf("  Found %d domain.\n", regioncount);
+      }
+    }
+  } // if (b->regionattrib)
+
+  if (regiontets != NULL) {
+    delete [] regiontets;
+  }
+  delete tetarray;
+  delete hullarray;
+
+  if (!b->convex) { // No -c option
+    // The mesh is non-convex now.
+    nonconvex = 1;
+
+    // Push all hull tets into 'flipstack'.
+    tetrahedrons->traversalinit();
+    tetloop.ver = 11; // The face opposite to dummypoint.
+    tetloop.tet = alltetrahedrontraverse();
+    while (tetloop.tet != (tetrahedron *) NULL) {
+      if ((point) tetloop.tet[7] == dummypoint) {
+        fsym(tetloop, neightet);
+        flippush(flipstack, &neightet);
+      }
+      tetloop.tet = alltetrahedrontraverse();
+    }
+
+    flipconstraints fc;
+    fc.enqflag = 2;
+    long sliver_peel_count = lawsonflip3d(&fc);
+
+    if (sliver_peel_count > 0l) {
+      if (b->verbose) {
+        printf("  Removed %ld hull slivers.\n", sliver_peel_count);
+      }
+    }
+    unflipqueue->restart();
+  } // if (!b->convex)
+}
+
+////                                                                       ////
+////                                                                       ////
+//// reconstruct_cxx //////////////////////////////////////////////////////////
+
+//// optimize_cxx /////////////////////////////////////////////////////////////
+////                                                                       ////
+////                                                                       ////
+
+long meshGRegionBoundaryRecovery::lawsonflip3d(flipconstraints *fc)
+{
+  triface fliptets[5], neightet, hulltet;
+  face checksh, casingout;
+  badface *popface, *bface;
+  point pd, pe, *pts;
+  REAL sign, ori;
+  long flipcount, totalcount = 0l;
+  long sliver_peels = 0l;
+  int t1ver;
+  int i;
+
+
+  while (1) {
+
+    if (b->verbose > 2) {
+      printf("      Lawson flip %ld faces.\n", flippool->items);
+    }
+    flipcount = 0l;
+
+    while (flipstack != (badface *) NULL) {
+      // Pop a face from the stack.
+      popface = flipstack;
+      fliptets[0] = popface->tt;
+      flipstack = flipstack->nextitem; // The next top item in stack.
+      flippool->dealloc((void *) popface);
+
+      // Skip it if it is a dead tet (destroyed by previous flips).
+      if (isdeadtet(fliptets[0])) continue;
+      // Skip it if it is not the same tet as we saved.
+      if (!facemarked(fliptets[0])) continue;
+
+      unmarkface(fliptets[0]);
+
+      if (ishulltet(fliptets[0])) continue;
+
+      fsym(fliptets[0], fliptets[1]);
+      if (ishulltet(fliptets[1])) {
+        if (nonconvex) {
+          // Check if 'fliptets[0]' it is a hull sliver.
+          tspivot(fliptets[0], checksh);
+          for (i = 0; i < 3; i++) {
+            if (!isshsubseg(checksh)) {
+              spivot(checksh, casingout);
+              //assert(casingout.sh != NULL);
+              if (sorg(checksh) != sdest(casingout)) sesymself(casingout);
+              stpivot(casingout, neightet);
+              if (neightet.tet == fliptets[0].tet) {
+                // Found a hull sliver 'neightet'. Let it be [e,d,a,b], where
+                //   [e,d,a] and [d,e,b] are hull faces.
+                edestoppo(neightet, hulltet); // [a,b,e,d]
+                fsymself(hulltet); // [b,a,e,#]
+                if (oppo(hulltet) == dummypoint) {
+                  pe = org(neightet);
+                  if ((pointtype(pe) == FREEFACETVERTEX) ||
+                      (pointtype(pe) == FREESEGVERTEX)) {
+                    removevertexbyflips(pe);
+                  }
+                } else {
+                  eorgoppo(neightet, hulltet); // [b,a,d,e]
+                  fsymself(hulltet); // [a,b,d,#]
+                  if (oppo(hulltet) == dummypoint) {
+                    pd = dest(neightet);
+                    if ((pointtype(pd) == FREEFACETVERTEX) ||
+                        (pointtype(pd) == FREESEGVERTEX)) {
+                      removevertexbyflips(pd);
+                    }
+                  } else {
+                    // Perform a 3-to-2 flip to remove the sliver.
+                    fliptets[0] = neightet;          // [e,d,a,b]
+                    fnext(fliptets[0], fliptets[1]); // [e,d,b,c]
+                    fnext(fliptets[1], fliptets[2]); // [e,d,c,a]
+                    flip32(fliptets, 1, fc);
+                    // Update counters.
+                    flip32count--;
+                    flip22count--;
+                    sliver_peels++;
+                    if (fc->remove_ndelaunay_edge) {
+                      // Update the volume (must be decreased).
+                      //assert(fc->tetprism_vol_sum <= 0);
+                      tetprism_vol_sum += fc->tetprism_vol_sum;
+                      fc->tetprism_vol_sum = 0.0; // Clear it.
+                    }
+                  }
+                }
+                break;
+              } // if (neightet.tet == fliptets[0].tet)
+            } // if (!isshsubseg(checksh))
+            senextself(checksh);
+          } // i
+        } // if (nonconvex)
+        continue;
+      }
+
+      if (checksubfaceflag) {
+        // Do not flip if it is a subface.
+        if (issubface(fliptets[0])) continue;
+      }
+
+      // Test whether the face is locally Delaunay or not.
+      pts = (point *) fliptets[1].tet;
+      sign = insphere_s(pts[4], pts[5], pts[6], pts[7], oppo(fliptets[0]));
+
+      if (sign < 0) {
+        // A non-Delaunay face. Try to flip it.
+        pd = oppo(fliptets[0]);
+        pe = oppo(fliptets[1]);
+
+        // Check the convexity of its three edges. Stop checking either a
+        //   locally non-convex edge (ori < 0) or a flat edge (ori = 0) is
+        //   encountered, and 'fliptet' represents that edge.
+        for (i = 0; i < 3; i++) {
+          ori = orient3d(org(fliptets[0]), dest(fliptets[0]), pd, pe);
+          if (ori <= 0) break;
+          enextself(fliptets[0]);
+        }
+
+        if (ori > 0) {
+          // A 2-to-3 flip is found.
+          //   [0] [a,b,c,d],
+          //   [1] [b,a,c,e]. no dummypoint.
+          flip23(fliptets, 0, fc);
+          flipcount++;
+          if (fc->remove_ndelaunay_edge) {
+            // Update the volume (must be decreased).
+            //assert(fc->tetprism_vol_sum <= 0);
+            tetprism_vol_sum += fc->tetprism_vol_sum;
+            fc->tetprism_vol_sum = 0.0; // Clear it.
+          }
+          continue;
+        } else { // ori <= 0
+          // The edge ('fliptets[0]' = [a',b',c',d]) is non-convex or flat,
+          //   where the edge [a',b'] is one of [a,b], [b,c], and [c,a].
+          if (checksubsegflag) {
+            // Do not flip if it is a segment.
+            if (issubseg(fliptets[0])) continue;
+          }
+          // Check if there are three or four tets sharing at this edge.
+          esymself(fliptets[0]); // [b,a,d,c]
+          for (i = 0; i < 3; i++) {
+            fnext(fliptets[i], fliptets[i+1]);
+          }
+          if (fliptets[3].tet == fliptets[0].tet) {
+            // A 3-to-2 flip is found. (No hull tet.)
+            flip32(fliptets, 0, fc);
+            flipcount++;
+            if (fc->remove_ndelaunay_edge) {
+              // Update the volume (must be decreased).
+              //assert(fc->tetprism_vol_sum <= 0);
+              tetprism_vol_sum += fc->tetprism_vol_sum;
+              fc->tetprism_vol_sum = 0.0; // Clear it.
+            }
+            continue;
+          } else {
+            // There are more than 3 tets at this edge.
+            fnext(fliptets[3], fliptets[4]);
+            if (fliptets[4].tet == fliptets[0].tet) {
+              // There are exactly 4 tets at this edge.
+              if (nonconvex) {
+                if (apex(fliptets[3]) == dummypoint) {
+                  // This edge is locally non-convex on the hull.
+                  // It can be removed by a 4-to-4 flip.
+                  ori = 0;
+                }
+              } // if (nonconvex)
+              if (ori == 0) {
+                // A 4-to-4 flip is found. (Two hull tets may be involved.)
+                // Current tets in 'fliptets':
+                //   [0] [b,a,d,c] (d may be newpt)
+                //   [1] [b,a,c,e]
+                //   [2] [b,a,e,f] (f may be dummypoint)
+                //   [3] [b,a,f,d]
+                esymself(fliptets[0]); // [a,b,c,d]
+                // A 2-to-3 flip replaces face [a,b,c] by edge [e,d].
+                //   This creates a degenerate tet [e,d,a,b] (tmpfliptets[0]).
+                //   It will be removed by the followed 3-to-2 flip.
+                flip23(fliptets, 0, fc); // No hull tet.
+                fnext(fliptets[3], fliptets[1]);
+                fnext(fliptets[1], fliptets[2]);
+                // Current tets in 'fliptets':
+                //   [0] [...]
+                //   [1] [b,a,d,e] (degenerated, d may be new point).
+                //   [2] [b,a,e,f] (f may be dummypoint)
+                //   [3] [b,a,f,d]
+                // A 3-to-2 flip replaces edge [b,a] by face [d,e,f].
+                //   Hull tets may be involved (f may be dummypoint).
+                flip32(&(fliptets[1]), (apex(fliptets[3]) == dummypoint), fc);
+                flipcount++;
+                flip23count--;
+                flip32count--;
+                flip44count++;
+                if (fc->remove_ndelaunay_edge) {
+                  // Update the volume (must be decreased).
+                  //assert(fc->tetprism_vol_sum <= 0);
+                  tetprism_vol_sum += fc->tetprism_vol_sum;
+                  fc->tetprism_vol_sum = 0.0; // Clear it.
+                }
+                continue;
+              } // if (ori == 0)
+            }
+          }
+        } // if (ori <= 0)
+
+        // This non-Delaunay face is unflippable. Save it.
+        unflipqueue->newindex((void **) &bface);
+        bface->tt = fliptets[0];
+        bface->forg  = org(fliptets[0]);
+        bface->fdest = dest(fliptets[0]);
+        bface->fapex = apex(fliptets[0]);
+      } // if (sign < 0)
+    } // while (flipstack)
+
+    if (b->verbose > 2) {
+      if (flipcount > 0) {
+        printf("      Performed %ld flips.\n", flipcount);
+      }
+    }
+    // Accumulate the counter of flips.
+    totalcount += flipcount;
+
+    assert(flippool->items == 0l);
+    // Return if no unflippable faces left.
+    if (unflipqueue->objects == 0l) break;
+    // Return if no flip has been performed.
+    if (flipcount == 0l) break;
+
+    // Try to flip the unflippable faces.
+    for (i = 0; i < unflipqueue->objects; i++) {
+      bface = (badface *) fastlookup(unflipqueue, i);
+      if (!isdeadtet(bface->tt) &&
+          (org(bface->tt) == bface->forg) &&
+          (dest(bface->tt) == bface->fdest) &&
+          (apex(bface->tt) == bface->fapex)) {
+        flippush(flipstack, &(bface->tt));
+      }
+    }
+    unflipqueue->restart();
+
+  } // while (1)
+
+  if (b->verbose > 2) {
+    if (totalcount > 0) {
+      printf("      Performed %ld flips.\n", totalcount);
+    }
+    if (sliver_peels > 0) {
+      printf("      Removed %ld hull slivers.\n", sliver_peels);
+    }
+    if (unflipqueue->objects > 0l) {
+      printf("      %ld unflippable edges remained.\n", unflipqueue->objects);
+    }
+  }
+
+  return totalcount + sliver_peels;
+}
+
+void meshGRegionBoundaryRecovery::recoverdelaunay()
+{
+  arraypool *flipqueue, *nextflipqueue, *swapqueue;
+  triface tetloop, neightet, *parytet;
+  badface *bface, *parybface;
+  point *ppt;
+  flipconstraints fc;
+  int i, j;
+
+  if (!b->quiet) {
+    Msg::Info(" --> Recovering Delaunayness ...");
+  }
+
+  tetprism_vol_sum = 0.0; // Initialize it.
+
+  // Put all interior faces of the mesh into 'flipstack'.
+  tetrahedrons->traversalinit();
+  tetloop.tet = tetrahedrontraverse();
+  while (tetloop.tet != NULL) {
+    for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) {
+      decode(tetloop.tet[tetloop.ver], neightet);
+      if (!facemarked(neightet)) {
+        flippush(flipstack, &tetloop);
+      }
+    }
+    ppt = (point *) &(tetloop.tet[4]);
+    tetprism_vol_sum += tetprismvol(ppt[0], ppt[1], ppt[2], ppt[3]);
+    tetloop.tet = tetrahedrontraverse();
+  }
+
+  // Calulate a relatively lower bound for small improvement.
+  //   Used to avoid rounding error in volume calculation.
+  fc.bak_tetprism_vol = tetprism_vol_sum * b->epsilon * 1e-3;
+
+  if (b->verbose) {
+    printf("  Initial obj = %.17g\n", tetprism_vol_sum);
+  }
+
+  if (b->verbose > 1) {
+    printf("    Recover Delaunay [Lawson] : %ld\n", flippool->items);
+  }
+
+  // First only use the basic Lawson's flip.
+  fc.remove_ndelaunay_edge = 1;
+  fc.enqflag = 2;
+
+  lawsonflip3d(&fc);
+
+  if (b->verbose > 1) {
+    printf("    obj (after Lawson) = %.17g\n", tetprism_vol_sum);
+  }
+
+  if (unflipqueue->objects == 0l) {
+    return; // The mesh is Delaunay.
+  }
+
+  fc.unflip = 1; // Unflip if the edge is not flipped.
+  fc.collectnewtets = 1; // new tets are returned in 'cavetetlist'.
+  fc.enqflag = 0;
+
+  autofliplinklevel = 1; // Init level.
+  b->fliplinklevel = -1; // No fixed level.
+
+  // For efficiency reason, we limit the maximium size of the edge star.
+  int bakmaxflipstarsize = b->flipstarsize;
+  b->flipstarsize = 10; // default
+
+  flipqueue = new arraypool(sizeof(badface), 10);
+  nextflipqueue = new arraypool(sizeof(badface), 10);
+
+  // Swap the two flip queues.
+  swapqueue = flipqueue;
+  flipqueue = unflipqueue;
+  unflipqueue = swapqueue;
+
+  while (flipqueue->objects > 0l) {
+
+    if (b->verbose > 1) {
+      printf("    Recover Delaunay [level = %2d] #:  %ld.\n",
+             autofliplinklevel, flipqueue->objects);
+    }
+
+    for (i = 0; i < flipqueue->objects; i++) {
+      bface  = (badface *) fastlookup(flipqueue, i);
+      if (getedge(bface->forg, bface->fdest, &bface->tt)) {
+        if (removeedgebyflips(&(bface->tt), &fc) == 2) {
+          tetprism_vol_sum += fc.tetprism_vol_sum;
+          fc.tetprism_vol_sum = 0.0; // Clear it.
+          // Queue new faces for flips.
+          for (j = 0; j < cavetetlist->objects; j++) {
+            parytet = (triface *) fastlookup(cavetetlist, j);
+            // A queued new tet may be dead.
+            if (!isdeadtet(*parytet)) {
+              for (parytet->ver = 0; parytet->ver < 4; parytet->ver++) {
+                // Avoid queue a face twice.
+                decode(parytet->tet[parytet->ver], neightet);
+                if (!facemarked(neightet)) {
+                  flippush(flipstack, parytet);
+                }
+              } // parytet->ver
+            }
+          } // j
+          cavetetlist->restart();
+          // Remove locally non-Delaunay faces. New non-Delaunay edges
+          //   may be found. They are saved in 'unflipqueue'.
+          fc.enqflag = 2;
+          lawsonflip3d(&fc);
+          fc.enqflag = 0;
+          // There may be unflipable faces. Add them in flipqueue.
+          for (j = 0; j < unflipqueue->objects; j++) {
+            bface  = (badface *) fastlookup(unflipqueue, j);
+            flipqueue->newindex((void **) &parybface);
+            *parybface = *bface;
+          }
+          unflipqueue->restart();
+        } else {
+          // Unable to remove this edge. Save it.
+          nextflipqueue->newindex((void **) &parybface);
+          *parybface = *bface;
+          // Normally, it should be zero.
+          //assert(fc.tetprism_vol_sum == 0.0);
+          // However, due to rounding errors, a tiny value may appear.
+          fc.tetprism_vol_sum = 0.0;
+        }
+      }
+    } // i
+
+    if (b->verbose > 1) {
+      printf("    obj (after level %d) = %.17g.\n", autofliplinklevel,
+             tetprism_vol_sum);
+    }
+    flipqueue->restart();
+
+    // Swap the two flip queues.
+    swapqueue = flipqueue;
+    flipqueue = nextflipqueue;
+    nextflipqueue = swapqueue;
+
+    if (flipqueue->objects > 0l) {
+      // default 'b->delmaxfliplevel' is 1.
+      if (autofliplinklevel >= b->delmaxfliplevel) {
+        // For efficiency reason, we do not search too far.
+        break;
+      }
+      autofliplinklevel+=b->fliplinklevelinc;
+    }
+  } // while (flipqueue->objects > 0l)
+
+  if (flipqueue->objects > 0l) {
+    if (b->verbose > 1) {
+      printf("    %ld non-Delaunay edges remained.\n", flipqueue->objects);
+    }
+  }
+
+  if (b->verbose) {
+    printf("  Final obj  = %.17g\n", tetprism_vol_sum);
+  }
+
+  b->flipstarsize = bakmaxflipstarsize;
+  delete flipqueue;
+  delete nextflipqueue;
+}
+
+int meshGRegionBoundaryRecovery::gettetrahedron(point pa, point pb, point pc,
+  point pd, triface *searchtet)
+{
+  triface spintet;
+  int t1ver;
+
+  if (getedge(pa, pb, searchtet)) {
+    spintet = *searchtet;
+    while (1) {
+      if (apex(spintet) == pc) {
+        *searchtet = spintet;
+        break;
+      }
+      fnextself(spintet);
+      if (spintet.tet == searchtet->tet) break;
+    }
+    if (apex(*searchtet) == pc) {
+      if (oppo(*searchtet) == pd) {
+        return 1;
+      } else {
+        fsymself(*searchtet);
+        if (oppo(*searchtet) == pd) {
+          return 1;
+        }
+      }
+    }
+  }
+
+  return 0;
+}
+
+long meshGRegionBoundaryRecovery::improvequalitybyflips()
+{
+  arraypool *flipqueue, *nextflipqueue, *swapqueue;
+  badface *bface, *parybface;
+  triface *parytet;
+  point *ppt;
+  flipconstraints fc;
+  REAL *cosdd, ncosdd[6], maxdd;
+  long totalremcount, remcount;
+  int remflag;
+  int n, i, j, k;
+
+  //assert(unflipqueue->objects > 0l);
+  flipqueue = new arraypool(sizeof(badface), 10);
+  nextflipqueue = new arraypool(sizeof(badface), 10);
+
+  // Backup flip edge options.
+  int bakautofliplinklevel = autofliplinklevel;
+  int bakfliplinklevel = b->fliplinklevel;
+  int bakmaxflipstarsize = b->flipstarsize;
+
+  // Set flip edge options.
+  autofliplinklevel = 1;
+  b->fliplinklevel = -1;
+  b->flipstarsize = 10; // b->optmaxflipstarsize;
+
+  fc.remove_large_angle = 1;
+  fc.unflip = 1;
+  fc.collectnewtets = 1;
+  fc.checkflipeligibility = 1;
+
+  totalremcount = 0l;
+
+  // Swap the two flip queues.
+  swapqueue = flipqueue;
+  flipqueue = unflipqueue;
+  unflipqueue = swapqueue;
+
+  while (flipqueue->objects > 0l) {
+
+    remcount = 0l;
+
+    while (flipqueue->objects > 0l) {
+      if (b->verbose > 1) {
+        printf("    Improving mesh qualiy by flips [%d]#:  %ld.\n",
+               autofliplinklevel, flipqueue->objects);
+      }
+
+      for (k = 0; k < flipqueue->objects; k++) {
+        bface  = (badface *) fastlookup(flipqueue, k);
+        if (gettetrahedron(bface->forg, bface->fdest, bface->fapex,
+                           bface->foppo, &bface->tt)) {
+          //assert(!ishulltet(bface->tt));
+          // There are bad dihedral angles in this tet.
+          if (bface->tt.ver != 11) {
+            // The dihedral angles are permuted.
+            // Here we simply re-compute them. Slow!!.
+            ppt = (point *) & (bface->tt.tet[4]);
+            tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent,
+                           &bface->key, NULL);
+            bface->forg = ppt[0];
+            bface->fdest = ppt[1];
+            bface->fapex = ppt[2];
+            bface->foppo = ppt[3];
+            bface->tt.ver = 11;
+          }
+          if (bface->key == 0) {
+            // Re-comput the quality values. Due to smoothing operations.
+            ppt = (point *) & (bface->tt.tet[4]);
+            tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent,
+                           &bface->key, NULL);
+          }
+          cosdd = bface->cent;
+          remflag = 0;
+          for (i = 0; (i < 6) && !remflag; i++) {
+            if (cosdd[i] < cosmaxdihed) {
+              // Found a large dihedral angle.
+              bface->tt.ver = edge2ver[i]; // Go to the edge.
+              fc.cosdihed_in = cosdd[i];
+              fc.cosdihed_out = 0.0; // 90 degree.
+              n = removeedgebyflips(&(bface->tt), &fc);
+              if (n == 2) {
+                // Edge is flipped.
+                remflag = 1;
+                if (fc.cosdihed_out < cosmaxdihed) {
+                  // Queue new bad tets for further improvements.
+                  for (j = 0; j < cavetetlist->objects; j++) {
+                    parytet = (triface *) fastlookup(cavetetlist, j);
+                    if (!isdeadtet(*parytet)) {
+                      ppt = (point *) & (parytet->tet[4]);
+                      // Do not test a hull tet.
+                      if (ppt[3] != dummypoint) {
+                        tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], ncosdd,
+                                       &maxdd, NULL);
+                        if (maxdd < cosmaxdihed) {
+                          // There are bad dihedral angles in this tet.
+                          nextflipqueue->newindex((void **) &parybface);
+                          parybface->tt.tet = parytet->tet;
+                          parybface->tt.ver = 11;
+                          parybface->forg = ppt[0];
+                          parybface->fdest = ppt[1];
+                          parybface->fapex = ppt[2];
+                          parybface->foppo = ppt[3];
+                          parybface->key = maxdd;
+                          for (n = 0; n < 6; n++) {
+                            parybface->cent[n] = ncosdd[n];
+                          }
+                        }
+                      } // if (ppt[3] != dummypoint)
+                    }
+                  } // j
+                } // if (fc.cosdihed_out < cosmaxdihed)
+                cavetetlist->restart();
+                remcount++;
+              }
+            }
+          } // i
+          if (!remflag) {
+            // An unremoved bad tet. Queue it again.
+            unflipqueue->newindex((void **) &parybface);
+            *parybface = *bface;
+          }
+        } // if (gettetrahedron(...))
+      } // k
+
+      flipqueue->restart();
+
+      // Swap the two flip queues.
+      swapqueue = flipqueue;
+      flipqueue = nextflipqueue;
+      nextflipqueue = swapqueue;
+    } // while (flipqueues->objects > 0)
+
+    if (b->verbose > 1) {
+      printf("    Removed %ld bad tets.\n", remcount);
+    }
+    totalremcount += remcount;
+
+    if (unflipqueue->objects > 0l) {
+      //if (autofliplinklevel >= b->optmaxfliplevel) {
+      if (autofliplinklevel >= b->optlevel) {
+        break;
+      }
+      autofliplinklevel+=b->fliplinklevelinc;
+      //b->flipstarsize = 10 + (1 << (b->optlevel - 1));
+    }
+
+    // Swap the two flip queues.
+    swapqueue = flipqueue;
+    flipqueue = unflipqueue;
+    unflipqueue = swapqueue;
+  } // while (flipqueues->objects > 0)
+
+  // Restore original flip edge options.
+  autofliplinklevel = bakautofliplinklevel;
+  b->fliplinklevel = bakfliplinklevel;
+  b->flipstarsize = bakmaxflipstarsize;
+
+  delete flipqueue;
+  delete nextflipqueue;
+
+  return totalremcount;
+}
+
+int meshGRegionBoundaryRecovery::smoothpoint(point smtpt,
+  arraypool *linkfacelist, int ccw, optparameters *opm)
+{
+  triface *parytet, *parytet1, swaptet;
+  point pa, pb, pc;
+  REAL fcent[3], startpt[3], nextpt[3], bestpt[3];
+  REAL oldval, minval = 0.0, val;
+  REAL maxcosd; // oldang, newang;
+  REAL ori, diff;
+  int numdirs, iter;
+  int i, j, k;
+
+  // Decide the number of moving directions.
+  numdirs = (int) linkfacelist->objects;
+  if (numdirs > opm->numofsearchdirs) {
+    numdirs = opm->numofsearchdirs; // Maximum search directions.
+  }
+
+  // Set the initial value.
+  if (!opm->max_min_volume) {
+    assert(opm->initval >= 0.0);
+  }
+  opm->imprval = opm->initval;
+  iter = 0;
+
+  for (i = 0; i < 3; i++) {
+    bestpt[i] = startpt[i] = smtpt[i];
+  }
+
+  // Iterate until the obj function is not improved.
+  while (1) {
+
+    // Find the best next location.
+    oldval = opm->imprval;
+
+    for (i = 0; i < numdirs; i++) {
+      // Randomly pick a link face (0 <= k <= objects - i - 1).
+      k = (int) randomnation(linkfacelist->objects - i);
+      parytet = (triface *) fastlookup(linkfacelist, k);
+      // Calculate a new position from 'p' to the center of this face.
+      pa = org(*parytet);
+      pb = dest(*parytet);
+      pc = apex(*parytet);
+      for (j = 0; j < 3; j++) {
+        fcent[j] = (pa[j] + pb[j] + pc[j]) / 3.0;
+      }
+      for (j = 0; j < 3; j++) {
+        nextpt[j] = startpt[j] + opm->searchstep * (fcent[j] - startpt[j]);
+      }
+      // Calculate the largest minimum function value for the new location.
+      for (j = 0; j < linkfacelist->objects; j++) {
+        parytet = (triface *) fastlookup(linkfacelist, j);
+        if (ccw) {
+          pa = org(*parytet);
+          pb = dest(*parytet);
+        } else {
+          pb = org(*parytet);
+          pa = dest(*parytet);
+        }
+        pc = apex(*parytet);
+        ori = orient3d(pa, pb, pc, nextpt);
+        if (ori < 0.0) {
+          // Calcuate the objective function value.
+          if (opm->max_min_volume) {
+            //val = -ori;
+            val = - orient3dfast(pa, pb, pc, nextpt);
+          } else if (opm->min_max_aspectratio) {
+            val = tetaspectratio(pa, pb, pc, nextpt);
+          } else if (opm->min_max_dihedangle) {
+            tetalldihedral(pa, pb, pc, nextpt, NULL, &maxcosd, NULL);
+            if (maxcosd < -1) maxcosd = -1.0; // Rounding.
+            val = maxcosd + 1.0; // Make it be positive.
+          } else {
+            // Unknown objective function.
+            val = 0.0;
+          }
+        } else { // ori >= 0.0;
+          // An invalid new tet.
+          // This may happen if the mesh contains inverted elements.
+          if (opm->max_min_volume) {
+            //val = -ori;
+            val = - orient3dfast(pa, pb, pc, nextpt);
+          } else {
+            // Discard this point.
+            break; // j
+          }
+        } // if (ori >= 0.0)
+        // Stop looping when the object value is not improved.
+        if (val <= opm->imprval) {
+          break; // j
+        } else {
+          // Remember the smallest improved value.
+          if (j == 0) {
+            minval = val;
+          } else {
+            minval = (val < minval) ? val : minval;
+          }
+        }
+      } // j
+      if (j == linkfacelist->objects) {
+        // The function value has been improved.
+        opm->imprval = minval;
+        // Save the new location of the point.
+        for (j = 0; j < 3; j++) bestpt[j] = nextpt[j];
+      }
+      // Swap k-th and (object-i-1)-th entries.
+      j = linkfacelist->objects - i - 1;
+      parytet  = (triface *) fastlookup(linkfacelist, k);
+      parytet1 = (triface *) fastlookup(linkfacelist, j);
+      swaptet = *parytet1;
+      *parytet1 = *parytet;
+      *parytet = swaptet;
+    } // i
+
+    diff = opm->imprval - oldval;
+    if (diff > 0.0) {
+      // Is the function value improved effectively?
+      if (opm->max_min_volume) {
+        //if ((diff / oldval) < b->epsilon) diff = 0.0;
+      } else if (opm->min_max_aspectratio) {
+        if ((diff / oldval) < 1e-3) diff = 0.0;
+      } else if (opm->min_max_dihedangle) {
+        //oldang = acos(oldval - 1.0);
+        //newang = acos(opm->imprval - 1.0);
+        //if ((oldang - newang) < 0.00174) diff = 0.0; // about 0.1 degree.
+      } else {
+        // Unknown objective function.
+        assert(0); // Not possible.
+      }
+    }
+
+    if (diff > 0.0) {
+      // Yes, move p to the new location and continue.
+      for (j = 0; j < 3; j++) startpt[j] = bestpt[j];
+      iter++;
+      if ((opm->maxiter > 0) && (iter >= opm->maxiter)) {
+        // Maximum smoothing iterations reached.
+        break;
+      }
+    } else {
+      break;
+    }
+
+  } // while (1)
+
+  if (iter > 0) {
+    // The point has been smoothed.
+    opm->smthiter = iter; // Remember the number of iterations.
+    // The point has been smoothed. Update it to its new position.
+    for (i = 0; i < 3; i++) smtpt[i] = startpt[i];
+  }
+
+  return iter;
+}
+
+
+long meshGRegionBoundaryRecovery::improvequalitybysmoothing(optparameters *opm)
+{
+  arraypool *flipqueue, *swapqueue;
+  triface *parytet;
+  badface *bface, *parybface;
+  point *ppt;
+  long totalsmtcount, smtcount;
+  int smtflag;
+  int iter, i, j, k;
+
+  //assert(unflipqueue->objects > 0l);
+  flipqueue = new arraypool(sizeof(badface), 10);
+
+  // Swap the two flip queues.
+  swapqueue = flipqueue;
+  flipqueue = unflipqueue;
+  unflipqueue = swapqueue;
+
+  totalsmtcount = 0l;
+  iter = 0;
+
+  while (flipqueue->objects > 0l) {
+
+    smtcount = 0l;
+
+    if (b->verbose > 1) {
+      printf("    Improving mesh quality by smoothing [%d]#:  %ld.\n",
+             iter, flipqueue->objects);
+    }
+
+    for (k = 0; k < flipqueue->objects; k++) {
+      bface  = (badface *) fastlookup(flipqueue, k);
+      if (gettetrahedron(bface->forg, bface->fdest, bface->fapex,
+                         bface->foppo, &bface->tt)) {
+        // Operate on it if it is not in 'unflipqueue'.
+        if (!marktested(bface->tt)) {
+          // Here we simply re-compute the quality. Since other smoothing
+          //   operation may have moved the vertices of this tet.
+          ppt = (point *) & (bface->tt.tet[4]);
+          tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent,
+                         &bface->key, NULL);
+          if (bface->key < cossmtdihed) { // if (maxdd < cosslidihed) {
+            // It is a sliver. Try to smooth its vertices.
+            smtflag = 0;
+            opm->initval = bface->key + 1.0;
+            for (i = 0; (i < 4) && !smtflag; i++) {
+              if (pointtype(ppt[i]) == FREEVOLVERTEX) {
+                getvertexstar(1, ppt[i], cavetetlist, NULL, NULL);
+                opm->searchstep = 0.001; // Search step size
+                smtflag = smoothpoint(ppt[i], cavetetlist, 1, opm);
+                if (smtflag) {
+                  while (opm->smthiter == opm->maxiter) {
+                    opm->searchstep *= 10.0; // Increase the step size.
+                    opm->initval = opm->imprval;
+                    opm->smthiter = 0; // reset
+                    smoothpoint(ppt[i], cavetetlist, 1, opm);
+                  }
+                  // This tet is modifed.
+                  smtcount++;
+                  if ((opm->imprval - 1.0) < cossmtdihed) {
+                    // There are slivers in new tets. Queue them.
+                    for (j = 0; j < cavetetlist->objects; j++) {
+                      parytet = (triface *) fastlookup(cavetetlist, j);
+                      assert(!isdeadtet(*parytet));
+                      // Operate it if it is not in 'unflipqueue'.
+                      if (!marktested(*parytet)) {
+                        // Evaluate its quality.
+                        // Re-use ppt, bface->key, bface->cent.
+                        ppt = (point *) & (parytet->tet[4]);
+                        tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3],
+                                       bface->cent, &bface->key, NULL);
+                        if (bface->key < cossmtdihed) {
+                          // A new sliver. Queue it.
+                          marktest(*parytet); // It is in unflipqueue.
+                          unflipqueue->newindex((void **) &parybface);
+                          parybface->tt = *parytet;
+                          parybface->forg = ppt[0];
+                          parybface->fdest = ppt[1];
+                          parybface->fapex = ppt[2];
+                          parybface->foppo = ppt[3];
+                          parybface->tt.ver = 11;
+                          parybface->key = 0.0;
+                        }
+                      }
+                    } // j
+                  } // if ((opm->imprval - 1.0) < cossmtdihed)
+                } // if (smtflag)
+                cavetetlist->restart();
+              } // if (pointtype(ppt[i]) == FREEVOLVERTEX)
+            } // i
+            if (!smtflag) {
+              // Didn't smooth. Queue it again.
+              marktest(bface->tt); // It is in unflipqueue.
+              unflipqueue->newindex((void **) &parybface);
+              parybface->tt = bface->tt;
+              parybface->forg = ppt[0];
+              parybface->fdest = ppt[1];
+              parybface->fapex = ppt[2];
+              parybface->foppo = ppt[3];
+              parybface->tt.ver = 11;
+              parybface->key = 0.0;
+            }
+	      } // if (maxdd < cosslidihed)
+        } // if (!marktested(...))
+      } // if (gettetrahedron(...))
+    } // k
+
+    flipqueue->restart();
+
+    // Unmark the tets in unflipqueue.
+    for (i = 0; i < unflipqueue->objects; i++) {
+      bface  = (badface *) fastlookup(unflipqueue, i);
+      unmarktest(bface->tt);
+    }
+
+    if (b->verbose > 1) {
+      printf("    Smooth %ld points.\n", smtcount);
+    }
+    totalsmtcount += smtcount;
+
+    if (smtcount == 0l) {
+      // No point has been smoothed.
+      break;
+    } else {
+      iter++;
+      if (iter == 2) { //if (iter >= b->optpasses) {
+        break;
+      }
+    }
+
+    // Swap the two flip queues.
+    swapqueue = flipqueue;
+    flipqueue = unflipqueue;
+    unflipqueue = swapqueue;
+  } // while
+
+  delete flipqueue;
+
+  return totalsmtcount;
+}
+
+int meshGRegionBoundaryRecovery::splitsliver(triface *slitet, REAL cosd,
+  int chkencflag)
+{
+  triface *abtets;
+  triface searchtet, spintet, *parytet;
+  point pa, pb, steinerpt;
+  optparameters opm;
+  insertvertexflags ivf;
+  REAL smtpt[3], midpt[3];
+  int success;
+  int t1ver;
+  int n, i;
+
+  // 'slitet' is [c,d,a,b], where [c,d] has a big dihedral angle.
+  // Go to the opposite edge [a,b].
+  edestoppo(*slitet, searchtet); // [a,b,c,d].
+
+  // Do not split a segment.
+  if (issubseg(searchtet)) {
+    return 0;
+  }
+
+  // Count the number of tets shared at [a,b].
+  // Do not split it if it is a hull edge.
+  spintet = searchtet;
+  n = 0;
+  while (1) {
+    if (ishulltet(spintet)) break;
+    n++;
+    fnextself(spintet);
+    if (spintet.tet == searchtet.tet) break;
+  }
+  if (ishulltet(spintet)) {
+    return 0; // It is a hull edge.
+  }
+  assert(n >= 3);
+
+  // Get all tets at edge [a,b].
+  abtets = new triface[n];
+  spintet = searchtet;
+  for (i = 0; i < n; i++) {
+    abtets[i] = spintet;
+    fnextself(spintet);
+  }
+
+  // Initialize the list of 2n boundary faces.
+  for (i = 0; i < n; i++) {
+    eprev(abtets[i], searchtet);
+    esymself(searchtet); // [a,p_i,p_i+1].
+    cavetetlist->newindex((void **) &parytet);
+    *parytet = searchtet;
+    enext(abtets[i], searchtet);
+    esymself(searchtet); // [p_i,b,p_i+1].
+    cavetetlist->newindex((void **) &parytet);
+    *parytet = searchtet;
+  }
+
+  // Init the Steiner point at the midpoint of edge [a,b].
+  pa = org(abtets[0]);
+  pb = dest(abtets[0]);
+  for (i = 0; i < 3; i++) {
+    smtpt[i] = midpt[i] = 0.5 * (pa[i] + pb[i]);
+  }
+
+  // Point smooth options.
+  opm.min_max_dihedangle = 1;
+  opm.initval = cosd + 1.0; // Initial volume is zero.
+  opm.numofsearchdirs = 20;
+  opm.searchstep = 0.001;
+  opm.maxiter = 100; // Limit the maximum iterations.
+
+  success = smoothpoint(smtpt, cavetetlist, 1, &opm);
+
+  if (success) {
+    while (opm.smthiter == opm.maxiter) {
+      // It was relocated and the prescribed maximum iteration reached.
+      // Try to increase the search stepsize.
+      opm.searchstep *= 10.0;
+      //opm.maxiter = 100; // Limit the maximum iterations.
+      opm.initval = opm.imprval;
+      opm.smthiter = 0; // Init.
+      smoothpoint(smtpt, cavetetlist, 1, &opm);
+    }
+  } // if (success)
+
+  cavetetlist->restart();
+
+  if (!success) {
+    delete [] abtets;
+    return 0;
+  }
+
+
+  // Insert the Steiner point.
+  makepoint(&steinerpt, FREEVOLVERTEX);
+  for (i = 0; i < 3; i++) steinerpt[i] = smtpt[i];
+
+  // Insert the created Steiner point.
+  for (i = 0; i < n; i++) {
+    infect(abtets[i]);
+    caveoldtetlist->newindex((void **) &parytet);
+    *parytet = abtets[i];
+  }
+
+  searchtet = abtets[0]; // No need point location.
+  if (b->metric) {
+    locate(steinerpt, &searchtet); // For size interpolation.
+  }
+
+  delete [] abtets;
+
+  ivf.iloc = (int) INSTAR;
+  ivf.chkencflag = chkencflag;
+  ivf.assignmeshsize = b->metric;
+
+
+  if (insertpoint(steinerpt, &searchtet, NULL, NULL, &ivf)) {
+    // The vertex has been inserted.
+    st_volref_count++;
+    if (steinerleft > 0) steinerleft--;
+    return 1;
+  } else {
+    // The Steiner point is too close to an existing vertex. Reject it.
+    pointdealloc(steinerpt);
+    return 0;
+  }
+}
+
+long meshGRegionBoundaryRecovery::removeslivers(int chkencflag)
+{
+  arraypool *flipqueue, *swapqueue;
+  badface *bface, *parybface;
+  triface slitet, *parytet;
+  point *ppt;
+  REAL cosdd[6], maxcosd;
+  long totalsptcount, sptcount;
+  int iter, i, j, k;
+
+  //assert(unflipqueue->objects > 0l);
+  flipqueue = new arraypool(sizeof(badface), 10);
+
+  // Swap the two flip queues.
+  swapqueue = flipqueue;
+  flipqueue = unflipqueue;
+  unflipqueue = swapqueue;
+
+  totalsptcount = 0l;
+  iter = 0;
+
+  while ((flipqueue->objects > 0l) && (steinerleft != 0)) {
+
+    sptcount = 0l;
+
+    if (b->verbose > 1) {
+      printf("    Splitting bad quality tets [%d]#:  %ld.\n",
+             iter, flipqueue->objects);
+    }
+
+    for (k = 0; (k < flipqueue->objects) && (steinerleft != 0); k++) {
+      bface  = (badface *) fastlookup(flipqueue, k);
+      if (gettetrahedron(bface->forg, bface->fdest, bface->fapex,
+                         bface->foppo, &bface->tt)) {
+        if ((bface->key == 0) || (bface->tt.ver != 11)) {
+          // Here we need to re-compute the quality. Since other smoothing
+          //   operation may have moved the vertices of this tet.
+          ppt = (point *) & (bface->tt.tet[4]);
+          tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent,
+                         &bface->key, NULL);
+        }
+        if (bface->key < cosslidihed) {
+          // It is a sliver. Try to split it.
+          slitet.tet = bface->tt.tet;
+          //cosdd = bface->cent;
+          for (j = 0; j < 6; j++) {
+            if (bface->cent[j] < cosslidihed) {
+              // Found a large dihedral angle.
+              slitet.ver = edge2ver[j]; // Go to the edge.
+              if (splitsliver(&slitet, bface->cent[j], chkencflag)) {
+                sptcount++;
+                break;
+              }
+            }
+          } // j
+          if (j < 6) {
+            // A sliver is split. Queue new slivers.
+            badtetrahedrons->traversalinit();
+            parytet = (triface *) badtetrahedrons->traverse();
+            while (parytet != NULL) {
+              unmarktest2(*parytet);
+              ppt = (point *) & (parytet->tet[4]);
+              tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], cosdd,
+                             &maxcosd, NULL);
+              if (maxcosd < cosslidihed) {
+                // A new sliver. Queue it.
+                unflipqueue->newindex((void **) &parybface);
+                parybface->forg = ppt[0];
+                parybface->fdest = ppt[1];
+                parybface->fapex = ppt[2];
+                parybface->foppo = ppt[3];
+                parybface->tt.tet = parytet->tet;
+                parybface->tt.ver = 11;
+                parybface->key = maxcosd;
+                for (i = 0; i < 6; i++) {
+                  parybface->cent[i] = cosdd[i];
+                }
+              }
+              parytet = (triface *) badtetrahedrons->traverse();
+            }
+            badtetrahedrons->restart();
+          } else {
+            // Didn't split. Queue it again.
+            unflipqueue->newindex((void **) &parybface);
+            *parybface = *bface;
+          } // if (j == 6)
+        } // if (bface->key < cosslidihed)
+      } // if (gettetrahedron(...))
+    } // k
+
+    flipqueue->restart();
+
+    if (b->verbose > 1) {
+      printf("    Split %ld tets.\n", sptcount);
+    }
+    totalsptcount += sptcount;
+
+    if (sptcount == 0l) {
+      // No point has been smoothed.
+      break;
+    } else {
+      iter++;
+      if (iter == 2) { //if (iter >= b->optpasses) {
+        break;
+      }
+    }
+
+    // Swap the two flip queues.
+    swapqueue = flipqueue;
+    flipqueue = unflipqueue;
+    unflipqueue = swapqueue;
+  } // while
+
+  delete flipqueue;
+
+  return totalsptcount;
+}
+
+void meshGRegionBoundaryRecovery::optimizemesh()
+{
+  badface *parybface;
+  triface checktet;
+  point *ppt;
+  int optpasses;
+  optparameters opm;
+  REAL ncosdd[6], maxdd;
+  long totalremcount, remcount;
+  long totalsmtcount, smtcount;
+  long totalsptcount, sptcount;
+  int chkencflag;
+  int iter;
+  int n;
+
+  if (!b->quiet) {
+    Msg::Info(" --> Optimizing mesh...");
+  }
+
+  optpasses = ((1 << b->optlevel) - 1);
+
+  if (b->verbose) {
+    printf("  Optimization level  = %d.\n", b->optlevel);
+    printf("  Optimization scheme = %d.\n", b->optscheme);
+    printf("  Number of iteration = %d.\n", optpasses);
+    printf("  Min_Max dihed angle = %g.\n", b->optmaxdihedral);
+  }
+
+  totalsmtcount = totalsptcount = totalremcount = 0l;
+
+  cosmaxdihed = cos(b->optmaxdihedral / 180.0 * PI);
+  cossmtdihed = cos(b->optminsmtdihed / 180.0 * PI);
+  cosslidihed = cos(b->optminslidihed / 180.0 * PI);
+
+  int attrnum = numelemattrib - 1;
+
+  // Put all bad tetrahedra into array.
+  tetrahedrons->traversalinit();
+  checktet.tet = tetrahedrontraverse();
+  while (checktet.tet != NULL) {
+    if (b->convex) { // -c
+      // Skip this tet if it lies in the exterior.
+      if (elemattribute(checktet.tet, attrnum) == -1.0) {
+        checktet.tet = tetrahedrontraverse();
+        continue;
+      }
+    }
+    ppt = (point *) & (checktet.tet[4]);
+    tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], ncosdd, &maxdd, NULL);
+    if (maxdd < cosmaxdihed) {
+      // There are bad dihedral angles in this tet.
+      unflipqueue->newindex((void **) &parybface);
+      parybface->tt.tet = checktet.tet;
+      parybface->tt.ver = 11;
+      parybface->forg = ppt[0];
+      parybface->fdest = ppt[1];
+      parybface->fapex = ppt[2];
+      parybface->foppo = ppt[3];
+      parybface->key = maxdd;
+      for (n = 0; n < 6; n++) {
+        parybface->cent[n] = ncosdd[n];
+      }
+    }
+    checktet.tet = tetrahedrontraverse();
+  }
+
+  totalremcount = improvequalitybyflips();
+
+  if ((unflipqueue->objects > 0l) &&
+      ((b->optscheme & 2) || (b->optscheme & 4))) {
+    // The pool is only used by removeslivers().
+    badtetrahedrons = new memorypool(sizeof(triface), b->tetrahedraperblock,
+                                     sizeof(void *), 0);
+
+    // Smoothing options.
+    opm.min_max_dihedangle = 1;
+    opm.numofsearchdirs = 10;
+    // opm.searchstep = 0.001;
+    opm.maxiter = 30; // Limit the maximum iterations.
+    //opm.checkencflag = 4; // Queue affected tets after smoothing.
+    chkencflag = 4; // Queue affected tets after splitting a sliver.
+    iter = 0;
+
+    while (iter < optpasses) {
+      smtcount = sptcount = remcount = 0l;
+      if (b->optscheme & 2) {
+        smtcount += improvequalitybysmoothing(&opm);
+        totalsmtcount += smtcount;
+        if (smtcount > 0l) {
+          remcount = improvequalitybyflips();
+          totalremcount += remcount;
+        }
+      }
+      if (unflipqueue->objects > 0l) {
+        if (b->optscheme & 4) {
+          sptcount += removeslivers(chkencflag);
+          totalsptcount += sptcount;
+          if (sptcount > 0l) {
+            remcount = improvequalitybyflips();
+            totalremcount += remcount;
+          }
+        }
+      }
+      if (unflipqueue->objects > 0l) {
+        if (remcount > 0l) {
+          iter++;
+        } else {
+          break;
+        }
+      } else {
+        break;
+      }
+    } // while (iter)
+
+    delete badtetrahedrons;
+
+  }
+
+  if (unflipqueue->objects > 0l) {
+    if (b->verbose > 1) {
+      printf("    %ld bad tets remained.\n", unflipqueue->objects);
+    }
+    unflipqueue->restart();
+  }
+
+  if (b->verbose) {
+    if (totalremcount > 0l) {
+      printf("  Removed %ld edges.\n", totalremcount);
+    }
+    if (totalsmtcount > 0l) {
+      printf("  Smoothed %ld points.\n", totalsmtcount);
+    }
+    if (totalsptcount > 0l) {
+      printf("  Split %ld slivers.\n", totalsptcount);
+    }
+  }
+}
+
+////                                                                       ////
+////                                                                       ////
+//// optimize_cxx /////////////////////////////////////////////////////////////
+
+// Dump the input surface mesh.
+// 'mfilename' is a filename without suffix.
+void meshGRegionBoundaryRecovery::outsurfacemesh(const char* mfilename)
+{
+  FILE *outfile = NULL;
+  char sfilename[256];
+  int firstindex;
+
+  point pointloop;
+  int pointnumber;
+  strcpy(sfilename, mfilename);
+  strcat(sfilename, ".node");
+  outfile = fopen(sfilename, "w");
+  if (!b->quiet) {
+    printf("Writing %s.\n", sfilename);
+  }
+  fprintf(outfile, "%ld  3  0  0\n", points->items);
+  // Determine the first index (0 or 1).
+  firstindex = b->zeroindex ? 0 : in->firstnumber;
+  points->traversalinit();
+  pointloop = pointtraverse();
+  pointnumber = firstindex; // in->firstnumber;
+  while (pointloop != (point) NULL) {
+    // Point number, x, y and z coordinates.
+    fprintf(outfile, "%4d    %.17g  %.17g  %.17g", pointnumber,
+            pointloop[0], pointloop[1], pointloop[2]);
+    fprintf(outfile, "\n");
+    pointloop = pointtraverse();
+    pointnumber++;
+  }
+  fclose(outfile);
+
+  face faceloop;
+  point torg, tdest, tapex;
+  strcpy(sfilename, mfilename);
+  strcat(sfilename, ".smesh");
+  outfile = fopen(sfilename, "w");
+  if (!b->quiet) {
+    printf("Writing %s.\n", sfilename);
+  }
+  int shift = 0; // Default no shiftment.
+  if ((in->firstnumber == 1) && (firstindex == 0)) {
+    shift = 1; // Shift the output indices by 1.
+  }
+  fprintf(outfile, "0 3 0 0\n");
+  fprintf(outfile, "%ld  1\n", subfaces->items);
+  subfaces->traversalinit();
+  faceloop.sh = shellfacetraverse(subfaces);
+  while (faceloop.sh != (shellface *) NULL) {
+    torg = sorg(faceloop);
+    tdest = sdest(faceloop);
+    tapex = sapex(faceloop);
+    fprintf(outfile, "3   %4d  %4d  %4d  %d\n",
+            pointmark(torg) - shift, pointmark(tdest) - shift,
+            pointmark(tapex) - shift, shellmark(faceloop));
+    faceloop.sh = shellfacetraverse(subfaces);
+  }
+  fprintf(outfile, "0\n");
+  fprintf(outfile, "0\n");
+  fclose(outfile);
+
+  face edgeloop;
+  int edgenumber;
+  strcpy(sfilename, mfilename);
+  strcat(sfilename, ".edge");
+  outfile = fopen(sfilename, "w");
+  if (!b->quiet) {
+    printf("Writing %s.\n", sfilename);
+  }
+  fprintf(outfile, "%ld  1\n", subsegs->items);
+  subsegs->traversalinit();
+  edgeloop.sh = shellfacetraverse(subsegs);
+  edgenumber = firstindex; // in->firstnumber;
+  while (edgeloop.sh != (shellface *) NULL) {
+    torg = sorg(edgeloop);
+    tdest = sdest(edgeloop);
+    fprintf(outfile, "%5d   %4d  %4d  %d\n", edgenumber,
+            pointmark(torg) - shift, pointmark(tdest) - shift,
+            shellmark(edgeloop));
+    edgenumber++;
+    edgeloop.sh = shellfacetraverse(subsegs);
+  }
+  fclose(outfile);
+}
+
+void meshGRegionBoundaryRecovery::outmesh2medit(const char* mfilename)
+{
+  FILE *outfile;
+  char mefilename[256];
+  tetrahedron* tetptr;
+  triface tface, tsymface;
+  face segloop, checkmark;
+  point ptloop, p1, p2, p3, p4;
+  long ntets, faces;
+  int shift = 0;
+  int marker;
+
+  if (mfilename != (char *) NULL && mfilename[0] != '\0') {
+    strcpy(mefilename, mfilename);
+  } else {
+    strcpy(mefilename, "unnamed");
+  }
+  strcat(mefilename, ".mesh");
+
+  if (!b->quiet) {
+    printf("Writing %s.\n", mefilename);
+  }
+  outfile = fopen(mefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    printf("File I/O Error:  Cannot create file %s.\n", mefilename);
+    return;
+  }
+
+  fprintf(outfile, "MeshVersionFormatted 1\n");
+  fprintf(outfile, "\n");
+  fprintf(outfile, "Dimension\n");
+  fprintf(outfile, "3\n");
+  fprintf(outfile, "\n");
+
+  fprintf(outfile, "\n# Set of mesh vertices\n");
+  fprintf(outfile, "Vertices\n");
+  fprintf(outfile, "%ld\n", points->items);
+
+  points->traversalinit();
+  ptloop = pointtraverse();
+  //pointnumber = 1;
+  while (ptloop != (point) NULL) {
+    // Point coordinates.
+    fprintf(outfile, "%.17g  %.17g  %.17g", ptloop[0], ptloop[1], ptloop[2]);
+    fprintf(outfile, "    0\n");
+    //setpointmark(ptloop, pointnumber);
+    ptloop = pointtraverse();
+    //pointnumber++;
+  }
+
+  // Medit need start number form 1.
+  if (in->firstnumber == 1) {
+    shift = 0;
+  } else {
+    shift = 1;
+  }
+
+  // Compute the number of faces.
+  ntets = tetrahedrons->items - hullsize;
+  faces = (ntets * 4l + hullsize) / 2l;
+
+  /*
+  fprintf(outfile, "\n# Set of Triangles\n");
+  fprintf(outfile, "Triangles\n");
+  fprintf(outfile, "%ld\n", faces);
+
+  tetrahedrons->traversalinit();
+  tface.tet = tetrahedrontraverse();
+  while (tface.tet != (tetrahedron *) NULL) {
+    for (tface.ver = 0; tface.ver < 4; tface.ver ++) {
+      fsym(tface, tsymface);
+      if (ishulltet(tsymface) ||
+          (elemindex(tface.tet) < elemindex(tsymface.tet))) {
+        p1 = org (tface);
+        p2 = dest(tface);
+        p3 = apex(tface);
+        fprintf(outfile, "%5d  %5d  %5d",
+          pointmark(p1)+shift, pointmark(p2)+shift, pointmark(p3)+shift);
+        // Check if it is a subface.
+        tspivot(tface, checkmark);
+        if (checkmark.sh == NULL) {
+          marker = 0;  // It is an inner face. It's marker is 0.
+        } else {
+          marker = 1; // The default marker for subface is 1.
+        }
+        fprintf(outfile, "    %d\n", marker);
+      }
+    }
+    tface.tet = tetrahedrontraverse();
+  }
+  */
+
+  fprintf(outfile, "\n# Set of Tetrahedra\n");
+  fprintf(outfile, "Tetrahedra\n");
+  fprintf(outfile, "%ld\n", ntets);
+
+  tetrahedrons->traversalinit();
+  tetptr = tetrahedrontraverse();
+  while (tetptr != (tetrahedron *) NULL) {
+    if (!b->reversetetori) {
+      p1 = (point) tetptr[4];
+      p2 = (point) tetptr[5];
+    } else {
+      p1 = (point) tetptr[5];
+      p2 = (point) tetptr[4];
+    }
+    p3 = (point) tetptr[6];
+    p4 = (point) tetptr[7];
+    fprintf(outfile, "%5d  %5d  %5d  %5d",
+            pointmark(p1)+shift, pointmark(p2)+shift,
+            pointmark(p3)+shift, pointmark(p4)+shift);
+    if (numelemattrib > 0) {
+      fprintf(outfile, "  %.17g", elemattribute(tetptr, 0));
+    } else {
+      fprintf(outfile, "  0");
+    }
+    fprintf(outfile, "\n");
+    tetptr = tetrahedrontraverse();
+  }
+
+  fprintf(outfile, "\nEnd\n");
+  fclose(outfile);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+
+
+///////////////////////////////////////////////////////////////////////////////
+
+void meshGRegionBoundaryRecovery::unifysubfaces(face *f1, face *f2)
+{
+  if (b->psc) {
+    // In this case, it is possible that two subfaces are identical.
+    // While they must belong to two different surfaces.
+    return;
+  }
+
+  point pa, pb, pc, pd;
+
+  pa = sorg(*f1);
+  pb = sdest(*f1);
+  pc = sapex(*f1);
+  pd = sapex(*f2);
+
+  if (pc != pd) {
+    printf("Found two facets intersect each other.\n");
+    printf("  1st: [%d, %d, %d] #%d\n",
+	       pointmark(pa), pointmark(pb), pointmark(pc), shellmark(*f1));
+    printf("  2nd: [%d, %d, %d] #%d\n",
+	       pointmark(pa), pointmark(pb), pointmark(pd), shellmark(*f2));
+    terminateBoundaryRecovery(this, 3);
+  } else {
+    printf("Found two duplicated facets.\n");
+    printf("  1st: [%d, %d, %d] #%d\n",
+	       pointmark(pa), pointmark(pb), pointmark(pc), shellmark(*f1));
+    printf("  2nd: [%d, %d, %d] #%d\n",
+	       pointmark(pa), pointmark(pb), pointmark(pd), shellmark(*f2));
+    terminateBoundaryRecovery(this, 3);
+  }
+
+}
+
+void meshGRegionBoundaryRecovery::unifysegments()
+{
+  badface *facelink = NULL, *newlinkitem, *f1, *f2;
+  face *facperverlist, sface;
+  face subsegloop, testseg;
+  point torg, tdest;
+  REAL ori1, ori2, ori3;
+  REAL n1[3], n2[3];
+  int *idx2faclist;
+  int idx, k, m;
+
+  if (b->verbose > 1) {
+    printf("  Unifying segments.\n");
+  }
+
+  // Create a mapping from vertices to subfaces.
+  makepoint2submap(subfaces, idx2faclist, facperverlist);
+
+  subsegloop.shver = 0;
+  subsegs->traversalinit();
+  subsegloop.sh = shellfacetraverse(subsegs);
+  while (subsegloop.sh != (shellface *) NULL) {
+    torg = sorg(subsegloop);
+    tdest = sdest(subsegloop);
+
+    idx = pointmark(torg) - in->firstnumber;
+    // Loop through the set of subfaces containing 'torg'.  Get all the
+    //   subfaces containing the edge (torg, tdest). Save and order them
+    //   in 'sfacelist', the ordering is defined by the right-hand rule
+    //   with thumb points from torg to tdest.
+    for (k = idx2faclist[idx]; k < idx2faclist[idx + 1]; k++) {
+      sface = facperverlist[k];
+      // The face may be deleted if it is a duplicated face.
+      if (sface.sh[3] == NULL) continue;
+      // Search the edge torg->tdest.
+      assert(sorg(sface) == torg); // SELF_CHECK
+      if (sdest(sface) != tdest) {
+        senext2self(sface);
+        sesymself(sface);
+      }
+      if (sdest(sface) != tdest) continue;
+
+      // Save the face f in facelink.
+      if (flippool->items >= 2) {
+        f1 = facelink;
+        for (m = 0; m < flippool->items - 1; m++) {
+          f2 = f1->nextitem;
+          ori1 = orient3d(torg, tdest, sapex(f1->ss), sapex(f2->ss));
+          ori2 = orient3d(torg, tdest, sapex(f1->ss), sapex(sface));
+          if (ori1 > 0) {
+            // apex(f2) is below f1.
+            if (ori2 > 0) {
+              // apex(f) is below f1 (see Fig.1).
+              ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface));
+              if (ori3 > 0) {
+                // apex(f) is below f2, insert it.
+                break;
+              } else if (ori3 < 0) {
+                // apex(f) is above f2, continue.
+              } else { // ori3 == 0;
+                // f is coplanar and codirection with f2.
+                unifysubfaces(&(f2->ss), &sface);
+                break;
+              }
+            } else if (ori2 < 0) {
+              // apex(f) is above f1 below f2, inset it (see Fig. 2).
+              break;
+            } else { // ori2 == 0;
+              // apex(f) is coplanar with f1 (see Fig. 5).
+              ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface));
+              if (ori3 > 0) {
+                // apex(f) is below f2, insert it.
+                break;
+              } else {
+                // f is coplanar and codirection with f1.
+                unifysubfaces(&(f1->ss), &sface);
+                break;
+              }
+            }
+          } else if (ori1 < 0) {
+            // apex(f2) is above f1.
+            if (ori2 > 0) {
+              // apex(f) is below f1, continue (see Fig. 3).
+            } else if (ori2 < 0) {
+              // apex(f) is above f1 (see Fig.4).
+              ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface));
+              if (ori3 > 0) {
+                // apex(f) is below f2, insert it.
+                break;
+              } else if (ori3 < 0) {
+                // apex(f) is above f2, continue.
+              } else { // ori3 == 0;
+                // f is coplanar and codirection with f2.
+                unifysubfaces(&(f2->ss), &sface);
+                break;
+              }
+            } else { // ori2 == 0;
+              // f is coplanar and with f1 (see Fig. 6).
+              ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface));
+              if (ori3 > 0) {
+                // f is also codirection with f1.
+                unifysubfaces(&(f1->ss), &sface);
+                break;
+              } else {
+                // f is above f2, continue.
+              }
+            }
+          } else { // ori1 == 0;
+            // apex(f2) is coplanar with f1. By assumption, f1 is not
+            //   coplanar and codirection with f2.
+            if (ori2 > 0) {
+              // apex(f) is below f1, continue (see Fig. 7).
+            } else if (ori2 < 0) {
+              // apex(f) is above f1, insert it (see Fig. 7).
+              break;
+            } else { // ori2 == 0.
+              // apex(f) is coplanar with f1 (see Fig. 8).
+              // f is either codirection with f1 or is codirection with f2.
+              facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL);
+              facenormal(torg, tdest, sapex(sface), n2, 1, NULL);
+              if (dot(n1, n2) > 0) {
+                unifysubfaces(&(f1->ss), &sface);
+              } else {
+                unifysubfaces(&(f2->ss), &sface);
+              }
+              break;
+            }
+          }
+          // Go to the next item;
+          f1 = f2;
+        } // for (m = 0; ...)
+        if (sface.sh[3] != NULL) {
+          // Insert sface between f1 and f2.
+          newlinkitem = (badface *) flippool->alloc();
+          newlinkitem->ss = sface;
+          newlinkitem->nextitem = f1->nextitem;
+          f1->nextitem = newlinkitem;
+        }
+      } else if (flippool->items == 1) {
+        f1 = facelink;
+        // Make sure that f is not coplanar and codirection with f1.
+        ori1 = orient3d(torg, tdest, sapex(f1->ss), sapex(sface));
+        if (ori1 == 0) {
+          // f is coplanar with f1 (see Fig. 8).
+          facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL);
+          facenormal(torg, tdest, sapex(sface), n2, 1, NULL);
+          if (dot(n1, n2) > 0) {
+            // The two faces are codirectional as well.
+            unifysubfaces(&(f1->ss), &sface);
+          }
+        }
+        // Add this face to link if it is not deleted.
+        if (sface.sh[3] != NULL) {
+          // Add this face into link.
+          newlinkitem = (badface *) flippool->alloc();
+          newlinkitem->ss = sface;
+          newlinkitem->nextitem = NULL;
+          f1->nextitem = newlinkitem;
+        }
+      } else {
+        // The first face.
+        newlinkitem = (badface *) flippool->alloc();
+        newlinkitem->ss = sface;
+        newlinkitem->nextitem = NULL;
+        facelink = newlinkitem;
+      }
+    } // for (k = idx2faclist[idx]; ...)
+
+    if (b->psc) {
+      // Set Steiner point -to- segment map.
+      if (pointtype(torg) == FREESEGVERTEX) {
+        setpoint2sh(torg, sencode(subsegloop));
+      }
+      if (pointtype(tdest) == FREESEGVERTEX) {
+        setpoint2sh(tdest, sencode(subsegloop));
+      }
+    }
+
+    // Set the connection between this segment and faces containing it,
+    //   at the same time, remove redundant segments.
+    f1 = facelink;
+    for (k = 0; k < flippool->items; k++) {
+      sspivot(f1->ss, testseg);
+      // If 'testseg' is not 'subsegloop' and is not dead, it is redundant.
+      if ((testseg.sh != subsegloop.sh) && (testseg.sh[3] != NULL)) {
+        shellfacedealloc(subsegs, testseg.sh);
+      }
+      // Bonds the subface and the segment together.
+      ssbond(f1->ss, subsegloop);
+      f1 = f1->nextitem;
+    }
+
+    // Create the face ring at the segment.
+    if (flippool->items > 1) {
+      f1 = facelink;
+      for (k = 1; k <= flippool->items; k++) {
+        k < flippool->items ? f2 = f1->nextitem : f2 = facelink;
+        sbond1(f1->ss, f2->ss);
+        f1 = f2;
+      }
+    }
+
+    // All identified segments has an init marker "0".
+    flippool->restart();
+
+    subsegloop.sh = shellfacetraverse(subsegs);
+  }
+
+  delete [] idx2faclist;
+  delete [] facperverlist;
+}
+
+void meshGRegionBoundaryRecovery::jettisonnodes()
+{
+  point pointloop;
+  bool jetflag;
+  int oldidx, newidx;
+  int remcount;
+
+  if (!b->quiet) {
+    printf("Jettisoning redundant points.\n");
+  }
+
+  points->traversalinit();
+  pointloop = pointtraverse();
+  oldidx = newidx = 0; // in->firstnumber;
+  remcount = 0;
+  while (pointloop != (point) NULL) {
+    jetflag = (pointtype(pointloop) == DUPLICATEDVERTEX) ||
+      (pointtype(pointloop) == UNUSEDVERTEX);
+    if (jetflag) {
+      // It is a duplicated or unused point, delete it.
+      pointdealloc(pointloop);
+      remcount++;
+    } else {
+      // Re-index it.
+      setpointmark(pointloop, newidx + in->firstnumber);
+      /*
+      if (in->pointmarkerlist != (int *) NULL) {
+        if (oldidx < in->numberofpoints) {
+          // Re-index the point marker as well.
+          in->pointmarkerlist[newidx] = in->pointmarkerlist[oldidx];
+        }
+      }
+      */
+      newidx++;
+    }
+    oldidx++;
+    pointloop = pointtraverse();
+  }
+  if (b->verbose) {
+    printf("  %ld duplicated vertices are removed.\n", dupverts);
+    printf("  %ld unused vertices are removed.\n", unuverts);
+  }
+  dupverts = 0l;
+  unuverts = 0l;
+
+  // The following line ensures that dead items in the pool of nodes cannot
+  //   be allocated for the new created nodes. This ensures that the input
+  //   nodes will occur earlier in the output files, and have lower indices.
+  points->deaditemstack = (void *) NULL;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void meshGRegionBoundaryRecovery::reconstructmesh(GRegion *_gr)
+{
+
+  double t_start = Cpu();
+
+  std::vector<MVertex*> _vertices;
+
+  // Get the set of vertices from GRegion.
+  {
+    std::set<MVertex*> all;
+    std::list<GFace*> f = _gr->faces();
+    for (std::list<GFace*>::iterator it = f.begin(); it != f.end(); ++it) {
+      GFace *gf = *it;
+      for (unsigned int i = 0;i< gf->triangles.size(); i++){
+        all.insert(gf->triangles[i]->getVertex(0));
+        all.insert(gf->triangles[i]->getVertex(1));
+        all.insert(gf->triangles[i]->getVertex(2));
+      }
+    }
+    _vertices.insert(_vertices.begin(), all.begin(), all.end());
+  }
+  
+  initializepools();
+  
+  std::vector<MTetrahedron*> tets;
+  
+  delaunayMeshIn3D(_vertices, tets, false);
+  
+  { //transfernodes();
+    point pointloop;
+    REAL x, y, z;
+    int i;
+    
+    // Read the points.
+    for (i = 0; i < _vertices.size(); i++) {
+      makepoint(&pointloop, UNUSEDVERTEX);
+      // Read the point coordinates.
+      x = pointloop[0] = _vertices[i]->x();
+      y = pointloop[1] = _vertices[i]->y();
+      z = pointloop[2] = _vertices[i]->z();
+      // Determine the smallest and largest x, y and z coordinates.
+      if (i == 0) {
+	xmin = xmax = x;
+	ymin = ymax = y;
+	zmin = zmax = z;
+      } else {
+	xmin = (x < xmin) ? x : xmin;
+	xmax = (x > xmax) ? x : xmax;
+	ymin = (y < ymin) ? y : ymin;
+	ymax = (y > ymax) ? y : ymax;
+	zmin = (z < zmin) ? z : zmin;
+	zmax = (z > zmax) ? z : zmax;
+      }
+    }
+    
+    // 'longest' is the largest possible edge length formed by input vertices.
+    x = xmax - xmin;
+    y = ymax - ymin;
+    z = zmax - zmin;
+    longest = sqrt(x * x + y * y + z * z);
+    if (longest == 0.0) {
+      Msg::Warning("Error:  The point set is trivial.\n");
+      return;
+    }
+    
+    // Two identical points are distinguished by 'lengthlimit'.
+    if (b->minedgelength == 0.0) {
+      b->minedgelength = longest * b->epsilon;
+    }
+  } // transfernodes();
+  
+  point *idx2verlist;
+  
+  // Create a map from indices to vertices.
+  makeindex2pointmap(idx2verlist);
+  // 'idx2verlist' has length 'in->numberofpoints + 1'.
+  if (in->firstnumber == 1) {
+    idx2verlist[0] = dummypoint; // Let 0th-entry be dummypoint.
+  }
+
+  if (1) {
+    // Index the vertices.
+    for (unsigned int i = 0; i < _vertices.size(); i++){
+      _vertices[i]->setIndex(i);
+    }
+    
+    tetrahedron *ver2tetarray;
+    //point *idx2verlist;
+    triface tetloop, checktet, prevchktet;
+    triface hulltet, face1, face2;
+    tetrahedron tptr;
+    point p[4], q[3];
+    REAL ori; //, attrib, volume;
+    int bondflag;
+    int t1ver;
+    int idx, i, j, k;
+    
+    Msg::Info("Reconstructing mesh ...");
+    
+    // Allocate an array that maps each vertex to its adjacent tets.
+    ver2tetarray = new tetrahedron[_vertices.size() + 1];
+    //for (i = 0; i < in->numberofpoints + 1; i++) {
+    for (i = in->firstnumber; i < _vertices.size() + in->firstnumber; i++) {
+      setpointtype(idx2verlist[i], VOLVERTEX); // initial type.
+      ver2tetarray[i] = NULL;
+    }
+    
+    // Create the tetrahedra and connect those that share a common face.
+    for (i = 0; i < tets.size(); i++) {
+      // Get the four vertices.
+      for (j = 0; j < 4; j++) {
+	p[j] = idx2verlist[tets[i]->getVertex(j)->getIndex()];
+      }
+      // Check the orientation.
+      ori = orient3d(p[0], p[1], p[2], p[3]);
+      if (ori > 0.0) {
+	// Swap the first two vertices.
+	q[0] = p[0]; p[0] = p[1]; p[1] = q[0];
+      } else if (ori == 0.0) {
+	if (!b->quiet) {
+	  printf("Warning:  Tet #%d is degenerate.\n", i + in->firstnumber);
+	}
+      }
+      // Create a new tetrahedron.
+      maketetrahedron(&tetloop); // tetloop.ver = 11.
+      setvertices(tetloop, p[0], p[1], p[2], p[3]);
+      // Try connecting this tet to others that share the common faces.
+      for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) {
+	p[3] = oppo(tetloop);
+	// Look for other tets having this vertex.
+	idx = pointmark(p[3]);
+	tptr = ver2tetarray[idx];
+	// Link the current tet to the next one in the stack.
+	tetloop.tet[8 + tetloop.ver] = tptr;
+	// Push the current tet onto the stack.
+	ver2tetarray[idx] = encode(tetloop);
+	decode(tptr, checktet);
+	if (checktet.tet != NULL) {
+	  p[0] =  org(tetloop); // a
+	  p[1] = dest(tetloop); // b
+	  p[2] = apex(tetloop); // c
+	  prevchktet = tetloop;
+	  do {
+	    q[0] =  org(checktet); // a'
+	    q[1] = dest(checktet); // b'
+	    q[2] = apex(checktet); // c'
+	    // Check the three faces at 'd' in 'checktet'.
+	    bondflag = 0;
+	    for (j = 0; j < 3; j++) {
+	      // Go to the face [b',a',d], or [c',b',d], or [a',c',d].
+	      esym(checktet, face2);
+	      if (face2.tet[face2.ver & 3] == NULL) {
+		k = ((j + 1) % 3);
+		if (q[k] == p[0]) {   // b', c', a' = a
+		  if (q[j] == p[1]) { // a', b', c' = b
+		    // [#,#,d] is matched to [b,a,d].
+		    esym(tetloop, face1);
+		    bond(face1, face2);
+		    bondflag++;
+		  }
+		}
+		if (q[k] == p[1]) {   // b',c',a' = b
+		  if (q[j] == p[2]) { // a',b',c' = c
+		    // [#,#,d] is matched to [c,b,d].
+		    enext(tetloop, face1);
+		    esymself(face1);
+		    bond(face1, face2);
+		    bondflag++;
+		  }
+		}
+		if (q[k] == p[2]) {   // b',c',a' = c
+		  if (q[j] == p[0]) { // a',b',c' = a
+		    // [#,#,d] is matched to [a,c,d].
+		    eprev(tetloop, face1);
+		    esymself(face1);
+		    bond(face1, face2);
+		    bondflag++;
+		  }
+		}
+	      } else {
+		bondflag++;
+	      }
+	      enextself(checktet);
+	    } // j
+	    // Go to the next tet in the link.
+	    tptr = checktet.tet[8 + checktet.ver];
+	    if (bondflag == 3) {
+	      // All three faces at d in 'checktet' have been connected.
+	      // It can be removed from the link.
+	      prevchktet.tet[8 + prevchktet.ver] = tptr;
+	    } else {
+	      // Bakup the previous tet in the link.
+	      prevchktet = checktet;
+	    }
+	    decode(tptr, checktet);
+	  } while (checktet.tet != NULL);
+	} // if (checktet.tet != NULL)
+      } // for (tetloop.ver = 0; ...
+    } // i
+    
+  // Remember a tet of the mesh.
+    recenttet = tetloop;
+    
+    // Create hull tets, create the point-to-tet map, and clean up the
+    //   temporary spaces used in each tet.
+    hullsize = tetrahedrons->items;
+    
+    tetrahedrons->traversalinit();
+    tetloop.tet = tetrahedrontraverse();
+    while (tetloop.tet != (tetrahedron *) NULL) {
+      tptr = encode(tetloop);
+      for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) {
+	if (tetloop.tet[tetloop.ver] == NULL) {
+	  // Create a hull tet.
+	  maketetrahedron(&hulltet);
+	  p[0] =  org(tetloop);
+	  p[1] = dest(tetloop);
+	  p[2] = apex(tetloop);
+	  setvertices(hulltet, p[1], p[0], p[2], dummypoint);
+	  bond(tetloop, hulltet);
+	  // Try connecting this to others that share common hull edges.
+	  for (j = 0; j < 3; j++) {
+	    fsym(hulltet, face2);
+	    while (1) {
+	      if (face2.tet == NULL) break;
+	      esymself(face2);
+	      if (apex(face2) == dummypoint) break;
+	      fsymself(face2);
+	    }
+	    if (face2.tet != NULL) {
+	      // Found an adjacent hull tet.
+	      assert(face2.tet[face2.ver & 3] == NULL);
+	      esym(hulltet, face1);
+	      bond(face1, face2);
+	    }
+	    enextself(hulltet);
+	  }
+	  //hullsize++;
+	}
+	// Create the point-to-tet map.
+	setpoint2tet((point) (tetloop.tet[4 + tetloop.ver]), tptr);
+	// Clean the temporary used space.
+	tetloop.tet[8 + tetloop.ver] = NULL;
+      }
+      tetloop.tet = tetrahedrontraverse();
+    }
+    
+  hullsize = tetrahedrons->items - hullsize;
+  
+  delete [] ver2tetarray;
+  tets.clear(); // Release all memory in this vector.
+  }
+  
+  std::list<GFace*> f_list = _gr->faces();
+  std::list<GEdge*> e_list = _gr->edges();
+  
+  {
+    Msg::Info(" --> Creating surface mesh ...");
+    face newsh;
+    face newseg;
+    point p[4];
+    int idx, i, j;
+    
+    for (std::list<GFace*>::iterator it = f_list.begin(); it != f_list.end(); ++it){
+      GFace *gf = *it;
+      for (i = 0;i< gf->triangles.size(); i++) {
+	for (j = 0; j < 3; j++) {
+	  p[j] = idx2verlist[gf->triangles[i]->getVertex(j)->getIndex()];
+	  if (pointtype(p[j]) == VOLVERTEX) {
+	    setpointtype(p[j], FACETVERTEX);
+	  }
+	}
+	// Create an initial triangulation.
+	makeshellface(subfaces, &newsh);
+	setshvertices(newsh, p[0], p[1], p[2]);
+	setshellmark(newsh, gf->tag()); // the GFace's tag.
+	recentsh = newsh;
+	for (j = 0; j < 3; j++) {
+	  makeshellface(subsegs, &newseg);
+	  setshvertices(newseg, sorg(newsh), sdest(newsh), NULL);
+	  // Set the default segment marker '-1'.
+	  setshellmark(newseg, -1);
+	  ssbond(newsh, newseg);
+	  senextself(newsh);
+	}
+      } // i
+    } // it
+
+    // Connecting triangles, removing redundant segments.
+    unifysegments();
+    
+    Msg::Info(" --> Identifying boundary edges ...");
+
+    face* shperverlist;
+    int* idx2shlist;
+    face searchsh, neighsh;
+    face segloop, checkseg;
+    point checkpt;
+    
+    // Construct a map from points to subfaces.
+    makepoint2submap(subfaces, idx2shlist, shperverlist);
+    
+    // Process the set of PSC edges.
+    // Remeber that all segments have default marker '-1'.
+    for (std::list<GEdge*>::iterator it = e_list.begin(); it != e_list.end();
+	 ++it) {
+      GEdge *ge = *it;
+      for (i = 0; i < ge->lines.size(); i++) {
+	for (j = 0; j < 2; j++) {
+	  p[j] = idx2verlist[ge->lines[i]->getVertex(j)->getIndex()];
+	  setpointtype(p[j], RIDGEVERTEX);
+      }
+	if (p[0] == p[1]) {
+	  // This is a potential problem in surface mesh.
+	  continue; // Skip this edge.
+	}
+	// Find a face contains the edge p[0], p[1].
+	newseg.sh = NULL;
+	searchsh.sh = NULL;
+	idx = pointmark(p[0]) - in->firstnumber;
+	for (j = idx2shlist[idx]; j < idx2shlist[idx + 1]; j++) {
+	  checkpt = sdest(shperverlist[j]);
+	  if (checkpt == p[1]) {
+	    searchsh = shperverlist[j];
+	    break; // Found.
+	  } else {
+	    checkpt = sapex(shperverlist[j]);
+	    if (checkpt == p[1]) {
+	      senext2(shperverlist[j], searchsh);
+	      sesymself(searchsh);
+	      break;
+	    }
+	  }
+	} // j
+	if (searchsh.sh != NULL) {
+	  // Check if this edge is already a segment of the mesh.
+	  sspivot(searchsh, checkseg);
+        if (checkseg.sh != NULL) {
+          // This segment already exist.
+          newseg = checkseg;
+        } else {
+          // Create a new segment at this edge.
+          makeshellface(subsegs, &newseg);
+          setshvertices(newseg, p[0], p[1], NULL);
+          ssbond(searchsh, newseg);
+          spivot(searchsh, neighsh);
+          if (neighsh.sh != NULL) {
+            ssbond(neighsh, newseg);
+          }
+        }
+	} else {
+	  // It is a dangling segment (not belong to any facets).
+	  // Check if segment [p[0],p[1]] already exists.
+	  // TODO: Change the brute-force search. Slow!
+	  point *ppt;
+	  subsegs->traversalinit();
+	  segloop.sh = shellfacetraverse(subsegs);
+	  while (segloop.sh != NULL) {
+	    ppt = (point *) &(segloop.sh[3]);
+	    if (((ppt[0] == p[0]) && (ppt[1] == p[1])) ||
+		((ppt[0] == p[1]) && (ppt[1] == p[0]))) {
+	      // Found!
+	      newseg = segloop;
+	      break;
+	    }
+	    segloop.sh = shellfacetraverse(subsegs);
+	  }
+	  if (newseg.sh == NULL) {
+	    makeshellface(subsegs, &newseg);
+	    setshvertices(newseg, p[0], p[1], NULL);
+	  }
+	}
+	setshellmark(newseg, ge->tag());
+      } // i
+    } // e_list
+    
+    delete [] shperverlist;
+    delete [] idx2shlist;
+    
+      Msg::Debug("  %ld (%ld) subfaces (segments).", subfaces->items,
+	     subsegs->items);
+    
+    // The total number of iunput segments.
+    insegments = subsegs->items;
+    
+    if (0) {
+      outsurfacemesh("dump");
+    }
+    
+  } // meshsurface()
+  
+  delete [] idx2verlist;
+  
+  ////////////////////////////////////////////////////////
+  // Boundary recovery.
+  clock_t t_tmp;
+  
+  recoverboundary(t_tmp);
+  
+  carveholes();
+  
+  if (subvertstack->objects > 0l) {
+    suppresssteinerpoints();
+  }
+  
+  recoverdelaunay();
+  
+  optimizemesh();
+
+  if ((dupverts > 0l) || (unuverts > 0l)) {
+    // Remove hanging nodes.
+    jettisonnodes();
+  }
+
+  long tetnumber, facenumber;
+
+  Msg::Debug("Statistics:\n");
+  Msg::Debug("  Input points: %ld", _vertices.size());
+  //if (b->refine) {
+  //  printf("  Input tetrahedra: %d\n", in->numberoftetrahedra);
+  //}
+  if (b->plc) {
+    Msg::Debug("  Input facets: %ld", f_list.size());
+    Msg::Debug("  Input segments: %ld", e_list.size());
+    //printf("  Input holes: %d\n", in->numberofholes);
+    //printf("  Input regions: %d\n", in->numberofregions);
+  }
+
+  tetnumber = tetrahedrons->items - hullsize;
+  facenumber = (tetnumber * 4l + hullsize) / 2l;
+
+  if (b->weighted) { // -w option
+    Msg::Debug(" Mesh points: %ld", points->items - nonregularcount);
+  } else {
+    Msg::Debug(" Mesh points: %ld", points->items);
+  }
+  Msg::Debug("  Mesh tetrahedra: %ld", tetnumber);
+  Msg::Debug("  Mesh faces: %ld", facenumber);
+  if (meshedges > 0l) {
+    Msg::Debug("  Mesh edges: %ld", meshedges);
+  } else {
+    if (!nonconvex) {
+      long vsize = points->items - dupverts - unuverts;
+      if (b->weighted) vsize -= nonregularcount;
+      meshedges = vsize + facenumber - tetnumber - 1;
+      Msg::Debug("  Mesh edges: %ld", meshedges);
+    }
+  }
+
+  if (b->plc || b->refine) {
+    Msg::Debug("  Mesh faces on facets: %ld", subfaces->items);
+    Msg::Debug("  Mesh edges on segments: %ld", subsegs->items);
+    if (st_volref_count > 0l) {
+      Msg::Debug("  Steiner points inside domain: %ld", st_volref_count);
+    }
+    if (st_facref_count > 0l) {
+      Msg::Debug("  Steiner points on facets:  %ld", st_facref_count);
+    }
+    if (st_segref_count > 0l) {
+      Msg::Debug("  Steiner points on segments:  %ld", st_segref_count);
+    }
+  } else {
+    Msg::Debug("  Convex hull faces: %ld", hullsize);
+    if (meshhulledges > 0l) {
+      Msg::Debug("  Convex hull edges: %ld", meshhulledges);
+    }
+  }
+  if (b->weighted) { // -w option
+    Msg::Debug("  Skipped non-regular points: %ld", nonregularcount);
+  }
+
+  // Debug
+  //outmesh2medit("dump");
+  ////////////////////////////////////////////////////////
+
+{
+  ////////////////////////////////////////////////////////
+  // Write mesh into to GRegion.
+
+  Msg::Info(" --> Write to GRegion ..."); 
+
+  point p[4];
+  int i;
+
+  // In some hard cases, the surface mesh may be modified.
+  // Find the list of GFaces, GEdges that have been modified.
+  std::set<int> l_faces, l_edges;
+
+  if (points->items > _vertices.size()) {
+    face parentseg, parentsh, spinsh;
+    point pointloop;
+    // Create newly added mesh vertices.
+    // The new vertices must be added at the end of the point list.
+    points->traversalinit();
+    pointloop = pointtraverse();
+    while (pointloop != (point) NULL) {
+      if (issteinerpoint(pointloop)) {
+        // Check if this Steiner point locates on boundary.
+        if (pointtype(pointloop) == FREESEGVERTEX) {
+          sdecode(point2sh(pointloop), parentseg);
+          assert(parentseg.sh != NULL);
+          l_edges.insert(shellmark(parentseg));
+          // Get the GEdge containing this vertex.
+          GEdge *ge = NULL;
+          GFace *gf = NULL;
+          int etag = shellmark(parentseg);
+          for (std::list<GEdge*>::iterator it = e_list.begin();
+               it != e_list.end(); ++it) {
+            if ((*it)->tag() == etag) {
+              ge = *it;
+              break;
+            }
+          }
+          if (ge != NULL) {
+            MEdgeVertex *v = new MEdgeVertex(pointloop[0], pointloop[1],
+                                         pointloop[2], ge, 0);
+            double uu = 0;
+            if (reparamMeshVertexOnEdge(v, ge, uu)) {
+              v->setParameter(0, uu);
+            }
+            v->setIndex(pointmark(pointloop));
+            _gr->mesh_vertices.push_back(v);
+            _vertices.push_back(v);
+          }
+          spivot(parentseg, parentsh);
+          if (parentsh.sh != NULL) {
+            if (ge == NULL) {
+              // We treat this vertex a facet vertex.
+              int ftag = shellmark(parentsh);
+              for (std::list<GFace*>::iterator it = f_list.begin();
+                   it != f_list.end(); ++it) {
+                if ((*it)->tag() == ftag) {
+                  gf = *it;
+                  break;
+                }
+              }
+              if (gf != NULL) {
+                MFaceVertex *v = new MFaceVertex(pointloop[0], pointloop[1],
+                                       pointloop[2], gf, 0, 0);
+                SPoint2 param;
+                if (reparamMeshVertexOnFace(v, gf, param)) {
+                  v->setParameter(0, param.x());
+                  v->setParameter(1, param.y());
+                }
+                v->setIndex(pointmark(pointloop));
+                _gr->mesh_vertices.push_back(v);
+                _vertices.push_back(v);
+              }
+            }
+            // Record all the GFaces' tag at this segment.
+            spinsh = parentsh;
+            while (1) {
+              l_faces.insert(shellmark(spinsh));
+              spivotself(spinsh);
+              if (spinsh.sh == parentsh.sh) break;
+            }
+          }
+          if ((ge == NULL) && (gf == NULL)) {
+            // Create an interior mesh vertex.
+            MVertex *v = new MVertex(pointloop[0], pointloop[1], pointloop[2], _gr);
+            v->setIndex(pointmark(pointloop));
+            _gr->mesh_vertices.push_back(v);
+            _vertices.push_back(v);
+          }
+        } else if (pointtype(pointloop) == FREEFACETVERTEX) {
+          sdecode(point2sh(pointloop), parentsh);
+          assert(parentsh.sh != NULL);
+          l_faces.insert(shellmark(parentsh));
+          // Get the GFace containing this vertex.
+          GFace *gf = NULL;
+          int ftag = shellmark(parentsh);
+          for (std::list<GFace*>::iterator it = f_list.begin();
+               it != f_list.end(); ++it) {
+            if ((*it)->tag() == ftag) {
+              gf = *it;
+              break;
+            }
+          }
+          if (gf != NULL) {
+            MFaceVertex *v = new MFaceVertex(pointloop[0], pointloop[1],
+                                         pointloop[2], gf, 0, 0);
+            SPoint2 param;
+            if (reparamMeshVertexOnFace(v, gf, param)) {
+              v->setParameter(0, param.x());
+              v->setParameter(1, param.y());
+            }
+            v->setIndex(pointmark(pointloop));
+            _gr->mesh_vertices.push_back(v);
+            _vertices.push_back(v);
+          } else {
+            // Create a mesh vertex.
+            MVertex *v = new MVertex(pointloop[0], pointloop[1], pointloop[2], _gr);
+            v->setIndex(pointmark(pointloop));
+            _gr->mesh_vertices.push_back(v);
+            _vertices.push_back(v);
+          }
+        } else {
+          MVertex *v = new MVertex(pointloop[0], pointloop[1], pointloop[2], _gr);
+          v->setIndex(pointmark(pointloop));
+          _gr->mesh_vertices.push_back(v);
+          _vertices.push_back(v);
+        }
+      }
+      pointloop = pointtraverse();
+    }
+    assert(_vertices.size() == points->items);
+  }
+
+  if (l_edges.size() > 0) {
+    // There are Steiner points on segments!
+    face segloop;
+    // Re-create the segment mesh in the corresponding GEdges.
+    for (std::set<int>::iterator it=l_edges.begin(); it!=l_edges.end(); ++it) {
+      // Find the GFace with tag = *it.
+      GEdge *ge = NULL;
+      int etag = *it;
+      for (std::list<GEdge*>::iterator eit = e_list.begin();
+           eit != e_list.end(); ++eit) {
+        if ((*eit)->tag() == etag) {
+          ge = (*eit);
+          break;
+        }
+      }
+      assert(ge != NULL);
+      // Delete the old triangles.
+      for(i = 0; i < ge->lines.size(); i++)
+        delete ge->lines[i];
+      ge->lines.clear();
+      ge->deleteVertexArrays();
+      // Create the new triangles.
+      segloop.shver = 0;
+      subsegs->traversalinit();
+      segloop.sh = shellfacetraverse(subsegs);
+      while (segloop.sh != NULL) {
+        if (shellmark(segloop) == etag) {
+          p[0] = sorg(segloop);
+          p[1] = sdest(segloop);
+          MVertex *v1 = _vertices[pointmark(p[0])];
+          MVertex *v2 = _vertices[pointmark(p[1])];
+          MLine *t = new MLine(v1, v2);
+          ge->lines.push_back(t);
+        }
+        segloop.sh = shellfacetraverse(subsegs);
+      }
+    } // it
+  }
+
+  if (l_faces.size() > 0) {
+    // There are Steiner points on facets!
+    face subloop;
+    // Re-create the surface mesh in the corresponding GFaces.
+    for (std::set<int>::iterator it=l_faces.begin(); it!=l_faces.end(); ++it) {
+      // Find the GFace with tag = *it.
+      GFace *gf = NULL;
+      int ftag = *it;
+      for (std::list<GFace*>::iterator fit = f_list.begin();
+           fit != f_list.end(); ++fit) {
+        if ((*fit)->tag() == ftag) {
+          gf = (*fit);
+          break;
+        }
+      }
+      assert(gf != NULL);
+      // Delete the old triangles.
+      Msg::Info("Steiner points exist on GFace %d",gf->tag());
+      for(i = 0; i < gf->triangles.size(); i++)
+        delete gf->triangles[i];
+      //for(i = 0; i < gf->quadrangles.size(); i++)
+      //  delete gf->quadrangles[i];
+      gf->triangles.clear();
+      //gf->quadrangles.clear();
+      gf->deleteVertexArrays();
+      // Create the new triangles.
+      subloop.shver = 0;
+      subfaces->traversalinit();
+      subloop.sh = shellfacetraverse(subfaces);
+      while (subloop.sh != NULL) {
+        if (shellmark(subloop) == ftag) {
+          p[0] = sorg(subloop);
+          p[1] = sdest(subloop);
+          p[2] = sapex(subloop);
+          MVertex *v1 = _vertices[pointmark(p[0])];
+          MVertex *v2 = _vertices[pointmark(p[1])];
+          MVertex *v3 = _vertices[pointmark(p[2])];
+          MTriangle *t = new MTriangle(v1, v2, v3);
+          gf->triangles.push_back(t);
+        }
+        subloop.sh = shellfacetraverse(subfaces);
+      }
+    } // it
+  }
+
+  triface tetloop;
+
+  tetloop.ver = 11;
+  tetrahedrons->traversalinit();
+  tetloop.tet = tetrahedrontraverse();
+  while (tetloop.tet != (tetrahedron *) NULL) {
+    p[0] = org(tetloop);
+    p[1] = dest(tetloop);
+    p[2] = apex(tetloop);
+    p[3] = oppo(tetloop);
+    MVertex *v1 = _vertices[pointmark(p[0])];
+    MVertex *v2 = _vertices[pointmark(p[1])];
+    MVertex *v3 = _vertices[pointmark(p[2])];
+    MVertex *v4 = _vertices[pointmark(p[3])];
+    MTetrahedron *t = new  MTetrahedron(v1, v2, v3, v4);
+    _gr->tetrahedra.push_back(t);
+    tetloop.tet = tetrahedrontraverse();
+  }
+} // mesh output
+ Msg::Info("Reconstruct time : %g sec",Cpu()-t_start); 
+}
+
+void terminateBoundaryRecovery(void *, int exitcode)
+{
+  throw exitcode;
+}
diff --git a/Mesh/meshGRegionBoundaryRecovery.h b/Mesh/meshGRegionBoundaryRecovery.h
new file mode 100644
index 0000000000000000000000000000000000000000..7b76035a718466fe77c6f0932709041758000c35
--- /dev/null
+++ b/Mesh/meshGRegionBoundaryRecovery.h
@@ -0,0 +1,882 @@
+// Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
+//
+// See the LICENSE.txt file for license information. Please report all
+// bugs and problems to the public mailing list <gmsh@geuz.org>.
+
+#ifndef _MESH_GREGION_BOUNDARY_RECOVERY_H_
+#define _MESH_GREGION_BOUNDARY_RECOVERY_H_
+
+#include "GRegion.h"
+#include <time.h>
+
+#define REAL double
+
+class meshGRegionInputs {
+ public:
+  int firstnumber;
+  meshGRegionInputs() {
+    firstnumber = 0;
+  }
+};
+
+class meshGRegionOptions {
+
+ public:
+
+  int plc;
+  int psc;
+  int refine;
+  int quality;
+  int nobisect;
+  int coarsen;
+  int weighted;
+  int brio_hilbert;
+  int incrflip;
+  int flipinsert;
+  int metric;
+  int varvolume;
+  int fixedvolume;
+  int regionattrib;
+  int conforming;
+  int insertaddpoints;
+  int diagnose;
+  int convex;
+  int nomergefacet;
+  int nomergevertex;
+  int noexact;
+  int nostaticfilter;
+  int zeroindex;
+  int facesout;
+  int edgesout;
+  int neighout;
+  int voroout;
+  int meditview;
+  int vtkview;
+  int nobound;
+  int nonodewritten;
+  int noelewritten;
+  int nofacewritten;
+  int noiterationnum;
+  int nojettison;
+  int reversetetori;
+  int docheck;
+  int quiet;
+  int verbose;
+
+  int vertexperblock;
+  int tetrahedraperblock;
+  int shellfaceperblock;
+  int nobisect_param;
+  int addsteiner_algo;
+  int coarsen_param;
+  int weighted_param;
+  int fliplinklevel;
+  int flipstarsize;
+  int fliplinklevelinc;
+  int reflevel;
+  int optlevel;
+  int optscheme;
+  int delmaxfliplevel;
+  int order;
+  int steinerleft;
+  int no_sort;
+  int hilbert_order;
+  int hilbert_limit;
+  int brio_threshold;
+  REAL brio_ratio;
+  REAL facet_ang_tol;
+  REAL maxvolume;
+  REAL minratio;
+  REAL mindihedral;
+  REAL optmaxdihedral;
+  REAL optminsmtdihed;
+  REAL optminslidihed;
+  REAL epsilon;
+  REAL minedgelength;
+  REAL coarsen_percent;
+
+ // Initialize all variables.
+  meshGRegionOptions()
+  {
+    plc = 1;   // -p
+    psc = 0;
+    refine = 0;
+    quality = 0;
+    nobisect = 1;
+    coarsen = 0;
+    metric = 0;
+    weighted = 0;
+    brio_hilbert = 1; // -Y
+    incrflip = 0;
+    flipinsert = 0;
+    varvolume = 0;
+    fixedvolume = 0;
+    noexact = 0;
+    nostaticfilter = 0;
+    insertaddpoints = 0;
+    regionattrib = 1; // -A
+    conforming = 0;
+    diagnose = 0;
+    convex = 1;  // -c
+    zeroindex = 0;
+    facesout = 0;
+    edgesout = 0;
+    neighout = 0;
+    voroout = 0;
+    meditview = 0;
+    vtkview = 0;
+    nobound = 0;
+    nonodewritten = 0;
+    noelewritten = 0;
+    nofacewritten = 0;
+    noiterationnum = 0;
+    nomergefacet = 0;
+    nomergevertex = 0;
+    nojettison = 0;
+    reversetetori = 0;
+    docheck = 0;
+    quiet = 0;
+    verbose = 0;
+
+    vertexperblock = 4092;
+    tetrahedraperblock = 8188;
+    shellfaceperblock = 4092;
+    nobisect_param = 2;
+    addsteiner_algo = 1;
+    coarsen_param = 0;
+    weighted_param = 0;
+    fliplinklevel = -1; // No limit on linklevel.
+    flipstarsize = -1;  // No limit on flip star size.
+    fliplinklevelinc = 1;
+    reflevel = 3;
+    optscheme = 7;  // 1 & 2 & 4, // min_max_dihedral.
+    optlevel = 2;
+    delmaxfliplevel = 1;
+    order = 1;
+    steinerleft = -1;
+    no_sort = 0;
+    hilbert_order = 52; //-1;
+    hilbert_limit = 8;
+    brio_threshold = 64;
+    brio_ratio = 0.125;
+    facet_ang_tol = 179.9;
+    maxvolume = -1.0;
+    minratio = 2.0;
+    mindihedral = 0.0; // 5.0;
+    optmaxdihedral = 179.0;
+    optminsmtdihed = 179.999;
+    optminslidihed = 179.999;
+    epsilon = 1.0e-8;
+    minedgelength = 0.0;
+    coarsen_percent = 1.0;
+  }
+};
+
+class meshGRegionBoundaryRecovery {
+
+ public:
+
+  // Mesh data structure
+  typedef REAL **tetrahedron;
+  typedef REAL **shellface;
+  typedef REAL *point;
+
+  // Mesh handles
+  class triface {
+  public:
+    tetrahedron *tet;
+    int ver; // Range from 0 to 11.
+    triface() : tet(0), ver(0) {}
+    triface& operator=(const triface& t) {
+      tet = t.tet; ver = t.ver;
+      return *this;
+    }
+  };
+
+  class face {
+  public:
+    shellface *sh;
+    int shver; // Range from 0 to 5.
+    face() : sh(0), shver(0) {}
+    face& operator=(const face& s) {
+      sh = s.sh; shver = s.shver;
+      return *this;
+    }
+  };
+
+  // Arraypool (J. R. Shewchuk)
+  class arraypool {
+  public:
+    int objectbytes;
+    int objectsperblock;
+    int log2objectsperblock;
+    int objectsperblockmark;
+    int toparraylen;
+    char **toparray;
+    long objects;
+    unsigned long totalmemory;
+    void restart();
+    void poolinit(int sizeofobject, int log2objperblk);
+    char* getblock(int objectindex);
+    void* lookup(int objectindex);
+    int newindex(void **newptr);
+    arraypool(int sizeofobject, int log2objperblk);
+    ~arraypool();
+  };
+
+#define fastlookup(pool, index) \
+  (void *) ((pool)->toparray[(index) >> (pool)->log2objectsperblock] + \
+            ((index) & (pool)->objectsperblockmark) * (pool)->objectbytes)
+
+  // Memorypool (J. R. Shewchuk)
+  class memorypool {
+  public:
+    void **firstblock, **nowblock;
+    void *nextitem;
+    void *deaditemstack;
+    void **pathblock;
+    void *pathitem;
+    int  alignbytes;
+    int  itembytes, itemwords;
+    int  itemsperblock;
+    long items, maxitems;
+    int  unallocateditems;
+    int  pathitemsleft;
+    memorypool();
+    memorypool(int, int, int, int);
+    ~memorypool();
+    void poolinit(int, int, int, int);
+    void restart();
+    void *alloc();
+    void dealloc(void*);
+    void traversalinit();
+    void *traverse();
+  };
+
+  class badface {
+  public:
+    triface tt;
+    face ss;
+    REAL key, cent[6];  // circumcenter or cos(dihedral angles) at 6 edges.
+    point forg, fdest, fapex, foppo, noppo;
+    badface *nextitem;
+    badface() : key(0), forg(0), fdest(0), fapex(0), foppo(0), noppo(0),
+      nextitem(0) {}
+  };
+
+  // Parameters for vertex insertion, flips, and optimizations.
+  class insertvertexflags {
+  public:
+    int iloc;  // input/output.
+    int bowywat, lawson;
+    int splitbdflag, validflag, respectbdflag;
+    int rejflag, chkencflag, cdtflag;
+    int assignmeshsize;
+    int sloc, sbowywat;
+    // Used by Delaunay refinement.
+    int refineflag; // 0, 1, 2, 3
+    triface refinetet;
+    face refinesh;
+    int smlenflag; // for useinsertradius.
+    REAL smlen; // for useinsertradius.
+    point parentpt;
+
+    insertvertexflags() {
+      iloc = bowywat = lawson = 0;
+      splitbdflag = validflag = respectbdflag = 0;
+      rejflag = chkencflag = cdtflag = 0;
+      assignmeshsize = 0;
+      sloc = sbowywat = 0;
+
+      refineflag = 0;
+      refinetet.tet = NULL;
+      refinesh.sh = NULL;
+      smlenflag = 0;
+      smlen = 0.0;
+    }
+  };
+
+  class flipconstraints {
+  public:
+    // Elementary flip flags.
+    int enqflag; // (= flipflag)
+    int chkencflag;
+    // Control flags
+    int unflip;  // Undo the performed flips.
+    int collectnewtets; // Collect the new tets created by flips.
+    int collectencsegflag;
+    // Optimization flags.
+    int remove_ndelaunay_edge; // Remove a non-Delaunay edge.
+    REAL bak_tetprism_vol; // The value to be minimized.
+    REAL tetprism_vol_sum;
+    int remove_large_angle; // Remove a large dihedral angle at edge.
+    REAL cosdihed_in; // The input cosine of the dihedral angle (> 0).
+    REAL cosdihed_out; // The improved cosine of the dihedral angle.
+    // Boundary recovery flags.
+    int checkflipeligibility;
+    point seg[2];  // A constraining edge to be recovered.
+    point fac[3];  // A constraining face to be recovered.
+    point remvert; // A vertex to be removed.
+
+    flipconstraints() {
+      enqflag = 0;
+      chkencflag = 0;
+      unflip = 0;
+      collectnewtets = 0;
+      collectencsegflag = 0;
+      remove_ndelaunay_edge = 0;
+      bak_tetprism_vol = 0.0;
+      tetprism_vol_sum = 0.0;
+      remove_large_angle = 0;
+      cosdihed_in = 0.0;
+      cosdihed_out = 0.0;
+      checkflipeligibility = 0;
+      seg[0] = NULL;
+      fac[0] = NULL;
+      remvert = NULL;
+    }
+  };
+
+  class optparameters {
+  public:
+    // The one of goals of optimization.
+    int max_min_volume;      // Maximize the minimum volume.
+	int min_max_aspectratio; // Minimize the maximum aspect ratio.
+    int min_max_dihedangle;  // Minimize the maximum dihedral angle.
+    // The initial and improved value.
+    REAL initval, imprval;
+    int numofsearchdirs;
+    REAL searchstep;
+    int maxiter;  // Maximum smoothing iterations (disabled by -1).
+    int smthiter; // Performed iterations.
+
+    optparameters() {
+      max_min_volume = 0;
+      min_max_aspectratio = 0;
+      min_max_dihedangle = 0;
+      initval = imprval = 0.0;
+      numofsearchdirs = 10;
+      searchstep = 0.01;
+      maxiter = -1;   // Unlimited smoothing iterations.
+      smthiter = 0;
+    }
+  };
+
+  // Labels
+  enum verttype {UNUSEDVERTEX, DUPLICATEDVERTEX, RIDGEVERTEX, ACUTEVERTEX,
+                 FACETVERTEX, VOLVERTEX, FREESEGVERTEX, FREEFACETVERTEX,
+                 FREEVOLVERTEX, NREGULARVERTEX, DEADVERTEX};
+  enum interresult {DISJOINT, INTERSECT, SHAREVERT, SHAREEDGE, SHAREFACE,
+                    TOUCHEDGE, TOUCHFACE, ACROSSVERT, ACROSSEDGE, ACROSSFACE,
+                    COLLISIONFACE, ACROSSSEG, ACROSSSUB};
+  enum locateresult {UNKNOWN, OUTSIDE, INTETRAHEDRON, ONFACE, ONEDGE, ONVERTEX,
+                     ENCVERTEX, ENCSEGMENT, ENCSUBFACE, NEARVERTEX, NONREGULAR,
+                     INSTAR, BADELEMENT};
+
+  meshGRegionInputs *in;
+  meshGRegionOptions *b;
+  meshGRegionBoundaryRecovery *bgm;
+
+  // Class variables
+  memorypool *tetrahedrons, *subfaces, *subsegs, *points;
+  memorypool *tet2subpool, *tet2segpool;
+
+  memorypool *flippool;
+  arraypool *unflipqueue;
+  badface *flipstack;
+
+  memorypool *badtetrahedrons, *badsubfacs, *badsubsegs;
+
+  // Arrays used for point insertion (the Bowyer-Watson algorithm).
+  arraypool *cavetetlist, *cavebdrylist, *caveoldtetlist;
+  arraypool *cavetetshlist, *cavetetseglist, *cavetetvertlist;
+  arraypool *caveencshlist, *caveencseglist;
+  arraypool *caveshlist, *caveshbdlist, *cavesegshlist;
+
+  // Stacks used for CDT construction and boundary recovery.
+  arraypool *subsegstack, *subfacstack, *subvertstack;
+
+  // The infinite vertex.
+  point dummypoint;
+  // The recently visited tetrahedron, subface.
+  triface recenttet;
+  face recentsh;
+
+  // PI is the ratio of a circle's circumference to its diameter.
+  static REAL PI;
+
+  // Various variables.
+  int numpointattrib;
+  int numelemattrib;
+  int sizeoftensor;
+  int pointmtrindex;
+  int pointparamindex;
+  int point2simindex;
+  int pointmarkindex;
+  int pointinsradiusindex;
+  int elemattribindex;
+  int volumeboundindex;
+  int elemmarkerindex;
+  int shmarkindex;
+  int areaboundindex;
+  int checksubsegflag;
+  int checksubfaceflag;
+  int checkconstraints;
+  int nonconvex;
+  int autofliplinklevel;
+  int useinsertradius;
+  long samples;
+  unsigned long randomseed;
+  REAL cosmaxdihed, cosmindihed;
+  REAL cossmtdihed;
+  REAL cosslidihed;
+  REAL minfaceang, minfacetdihed;
+  REAL tetprism_vol_sum;
+  REAL longest;
+  REAL xmax, xmin, ymax, ymin, zmax, zmin;
+
+  // Counters.
+  long insegments;
+  long hullsize;
+  long meshedges;
+  long meshhulledges;
+  long steinerleft;
+  long dupverts;
+  long unuverts;
+  long nonregularcount;
+  long st_segref_count, st_facref_count, st_volref_count;
+  long fillregioncount, cavitycount, cavityexpcount;
+  long flip14count, flip26count, flipn2ncount;
+  long flip23count, flip32count, flip44count, flip41count;
+  long flip31count, flip22count;
+  unsigned long totalworkmemory;      // Total memory used by working arrays.
+
+  // Fast lookup tables for mesh manipulation primitives.
+  static int bondtbl[12][12], fsymtbl[12][12];
+  static int esymtbl[12], enexttbl[12], eprevtbl[12];
+  static int enextesymtbl[12], eprevesymtbl[12];
+  static int eorgoppotbl[12], edestoppotbl[12];
+  static int facepivot1[12], facepivot2[12][12];
+  static int orgpivot[12], destpivot[12], apexpivot[12], oppopivot[12];
+  static int tsbondtbl[12][6], stbondtbl[12][6];
+  static int tspivottbl[12][6], stpivottbl[12][6];
+  static int ver2edge[12], edge2ver[6], epivot[12];
+  static int sorgpivot [6], sdestpivot[6], sapexpivot[6];
+  static int snextpivot[6];
+  void inittables();
+
+  // Primitives for tetrahedra.
+  inline tetrahedron encode(triface& t);
+  inline tetrahedron encode2(tetrahedron* ptr, int ver);
+  inline void decode(tetrahedron ptr, triface& t);
+  inline void bond(triface& t1, triface& t2);
+  inline void dissolve(triface& t);
+  inline void esym(triface& t1, triface& t2);
+  inline void esymself(triface& t);
+  inline void enext(triface& t1, triface& t2);
+  inline void enextself(triface& t);
+  inline void eprev(triface& t1, triface& t2);
+  inline void eprevself(triface& t);
+  inline void enextesym(triface& t1, triface& t2);
+  inline void enextesymself(triface& t);
+  inline void eprevesym(triface& t1, triface& t2);
+  inline void eprevesymself(triface& t);
+  inline void eorgoppo(triface& t1, triface& t2);
+  inline void eorgoppoself(triface& t);
+  inline void edestoppo(triface& t1, triface& t2);
+  inline void edestoppoself(triface& t);
+  inline void fsym(triface& t1, triface& t2);
+  inline void fsymself(triface& t);
+  inline void fnext(triface& t1, triface& t2);
+  inline void fnextself(triface& t);
+  inline point org (triface& t);
+  inline point dest(triface& t);
+  inline point apex(triface& t);
+  inline point oppo(triface& t);
+  inline void setorg (triface& t, point p);
+  inline void setdest(triface& t, point p);
+  inline void setapex(triface& t, point p);
+  inline void setoppo(triface& t, point p);
+  inline REAL elemattribute(tetrahedron* ptr, int attnum);
+  inline void setelemattribute(tetrahedron* ptr, int attnum, REAL value);
+  inline REAL volumebound(tetrahedron* ptr);
+  inline void setvolumebound(tetrahedron* ptr, REAL value);
+  inline int  elemindex(tetrahedron* ptr);
+  inline void setelemindex(tetrahedron* ptr, int value);
+  inline int  elemmarker(tetrahedron* ptr);
+  inline void setelemmarker(tetrahedron* ptr, int value);
+  inline void infect(triface& t);
+  inline void uninfect(triface& t);
+  inline bool infected(triface& t);
+  inline void marktest(triface& t);
+  inline void unmarktest(triface& t);
+  inline bool marktested(triface& t);
+  inline void markface(triface& t);
+  inline void unmarkface(triface& t);
+  inline bool facemarked(triface& t);
+  inline void markedge(triface& t);
+  inline void unmarkedge(triface& t);
+  inline bool edgemarked(triface& t);
+  inline void marktest2(triface& t);
+  inline void unmarktest2(triface& t);
+  inline bool marktest2ed(triface& t);
+  inline int  elemcounter(triface& t);
+  inline void setelemcounter(triface& t, int value);
+  inline void increaseelemcounter(triface& t);
+  inline void decreaseelemcounter(triface& t);
+  inline bool ishulltet(triface& t);
+  inline bool isdeadtet(triface& t);
+
+  // Primitives for subfaces and subsegments.
+  inline void sdecode(shellface sptr, face& s);
+  inline shellface sencode(face& s);
+  inline shellface sencode2(shellface *sh, int shver);
+  inline void spivot(face& s1, face& s2);
+  inline void spivotself(face& s);
+  inline void sbond(face& s1, face& s2);
+  inline void sbond1(face& s1, face& s2);
+  inline void sdissolve(face& s);
+  inline point sorg(face& s);
+  inline point sdest(face& s);
+  inline point sapex(face& s);
+  inline void setsorg(face& s, point pointptr);
+  inline void setsdest(face& s, point pointptr);
+  inline void setsapex(face& s, point pointptr);
+  inline void sesym(face& s1, face& s2);
+  inline void sesymself(face& s);
+  inline void senext(face& s1, face& s2);
+  inline void senextself(face& s);
+  inline void senext2(face& s1, face& s2);
+  inline void senext2self(face& s);
+  inline REAL areabound(face& s);
+  inline void setareabound(face& s, REAL value);
+  inline int shellmark(face& s);
+  inline void setshellmark(face& s, int value);
+  inline void sinfect(face& s);
+  inline void suninfect(face& s);
+  inline bool sinfected(face& s);
+  inline void smarktest(face& s);
+  inline void sunmarktest(face& s);
+  inline bool smarktested(face& s);
+  inline void smarktest2(face& s);
+  inline void sunmarktest2(face& s);
+  inline bool smarktest2ed(face& s);
+  inline void smarktest3(face& s);
+  inline void sunmarktest3(face& s);
+  inline bool smarktest3ed(face& s);
+  inline void setfacetindex(face& f, int value);
+  inline int  getfacetindex(face& f);
+
+  // Primitives for interacting tetrahedra and subfaces.
+  inline void tsbond(triface& t, face& s);
+  inline void tsdissolve(triface& t);
+  inline void stdissolve(face& s);
+  inline void tspivot(triface& t, face& s);
+  inline void stpivot(face& s, triface& t);
+
+  // Primitives for interacting tetrahedra and segments.
+  inline void tssbond1(triface& t, face& seg);
+  inline void sstbond1(face& s, triface& t);
+  inline void tssdissolve1(triface& t);
+  inline void sstdissolve1(face& s);
+  inline void tsspivot1(triface& t, face& s);
+  inline void sstpivot1(face& s, triface& t);
+
+  // Primitives for interacting subfaces and segments.
+  inline void ssbond(face& s, face& edge);
+  inline void ssbond1(face& s, face& edge);
+  inline void ssdissolve(face& s);
+  inline void sspivot(face& s, face& edge);
+
+  // Primitives for points.
+  inline int  pointmark(point pt);
+  inline void setpointmark(point pt, int value);
+  inline enum verttype pointtype(point pt);
+  inline void setpointtype(point pt, enum verttype value);
+  inline int  pointgeomtag(point pt);
+  inline void setpointgeomtag(point pt, int value);
+  inline REAL pointgeomuv(point pt, int i);
+  inline void setpointgeomuv(point pt, int i, REAL value);
+  inline void pinfect(point pt);
+  inline void puninfect(point pt);
+  inline bool pinfected(point pt);
+  inline void pmarktest(point pt);
+  inline void punmarktest(point pt);
+  inline bool pmarktested(point pt);
+  inline void pmarktest2(point pt);
+  inline void punmarktest2(point pt);
+  inline bool pmarktest2ed(point pt);
+  inline void pmarktest3(point pt);
+  inline void punmarktest3(point pt);
+  inline bool pmarktest3ed(point pt);
+  inline tetrahedron point2tet(point pt);
+  inline void setpoint2tet(point pt, tetrahedron value);
+  inline shellface point2sh(point pt);
+  inline void setpoint2sh(point pt, shellface value);
+  inline point point2ppt(point pt);
+  inline void setpoint2ppt(point pt, point value);
+  inline tetrahedron point2bgmtet(point pt);
+  inline void setpoint2bgmtet(point pt, tetrahedron value);
+  inline void setpointinsradius(point pt, REAL value);
+  inline REAL getpointinsradius(point pt);
+  inline bool issteinerpoint(point pt);
+
+  // Advanced primitives.
+  inline void point2tetorg(point pt, triface& t);
+  inline void point2shorg(point pa, face& s);
+  inline point farsorg(face& seg);
+  inline point farsdest(face& seg);
+
+  // Memory managment
+  void tetrahedrondealloc(tetrahedron*);
+  tetrahedron *tetrahedrontraverse();
+  tetrahedron *alltetrahedrontraverse();
+  void shellfacedealloc(memorypool*, shellface*);
+  shellface *shellfacetraverse(memorypool*);
+  void pointdealloc(point);
+  point pointtraverse();
+
+  void makeindex2pointmap(point*&);
+  void makepoint2submap(memorypool*, int*&, face*&);
+  void maketetrahedron(triface*);
+  void makeshellface(memorypool*, face*);
+  void makepoint(point*, enum verttype);
+
+  void initializepools();
+
+  // Symbolic perturbations (robust)
+  REAL insphere_s(REAL*, REAL*, REAL*, REAL*, REAL*);
+
+  // Triangle-edge intersection test (robust)
+  int tri_edge_2d(point, point, point, point, point, point, int, int*, int*);
+  int tri_edge_tail(point, point, point, point, point, point, REAL, REAL, int,
+                    int*, int*);
+  int tri_edge_test(point, point, point, point, point, point, int, int*, int*);
+
+  // Linear algebra functions
+  inline REAL dot(REAL* v1, REAL* v2);
+  inline void cross(REAL* v1, REAL* v2, REAL* n);
+  bool lu_decmp(REAL lu[4][4], int n, int* ps, REAL* d, int N);
+  void lu_solve(REAL lu[4][4], int n, int* ps, REAL* b, int N);
+
+  // Geometric calculations (non-robust)
+  REAL orient3dfast(REAL *pa, REAL *pb, REAL *pc, REAL *pd);
+  inline REAL norm2(REAL x, REAL y, REAL z);
+  inline REAL distance(REAL* p1, REAL* p2);
+  REAL incircle3d(point pa, point pb, point pc, point pd);
+  void facenormal(point pa, point pb, point pc, REAL *n, int pivot, REAL *lav);
+  bool tetalldihedral(point, point, point, point, REAL*, REAL*, REAL*);
+  void tetallnormal(point, point, point, point, REAL N[4][3], REAL* volume);
+  REAL tetaspectratio(point, point, point, point);
+  bool circumsphere(REAL*, REAL*, REAL*, REAL*, REAL* cent, REAL* radius);
+  void planelineint(REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*);
+  int linelineint(REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*);
+  REAL tetprismvol(REAL* pa, REAL* pb, REAL* pc, REAL* pd);
+  void calculateabovepoint4(point, point, point, point);
+
+  // The elementary flips.
+  void flip23(triface*, int, flipconstraints* fc);
+  void flip32(triface*, int, flipconstraints* fc);
+  void flip41(triface*, int, flipconstraints* fc);
+  // A generalized edge flip.
+  int flipnm(triface*, int n, int level, int, flipconstraints* fc);
+  int flipnm_post(triface*, int n, int nn, int, flipconstraints* fc);
+  // Point insertion.
+  int  insertpoint(point, triface*, face*, face*, insertvertexflags*);
+  void insertpoint_abort(face*, insertvertexflags*);
+
+  // Point sorting.
+  int  transgc[8][3][8], tsb1mod3[8];
+  void hilbert_init(int n);
+  int  hilbert_split(point* vertexarray, int arraysize, int gc0, int gc1,
+                     REAL, REAL, REAL, REAL, REAL, REAL);
+  void hilbert_sort3(point* vertexarray, int arraysize, int e, int d,
+                     REAL, REAL, REAL, REAL, REAL, REAL, int depth);
+  void brio_multiscale_sort(point*,int,int threshold,REAL ratio,int* depth);
+
+  // Point location.
+  unsigned long randomnation(unsigned int choices);
+  void randomsample(point searchpt, triface *searchtet);
+  enum locateresult locate(point searchpt, triface *searchtet);
+
+  // Incremental flips.
+  void flippush(badface*&, triface*);
+  int  incrementalflip(point newpt, int, flipconstraints *fc);
+
+  // Incremental Delaunay construction.
+  void initialdelaunay(point pa, point pb, point pc, point pd);
+  void incrementaldelaunay(clock_t&);
+
+  // Surface meshing.
+  void flipshpush(face*);
+  void flip22(face*, int, int);
+  void flip31(face*, int);
+  long lawsonflip();
+  int sinsertvertex(point newpt, face*, face*, int iloc, int bowywat, int);
+  int sremovevertex(point delpt, face*, face*, int lawson);
+  enum locateresult slocate(point, face*, int, int, int);
+
+  // Boundary recovery
+  enum interresult finddirection(triface* searchtet, point endpt);
+  int checkflipeligibility(int fliptype, point, point, point, point, point,
+                           int level, int edgepivot, flipconstraints* fc);
+
+  int removeedgebyflips(triface*, flipconstraints*);
+  int removefacebyflips(triface*, flipconstraints*);
+  int recoveredgebyflips(point, point, triface*, int fullsearch);
+  int add_steinerpt_in_schoenhardtpoly(triface*, int, int chkencflag);
+  int add_steinerpt_in_segment(face*, int searchlevel);
+  int addsteiner4recoversegment(face*, int);
+  int recoversegments(arraypool*, int fullsearch, int steinerflag);
+  int recoverfacebyflips(point, point, point, face*, triface*);
+  int recoversubfaces(arraypool*, int steinerflag);
+  int getvertexstar(int, point searchpt, arraypool*, arraypool*, arraypool*);
+  int getedge(point, point, triface*);
+  int reduceedgesatvertex(point startpt, arraypool* endptlist);
+  int removevertexbyflips(point steinerpt);
+  int suppressbdrysteinerpoint(point steinerpt);
+  int suppresssteinerpoints();
+  void recoverboundary(clock_t&);
+
+  // Mesh reconstruct
+  void carveholes();
+
+  // Mesh optimize
+  long lawsonflip3d(flipconstraints *fc);
+  void recoverdelaunay();
+  int  gettetrahedron(point, point, point, point, triface *);
+  long improvequalitybyflips();
+  int  smoothpoint(point smtpt, arraypool*, int ccw, optparameters *opm);
+  long improvequalitybysmoothing(optparameters *opm);
+  int  splitsliver(triface *, REAL, int);
+  long removeslivers(int);
+  void optimizemesh();
+
+  // Constructor & desctructor.
+  meshGRegionBoundaryRecovery()
+  {
+    in = new meshGRegionInputs();
+    b = new meshGRegionOptions();
+    bgm = NULL;
+
+    tetrahedrons = subfaces = subsegs = points = NULL;
+    badtetrahedrons = badsubfacs = badsubsegs = NULL;
+    tet2segpool = tet2subpool = NULL;
+    flippool = NULL;
+
+    dummypoint = NULL;
+    flipstack = NULL;
+    unflipqueue = NULL;
+
+    cavetetlist = cavebdrylist = caveoldtetlist = NULL;
+    cavetetshlist = cavetetseglist = cavetetvertlist = NULL;
+    caveencshlist = caveencseglist = NULL;
+    caveshlist = caveshbdlist = cavesegshlist = NULL;
+
+    subsegstack = subfacstack = subvertstack = NULL;
+
+    numpointattrib = numelemattrib = 0;
+    sizeoftensor = 0;
+    pointmtrindex = 0;
+    pointparamindex = 0;
+    pointmarkindex = 0;
+    point2simindex = 0;
+    pointinsradiusindex = 0;
+    elemattribindex = 0;
+    volumeboundindex = 0;
+    shmarkindex = 0;
+    areaboundindex = 0;
+    checksubsegflag = 0;
+    checksubfaceflag = 0;
+    checkconstraints = 0;
+    nonconvex = 0;
+    autofliplinklevel = 1;
+    useinsertradius = 0;
+    samples = 0l;
+    randomseed = 1l;
+    minfaceang = minfacetdihed = PI;
+    tetprism_vol_sum = 0.0;
+    longest = 0.0;
+    xmax = xmin = ymax = ymin = zmax = zmin = 0.0;
+
+    insegments = 0l;
+    hullsize = 0l;
+    meshedges = meshhulledges = 0l;
+    steinerleft = -1;
+    dupverts = 0l;
+    unuverts = 0l;
+    nonregularcount = 0l;
+    st_segref_count = st_facref_count = st_volref_count = 0l;
+    fillregioncount = cavitycount = cavityexpcount = 0l;
+    flip14count = flip26count = flipn2ncount = 0l;
+    flip23count = flip32count = flip44count = flip41count = 0l;
+    flip22count = flip31count = 0l;
+    totalworkmemory = 0l;
+  }
+
+  ~meshGRegionBoundaryRecovery()
+  {
+    delete in;
+    delete b;
+
+    if (points != (memorypool *) NULL) {
+      delete points;
+      delete [] dummypoint;
+    }
+
+    if (tetrahedrons != (memorypool *) NULL) {
+      delete tetrahedrons;
+    }
+
+    if (subfaces != (memorypool *) NULL) {
+      delete subfaces;
+      delete subsegs;
+    }
+
+    if (tet2segpool != NULL) {
+      delete tet2segpool;
+      delete tet2subpool;
+    }
+
+    if (flippool != NULL) {
+      delete flippool;
+      delete unflipqueue;
+    }
+
+    if (cavetetlist != NULL) {
+      delete cavetetlist;
+      delete cavebdrylist;
+      delete caveoldtetlist;
+      delete cavetetvertlist;
+    }
+
+    if (caveshlist != NULL) {
+      delete caveshlist;
+      delete caveshbdlist;
+      delete cavesegshlist;
+      delete cavetetshlist;
+      delete cavetetseglist;
+      delete caveencshlist;
+      delete caveencseglist;
+    }
+
+    if (subsegstack != NULL) {
+      delete subsegstack;
+      delete subfacstack;
+      delete subvertstack;
+    }
+  }
+
+  // Debug functions
+  void outsurfacemesh(const char* mfilename);
+  void outmesh2medit(const char* mfilename);
+
+  void unifysubfaces(face *f1, face *f2);
+  void unifysegments();
+  void jettisonnodes();
+  void reconstructmesh(GRegion *_gr);
+};
+
+void terminateBoundaryRecovery(void *, int exitcode);
+
+#endif
diff --git a/Mesh/meshGRegionDelaunayInsertion.cpp b/Mesh/meshGRegionDelaunayInsertion.cpp
index a703a1587922ae603f892b7cb8dbf35c9e46fe8f..e43fb4fd26cc54773f3a5fb739f9deeff1026df6 100644
--- a/Mesh/meshGRegionDelaunayInsertion.cpp
+++ b/Mesh/meshGRegionDelaunayInsertion.cpp
@@ -1593,21 +1593,6 @@ void bowyerWatsonFrontalLayers(GRegion *gr, bool hex)
 
 ///// do a 3D delaunay mesh assuming a set of vertices
 
-// void insertVerticesInRegion (GRegion *gr)
-// {
-//   // compute edges that should not be
-//   std::set<MEdge,Less_Edge> bnd;
-//   std::list<GFace*> f_list = gr->faces();
-//   for (std::list<GFace*>::iterator it = f_list.begin(); it != f_list.end(); ++it){
-//     GFace *gf = *it;
-//     for (i = 0;i< gf->triangles.size(); i++) {
-//       for (j = 0; j < 3; j++) {
-// 	bnd.insert(gf->triangles[i]->getEdge(j));
-//       }
-//     }
-//   }
-// }
-
 void delaunayMeshIn3D(std::vector<MVertex*> &v, std::vector<MTetrahedron*> &result, bool removeBox) {
   double t1 = Cpu();
   delaunayTriangulation (1, 1, v, result);
diff --git a/Mesh/meshPartition.cpp b/Mesh/meshPartition.cpp
index bdb33df6fb0d4fba956e9d5a4b44016e31f443f4..d925702df251fa76d51b91eb092e2082ee0339d0 100644
--- a/Mesh/meshPartition.cpp
+++ b/Mesh/meshPartition.cpp
@@ -262,8 +262,9 @@ int RenumberMesh(GModel *const model, meshPartitionOptions &options)
     temp.insert(temp.begin(),(*it)->hexahedra.begin(),(*it)->hexahedra.end());
     RenumberMeshElements(temp, options);
     (*it)->hexahedra.clear();
-    for (unsigned int i = 0; i < temp.size(); i++)
+    for (unsigned int i = 0; i < temp.size(); i++){
       (*it)->hexahedra.push_back((MHexahedron*)temp[i]);
+    }
   }
   return 1;
 }
diff --git a/Numeric/GaussQuadraturePyr.cpp b/Numeric/GaussQuadraturePyr.cpp
index 91cd1b3982ab429587354afe2bf42e3450fe475b..2bb6c40fe041dba36baf7b8365b689af8137791a 100644
--- a/Numeric/GaussQuadraturePyr.cpp
+++ b/Numeric/GaussQuadraturePyr.cpp
@@ -61,7 +61,7 @@ IntPt *getGQPyrPts(int order)
       GQPyr[index][l].pt[2] = 0.5*(1+wp);
 
       wt *= 0.125;
-      GQPyr[index][l++].weight = wt;
+      GQPyr[index][l++].weight = wt *4./3.;
 
     }
 
diff --git a/Numeric/robustPredicates.cpp b/Numeric/robustPredicates.cpp
index dbf750bf557f6c4fbef09be1c377cef542d169cf..e2441a484b033174a313f3f0692aabd61a429d05 100644
--- a/Numeric/robustPredicates.cpp
+++ b/Numeric/robustPredicates.cpp
@@ -376,6 +376,18 @@ static REAL o3derrboundA, o3derrboundB, o3derrboundC;
 static REAL iccerrboundA, iccerrboundB, iccerrboundC;
 static REAL isperrboundA, isperrboundB, isperrboundC;
 
+// Options to choose types of geometric computtaions. 
+// Added by H. Si, 2012-08-23.
+static int  _use_inexact_arith; // -X option.
+static int  _use_static_filter; // Default option, disable it by -X1
+
+// Static filters for orient3d() and insphere(). 
+// They are pre-calcualted and set in exactinit().
+// Added by H. Si, 2012-08-23.
+static REAL o3dstaticfilter;
+static REAL ispstaticfilter;
+
+
 /*****************************************************************************/
 /*                                                                           */
 /*  doubleprint()   Print the bit representation of a double.                */
@@ -661,7 +673,7 @@ float uniformfloatrand()
 /*                                                                           */
 /*****************************************************************************/
 
-REAL exactinit()
+REAL exactinit(int filter, REAL maxx, REAL maxy, REAL maxz)
 {
   REAL half;
   REAL check, lastcheck;
@@ -723,6 +735,23 @@ REAL exactinit()
   isperrboundB = (5.0 + 72.0 * epsilon) * epsilon;
   isperrboundC = (71.0 + 1408.0 * epsilon) * epsilon * epsilon;
 
+
+  _use_inexact_arith = 0;
+  _use_static_filter = filter;
+
+  // Sort maxx < maxy < maxz. Re-use 'half' for swapping.
+  if (maxx > maxz) {
+    half = maxx; maxx = maxz; maxz = half;
+  }
+  if (maxy > maxz) {
+    half = maxy; maxy = maxz; maxz = half;
+  }
+  else if (maxy < maxx) {
+    half = maxy; maxy = maxx; maxx = half;
+  }
+  o3dstaticfilter = 5.1107127829973299e-15 * maxx * maxy * maxz;
+  ispstaticfilter = 1.2466136531027298e-13 * maxx * maxy * maxz * (maxz * maxz);
+
   return epsilon; /* Added by H. Si 30 Juli, 2004. */
 }
 
@@ -2319,6 +2348,12 @@ REAL orient3d(REAL *pa, REAL *pb, REAL *pc, REAL *pd)
       + bdz * (cdxady - adxcdy)
       + cdz * (adxbdy - bdxady);
 
+  if (_use_static_filter) {
+    if (det > o3dstaticfilter) return det;
+    if (det < -o3dstaticfilter) return det;
+  }
+
+
   permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adz)
             + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdz)
             + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdz);
@@ -4161,6 +4196,7 @@ REAL insphere(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe)
 }
 #else
 
+
 REAL insphere(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe)
 {
   REAL aex, bex, cex, dex;
@@ -4223,6 +4259,10 @@ REAL insphere(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe)
 
   det = (dlift * abc - clift * dab) + (blift * cda - alift * bcd);
 
+  if (_use_static_filter) {
+    if (fabs(det) > ispstaticfilter) return det;
+  }
+
   aezplus = Absolute(aez);
   bezplus = Absolute(bez);
   cezplus = Absolute(cez);
diff --git a/Numeric/robustPredicates.h b/Numeric/robustPredicates.h
index dbee6f9b191cc62d95c6b3596dd73dc2fce57bdb..258ddc9d6e4b805ba492b6614c7512443f489a93 100644
--- a/Numeric/robustPredicates.h
+++ b/Numeric/robustPredicates.h
@@ -8,11 +8,11 @@
 
 // namespace necessary to avoid conflicts with predicates used by Tetgen
 namespace robustPredicates{
-double exactinit();
-double incircle(double *pa, double *pb, double *pc, double *pd);
-double insphere(double *pa, double *pb, double *pc, double *pd, double *pe);
-double orient2d(double *pa, double *pb, double *pc);
-double orient3d(double *pa, double *pb, double *pc, double *pd);
+  double exactinit(int filter, double maxx, double maxy, double maxz);
+  double incircle(double *pa, double *pb, double *pc, double *pd);
+  double insphere(double *pa, double *pb, double *pc, double *pd, double *pe);
+  double orient2d(double *pa, double *pb, double *pc);
+  double orient3d(double *pa, double *pb, double *pc, double *pd);
 }
 
 #endif
diff --git a/Solver/linearSystemCSR.cpp b/Solver/linearSystemCSR.cpp
index dbf21e038c0831046df16b1ab97598aabba75ece..c6a1ec7d4a472a68a4affccc78b861a7e5cc01ab 100644
--- a/Solver/linearSystemCSR.cpp
+++ b/Solver/linearSystemCSR.cpp
@@ -475,7 +475,6 @@ extern "C" {
 }
 
 template class linearSystemCSRTaucs<double>;
-template class linearSystemCSRTaucs<std::complex<double> >;
 
 template<>
 int linearSystemCSRTaucs<double>::systemSolve()
@@ -516,6 +515,8 @@ int linearSystemCSRTaucs<double>::systemSolve()
   }
   return 1;
 }
+#if 0
+template class linearSystemCSRTaucs<std::complex<double> >;
 
 template<>
 int linearSystemCSRTaucs<std::complex<double> >::systemSolve()
@@ -557,3 +558,4 @@ int linearSystemCSRTaucs<std::complex<double> >::systemSolve()
 }
 
 #endif
+#endif
diff --git a/benchmarks/2d/Square-01.geo b/benchmarks/2d/Square-01.geo
index 0f920b62390175316aa58592b9834ad5d8efe247..e4bcca13d8a7c78df52d3a7f28a409b16de64110 100644
--- a/benchmarks/2d/Square-01.geo
+++ b/benchmarks/2d/Square-01.geo
@@ -1,9 +1,9 @@
-fact = 100;
-lc = .1 * fact;
-Point(1) = {0.0,0.0,0,lc*2.5e-5};
-Point(2) = {1* fact,0.0,0,lc*1};
+fact = 1;
+lc = .03 * fact;
+Point(1) = {0.0,0.0,0,lc/30};
+Point(2) = {1* fact,0.0,0,lc};
 Point(3) = {1* fact,1* fact,0,lc};
-Point(4) = {0,1* fact,0,lc*1};
+Point(4) = {0,1* fact,0,lc};
 Line(1) = {3,2};
 Line(2) = {2,1};
 Line(3) = {1,4};
@@ -11,3 +11,4 @@ Line(4) = {4,3};
 Line Loop(5) = {1,2,3,4};
 Plane Surface(6) = {5};
 //Recombine Surface {6};
+//Recombine Surface {6};
diff --git a/benchmarks/2d/embedded_recombine.geo b/benchmarks/2d/embedded_recombine.geo
index be390fab8f5a930c352d8585bec54ccbc75370be..c1ba57e0a8a1f199d0f0fa03deeecb44bf886b49 100644
--- a/benchmarks/2d/embedded_recombine.geo
+++ b/benchmarks/2d/embedded_recombine.geo
@@ -1,5 +1,5 @@
 // Options
-Mesh.SubdivisionAlgorithm = 1;
+//Mesh.SubdivisionAlgorithm = 1;
 Mesh.MshFileVersion = 1;
 
 // Variables
@@ -19,7 +19,9 @@ l1 = newl; Line(l1) = {p1, p2} ;
 l2 = newl; Line(l2) = {p2, p3} ;
 l3 = newl; Line(l3) = {p3, p4} ;
 l4 = newl; Line(l4) = {p4, p1} ;
-l5 = newl; Line(l5) = {p6, p7} ;
+l5 = newl; Line(l5) = {p1, p7} ;
+l6 = newl; Line(l6) = {p1, p6} ;
+l7 = newl; Line(l7) = {p7, p6} ;
 
 // Surface Dalle
 ll1 = newll; Line Loop (ll1) = {l1, l2, l3, l4} ;
@@ -35,7 +37,7 @@ Transfinite Line {l5} = 1 + 1.3 / ch_length ;
 */
 
 Point{p5} In Surface{s1} ;
-Line{l5} In Surface{s1} ;
+Line{l5,l6,l7} In Surface{s1} ;
 
 // Transformation des triangles en quadrangles
-Recombine Surface {s1} ;
+//Recombine Surface {s1} ;
diff --git a/benchmarks/3d/Cube-01.geo b/benchmarks/3d/Cube-01.geo
index 7e32681db1a468dbb06f48a8913f4668c3d5a4de..7540862ed303238e4869226d5fb5b3cf38dffaa1 100644
--- a/benchmarks/3d/Cube-01.geo
+++ b/benchmarks/3d/Cube-01.geo
@@ -1,13 +1,13 @@
-Mesh.Algorithm3D = 9;
-Mesh.Algorithm = 9;
-Mesh.Recombine3DAll = 1;
+//Mesh.Algorithm3D = 9;
+//Mesh.Algorithm = 9;
+//Mesh.Recombine3DAll = 1;
 Mesh.Smoothing=1;
 //Mesh.Dual = 1;
 //Mesh.Voronoi=1;
 
-lc = 0.16;
-Point(1) = {0.0,0.0,0.0,lc/2};         
-Point(2) = {1,0.0,0.0,lc};         
+lc = 0.1;
+Point(1) = {0.0,0.0,0.0,lc/1};         
+Point(2) = {1,0.0,0.0,lc/1};         
 Point(3) = {1,1,0.0,lc};         
 Point(4) = {0,1,0.0,lc};         
 Line(1) = {4,3};         
@@ -17,3 +17,4 @@ Line(4) = {1,4};
 Line Loop(5) = {2,3,4,1};         
 Plane Surface(6) = {5};         
 Extrude Surface { 6, {0,0.0,1} };         
+//Characteristic Length {10} = lc/100;
diff --git a/benchmarks/3d/coin.geo b/benchmarks/3d/coin.geo
index ba4c91c060fe64d95d21f90590ca0181ab0d2b9e..0e11252b3bc776165ea7a1a88667bad118d93134 100644
--- a/benchmarks/3d/coin.geo
+++ b/benchmarks/3d/coin.geo
@@ -14,7 +14,7 @@
 0.085 261542 1568048 1285.29
 */
 lcar1 = .2;
-lcar2 = .2;
+lcar2 = .02;
 
 Point(newp) = {0.5,0.5,0.5,lcar2}; /* Point      1 */
 Point(newp) = {0.5,0.5,0,lcar1}; /* Point      2 */
diff --git a/benchmarks/3d/hex.geo b/benchmarks/3d/hex.geo
index 3318df7eb075381ab4029e94867443b7ca68f868..720b8ab79f4e6043cf793912c413fef9a6d3992a 100644
--- a/benchmarks/3d/hex.geo
+++ b/benchmarks/3d/hex.geo
@@ -1,9 +1,10 @@
+Mesh.CharacteristicLengthExtendFromBoundary = 0;
 lc = 0.3;
 
 // example of a purely hexahedral mesh using only transfinite
 // mesh constraints
-z=0.6;
-deform=0.4;
+z=1;
+deform=0.0;
 
 Point(1) = {-2-deform,0,0,lc};
 Point(2) = {-1,0,0,lc};
@@ -39,18 +40,9 @@ Line Loop(24) = {6,-12,3,10};
 Ruled Surface(25) = {24};
 Surface Loop(1) = {17,-25,-23,-21,19,15};
 Volume(1) = {1};
-Transfinite Line{1:4,6:9} = 5 Using Progression 1.4;
+Transfinite Line{1:4,6:9} = 10;
 Transfinite Line{10:13} = 10;
 
-/*
-Transfinite Surface {15} = {1,2,3,4};
-Transfinite Surface {17} = {5,6,7,8};
-Transfinite Surface {19} = {1,5,8,4};
-Transfinite Surface {21} = {8,7,3,4};
-Transfinite Surface {23} = {6,7,3,2};
-Transfinite Surface {25} = {5,6,2,1};
-*/
-
 Transfinite Surface {15} = {1,2,3,4};
 
 
@@ -61,6 +53,6 @@ Transfinite Surface {23} = {6,7,3,2};
 Transfinite Surface {25} = {5,6,2,1};
 
 
-Transfinite Volume{1} = {1,2,3,4,5,6,7,8};
+//Transfinite Volume{1} = {1,2,3,4,5,6,7,8};
 Recombine Surface{15:25:2};
 
diff --git a/benchmarks/extrude/hybrid.geo b/benchmarks/extrude/hybrid.geo
index 4202a4a2dbb0ef52d85703a17616846b9eb5d1e6..f4a44dafd9ca881964dce9acf46646c19ee803c4 100644
--- a/benchmarks/extrude/hybrid.geo
+++ b/benchmarks/extrude/hybrid.geo
@@ -22,6 +22,7 @@ Extrude Surface {6, {0,0.0,2}} ;
 
 Extrude Surface {45, {0,2,0.0}}
 {    
+   Recombine;
    Layers {{2,2,2}, {.3,.6,1.}};    
 } ; 
 Coherence; 
diff --git a/benchmarks/python/square.geo b/benchmarks/python/square.geo
index d37b77371d77af8bc04191e3b5e940947c541bb7..f3050fb2548065f88789884592b0ed4ba884daa7 100644
--- a/benchmarks/python/square.geo
+++ b/benchmarks/python/square.geo
@@ -1,12 +1,30 @@
-fact = 1;
-lc = .01 * fact;       
-Point(1) = {0.0,0.0,0,lc};       
-Point(2) = {1* fact,0.0,0,lc};       
-Point(3) = {1* fact,1* fact,0,lc};       
-Point(4) = {0,1* fact,0,lc};       
-Line(1) = {3,2};       
-Line(2) = {2,1};       
-Line(3) = {1,4};       
-Line(4) = {4,3};       
-Line Loop(5) = {1,2,3,4};       
-Plane Surface(6) = {5};       
+lc=1000;
+Point(1) = {0, 0, 0,lc*.1};
+Point(2) = {0, 10, 0,lc};
+Point(3) = {10, 10, 0,lc};
+Point(4) = {10, 0, 0,lc};
+Line(1) = {2, 3};
+Line(2) = {3, 4};
+Line(3) = {4, 1};
+Line(4) = {1, 2};
+
+Line Loop(5) = {1, 2, 3, 4};
+Plane Surface(10) = {5};
+
+Physical Line("wall")={1,2,3,4};
+Physical Surface("air")={10};
+
+//----------------------
+
+//Compound Line(10)={1,2,3,4};
+//Compound Surface(100)={10};
+
+//Line {1,2,3,4} In Surface{100};
+
+//Physical Surface(100)={10};
+//Physical Line(200)={1,2,3,4};
+
+
+
+
+//Recombine Surface {10};
diff --git a/benchmarks/python/square.msh b/benchmarks/python/square.msh
index 3fb8b9489c579a72b99e393c0fde055d5f2dd324..34922caf27fa1d12a44daae9a78d978a73cfffaf 100644
--- a/benchmarks/python/square.msh
+++ b/benchmarks/python/square.msh
@@ -1,34574 +1,339 @@
 $MeshFormat
 2.2 0 8
 $EndMeshFormat
+$PhysicalNames
+2
+1 1 "wall"
+2 2 "air"
+$EndPhysicalNames
 $Nodes
-11521
+109
 1 0 0 0
-2 1 0 0
-3 1 1 0
-4 0 1 0
-5 1 0.9898989898989479 0
-6 1 0.9797979797978956 0
-7 1 0.9696969696968435 0
-8 1 0.9595959595957912 0
-9 1 0.9494949494947391 0
-10 1 0.939393939393687 0
-11 1 0.9292929292926349 0
-12 1 0.9191919191915826 0
-13 1 0.9090909090905305 0
-14 1 0.8989898989894782 0
-15 1 0.8888888888884261 0
-16 1 0.8787878787873851 0
-17 1 0.868686868686396 0
-18 1 0.8585858585854518 0
-19 1 0.8484848484845118 0
-20 1 0.8383838383835718 0
-21 1 0.8282828282826318 0
-22 1 0.8181818181816918 0
-23 1 0.8080808080807518 0
-24 1 0.7979797979798118 0
-25 1 0.7878787878788717 0
-26 1 0.7777777777779317 0
-27 1 0.7676767676769917 0
-28 1 0.7575757575760517 0
-29 1 0.7474747474751117 0
-30 1 0.7373737373741717 0
-31 1 0.7272727272732317 0
-32 1 0.7171717171722916 0
-33 1 0.7070707070713516 0
-34 1 0.6969696969704116 0
-35 1 0.6868686868694716 0
-36 1 0.6767676767685316 0
-37 1 0.6666666666675916 0
-38 1 0.6565656565666514 0
-39 1 0.6464646464657113 0
-40 1 0.6363636363647713 0
-41 1 0.6262626262638313 0
-42 1 0.6161616161628912 0
-43 1 0.6060606060619511 0
-44 1 0.5959595959610111 0
-45 1 0.585858585860071 0
-46 1 0.5757575757591309 0
-47 1 0.5656565656581909 0
-48 1 0.5555555555572509 0
-49 1 0.5454545454563108 0
-50 1 0.5353535353553708 0
-51 1 0.5252525252544307 0
-52 1 0.5151515151534907 0
-53 1 0.5050505050525429 0
-54 1 0.4949494949515468 0
-55 1 0.4848484848505024 0
-56 1 0.4747474747494502 0
-57 1 0.4646464646483981 0
-58 1 0.454545454547346 0
-59 1 0.4444444444462938 0
-60 1 0.4343434343452417 0
-61 1 0.4242424242441896 0
-62 1 0.4141414141431374 0
-63 1 0.4040404040420853 0
-64 1 0.3939393939410332 0
-65 1 0.383838383839981 0
-66 1 0.3737373737389289 0
-67 1 0.3636363636378768 0
-68 1 0.3535353535368246 0
-69 1 0.3434343434357724 0
-70 1 0.3333333333347204 0
-71 1 0.3232323232336681 0
-72 1 0.3131313131326161 0
-73 1 0.3030303030315639 0
-74 1 0.2929292929305118 0
-75 1 0.2828282828294596 0
-76 1 0.2727272727284076 0
-77 1 0.2626262626273553 0
-78 1 0.2525252525263033 0
-79 1 0.2424242424252511 0
-80 1 0.232323232324199 0
-81 1 0.2222222222231469 0
-82 1 0.2121212121220948 0
-83 1 0.2020202020210426 0
-84 1 0.1919191919199905 0
-85 1 0.1818181818189384 0
-86 1 0.1717171717178861 0
-87 1 0.1616161616168341 0
-88 1 0.1515151515157819 0
-89 1 0.1414141414147299 0
-90 1 0.1313131313136776 0
-91 1 0.1212121212126256 0
-92 1 0.1111111111115733 0
-93 1 0.1010101010105213 0
-94 1 0.09090909090946908 0
-95 1 0.08080808080841706 0
-96 1 0.07070707070736482 0
-97 1 0.06060606060631279 0
-98 1 0.05050505050526055 0
-99 1 0.04040404040420853 0
-100 1 0.03030303030315629 0
-101 1 0.02020202020210415 0
-102 1 0.01010101010105202 0
-103 0.9898989898989479 0 0
-104 0.9797979797978956 0 0
-105 0.9696969696968435 0 0
-106 0.9595959595957912 0 0
-107 0.9494949494947391 0 0
-108 0.939393939393687 0 0
-109 0.9292929292926349 0 0
-110 0.9191919191915826 0 0
-111 0.9090909090905305 0 0
-112 0.8989898989894782 0 0
-113 0.8888888888884261 0 0
-114 0.8787878787873851 0 0
-115 0.868686868686396 0 0
-116 0.8585858585854518 0 0
-117 0.8484848484845118 0 0
-118 0.8383838383835718 0 0
-119 0.8282828282826318 0 0
-120 0.8181818181816918 0 0
-121 0.8080808080807518 0 0
-122 0.7979797979798118 0 0
-123 0.7878787878788717 0 0
-124 0.7777777777779317 0 0
-125 0.7676767676769917 0 0
-126 0.7575757575760517 0 0
-127 0.7474747474751117 0 0
-128 0.7373737373741717 0 0
-129 0.7272727272732317 0 0
-130 0.7171717171722916 0 0
-131 0.7070707070713516 0 0
-132 0.6969696969704116 0 0
-133 0.6868686868694716 0 0
-134 0.6767676767685316 0 0
-135 0.6666666666675916 0 0
-136 0.6565656565666514 0 0
-137 0.6464646464657113 0 0
-138 0.6363636363647713 0 0
-139 0.6262626262638313 0 0
-140 0.6161616161628912 0 0
-141 0.6060606060619511 0 0
-142 0.5959595959610111 0 0
-143 0.585858585860071 0 0
-144 0.5757575757591309 0 0
-145 0.5656565656581909 0 0
-146 0.5555555555572509 0 0
-147 0.5454545454563108 0 0
-148 0.5353535353553708 0 0
-149 0.5252525252544307 0 0
-150 0.5151515151534907 0 0
-151 0.5050505050525429 0 0
-152 0.4949494949515468 0 0
-153 0.4848484848505024 0 0
-154 0.4747474747494502 0 0
-155 0.4646464646483981 0 0
-156 0.454545454547346 0 0
-157 0.4444444444462938 0 0
-158 0.4343434343452417 0 0
-159 0.4242424242441896 0 0
-160 0.4141414141431374 0 0
-161 0.4040404040420853 0 0
-162 0.3939393939410332 0 0
-163 0.383838383839981 0 0
-164 0.3737373737389289 0 0
-165 0.3636363636378768 0 0
-166 0.3535353535368246 0 0
-167 0.3434343434357724 0 0
-168 0.3333333333347204 0 0
-169 0.3232323232336681 0 0
-170 0.3131313131326161 0 0
-171 0.3030303030315639 0 0
-172 0.2929292929305118 0 0
-173 0.2828282828294596 0 0
-174 0.2727272727284076 0 0
-175 0.2626262626273553 0 0
-176 0.2525252525263033 0 0
-177 0.2424242424252511 0 0
-178 0.232323232324199 0 0
-179 0.2222222222231469 0 0
-180 0.2121212121220948 0 0
-181 0.2020202020210426 0 0
-182 0.1919191919199905 0 0
-183 0.1818181818189384 0 0
-184 0.1717171717178861 0 0
-185 0.1616161616168341 0 0
-186 0.1515151515157819 0 0
-187 0.1414141414147299 0 0
-188 0.1313131313136776 0 0
-189 0.1212121212126256 0 0
-190 0.1111111111115733 0 0
-191 0.1010101010105213 0 0
-192 0.09090909090946908 0 0
-193 0.08080808080841706 0 0
-194 0.07070707070736482 0 0
-195 0.06060606060631279 0 0
-196 0.05050505050526055 0 0
-197 0.04040404040420853 0 0
-198 0.03030303030315629 0 0
-199 0.02020202020210415 0 0
-200 0.01010101010105202 0 0
-201 0 0.01010101010099102 0
-202 0 0.02020202020198219 0
-203 0 0.03030303030297278 0
-204 0 0.04040404040396137 0
-205 0 0.05050505050494904 0
-206 0 0.06060606060593775 0
-207 0 0.07070707070693009 0
-208 0 0.08080808080792477 0
-209 0 0.09090909090891947 0
-210 0 0.1010101010099141 0
-211 0 0.1111111111109088 0
-212 0 0.1212121212119021 0
-213 0 0.1313131313128889 0
-214 0 0.1414141414138701 0
-215 0 0.1515151515148508 0
-216 0 0.1616161616158314 0
-217 0 0.1717171717168121 0
-218 0 0.1818181818177927 0
-219 0 0.1919191919187734 0
-220 0 0.202020202019754 0
-221 0 0.2121212121207347 0
-222 0 0.2222222222217154 0
-223 0 0.232323232322696 0
-224 0 0.2424242424236767 0
-225 0 0.2525252525246574 0
-226 0 0.262626262625638 0
-227 0 0.2727272727266186 0
-228 0 0.2828282828275993 0
-229 0 0.2929292929285799 0
-230 0 0.3030303030295606 0
-231 0 0.3131313131305413 0
-232 0 0.323232323231522 0
-233 0 0.3333333333325026 0
-234 0 0.3434343434334833 0
-235 0 0.3535353535344639 0
-236 0 0.3636363636354446 0
-237 0 0.3737373737364252 0
-238 0 0.3838383838374059 0
-239 0 0.3939393939383865 0
-240 0 0.4040404040393672 0
-241 0 0.4141414141403479 0
-242 0 0.4242424242413285 0
-243 0 0.4343434343423092 0
-244 0 0.4444444444432898 0
-245 0 0.4545454545442705 0
-246 0 0.4646464646452512 0
-247 0 0.4747474747462318 0
-248 0 0.4848484848472125 0
-249 0 0.494949494948197 0
-250 0 0.5050505050492057 0
-251 0 0.5151515151502386 0
-252 0 0.5252525252512753 0
-253 0 0.5353535353523119 0
-254 0 0.5454545454533486 0
-255 0 0.5555555555543853 0
-256 0 0.5656565656554221 0
-257 0 0.5757575757564588 0
-258 0 0.5858585858574954 0
-259 0 0.5959595959585321 0
-260 0 0.6060606060595688 0
-261 0 0.6161616161606055 0
-262 0 0.6262626262616422 0
-263 0 0.6363636363626789 0
-264 0 0.6464646464637157 0
-265 0 0.6565656565647524 0
-266 0 0.6666666666657891 0
-267 0 0.6767676767668258 0
-268 0 0.6868686868678625 0
-269 0 0.6969696969688991 0
-270 0 0.7070707070699358 0
-271 0 0.7171717171709725 0
-272 0 0.7272727272720092 0
-273 0 0.7373737373730459 0
-274 0 0.7474747474740826 0
-275 0 0.7575757575751194 0
-276 0 0.7676767676761561 0
-277 0 0.7777777777771928 0
-278 0 0.7878787878782294 0
-279 0 0.7979797979792661 0
-280 0 0.8080808080803028 0
-281 0 0.8181818181813395 0
-282 0 0.8282828282823762 0
-283 0 0.8383838383834129 0
-284 0 0.8484848484844496 0
-285 0 0.8585858585854863 0
-286 0 0.868686868686523 0
-287 0 0.8787878787875596 0
-288 0 0.8888888888885963 0
-289 0 0.898989898989633 0
-290 0 0.9090909090906697 0
-291 0 0.9191919191917064 0
-292 0 0.9292929292927432 0
-293 0 0.9393939393937799 0
-294 0 0.9494949494948166 0
-295 0 0.9595959595958533 0
-296 0 0.96969696969689 0
-297 0 0.9797979797979266 0
-298 0 0.9898989898989633 0
-299 0.01010101010099102 1 0
-300 0.02020202020198219 1 0
-301 0.03030303030297278 1 0
-302 0.04040404040396137 1 0
-303 0.05050505050494904 1 0
-304 0.06060606060593775 1 0
-305 0.07070707070693009 1 0
-306 0.08080808080792477 1 0
-307 0.09090909090891947 1 0
-308 0.1010101010099141 1 0
-309 0.1111111111109088 1 0
-310 0.1212121212119021 1 0
-311 0.1313131313128889 1 0
-312 0.1414141414138701 1 0
-313 0.1515151515148508 1 0
-314 0.1616161616158314 1 0
-315 0.1717171717168121 1 0
-316 0.1818181818177927 1 0
-317 0.1919191919187734 1 0
-318 0.202020202019754 1 0
-319 0.2121212121207347 1 0
-320 0.2222222222217154 1 0
-321 0.232323232322696 1 0
-322 0.2424242424236767 1 0
-323 0.2525252525246574 1 0
-324 0.262626262625638 1 0
-325 0.2727272727266186 1 0
-326 0.2828282828275993 1 0
-327 0.2929292929285799 1 0
-328 0.3030303030295606 1 0
-329 0.3131313131305413 1 0
-330 0.323232323231522 1 0
-331 0.3333333333325026 1 0
-332 0.3434343434334833 1 0
-333 0.3535353535344639 1 0
-334 0.3636363636354446 1 0
-335 0.3737373737364252 1 0
-336 0.3838383838374059 1 0
-337 0.3939393939383865 1 0
-338 0.4040404040393672 1 0
-339 0.4141414141403479 1 0
-340 0.4242424242413285 1 0
-341 0.4343434343423092 1 0
-342 0.4444444444432898 1 0
-343 0.4545454545442705 1 0
-344 0.4646464646452512 1 0
-345 0.4747474747462318 1 0
-346 0.4848484848472125 1 0
-347 0.494949494948197 1 0
-348 0.5050505050492057 1 0
-349 0.5151515151502386 1 0
-350 0.5252525252512753 1 0
-351 0.5353535353523119 1 0
-352 0.5454545454533486 1 0
-353 0.5555555555543853 1 0
-354 0.5656565656554221 1 0
-355 0.5757575757564588 1 0
-356 0.5858585858574954 1 0
-357 0.5959595959585321 1 0
-358 0.6060606060595688 1 0
-359 0.6161616161606055 1 0
-360 0.6262626262616422 1 0
-361 0.6363636363626789 1 0
-362 0.6464646464637157 1 0
-363 0.6565656565647524 1 0
-364 0.6666666666657891 1 0
-365 0.6767676767668258 1 0
-366 0.6868686868678625 1 0
-367 0.6969696969688991 1 0
-368 0.7070707070699358 1 0
-369 0.7171717171709725 1 0
-370 0.7272727272720092 1 0
-371 0.7373737373730459 1 0
-372 0.7474747474740826 1 0
-373 0.7575757575751194 1 0
-374 0.7676767676761561 1 0
-375 0.7777777777771928 1 0
-376 0.7878787878782294 1 0
-377 0.7979797979792661 1 0
-378 0.8080808080803028 1 0
-379 0.8181818181813395 1 0
-380 0.8282828282823762 1 0
-381 0.8383838383834129 1 0
-382 0.8484848484844496 1 0
-383 0.8585858585854863 1 0
-384 0.868686868686523 1 0
-385 0.8787878787875596 1 0
-386 0.8888888888885963 1 0
-387 0.898989898989633 1 0
-388 0.9090909090906697 1 0
-389 0.9191919191917064 1 0
-390 0.9292929292927432 1 0
-391 0.9393939393937799 1 0
-392 0.9494949494948166 1 0
-393 0.9595959595958533 1 0
-394 0.96969696969689 1 0
-395 0.9797979797979266 1 0
-396 0.9898989898989633 1 0
-397 0.4994441468718008 0.008977859355467145 0
-398 0.4994441468686102 0.9910221406447738 0
-399 0.9912522686486456 0.5000000000020204 0
-400 0.009236671760969737 0.4996107761545567 0
-401 0.9912522686486748 0.4090909090926871 0
-402 0.5912442641766933 0.9908832020665549 0
-403 0.4087854471912198 0.00839904222114362 0
-404 0.008556207635859989 0.5911611552915128 0
-405 0.9912522686485529 0.590909090910651 0
-406 0.5913219514763025 0.008966433628394565 0
-407 0.4092146717640286 0.99109224348866 0
-408 0.009758467723566151 0.4087655220429778 0
-409 0.991252268648646 0.3282828282842634 0
-410 0.6717171717163072 0.9913925317959413 0
-411 0.3284888113137747 0.008628806993817406 0
-412 0.009413073333098675 0.6717654298999585 0
-413 0.9912522686484624 0.6717171717182909 0
-414 0.6713859307464314 0.00783598844376613 0
-415 0.3286807314517861 0.9908796615337696 0
-416 0.009701160063393745 0.328172993787021 0
-417 0.9912522686486059 0.2575757575768307 0
-418 0.7422840990392965 0.9920527859897746 0
-419 0.2581238812054656 0.00894655539767409 0
-420 0.009596048166700283 0.7421970839266252 0
-421 0.9912522686484182 0.7424242424249081 0
-422 0.742631216343877 0.009061211092389056 0
-423 0.2581842984298071 0.9910185627006113 0
-424 0.009391797873957303 0.2575740682939895 0
-425 0.9912522686485377 0.803030303030538 0
-426 0.991252268648761 0.1969696969707957 0
-427 0.1965719896075817 0.01004005437659524 0
-428 0.009441888863783511 0.8029686477670666 0
-429 0.8027826808642839 0.008161889651029203 0
-430 0.8031436034841943 0.9920686217821389 0
-431 0.1965407411132432 0.990877919800906 0
-432 0.009433576255869078 0.196969696969331 0
-433 0.9912522686485015 0.8535353535352894 0
-434 0.8538079072113505 0.009113066342170453 0
-435 0.1466100004823027 0.008907570417166008 0
-436 0.009900301215239878 0.8535353535350363 0
-437 0.9912522686486676 0.1464646464653426 0
-438 0.8539071858504498 0.9910372979640852 0
-439 0.1466100004813154 0.9910924295828223 0
-440 0.009900301215934942 0.146464646464404 0
-441 0.4600461974817811 0.008939091516940586 0
-442 0.9912522686486134 0.4595959595978758 0
-443 0.5404033973076151 0.9910799742211108 0
-444 0.008747731351379935 0.540404040402824 0
-445 0.9912522686484563 0.8939393939393265 0
-446 0.8939393939389553 0.008629754060191267 0
-447 0.1066161236355303 0.9906639616131179 0
-448 0.9912522686486651 0.1060606060613681 0
-449 0.009900301215963967 0.106060606060429 0
-450 0.8946811362734211 0.9905761789380185 0
-451 0.1060606060610456 0.00874773135139407 0
-452 0.6317619350516277 0.9906567673675996 0
-453 0.9912522686486704 0.3686868686885408 0
-454 0.3692902592209696 0.009706587716817077 0
-455 0.009900301215206414 0.8939393939391765 0
-456 0.008856913298212697 0.6308855724208243 0
-457 0.3691890731953653 0.9906604072139564 0
-458 0.4501775226915381 0.9910351952397725 0
-459 0.009900970411169399 0.3686868686861399 0
-460 0.009433576255834557 0.4494949494940145 0
-461 0.9912522686485298 0.6313131313144298 0
-462 0.9912522686485943 0.5505050505068317 0
-463 0.6317619350538511 0.009343232633226525 0
-464 0.5505057854539308 0.00885730551797421 0
-465 0.06611731116199501 0.009123684257444677 0
-466 0.00942622628508382 0.9343617040772624 0
-467 0.9912522686484542 0.9343434343435963 0
-468 0.9912522686487291 0.06565656565731198 0
-469 0.9346560663448221 0.008753042110225326 0
-470 0.9347209819518688 0.9909461008376295 0
-471 0.0661173111611429 0.990876315742503 0
-472 0.009882976814645705 0.06569928177602452 0
-473 0.7726816971805773 0.9902818703083591 0
-474 0.9912522686487354 0.2272727272739516 0
-475 0.9912522686486847 0.2878787878801446 0
-476 0.712754409768269 0.9910417204797071 0
-477 0.2281708559980242 0.009315307138949446 0
-478 0.2879262150526843 0.008848707718506932 0
-479 0.009446929381931032 0.7726550608707671 0
-480 0.008691019071841789 0.7120229835708808 0
-481 0.2986805352279528 0.9906732146402991 0
-482 0.009900301215876907 0.2979797979792687 0
-483 0.2281708559963943 0.9906846928610514 0
-484 0.9912522686485187 0.7020202020210865 0
-485 0.7022257149035148 0.008875719366976125 0
-486 0.008964595770340015 0.2275057399010391 0
-487 0.9912522686484329 0.7727272727278049 0
-488 0.7726448588060917 0.00891157700140037 0
-489 0.03610727223721461 0.009323573903231649 0
-490 0.009449816388914458 0.9646947228298954 0
-491 0.9912522686484393 0.9646464646467451 0
-492 0.9647699808124059 0.008965552887814348 0
-493 0.9912522686487494 0.03535353535413399 0
-494 0.9647433734764681 0.991037563784861 0
-495 0.03536452351978252 0.9905855419763663 0
-496 0.009857937122167086 0.03535353535342409 0
-497 0.991252268648616 0.4797979797999666 0
-498 0.479766170649057 0.008617841680337641 0
-499 0.4395993750939274 0.009403140209886588 0
-500 0.9912522686486612 0.4393939393958827 0
-501 0.5207689916022678 0.9910213569013132 0
-502 0.5614757822670999 0.9905750557604982 0
-503 0.008436122058978882 0.5202840663546442 0
-504 0.008815819747108107 0.5606927840347092 0
-505 0.9912522686487064 0.1666666666675671 0
-506 0.832980900661803 0.9917349263425034 0
-507 0.08578869463779343 0.008910418994781432 0
-508 0.8737373737370413 0.9913931332620134 0
-509 0.9912522686484877 0.8737373737371767 0
-510 0.873597805102984 0.008907595349359925 0
-511 0.9912522686486666 0.1262626262632565 0
-512 0.1262626262631514 0.008630677850847372 0
-513 0.1664508129550939 0.009355582838100753 0
-514 0.6914762267759226 0.9910309555770189 0
-515 0.9912522686486809 0.3080808080822455 0
-516 0.009623770719747899 0.8333164087122025 0
-517 0.9912522686486567 0.3484848484863386 0
-518 0.009900970410388959 0.9141414141412704 0
-519 0.009103370888882686 0.6919619080380635 0
-520 0.9141414141410544 0.008747731351392654 0
-521 0.9912522686486409 0.3888888888905672 0
-522 0.6510272470288194 0.9906594401835381 0
-523 0.009864227354709564 0.8737373737371069 0
-524 0.3074111866294925 0.008985149503150805 0
-525 0.388550299103954 0.009705978094101193 0
-526 0.3484848484862986 0.008607629366477045 0
-527 0.9912522686484692 0.9141414141414845 0
-528 0.6109931338188458 0.9910921504416232 0
-529 0.00811864509562338 0.6111114989158867 0
-530 0.08578869463701731 0.9910895810052323 0
-531 0.009900301215441436 0.65151515151435 0
-532 0.9912522686486592 0.08585858585929716 0
-533 0.009864227355381869 0.08585858585842039 0
-534 0.4796733478359115 0.9920621512065707 0
-535 0.3483884625355764 0.9910916420225878 0
-536 0.3884544089509732 0.9906557779230919 0
-537 0.2778172394275722 0.9910746430726101 0
-538 0.009449816389369399 0.3484365903005947 0
-539 0.1258816606742721 0.9906520338464334 0
-540 0.009900970411253866 0.277777777777296 0
-541 0.009900301215808923 0.3888888888880399 0
-542 0.1769956383192448 0.990973723871773 0
-543 0.9136001732487348 0.9906630177544136 0
-544 0.7215074233162571 0.009094914760433448 0
-545 0.9912522686485192 0.6515151515163272 0
-546 0.009864227355385414 0.126262626262416 0
-547 0.009697885939632797 0.1767753049489553 0
-548 0.6511696392972132 0.009082149280294908 0
-549 0.9912522686484851 0.7222222222229314 0
-550 0.9912522686485872 0.611111111112535 0
-551 0.6109931338212641 0.00890784955873771 0
-552 0.9912522686483618 0.8232323232325153 0
-553 0.8236742462438593 0.009128300483080477 0
-554 0.4288910729444462 0.9910345476610115 0
-555 0.009172616698110553 0.4798293133596694 0
-556 0.009666604138243568 0.4292929292919705 0
-557 0.9912522686486296 0.5202020202039557 0
-558 0.5207012834572587 0.008939551781340946 0
-559 0.9912522686485646 0.5707070707087619 0
-560 0.5699955776219783 0.008987420311377042 0
-561 0.01522952017183834 0.008684653066605617 0
-562 0.00890205953210497 0.9847070308225278 0
-563 0.9914026329539376 0.9845880462320221 0
-564 0.9839827887767216 0.009121741999128411 0
-565 0.9912522686486164 0.4696969696989187 0
-566 0.982504537297251 0.4747474747494353 0
-567 0.9825045372972391 0.484848484850454 0
-568 0.973756805945891 0.4797979797999314 0
-569 0.9737568059458699 0.4898989899009343 0
-570 0.9650090745945327 0.4848484848504175 0
-571 0.9650090745945114 0.4949494949514143 0
-572 0.9562613432431767 0.4898989899008987 0
-573 0.9562613432431557 0.5000000000018925 0
-574 0.9475136118918213 0.4949494949513771 0
-575 0.947513611891842 0.4848484848503826 0
-576 0.9387658805404863 0.4898989899008626 0
-577 0.9387658805404655 0.5000000000018567 0
-578 0.9300181491891311 0.4949494949513425 0
-579 0.93001814918911 0.5050505050523367 0
-580 0.9212704178377764 0.5000000000018215 0
-581 0.9212704178377964 0.4898989899008274 0
-582 0.912522686486442 0.4949494949513068 0
-583 0.9125226864864615 0.4848484848503117 0
-584 0.903774955135106 0.4898989899007917 0
-585 0.9037749551351261 0.4797979797997958 0
-586 0.8950272237837704 0.4848484848502757 0
-587 0.8950272237837902 0.4747474747492807 0
-588 0.8862794924324345 0.4797979797997603 0
-589 0.886279492432454 0.469696969698765 0
-590 0.8775317610810976 0.4747474747492453 0
-591 0.8775317610811176 0.4646464646482484 0
-592 0.8687840297297611 0.4696969696987295 0
-593 0.8687840297297812 0.4595959595977325 0
-594 0.8600362983784248 0.464646464648214 0
-595 0.8600362983784042 0.4747474747492107 0
-596 0.8512885670270682 0.4696969696986951 0
-597 0.8512885670270505 0.4797979797996874 0
-598 0.8425408356757116 0.4747474747491752 0
-599 0.842540835675694 0.4848484848501678 0
-600 0.8337931043243543 0.4797979797996561 0
-601 0.8337931043243344 0.4898989899006533 0
-602 0.8250453729729907 0.4848484848501353 0
-603 0.8250453729729756 0.4949494949511346 0
-604 0.8162976416216314 0.4898989899006188 0
-605 0.8162976416216177 0.5000000000016165 0
-606 0.8075499102702793 0.4949494949511025 0
-607 0.8075499102702609 0.5050505050520989 0
-608 0.798802178918923 0.5000000000015817 0
-609 0.7988021789189412 0.4898989899005883 0
-610 0.7900544475675859 0.4949494949510643 0
-611 0.7900544475675895 0.5050505050520554 0
-612 0.7813067162162383 0.5000000000015419 0
-613 0.7813067162162407 0.4898989899005481 0
-614 0.7725589848648878 0.4949494949510297 0
-615 0.772558984864904 0.5050505050520158 0
-616 0.7638112535135345 0.5000000000015067 0
-617 0.7638112535135489 0.4898989899005151 0
-618 0.7550635221621931 0.4949494949509892 0
-619 0.7550635221621999 0.5050505050519829 0
-620 0.7463157908108504 0.5000000000014659 0
-621 0.7463157908108581 0.4898989899004725 0
-622 0.737568059459498 0.4949494949509515 0
-623 0.7375680594595164 0.5050505050519387 0
-624 0.728820328108142 0.500000000001429 0
-625 0.7288203281081594 0.4898989899004337 0
-626 0.7200725967568009 0.4949494949509112 0
-627 0.7200725967567817 0.5050505050519027 0
-628 0.7113248654054409 0.5000000000013894 0
-629 0.711324865405464 0.4898989899003914 0
-630 0.7025771340541039 0.4949494949508707 0
-631 0.7025771340540804 0.5050505050518694 0
-632 0.6938294027027435 0.5000000000013497 0
-633 0.6938294027027239 0.5101010101023423 0
-634 0.6850816713513839 0.5050505050518281 0
-635 0.6850816713514121 0.4949494949508386 0
-636 0.6763339400000499 0.5000000000013141 0
-637 0.6763339400000234 0.5101010101023085 0
-638 0.6675862086486865 0.5050505050517891 0
-639 0.6675862086487127 0.4949494949507937 0
-640 0.6588384772973496 0.5000000000012691 0
-641 0.6588384772973763 0.4898989899002753 0
-642 0.6500907459460163 0.4949494949507547 0
-643 0.6500907459459893 0.5050505050517482 0
-644 0.641343014594653 0.5000000000012305 0
-645 0.6413430145946798 0.4898989899002482 0
-646 0.6325952832433198 0.4949494949507185 0
-647 0.6325952832432924 0.5050505050517081 0
-648 0.6238475518919553 0.5000000000011894 0
-649 0.6238475518919778 0.4898989899002013 0
-650 0.6150998205406175 0.494949494950668 0
-651 0.6150998205405944 0.5050505050516662 0
-652 0.6063520891892569 0.500000000001146 0
-653 0.60635208918928 0.4898989899001462 0
-654 0.5976043578379195 0.494949494950626 0
-655 0.5976043578378962 0.5050505050516256 0
-656 0.5888566264865588 0.5000000000011056 0
-657 0.5888566264865361 0.5101010101021055 0
-658 0.5801088951351985 0.505050505051585 0
-659 0.5801088951352213 0.4949494949505854 0
-660 0.5713611637838603 0.500000000001065 0
-661 0.5713611637838839 0.4898989899000653 0
-662 0.5626134324325228 0.4949494949505458 0
-663 0.5626134324324988 0.5050505050515454 0
-664 0.5538657010811611 0.5000000000010258 0
-665 0.5538657010811845 0.4898989899000261 0
-666 0.5451179697298243 0.4949494949505098 0
-667 0.5451179697298001 0.5050505050515071 0
-668 0.5363702383784632 0.5000000000009908 0
-669 0.5363702383784982 0.4898989899000119 0
-670 0.527622507027131 0.4949494949504837 0
-671 0.5276225070271011 0.5050505050514712 0
-672 0.5188747756757635 0.5000000000009533 0
-673 0.518874775675791 0.4898989898999892 0
-674 0.5188747756757398 0.5101010101019522 0
-675 0.5101270443244076 0.5050505050514449 0
-676 0.5101270443243785 0.5151515151524332 0
-677 0.5013793129730468 0.510101010101928 0
-678 0.5013793129730173 0.5202020202029154 0
-679 0.4926315816216785 0.5151515151523963 0
-680 0.4926315816216551 0.5252525252533955 0
-681 0.4838838502703165 0.5202020202028762 0
-682 0.4838838502702941 0.5303030303038768 0
-683 0.4751361189189551 0.5252525252533568 0
-684 0.4751361189189327 0.5353535353543578 0
-685 0.4663883875675935 0.5303030303038375 0
-686 0.4663883875675708 0.5404040404048388 0
-687 0.4576406562162315 0.5353535353543186 0
-688 0.4576406562162543 0.5252525252533167 0
-689 0.457640656216209 0.54545454545532 0
-690 0.4663883875675478 0.5505050505058401 0
-691 0.4576406562161865 0.5555555555563212 0
-692 0.4663883875675252 0.5606060606068409 0
-693 0.4576406562161666 0.5656565656573223 0
-694 0.4663883875675043 0.5707070707078449 0
-695 0.4576406562161476 0.5757575757583241 0
-696 0.4488929248648917 0.5303030303037981 0
-697 0.4488929248649149 0.5202020202027956 0
-698 0.466388387567484 0.5808080808088479 0
-699 0.4576406562161233 0.585858585859326 0
-700 0.4401451935135519 0.5252525252532769 0
-701 0.4401451935135843 0.5151515151522896 0
-702 0.4663883875674613 0.590909090909847 0
-703 0.4576406562161011 0.5959595959603271 0
-704 0.4313974621622185 0.520202020202757 0
-705 0.4313974621622372 0.5101010101017844 0
-706 0.4663883875674378 0.6010101010108468 0
-707 0.422649730810878 0.5151515151522292 0
-708 0.4226497308108855 0.505050505051248 0
-709 0.4576406562160791 0.6060606060613287 0
-710 0.466388387567416 0.6111111111118483 0
-711 0.413901999459531 0.5101010101017087 0
-712 0.4139019994595607 0.5000000000007256 0
-713 0.8600362983784403 0.4545454545472171 0
-714 0.4576406562160573 0.6161616161623304 0
-715 0.4051542681081881 0.50505050505119 0
-716 0.4051542681082011 0.4949494949502032 0
-717 0.4663883875673946 0.62121212121285 0
-718 0.4576406562160381 0.6262626262633323 0
-719 0.3964065367568435 0.5000000000006678 0
-720 0.3964065367568465 0.4898989898996631 0
-721 0.466388387567373 0.6313131313138521 0
-722 0.4576406562160147 0.6363636363643344 0
-723 0.3876588054054985 0.4949494949501442 0
-724 0.3876588054055106 0.4848484848491568 0
-725 0.4663883875673518 0.6414141414148539 0
-726 0.3789110740541564 0.489898989899623 0
-727 0.3789110740541489 0.4797979797986361 0
-728 0.4576406562159907 0.6464646464653361 0
-729 0.4663883875673305 0.6515151515158555 0
-730 0.3701633427028145 0.4848484848490963 0
-731 0.3701633427028151 0.4747474747480953 0
-732 0.4488929248646534 0.641414141414809 0
-733 0.4488929248646293 0.6515151515158173 0
-734 0.4401451935132902 0.6464646464652899 0
-735 0.4401451935132685 0.6565656565662989 0
-736 0.4313974621619268 0.6515151515157754 0
-737 0.4313974621619068 0.6616161616167806 0
-738 0.4226497308105652 0.6565656565662579 0
-739 0.3614156113514768 0.479797979798566 0
-740 0.3614156113514948 0.4696969696975704 0
-741 0.3701633427028186 0.464646464647089 0
-742 0.3614156113515196 0.4595959595965668 0
-743 0.3701633427028593 0.4545454545460854 0
-744 0.3614156113515449 0.4494949494955635 0
-745 0.3701633427028841 0.444444444445082 0
-746 0.3614156113515687 0.4393939393945605 0
-747 0.3701633427029076 0.4343434343440783 0
-748 0.3614156113515964 0.4292929292935563 0
-749 0.3701633427029518 0.4242424242430741 0
-750 0.3614156113516171 0.4191919191925517 0
-751 0.370163342702977 0.4141414141420695 0
-752 0.3614156113516407 0.4090909090915469 0
-753 0.3701633427030006 0.4040404040410641 0
-754 0.3614156113516697 0.3989898989905415 0
-755 0.3701633427030243 0.3939393939400582 0
-756 0.3614156113516871 0.3888888888895353 0
-757 0.370163342703035 0.3838383838390717 0
-758 0.3614156113517079 0.3787878787885306 0
-759 0.3701633427030547 0.3737373737380668 0
-760 0.3614156113517366 0.3686868686875233 0
-761 0.37016334270309 0.3636363636370392 0
-762 0.3614156113517547 0.3585858585865128 0
-763 0.3701633427031161 0.3535353535360283 0
-764 0.3614156113517751 0.3484848484855034 0
-765 0.3701633427031394 0.3434343434350186 0
-766 0.3614156113517975 0.3383838383844935 0
-767 0.4226497308105441 0.6666666666672628 0
-768 0.4139019994592074 0.6616161616167442 0
-769 0.3701633427031626 0.333333333334008 0
-770 0.3526678800001605 0.4646464646470266 0
-771 0.3526678800004194 0.3535353535359734 0
-772 0.3614156113518152 0.3282828282834828 0
-773 0.4139019994591833 0.6717171717177464 0
-774 0.4051542681078462 0.6666666666672268 0
-775 0.3701633427031853 0.323232323232997 0
-776 0.4051542681078227 0.6767676767682288 0
-777 0.3964065367564827 0.6717171717177088 0
-778 0.3964065367564598 0.6818181818187097 0
-779 0.3876588054051199 0.6767676767681909 0
-780 0.3614156113518371 0.3181818181824714 0
-781 0.4139019994591294 0.6818181818187965 0
-782 0.3876588054050973 0.6868686868691921 0
-783 0.3789110740537583 0.6818181818186733 0
-784 0.3701633427032128 0.3131313131319935 0
-785 0.3789110740545564 0.3181818181825119 0
-786 0.361415611351886 0.3080808080814644 0
-787 0.3789110740537195 0.6919191919197009 0
-788 0.3701633427023933 0.6868686868691541 0
-789 0.378911074054589 0.3080808080815168 0
-790 0.3876588054059277 0.3131313131320272 0
-791 0.3876588054059551 0.3030303030310242 0
-792 0.3964065367572919 0.3080808080815399 0
-793 0.3701633427023521 0.6969696969702079 0
-794 0.3614156113510302 0.6919191919196334 0
-795 0.361415611351004 0.7020202020206687 0
-796 0.3526678799996666 0.6969696969701229 0
-797 0.3964065367573252 0.297979797980538 0
-798 0.4051542681086592 0.3030303030310505 0
-799 0.3526678799996423 0.7070707070711253 0
-800 0.3439201486483029 0.7020202020206029 0
-801 0.4051542681086952 0.2929292929300525 0
-802 0.413901999460034 0.297979797980565 0
-803 0.413901999460075 0.2878787878795515 0
-804 0.4226497308114021 0.292929292930083 0
-805 0.3439201486482759 0.7121212121216054 0
-806 0.3351724172969382 0.7070707070710844 0
-807 0.3614156113509471 0.7121212121217143 0
-808 0.3351724172969128 0.7171717171720897 0
-809 0.3264246859455737 0.7121212121215673 0
-810 0.422649730811455 0.2828282828290659 0
-811 0.4313974621627718 0.2878787878795988 0
-812 0.4051542681087698 0.2828282828290238 0
-813 0.3526678800002861 0.4141414141420106 0
-814 0.4313974621628109 0.2777777777785904 0
-815 0.4401451935141414 0.2828282828291108 0
-816 0.326424685945551 0.7222222222225722 0
-817 0.3176769545942091 0.7171717171720493 0
-818 0.3176769545942317 0.7070707070710445 0
-819 0.308929223242866 0.7121212121215269 0
-820 0.3089292232428888 0.7020202020205214 0
-821 0.300181491891522 0.7070707070710048 0
-822 0.3001814918915452 0.6969696969699977 0
-823 0.3001814918915052 0.7171717171720076 0
-824 0.2914337605401777 0.7020202020204818 0
-825 0.2914337605402006 0.6919191919194725 0
-826 0.4401451935141772 0.2727272727281072 0
-827 0.4488929248655076 0.277777777778627 0
-828 0.4488929248655447 0.2676767676776254 0
-829 0.4576406562168751 0.2727272727281439 0
-830 0.2826860291888376 0.6969696969699581 0
-831 0.282686029188855 0.6868686868689502 0
-832 0.4576406562169107 0.2626262626271434 0
-833 0.4663883875682406 0.2676767676776615 0
-834 0.4663883875682762 0.2575757575766622 0
-835 0.475136118919608 0.2626262626271849 0
-836 0.4488929248656203 0.2575757575765948 0
-837 0.4751361189186919 0.6464646464653727 0
-838 0.4751361189186712 0.6565656565663747 0
-839 0.4838838502700337 0.6515151515158915 0
-840 0.4838838502700111 0.6616161616168976 0
-841 0.4926315816213724 0.6565656565664161 0
-842 0.4926315816213395 0.6666666666674431 0
-843 0.5013793129727149 0.6616161616169355 0
-844 0.5013793129726631 0.6717171717179964 0
-845 0.5101270443240777 0.6666666666674343 0
-846 0.510127044324022 0.6767676767684894 0
-847 0.5188747756754438 0.6717171717179237 0
-848 0.5188747756753866 0.6818181818189744 0
-849 0.5276225070267723 0.6767676767684596 0
-850 0.5276225070267313 0.6868686868694931 0
-851 0.5363702383780962 0.6818181818190072 0
-852 0.536370238378059 0.6919191919200426 0
-853 0.545117969729437 0.6868686868695345 0
-854 0.5451179697294019 0.6969696969705677 0
-855 0.5538657010807841 0.6919191919200528 0
-856 0.553865701080742 0.7020202020210937 0
-857 0.56261343243213 0.696969696970574 0
-858 0.5451179697293165 0.7070707070716611 0
-859 0.5626134324320661 0.7070707070716433 0
-860 0.5713611637834708 0.702020202021103 0
-861 0.5713611637834306 0.7121212121221363 0
-862 0.5801088951348371 0.7070707070715914 0
-863 0.5801088951348021 0.7171717171726233 0
-864 0.5888566264861853 0.7121212121221094 0
-865 0.5888566264861493 0.7222222222231449 0
-866 0.5976043578375317 0.7171717171726303 0
-867 0.5976043578374948 0.7272727272736657 0
-868 0.6063520891888768 0.7222222222231522 0
-869 0.6063520891888375 0.7323232323241903 0
-870 0.6150998205402231 0.7272727272736704 0
-871 0.5888566264860853 0.7323232323242113 0
-872 0.6150998205401839 0.7373737373747082 0
-873 0.6238475518915672 0.7323232323241916 0
-874 0.623847551891528 0.7424242424252291 0
-875 0.6325952832428917 0.7373737373747455 0
-876 0.2739382978374945 0.6919191919194307 0
-877 0.2739382978375097 0.6818181818184263 0
-878 0.4751361189196324 0.2525252525261824 0
-879 0.4838838502709678 0.257575757576699 0
-880 0.6325952832428682 0.7474747474757537 0
-881 0.6413430145942316 0.7424242424252714 0
-882 0.2651905664861437 0.686868686868906 0
-883 0.2651905664861636 0.6767676767678998 0
-884 0.6413430145942091 0.7525252525262756 0
-885 0.6500907459455726 0.7474747474757932 0
-886 0.4838838502709942 0.2474747474757021 0
-887 0.4926315816223292 0.2525252525262178 0
-888 0.6325952832427981 0.7575757575768239 0
-889 0.4926315816223558 0.2424242424252226 0
-890 0.5013793129736928 0.2474747474757432 0
-891 0.6500907459455481 0.7575757575767937 0
-892 0.6588384772969119 0.7525252525263126 0
-893 0.6588384772969694 0.7424242424252349 0
-894 0.6675862086482885 0.7474747474757888 0
-895 0.6675862086482288 0.7575757575768616 0
-896 0.6763339399996116 0.7525252525263487 0
-897 0.6763339399996877 0.7424242424252402 0
-898 0.6850816713509995 0.7474747474758223 0
-899 0.6850816713509065 0.757575757576937 0
-900 0.6938294027022852 0.7525252525264289 0
-901 0.6938294027023754 0.7424242424253581 0
-902 0.7025771340536713 0.7474747474759111 0
-903 0.7025771340535971 0.7575757575769857 0
-904 0.7113248654049983 0.7525252525264355 0
-905 0.7113248654050267 0.7424242424254341 0
-906 0.7200725967563598 0.7474747474759499 0
-907 0.7200725967563146 0.7575757575769827 0
-908 0.7288203281076905 0.7525252525264691 0
-909 0.7288203281077154 0.742424242425472 0
-910 0.7375680594590461 0.7474747474759882 0
-911 0.7375680594590254 0.7575757575769797 0
-912 0.7375680594590683 0.7373737373749948 0
-913 0.501379312973631 0.2575757575767693 0
-914 0.5101270443250221 0.2525252525262616 0
-915 0.5101270443250981 0.242424242425188 0
-916 0.5188747756764093 0.2474747474757477 0
-917 0.5188747756763281 0.2575757575768048 0
-918 0.5276225070277263 0.2525252525262839 0
-919 0.5276225070278155 0.2424242424251903 0
-920 0.5363702383791114 0.247474747475772 0
-921 0.5363702383790234 0.2575757575768381 0
-922 0.5451179697304154 0.2525252525263321 0
-923 0.5451179697305057 0.2424242424252264 0
-924 0.5538657010817993 0.2474747474758118 0
-925 0.5538657010817144 0.257575757576877 0
-926 0.5626134324331056 0.2525252525263703 0
-927 0.5626134324331922 0.2424242424252644 0
-928 0.5713611637844895 0.2474747474758498 0
-929 0.5713611637844056 0.257575757576914 0
-930 0.5801088951357972 0.2525252525264087 0
-931 0.5801088951358829 0.2424242424253015 0
-932 0.5888566264871818 0.2474747474758872 0
-933 0.5888566264870985 0.257575757576953 0
-934 0.5976043578384934 0.2525252525264353 0
-935 0.5976043578385711 0.2424242424253426 0
-936 0.606352089189872 0.247474747475927 0
-937 0.6063520891897951 0.2575757575769925 0
-938 0.6150998205411841 0.2525252525264889 0
-939 0.6150998205412646 0.2424242424253759 0
-940 0.6238475518925636 0.2474747474759749 0
-941 0.6238475518925244 0.2575757575770028 0
-942 0.6325952832438851 0.2525252525265242 0
-943 0.6325952832439432 0.242424242425447 0
-944 0.6413430145952439 0.2474747474760443 0
-945 0.6413430145952225 0.2575757575770447 0
-946 0.6500907459465831 0.252525252526564 0
-947 0.650090745946606 0.2424242424255614 0
-948 0.6588384772979441 0.2474747474760827 0
-949 0.6588384772979243 0.2575757575770813 0
-950 0.6675862086492858 0.2525252525265987 0
-951 0.6675862086492986 0.2424242424255495 0
-952 0.6763339400006345 0.2474747474761027 0
-953 0.6763339400006259 0.2575757575771143 0
-954 0.6850816713519864 0.2525252525266302 0
-955 0.6850816713519855 0.2424242424255912 0
-956 0.6938294027033514 0.2474747474761272 0
-957 0.693829402703331 0.2575757575771471 0
-958 0.7025771340546938 0.2525252525266616 0
-959 0.7025771340547204 0.2424242424255713 0
-960 0.7113248654060588 0.247474747476146 0
-961 0.7113248654060382 0.257575757577179 0
-962 0.7200725967574008 0.2525252525266921 0
-963 0.7200725967574144 0.2424242424256237 0
-964 0.728820328108763 0.2474747474762007 0
-965 0.2564428351347942 0.6818181818183846 0
-966 0.2564428351348163 0.671717171717375 0
-967 0.2564428351347827 0.6919191919193857 0
-968 0.7288203281087735 0.2373737373751634 0
-969 0.737568059460126 0.2424242424257163 0
-970 0.7463157908103777 0.7525252525265032 0
-971 0.7463157908103568 0.7626262626274941 0
-972 0.7375680594601435 0.2323232323247101 0
-973 0.7463157908114891 0.2373737373752333 0
-974 0.2476951037834466 0.6767676767678602 0
-975 0.2476951037834689 0.6666666666668498 0
-976 0.7200725967573824 0.2626262626277012 0
-977 0.7550635221617092 0.7575757575770191 0
-978 0.7550635221616865 0.7676767676780095 0
-979 0.7463157908115071 0.2272727272742273 0
-980 0.7550635221628518 0.2323232323247466 0
-981 0.2389473724320993 0.6717171717173351 0
-982 0.2389473724321214 0.6616161616163245 0
-983 0.7550635221628822 0.222222222223736 0
-984 0.7638112535130397 0.7626262626275353 0
-985 0.763811253513016 0.7727272727285249 0
-986 0.7638112535142189 0.2272727272742544 0
-987 0.7638112535141971 0.2373737373752659 0
-988 0.7463157908115622 0.2171717171731872 0
-989 0.7638112535142361 0.2171717171731992 0
-990 0.4576406562167886 0.2828282828292153 0
-991 0.6150998205403303 0.7171717171726031 0
-992 0.2301996410807516 0.6666666666668104 0
-993 0.2301996410807739 0.656565656565799 0
-994 0.7725589848643692 0.7676767676780492 0
-995 0.772558984864346 0.7777777777790399 0
-996 0.763811253512992 0.7828282828295167 0
-997 0.8162976416215981 0.5101010101026149 0
-998 0.7725589848655638 0.2323232323247724 0
-999 0.7725589848655434 0.2424242424257847 0
-1000 0.7725589848643233 0.7878787878800319 0
-1001 0.2214519097294045 0.6616161616162857 0
-1002 0.2214519097294288 0.6515151515152738 0
-1003 0.2301996410807965 0.6464646464647877 0
-1004 0.2214519097294506 0.6414141414142623 0
-1005 0.7638112535129711 0.7929292929305092 0
-1006 0.7813067162156766 0.7828282828295555 0
-1007 0.7813067162156542 0.7929292929305474 0
-1008 0.7813067162169079 0.237373737375296 0
-1009 0.7813067162168909 0.2474747474763042 0
-1010 0.3701633427027949 0.4949494949500994 0
-1011 0.3789110740543639 0.3888888888896542 0
-1012 0.230199641080819 0.6363636363637775 0
-1013 0.2214519097294719 0.6313131313132518 0
-1014 0.2127041783781045 0.6363636363637397 0
-1015 0.2127041783781246 0.6262626262627263 0
-1016 0.2214519097294945 0.6212121212122408 0
-1017 0.2127041783781473 0.6161616161617154 0
-1018 0.7900544475670057 0.7878787878800718 0
-1019 0.7900544475669831 0.7979797979810632 0
-1020 0.7900544475682566 0.242424242425815 0
-1021 0.7900544475682391 0.2525252525268248 0
-1022 0.221451909729517 0.6111111111112302 0
-1023 0.21270417837817 0.6060606060607053 0
-1024 0.5713611637834961 0.6919191919200887 0
-1025 0.3789110740537812 0.6717171717176611 0
-1026 0.2039564470267786 0.6212121212122007 0
-1027 0.2214519097295395 0.60101010101022 0
-1028 0.2127041783781928 0.5959595959596954 0
-1029 0.798802178918335 0.7929292929305874 0
-1030 0.7988021789183126 0.8030303030315783 0
-1031 0.7988021789196058 0.2474747474763352 0
-1032 0.7988021789195869 0.2575757575773455 0
-1033 0.2214519097295617 0.5909090909092105 0
-1034 0.2127041783782158 0.5858585858586859 0
-1035 0.9212704178377565 0.5101010101028147 0
-1036 0.8075499102696649 0.7979797979811022 0
-1037 0.8075499102696428 0.8080808080820927 0
-1038 0.77255898486439 0.7575757575770603 0
-1039 0.2739382978375274 0.6717171717174132 0
-1040 0.7988021789196239 0.2373737373753246 0
-1041 0.8075499102709736 0.2424242424258458 0
-1042 0.8075499102709836 0.2323232323248156 0
-1043 0.5101270443239624 0.6868686868695487 0
-1044 0.4838838502710187 0.2373737373747022 0
-1045 0.2214519097293807 0.6717171717172973 0
-1046 0.3526678800004908 0.3131313131319464 0
-1047 0.3526678800005348 0.3030303030309296 0
-1048 0.3439201486491416 0.3080808080814195 0
-1049 0.3439201486491806 0.2979797979803944 0
-1050 0.3351724172977963 0.3030303030308904 0
-1051 0.3351724172978513 0.2929292929298634 0
-1052 0.3264246859464483 0.2979797979803644 0
-1053 0.3264246859464879 0.2878787878793487 0
-1054 0.3176769545950935 0.2929292929298405 0
-1055 0.3176769545951164 0.2828282828288275 0
-1056 0.3089292232437422 0.287878787879315 0
-1057 0.3089292232437645 0.2777777777783021 0
-1058 0.3001814918923925 0.282828282828789 0
-1059 0.3001814918924148 0.2727272727277761 0
-1060 0.2914337605410433 0.2777777777782631 0
-1061 0.2914337605410655 0.2676767676772501 0
-1062 0.282686029189694 0.2727272727277369 0
-1063 0.2826860291897166 0.262626262626724 0
-1064 0.2914337605411167 0.2575757575762316 0
-1065 0.273938297838345 0.2676767676772109 0
-1066 0.2739382978383207 0.2777777777782196 0
-1067 0.2739382978383676 0.2575757575761979 0
-1068 0.2651905664869961 0.2626262626266848 0
-1069 0.2651905664870184 0.2525252525256723 0
-1070 0.256442835135647 0.257575757576159 0
-1071 0.256442835135669 0.2474747474751474 0
-1072 0.2476951037842983 0.2525252525256333 0
-1073 0.2476951037843201 0.2424242424246214 0
-1074 0.2389473724329491 0.2474747474751072 0
-1075 0.2389473724329679 0.2373737373740943 0
-1076 0.247695103784357 0.2323232323236105 0
-1077 0.2389473724329894 0.2272727272730803 0
-1078 0.2476951037843798 0.2222222222225944 0
-1079 0.2389473724330161 0.2171717171720652 0
-1080 0.2301996410815956 0.242424242424583 0
-1081 0.2301996410815781 0.2525252525255934 0
-1082 0.2476951037844008 0.212121212121576 0
-1083 0.2214519097302302 0.2474747474750696 0
-1084 0.2214519097302089 0.2575757575760784 0
-1085 0.2389473724330369 0.2070707070710474 0
-1086 0.2476951037844234 0.2020202020205578 0
-1087 0.2127041783788625 0.2525252525255544 0
-1088 0.2127041783788405 0.2626262626265631 0
-1089 0.2389473724330577 0.1969696969700283 0
-1090 0.2476951037844368 0.1919191919195381 0
-1091 0.2039564470274951 0.2575757575760397 0
-1092 0.2039564470274731 0.2676767676770476 0
-1093 0.238947372433079 0.1868686868690083 0
-1094 0.1952087156761131 0.2626262626264977 0
-1095 0.195208715676105 0.2727272727275284 0
-1096 0.2476951037844586 0.1818181818185169 0
-1097 0.7988021789182895 0.8131313131325695 0
-1098 0.8075499102696211 0.8181818181830846 0
-1099 0.2214519097295844 0.5808080808082013 0
-1100 0.2127041783782387 0.5757575757576776 0
-1101 0.2301996410809299 0.5858585858587254 0
-1102 0.2039564470268707 0.5808080808081614 0
-1103 0.2039564470268933 0.5707070707071534 0
-1104 0.1952087156755256 0.5757575757576375 0
-1105 0.1952087156755486 0.5656565656566287 0
-1106 0.2039564470269201 0.5606060606061463 0
-1107 0.195208715675573 0.5555555555556211 0
-1108 0.2039564470269438 0.5505050505051393 0
-1109 0.1952087156755969 0.5454545454546149 0
-1110 0.2039564470269631 0.5404040404041325 0
-1111 0.1952087156756187 0.5353535353536069 0
-1112 0.2039564470269857 0.530303030303127 0
-1113 0.1952087156756429 0.5252525252526008 0
-1114 0.2039564470270089 0.5202020202021225 0
-1115 0.1952087156756687 0.515151515151599 0
-1116 0.2039564470270325 0.5101010101011192 0
-1117 0.1952087156756926 0.5050505050505975 0
-1118 0.2039564470270557 0.5000000000001166 0
-1119 0.1952087156757115 0.4949494949495956 0
-1120 0.2039564470270785 0.4898989898991143 0
-1121 0.1952087156757343 0.4848484848485934 0
-1122 0.2039564470271017 0.4797979797981125 0
-1123 0.1952087156757626 0.4747474747475913 0
-1124 0.203956447027126 0.4696969696971104 0
-1125 0.1952087156757866 0.4646464646465891 0
-1126 0.2039564470271497 0.4595959595961083 0
-1127 0.1952087156758084 0.4545454545455868 0
-1128 0.2039564470271732 0.4494949494951059 0
-1129 0.1952087156758318 0.444444444444584 0
-1130 0.7988021789182544 0.8232323232336343 0
-1131 0.2389473724331015 0.1767676767679869 0
-1132 0.2301996410817212 0.1818181818184784 0
-1133 0.1864609843247458 0.2676767676769788 0
-1134 0.186460984324739 0.2777777777780109 0
-1135 0.1864609843244381 0.4595959595960613 0
-1136 0.1864609843243242 0.5101010101010721 0
-1137 0.1864609843241806 0.5707070707071131 0
-1138 0.2039564470271993 0.4393939393941018 0
-1139 0.8162976416209738 0.8131313131326083 0
-1140 0.8162976416209519 0.8232323232336 0
-1141 0.8162976416223423 0.2373737373753544 0
-1142 0.816297641622352 0.227272727274321 0
-1143 0.2301996410817421 0.1717171717174598 0
-1144 0.2214519097303641 0.1767676767679489 0
-1145 0.2476951037844817 0.1717171717174948 0
-1146 0.2564428351358393 0.1767676767680255 0
-1147 0.1952087156758573 0.4343434343435809 0
-1148 0.5363702383781729 0.6717171717179291 0
-1149 0.2214519097303846 0.1666666666669304 0
-1150 0.2127041783790076 0.1717171717174192 0
-1151 0.1777132529733965 0.2727272727274892 0
-1152 0.1777132529733751 0.2828282828284948 0
-1153 0.2564428351358623 0.1666666666670023 0
-1154 0.2651905664872209 0.1717171717175338 0
-1155 0.4051542681081795 0.5151515151521784 0
-1156 0.2039564470272277 0.429292929293098 0
-1157 0.8250453729723078 0.8181818181831199 0
-1158 0.8250453729722819 0.8282828282841139 0
-1159 0.8250453729737125 0.2323232323248633 0
-1160 0.8250453729737317 0.2222222222238478 0
-1161 0.2127041783790274 0.1616161616164012 0
-1162 0.2039564470276509 0.1666666666668893 0
-1163 0.2651905664872439 0.1616161616165095 0
-1164 0.2739382978386031 0.1666666666670414 0
-1165 0.8687840297298011 0.449494949496734 0
-1166 0.860036298378458 0.4444444444462169 0
-1167 0.8687840297298213 0.4393939393957331 0
-1168 0.8600362983784756 0.4343434343452117 0
-1169 0.8687840297298403 0.4292929292947295 0
-1170 0.8600362983784895 0.4242424242442064 0
-1171 0.8687840297298606 0.4191919191937249 0
-1172 0.8600362983785121 0.4141414141432043 0
-1173 0.8687840297298817 0.4090909090927194 0
-1174 0.1689655216220346 0.2777777777779753 0
-1175 0.1689655216220118 0.2878787878789775 0
-1176 0.860036298378536 0.4040404040421998 0
-1177 0.8687840297299007 0.3989898989917114 0
-1178 0.422649730811316 0.3030303030311594 0
-1179 0.4226497308109096 0.4949494949503089 0
-1180 0.2739382978386261 0.1565656565660163 0
-1181 0.282686029189986 0.1616161616165485 0
-1182 0.203956447027668 0.1565656565658746 0
-1183 0.1952087156762906 0.1616161616163534 0
-1184 0.8337931043236375 0.8232323232336342 0
-1185 0.8337931043236112 0.8333333333346283 0
-1186 0.8337931043250854 0.2272727272743748 0
-1187 0.8337931043251046 0.2171717171733593 0
-1188 0.8337931043250659 0.2373737373753913 0
-1189 0.2127041783783591 0.5252525252526419 0
-1190 0.1864609843247385 0.2878787878790181 0
-1191 0.2826860291900087 0.1515151515155227 0
-1192 0.2914337605413693 0.1565656565660553 0
-1193 0.8512885670271648 0.4090909090926849 0
-1194 0.85128856702719 0.398989898991681 0
-1195 0.8425408356758238 0.404040404042168 0
-1196 0.1952087156763133 0.1515151515153421 0
-1197 0.1864609843249339 0.1565656565658235 0
-1198 0.1602177902706724 0.2828282828284585 0
-1199 0.1602177902706502 0.2929292929294603 0
-1200 0.1602177902706534 0.2727272727274144 0
-1201 0.8425408356749667 0.8282828282841241 0
-1202 0.8425408356749885 0.8181818181831039 0
-1203 0.8425408356749402 0.838383838385141 0
-1204 0.8337931043235869 0.8434343434356192 0
-1205 0.8425408356749178 0.8484848484861363 0
-1206 0.3089292232437195 0.2979797979803274 0
-1207 0.326424685946548 0.2777777777783304 0
-1208 0.4488929248647651 0.5909090909097942 0
-1209 0.5101270443243523 0.5252525252534357 0
-1210 0.8425408356764399 0.232323232324901 0
-1211 0.8425408356764189 0.2424242424259169 0
-1212 0.2739382978386377 0.1464646464649904 0
-1213 0.1864609843249594 0.1464646464648091 0
-1214 0.1777132529735821 0.1515151515152995 0
-1215 0.8337931043235625 0.8535353535366128 0
-1216 0.2914337605413919 0.1464646464650287 0
-1217 0.3001814918927531 0.1515151515155617 0
-1218 0.8425408356758451 0.3939393939411625 0
-1219 0.8337931043244784 0.3989898989916483 0
-1220 0.151470058919311 0.2878787878789406 0
-1221 0.1514700589192887 0.2979797979799412 0
-1222 0.4751361189188029 0.5959595959603727 0
-1223 0.2127041783785496 0.4444444444446164 0
-1224 0.2127041783784511 0.4848484848486299 0
-1225 0.3001814918927757 0.1414141414145344 0
-1226 0.3089292232441374 0.1464646464650678 0
-1227 0.8425408356748975 0.8585858585871311 0
-1228 0.1777132529736044 0.1414141414142803 0
-1229 0.1689655216222274 0.1464646464647709 0
-1230 0.1952087156763269 0.1414141414143202 0
-1231 0.8512885670263104 0.8333333333345627 0
-1232 0.851288567027795 0.2373737373754274 0
-1233 0.8512885670277742 0.2474747474764427 0
-1234 0.8337931043244996 0.3888888888906439 0
-1235 0.8250453729731331 0.393939393941128 0
-1236 0.1689655216222492 0.1363636363637515 0
-1237 0.1602177902708729 0.1414141414142424 0
-1238 0.1602177902708511 0.1515151515152602 0
-1239 0.1514700589194983 0.146464646464733 0
-1240 0.1514700589194765 0.1565656565657483 0
-1241 0.3089292232441603 0.1363636363640401 0
-1242 0.317676954595522 0.1414141414145739 0
-1243 0.3176769545954989 0.151515151515601 0
-1244 0.326424685946883 0.1464646464651077 0
-1245 0.3264246859468598 0.1565656565661339 0
-1246 0.335172417298243 0.1515151515156411 0
-1247 0.3351724172982661 0.1414141414146225 0
-1248 0.3439201486496279 0.1464646464651529 0
-1249 0.3439201486496015 0.1565656565661751 0
-1250 0.3526678800009844 0.1515151515156833 0
-1251 0.352667880001011 0.1414141414146611 0
-1252 0.3614156113523682 0.1464646464651913 0
-1253 0.1514700589195256 0.1363636363637273 0
-1254 0.3614156113523936 0.1363636363641691 0
-1255 0.3701633427037514 0.1414141414146996 0
-1256 0.8337931043235387 0.8636363636376099 0
-1257 0.1952087156758822 0.4242424242425776 0
-1258 0.2039564470272496 0.4191919191920961 0
-1259 0.3614156113523426 0.1565656565662158 0
-1260 0.8250453729731538 0.3838383838401256 0
-1261 0.8162976416217905 0.3888888888906117 0
-1262 0.8337931043245246 0.3787878787896352 0
-1263 0.1427223275681258 0.1515151515152223 0
-1264 0.142722327568104 0.1616161616162352 0
-1265 0.1427223275679507 0.2929292929294224 0
-1266 0.1427223275679302 0.3030303030304252 0
-1267 0.8600362983791512 0.2424242424259536 0
-1268 0.8600362983791309 0.2525252525269728 0
-1269 0.3701633427037767 0.1313131313136771 0
-1270 0.3789110740551348 0.136363636364208 0
-1271 0.8425408356748761 0.8686868686881286 0
-1272 0.8162976416218085 0.378787878789608 0
-1273 0.807549910270445 0.3838383838400962 0
-1274 0.8075499102704629 0.3737373737390907 0
-1275 0.7988021789190981 0.3787878787895798 0
-1276 0.1339745962167554 0.1565656565657105 0
-1277 0.1339745962167336 0.166666666666721 0
-1278 0.7988021789191162 0.3686868686885739 0
-1279 0.7900544475677532 0.3737373737390633 0
-1280 0.8075499102696847 0.7878787878801129 0
-1281 0.3789110740542307 0.4292929292936315 0
-1282 0.8337931043235147 0.8737373737386083 0
-1283 0.3789110740551602 0.1262626262631847 0
-1284 0.3876588054065185 0.131313131313716 0
-1285 0.1339745962165911 0.2979797979799031 0
-1286 0.1339745962165709 0.3080808080809053 0
-1287 0.1514700589192799 0.3080808080809541 0
-1288 0.7900544475677701 0.3636363636380574 0
-1289 0.7813067162164087 0.3686868686885464 0
-1290 0.8687840297305084 0.2474747474764819 0
-1291 0.8687840297304879 0.2575757575775035 0
-1292 0.8687840297305288 0.23737373737546 0
-1293 0.3876588054065435 0.1212121212126927 0
-1294 0.3964065367579014 0.1262626262632242 0
-1295 0.3964065367578768 0.1363636363642494 0
-1296 0.4051542681092591 0.1313131313137582 0
-1297 0.4051542681092342 0.1414141414147816 0
-1298 0.4139019994606155 0.1363636363642908 0
-1299 0.4139019994606403 0.1262626262632695 0
-1300 0.4226497308119954 0.1313131313138015 0
-1301 0.4226497308120206 0.1212121212127818 0
-1302 0.4313974621633753 0.126262626263316 0
-1303 0.3701633427037963 0.1212121212126617 0
-1304 0.8425408356748528 0.8787878787891275 0
-1305 0.851288567026215 0.8737373737386469 0
-1306 0.7813067162163907 0.3787878787895522 0
-1307 0.772558984865047 0.3737373737390349 0
-1308 0.4139019994592266 0.6515151515157295 0
-1309 0.125226864865387 0.1616161616161974 0
-1310 0.1252268648653652 0.1717171717172058 0
-1311 0.1252268648652324 0.3030303030303833 0
-1312 0.1252268648652099 0.3131313131313808 0
-1313 0.1252268648652536 0.2929292929293867 0
-1314 0.1952087156759051 0.414141414141575 0
-1315 0.1864609843245412 0.4191919191920559 0
-1316 0.2039564470272688 0.4090909090910937 0
-1317 0.413901999460591 0.1464646464653117 0
-1318 0.8775317610818875 0.2424242424259887 0
-1319 0.877531761081905 0.2323232323249601 0
-1320 0.8337931043234907 0.8838383838396086 0
-1321 0.8512885670261918 0.8838383838396475 0
-1322 0.8600362983775763 0.8787878787890487 0
-1323 0.4313974621633996 0.1161616161622952 0
-1324 0.4401451935147526 0.1212121212128285 0
-1325 0.7725589848650644 0.3636363636380311 0
-1326 0.7638112535137069 0.3686868686885258 0
-1327 0.7638112535136856 0.3787878787895236 0
-1328 0.7550635221623464 0.3737373737390145 0
-1329 0.8250453729737517 0.2121212121228339 0
-1330 0.8337931043251217 0.2070707070723426 0
-1331 0.8250453729737708 0.2020202020218207 0
-1332 0.8337931043251394 0.1969696969713291 0
-1333 0.8250453729737899 0.1919191919208092 0
-1334 0.8337931043251581 0.1868686868703178 0
-1335 0.8250453729738101 0.1818181818197987 0
-1336 0.8337931043251761 0.176767676769308 0
-1337 0.8250453729738286 0.1717171717187902 0
-1338 0.8337931043251943 0.1666666666683027 0
-1339 0.8250453729738482 0.1616161616177848 0
-1340 0.8337931043252114 0.1565656565672986 0
-1341 0.8250453729738685 0.1515151515167824 0
-1342 0.8425408356765539 0.1616161616178095 0
-1343 0.8425408356765737 0.1515151515168105 0
-1344 0.8512885670279174 0.1565656565673215 0
-1345 0.8512885670279375 0.146464646466319 0
-1346 0.8600362983792862 0.1515151515168384 0
-1347 0.8600362983793034 0.1414141414158283 0
-1348 0.8687840297306584 0.1464646464663256 0
-1349 0.8687840297306678 0.1363636363653259 0
-1350 0.8600362983793199 0.1313131313148153 0
-1351 0.8687840297306874 0.1262626262643202 0
-1352 0.8600362983793374 0.1212121212138067 0
-1353 0.8687840297307023 0.1161616161633163 0
-1354 0.7988021789191324 0.3585858585875681 0
-1355 0.8600362983791102 0.2626262626279913 0
-1356 0.8687840297304664 0.267676767678524 0
-1357 0.8775317610812845 0.4242424242442902 0
-1358 0.8250453729721515 0.8787878787890874 0
-1359 0.8775317610820517 0.131313131314804 0
-1360 0.7550635221623243 0.3838383838400119 0
-1361 0.7463157908109803 0.3787878787894954 0
-1362 0.7463157908110358 0.3686868686884868 0
-1363 0.7375680594596452 0.3737373737389842 0
-1364 0.7375680594596206 0.3838383838399843 0
-1365 0.7288203281082775 0.378787878789467 0
-1366 0.7288203281083289 0.3686868686884556 0
-1367 0.7200725967569385 0.3737373737389547 0
-1368 0.7200725967569169 0.3838383838399544 0
-1369 0.7113248654055732 0.3787878787894392 0
-1370 0.7113248654056068 0.3686868686884311 0
-1371 0.7025771340542299 0.3737373737389243 0
-1372 0.7025771340542133 0.3838383838399269 0
-1373 0.6938294027028693 0.3787878787894126 0
-1374 0.693829402702884 0.3686868686884106 0
-1375 0.6850816713515253 0.3737373737388985 0
-1376 0.68508167135154 0.3636363636378965 0
-1377 0.6763339400001817 0.368686868688385 0
-1378 0.6763339400001673 0.3787878787893864 0
-1379 0.6675862086488237 0.3737373737388727 0
-1380 0.6675862086488384 0.3636363636378715 0
-1381 0.6588384772974804 0.368686868688359 0
-1382 0.6588384772974664 0.3787878787893605 0
-1383 0.6500907459461222 0.3737373737388466 0
-1384 0.6500907459461369 0.3636363636378455 0
-1385 0.6413430145947792 0.3686868686883333 0
-1386 0.6413430145947646 0.3787878787893341 0
-1387 0.6325952832434217 0.3737373737388211 0
-1388 0.6325952832434364 0.3636363636378199 0
-1389 0.6238475518920789 0.3686868686883073 0
-1390 0.6238475518920643 0.3787878787893091 0
-1391 0.6150998205407211 0.3737373737387952 0
-1392 0.6150998205407067 0.3838383838397973 0
-1393 0.6063520891893632 0.3787878787892838 0
-1394 0.6063520891893781 0.3686868686882816 0
-1395 0.5976043578380201 0.37373737373877 0
-1396 0.5976043578380437 0.3636363636377683 0
-1397 0.5888566264866868 0.3686868686882556 0
-1398 0.5888566264866628 0.3787878787892573 0
-1399 0.5801088951353196 0.3737373737387425 0
-1400 0.580108895135374 0.3636363636377183 0
-1401 0.5713611637839749 0.3686868686882275 0
-1402 0.5713611637839597 0.3787878787892293 0
-1403 0.5626134324326162 0.3737373737387146 0
-1404 0.5626134324326578 0.3636363636376828 0
-1405 0.5538657010812726 0.3686868686881998 0
-1406 0.5538657010812583 0.3787878787892021 0
-1407 0.5451179697299162 0.3737373737386836 0
-1408 0.5451179697299859 0.3636363636376223 0
-1409 0.5363702383785959 0.3686868686881417 0
-1410 0.5363702383785572 0.3787878787891692 0
-1411 0.5276225070272111 0.373737373738654 0
-1412 0.5276225070271922 0.3838383838396597 0
-1413 0.5188747756758476 0.3787878787891431 0
-1414 0.5188747756758297 0.3888888888901469 0
-1415 0.5101270443244859 0.3838383838396299 0
-1416 0.5101270443244685 0.3939393939406334 0
-1417 0.5013793129731244 0.3888888888901162 0
-1418 0.5013793129731069 0.3989898989911199 0
-1419 0.4926315816217628 0.3939393939406024 0
-1420 0.4926315816217471 0.4040404040416077 0
-1421 0.8162976416225052 0.1565656565672615 0
-1422 0.816297641622528 0.1464646464662681 0
-1423 0.80754991027117 0.1515151515167453 0
-1424 0.8075499102711921 0.1414141414157513 0
-1425 0.798802178919829 0.1464646464662314 0
-1426 0.7988021789198563 0.1363636363652402 0
-1427 0.7900544475684929 0.1414141414157143 0
-1428 0.7900544475685219 0.1313131313147349 0
-1429 0.7813067162171728 0.1363636363652101 0
-1430 0.7813067162171951 0.1262626262642301 0
-1431 0.7725589848658402 0.1313131313147023 0
-1432 0.7725589848658724 0.1212121212137121 0
-1433 0.7638112535145114 0.1262626262641902 0
-1434 0.7900544475685458 0.1212121212137438 0
-1435 0.7638112535145489 0.1161616161632072 0
-1436 0.7550635221631989 0.1212121212136876 0
-1437 0.8600362983793549 0.1111111111127994 0
-1438 0.8600362983775349 0.8888888888901554 0
-1439 0.8687840297288753 0.8838383838394761 0
-1440 0.7550635221632211 0.111111111112715 0
-1441 0.7463157908118845 0.1161616161631845 0
-1442 0.4401451935147766 0.111111111111807 0
-1443 0.4488929248661278 0.1161616161623316 0
-1444 0.4488929248661014 0.1262626262633628 0
-1445 0.4576406562174745 0.1212121212128615 0
-1446 0.4576406562174444 0.131313131313904 0
-1447 0.4663883875688148 0.1262626262634055 0
-1448 0.4663883875688515 0.1161616161623647 0
-1449 0.4751361189201881 0.1212121212129033 0
-1450 0.475136118920163 0.1313131313139267 0
-1451 0.4838838502715241 0.1262626262634353 0
-1452 0.4838838502715586 0.1161616161624069 0
-1453 0.4926315816228884 0.1212121212129482 0
-1454 0.4926315816228568 0.1313131313139497 0
-1455 0.5013793129742186 0.1262626262634769 0
-1456 0.5013793129742531 0.1161616161624564 0
-1457 0.5101270443255813 0.1212121212129956 0
-1458 0.5101270443255459 0.1313131313139935 0
-1459 0.5188747756769085 0.1262626262635219 0
-1460 0.5188747756769411 0.1161616161625143 0
-1461 0.5276225070282666 0.1212121212130505 0
-1462 0.527622507028233 0.1313131313140389 0
-1463 0.5363702383795939 0.1262626262635701 0
-1464 0.5363702383796313 0.1161616161625625 0
-1465 0.5451179697309599 0.1212121212130799 0
-1466 0.545117969730918 0.1313131313140831 0
-1467 0.5538657010822752 0.1262626262636136 0
-1468 0.553865701082316 0.1161616161625853 0
-1469 0.5626134324336294 0.1212121212131419 0
-1470 0.5626134324335961 0.1313131313141302 0
-1471 0.5713611637849525 0.126262626263662 0
-1472 0.5713611637849919 0.1161616161626545 0
-1473 0.5801088951363176 0.1212121212131686 0
-1474 0.5801088951362749 0.1313131313141738 0
-1475 0.5888566264876282 0.1262626262637038 0
-1476 0.5888566264876681 0.1161616161626695 0
-1477 0.5976043578389778 0.1212121212132306 0
-1478 0.5976043578389483 0.1313131313142196 0
-1479 0.606352089190299 0.126262626263749 0
-1480 0.6063520891903236 0.1161616161627659 0
-1481 0.6150998205416462 0.1212121212132788 0
-1482 0.6150998205416216 0.1313131313142612 0
-1483 0.623847551892969 0.1262626262637897 0
-1484 0.6238475518929922 0.1161616161628083 0
-1485 0.6325952832443138 0.1212121212133187 0
-1486 0.6325952832442918 0.1313131313143004 0
-1487 0.6325952832443358 0.1111111111123377 0
-1488 0.8250453729721274 0.8888888888900909 0
-1489 0.8162976416207859 0.883838383839567 0
-1490 0.1164791335138743 0.3080808080808624 0
-1491 0.1164791335138518 0.3181818181818589 0
-1492 0.1164791335140186 0.1666666666666801 0
-1493 0.1164791335140416 0.1565656565656757 0
-1494 0.1164791335139875 0.1767676767676783 0
-1495 0.1864609843245648 0.4090909090910536 0
-1496 0.1777132529732018 0.4141414141415341 0
-1497 0.4926315816217812 0.3838383838395976 0
-1498 0.5276225070272974 0.3636363636375839 0
-1499 0.7900544475682203 0.2626262626278345 0
-1500 0.6413430145956365 0.1262626262638291 0
-1501 0.6413430145956147 0.1363636363648114 0
-1502 0.860036298379089 0.2727272727290136 0
-1503 0.8687840297304452 0.2777777777795446 0
-1504 0.4838838502704014 0.3989898989910888 0
-1505 0.4838838502703888 0.4090909090920942 0
-1506 0.8862794924332679 0.2373737373754932 0
-1507 0.8862794924332846 0.2272727272744631 0
-1508 0.1427223275680729 0.1717171717172397 0
-1509 0.8162976416207616 0.8939393939405732 0
-1510 0.8075499102694186 0.8888888888900488 0
-1511 0.8687840297307197 0.1060606060623094 0
-1512 0.8687840297288724 0.893939393940665 0
-1513 0.8775317610801906 0.8888888888901008 0
-1514 0.4313974621634254 0.1060606060612772 0
-1515 0.7463157908119098 0.1060606060621971 0
-1516 0.7463157908118223 0.1262626262641399 0
-1517 0.1777132529732254 0.4040404040405324 0
-1518 0.1689655216218632 0.4090909090910126 0
-1519 0.3351724172968824 0.7272727272731081 0
-1520 0.8950272237837714 0.4949494949512733 0
-1521 0.1864609843242501 0.5404040404040849 0
-1522 0.3876588054050231 0.6969696969702739 0
-1523 0.3789110740544518 0.3585858585866275 0
-1524 0.5101270443241265 0.656565656566402 0
-1525 0.2127041783786149 0.4141414141416131 0
-1526 0.2127041783786328 0.4040404040406115 0
-1527 0.2214519097299751 0.409090909091132 0
-1528 0.2214519097299967 0.3989898989901297 0
-1529 0.2301996410813379 0.4040404040406524 0
-1530 0.2301996410813613 0.3939393939396478 0
-1531 0.2389473724327028 0.3989898989901707 0
-1532 0.2389473724327261 0.3888888888891655 0
-1533 0.247695103784067 0.3939393939396866 0
-1534 0.2476951037840479 0.4040404040406879 0
-1535 0.2214519097300187 0.3888888888891237 0
-1536 0.2476951037840913 0.383838383838683 0
-1537 0.2564428351354435 0.3888888888891987 0
-1538 0.7638112535145846 0.106060606062204 0
-1539 0.2127041783780342 0.6666666666667734 0
-1540 0.2127041783780108 0.6767676767677808 0
-1541 0.2039564470266606 0.6717171717172595 0
-1542 0.2039564470266386 0.6818181818182679 0
-1543 0.1952087156752862 0.6767676767677451 0
-1544 0.1952087156752632 0.6868686868687598 0
-1545 0.1864609843239118 0.6818181818182325 0
-1546 0.1864609843238886 0.6919191919192487 0
-1547 0.1777132529725367 0.6868686868687204 0
-1548 0.1777132529725136 0.6969696969697379 0
-1549 0.1689655216211609 0.6919191919192094 0
-1550 0.168965521621138 0.7020202020202273 0
-1551 0.1777132529724909 0.7070707070707554 0
-1552 0.1689655216211242 0.7121212121212444 0
-1553 0.1777132529724693 0.7171717171717723 0
-1554 0.1689655216211026 0.7222222222222614 0
-1555 0.1777132529724465 0.7272727272727894 0
-1556 0.1689655216210713 0.7323232323232927 0
-1557 0.177713252972422 0.7373737373738082 0
-1558 0.1689655216210512 0.7424242424243177 0
-1559 0.1777132529723991 0.7474747474748251 0
-1560 0.168965521621031 0.7525252525253227 0
-1561 0.1777132529723768 0.7575757575758392 0
-1562 0.1689655216210054 0.7626262626263292 0
-1563 0.1777132529723543 0.7676767676768527 0
-1564 0.1689655216209811 0.77272727272734 0
-1565 0.1777132529723311 0.7777777777778654 0
-1566 0.1689655216209589 0.7828282828283526 0
-1567 0.1777132529723077 0.7878787878788776 0
-1568 0.1689655216209372 0.7929292929293706 0
-1569 0.1777132529722849 0.7979797979798894 0
-1570 0.1689655216209172 0.803030303030385 0
-1571 0.1777132529722627 0.8080808080809008 0
-1572 0.168965521620896 0.8131313131313891 0
-1573 0.1777132529722355 0.818181818181918 0
-1574 0.1864609843236072 0.8131313131314251 0
-1575 0.1864609843235795 0.8232323232324414 0
-1576 0.1952087156749519 0.8181818181819484 0
-1577 0.1689655216208645 0.8232323232324077 0
-1578 0.1952087156749241 0.8282828282829615 0
-1579 0.2039564470262951 0.8232323232324703 0
-1580 0.2039564470262666 0.833333333333483 0
-1581 0.2127041783776352 0.8282828282829929 0
-1582 0.2127041783776124 0.8383838383839962 0
-1583 0.2214519097289766 0.8333333333335116 0
-1584 0.203956447026223 0.8434343434345006 0
-1585 0.2214519097289531 0.8434343434345154 0
-1586 0.2301996410803158 0.8383838383840323 0
-1587 0.1602177902697303 0.727272727272803 0
-1588 0.1602177902695859 0.7878787878788718 0
-1589 0.2301996410802883 0.8484848484850418 0
-1590 0.2389473724316525 0.8434343434345561 0
-1591 0.2389473724316254 0.8535353535355623 0
-1592 0.2476951037829892 0.8484848484850772 0
-1593 0.2476951037829586 0.8585858585860823 0
-1594 0.2564428351343245 0.8535353535355971 0
-1595 0.2389473724315737 0.8636363636365797 0
-1596 0.256442835134276 0.863636363636613 0
-1597 0.2651905664856527 0.8585858585861226 0
-1598 0.2651905664856826 0.848484848485118 0
-1599 0.2739382978370182 0.8535353535356377 0
-1600 0.2739382978369692 0.8636363636366529 0
-1601 0.2826860291883435 0.858585858586165 0
-1602 0.2826860291883779 0.8484848484851594 0
-1603 0.2914337605397112 0.8535353535356802 0
-1604 0.291433760539668 0.8636363636366888 0
-1605 0.3001814918910414 0.8585858585862016 0
-1606 0.2214519097289923 0.8232323232324785 0
-1607 0.3001814918910018 0.8686868686872045 0
-1608 0.308929223242376 0.8636363636367198 0
-1609 0.3089292232424031 0.8535353535357229 0
-1610 0.3176769545937372 0.858585858586242 0
-1611 0.3176769545937118 0.8686868686872383 0
-1612 0.3264246859450712 0.8636363636367632 0
-1613 0.3264246859450953 0.853535353535766 0
-1614 0.3351724172964299 0.8585858585862884 0
-1615 0.3351724172964544 0.8484848484852897 0
-1616 0.3439201486477887 0.853535353535811 0
-1617 0.3439201486478138 0.8434343434348125 0
-1618 0.3526678799991484 0.8484848484853329 0
-1619 0.3526678799991232 0.8585858585863312 0
-1620 0.3614156113504831 0.8535353535358534 0
-1621 0.3614156113505077 0.8434343434348553 0
-1622 0.370163342701843 0.8484848484853756 0
-1623 0.3701633427018678 0.8383838383843779 0
-1624 0.3789110740532033 0.8434343434348988 0
-1625 0.3789110740532283 0.8333333333339001 0
-1626 0.3876588054045638 0.8383838383844215 0
-1627 0.3876588054045388 0.8484848484854203 0
-1628 0.3964065367558994 0.8434343434349434 0
-1629 0.3964065367559251 0.8333333333339447 0
-1630 0.4051542681072606 0.8383838383844672 0
-1631 0.4051542681072862 0.828282828283468 0
-1632 0.4139019994586222 0.8333333333339911 0
-1633 0.4139019994586478 0.8232323232329912 0
-1634 0.4226497308099837 0.8282828282835144 0
-1635 0.422649730809958 0.8383838383845137 0
-1636 0.4313974621613194 0.8333333333340366 0
-1637 0.431397462161294 0.8434343434350358 0
-1638 0.4401451935126555 0.8383838383845587 0
-1639 0.4226497308100098 0.8181818181825147 0
-1640 0.4401451935126297 0.8484848484855577 0
-1641 0.4488929248639912 0.8434343434350806 0
-1642 0.4488929248639649 0.8535353535360797 0
-1643 0.4576406562153261 0.8484848484856027 0
-1644 0.4576406562153527 0.8383838383846034 0
-1645 0.4663883875666883 0.8434343434351255 0
-1646 0.4663883875667147 0.8333333333341266 0
-1647 0.4751361189180511 0.8383838383846481 0
-1648 0.4751361189180242 0.8484848484856476 0
-1649 0.4838838502693874 0.8434343434351708 0
-1650 0.4838838502693602 0.8535353535361705 0
-1651 0.4926315816207232 0.8484848484856934 0
-1652 0.4926315816207503 0.8383838383846934 0
-1653 0.5013793129720869 0.8434343434352164 0
-1654 0.5013793129720594 0.8535353535362178 0
-1655 0.5101270443234239 0.8484848484857408 0
-1656 0.5101270443233961 0.8585858585867446 0
-1657 0.5188747756747613 0.8535353535362679 0
-1658 0.5188747756747341 0.8636363636372705 0
-1659 0.5276225070261004 0.8585858585867936 0
-1660 0.5013793129721135 0.833333333334215 0
-1661 0.5276225070260728 0.8686868686877967 0
-1662 0.5363702383774408 0.8636363636373181 0
-1663 0.5363702383774683 0.8535353535363168 0
-1664 0.5451179697288094 0.8585858585868394 0
-1665 0.5451179697287821 0.8686868686878452 0
-1666 0.5538657010801521 0.8636363636373647 0
-1667 0.5188747756747056 0.8737373737382755 0
-1668 0.5538657010801251 0.8737373737383728 0
-1669 0.5626134324314961 0.8686868686878917 0
-1670 0.5538657010801749 0.8535353535363635 0
-1671 0.5626134324314687 0.8787878787889019 0
-1672 0.5713611637828406 0.8737373737384206 0
-1673 0.1864609843237443 0.7626262626263438 0
-1674 0.1689655216211842 0.681818181818191 0
-1675 0.1602177902698078 0.6868686868686802 0
-1676 0.1602177902698309 0.6767676767676618 0
-1677 0.1514700589184631 0.6818181818181509 0
-1678 0.1514700589184785 0.6717171717171319 0
-1679 0.1427223275671182 0.6767676767676378 0
-1680 0.1427223275671264 0.6666666666666013 0
-1681 0.1339745962157555 0.6717171717171092 0
-1682 0.133974596215771 0.6616161616160704 0
-1683 0.1252268648643983 0.6666666666665609 0
-1684 0.1252268648644149 0.6565656565655374 0
-1685 0.5713611637828131 0.883838383839433 0
-1686 0.5801088951341866 0.8787878787889507 0
-1687 0.4139019994586742 0.8131313131319912 0
-1688 0.4226497308100365 0.8080808080815147 0
-1689 0.4401451935126035 0.8585858585865566 0
-1690 0.1252268648643993 0.6767676767676306 0
-1691 0.5801088951341588 0.8888888888899638 0
-1692 0.5888566264855338 0.8838383838394809 0
-1693 0.5888566264855611 0.8737373737384683 0
-1694 0.5976043578369085 0.878787878788998 0
-1695 0.5976043578369349 0.8686868686879848 0
-1696 0.6063520891882817 0.8737373737385126 0
-1697 0.6063520891882549 0.8838383838395063 0
-1698 0.6150998205396347 0.8787878787890331 0
-1699 0.6150998205396563 0.8686868686880397 0
-1700 0.6238475518910028 0.8737373737385669 0
-1701 0.6238475518909978 0.8838383838395406 0
-1702 0.6325952832423571 0.8787878787890773 0
-1703 0.6325952832423755 0.8686868686880893 0
-1704 0.6413430145937205 0.8737373737386102 0
-1705 0.6413430145937212 0.8838383838395828 0
-1706 0.6500907459450768 0.8787878787891197 0
-1707 0.6500907459450878 0.8686868686881289 0
-1708 0.6588384772964391 0.873737373738649 0
-1709 0.6588384772964417 0.883838383839623 0
-1710 0.6675862086477957 0.8787878787891598 0
-1711 0.6675862086478097 0.8686868686881636 0
-1712 0.6763339399991558 0.8737373737386915 0
-1713 0.6763339399991464 0.8838383838396796 0
-1714 0.6850816713505029 0.8787878787892172 0
-1715 0.6763339399991728 0.8636363636376831 0
-1716 0.5626134324314358 0.8888888888899061 0
-1717 0.6850816713504881 0.8888888888902174 0
-1718 0.6938294027018523 0.8838383838397407 0
-1719 0.1164791335130491 0.6616161616160409 0
-1720 0.1164791335130593 0.6515151515150062 0
-1721 0.4139019994587011 0.8030303030309917 0
-1722 0.4226497308100631 0.7979797979805148 0
-1723 0.6938294027018408 0.8939393939407378 0
-1724 0.7025771340531939 0.8888888888902492 0
-1725 0.3701633427018919 0.8282828282833801 0
-1726 0.1602177902695352 0.818181818181889 0
-1727 0.160217790269503 0.8282828282828869 0
-1728 0.1514700589181676 0.8232323232323735 0
-1729 0.1514700589181408 0.8333333333333713 0
-1730 0.1427223275667932 0.8282828282828469 0
-1731 0.1427223275667735 0.8383838383838571 0
-1732 0.1339745962154235 0.8333333333333324 0
-1733 0.133974596215404 0.8434343434343438 0
-1734 0.1252268648640597 0.838383838383832 0
-1735 0.1252268648640336 0.8484848484848325 0
-1736 0.1339745962153841 0.8535353535353548 0
-1737 0.1252268648640147 0.8585858585858439 0
-1738 0.1339745962153634 0.8636363636363645 0
-1739 0.1252268648639974 0.8686868686868533 0
-1740 0.1339745962153446 0.8737373737373737 0
-1741 0.1252268648639799 0.8787878787878615 0
-1742 0.1339745962153263 0.8838383838383812 0
-1743 0.1252268648640747 0.8282828282828549 0
-1744 0.1252268648639624 0.8888888888888684 0
-1745 0.1164791335126573 0.8434343434343679 0
-1746 0.1164791335126157 0.8838383838383497 0
-1747 0.133974596215308 0.8939393939393864 0
-1748 0.1164791335125979 0.8939393939393574 0
-1749 0.3001814918915637 0.6868686868689766 0
-1750 0.1602177902696687 0.7575757575758174 0
-1751 0.3264246859455276 0.7323232323235775 0
-1752 0.7025771340532223 0.8787878787892545 0
-1753 0.4926315816217086 0.5050505050514367 0
-1754 0.3001814918927976 0.131313131313506 0
-1755 0.326424685945045 0.8737373737377595 0
-1756 0.3351724172964787 0.8383838383842922 0
-1757 0.3614156113504581 0.8636363636368505 0
-1758 0.4838838502699495 0.6717171717179582 0
-1759 0.8075499102704238 0.3939393939410992 0
-1760 0.5276225070271788 0.3939393939406638 0
-1761 0.1077314021626744 0.1616161616161575 0
-1762 0.1077314021626968 0.1515151515151547 0
-1763 0.1077314021625174 0.3131313131313413 0
-1764 0.107731402162495 0.323232323232337 0
-1765 0.8600362983793731 0.1010101010117916 0
-1766 0.7025771340532113 0.8989898989911995 0
-1767 0.807549910269394 0.8989898989910566 0
-1768 0.1077314021616854 0.6565656565655108 0
-1769 0.1077314021617014 0.6464646464644745 0
-1770 0.116479133513082 0.6414141414139813 0
-1771 0.1077314021617252 0.6363636363634497 0
-1772 0.1077314021612573 0.88888888888885 0
-1773 0.6850816713504906 0.898989898991184 0
-1774 0.8775317610802129 0.8989898989911976 0
-1775 0.8862794924315732 0.8939393939407027 0
-1776 0.886279492431553 0.8838383838396283 0
-1777 0.7375680594605645 0.111111111112671 0
-1778 0.7375680594605911 0.1010101010116938 0
-1779 0.8600362983790697 0.2828282828300361 0
-1780 0.8687840297304246 0.287878787880566 0
-1781 0.8775317610818014 0.2828282828300728 0
-1782 0.8775317610817814 0.2929292929310954 0
-1783 0.8862794924331594 0.2878787878806003 0
-1784 0.8862794924331395 0.2979797979816239 0
-1785 0.3351724172968609 0.7373737373741132 0
-1786 0.3264246859455048 0.7424242424245812 0
-1787 0.4751361189190402 0.4040404040415754 0
-1788 0.440145193514803 0.1010101010107896 0
-1789 0.1077314021612329 0.8989898989898484 0
-1790 0.1164791335131058 0.6313131313129587 0
-1791 0.10773140216175 0.626262626262427 0
-1792 0.8950272237829413 0.8888888888902231 0
-1793 0.8950272237829429 0.8787878787891874 0
-1794 0.8950272237829283 0.898989898991238 0
-1795 0.1952087156760924 0.2525252525254479 0
-1796 0.116479133513829 0.3282828282828545 0
-1797 0.1077314021624724 0.3333333333333324 0
-1798 0.4139019994587267 0.7929292929299924 0
-1799 0.4226497308100891 0.7878787878795139 0
-1800 0.3526678800003576 0.3838383838389945 0
-1801 0.2564428351354645 0.3787878787881979 0
-1802 0.2476951037841156 0.3737373737376769 0
-1803 0.7988021789180493 0.8939393939405311 0
-1804 0.4751361189190251 0.4141414141425795 0
-1805 0.8950272237845193 0.2929292929311288 0
-1806 0.8950272237844994 0.3030303030321528 0
-1807 0.8950272237846494 0.2323232323249964 0
-1808 0.8950272237846681 0.2222222222239685 0
-1809 0.8687840297288516 0.9040404040416971 0
-1810 0.7988021789180251 0.904040404041541 0
-1811 0.8687840297307351 0.09595959596130288 0
-1812 0.8775317610820859 0.10101010101182 0
-1813 0.2127041783788167 0.2727272727275689 0
-1814 0.308929223244183 0.1262626262630107 0
-1815 0.3001814918928167 0.1212121212124755 0
-1816 0.3089292232442065 0.1161616161619801 0
-1817 0.3001814918928377 0.1111111111114434 0
-1818 0.3089292232442299 0.1060606060609477 0
-1819 0.3001814918928624 0.1010101010104109 0
-1820 0.1164791335131307 0.6212121212119375 0
-1821 0.107731402161775 0.6161616161614051 0
-1822 0.2826860291899689 0.1717171717175688 0
-1823 0.3089292232442537 0.09595959595991375 0
-1824 0.4313974621634513 0.09595959596025842 0
-1825 0.7288203281092428 0.1060606060621738 0
-1826 0.7288203281092889 0.09595959596117479 0
-1827 0.860036298379049 0.2929292929310596 0
-1828 0.4663883875676776 0.409090909092062 0
-1829 0.466388387567695 0.3989898989910576 0
-1830 0.09898367081133252 0.1565656565656384 0
-1831 0.09898367081135365 0.1464646464646343 0
-1832 0.0989836708111614 0.3181818181818197 0
-1833 0.0989836708111836 0.3080808080808251 0
-1834 0.09898367081039426 0.6212121212118945 0
-1835 0.09898367081041928 0.6111111111108728 0
-1836 0.1077314021617999 0.6060606060603839 0
-1837 0.09898367081044447 0.6010101010098519 0
-1838 0.1077314021618239 0.595959595959363 0
-1839 0.09898367081046995 0.5909090909088307 0
-1840 0.1077314021618566 0.585858585858349 0
-1841 0.0989836708104965 0.5808080808078122 0
-1842 0.1077314021618884 0.5757575757573432 0
-1843 0.09898367081052309 0.5707070707067956 0
-1844 0.107731402161905 0.5656565656563221 0
-1845 0.09898367081054833 0.5606060606057786 0
-1846 0.107731402161922 0.5555555555552949 0
-1847 0.0989836708105729 0.5505050505047639 0
-1848 0.1077314021619451 0.5454545454542801 0
-1849 0.09898367081059833 0.5404040404037511 0
-1850 0.1077314021619698 0.5353535353532678 0
-1851 0.09898367081062417 0.5303030303027396 0
-1852 0.1077314021619951 0.5252525252522572 0
-1853 0.09898367081065039 0.5202020202017302 0
-1854 0.1077314021620197 0.5151515151512479 0
-1855 0.09898367081067617 0.5101010101007218 0
-1856 0.1077314021620439 0.5050505050502401 0
-1857 0.09898367081070131 0.4999999999997152 0
-1858 0.1077314021620684 0.494949494949234 0
-1859 0.09898367081072715 0.4898989898987097 0
-1860 0.107731402162093 0.4848484848482291 0
-1861 0.09898367081075352 0.4797979797977056 0
-1862 0.1077314021621179 0.4747474747472258 0
-1863 0.09898367081077959 0.4696969696967026 0
-1864 0.1427223275666701 0.8888888888889005 0
-1865 0.1427223275666495 0.8989898989899063 0
-1866 0.1514700589180115 0.8939393939394181 0
-1867 0.1514700589179914 0.9040404040404224 0
-1868 0.1602177902693522 0.898989898989934 0
-1869 0.1864609843238017 0.7323232323233061 0
-1870 0.09898367081031927 0.651515151514965 0
-1871 0.09898367081030207 0.6616161616160025 0
-1872 0.09898367080989195 0.8939393939393407 0
-1873 0.09898367080986759 0.9040404040403387 0
-1874 0.7375680594606452 0.09090909091062893 0
-1875 0.8600362983793892 0.0909090909107879 0
-1876 0.9037749551343064 0.8838383838397419 0
-1877 0.9037749551343075 0.8737373737387097 0
-1878 0.8862794924331193 0.3080808080826477 0
-1879 0.8950272237844794 0.3131313131331764 0
-1880 0.1164791335138061 0.3383838383838499 0
-1881 0.1077314021624496 0.3434343434343277 0
-1882 0.3351724172968449 0.7474747474751027 0
-1883 0.3264246859454826 0.7525252525255829 0
-1884 0.4139019994587522 0.782828282828992 0
-1885 0.4226497308101145 0.7777777777785135 0
-1886 0.4313974621614517 0.7828282828290357 0
-1887 0.431397462161477 0.7727272727280359 0
-1888 0.4401451935128144 0.7777777777785573 0
-1889 0.4401451935128395 0.7676767676775569 0
-1890 0.4488929248641773 0.7727272727280802 0
-1891 0.4488929248642026 0.762626262627078 0
-1892 0.4576406562155398 0.7676767676776035 0
-1893 0.4576406562155657 0.7575757575765998 0
-1894 0.4663883875669035 0.7626262626271241 0
-1895 0.256442835135484 0.3686868686871931 0
-1896 0.2476951037841387 0.3636363636366708 0
-1897 0.2651905664868425 0.3737373737377075 0
-1898 0.7113248654045718 0.8838383838397454 0
-1899 0.7113248654045941 0.8737373737387655 0
-1900 0.9037749551358805 0.297979797981658 0
-1901 0.3001814918928856 0.09090909090937666 0
-1902 0.2914337605414939 0.09595959595987458 0
-1903 0.8075499102693723 0.9090909090920662 0
-1904 0.8775317610820997 0.09090909091080837 0
-1905 0.8862794924334542 0.09595959596132815 0
-1906 0.1602177902693305 0.9090909090909407 0
-1907 0.1689655216206912 0.9040404040404498 0
-1908 0.4663883875676598 0.4191919191930663 0
-1909 0.9037749551360326 0.2272727272745 0
-1910 0.9037749551360511 0.2171717171734697 0
-1911 0.4401451935148307 0.09090909090977123 0
-1912 0.7200725967579299 0.1010101010116652 0
-1913 0.7200725967578639 0.1111111111126209 0
-1914 0.7200725967580025 0.09090909091064275 0
-1915 0.1077314021621427 0.4646464646462236 0
-1916 0.09898367081080477 0.4595959595957012 0
-1917 0.8250453729729967 0.4747474747491357 0
-1918 0.5013793129730971 0.4090909090921245 0
-1919 0.1952087156762588 0.1717171717173611 0
-1920 0.8425408356756897 0.4949494949511559 0
-1921 0.3526678799996863 0.6868686868690991 0
-1922 0.903774955135133 0.4696969696988235 0
-1923 0.2914337605415167 0.08585858585883939 0
-1924 0.2826860291901247 0.09090909090933802 0
-1925 0.09023593945982859 0.3131313131313031 0
-1926 0.09023593945985076 0.3030303030303096 0
-1927 0.09023593945944265 0.4646464646461796 0
-1928 0.09023593945946831 0.4545454545451795 0
-1929 0.09898367081082893 0.4494949494947018 0
-1930 0.09023593945949401 0.4444444444441808 0
-1931 0.09898367081085355 0.439393939393704 0
-1932 0.09023593945951967 0.4343434343431836 0
-1933 0.09898367081087861 0.4292929292927073 0
-1934 0.09023593945954539 0.4242424242421871 0
-1935 0.09023593945914034 0.5757575757572658 0
-1936 0.1689655216206651 0.9141414141414622 0
-1937 0.1777132529720286 0.9090909090909647 0
-1938 0.8862794924334678 0.08585858586031073 0
-1939 0.8950272237848258 0.09090909091083249 0
-1940 0.7988021789180022 0.9141414141425527 0
-1941 0.7900544475666531 0.9090909090920258 0
-1942 0.1514700589179627 0.9141414141414407 0
-1943 0.4313974621634772 0.08585858585923831 0
-1944 0.3089292232442771 0.08585858585887832 0
-1945 0.09023593945999041 0.1515151515151182 0
-1946 0.09023593946001118 0.1414141414141138 0
-1947 0.09023593945996934 0.1616161616161212 0
-1948 0.09898367081137653 0.1363636363636301 0
-1949 0.09023593946003118 0.1313131313131077 0
-1950 0.09898367081139953 0.1262626262626227 0
-1951 0.09023593946005183 0.1212121212120994 0
-1952 0.09898367081142481 0.116161616161612 0
-1953 0.09023593946007123 0.1111111111110889 0
-1954 0.09898367081144724 0.1060606060605995 0
-1955 0.09023593946009011 0.1010101010100756 0
-1956 0.09898367081146352 0.09595959595958539 0
-1957 0.09023593946010863 0.09090909090905949 0
-1958 0.09898367081148476 0.08585858585856783 0
-1959 0.1077314021628401 0.09090909090909567 0
-1960 0.09023593945933428 0.5050505050501969 0
-1961 0.09023593945921643 0.5454545454542155 0
-1962 0.09023593945903811 0.6161616161613623 0
-1963 0.09023593945893617 0.6565656565654555 0
-1964 0.09023593945891105 0.6666666666664814 0
-1965 0.09023593945852544 0.8989898989898309 0
-1966 0.09023593945850296 0.9090909090908296 0
-1967 0.09023593945850979 0.8888888888888693 0
-1968 0.09898367080985043 0.9141414141413468 0
-1969 0.09898367081090388 0.4191919191917111 0
-1970 0.0902359394595711 0.414141414141191 0
-1971 0.7113248654066197 0.09595959596115576 0
-1972 0.7113248654066668 0.08585858586016987 0
-1973 0.886279492433099 0.3181818181836716 0
-1974 0.8950272237844588 0.3232323232342 0
-1975 0.7725589848657841 0.1414141414156645 0
-1976 0.116479133513783 0.3484848484848451 0
-1977 0.4401451935128643 0.7575757575765557 0
-1978 0.4139019994587766 0.7727272727279916 0
-1979 0.4051542681074153 0.777777777778471 0
-1980 0.4576406562163329 0.4040404040415447 0
-1981 0.4576406562163505 0.39393939394054 0
-1982 0.256442835135507 0.3585858585861864 0
-1983 0.2476951037841623 0.3535353535356643 0
-1984 0.720072596755951 0.8787878787892694 0
-1985 0.7200725967559637 0.8686868686882792 0
-1986 0.9125226864856657 0.8787878787892595 0
-1987 0.9125226864856835 0.8686868686882624 0
-1988 0.9300181491890878 0.5151515151533295 0
-1989 0.921270417837737 0.5202020202038057 0
-1990 0.9300181491890653 0.5252525252543179 0
-1991 0.921270417837719 0.5303030303047934 0
-1992 0.9300181491890434 0.5353535353553025 0
-1993 0.9212704178377005 0.5404040404057765 0
-1994 0.9300181491890229 0.5454545454562836 0
-1995 0.9212704178376799 0.5505050505067568 0
-1996 0.9125226864863575 0.5454545454562491 0
-1997 0.9125226864863366 0.5555555555572305 0
-1998 0.9037749551350144 0.5505050505067238 0
-1999 0.9037749551349936 0.560606060607704 0
-2000 0.9125226864863151 0.5656565656582124 0
-2001 0.9037749551349727 0.5707070707086843 0
-2002 0.8950272237836503 0.5656565656581767 0
-2003 0.89502722378363 0.5757575757591579 0
-2004 0.8862794924323064 0.5707070707086495 0
-2005 0.8862794924322867 0.5808080808096314 0
-2006 0.8950272237836097 0.5858585858601395 0
-2007 0.886279492432266 0.5909090909106126 0
-2008 0.8775317610809438 0.5858585858601053 0
-2009 0.8775317610809227 0.5959595959610865 0
-2010 0.8687840297296002 0.5909090909105789 0
-2011 0.8687840297295808 0.6010101010115619 0
-2012 0.8600362983782566 0.5959595959610524 0
-2013 0.860036298378237 0.6060606060620374 0
-2014 0.8512885670269117 0.6010101010115279 0
-2015 0.8512885670268938 0.6111111111125154 0
-2016 0.8425408356755663 0.6060606060620043 0
-2017 0.8600362983782178 0.6161616161630515 0
-2018 0.8425408356755485 0.6161616161629927 0
-2019 0.8337931043242196 0.6111111111124788 0
-2020 0.8337931043241994 0.6212121212134644 0
-2021 0.8250453729728723 0.616161616162953 0
-2022 0.8250453729728519 0.6262626262639395 0
-2023 0.8162976416215244 0.6212121212134282 0
-2024 0.8162976416215038 0.6313131313144152 0
-2025 0.8075499102701758 0.6262626262639039 0
-2026 0.8250453729728316 0.6363636363649263 0
-2027 0.8950272237835871 0.5959595959611197 0
-2028 0.8162976416214845 0.6414141414154022 0
-2029 0.8250453729728113 0.6464646464659123 0
-2030 0.8075499102701968 0.6161616161629158 0
-2031 0.7988021789188469 0.6212121212133915 0
-2032 0.8162976416214646 0.6515151515163879 0
-2033 0.8250453729727911 0.6565656565668978 0
-2034 0.7988021789188687 0.6111111111124022 0
-2035 0.7900544475675176 0.6161616161628782 0
-2036 0.7900544475675402 0.6060606060618881 0
-2037 0.7813067162161892 0.6111111111123639 0
-2038 0.7813067162161659 0.6212121212133538 0
-2039 0.7725589848648374 0.6161616161628389 0
-2040 0.7725589848648144 0.6262626262638299 0
-2041 0.763811253513484 0.6212121212133153 0
-2042 0.763811253513463 0.6313131313143077 0
-2043 0.7550635221621309 0.6262626262637935 0
-2044 0.7550635221621534 0.6161616161627971 0
-2045 0.7463157908107994 0.6212121212132768 0
-2046 0.746315790810778 0.6313131313142709 0
-2047 0.7375680594594445 0.6262626262637552 0
-2048 0.7375680594594664 0.6161616161627607 0
-2049 0.7288203281081105 0.6212121212132393 0
-2050 0.7288203281080888 0.6313131313142337 0
-2051 0.7200725967567545 0.6262626262637174 0
-2052 0.7200725967567324 0.6363636363647135 0
-2053 0.7113248654053977 0.6313131313141963 0
-2054 0.7113248654054228 0.6212121212132049 0
-2055 0.702577134054065 0.6262626262636818 0
-2056 0.7025771340540463 0.6363636363646729 0
-2057 0.6938294027027079 0.6313131313141542 0
-2058 0.6938294027027285 0.6212121212131652 0
-2059 0.6850816713513693 0.6262626262636394 0
-2060 0.6850816713513908 0.616161616162644 0
-2061 0.6763339400000323 0.6212121212131207 0
-2062 0.676333940000061 0.6111111111121319 0
-2063 0.6675862086486961 0.6161616161626022 0
-2064 0.6850816713513569 0.6363636363646259 0
-2065 0.6675862086486904 0.606060606061636 0
-2066 0.6588384772973469 0.6111111111120988 0
-2067 0.8162976416214431 0.6616161616173735 0
-2068 0.8250453729727705 0.6666666666678839 0
-2069 0.6588384772973346 0.6212121212130827 0
-2070 0.6500907459459963 0.6161616161625632 0
-2071 0.6500907459459921 0.6060606060615794 0
-2072 0.641343014594656 0.611111111112043 0
-2073 0.6413430145946356 0.6212121212130416 0
-2074 0.6325952832432987 0.6161616161625183 0
-2075 0.6325952832433221 0.6060606060615185 0
-2076 0.6238475518919637 0.6111111111119925 0
-2077 0.6850816713514288 0.6060606060616712 0
-2078 0.7813067162162112 0.6010101010113739 0
-2079 0.6238475518919845 0.6010101010109967 0
-2080 0.6150998205406234 0.6060606060614742 0
-2081 0.8162976416214228 0.6717171717183594 0
-2082 0.8250453729727503 0.6767676767688702 0
-2083 0.8337931043240966 0.6717171717183944 0
-2084 0.8337931043240765 0.6818181818193798 0
-2085 0.8425408356754209 0.6767676767689048 0
-2086 0.8425408356754013 0.6868686868698881 0
-2087 0.8512885670267445 0.6818181818194142 0
-2088 0.8512885670267241 0.6919191919203959 0
-2089 0.8600362983780658 0.6868686868699229 0
-2090 0.8600362983780456 0.6969696969709016 0
-2091 0.8687840297293854 0.6919191919204298 0
-2092 0.8687840297293659 0.7020202020214062 0
-2093 0.8775317610807027 0.696969696970935 0
-2094 0.8775317610806845 0.7070707070719091 0
-2095 0.8862794924320185 0.7020202020214348 0
-2096 0.8862794924319989 0.7121212121224094 0
-2097 0.8862794924320376 0.6919191919204656 0
-2098 0.8775317610806678 0.717171717172882 0
-2099 0.8862794924319821 0.7222222222233844 0
-2100 0.8775317610806509 0.7272727272738533 0
-2101 0.8862794924319667 0.7323232323243525 0
-2102 0.8425408356753862 0.6969696969708682 0
-2103 0.8950272237832966 0.7272727272738859 0
-2104 0.8950272237832811 0.7373737373748523 0
-2105 0.8950272237833512 0.6969696969709642 0
-2106 0.8950272237833722 0.6868686868699991 0
-2107 0.632595283243278 0.626262626263519 0
-2108 0.8425408356755933 0.5959595959610128 0
-2109 0.6150998205406456 0.5959595959604762 0
-2110 0.6063520891892831 0.6010101010109559 0
-2111 0.6238475518920077 0.5909090909099964 0
-2112 0.9037749551346113 0.7323232323243849 0
-2113 0.9037749551345934 0.7424242424253512 0
-2114 0.9037749551346838 0.6919191919204978 0
-2115 0.9037749551347048 0.6818181818195318 0
-2116 0.8775317610806345 0.7373737373748239 0
-2117 0.6063520891892642 0.6111111111119494 0
-2118 0.5976043578379197 0.6060606060614355 0
-2119 0.5976043578379442 0.5959595959604341 0
-2120 0.588856626486582 0.6010101010109131 0
-2121 0.5888566264866051 0.5909090909099131 0
-2122 0.5801088951352428 0.5959595959603917 0
-2123 0.8162976416214034 0.6818181818193456 0
-2124 0.580108895135259 0.5858585858593989 0
-2125 0.5713611637839044 0.5909090909098693 0
-2126 0.7900544475675616 0.5959595959608968 0
-2127 0.7813067162162309 0.5909090909103832 0
-2128 0.8075499102700756 0.6767676767688356 0
-2129 0.9125226864860139 0.6868686868700293 0
-2130 0.9125226864860334 0.6767676767690629 0
-2131 0.5888566264865608 0.6111111111119072 0
-2132 0.7900544475675827 0.5858585858599046 0
-2133 0.7813067162162516 0.5808080808093912 0
-2134 0.5713611637839017 0.5808080808088817 0
-2135 0.562613432432564 0.5858585858593474 0
-2136 0.5626134324325421 0.5959595959603475 0
-2137 0.912522686485925 0.7373737373748729 0
-2138 0.9125226864859032 0.7474747474758479 0
-2139 0.903774955134575 0.7525252525263162 0
-2140 0.9125226864858834 0.7575757575768147 0
-2141 0.9037749551345559 0.7626262626272806 0
-2142 0.9125226864858641 0.7676767676777795 0
-2143 0.9037749551345358 0.7727272727282456 0
-2144 0.9125226864858449 0.7777777777787456 0
-2145 0.8075499102700567 0.6868686868698223 0
-2146 0.7988021789187278 0.6818181818193116 0
-2147 0.4663883875669295 0.7525252525261198 0
-2148 0.4751361189182683 0.7575757575766437 0
-2149 0.5538657010812036 0.5909090909098249 0
-2150 0.3351724172968231 0.7575757575761027 0
-2151 0.3264246859454601 0.7626262626265849 0
-2152 0.431397462162199 0.5303030303037506 0
-2153 0.798802178919568 0.2676767676783557 0
-2154 0.7900544475682012 0.2727272727288444 0
-2155 0.7988021789195494 0.2777777777793651 0
-2156 0.790054447568183 0.2828282828298542 0
-2157 0.7988021789195309 0.2878787878803746 0
-2158 0.1252268648644857 0.6262626262624693 0
-2159 0.3176769545941198 0.7575757575760638 0
-2160 0.3176769545940962 0.7676767676770674 0
-2161 0.3089292232427571 0.7626262626265453 0
-2162 0.3089292232427322 0.7727272727275483 0
-2163 0.3001814918913939 0.7676767676770251 0
-2164 0.4488929248639378 0.8636363636370787 0
-2165 0.4401451935125775 0.868686868687555 0
-2166 0.4488929248639118 0.8737373737380768 0
-2167 0.4401451935125509 0.8787878787885526 0
-2168 0.4488929248638851 0.8838383838390752 0
-2169 0.4401451935125246 0.8888888888895501 0
-2170 0.4488929248638582 0.8939393939400728 0
-2171 0.4401451935124998 0.8989898989905457 0
-2172 0.4488929248638317 0.9040404040410674 0
-2173 0.4401451935124732 0.9090909090915409 0
-2174 0.4313974621611424 0.9040404040410199 0
-2175 0.4488929248638041 0.9141414141420624 0
-2176 0.4313974621611152 0.9141414141420139 0
-2177 0.4226497308097855 0.9090909090914937 0
-2178 0.4576406562151617 0.9090909090915908 0
-2179 0.5888566264866042 0.5808080808089434 0
-2180 0.4751361189190073 0.4242424242435835 0
-2181 0.4663883875676422 0.4292929292940705 0
-2182 0.912522686487417 0.2222222222240027 0
-2183 0.9125226864874355 0.2121212121229718 0
-2184 0.9125226864873933 0.2323232323250257 0
-2185 0.8075499102693512 0.9191919191930792 0
-2186 0.2826860291901472 0.08080808080830168 0
-2187 0.2739382978387546 0.08585858585880066 0
-2188 0.09023593945848733 0.9191919191918374 0
-2189 0.09023593946012788 0.08080808080804144 0
-2190 0.4576406562151349 0.9191919191925835 0
-2191 0.4663883875664933 0.9141414141421106 0
-2192 0.4226497308097584 0.9191919191924861 0
-2193 0.4139019994584295 0.9141414141419675 0
-2194 0.4401451935148581 0.08080808080875046 0
-2195 0.1777132529720066 0.919191919191969 0
-2196 0.1864609843233657 0.9141414141414779 0
-2197 0.8950272237848389 0.08080808080981422 0
-2198 0.9037749551361992 0.0858585858603344 0
-2199 0.903774955136186 0.09595959596135557 0
-2200 0.9125226864875611 0.0909090909108589 0
-2201 0.9125226864875482 0.1010101010118807 0
-2202 0.9125226864875723 0.08080808080983867 0
-2203 0.1077314021628625 0.08080808080807504 0
-2204 0.1164791335142213 0.08585858585860598 0
-2205 0.7900544475666298 0.9191919191930393 0
-2206 0.7813067162152793 0.9141414141425107 0
-2207 0.9037749551345146 0.7828282828292127 0
-2208 0.9125226864858264 0.7878787878797133 0
-2209 0.8950272237832037 0.77777777777871 0
-2210 0.7025771340553005 0.09090909091066302 0
-2211 0.7025771340553262 0.08080808080969076 0
-2212 0.1164791335134332 0.4898989898987525 0
-2213 0.3001814918913681 0.7777777777780271 0
-2214 0.2914337605400297 0.7727272727275033 0
-2215 0.6500907459469594 0.1313131313143392 0
-2216 0.6500907459469376 0.1414141414153223 0
-2217 0.6413430145955915 0.1464646464657949 0
-2218 0.6500907459469164 0.1515151515163067 0
-2219 0.6413430145955683 0.1565656565667801 0
-2220 0.6500907459468948 0.1616161616172928 0
-2221 0.6588384772982452 0.156565656566814 0
-2222 0.6413430145955462 0.1666666666677672 0
-2223 0.6588384772982219 0.1666666666678046 0
-2224 0.6675862086495727 0.1616161616173261 0
-2225 0.6675862086495485 0.171717171718318 0
-2226 0.6763339400008999 0.1666666666678427 0
-2227 0.7900544475681655 0.2929292929308631 0
-2228 0.1689655216218868 0.3989898989900116 0
-2229 0.11647913351322 0.5909090909088859 0
-2230 0.886279492433079 0.328282828284695 0
-2231 0.8950272237844352 0.3333333333352183 0
-2232 0.9037749551358165 0.3282828282847275 0
-2233 0.9037749551357861 0.338383838385742 0
-2234 0.9125226864871762 0.3333333333352558 0
-2235 0.9125226864871494 0.3434343434362772 0
-2236 0.2564428351355289 0.3484848484851809 0
-2237 0.2476951037841859 0.3434343434346577 0
-2238 0.238947372432819 0.3484848484851406 0
-2239 0.5626134324325529 0.5757575757583544 0
-2240 0.7288203281072998 0.8737373737387814 0
-2241 0.7288203281073277 0.8636363636377902 0
-2242 0.7200725967559793 0.85858585858728 0
-2243 0.08148820810849666 0.3080808080807871 0
-2244 0.08148820810851874 0.2979797979797944 0
-2245 0.08148820810847419 0.3181818181817794 0
-2246 0.0814882081086289 0.1565656565656017 0
-2247 0.08148820810860763 0.1666666666666025 0
-2248 0.08148820810870511 0.1161616161615834 0
-2249 0.08148820810809645 0.4595959595956421 0
-2250 0.08148820810821315 0.4191919191916669 0
-2251 0.08148820810823897 0.4090909090906718 0
-2252 0.0814882081075512 0.6616161616159449 0
-2253 0.08148820810752579 0.6717171717169715 0
-2254 0.08148820810714434 0.9040404040403579 0
-2255 0.08148820810875149 0.08585858585853318 0
-2256 0.4139019994584029 0.924242424242959 0
-2257 0.4051542681070734 0.9191919191924396 0
-2258 0.09898367080983392 0.9242424242423544 0
-2259 0.2301996410809533 0.5757575757577171 0
-2260 0.2389473724322978 0.5808080808082412 0
-2261 0.2389473724323228 0.5707070707072334 0
-2262 0.2476951037836659 0.5757575757577581 0
-2263 0.2476951037836909 0.5656565656567499 0
-2264 0.2564428351350339 0.5707070707072746 0
-2265 0.2564428351350589 0.5606060606062659 0
-2266 0.2651905664864018 0.565656565656791 0
-2267 0.2651905664864275 0.5555555555557825 0
-2268 0.2739382978377696 0.5606060606063077 0
-2269 0.2739382978377941 0.5505050505053004 0
-2270 0.2826860291891366 0.5555555555558247 0
-2271 0.2826860291891131 0.5656565656568322 0
-2272 0.2914337605404806 0.5606060606063497 0
-2273 0.2914337605404569 0.5707070707073564 0
-2274 0.3001814918918246 0.5656565656568744 0
-2275 0.3001814918918006 0.5757575757578808 0
-2276 0.3089292232431677 0.5707070707073986 0
-2277 0.3089292232431439 0.5808080808084056 0
-2278 0.3176769545945108 0.5757575757579227 0
-2279 0.2826860291891601 0.5454545454548175 0
-2280 0.3176769545944874 0.5858585858589296 0
-2281 0.3264246859458539 0.5808080808084467 0
-2282 0.3264246859458306 0.590909090909453 0
-2283 0.335172417297197 0.5858585858589704 0
-2284 0.3001814918917762 0.5858585858588869 0
-2285 0.3089292232431924 0.5606060606063931 0
-2286 0.3351724172972206 0.5757575757579642 0
-2287 0.3439201486485631 0.5808080808084877 0
-2288 0.3439201486485398 0.5909090909094933 0
-2289 0.3526678799999054 0.5858585858590106 0
-2290 0.2739382978378183 0.5404040404042924 0
-2291 0.282686029189184 0.5353535353538105 0
-2292 0.2739382978378416 0.5303030303032855 0
-2293 0.2826860291892073 0.5252525252528043 0
-2294 0.3526678799998822 0.5959595959600159 0
-2295 0.3614156113512476 0.5909090909095336 0
-2296 0.3526678799999285 0.5757575757580056 0
-2297 0.2739382978378651 0.5202020202022807 0
-2298 0.2826860291892313 0.515151515151799 0
-2299 0.2739382978378898 0.5101010101012753 0
-2300 0.2826860291892577 0.5050505050507942 0
-2301 0.2739382978379148 0.5000000000002706 0
-2302 0.2826860291892815 0.4949494949497894 0
-2303 0.2739382978379392 0.4898989898992662 0
-2304 0.2826860291893042 0.4848484848487848 0
-2305 0.291433760540601 0.5101010101013195 0
-2306 0.2739382978379632 0.4797979797982619 0
-2307 0.2826860291893282 0.4747474747477807 0
-2308 0.3614156113512245 0.6010101010105383 0
-2309 0.352667879999859 0.6060606060610211 0
-2310 0.3701633427025893 0.5959595959600555 0
-2311 0.3526678800006161 0.2929292929298979 0
-2312 0.3964065367568199 0.4797979797987113 0
-2313 0.4751361189188665 0.5656565656573663 0
-2314 0.2301996410816567 0.2121212121215356 0
-2315 0.2476951037836413 0.5858585858587653 0
-2316 0.2214519097303923 0.1565656565659106 0
-2317 0.2564428351357917 0.2171717171720978 0
-2318 0.781306716215255 0.9242424242435258 0
-2319 0.7725589848639036 0.9191919191929954 0
-2320 0.4313974621635033 0.07575757575821623 0
-2321 0.4226497308121198 0.08080808080870497 0
-2322 0.1164791335142429 0.07575757575758092 0
-2323 0.1252268648656043 0.08080808080811333 0
-2324 0.1864609843233482 0.9242424242424744 0
-2325 0.1952087156747017 0.9191919191919909 0
-2326 0.7113248654067217 0.07575757575915752 0
-2327 0.8862794924334804 0.07575757575929247 0
-2328 0.9212704178371562 0.7828282828292444 0
-2329 0.9212704178371387 0.7929292929302116 0
-2330 0.9125226864858084 0.7979797979806816 0
-2331 0.9212704178371206 0.8030303030311801 0
-2332 0.921270417837212 0.7525252525263371 0
-2333 0.9212704178373419 0.681818181819562 0
-2334 0.9212704178373622 0.671717171718597 0
-2335 0.9125226864860537 0.6666666666680978 0
-2336 0.9212704178373817 0.6616161616176326 0
-2337 0.7988021789187079 0.6919191919202984 0
-2338 0.790054447567379 0.6868686868697867 0
-2339 0.5538657010811797 0.6010101010108271 0
-2340 0.1164791335133482 0.5303030303027989 0
-2341 0.1164791335132912 0.5606060606058598 0
-2342 0.4051542681074386 0.7676767676774696 0
-2343 0.2389473724328427 0.3383838383841342 0
-2344 0.230199641081476 0.3434343434346167 0
-2345 0.2739382978379876 0.4696969696972574 0
-2346 0.2826860291893527 0.4646464646467766 0
-2347 0.4751361189182408 0.7676767676776498 0
-2348 0.4838838502696065 0.7626262626271691 0
-2349 0.4838838502696324 0.7525252525261664 0
-2350 0.4926315816209714 0.7575757575766896 0
-2351 0.4751361189189863 0.4343434343445878 0
-2352 0.4488929248649884 0.3989898989910273 0
-2353 0.4488929248650061 0.3888888888900222 0
-2354 0.7900544475676045 0.5757575757589132 0
-2355 0.4663883875676245 0.4393939393950748 0
-2356 0.4576406562162804 0.4343434343445578 0
-2357 0.9212704178385405 0.338383838385786 0
-2358 0.9212704178385214 0.3484848484868148 0
-2359 0.9212704178388024 0.2171717171735047 0
-2360 0.9212704178388214 0.2070707070724734 0
-2361 0.9125226864874547 0.2020202020219407 0
-2362 0.9212704178388399 0.1969696969714422 0
-2363 0.9212704178389236 0.09595959596138548 0
-2364 0.9212704178389125 0.1060606060624078 0
-2365 0.4663883875664676 0.9242424242431048 0
-2366 0.4751361189178265 0.9191919191926302 0
-2367 0.273938297838777 0.07575757575776362 0
-2368 0.2651905664873846 0.08080808080826318 0
-2369 0.08148820810877068 0.07575757575751402 0
-2370 0.6763339400008755 0.1767676767688327 0
-2371 0.6850816713522292 0.1717171717183557 0
-2372 0.3264246859454319 0.7727272727275906 0
-2373 0.6938294027039924 0.08585858586016465 0
-2374 0.6938294027040193 0.07575757575917913 0
-2375 0.2914337605400036 0.7828282828285066 0
-2376 0.2826860291886645 0.7777777777779825 0
-2377 0.2826860291886913 0.7676767676769783 0
-2378 0.2739382978373258 0.7727272727274564 0
-2379 0.2739382978373523 0.7626262626264525 0
-2380 0.265190566485986 0.7676767676769312 0
-2381 0.851288567028033 0.09595959596127474 0
-2382 0.8512885670280501 0.08585858586027616 0
-2383 0.1077314021622175 0.434343434343233 0
-2384 0.7813067162168166 0.2878787878803437 0
-2385 0.7813067162167943 0.2979797979813573 0
-2386 0.1514700589185065 0.6616161616161149 0
-2387 0.4926315816209449 0.7676767676776932 0
-2388 0.5013793129723109 0.7626262626272153 0
-2389 0.8337931043244499 0.4090909090926474 0
-2390 0.2651905664860129 0.7575757575759251 0
-2391 0.7813067162162728 0.5707070707083987 0
-2392 0.7725589848649191 0.5757575757588769 0
-2393 0.7375680594586735 0.8686868686882749 0
-2394 0.737568059458696 0.8585858585872992 0
-2395 0.9212704178370221 0.8737373737387792 0
-2396 0.9212704178370072 0.883838383839778 0
-2397 0.5451179697298405 0.5959595959603043 0
-2398 0.2739382978372994 0.7828282828284645 0
-2399 0.7988021789197792 0.1565656565672024 0
-2400 0.2564428351346446 0.7626262626264078 0
-2401 0.8600362983792651 0.1616161616178296 0
-2402 0.7725589848638705 0.9292929292940004 0
-2403 0.7638112535125435 0.9242424242434804 0
-2404 0.1777132529719858 0.9292929292929739 0
-2405 0.195208715674684 0.9292929292929857 0
-2406 0.203956447026036 0.9242424242425042 0
-2407 0.9125226864857903 0.8080808080816522 0
-2408 0.9212704178371064 0.813131313132152 0
-2409 0.7988021789195129 0.297979797981384 0
-2410 0.8425408356766989 0.09090909091075863 0
-2411 0.8425408356767167 0.08080808080976687 0
-2412 0.8337931043253703 0.08585858586024402 0
-2413 0.8337931043253896 0.07575757575925969 0
-2414 0.8250453729740465 0.08080808080973392 0
-2415 0.6850816713526869 0.08080808080965572 0
-2416 0.9037749551343109 0.8636363636376386 0
-2417 0.8600362983780868 0.6767676767689506 0
-2418 0.2651905664873613 0.09090909090929997 0
-2419 0.2564428351359925 0.08585858585876253 0
-2420 0.2564428351360142 0.07575757575772613 0
-2421 0.2476951037846226 0.0808080808082256 0
-2422 0.2476951037846009 0.0909090909092615 0
-2423 0.2389473724332314 0.08585858585872509 0
-2424 0.2389473724332527 0.07575757575768938 0
-2425 0.2301996410818618 0.08080808080818902 0
-2426 0.2301996410818829 0.07070707070715306 0
-2427 0.2214519097304918 0.07575757575765285 0
-2428 0.772558984865451 0.2929292929308336 0
-2429 0.7725589848654284 0.3030303030318467 0
-2430 0.763811253514087 0.2979797979813218 0
-2431 0.5013793129722846 0.772727272728218 0
-2432 0.5101270443236501 0.7676767676777401 0
-2433 0.510127044323624 0.7777777777787434 0
-2434 0.5188747756749893 0.7727272727282632 0
-2435 0.518874775674963 0.7828282828292683 0
-2436 0.5276225070263294 0.7777777777787882 0
-2437 0.5276225070263032 0.7878787878797928 0
-2438 0.5363702383776695 0.7828282828293136 0
-2439 0.5363702383776963 0.7727272727283085 0
-2440 0.5451179697290365 0.7777777777788338 0
-2441 0.5451179697290097 0.7878787878798397 0
-2442 0.5538657010803768 0.7828282828293598 0
-2443 0.3176769545956437 0.09090909090941618 0
-2444 0.3176769545956689 0.08080808080837977 0
-2445 0.3264246859470364 0.08585858585891826 0
-2446 0.3264246859470619 0.07575757575788108 0
-2447 0.3351724172984292 0.08080808080841989 0
-2448 0.7988021789180872 0.8838383838395436 0
-2449 0.5538657010803504 0.7929292929303656 0
-2450 0.5626134324317176 0.7878787878798861 0
-2451 0.562613432431691 0.7979797979808914 0
-2452 0.5713611637830585 0.7929292929304119 0
-2453 0.571361163783032 0.8030303030314176 0
-2454 0.5801088951343999 0.7979797979809381 0
-2455 0.2564428351346705 0.7525252525253998 0
-2456 0.09023593945847047 0.929292929292844 0
-2457 0.4751361189178013 0.9292929292936262 0
-2458 0.4838838502691594 0.9242424242431532 0
-2459 0.07274047675726925 0.1616161616160843 0
-2460 0.07274047675724801 0.171717171717083 0
-2461 0.0727404767571434 0.3131313131312639 0
-2462 0.07274047675712082 0.323232323232255 0
-2463 0.2826860291901704 0.07070707070726386 0
-2464 0.4226497308097319 0.9292929292934793 0
-2465 0.8250453729740653 0.07070707070875373 0
-2466 0.8162976416227248 0.07575757575922899 0
-2467 0.1252268648656259 0.07070707070708535 0
-2468 0.1339745962169886 0.07575757575761827 0
-2469 0.4401451935148857 0.07070707070772896 0
-2470 0.4488929248662388 0.07575757575826306 0
-2471 0.8425408356767315 0.07070707070878282 0
-2472 0.4051542681070469 0.929292929293431 0
-2473 0.3964065367557185 0.9242424242429119 0
-2474 0.3351724172984547 0.07070707070738227 0
-2475 0.3439201486498228 0.07575757575792115 0
-2476 0.6850816713527057 0.07070707070868901 0
-2477 0.6763339400013737 0.07575757575916348 0
-2478 0.4226497308121474 0.07070707070767895 0
-2479 0.4139019994607593 0.07575757575816992 0
-2480 0.9300181491884673 0.7878787878797422 0
-2481 0.7900544475673579 0.6969696969707743 0
-2482 0.7813067162160292 0.6919191919202621 0
-2483 0.7988021789186877 0.7020202020212865 0
-2484 0.66758620864952 0.1818181818193063 0
-2485 0.685081671352203 0.181818181819348 0
-2486 0.693829402703557 0.1767676767688719 0
-2487 0.5013793129723362 0.7525252525262142 0
-2488 0.9125226864870473 0.3535353535372873 0
-2489 0.9212704178384628 0.3585858585878381 0
-2490 0.7638112535140585 0.3080808080823301 0
-2491 0.755063522162723 0.3030303030318103 0
-2492 0.9125226864860725 0.6565656565671342 0
-2493 0.9212704178373996 0.6515151515166679 0
-2494 0.6763339400009305 0.1565656565668457 0
-2495 0.1952087156747194 0.9090909090909977 0
-2496 0.1602177902705068 0.4040404040404914 0
-2497 0.1602177902704992 0.4141414141414916 0
-2498 0.1602177902705284 0.393939393939491 0
-2499 0.1689655216219068 0.3888888888890114 0
-2500 0.3614156113512014 0.6111111111115436 0
-2501 0.3526678799998363 0.616161616162026 0
-2502 0.160217790269369 0.8888888888889365 0
-2503 0.4051542681070907 0.9090909090914457 0
-2504 0.2301996410814998 0.3333333333336108 0
-2505 0.2214519097301336 0.3383838383840929 0
-2506 0.9125226864874745 0.1919191919209101 0
-2507 0.9212704178388592 0.1868686868704119 0
-2508 0.8862794924330356 0.3383838383857115 0
-2509 0.8775317610816997 0.3333333333351899 0
-2510 0.5801088951343735 0.8080808080819444 0
-2511 0.5888566264857416 0.8030303030314643 0
-2512 0.09898367081092932 0.4090909090907148 0
-2513 0.2914337605406687 0.4797979797983035 0
-2514 0.256442835135553 0.3383838383841746 0
-2515 0.265190566486895 0.3434343434346963 0
-2516 0.3964065367560772 0.7727272727279498 0
-2517 0.23894737243321 0.09595959595975995 0
-2518 0.7725589848649403 0.5656565656578825 0
-2519 0.7638112535135858 0.5707070707083622 0
-2520 0.4751361189189682 0.4444444444455921 0
-2521 0.4663883875676068 0.449494949496079 0
-2522 0.9300181491901888 0.2121212121230072 0
-2523 0.07274047675739453 0.08080808080800612 0
-2524 0.07274047675741403 0.0707070707069859 0
-2525 0.07274047675688206 0.4141414141411472 0
-2526 0.07274047675690748 0.4040404040401537 0
-2527 0.07274047675616568 0.6666666666664357 0
-2528 0.07274047675614041 0.6767676767674631 0
-2529 0.08148820810750063 0.6818181818179989 0
-2530 0.07274047675611522 0.6868686868684903 0
-2531 0.08148820810747631 0.6919191919190258 0
-2532 0.07274047675609038 0.6969696969695179 0
-2533 0.08148820810745154 0.7020202020200532 0
-2534 0.07274047675606646 0.7070707070705456 0
-2535 0.08148820810742619 0.7121212121210804 0
-2536 0.07274047675604112 0.7171717171715728 0
-2537 0.08148820810740059 0.7222222222221073 0
-2538 0.07274047675601494 0.7272727272725993 0
-2539 0.08148820810737445 0.732323232323135 0
-2540 0.07274047675599073 0.7373737373736264 0
-2541 0.08148820810734825 0.7424242424241619 0
-2542 0.07274047675596461 0.7474747474746529 0
-2543 0.08148820810732198 0.7525252525251881 0
-2544 0.07274047675593923 0.7575757575756786 0
-2545 0.08148820810729501 0.7626262626262139 0
-2546 0.07274047675591543 0.7676767676767038 0
-2547 0.09023593945873333 0.7373737373736704 0
-2548 0.08148820810726849 0.7727272727272401 0
-2549 0.07274047675588671 0.7777777777777289 0
-2550 0.0902359394586519 0.7676767676767504 0
-2551 0.08148820810724085 0.7828282828282651 0
-2552 0.07274047675585694 0.7878787878787538 0
-2553 0.2214519097305127 0.06565656565661636 0
-2554 0.2127041783791215 0.07070707070711678 0
-2555 0.2127041783791166 0.08080808080815817 0
-2556 0.2039564470277424 0.07575757575762304 0
-2557 0.2039564470260178 0.934343434343496 0
-2558 0.2127041783773692 0.9292929292930159 0
-2559 0.9300181491883482 0.8787878787892653 0
-2560 0.9300181491883465 0.8888888888902921 0
-2561 0.9300181491883587 0.8686868686882622 0
-2562 0.9300181491886695 0.6767676767690971 0
-2563 0.930018149188649 0.6868686868700585 0
-2564 0.5451179697298156 0.6060606060613069 0
-2565 0.5363702383784766 0.6010101010107838 0
-2566 0.5363702383785092 0.5909090909097938 0
-2567 0.2476951037833012 0.757575757575885 0
-2568 0.247695103783326 0.7474747474748769 0
-2569 0.2476951037832786 0.7676767676768923 0
-2570 0.3964065367561014 0.762626262626948 0
-2571 0.3001814918913419 0.7878787878790293 0
-2572 0.4051542681092108 0.1515151515158027 0
-2573 0.4139019994605659 0.1565656565663322 0
-2574 0.4051542681091879 0.1616161616168214 0
-2575 0.4139019994605406 0.1666666666673514 0
-2576 0.4051542681091632 0.1717171717178395 0
-2577 0.4139019994605157 0.1767676767683694 0
-2578 0.405154268109139 0.1818181818188571 0
-2579 0.4139019994604909 0.186868686869387 0
-2580 0.4051542681091146 0.1919191919198747 0
-2581 0.4226497308118666 0.1818181818188997 0
-2582 0.4226497308118418 0.1919191919199156 0
-2583 0.4313974621632156 0.1868686868694296 0
-2584 0.4313974621631909 0.1969696969704429 0
-2585 0.440145193514563 0.1919191919199581 0
-2586 0.2039564470266216 0.6919191919192743 0
-2587 0.3964065367572627 0.3181818181825879 0
-2588 0.3351724172977661 0.313131313131902 0
-2589 0.4401451935132298 0.6666666666673254 0
-2590 0.8687840297293172 0.7323232323243255 0
-2591 0.8687840297293016 0.742424242425298 0
-2592 0.8600362983779816 0.7373737373747982 0
-2593 0.8600362983779672 0.7474747474757736 0
-2594 0.851288567026645 0.7424242424252712 0
-2595 0.1252268648651536 0.3434343434343738 0
-2596 0.1864609843241571 0.5808080808081226 0
-2597 0.177713252972811 0.5757575757575973 0
-2598 0.1777132529727871 0.5858585858586078 0
-2599 0.2739382978380123 0.4595959595962531 0
-2600 0.2826860291893775 0.4545454545457725 0
-2601 0.07274047675619133 0.6565656565654083 0
-2602 0.4488929248649336 0.5101010101018405 0
-2603 0.8862794924333003 0.2171717171734247 0
-2604 0.440145193513644 0.3939393939405095 0
-2605 0.4401451935136619 0.3838383838395047 0
-2606 0.4488929248650242 0.3787878787890169 0
-2607 0.4401451935136793 0.3737373737384991 0
-2608 0.4488929248650422 0.3686868686880117 0
-2609 0.4401451935136969 0.3636363636374932 0
-2610 0.4488929248650599 0.3585858585870058 0
-2611 0.7900544475676269 0.5656565656579213 0
-2612 0.9300181491898832 0.3535353535373466 0
-2613 0.9300181491898617 0.3636363636383779 0
-2614 0.9212704178383994 0.368686868688855 0
-2615 0.9300181491898348 0.3737373737394069 0
-2616 0.9212704178384126 0.3787878787898895 0
-2617 0.930018149189816 0.3838383838404368 0
-2618 0.9300181491902906 0.1010101010119083 0
-2619 0.9300181491902726 0.1111111111129214 0
-2620 0.0814882081087875 0.06565656565649261 0
-2621 0.781306716215186 0.9343434343445171 0
-2622 0.3439201486498485 0.06565656565688333 0
-2623 0.3526678800012191 0.07070707070742213 0
-2624 0.6763339400013885 0.06565656565820742 0
-2625 0.6675862086500649 0.07070707070866661 0
-2626 0.7638112535124871 0.9343434343444726 0
-2627 0.7550635221611717 0.9292929292939756 0
-2628 0.4139019994607873 0.06565656565714012 0
-2629 0.2039564470277526 0.06565656565658202 0
-2630 0.1952087156763682 0.07070707070708587 0
-2631 0.1952087156763819 0.08080808080813939 0
-2632 0.09898367080981603 0.9343434343433612 0
-2633 0.326424685947086 0.06565656565684512 0
-2634 0.396406536755692 0.9343434343439022 0
-2635 0.3876588054043654 0.929292929293384 0
-2636 0.4663883875664408 0.9343434343441026 0
-2637 0.4838838502691341 0.9343434343441488 0
-2638 0.4926315816204943 0.9292929292936749 0
-2639 0.4488929248662668 0.06565656565724381 0
-2640 0.4576406562176175 0.07070707070777746 0
-2641 0.8162976416227453 0.0656565656582508 0
-2642 0.8075499102714082 0.07070707070872338 0
-2643 0.133974596217011 0.06565656565658856 0
-2644 0.8512885670266293 0.7525252525262489 0
-2645 0.8425408356753068 0.7474747474757447 0
-2646 0.5888566264857683 0.7929292929304579 0
-2647 0.59760435783711 0.7979797979809841 0
-2648 0.5976043578370831 0.8080808080819917 0
-2649 0.6063520891884516 0.8030303030315117 0
-2650 0.6938294027035314 0.1868686868698647 0
-2651 0.7025771340548854 0.1818181818193888 0
-2652 0.7025771340549101 0.1717171717183954 0
-2653 0.7113248654062374 0.1767676767689137 0
-2654 0.7813067162160077 0.7020202020212505 0
-2655 0.7725589848646791 0.6969696969707366 0
-2656 0.5451179697290628 0.7676767676778279 0
-2657 0.6938294027039207 0.09595959596110563 0
-2658 0.9212704178384049 0.3888888888909318 0
-2659 0.9300181491897975 0.393939393941467 0
-2660 0.7550635221626943 0.3131313131328178 0
-2661 0.7463157908113596 0.308080808082299 0
-2662 0.08148820810721319 0.7929292929292894 0
-2663 0.07274047675582981 0.797979797979778 0
-2664 0.8162976416224029 0.196969696971269 0
-2665 0.2651905664865493 0.5050505050507514 0
-2666 0.265190566486647 0.4646464646467339 0
-2667 0.9125226864874938 0.1818181818198802 0
-2668 0.9212704178388785 0.1767676767693822 0
-2669 0.9300181491902452 0.1818181818199145 0
-2670 0.9300181491902657 0.1717171717188832 0
-2671 0.9212704178388983 0.1666666666683517 0
-2672 0.4751361189178533 0.9090909090916388 0
-2673 0.7725589848647008 0.6868686868697484 0
-2674 0.7638112535133499 0.6919191919202246 0
-2675 0.9037749551359001 0.2878787878806318 0
-2676 0.912522686487264 0.292929292931163 0
-2677 0.6063520891884251 0.8131313131325194 0
-2678 0.6150998205397937 0.8080808080820391 0
-2679 0.1077314021624263 0.3535353535353229 0
-2680 0.1164791335137601 0.3585858585858404 0
-2681 0.2651905664869205 0.3333333333336911 0
-2682 0.2739382978382634 0.3383838383842138 0
-2683 0.8775317610816595 0.3434343434362091 0
-2684 0.8687840297303255 0.3383838383856844 0
-2685 0.763811253513606 0.560606060607367 0
-2686 0.7550635221622507 0.5656565656578475 0
-2687 0.4401451935145382 0.2020202020209695 0
-2688 0.448892924865909 0.1969696969704848 0
-2689 0.4313974621631671 0.2070707070714545 0
-2690 0.4488929248659339 0.1868686868694756 0
-2691 0.4576406562172785 0.1919191919200016 0
-2692 0.7463157908100485 0.8636363636378072 0
-2693 0.7463157908100605 0.853535353536815 0
-2694 0.2301996410819048 0.0606060606061157 0
-2695 0.1952087156763821 0.06060606060604609 0
-2696 0.06399274540603761 0.07575757575747873 0
-2697 0.06399274540605708 0.0656565656564588 0
-2698 0.06399274540591129 0.1666666666665656 0
-2699 0.06399274540589033 0.1767676767675626 0
-2700 0.07274047675722571 0.1818181818180801 0
-2701 0.06399274540586869 0.186868686868559 0
-2702 0.07274047675720327 0.1919191919190764 0
-2703 0.06399274540584546 0.1969696969695548 0
-2704 0.07274047675718096 0.2020202020200719 0
-2705 0.06399274540582357 0.2070707070705501 0
-2706 0.07274047675715872 0.2121212121210669 0
-2707 0.06399274540580308 0.2171717171715448 0
-2708 0.07274047675713656 0.2222222222220615 0
-2709 0.08148820810849267 0.2171717171715836 0
-2710 0.08148820810847054 0.2272727272725793 0
-2711 0.09023593945982746 0.2222222222221005 0
-2712 0.07274047675711387 0.2323232323230565 0
-2713 0.09023593945980529 0.2323232323230973 0
-2714 0.09898367081116313 0.227272727272618 0
-2715 0.09898367081114084 0.2373737373736155 0
-2716 0.1077314021624995 0.2323232323231359 0
-2717 0.063992745405932 0.1565656565655681 0
-2718 0.06399274540579111 0.3181818181817403 0
-2719 0.0639927454057686 0.3282828282827313 0
-2720 0.06399274540465752 0.7222222222220651 0
-2721 0.06399274540458653 0.7525252525251482 0
-2722 0.06399274540450467 0.7828282828282207 0
-2723 0.0639927454048051 0.6616161616158998 0
-2724 0.06399274540483092 0.651515151514871 0
-2725 0.4576406562176489 0.06060606060675434 0
-2726 0.4663883875689943 0.06565656565729218 0
-2727 0.1252268648656459 0.0606060606060547 0
-2728 0.387658805404339 0.9393939393943734 0
-2729 0.3789110740530122 0.934343434343855 0
-2730 0.3789110740530394 0.9242424242428657 0
-2731 0.3701633427016852 0.9292929292933363 0
-2732 0.3701633427017135 0.9191919191923466 0
-2733 0.3614156113503593 0.924242424242817 0
-2734 0.361415611350331 0.9343434343438067 0
-2735 0.3526678799990013 0.9292929292932803 0
-2736 0.3526678799989767 0.939393939394276 0
-2737 0.3439201486476468 0.9343434343437502 0
-2738 0.0902359394584536 0.9393939393938504 0
-2739 0.08148820810710757 0.9343434343433324 0
-2740 0.9212704178383851 0.3989898989919609 0
-2741 0.9300181491897713 0.4040404040424932 0
-2742 0.92127041783839 0.409090909092985 0
-2743 0.9300181491897496 0.4141414141435172 0
-2744 0.09023593945882193 0.7070707070705927 0
-2745 0.1602177902694718 0.8383838383839166 0
-2746 0.4313974621612135 0.8737373737380306 0
-2747 0.3964065367577626 0.1868686868693448 0
-2748 0.3964065367577384 0.1969696969703627 0
-2749 0.3876588054063864 0.1919191919198339 0
-2750 0.3876588054063621 0.202020202020851 0
-2751 0.3789110740550097 0.1969696969703222 0
-2752 0.3789110740549856 0.2070707070713393 0
-2753 0.3701633427036333 0.2020202020208108 0
-2754 0.3701633427036088 0.2121212121218274 0
-2755 0.3614156113522566 0.2070707070712988 0
-2756 0.3876588054063388 0.2121212121218677 0
-2757 0.3614156113522318 0.2171717171723154 0
-2758 0.352667880000879 0.2121212121217853 0
-2759 0.3526678800008571 0.2222222222228029 0
-2760 0.3439201486495025 0.2171717171722732 0
-2761 0.3614156113522125 0.227272727273332 0
-2762 0.798802178918958 0.5707070707084358 0
-2763 0.501379312972259 0.7828282828292233 0
-2764 0.912522686487284 0.2828282828301334 0
-2765 0.9212704178386496 0.2878787878806671 0
-2766 0.9212704178386699 0.2777777777796351 0
-2767 0.930018149190037 0.28282828283017 0
-2768 0.9300181491900575 0.2727272727291363 0
-2769 0.9300181491900107 0.2929292929311935 0
-2770 0.9300181491902852 0.161616161617852 0
-2771 0.9212704178388965 0.1161616161633961 0
-2772 0.7550635221614033 0.8585858585873337 0
-2773 0.7550635221614231 0.8484848484863302 0
-2774 0.7463157908100788 0.8434343434358126 0
-2775 0.7638112535127664 0.8535353535368467 0
-2776 0.8075499102714291 0.06060606060774944 0
-2777 0.7988021789200968 0.06565656565821712 0
-2778 0.685081671352789 0.06060606060765893 0
-2779 0.6675862086500789 0.06060606060771239 0
-2780 0.6588384772987628 0.06565656565816091 0
-2781 0.3526678800012428 0.06060606060638386 0
-2782 0.06399274540555183 0.4090909090906285 0
-2783 0.06399274540557716 0.3989898989896364 0
-2784 0.06399274540552614 0.4191919191916209 0
-2785 0.06399274540472953 0.6919191919189831 0
-2786 0.4926315816204674 0.9393939393946718 0
-2787 0.50137931297183 0.9343434343441959 0
-2788 0.21270417837735 0.9393939393940072 0
-2789 0.2214519097287007 0.9343434343435272 0
-2790 0.2214519097287201 0.9242424242425363 0
-2791 0.2301996410800518 0.9292929292930481 0
-2792 0.2301996410800708 0.9191919191920567 0
-2793 0.2389473724314034 0.924242424242569 0
-2794 0.2389473724313837 0.9343434343435598 0
-2795 0.2476951037827358 0.9292929292930808 0
-2796 0.2476951037827558 0.919191919192089 0
-2797 0.2564428351340866 0.9242424242426025 0
-2798 0.2564428351340685 0.9343434343435923 0
-2799 0.2651905664854181 0.9292929292931142 0
-2800 0.2651905664854366 0.9191919191921227 0
-2801 0.2739382978367685 0.924242424242636 0
-2802 0.2739382978367492 0.9343434343436265 0
-2803 0.2826860291880986 0.9292929292931488 0
-2804 0.2826860291880791 0.9393939393941376 0
-2805 0.7550635221611164 0.9393939393949733 0
-2806 0.7463157908097757 0.9343434343444653 0
-2807 0.9387658805399732 0.681818181819597 0
-2808 0.9387658805399531 0.6919191919205544 0
-2809 0.9387658805403638 0.5404040404058112 0
-2810 0.9387658805403447 0.5505050505067888 0
-2811 0.4401451935137144 0.3535353535364875 0
-2812 0.4488929248650776 0.3484848484859999 0
-2813 0.4576406562164229 0.3535353535365185 0
-2814 0.4576406562164405 0.3434343434355125 0
-2815 0.4663883875677857 0.3484848484860313 0
-2816 0.4663883875678035 0.3383838383850256 0
-2817 0.4751361189191483 0.343434343435544 0
-2818 0.4751361189191664 0.3333333333345392 0
-2819 0.4838838502705106 0.3383838383850568 0
-2820 0.4838838502705285 0.3282828282840528 0
-2821 0.4926315816218722 0.3333333333345702 0
-2822 0.4926315816218902 0.3232323232335667 0
-2823 0.5013793129732333 0.3282828282840835 0
-2824 0.501379312973251 0.3181818181830807 0
-2825 0.5101270443245939 0.3232323232335968 0
-2826 0.5101270443246113 0.3131313131325947 0
-2827 0.518874775675958 0.3181818181831018 0
-2828 0.5188747756759705 0.3080808080821091 0
-2829 0.5276225070273171 0.3131313131326152 0
-2830 0.1077314021624771 0.242424242424134 0
-2831 0.1164791335138365 0.2373737373736543 0
-2832 0.1164791335138585 0.2272727272726549 0
-2833 0.1252268648651972 0.2323232323231742 0
-2834 0.7463157908113417 0.318181818183304 0
-2835 0.7375680594599981 0.3131313131327863 0
-2836 0.09898367081111994 0.2474747474746103 0
-2837 0.9125226864860895 0.6464646464661694 0
-2838 0.9212704178374178 0.6414141414157027 0
-2839 0.9300181491887266 0.6464646464662004 0
-2840 0.9300181491887446 0.636363636365237 0
-2841 0.9037749551347604 0.6515151515166387 0
-2842 0.9387658805400506 0.641414141415736 0
-2843 0.9387658805400704 0.6313131313147726 0
-2844 0.160217790270559 0.3838383838384907 0
-2845 0.1689655216219307 0.3787878787880113 0
-2846 0.1514700589191489 0.3888888888889571 0
-2847 0.2389473724319571 0.7525252525253605 0
-2848 0.2389473724319822 0.7424242424243516 0
-2849 0.4576406562173036 0.1818181818189945 0
-2850 0.4663883875686458 0.1868686868695202 0
-2851 0.9387658805396987 0.8838383838395972 0
-2852 0.9387658805397123 0.8939393939407007 0
-2853 0.2214519097301575 0.3282828282830875 0
-2854 0.2127041783787919 0.3333333333335698 0
-2855 0.2301996410815235 0.3232323232326049 0
-2856 0.2127041783787679 0.3434343434345745 0
-2857 0.203956447027427 0.3383838383840542 0
-2858 0.3614156113503876 0.9141414141418268 0
-2859 0.3614156113511786 0.6212121212125488 0
-2860 0.3526678799998139 0.6262626262630313 0
-2861 0.28268602918812 0.9191919191921587 0
-2862 0.2914337605394499 0.9242424242426721 0
-2863 0.7113248654062612 0.166666666667922 0
-2864 0.7200725967575889 0.1717171717184393 0
-2865 0.3439201486494882 0.2272727272732894 0
-2866 0.3351724172981296 0.2222222222227611 0
-2867 0.3351724172981501 0.2121212121217432 0
-2868 0.326424685946773 0.2171717171722313 0
-2869 0.326424685946797 0.207070707071213 0
-2870 0.3176769545954194 0.2121212121217012 0
-2871 0.1689655216214404 0.5808080808080816 0
-2872 0.1689655216214165 0.590909090909093 0
-2873 0.4488929248641519 0.7828282828290839 0
-2874 0.08148820810718711 0.8030303030303163 0
-2875 0.07274047675580245 0.8080808080808016 0
-2876 0.09023593945857217 0.7979797979798333 0
-2877 0.07274047675693181 0.3939393939391616 0
-2878 0.06399274540560194 0.3888888888886449 0
-2879 0.2651905664866718 0.4545454545457296 0
-2880 0.7638112535133709 0.6818181818192345 0
-2881 0.7550635221620188 0.6868686868697123 0
-2882 0.5013793129718546 0.9242424242431989 0
-2883 0.5101270443231932 0.9292929292937172 0
-2884 0.5101270443231658 0.9393939393947193 0
-2885 0.5188747756745316 0.9343434343442403 0
-2886 0.5188747756745572 0.9242424242432364 0
-2887 0.5276225070258973 0.9292929292937604 0
-2888 0.5276225070258728 0.939393939394765 0
-2889 0.5363702383772398 0.9343434343442838 0
-2890 0.553865701080324 0.8030303030313692 0
-2891 0.1252268648652189 0.2222222222221729 0
-2892 0.1339745962165591 0.2272727272726932 0
-2893 0.6150998205397683 0.818181818183046 0
-2894 0.6238475518911368 0.8131313131325649 0
-2895 0.7550635221622705 0.5555555555568525 0
-2896 0.7463157908109148 0.5606060606073325 0
-2897 0.3876588054047387 0.7676767676774275 0
-2898 0.3876588054047148 0.7777777777784289 0
-2899 0.1339745962169663 0.08585858585864703 0
-2900 0.4313974621623339 0.3686868686879821 0
-2901 0.7988021789189804 0.5606060606074439 0
-2902 0.807549910270312 0.5656565656579589 0
-2903 0.9212704178383709 0.4191919191940067 0
-2904 0.9300181491897259 0.424242424244538 0
-2905 0.4751361189189505 0.4545454545465961 0
-2906 0.4838838502703118 0.4494949494961095 0
-2907 0.4663883875675888 0.4595959595970828 0
-2908 0.9387658805411048 0.4191919191940501 0
-2909 0.9387658805410799 0.42929292929507 0
-2910 0.9387658805416338 0.1767676767694166 0
-2911 0.9387658805412067 0.378787878789946 0
-2912 0.9387658805414265 0.2777777777796706 0
-2913 0.9387658805414456 0.2676767676786349 0
-2914 0.7988021789201165 0.055555555557249 0
-2915 0.7900544475687872 0.0606060606077147 0
-2916 0.5363702383784431 0.6111111111117862 0
-2917 0.5451179697297889 0.6161616161623099 0
-2918 0.527622507027058 0.6060606060613156 0
-2919 0.7025771340548629 0.1919191919203806 0
-2920 0.5013793129732699 0.3080808080820781 0
-2921 0.8337931043253456 0.09595959596124268 0
-2922 0.3876588054047642 0.7575757575764261 0
-2923 0.3964065367561275 0.7525252525259467 0
-2924 0.7638112535141036 0.2878787878803126 0
-2925 0.8075499102708789 0.2929292929308956 0
-2926 0.8075499102708337 0.3030303030319308 0
-2927 0.7725589848653409 0.3131313131328975 0
-2928 0.7725589848647947 0.6363636363648204 0
-2929 0.2564428351346956 0.742424242424391 0
-2930 0.4051542681093969 0.07070707070763277 0
-2931 0.4051542681094232 0.06060606060660117 0
-2932 0.4139019994608155 0.05555555555610782 0
-2933 0.1427223275683364 0.08080808080815216 0
-2934 0.7550635221614137 0.8686868686882898 0
-2935 0.7288203281073222 0.8838383838397241 0
-2936 0.93876588054166 0.106060606062431 0
-2937 0.9387658805416658 0.09595959596141147 0
-2938 0.9387658805416466 0.1161616161634377 0
-2939 0.9037749551361107 0.1868686868703775 0
-2940 0.06399274540602218 0.08585858585849768 0
-2941 0.8512885670271048 0.4393939393956919 0
-2942 0.3439201486484714 0.6212121212125087 0
-2943 0.3439201486484488 0.6313131313135142 0
-2944 0.3351724172971062 0.6262626262629912 0
-2945 0.3351724172970834 0.6363636363639973 0
-2946 0.3264246859457405 0.6313131313134741 0
-2947 0.3264246859457178 0.6414141414144811 0
-2948 0.3176769545943743 0.6363636363639579 0
-2949 0.440145193513626 0.4040404040415144 0
-2950 0.4313974621622818 0.3989898989909972 0
-2951 0.4313974621622635 0.4090909090920016 0
-2952 0.4488929248648303 0.5606060606067982 0
-2953 0.1689655216214649 0.5707070707070704 0
-2954 0.1952087156753138 0.6666666666667357 0
-2955 0.6325952832442189 0.1616161616172538 0
-2956 0.6325952832441964 0.1717171717182417 0
-2957 0.6238475518928687 0.1666666666677285 0
-2958 0.6238475518928467 0.1767676767687171 0
-2959 0.6150998205415179 0.1717171717182039 0
-2960 0.6150998205414961 0.1818181818191934 0
-2961 0.6063520891901666 0.1767676767686795 0
-2962 0.6238475518928248 0.1868686868697043 0
-2963 0.6063520891901447 0.1868686868696697 0
-2964 0.5976043578388139 0.1818181818191558 0
-2965 0.5976043578387922 0.1919191919201468 0
-2966 0.5888566264874611 0.1868686868696323 0
-2967 0.3701633427017429 0.9090909090913561 0
-2968 0.8425408356765153 0.1919191919208144 0
-2969 0.9300181491883301 0.8989898989912929 0
-2970 0.9387658805396817 0.9040404040418133 0
-2971 0.9300181491883082 0.9090909090923195 0
-2972 0.9387658805396646 0.914141414142845 0
-2973 0.9300181491882875 0.919191919193342 0
-2974 0.9387658805396474 0.9242424242438706 0
-2975 0.9300181491882665 0.9292929292943654 0
-2976 0.9387658805396278 0.9343434343448968 0
-2977 0.9300181491882442 0.9393939393953913 0
-2978 0.9212704178368841 0.9343434343448576 0
-2979 0.9387658805396065 0.9444444444459239 0
-2980 0.05524501405457523 0.1616161616160488 0
-2981 0.0552450140545958 0.1515151515150525 0
-2982 0.05524501405446857 0.2121212121210291 0
-2983 0.7463157908097429 0.944444444445478 0
-2984 0.7375680594583884 0.9393939393949459 0
-2985 0.5363702383772161 0.9444444444452906 0
-2986 0.5451179697285856 0.9393939393948075 0
-2987 0.08148820810709106 0.9444444444443394 0
-2988 0.07274047675574331 0.9393939393938214 0
-2989 0.343920148647624 0.9444444444447461 0
-2990 0.4663883875690291 0.05555555555626521 0
-2991 0.4751361189203684 0.06060606060680873 0
-2992 0.8162976416227605 0.05555555555727933 0
-2993 0.2039564470259994 0.9444444444444861 0
-2994 0.09898367080979907 0.9444444444443669 0
-2995 0.1077314021611593 0.9393939393938791 0
-2996 0.92127041783686 0.944444444445884 0
-2997 0.9125226864855009 0.9393939393953493 0
-2998 0.6588384772987714 0.05555555555721539 0
-2999 0.6500907459474526 0.06060606060767146 0
-3000 0.3964065367556649 0.9444444444448911 0
-3001 0.1339745962170265 0.05555555555556805 0
-3002 0.4488929248663001 0.05555555555621892 0
-3003 0.7375680594583627 0.9494949494959692 0
-3004 0.7288203281070057 0.9444444444454354 0
-3005 0.9125226864857745 0.8181818181826261 0
-3006 0.9037749551344556 0.8131313131321253 0
-3007 0.9212704178370951 0.8232323232331258 0
-3008 0.9300181491884264 0.8181818181826496 0
-3009 0.842540835675289 0.7575757575767232 0
-3010 0.833793104323967 0.7525252525262184 0
-3011 0.8512885670266108 0.7626262626272239 0
-3012 0.8337931043239859 0.7424242424252382 0
-3013 0.8250453729726436 0.7474747474757121 0
-3014 0.9475136118912744 0.6868686868700938 0
-3015 0.9475136118912528 0.6969696969710502 0
-3016 0.5888566264874389 0.1969696969706238 0
-3017 0.5801088951361077 0.1919191919201082 0
-3018 0.5801088951361302 0.1818181818191162 0
-3019 0.5713611637847771 0.186868686869592 0
-3020 0.5713611637847539 0.1969696969705853 0
-3021 0.5626134324334228 0.1919191919200688 0
-3022 0.5626134324334455 0.181818181819075 0
-3023 0.5538657010820913 0.1868686868695518 0
-3024 0.553865701082068 0.1969696969705464 0
-3025 0.5451179697307358 0.1919191919200294 0
-3026 0.5451179697307584 0.1818181818190352 0
-3027 0.5363702383794027 0.186868686869513 0
-3028 0.4663883875678215 0.3282828282840199 0
-3029 0.53637023837938 0.1969696969705076 0
-3030 0.5276225070280461 0.1919191919199906 0
-3031 0.5276225070280687 0.181818181818995 0
-3032 0.5188747756767114 0.1868686868694731 0
-3033 0.7550635221614407 0.8383838383853267 0
-3034 0.7463157908100964 0.8333333333348105 0
-3035 0.5976043578371366 0.787878787879977 0
-3036 0.518874775676689 0.1969696969704701 0
-3037 0.7725589848646569 0.7070707070717251 0
-3038 0.5276225070273299 0.303030303031623 0
-3039 0.5363702383786655 0.3080808080821289 0
-3040 0.6938294027035068 0.1969696969708574 0
-3041 0.623847551891162 0.8030303030315582 0
-3042 0.6325952832425048 0.8080808080820835 0
-3043 0.6325952832424802 0.8181818181830902 0
-3044 0.641343014593848 0.8131313131326072 0
-3045 0.6413430145938712 0.8030303030316017 0
-3046 0.6500907459452142 0.8080808080821246 0
-3047 0.6500907459451924 0.8181818181831285 0
-3048 0.6588384772965571 0.8131313131326449 0
-3049 0.6588384772965811 0.8030303030316427 0
-3050 0.6675862086479221 0.8080808080821639 0
-3051 0.1252268648651978 0.242424242424198 0
-3052 0.09023593945987235 0.2929292929293168 0
-3053 0.08148820810854039 0.2878787878788016 0
-3054 0.6675862086499822 0.08080808080959914 0
-3055 0.8687840297303048 0.3484848484866979 0
-3056 0.8600362983789547 0.3434343434361768 0
-3057 0.8775317610815843 0.353535353537241 0
-3058 0.9125226864869299 0.383838383840358 0
-3059 0.7988021789200588 0.07575757575921044 0
-3060 0.9037749551347767 0.6414141414156708 0
-3061 0.8950272237834448 0.6464646464661418 0
-3062 0.7375680594599802 0.3232323232337903 0
-3063 0.7288203281086353 0.3181818181832727 0
-3064 0.1602177902705834 0.3737373737374907 0
-3065 0.3351724172962992 0.9393939393942363 0
-3066 0.3351724172963021 0.9292929292932508 0
-3067 0.3264246859467563 0.2272727272732481 0
-3068 0.4663883875686714 0.176767676768514 0
-3069 0.440145193514514 0.2121212121219807 0
-3070 0.4313974621631437 0.2171717171724658 0
-3071 0.4751361189203377 0.07070707070781984 0
-3072 0.483883850271709 0.06565656565733757 0
-3073 0.4838838502717442 0.05555555555632235 0
-3074 0.4926315816230832 0.06060606060685032 0
-3075 0.4926315816230464 0.07070707070786136 0
-3076 0.5013793129744146 0.06565656565738121 0
-3077 0.5013793129744547 0.055555555556353 0
-3078 0.5101270443257789 0.06060606060689679 0
-3079 0.5101270443257451 0.07070707070790493 0
-3080 0.5188747756771046 0.06565656565743029 0
-3081 0.5188747756771395 0.05555555555641261 0
-3082 0.5276225070284601 0.06060606060695813 0
-3083 0.5276225070284295 0.07070707070795283 0
-3084 0.536370238379783 0.06565656565748509 0
-3085 0.5363702383798156 0.05555555555649835 0
-3086 0.5451179697311335 0.06060606060702121 0
-3087 0.5451179697311028 0.07070707070800103 0
-3088 0.5538657010824499 0.06565656565753603 0
-3089 0.5538657010824853 0.05555555555655895 0
-3090 0.5626134324337969 0.06060606060707374 0
-3091 0.5626134324337644 0.07070707070805013 0
-3092 0.5713611637851099 0.06565656565758676 0
-3093 0.5713611637851438 0.05555555555661248 0
-3094 0.5801088951364524 0.06060606060712486 0
-3095 0.5801088951364226 0.07070707070809808 0
-3096 0.5888566264877627 0.06565656565763583 0
-3097 0.5888566264877924 0.05555555555666519 0
-3098 0.5976043578391002 0.06060606060717503 0
-3099 0.5976043578390728 0.07070707070814473 0
-3100 0.3176769545954424 0.2020202020206848 0
-3101 0.3089292232440657 0.2070707070711709 0
-3102 0.9300181491887645 0.6262626262642745 0
-3103 0.9387658805400907 0.621212121213811 0
-3104 0.08148820810716059 0.8131313131313433 0
-3105 0.07274047675577405 0.8181818181818252 0
-3106 0.06399274540441832 0.8131313131312886 0
-3107 0.06399274540439043 0.8232323232323123 0
-3108 0.07274047675574594 0.8282828282828487 0
-3109 0.06399274540436302 0.8333333333333366 0
-3110 0.07274047675572116 0.8383838383838733 0
-3111 0.06399274540433741 0.8434343434343615 0
-3112 0.05524501405303391 0.8181818181817755 0
-3113 0.291433760539472 0.9141414141416817 0
-3114 0.3439201486484265 0.6414141414145194 0
-3115 0.7288203281086535 0.3080808080822654 0
-3116 0.7200725967572911 0.3131313131327548 0
-3117 0.7200725967572732 0.3232323232337596 0
-3118 0.7113248654059289 0.318181818183243 0
-3119 0.7113248654059466 0.3080808080822377 0
-3120 0.7025771340545846 0.3131313131327255 0
-3121 0.7025771340546001 0.3030303030317165 0
-3122 0.6938294027032383 0.3080808080822037 0
-3123 0.6938294027031883 0.3181818181832486 0
-3124 0.6850816713518572 0.3131313131327241 0
-3125 0.68508167135189 0.3030303030316797 0
-3126 0.6763339400005245 0.3080808080821847 0
-3127 0.6763339400004428 0.3181818181832605 0
-3128 0.6675862086491414 0.3131313131327042 0
-3129 0.6675862086491846 0.303030303031648 0
-3130 0.6588384772978212 0.3080808080821512 0
-3131 0.6588384772977619 0.318181818183215 0
-3132 0.6500907459464677 0.3131313131326429 0
-3133 0.650090745946484 0.3030303030316091 0
-3134 0.6413430145951232 0.3080808080821156 0
-3135 0.6413430145950627 0.3181818181831758 0
-3136 0.6325952832437427 0.3131313131326434 0
-3137 0.6325952832437798 0.3030303030315778 0
-3138 0.6238475518924249 0.3080808080820829 0
-3139 0.6238475518923541 0.3181818181831437 0
-3140 0.6150998205410627 0.313131313132579 0
-3141 0.6150998205410765 0.3030303030315642 0
-3142 0.6063520891897228 0.3080808080820777 0
-3143 0.6063520891896776 0.3181818181830793 0
-3144 0.5976043578383614 0.3131313131325555 0
-3145 0.5976043578383528 0.3030303030315872 0
-3146 0.5888566264870204 0.3080808080820588 0
-3147 0.5888566264870116 0.3181818181830399 0
-3148 0.2564428351353066 0.4595959595962101 0
-3149 0.5363702383787166 0.3181818181830921 0
-3150 0.1689655216219542 0.368686868687011 0
-3151 0.2476951037837203 0.5555555555557382 0
-3152 0.07274047675695587 0.3838383838381701 0
-3153 0.06399274540562654 0.3787878787876535 0
-3154 0.1777132529732913 0.3737373737375264 0
-3155 0.2301996410806125 0.747474747474834 0
-3156 0.2301996410806371 0.7373737373738248 0
-3157 0.1602177902700937 0.5757575757575546 0
-3158 0.1602177902701179 0.5656565656565431 0
-3159 0.4226497308109193 0.4040404040414843 0
-3160 0.4226497308109013 0.4141414141424886 0
-3161 0.5188747756767341 0.1767676767684765 0
-3162 0.7463157908108965 0.5707070707083264 0
-3163 0.7375680594595587 0.5656565656578125 0
-3164 0.7375680594595799 0.5555555555568139 0
-3165 0.7288203281082231 0.560606060607295 0
-3166 0.7288203281082019 0.5707070707082935 0
-3167 0.7200725967568655 0.565656565657777 0
-3168 0.7200725967568864 0.5555555555567782 0
-3169 0.7113248654055279 0.5606060606072618 0
-3170 0.5276225070259219 0.9191919191927551 0
-3171 0.2564428351353316 0.4494949494952057 0
-3172 0.7550635221620409 0.6767676767687221 0
-3173 0.7463157908106868 0.6818181818191981 0
-3174 0.7463157908106658 0.69191919192019 0
-3175 0.7375680594593335 0.6868686868696749 0
-3176 0.343920148648195 0.7424242424246781 0
-3177 0.1077314021627829 0.121212121212145 0
-3178 0.3789110740533759 0.7727272727279064 0
-3179 0.3789110740533512 0.7828282828289073 0
-3180 0.8512885670277132 0.2777777777794948 0
-3181 0.6675862086478982 0.8181818181831674 0
-3182 0.6763339399992644 0.8131313131326858 0
-3183 0.6763339399992874 0.8030303030316828 0
-3184 0.6850816713506291 0.8080808080822047 0
-3185 0.6850816713506058 0.8181818181832085 0
-3186 0.6938294027019705 0.8131313131327264 0
-3187 0.6938294027019929 0.8030303030317228 0
-3188 0.7025771340533338 0.8080808080822433 0
-3189 0.3351724172983868 0.0909090909094728 0
-3190 0.7200725967568447 0.5757575757587744 0
-3191 0.221451909730181 0.3181818181820816 0
-3192 0.230199641081547 0.3131313131315985 0
-3193 0.6063520891883994 0.8232323232335277 0
-3194 0.133974596216581 0.2171717171716906 0
-3195 0.1427223275679218 0.2222222222222112 0
-3196 0.1427223275683261 0.0909090909091801 0
-3197 0.2739382978382888 0.3282828282832077 0
-3198 0.2826860291896333 0.3333333333337327 0
-3199 0.2826860291896092 0.3434343434347391 0
-3200 0.291433760540978 0.3383838383842581 0
-3201 0.291433760540955 0.3484848484852665 0
-3202 0.3001814918923225 0.3434343434347837 0
-3203 0.3001814918922986 0.3535353535357902 0
-3204 0.8075499102703354 0.5555555555569607 0
-3205 0.8162976416216661 0.5606060606074793 0
-3206 0.7638112535136258 0.5505050505063707 0
-3207 0.7988021789190048 0.5505050505064392 0
-3208 0.1864609843249926 0.06565656565654758 0
-3209 0.1864609843250109 0.05555555555550942 0
-3210 0.4838838502702945 0.4595959595971132 0
-3211 0.492631581621655 0.4545454545466265 0
-3212 0.7638112535126024 0.9141414141424681 0
-3213 0.7375680594584577 0.9292929292939459 0
-3214 0.9475136118924592 0.4242424242445824 0
-3215 0.9475136118924249 0.4343434343455879 0
-3216 0.9387658805410095 0.4393939393960738 0
-3217 0.947513611892814 0.2727272727291689 0
-3218 0.9475136118928346 0.2626262626281315 0
-3219 0.05524501405467779 0.07070707070695002 0
-3220 0.05524501405469829 0.06060606060593085 0
-3221 0.05524501405424805 0.3939393939391195 0
-3222 0.05524501405443976 0.3232323232322161 0
-3223 0.05524501405446212 0.3131313131312267 0
-3224 0.05524501405441661 0.3333333333332048 0
-3225 0.05524501405344379 0.656565656565363 0
-3226 0.05524501405347033 0.6464646464643334 0
-3227 0.1252268648656583 0.05050505050503392 0
-3228 0.387658805404313 0.949494949495362 0
-3229 0.6500907459474647 0.05050505050672078 0
-3230 0.9125226864854764 0.949494949496375 0
-3231 0.9037749551341153 0.9444444444458404 0
-3232 0.1077314021611432 0.9494949494948816 0
-3233 0.1164791335125007 0.9444444444443951 0
-3234 0.7550635221610665 0.9494949494959815 0
-3235 0.7900544475688074 0.05050505050675058 0
-3236 0.7813067162174787 0.05555555555721464 0
-3237 0.4051542681094494 0.05050505050556774 0
-3238 0.1952087156764017 0.05050505050500792 0
-3239 0.3526678799989524 0.9494949494952672 0
-3240 0.545117969728561 0.9494949494958171 0
-3241 0.5538657010799335 0.9444444444453334 0
-3242 0.5538657010799569 0.9343434343443227 0
-3243 0.5626134324313075 0.9393939393948487 0
-3244 0.5626134324312807 0.949494949495868 0
-3245 0.5713611637826588 0.9444444444453767 0
-3246 0.5713611637826715 0.9343434343443775 0
-3247 0.5801088951340293 0.9393939393948971 0
-3248 0.2127041783773297 0.9494949494949976 0
-3249 0.5976043578391282 0.05050505050620745 0
-3250 0.9475136118910582 0.8989898989911366 0
-3251 0.9475136118909914 0.9393939393954294 0
-3252 0.9475136118909693 0.9494949494964593 0
-3253 0.9475136118913756 0.6363636363652808 0
-3254 0.9300181491884172 0.8282828282836227 0
-3255 0.9387658805397483 0.8232323232331457 0
-3256 0.9387658805397392 0.8333333333341173 0
-3257 0.9475136118910688 0.8282828282836411 0
-3258 0.9475136118910592 0.8383838383846098 0
-3259 0.9475136118910795 0.818181818182674 0
-3260 0.9037749551344396 0.8232323232331007 0
-3261 0.8950272237831184 0.8181818181825996 0
-3262 0.8950272237831025 0.828282828283577 0
-3263 0.9475136118916839 0.5454545454563171 0
-3264 0.9475136118916434 0.5555555555573484 0
-3265 0.842540835675271 0.767676767677702 0
-3266 0.8512885670265921 0.7727272727282031 0
-3267 0.6413430145961545 0.05555555555716424 0
-3268 0.6413430145960581 0.06565656565806337 0
-3269 0.737568059459311 0.6969696969706669 0
-3270 0.7288203281079787 0.6919191919201514 0
-3271 0.7288203281080032 0.6818181818191611 0
-3272 0.7200725967566466 0.6868686868696352 0
-3273 0.720072596756587 0.696969696970704 0
-3274 0.7113248654052676 0.6919191919201578 0
-3275 0.711324865405312 0.6818181818191267 0
-3276 0.7025771340539526 0.6868686868696042 0
-3277 0.7025771340538944 0.6969696969706745 0
-3278 0.6938294027025935 0.6919191919200871 0
-3279 0.6938294027026193 0.6818181818190832 0
-3280 0.6850816713512616 0.6868686868695615 0
-3281 0.6850816713512404 0.69696969697056 0
-3282 0.6763339399999029 0.691919191920042 0
-3283 0.6763339399999242 0.6818181818190433 0
-3284 0.6675862086485649 0.686868686869525 0
-3285 0.6675862086485861 0.6767676767685253 0
-3286 0.6588384772972258 0.6818181818190079 0
-3287 0.6588384772972059 0.6919191919200082 0
-3288 0.6500907459458658 0.6868686868694913 0
-3289 0.6500907459458853 0.6767676767684905 0
-3290 0.6413430145945251 0.6818181818189745 0
-3291 0.6413430145945448 0.6717171717179725 0
-3292 0.6325952832431838 0.6767676767684564 0
-3293 0.7025771340533546 0.7979797979812412 0
-3294 0.7113248654046953 0.803030303031761 0
-3295 0.5363702383784154 0.6212121212127887 0
-3296 0.5451179697297607 0.6262626262633123 0
-3297 0.6500907459458464 0.6969696969704925 0
-3298 0.5976043578387706 0.2020202020211387 0
-3299 0.5363702383786872 0.2979797979811381 0
-3300 0.5801088951356593 0.3131313131325502 0
-3301 0.5801088951356117 0.3030303030315851 0
-3302 0.4401451935137317 0.3434343434354817 0
-3303 0.7025771340548403 0.2020202020213744 0
-3304 0.1602177902706181 0.3636363636364905 0
-3305 0.8425408356752535 0.777777777778683 0
-3306 0.8512885670265771 0.7828282828291871 0
-3307 0.5801088951356592 0.3232323232335352 0
-3308 0.8162976416225491 0.1363636363652581 0
-3309 0.4576406562173301 0.1717171717179882 0
-3310 0.886279492431568 0.873737373738433 0
-3311 0.7113248654046753 0.8131313131327624 0
-3312 0.9475136118912962 0.6767676767691384 0
-3313 0.3876588054047889 0.7474747474754244 0
-3314 0.3964065367561529 0.7424242424249456 0
-3315 0.9387658805399314 0.7020202020215102 0
-3316 0.9475136118912312 0.7070707070720071 0
-3317 0.8600362983789728 0.3333333333351616 0
-3318 0.8512885670276016 0.3383838383856535 0
-3319 0.8512885670276199 0.3282828282846393 0
-3320 0.8425408356762162 0.3333333333351287 0
-3321 0.4663883875686211 0.1969696969705258 0
-3322 0.8425408356762653 0.3232323232341148 0
-3323 0.8337931043247973 0.3282828282846014 0
-3324 0.9125226864869318 0.4040404040424209 0
-3325 0.3176769545943523 0.6464646464649642 0
-3326 0.3089292232430078 0.6414141414144421 0
-3327 0.3089292232430302 0.6313131313134348 0
-3328 0.3001814918916628 0.6363636363639205 0
-3329 0.7813067162159842 0.7121212121222403 0
-3330 0.7725589848646321 0.7171717171727144 0
-3331 0.7813067162159596 0.7222222222232293 0
-3332 0.7200725967576127 0.1616161616174502 0
-3333 0.7288203281089403 0.1666666666679658 0
-3334 0.7113248654062869 0.1565656565669329 0
-3335 0.7288203281089165 0.1767676767689559 0
-3336 0.7375680594602697 0.1717171717184816 0
-3337 0.6676207173867524 0.05056482139181568 0
-3338 0.4313974621633519 0.1363636363643409 0
-3339 0.9037749551349289 0.5909090909106484 0
-3340 0.0727404767569802 0.3737373737371791 0
-3341 0.5976043578376072 0.7070707070715396 0
-3342 0.7813067162157165 0.7626262626275644 0
-3343 0.2127041783789858 0.1818181818184396 0
-3344 0.1077314021624034 0.3636363636363184 0
-3345 0.1164791335137372 0.3686868686868361 0
-3346 0.9475136118927892 0.2828282828301957 0
-3347 0.2914337605399792 0.7929292929295098 0
-3348 0.3001814918913177 0.7979797979800307 0
-3349 0.2914337605399572 0.803030303030512 0
-3350 0.3001814918912966 0.808080808081032 0
-3351 0.3089292232426562 0.8030303030305499 0
-3352 0.1339745962152843 0.9040404040403982 0
-3353 0.8337931043241362 0.651515151516425 0
-3354 0.1777132529735513 0.161616161616308 0
-3355 0.9475136118910267 0.9191919191933723 0
-3356 0.230199641080587 0.7575757575758431 0
-3357 0.2826860291881415 0.9090909090911674 0
-3358 0.6238475518930161 0.1060606060618291 0
-3359 0.3176769545936874 0.8787878787882336 0
-3360 0.3264246859450189 0.8838383838387533 0
-3361 0.05524501405451 0.1919191919190351 0
-3362 0.5888566264855875 0.8636363636374569 0
-3363 0.396406536755874 0.8535353535359412 0
-3364 0.1952087156749784 0.808080808080937 0
-3365 0.2564428351356399 0.2676767676771719 0
-3366 0.05524501405297959 0.8383838383838264 0
-3367 0.05524501405295387 0.8484848484848517 0
-3368 0.2651905664864997 0.5252525252527596 0
-3369 0.7638112535136682 0.388888888890527 0
-3370 0.4838838502708932 0.2676767676777685 0
-3371 0.7550635221626555 0.3232323232338218 0
-3372 0.2564428351348351 0.6616161616163628 0
-3373 0.1777132529731749 0.4242424242425333 0
-3374 0.2739382978367313 0.9444444444446154 0
-3375 0.2826860291880624 0.9494949494951255 0
-3376 0.2476951037845783 0.101010101010296 0
-3377 0.2389473724331889 0.1060606060607935 0
-3378 0.2476951037845555 0.1111111111113289 0
-3379 0.308929223244041 0.2171717171721896 0
-3380 0.3001814918926881 0.2121212121216591 0
-3381 0.8600362983776297 0.8686868686879581 0
-3382 0.2127041783788618 0.242424242424528 0
-3383 0.44889292486472 0.6111111111117968 0
-3384 0.1864609843236792 0.7828282828283908 0
-3385 0.5888566264855063 0.8939393939404943 0
-3386 0.4401451935140528 0.2929292929301884 0
-3387 0.09023593945938807 0.484848484848185 0
-3388 0.142722327567969 0.2828282828284258 0
-3389 0.8162976416218286 0.3686868686886018 0
-3390 0.177713252973363 0.2626262626264175 0
-3391 0.6063520891893495 0.3888888888902853 0
-3392 0.6150998205406921 0.3939393939407988 0
-3393 0.606352089189335 0.3989898989912862 0
-3394 0.6150998205406775 0.4040404040418001 0
-3395 0.6063520891893198 0.4090909090922877 0
-3396 0.6150998205406628 0.4141414141428011 0
-3397 0.6063520891893052 0.4191919191932889 0
-3398 0.615099820540648 0.4242424242438021 0
-3399 0.6238475518920055 0.4191919191933143 0
-3400 0.6063520891892905 0.4292929292942899 0
-3401 0.5976043578379477 0.4242424242437765 0
-3402 0.6238475518919908 0.4292929292943152 0
-3403 0.6325952832433476 0.4242424242438275 0
-3404 0.5976043578379326 0.4343434343447773 0
-3405 0.5888566264865899 0.4292929292942638 0
-3406 0.632595283243333 0.4343434343448283 0
-3407 0.64134301459469 0.4292929292943408 0
-3408 0.641343014594676 0.4393939393953419 0
-3409 0.6500907459460329 0.4343434343448541 0
-3410 0.5888566264865874 0.4393939393952476 0
-3411 0.5801088951352388 0.4343434343447402 0
-3412 0.6500907459460472 0.4242424242438531 0
-3413 0.6588384772973898 0.4292929292943666 0
-3414 0.6588384772973754 0.4393939393953673 0
-3415 0.6675862086487321 0.4343434343448794 0
-3416 0.6675862086487183 0.4444444444458797 0
-3417 0.6763339400000746 0.4393939393953916 0
-3418 0.676333940000089 0.4292929292943916 0
-3419 0.6850816713514313 0.4343434343449036 0
-3420 0.6850816713514176 0.4444444444458962 0
-3421 0.693829402702772 0.439393939395411 0
-3422 0.5801088951352482 0.424242424243749 0
-3423 0.5713611637838898 0.429292929294237 0
-3424 0.5713611637839032 0.4393939393952083 0
-3425 0.5626134324325401 0.4343434343447121 0
-3426 0.5626134324325459 0.4242424242437244 0
-3427 0.5538657010811885 0.4292929292942105 0
-3428 0.5538657010811794 0.439393939395202 0
-3429 0.5451179697298296 0.4343434343446984 0
-3430 0.6938294027027879 0.4292929292944153 0
-3431 0.7025771340541307 0.4343434343449263 0
-3432 0.7025771340541205 0.4444444444459205 0
-3433 0.7113248654054727 0.4393939393954346 0
-3434 0.7113248654054861 0.4292929292944382 0
-3435 0.7200725967568292 0.4343434343449489 0
-3436 0.7200725967568236 0.4444444444459489 0
-3437 0.7288203281081737 0.4393939393954598 0
-3438 0.728820328108186 0.4292929292944613 0
-3439 0.7375680594595302 0.4343434343449719 0
-3440 0.7375680594595334 0.4444444444459724 0
-3441 0.7463157908108812 0.4393939393954848 0
-3442 0.63259528324332 0.4444444444458301 0
-3443 0.5976043578379392 0.4444444444457704 0
-3444 0.5451179697298147 0.4444444444457011 0
-3445 0.5363702383784706 0.439393939395188 0
-3446 0.09023593945927724 0.5252525252521976 0
-3447 0.5888566264857952 0.782828282829451 0
-3448 0.597604357837164 0.7777777777789707 0
-3449 0.5888566264858235 0.7727272727284444 0
-3450 0.4926315816216313 0.5353535353543961 0
-3451 0.2301996410808631 0.6161616161617549 0
-3452 0.90377495513613 0.1767676767693502 0
-3453 0.7988021789196238 0.2272727272742715 0
-3454 0.1689655216219792 0.3585858585860109 0
-3455 0.160217790270643 0.3535353535354904 0
-3456 0.8600362983784138 0.4848484848501974 0
-3457 0.6938294027019467 0.8232323232337309 0
-3458 0.3701633427026128 0.5858585858590516 0
-3459 0.3789110740539541 0.5909090909095739 0
-3460 0.3789110740539778 0.5808080808085698 0
-3461 0.3876588054053193 0.5858585858590931 0
-3462 0.3876588054053431 0.5757575757580886 0
-3463 0.3876588054052948 0.5959595959600968 0
-3464 0.3964065367566842 0.580808080808612 0
-3465 0.3964065367567087 0.5707070707076076 0
-3466 0.3876588054053676 0.5656565656570842 0
-3467 0.4051542681080491 0.5757575757581309 0
-3468 0.3964065367567332 0.5606060606066031 0
-3469 0.387658805405392 0.5555555555560799 0
-3470 0.2826860291900982 0.1010101010103729 0
-3471 0.4313974621628853 0.2676767676775608 0
-3472 0.1164791335133876 0.5101010101007648 0
-3473 0.05524501405419668 0.4141414141411027 0
-3474 0.055245014054171 0.4242424242420945 0
-3475 0.8600362983782788 0.58585858586007 0
-3476 0.221451909728911 0.8535353535355323 0
-3477 0.5188747756759891 0.2979797979811083 0
-3478 0.4926315816224229 0.2323232323241536 0
-3479 0.2301996410813188 0.4141414141416548 0
-3480 0.1689655216220019 0.2979797979799751 0
-3481 0.4838838502705474 0.3181818181830487 0
-3482 0.23894737243167 0.833333333333533 0
-3483 0.6500907459459093 0.6666666666674935 0
-3484 0.3876588054060172 0.2929292929300129 0
-3485 0.4576406562152437 0.8787878787886029 0
-3486 0.5713611637833704 0.7222222222231971 0
-3487 0.2564428351352818 0.4696969696972143 0
-3488 0.2476951037839416 0.464646464646691 0
-3489 0.2476951037839171 0.4747474747476948 0
-3490 0.05524501405444842 0.2222222222220219 0
-3491 0.1514700589191255 0.4090909090909556 0
-3492 0.1514700589191348 0.4191919191919677 0
-3493 0.2127041783784014 0.5050505050506353 0
-3494 0.7813067162174491 0.06565656565818923 0
-3495 0.77255898486615 0.06060606060767795 0
-3496 0.7725589848661699 0.05050505050671578 0
-3497 0.7638112535148457 0.05555555555717891 0
-3498 0.6938294027028982 0.3585858585874082 0
-3499 0.4051542681080245 0.585858585859135 0
-3500 0.5976043578378734 0.5151515151526249 0
-3501 0.588856626486513 0.5202020202031052 0
-3502 0.5976043578378505 0.5252525252536249 0
-3503 0.5888566264864894 0.5303030303041052 0
-3504 0.5976043578378269 0.5353535353546253 0
-3505 0.938765880541253 0.3585858585878819 0
-3506 0.8512885670272087 0.3888888888906751 0
-3507 0.9387658805411555 0.398989898992003 0
-3508 0.5188747756747895 0.843434343435269 0
-3509 0.1864609843243881 0.4797979797980662 0
-3510 0.3876588054054809 0.5050505050511432 0
-3511 0.4751361189180792 0.8282828282836503 0
-3512 0.8075499102701152 0.6565656565668643 0
-3513 0.2039564470274508 0.3282828282830475 0
-3514 0.195208715676087 0.3333333333335359 0
-3515 0.6063520891891878 0.5303030303041454 0
-3516 0.6063520891891647 0.5404040404051457 0
-3517 0.6150998205405251 0.535353535354666 0
-3518 0.6150998205405026 0.5454545454556661 0
-3519 0.6238475518918631 0.5404040404051863 0
-3520 0.9387658805412743 0.3484848484868489 0
-3521 0.2826860291890891 0.5757575757578384 0
-3522 0.5538657010808027 0.6818181818190451 0
-3523 0.3526678800002147 0.4444444444450228 0
-3524 0.3264246859456967 0.6515151515154858 0
-3525 0.457640656216245 0.4545454545465655 0
-3526 0.4576406562162266 0.4646464646475697 0
-3527 0.4488929248648828 0.4595959595970523 0
-3528 0.76381125351418 0.2474747474762733 0
-3529 0.1164791335134813 0.4696969696967459 0
-3530 0.6238475518920943 0.358585858587306 0
-3531 0.8425408356764726 0.2121212121228559 0
-3532 0.1077314021622624 0.4141414141412348 0
-3533 0.5276225070270764 0.51515151515247 0
-3534 0.3614156113511561 0.6313131313135535 0
-3535 0.3701633427025204 0.6262626262630715 0
-3536 0.09023593945909132 0.5959595959593135 0
-3537 0.6675862086486636 0.5151515151527881 0
-3538 0.8775317610809016 0.6060606060620805 0
-3539 0.3964065367559492 0.823232323232943 0
-3540 0.4576406562155901 0.7474747474755974 0
-3541 0.466388387566952 0.7424242424251165 0
-3542 0.4576406562156132 0.7373737373745946 0
-3543 0.4663883875669761 0.7323232323241143 0
-3544 0.4576406562156374 0.7272727272735913 0
-3545 0.4663883875670018 0.7222222222231127 0
-3546 0.4576406562156641 0.7171717171725889 0
-3547 0.448892924864299 0.7222222222230665 0
-3548 0.4488929248643265 0.7121212121220643 0
-3549 0.4401451935129616 0.717171717172545 0
-3550 0.4576406562156928 0.7070707070715869 0
-3551 0.151470058918459 0.6919191919191889 0
-3552 0.4576406562153795 0.8282828282836071 0
-3553 0.1427223275678996 0.2323232323232147 0
-3554 0.1514700589192633 0.2272727272727325 0
-3555 0.151470058919286 0.2171717171717283 0
-3556 0.1602177902706286 0.2222222222222499 0
-3557 0.1602177902706511 0.2121212121212438 0
-3558 0.1689655216219955 0.2171717171717668 0
-3559 0.31767695459425 0.6969696969700272 0
-3560 0.2651905664869443 0.3232323232326831 0
-3561 0.2651905664871954 0.1818181818185546 0
-3562 0.4926315816218543 0.3434343434355742 0
-3563 0.1077314021624841 0.2525252525251552 0
-3564 0.1777132529720456 0.8989898989899695 0
-3565 0.3526678800008987 0.2020202020207718 0
-3566 0.2651905664866971 0.4444444444447255 0
-3567 0.5276225070266488 0.6969696969705862 0
-3568 0.8337931043234696 0.8939393939406117 0
-3569 0.4926315816213969 0.6464646464654157 0
-3570 0.5363702383777229 0.7626262626273028 0
-3571 0.5451179697290901 0.7575757575768231 0
-3572 0.5363702383777501 0.7525252525262976 0
-3573 0.3789110740541734 0.4494949494956578 0
-3574 0.807549910270916 0.2727272727288749 0
-3575 0.2739382978387981 0.06565656565672522 0
-3576 0.2826860291901933 0.06060606060622419 0
-3577 0.2739382978388191 0.05555555555568487 0
-3578 0.2826860291902155 0.05050505050518275 0
-3579 0.2914337605407179 0.4595959595962962 0
-3580 0.291433760540743 0.4494949494952918 0
-3581 0.3001814918920835 0.4545454545458157 0
-3582 0.3001814918921089 0.4444444444448112 0
-3583 0.2914337605407682 0.4393939393942873 0
-3584 0.3001814918921342 0.4343434343438065 0
-3585 0.2914337605407935 0.4292929292932825 0
-3586 0.3001814918921597 0.4242424242428015 0
-3587 0.2914337605408185 0.4191919191922771 0
-3588 0.3001814918921852 0.4141414141417962 0
-3589 0.3089292232435008 0.4292929292933261 0
-3590 0.2914337605408438 0.4090909090912713 0
-3591 0.3001814918922107 0.4040404040407905 0
-3592 0.142722327566825 0.818181818181873 0
-3593 0.3089292232438163 0.2676767676772852 0
-3594 0.3001814918916856 0.6262626262629121 0
-3595 0.2914337605403181 0.6313131313133975 0
-3596 0.3526678800011746 0.08080808080847714 0
-3597 0.6763339399999999 0.5202020202033076 0
-3598 0.6675862086486402 0.5252525252537872 0
-3599 0.6763339399999937 0.5303030303043073 0
-3600 0.6675862086486175 0.5353535353547865 0
-3601 0.6763339399999719 0.5404040404053072 0
-3602 0.6675862086485937 0.5454545454557855 0
-3603 0.6763339399999305 0.550505050506307 0
-3604 0.6675862086485674 0.555555555556785 0
-3605 0.676333939999904 0.5606060606073067 0
-3606 0.4313974621619476 0.6414141414147536 0
-3607 0.2914337605403412 0.6212121212123886 0
-3608 0.2826860291889738 0.6262626262628738 0
-3609 0.2826860291889957 0.6161616161618652 0
-3610 0.8162976416226987 0.08585858586021762 0
-3611 0.8862794924323276 0.5606060606076673 0
-3612 0.2214519097293686 0.6818181818182981 0
-3613 0.6588384772974051 0.4191919191933662 0
-3614 0.08148820810853516 0.1969696969695934 0
-3615 0.4751361189187618 0.6161616161623755 0
-3616 0.5013793129720314 0.8636363636372224 0
-3617 0.2739382978384171 0.2474747474751836 0
-3618 0.6588384772971871 0.7020202020210088 0
-3619 0.4313974621623684 0.3484848484859701 0
-3620 0.7900544475677855 0.3535353535370521 0
-3621 0.7988021789191474 0.3484848484865619 0
-3622 0.2739382978376284 0.6212121212123513 0
-3623 0.6938294027028538 0.3888888888904148 0
-3624 0.7200725967560367 0.8080808080822774 0
-3625 0.7200725967560544 0.7979797979812769 0
-3626 0.256442835135872 0.1565656565659777 0
-3627 0.2914337605405515 0.53030303030333 0
-3628 0.8162976416208172 0.8737373737385833 0
-3629 0.8250453729726641 0.7373737373747302 0
-3630 0.3964065367565096 0.6616161616166978 0
-3631 0.8862794924324677 0.4595959595977804 0
-3632 0.3439201486498715 0.0555555555558443 0
-3633 0.352667880001267 0.05050505050534412 0
-3634 0.7900544475674002 0.6767676767688005 0
-3635 0.8162976416213193 0.7424242424252022 0
-3636 0.3526678800010287 0.1313131313136475 0
-3637 0.09898367081118359 0.2171717171716186 0
-3638 0.177713252973627 0.1313131313132598 0
-3639 0.3614156113504103 0.9040404040408347 0
-3640 0.370163342701771 0.8989898989903664 0
-3641 0.1689655216220176 0.2070707070707584 0
-3642 0.1777132529733639 0.2121212121212827 0
-3643 0.7463157908113768 0.2979797979812889 0
-3644 0.8775317610818424 0.2626262626280325 0
-3645 0.2826860291887234 0.7575757575759682 0
-3646 0.4838838502691052 0.9444444444451459 0
-3647 0.3001814918927306 0.161616161616588 0
-3648 0.7813067162156329 0.803030303031568 0
-3649 0.7463157908108883 0.4292929292944835 0
-3650 0.7550635221622317 0.4343434343449972 0
-3651 0.7550635221622223 0.4444444444459987 0
-3652 0.7638112535135734 0.4393939393955118 0
-3653 0.116479133512637 0.8636363636363674 0
-3654 0.8075499102702222 0.6060606060619294 0
-3655 0.5188747756749369 0.7929292929302734 0
-3656 0.7375680594601091 0.2525252525267272 0
-3657 0.5976043578388343 0.1717171717181661 0
-3658 0.9125226864864044 0.5252525252542839 0
-3659 0.4139019994606683 0.1161616161622517 0
-3660 0.3089292232435524 0.4090909090913156 0
-3661 0.3089292232435781 0.3989898989903098 0
-3662 0.2389473724331676 0.1161616161618257 0
-3663 0.2301996410818016 0.1111111111112911 0
-3664 0.07274047675709801 0.3333333333332492 0
-3665 0.8950272237848514 0.07070707070879671 0
-3666 0.886279492433495 0.06565656565827464 0
-3667 0.8950272237848638 0.06060606060777989 0
-3668 0.8862794924335078 0.0555555555572596 0
-3669 0.895027223784874 0.05050505050676327 0
-3670 0.3089292232436667 0.3484848484853089 0
-3671 0.0639927454043126 0.8535353535353856 0
-3672 0.05524501405292959 0.858585858585876 0
-3673 0.816297641620932 0.8333333333346269 0
-3674 0.2914337605394088 0.9444444444446464 0
-3675 0.7638112535135575 0.4494949494965148 0
-3676 0.7725589848649147 0.4444444444460273 0
-3677 0.7725589848649317 0.4343434343450256 0
-3678 0.7813067162162731 0.4393939393955417 0
-3679 0.7813067162162904 0.4292929292945418 0
-3680 0.7900544475676323 0.4343434343450573 0
-3681 0.7900544475676141 0.4444444444460586 0
-3682 0.7988021789189733 0.4393939393955739 0
-3683 0.06399274540607773 0.05555555555543647 0
-3684 0.05524501405471731 0.05050505050490825 0
-3685 0.9037749551362351 0.05555555555728175 0
-3686 0.7113248654055482 0.5505050505062641 0
-3687 0.6500907459469807 0.1212121212133572 0
-3688 0.6588384772983029 0.1262626262638669 0
-3689 0.3264246859468132 0.1969696969702016 0
-3690 0.8950272237846275 0.242424242426019 0
-3691 0.3089292232434493 0.4494949494953355 0
-3692 0.3089292232434239 0.4595959595963397 0
-3693 0.5713611637830057 0.8131313131324241 0
-3694 0.8162976416222247 0.2979797979814208 0
-3695 0.7463157908107124 0.6717171717182138 0
-3696 0.4051542681093714 0.08080808080866272 0
-3697 0.8162976416216909 0.5505050505064815 0
-3698 0.8250453729730189 0.5555555555570008 0
-3699 0.8250453729730425 0.5454545454560088 0
-3700 0.8337931043243719 0.5505050505065244 0
-3701 0.8337931043243955 0.5404040404055376 0
-3702 0.8425408356757241 0.545454545456047 0
-3703 0.8425408356757474 0.5353535353550609 0
-3704 0.8512885670270737 0.5404040404055744 0
-3705 0.8512885670270962 0.5303030303045797 0
-3706 0.8600362983784194 0.535353535355104 0
-3707 0.8600362983784466 0.5252525252541028 0
-3708 0.2826860291888221 0.7070707070709631 0
-3709 0.5276225070280913 0.1717171717179988 0
-3710 0.8775317610801978 0.9090909090922198 0
-3711 0.8687840297288298 0.9141414141427079 0
-3712 0.3001814918922362 0.3939393939397842 0
-3713 0.3089292232436037 0.3888888888893038 0
-3714 0.4663883875683235 0.2474747474756532 0
-3715 0.518874775674582 0.9141414141422332 0
-3716 0.5101270443253531 0.1919191919199526 0
-3717 0.8950272237847492 0.1818181818198446 0
-3718 0.2389473724320091 0.7323232323233406 0
-3719 0.2301996410806637 0.7272727272728146 0
-3720 0.6675862086478221 0.8585858585871613 0
-3721 0.6150998205397431 0.828282828284054 0
-3722 0.5276225070260446 0.8787878787888013 0
-3723 0.9212704178378165 0.4797979797998326 0
-3724 0.9212704178383494 0.4292929292950267 0
-3725 0.9300181491901675 0.2222222222240344 0
-3726 0.9387658805415503 0.2171717171735381 0
-3727 0.6325952832432038 0.6666666666674542 0
-3728 0.6238475518918423 0.6717171717179381 0
-3729 0.6238475518918626 0.6616161616169353 0
-3730 0.6150998205405004 0.6666666666674194 0
-3731 0.615099820540521 0.6565656565664161 0
-3732 0.6063520891891584 0.6616161616169 0
-3733 0.6063520891891794 0.6515151515158967 0
-3734 0.5976043578378165 0.65656565656638 0
-3735 0.2739382978383129 0.3181818181821994 0
-3736 0.7025771340541276 0.4848484848498715 0
-3737 0.3964065367580084 0.07575757575812576 0
-3738 0.4663883875675709 0.4696969696980868 0
-3739 0.6675862086487376 0.4848484848498101 0
-3740 0.8687840297297719 0.5303030303046219 0
-3741 0.3964065367580566 0.05555555555606198 0
-3742 0.370163342702013 0.777777777778385 0
-3743 0.370163342701987 0.787878787879385 0
-3744 0.1689655216222701 0.1262626262627303 0
-3745 0.1777132529736495 0.1212121212122374 0
-3746 0.6588384772973622 0.4494949494963681 0
-3747 0.2651905664869679 0.3131313131316746 0
-3748 0.5801088951352446 0.4848484848495851 0
-3749 0.7200725967569066 0.5454545454557796 0
-3750 0.7550635221622901 0.5454545454558567 0
-3751 0.1514700589196671 0.08585858585867147 0
-3752 0.5363702383784557 0.4494949494961907 0
-3753 0.571361163783907 0.4797979797990646 0
-3754 0.3789110740543418 0.4090909090915872 0
-3755 0.6675862086485425 0.5656565656577842 0
-3756 0.658838477297206 0.5606060606072633 0
-3757 0.9212704178389183 0.1565656565673208 0
-3758 0.6238475518918402 0.5505050505061863 0
-3759 0.142722327568378 0.06060606060609324 0
-3760 0.1427223275683603 0.05050505050504889 0
-3761 0.588856626486466 0.5404040404051051 0
-3762 0.5801088951351282 0.5353535353545853 0
-3763 0.7813067162153173 0.9040404040414985 0
-3764 0.9650090745945508 0.4747474747494191 0
-3765 0.9475136118926447 0.3535353535373836 0
-3766 0.9475136118926658 0.343434343436348 0
-3767 0.9475136118930325 0.1111111111129563 0
-3768 0.9475136118930239 0.1212121212139799 0
-3769 0.5801088951340111 0.9494949494959073 0
-3770 0.5888566264853908 0.944444444445414 0
-3771 0.5888566264854015 0.9343434343444117 0
-3772 0.5976043578367682 0.9393939393949202 0
-3773 0.5976043578367503 0.9494949494959405 0
-3774 0.6063520891881287 0.9444444444454453 0
-3775 0.606352089188148 0.9343434343444231 0
-3776 0.6150998205395061 0.9393939393949507 0
-3777 0.6150998205395257 0.9292929292939294 0
-3778 0.6238475518908833 0.934343434344457 0
-3779 0.6238475518908637 0.9444444444454787 0
-3780 0.6325952832422417 0.9393939393949852 0
-3781 0.632595283242261 0.9292929292939621 0
-3782 0.6413430145936206 0.934343434344489 0
-3783 0.6413430145936055 0.9444444444455118 0
-3784 0.6500907459449818 0.9393939393950144 0
-3785 0.6500907459449982 0.9292929292939921 0
-3786 0.6588384772963575 0.9343434343445183 0
-3787 0.658838477296343 0.9444444444455397 0
-3788 0.6675862086477187 0.9393939393950421 0
-3789 0.6675862086477058 0.9494949494960646 0
-3790 0.6763339399990699 0.944444444445542 0
-3791 0.3351724172962741 0.9494949494952198 0
-3792 0.07274047675572787 0.9494949494948288 0
-3793 0.06399274540437848 0.944444444444313 0
-3794 0.06399274540439233 0.9343434343433026 0
-3795 0.05524501405302609 0.9393939393937969 0
-3796 0.05524501405303853 0.9292929292927836 0
-3797 0.05524501405301322 0.9494949494948091 0
-3798 0.4926315816204382 0.9494949494956697 0
-3799 0.5276225070258433 0.9494949494957692 0
-3800 0.413901999460842 0.04545454545507415 0
-3801 0.7638112535148642 0.04545454545621842 0
-3802 0.7550635221635421 0.0505050505066806 0
-3803 0.18646098432503 0.04545454545447051 0
-3804 0.5888566264878246 0.04545454545569852 0
-3805 0.7288203281069804 0.9545454545464599 0
-3806 0.7200725967556453 0.9494949494959258 0
-3807 0.7200725967557123 0.9393939393949098 0
-3808 0.2739382978388405 0.04545454545464259 0
-3809 0.2739382978367139 0.954545454545604 0
-3810 0.3439201486498936 0.04545454545480329 0
-3811 0.6763339399990326 0.9545454545465117 0
-3812 0.04649728270324001 0.1565656565655331 0
-3813 0.04649728270326028 0.1464646464645376 0
-3814 0.04649728270333783 0.05555555555540372 0
-3815 0.04649728270311684 0.2171717171715074 0
-3816 0.04652140810559732 0.2272309408496122 0
-3817 0.04649728270311174 0.3181818181817019 0
-3818 0.04649728270313402 0.308080808080714 0
-3819 0.04649728270284118 0.4191919191915763 0
-3820 0.04649728270281523 0.4292929292925685 0
-3821 0.04649728270165907 0.9444444444442934 0
-3822 0.04649728270159464 0.8434343434343173 0
-3823 0.06399274540609357 0.04545454545441331 0
-3824 0.09898367080978193 0.954545454545372 0
-3825 0.9212704178368393 0.9545454545469126 0
-3826 0.3964065367556371 0.9545454545458798 0
-3827 0.886279492433517 0.04545454545624852 0
-3828 0.8775317610821575 0.05050505050674317 0
-3829 0.04649728270164703 0.9545454545453078 0
-3830 0.04649728270335612 0.04545454545438107 0
-3831 0.4838838502690756 0.9545454545461427 0
-3832 0.7988021789201345 0.04545454545628503 0
-3833 0.9037749551362447 0.04545454545626008 0
-3834 0.9125226864876113 0.050505050506781 0
-3835 0.6413430145961603 0.04545454545622422 0
-3836 0.6063520891881117 0.9545454545464681 0
-3837 0.9037749551340928 0.9545454545468665 0
-3838 0.8950272237827309 0.9494949494963336 0
-3839 0.116479133512486 0.9545454545453926 0
-3840 0.1252268648638411 0.949494949494908 0
-3841 0.2914337605393935 0.9545454545456334 0
-3842 0.2039564470259711 0.9545454545454858 0
-3843 0.3964065367580827 0.04545454545502597 0
-3844 0.6588384772963334 0.9545454545465658 0
-3845 0.04649728270208184 0.6515151515148251 0
-3846 0.04649728270205547 0.6616161616158555 0
-3847 0.04649728270210891 0.641414141413795 0
-3848 0.05524501405349796 0.6363636363633038 0
-3849 0.04649728270213674 0.6313131313127651 0
-3850 0.05524501405352533 0.6262626262622756 0
-3851 0.04649728270216483 0.6212121212117352 0
-3852 0.05525699035182766 0.616161616161246 0
-3853 0.04660506938666573 0.6111111111107063 0
-3854 0.05525832105166366 0.6060606060602153 0
-3855 0.0466185242403107 0.6010101010096781 0
-3856 0.05525996389096005 0.595959595959187 0
-3857 0.04628076408155505 0.5909090909086496 0
-3858 0.055222617522152 0.5858585858581598 0
-3859 0.04623908557851453 0.5808080808076235 0
-3860 0.05518026865837287 0.5757621321770661 0
-3861 0.04619516779995599 0.5707480784859804 0
-3862 0.05520425179839387 0.5656616283449242 0
-3863 0.04593717001602631 0.5607004455094039 0
-3864 0.05517825017131292 0.5555666052876062 0
-3865 0.04617821661351517 0.5505651600641378 0
-3866 0.05523759584458223 0.5454557732021288 0
-3867 0.04619123573115703 0.5404108556599436 0
-3868 0.05517643168292623 0.5353545131591846 0
-3869 0.0461935065452704 0.5303037875532347 0
-3870 0.05520364088401306 0.5252527180361333 0
-3871 0.04656871969219123 0.5202021257609331 0
-3872 0.05524835447825677 0.5151515483003073 0
-3873 0.04661537821901011 0.5101010255125767 0
-3874 0.05525850693617356 0.505050510445724 0
-3875 0.0462755475188276 0.5000000023114648 0
-3876 0.05522187602038663 0.4949494958054188 0
-3877 0.04623371845040914 0.4898989902505247 0
-3878 0.9562613432423576 0.9444444444459642 0
-3879 0.9562613432423341 0.9545454545469989 0
-3880 0.9562613432423865 0.8333333333341352 0
-3881 0.9562613432423758 0.8434343434351014 0
-3882 0.9562613432425956 0.6818181818196339 0
-3883 0.9562613432426166 0.6717171717186806 0
-3884 0.8162976416212983 0.7525252525261852 0
-3885 0.8862794924317794 0.8232323232330737 0
-3886 0.8862794924317622 0.8333333333340542 0
-3887 0.8862794924317965 0.8131313131320957 0
-3888 0.5888566264874171 0.2070707070716167 0
-3889 0.7463157908103124 0.7727272727285244 0
-3890 0.728820328107737 0.7323232323244793 0
-3891 0.7638112535148136 0.06565656565814934 0
-3892 0.6938294027020139 0.792929292930721 0
-3893 0.6938294027034828 0.2070707070718512 0
-3894 0.4313974621623851 0.3383838383849637 0
-3895 0.4226497308110215 0.3434343434354528 0
-3896 0.7288203281073959 0.8030303030317926 0
-3897 0.5451179697291173 0.7474747474758175 0
-3898 0.5363702383777764 0.7424242424252924 0
-3899 0.5538657010804586 0.7525252525263399 0
-3900 0.5976043578377952 0.6666666666673838 0
-3901 0.588856626486453 0.6616161616168631 0
-3902 0.5888566264864747 0.6515151515158589 0
-3903 0.5801088951351111 0.6565656565663418 0
-3904 0.5801088951351331 0.6464646464653376 0
-3905 0.5713611637837706 0.6515151515158205 0
-3906 0.5363702383783955 0.6313131313137919 0
-3907 0.5276225070270137 0.6262626262633204 0
-3908 0.6238475518918224 0.6818181818189412 0
-3909 0.7550635221614563 0.8282828282843246 0
-3910 0.7375680594602455 0.1818181818194726 0
-3911 0.7463157908115998 0.1767676767689981 0
-3912 0.6325952832434513 0.3535353535368188 0
-3913 0.4488929248643556 0.7020202020210613 0
-3914 0.4576406562157221 0.6969696969705848 0
-3915 0.466388387567059 0.702020202021111 0
-3916 0.1514700589192403 0.2373737373737365 0
-3917 0.7638112535128 0.8333333333348381 0
-3918 0.2914337605397371 0.8434343434346822 0
-3919 0.2826860291884025 0.8383838383841616 0
-3920 0.1689655216219723 0.2272727272727741 0
-3921 0.5888566264869696 0.3282828282840778 0
-3922 0.6850816713515542 0.3535353535368941 0
-3923 0.3001814918908023 0.9191919191921953 0
-3924 0.7638112535137337 0.3585858585875039 0
-3925 0.7288203281087975 0.2272727272741038 0
-3926 0.2214519097292427 0.752525252525316 0
-3927 0.2214519097292174 0.7626262626263255 0
-3928 0.151470058918746 0.570707070707028 0
-3929 0.1514700589187701 0.5606060606060166 0
-3930 0.1514700589187221 0.5808080808080401 0
-3931 0.4663883875686978 0.1666666666675082 0
-3932 0.4751361189200317 0.1717171717180194 0
-3933 0.7200725967576369 0.1515151515164631 0
-3934 0.7113248654063135 0.1464646464659476 0
-3935 0.930018149188785 0.6161616161633118 0
-3936 0.938765880540111 0.6111111111128491 0
-3937 0.9475136118914175 0.616161616163347 0
-3938 0.9475136118914372 0.6060606060623868 0
-3939 0.9387658805401325 0.601010101011887 0
-3940 0.9475136118914604 0.5959595959614261 0
-3941 0.9562613432427641 0.6010101010119266 0
-3942 0.9562613432427882 0.5909090909109671 0
-3943 0.9387658805401536 0.5909090909109244 0
-3944 0.7988021789189549 0.4494949494965751 0
-3945 0.8075499102703145 0.44444444444609 0
-3946 0.0639927454042873 0.8636363636364098 0
-3947 0.05524501405290572 0.8686868686869009 0
-3948 0.07274047675566905 0.8585858585859198 0
-3949 0.04649728270154682 0.863636363636368 0
-3950 0.04649728270152367 0.8737373737373921 0
-3951 0.05524501405288181 0.8787878787879255 0
-3952 0.04649728270149936 0.8838383838384164 0
-3953 0.7463157908116242 0.1666666666680071 0
-3954 0.755063522162954 0.171717171718524 0
-3955 0.7550635221629298 0.1818181818195164 0
-3956 0.7638112535142857 0.1767676767690417 0
-3957 0.08148820810710473 0.8333333333333885 0
-3958 0.2914337605395058 0.9040404040406906 0
-3959 0.370163342702498 0.6363636363640752 0
-3960 0.378911074053862 0.631313131313593 0
-3961 0.2826860291881659 0.8989898989901748 0
-3962 0.1252268648638571 0.93939393939391 0
-3963 0.1339745962151965 0.9444444444444241 0
-3964 0.1339745962151787 0.9545454545454207 0
-3965 0.1427223275665332 0.9494949494949397 0
-3966 0.9387658805399087 0.7121212121224656 0
-3967 0.9475136118912094 0.7171717171729628 0
-3968 0.9562613432425303 0.7121212121225058 0
-3969 0.9562613432425068 0.7222222222234613 0
-3970 0.947513611891186 0.7272727272739163 0
-3971 0.9562613432424817 0.7323232323244142 0
-3972 0.3089292232429863 0.6515151515154487 0
-3973 0.7113248654060191 0.2676767676781873 0
-3974 0.5276225070271118 0.4444444444456764 0
-3975 0.8512885670270459 0.5505050505065756 0
-3976 0.3001814918926634 0.2222222222226777 0
-3977 0.8512885670279732 0.1262626262642964 0
-3978 0.9475136118917035 0.5353535353553392 0
-3979 0.9562613432430235 0.5404040404058449 0
-3980 0.45764065621759 0.08080808080879238 0
-3981 0.2826860291894774 0.4141414141417527 0
-3982 0.05520990436473048 0.4848484849866228 0
-3983 0.04646799778566974 0.4797979798365944 0
-3984 0.5276225070271277 0.4343434343446729 0
-3985 0.4139019994593888 0.5808080808086546 0
-3986 0.4139019994593637 0.5909090909096572 0
-3987 0.4139019994594145 0.5707070707076516 0
-3988 0.518874775676005 0.3282828282840772 0
-3989 0.3964065367578094 0.1666666666673109 0
-3990 0.2127041783783178 0.5454545454546533 0
-3991 0.2039564470274037 0.3484848484850601 0
-3992 0.2127041783787436 0.3535353535355793 0
-3993 0.772558984864897 0.454545454547032 0
-3994 0.5538657010812025 0.4191919191932096 0
-3995 0.7200725967573633 0.2727272727287075 0
-3996 0.8075499102703323 0.4343434343450892 0
-3997 0.3176769545949196 0.404040404040835 0
-3998 0.4226497308119175 0.161616161616864 0
-3999 0.05524501405461648 0.1414141414140563 0
-4000 0.04649728270327986 0.1363636363635404 0
-4001 0.09023593945887715 0.6868686868685575 0
-4002 0.6325952832433628 0.4141414141428259 0
-4003 0.4926315816216795 0.4444444444456221 0
-4004 0.247695103784533 0.1212121212123605 0
-4005 0.4663883875677677 0.3585858585870372 0
-4006 0.5538657010811283 0.621212121212822 0
-4007 0.2301996410817808 0.1212121212123221 0
-4008 0.2214519097304164 0.1161616161617886 0
-4009 0.2826860291889507 0.6363636363638843 0
-4010 0.05524501405414612 0.4343434343430873 0
-4011 0.0464972827027899 0.439393939393562 0
-4012 0.5626134324325612 0.4141414141427223 0
-4013 0.1339745962169442 0.09595959595967406 0
-4014 0.6588384772972801 0.5303030303042651 0
-4015 0.4051542681074911 0.7474747474754683 0
-4016 0.4051542681075169 0.7373737373744675 0
-4017 0.3964065367561789 0.7323232323239444 0
-4018 0.4051542681075428 0.7272727272734659 0
-4019 0.3089292232427853 0.7525252525255387 0
-4020 0.2039564470272895 0.3989898989900861 0
-4021 0.8425408356761284 0.3434343434361366 0
-4022 0.2739382978376495 0.611111111111343 0
-4023 0.1777132529727644 0.5959595959596196 0
-4024 0.1689655216213929 0.6010101010101059 0
-4025 0.7025771340541974 0.393939393940929 0
-4026 0.3701633427036525 0.1919191919197967 0
-4027 0.8512885670266648 0.7323232323242953 0
-4028 0.8337931043243503 0.5606060606075149 0
-4029 0.8162976416216448 0.5707070707084724 0
-4030 0.8337931043250437 0.2474747474764029 0
-4031 0.308929223242604 0.8131313131315997 0
-4032 0.3176769545939642 0.8080808080811324 0
-4033 0.7638112535135667 0.5808080808093533 0
-4034 0.7550635221622185 0.4545454545470091 0
-4035 0.895027223784771 0.1717171717188206 0
-4036 0.2651905664874434 0.05050505050514563 0
-4037 0.1952087156761101 0.3232323232325255 0
-4038 0.1864609843247467 0.3282828282830111 0
-4039 0.2914337605415901 0.05555555555572295 0
-4040 0.2914337605416126 0.04545454545468083 0
-4041 0.8600362983789087 0.3535353535371987 0
-4042 0.4926315816216379 0.46464646464763 0
-4043 0.7550635221623074 0.3939393939410155 0
-4044 0.3701633427020383 0.7676767676773841 0
-4045 0.2564428351353572 0.4393939393942016 0
-4046 0.1339745962167775 0.146464646464707 0
-4047 0.7638112535133941 0.6717171717182483 0
-4048 0.3089292232440868 0.1969696969701582 0
-4049 0.5188747756767574 0.1666666666674795 0
-4050 0.0639927454056512 0.3686868686866623 0
-4051 0.05524501405429774 0.3737373737371374 0
-4052 0.2214519097302042 0.3080808080810751 0
-4053 0.2301996410815707 0.303030303030592 0
-4054 0.7288203281081845 0.5808080808092874 0
-4055 0.1164791335142772 0.0555555555555205 0
-4056 0.1164791335142959 0.04545454545448697 0
-4057 0.9037749551361662 0.106060606062356 0
-4058 0.92127041783856 0.3282828282847584 0
-4059 0.7113248654054878 0.4797979797993934 0
-4060 0.8687840297292891 0.7525252525262665 0
-4061 0.7200725967568251 0.5858585858597687 0
-4062 0.7113248654054868 0.5808080808092549 0
-4063 0.3964065367579828 0.08585858585915633 0
-4064 0.12522686486524 0.2121212121211702 0
-4065 0.133974596216603 0.2070707070706871 0
-4066 0.1077314021622859 0.4040404040402432 0
-4067 0.9212704178386907 0.2676767676785999 0
-4068 0.3176769545947898 0.4545454545458594 0
-4069 0.3176769545947641 0.4646464646468636 0
-4070 0.3614156113506502 0.7828282828288632 0
-4071 0.3614156113506238 0.7929292929298638 0
-4072 0.3001814918923411 0.3333333333337851 0
-4073 0.676333939999947 0.6717171717180445 0
-4074 0.6413430145946127 0.631313131314042 0
-4075 0.938765880541462 0.2575757575775982 0
-4076 0.9475136118928515 0.2525252525270937 0
-4077 0.903774955134155 0.9343434343448114 0
-4078 0.3964065367567596 0.5505050505055982 0
-4079 0.3876588054054178 0.5454545454550749 0
-4080 0.3789110740540508 0.5505050505055565 0
-4081 0.3789110740540746 0.5404040404045521 0
-4082 0.3701633427027088 0.5454545454550339 0
-4083 0.3701633427027326 0.535353535354029 0
-4084 0.3614156113513667 0.540404040404511 0
-4085 0.361415611351391 0.5303030303035055 0
-4086 0.3526678800000246 0.5353535353539873 0
-4087 0.3526678800000491 0.5252525252529817 0
-4088 0.3439201486486827 0.5303030303034636 0
-4089 0.3439201486487076 0.520202020202458 0
-4090 0.335172417297341 0.5252525252529396 0
-4091 0.3351724172973656 0.5151515151519342 0
-4092 0.3264246859459992 0.5202020202024158 0
-4093 0.3264246859460233 0.5101010101014098 0
-4094 0.3351724172973162 0.535353535353945 0
-4095 0.3351724172973902 0.505050505050929 0
-4096 0.326424685946046 0.500000000000404 0
-4097 0.6588384772983243 0.1161616161628865 0
-4098 0.6675862086496455 0.1212121212133942 0
-4099 0.4401451935144904 0.2222222222229918 0
-4100 0.4313974621631206 0.2272727272734768 0
-4101 0.4226497308117731 0.2222222222229514 0
-4102 0.4226497308117503 0.2323232323239629 0
-4103 0.1427223275682959 0.101010101010206 0
-4104 0.8075499102702648 0.5151515151530874 0
-4105 0.3614156113526072 0.06565656565694286 0
-4106 0.7638112535136442 0.5404040404053752 0
-4107 0.6325952832443539 0.1010101010113548 0
-4108 0.6238475518930124 0.09595959596080951 0
-4109 0.8687840297297981 0.5202020202036243 0
-4110 0.5801088951341316 0.8989898989909789 0
-4111 0.676333939999878 0.5707070707083055 0
-4112 0.6588384772963743 0.9242424242434973 0
-4113 0.5451179697298364 0.4545454545466824 0
-4114 0.6588384772971818 0.5707070707082627 0
-4115 0.6500907459450173 0.9191919191929705 0
-4116 0.5276225070270888 0.4545454545466807 0
-4117 0.6763339399990929 0.9343434343445378 0
-4118 0.4576406562162085 0.474747474748574 0
-4119 0.4663883875675528 0.4797979797990907 0
-4120 0.6150998205404961 0.5555555555566376 0
-4121 0.9562613432442009 0.2676767676786593 0
-4122 0.9562613432438136 0.4292929292951133 0
-4123 0.956261343243841 0.4191919191940909 0
-4124 0.9562613432436819 0.4393939393961223 0
-4125 0.9562613432444059 0.116161616163488 0
-4126 0.9562613432444197 0.1060606060624527 0
-4127 0.9562613432443714 0.1262626262644944 0
-4128 0.7900544475688241 0.04040404040579025 0
-4129 0.352667880001291 0.04040404040430249 0
-4130 0.9212704178370803 0.8333333333342626 0
-4131 0.8250453729723309 0.8080808080821232 0
-4132 0.6325952832448637 0.05050505050664725 0
-4133 0.7550635221617338 0.7474747474759874 0
-4134 0.510127044325339 0.2020202020209505 0
-4135 0.5188747756766691 0.2070707070714674 0
-4136 0.9125226864869974 0.4242424242444989 0
-4137 0.9125226864869769 0.4343434343455154 0
-4138 0.6150998205401589 0.7474747474757153 0
-4139 0.8775317610812483 0.4040404040422325 0
-4140 0.8775317610812672 0.3939393939412216 0
-4141 0.6413430145942832 0.7323232323242372 0
-4142 0.7113248654059121 0.328282828284248 0
-4143 0.7200725967572572 0.3333333333347633 0
-4144 0.5713611637843111 0.3181818181830332 0
-4145 0.5713611637843037 0.3282828282840236 0
-4146 0.3264246859449512 0.9444444444447101 0
-4147 0.3264246859449227 0.9545454545456921 0
-4148 0.1164791335136175 0.4090909090907658 0
-4149 0.1252268648650943 0.363636363636358 0
-4150 0.09023593945989421 0.282828282828324 0
-4151 0.08148820810856196 0.277777777777809 0
-4152 0.07274047675720847 0.2828282828282863 0
-4153 0.07274047675723005 0.2727272727272942 0
-4154 0.06399274540587717 0.2777777777777715 0
-4155 0.06399274540589593 0.2676767676767799 0
-4156 0.05524501405454674 0.2727272727272568 0
-4157 0.05524501405456498 0.2626262626262663 0
-4158 0.04649728270321704 0.2676767676767426 0
-4159 0.2914337605413108 0.2171717171721473 0
-4160 0.2914337605413351 0.2070707070711287 0
-4161 0.8950272237834626 0.6363636363651693 0
-4162 0.8862794924321288 0.6414141414156392 0
-4163 0.8862794924321107 0.651515151516614 0
-4164 0.8775317610807934 0.64646464646611 0
-4165 0.2214519097292919 0.7323232323232971 0
-4166 0.2127041783784988 0.4646464646466251 0
-4167 0.2476951037839915 0.4444444444446812 0
-4168 0.8162976416216741 0.4393939393956046 0
-4169 0.7113248654055716 0.5404040404052726 0
-4170 0.5101270443245037 0.373737373738625 0
-4171 0.4838838502710813 0.2272727272736645 0
-4172 0.3789110740533242 0.7929292929299083 0
-4173 0.3176769545944647 0.5959595959599364 0
-4174 0.2651905664862825 0.6161616161618285 0
-4175 0.2651905664862607 0.6262626262628372 0
-4176 0.7900544475678 0.3434343434360455 0
-4177 0.7988021789191619 0.3383838383855541 0
-4178 0.7900544475676525 0.4242424242440601 0
-4179 0.07274047675621736 0.6464646464643814 0
-4180 0.8162976416213409 0.7323232323242197 0
-4181 0.7725589848649471 0.4242424242440273 0
-4182 0.8600362983779132 0.7777777777786986 0
-4183 0.8600362983778937 0.7878787878796787 0
-4184 0.5013793129740127 0.196969696970453 0
-4185 0.7288203281080672 0.6414141414152291 0
-4186 0.7200725967567105 0.646464646465709 0
-4187 0.5101270443253992 0.1717171717179579 0
-4188 0.2214519097293182 0.7222222222222872 0
-4189 0.2301996410806894 0.7171717171718037 0
-4190 0.8250453729726865 0.727272727273748 0
-4191 0.1777132529733862 0.2020202020202728 0
-4192 0.1864609843247332 0.2070707070707976 0
-4193 0.1864609843247104 0.2171717171718084 0
-4194 0.1689655216220391 0.1969696969697483 0
-4195 0.1952087156760768 0.2121212121213299 0
-4196 0.6850816713505808 0.8282828282842127 0
-4197 0.6938294027019217 0.8333333333347367 0
-4198 0.6063520891883731 0.8333333333345367 0
-4199 0.291433760541028 0.2878787878792758 0
-4200 0.8775317610811294 0.5252525252541385 0
-4201 0.3614156113526613 0.04545454545484441 0
-4202 0.6063520891881734 0.9242424242434016 0
-4203 0.6150998205395444 0.9191919191929085 0
-4204 0.5801088951352682 0.4747474747485845 0
-4205 0.413901999459557 0.4090909090919707 0
-4206 0.4139019994595394 0.4191919191929757 0
-4207 0.4226497308108839 0.4242424242434933 0
-4208 0.4139019994595221 0.4292929292939804 0
-4209 0.4139019994595759 0.3989898989909673 0
-4210 0.4226497308108666 0.4343434343444981 0
-4211 0.4139019994595041 0.4393939393949851 0
-4212 0.9300181491903022 0.1515151515168217 0
-4213 0.9387658805416689 0.1565656565673496 0
-4214 0.685081671350435 0.939393939395021 0
-4215 0.1777132529736198 0.06060606060601042 0
-4216 0.580108895135105 0.5454545454555852 0
-4217 0.5713611637837673 0.5404040404050653 0
-4218 0.9562613432440372 0.3484848484868853 0
-4219 0.9562613432440144 0.3585858585879236 0
-4220 0.9562613432440605 0.3383838383858472 0
-4221 0.03774955135197763 0.05050505050487679 0
-4222 0.03774955135196157 0.06060606060589649 0
-4223 0.03774955135178466 0.3131313131311884 0
-4224 0.0377630245747501 0.3232323232321712 0
-4225 0.03774955135180687 0.3030303030302014 0
-4226 0.03663507641998568 0.5758408336140455 0
-4227 0.03780864420409858 0.9495973013199508 0
-4228 0.03765340736080013 0.9397348221411378 0
-4229 0.212704178377307 0.9595959595959881 0
-4230 0.3876588054042849 0.9595959595963495 0
-4231 0.5976043578391586 0.04040404040524312 0
-4232 0.3351724172962491 0.9595959595962056 0
-4233 0.9475136118909455 0.9595959595974917 0
-4234 0.755063522163563 0.04040404040572263 0
-4235 0.7463157908122405 0.04545454545618267 0
-4236 0.7463157908122183 0.0555555555571406 0
-4237 0.7375680594609165 0.0505050505066405 0
-4238 0.7375680594609406 0.04040404040568448 0
-4239 0.7288203281096172 0.04545454545614029 0
-4240 0.1252268648656389 0.04040404040397751 0
-4241 0.8950475586188664 0.9595607386279718 0
-4242 0.8863020866937461 0.9545063201363969 0
-4243 0.8862820029049793 0.9444400961779722 0
-4244 0.8775345504951008 0.949490118087603 0
-4245 0.6325952832448565 0.04040404040572816 0
-4246 0.6500000405333758 0.04039974667045364 0
-4247 0.9123464799067187 0.04070923915650581 0
-4248 0.9212508393300018 0.0454884564285828 0
-4249 0.1952087156764232 0.04040404040396776 0
-4250 0.05524501405299934 0.9595959595958207 0
-4251 0.03775611722292611 0.9596073320208242 0
-4252 0.03774955135199393 0.04040404040385397 0
-4253 0.1427223275665124 0.9595959595959354 0
-4254 0.1514700589178664 0.9545454545454563 0
-4255 0.8775317610821659 0.04040404040574 0
-4256 0.8687840297308127 0.04545454545623529 0
-4257 0.877472441079493 0.9594130022217929 0
-4258 0.8687777485524559 0.9545245891263203 0
-4259 0.7200725967556001 0.9595959595969517 0
-4260 0.2651905664874656 0.04040404040410427 0
-4261 0.4926315816204075 0.9595959595966678 0
-4262 0.7375680594583207 0.9595959595969644 0
-4263 0.1865293941092385 0.03547202457538051 0
-4264 0.1777132529736544 0.04040404040393321 0
-4265 0.597604357836732 0.9595959595969651 0
-4266 0.04649728270337437 0.03535353535335602 0
-4267 0.8775317610804569 0.8181818181825694 0
-4268 0.807549910269973 0.7474747474756742 0
-4269 0.5976043578387497 0.2121212121221314 0
-4270 0.7375680594591074 0.7272727272739612 0
-4271 0.6238475518921088 0.3484848484863055 0
-4272 0.7025771340533747 0.787878787880239 0
-4273 0.9650090745944877 0.5050505050524092 0
-4274 0.04649728270323683 0.2575757575757554 0
-4275 0.7638112535142609 0.1868686868700357 0
-4276 0.7725589848656189 0.1818181818195603 0
-4277 0.8075499102705108 0.3434343434360707 0
-4278 0.5451179697291432 0.7373737373748109 0
-4279 0.5363702383778003 0.7323232323242852 0
-4280 0.7375680594608927 0.06060606060759918 0
-4281 0.05524501405285737 0.8888888888889483 0
-4282 0.04649728270147661 0.8939393939394404 0
-4283 0.7725589848655918 0.1919191919205584 0
-4284 0.7813067162169536 0.186868686870082 0
-4285 0.7813067162169258 0.196969696971083 0
-4286 0.1252268648650713 0.3737373737373544 0
-4287 0.7813067162157765 0.7525252525264874 0
-4288 0.8075499102699553 0.757575757576659 0
-4289 0.3176769545936629 0.8888888888892276 0
-4290 0.3264246859449951 0.893939393939746 0
-4291 0.475136118920069 0.1616161616170188 0
-4292 0.4576406562173567 0.1616161616169818 0
-4293 0.05523785909770536 0.4747474747667531 0
-4294 0.3351724172963542 0.888888888889273 0
-4295 0.5451179697300575 0.3030303030316152 0
-4296 0.5451179697300549 0.2929292929306412 0
-4297 0.5363702383787072 0.2878787878801383 0
-4298 0.8687840297308038 0.055555555557232 0
-4299 0.8600362983794596 0.05050505050673664 0
-4300 0.8600362983794714 0.04040404040573892 0
-4301 0.8512885670281274 0.04545454545623703 0
-4302 0.7200725967560286 0.8181818181832766 0
-4303 0.1514700589178881 0.944444444444462 0
-4304 0.1602177902692201 0.9494949494949778 0
-4305 0.1602177902691973 0.9595959595959714 0
-4306 0.1689655216205502 0.9545454545454949 0
-4307 0.807549910270525 0.333333333335062 0
-4308 0.7025771340548155 0.2121212121223699 0
-4309 0.7113248654061745 0.2070707070718927 0
-4310 0.8687836417552055 0.944441589242513 0
-4311 0.8600355573606424 0.9494923138713927 0
-4312 0.8600355181335853 0.959593348370021 0
-4313 0.8512883979969527 0.954544871563178 0
-4314 0.8512884659097559 0.9444440868225593 0
-4315 0.8425408056584001 0.9494948449843563 0
-4316 0.8425408356745726 0.9393939393951946 0
-4317 0.8337931009880504 0.9444444328332557 0
-4318 0.8337931006174432 0.9545454416440078 0
-4319 0.8250453721437302 0.9494949466129804 0
-4320 0.8250453725600102 0.9595959581635665 0
-4321 0.8162976414826409 0.9545454540670204 0
-4322 0.2826860291895024 0.4040404040407466 0
-4323 0.9387658805403112 0.5606060606078319 0
-4324 0.3526678799992891 0.7878787878793424 0
-4325 0.3526678799992612 0.7979797979803416 0
-4326 0.6063520891904091 0.06565656565768298 0
-4327 0.9037749551346218 0.7222222222234116 0
-4328 0.2214519097286587 0.9545454545455091 0
-4329 0.1339745962169218 0.1060606060606984 0
-4330 0.2564428351359205 0.1161616161618642 0
-4331 0.04649728270321923 0.1666666666665272 0
-4332 0.03774955135188626 0.1616161616160127 0
-4333 0.03774955135186535 0.1717171717170043 0
-4334 0.9475136118926881 0.3333333333353115 0
-4335 0.9562613432440829 0.3282828282848088 0
-4336 0.9475136118927112 0.3232323232342721 0
-4337 0.9562613432441061 0.3181818181837699 0
-4338 0.1252268648645109 0.6161616161614492 0
-4339 0.1339745962158645 0.6212121212119812 0
-4340 0.1339745962158899 0.6111111111109623 0
-4341 0.8775317610817407 0.3131313131331498 0
-4342 0.4488929248658599 0.2171717171725057 0
-4343 0.09898367081109315 0.3484848484848056 0
-4344 0.4401451935129355 0.7272727272735477 0
-4345 0.1427223275667311 0.8585858585858772 0
-4346 0.8425408356755315 0.6262626262639903 0
-4347 0.2301996410815524 0.2626262626265979 0
-4348 0.1077314021611965 0.9191919191918664 0
-4349 0.1339745962157952 0.6515151515150445 0
-4350 0.378911074054501 0.3383838383845708 0
-4351 0.1864609843238523 0.7121212121212769 0
-4352 0.3876588054045144 0.858585858586418 0
-4353 0.3964065367558482 0.8636363636369392 0
-4354 0.3876588054044874 0.8686868686874153 0
-4355 0.3964065367558208 0.8737373737379365 0
-4356 0.9300181491884845 0.777777777778778 0
-4357 0.938765880539793 0.782828282829275 0
-4358 0.9387658805398096 0.7727272727283132 0
-4359 0.9475136118911158 0.7777777777788081 0
-4360 0.9475136118911327 0.767676767677849 0
-4361 0.9562613432424369 0.7727272727283406 0
-4362 0.9562613432424202 0.7828282828292998 0
-4363 0.956261343242455 0.7626262626273714 0
-4364 0.9475136118911425 0.7575757575768657 0
-4365 0.4051542681069895 0.9494949494954094 0
-4366 0.4051542681069616 0.9595959595963972 0
-4367 0.4139019994583139 0.9545454545459265 0
-4368 0.1602177902701412 0.555555555555532 0
-4369 0.1514700589187948 0.5505050505050065 0
-4370 0.1602177902701642 0.5454545454545222 0
-4371 0.1514700589188182 0.5404040404039976 0
-4372 0.160217790270187 0.5353535353535136 0
-4373 0.151470058918842 0.5303030303029894 0
-4374 0.1602177902702098 0.5252525252525058 0
-4375 0.1514700589188663 0.5202020202019824 0
-4376 0.1602177902702334 0.5151515151514996 0
-4377 0.1514700589188906 0.5101010101009764 0
-4378 0.1602177902702565 0.5050505050504944 0
-4379 0.1514700589189148 0.4999999999999713 0
-4380 0.1602177902702799 0.4949494949494898 0
-4381 0.1514700589189392 0.4898989898989672 0
-4382 0.1602177902703035 0.4848484848484861 0
-4383 0.1514700589189632 0.4797979797979641 0
-4384 0.1602177902703266 0.474747474747483 0
-4385 0.151470058918987 0.4696969696969615 0
-4386 0.1602177902703499 0.4646464646464803 0
-4387 0.1514700589190105 0.4595959595959593 0
-4388 0.1602177902703731 0.4545454545454783 0
-4389 0.8162976416224447 0.1767676767692522 0
-4390 0.3176769545955926 0.111111111111498 0
-4391 0.4401451935137489 0.3333333333344741 0
-4392 0.3526678799990366 0.9090909090913095 0
-4393 0.4313974621613997 0.8030303030310399 0
-4394 0.8162976416213907 0.6919191919203262 0
-4395 0.18646098432353 0.8333333333334731 0
-4396 0.4139019994604025 0.227272727273438 0
-4397 0.4139019994603795 0.2373737373744497 0
-4398 0.7025771340532418 0.8686868686882505 0
-4399 0.4226497308098054 0.8989898989905001 0
-4400 0.3526678800004578 0.333333333333965 0
-4401 0.7813067162168539 0.2676767676783245 0
-4402 0.6063520891885055 0.7828282828294962 0
-4403 0.597604357837029 0.8282828282840098 0
-4404 0.09898367081095402 0.3989898989897207 0
-4405 0.4226497308099326 0.8484848484855126 0
-4406 0.2389473724327725 0.3686868686871541 0
-4407 0.8162976416212789 0.7626262626271687 0
-4408 0.1164791335135057 0.4595959595957444 0
-4409 0.4663883875677125 0.3888888888900527 0
-4410 0.4488929248637767 0.9242424242430596 0
-4411 0.2914337605409374 0.3585858585862693 0
-4412 0.4226497308108488 0.4444444444455027 0
-4413 0.4139019994594862 0.4494949494959898 0
-4414 0.4226497308108311 0.4545454545465076 0
-4415 0.2039564470273795 0.3585858585860617 0
-4416 0.3439201486478382 0.8333333333338145 0
-4417 0.466388387567278 0.6616161616168731 0
-4418 0.168965521621212 0.6717171717171774 0
-4419 0.5276225070264347 0.7373737373747697 0
-4420 0.5276225070264559 0.7272727272737627 0
-4421 0.5451179697297346 0.6363636363643157 0
-4422 0.5363702383783691 0.6414141414147959 0
-4423 0.5451179697297067 0.6464646464653172 0
-4424 0.5976043578379785 0.4040404040417739 0
-4425 0.9212704178374573 0.6212121212137741 0
-4426 0.238947372432165 0.6414141414142995 0
-4427 0.5276225070262766 0.7979797979807972 0
-4428 0.5188747756749117 0.8030303030312773 0
-4429 0.5276225070262512 0.8080808080818007 0
-4430 0.1339745962165777 0.3181818181819105 0
-4431 0.7988021789188269 0.6313131313143814 0
-4432 0.2214519097287375 0.9141414141415449 0
-4433 0.2301996410800894 0.9090909090910636 0
-4434 0.2214519097287541 0.9040404040405523 0
-4435 0.2301996410801065 0.8989898989900692 0
-4436 0.2214519097287697 0.8939393939395585 0
-4437 0.6150998205415407 0.1616161616172151 0
-4438 0.090235939459943 0.1717171717171203 0
-4439 0.3526678800000005 0.5454545454549926 0
-4440 0.5538657010812189 0.4090909090922081 0
-4441 0.5451179697298597 0.414141414142694 0
-4442 0.5626134324317447 0.7777777777788777 0
-4443 0.8687840297305431 0.2272727272744168 0
-4444 0.3876588054066196 0.08080808080861901 0
-4445 0.1514700589190363 0.4494949494949576 0
-4446 0.4139019994588543 0.7424242424249905 0
-4447 0.6063520891901036 0.207070707071653 0
-4448 0.7463157908106434 0.7020202020211834 0
-4449 0.4751361189189949 0.5151515151523844 0
-4450 0.6325952832432009 0.5454545454557065 0
-4451 0.632595283243224 0.5353535353547071 0
-4452 0.6938294027028382 0.3989898989914173 0
-4453 0.8425408356757194 0.4646464646481754 0
-4454 0.8775317610809821 0.5656565656581397 0
-4455 0.2914337605414232 0.1262626262629714 0
-4456 0.6325952832431876 0.5555555555566879 0
-4457 0.05524501405463609 0.1313131313130586 0
-4458 0.04649728270329843 0.1262626262625416 0
-4459 0.2214519097305329 0.05555555555557807 0
-4460 0.2301996410819267 0.05050505050507633 0
-4461 0.68508167135215 0.2020202020213334 0
-4462 0.6850816713521254 0.212121212122328 0
-4463 0.6763339400007921 0.207070707071809 0
-4464 0.5188747756750911 0.7323232323242492 0
-4465 0.5188747756751113 0.7222222222232437 0
-4466 0.4751361189183392 0.727272727273638 0
-4467 0.5101270443237468 0.7272727272737294 0
-4468 0.5101270443237675 0.7171717171727239 0
-4469 0.361415611350426 0.8939393939398426 0
-4470 0.4051542681090308 0.2323232323239243 0
-4471 0.4051542681090078 0.2424242424249367 0
-4472 0.3964065367576589 0.2373737373744112 0
-4473 0.3964065367576354 0.2474747474754241 0
-4474 0.3876588054062864 0.2424242424248979 0
-4475 0.3876588054062626 0.2525252525259111 0
-4476 0.5101270443254232 0.1616161616169601 0
-4477 0.641343014595522 0.1767676767687519 0
-4478 0.7375680594587364 0.8383838383852968 0
-4479 0.1777132529727419 0.6060606060606322 0
-4480 0.16896552162137 0.6111111111111188 0
-4481 0.1777132529727188 0.6161616161616458 0
-4482 0.1689655216213463 0.6212121212121325 0
-4483 0.1777132529726956 0.6262626262626598 0
-4484 0.1689655216213223 0.6313131313131467 0
-4485 0.1777132529726714 0.6363636363636751 0
-4486 0.05524501405306183 0.80808080808075 0
-4487 0.04649728270167549 0.8131313131312381 0
-4488 0.04649728270170347 0.8030303030302103 0
-4489 0.3789110740549134 0.2474747474753847 0
-4490 0.3789110740548892 0.2575757575763977 0
-4491 0.9387658805416136 0.1868686868704496 0
-4492 0.947513611893003 0.1818181818199502 0
-4493 0.9125226864859971 0.6969696969709918 0
-4494 0.8162976416207223 0.9141414141425924 0
-4495 0.0814882081083082 0.3787878787876974 0
-4496 0.3001814918929877 0.05050505050522139 0
-4497 0.30018149189301 0.04040404040417853 0
-4498 0.3089292232443845 0.04545454545472172 0
-4499 0.2214519097305536 0.04545454545453866 0
-4500 0.2301996410819486 0.04040404040403497 0
-4501 0.9037749551359189 0.277777777779603 0
-4502 0.8600362983774825 0.9090909090921855 0
-4503 0.05524501405432233 0.3636363636361465 0
-4504 0.04649728270297008 0.368686868686621 0
-4505 0.04649728270299363 0.358585858585633 0
-4506 0.1077314021629066 0.05050505050498535 0
-4507 0.1077314021629269 0.04040404040395003 0
-4508 0.09898367081153624 0.04545454545445003 0
-4509 0.7638112535134444 0.6414141414153001 0
-4510 0.9475136118929846 0.1919191919209849 0
-4511 0.9562613432443757 0.1868686868704839 0
-4512 0.9562613432443489 0.1969696969715067 0
-4513 0.9562613432443925 0.1767676767694463 0
-4514 0.06399274540506709 0.5606060606056238 0
-4515 0.8862794924320592 0.6818181818195016 0
-4516 0.7725589848647766 0.6464646464658109 0
-4517 0.07274047675700203 0.3636363636361931 0
-4518 0.7113248654054664 0.5909090909102515 0
-4519 0.1427223275673734 0.5757575757575127 0
-4520 0.1427223275674495 0.5454545454544824 0
-4521 0.05524501405465677 0.1212121212120591 0
-4522 0.04649728270331732 0.1161616161615411 0
-4523 0.9212682424490909 0.05555932344311923 0
-4524 0.9300157320904864 0.05050923704659461 0
-4525 0.9300176389137067 0.06060694443290394 0
-4526 0.9387655552776768 0.05555611893120619 0
-4527 0.938765575834642 0.04545507322448025 0
-4528 0.947513537880722 0.05050517870006615 0
-4529 0.9475135757526575 0.06060612320496287 0
-4530 0.9562613310052946 0.05555557675628594 0
-4531 0.9562613378689662 0.06565657496907069 0
-4532 0.9562613336610029 0.04545456205544667 0
-4533 0.05524501405412163 0.4444444444440818 0
-4534 0.3876588054065955 0.09090909090964744 0
-4535 0.5276225070281154 0.1616161616170025 0
-4536 0.8862794924333905 0.1767676767693112 0
-4537 0.886279492433368 0.1868686868703348 0
-4538 0.3089292232436457 0.3585858585863141 0
-4539 0.3176769545950102 0.353535353535832 0
-4540 0.3176769545950351 0.343434343434826 0
-4541 0.04649728270262347 0.4696969696964832 0
-4542 0.9212704178369311 0.914141414142814 0
-4543 0.9650090745937001 0.8383838383846285 0
-4544 0.9650090745936892 0.8484848484855951 0
-4545 0.9650090745937128 0.8282828282836653 0
-4546 0.9562613432423611 0.8535353535360701 0
-4547 0.96500907459368 0.8585858585865672 0
-4548 0.6150998205397171 0.8383838383850628 0
-4549 0.3351724172974145 0.494949494949924 0
-4550 0.4226497308107536 0.5757575757581759 0
-4551 0.422649730810778 0.5656565656571759 0
-4552 0.7200725967569289 0.5353535353547891 0
-4553 0.5188747756746767 0.8838383838392763 0
-4554 0.5276225070260083 0.8888888888897944 0
-4555 0.5888566264864969 0.6414141414148553 0
-4556 0.3176769545949946 0.3636363636368332 0
-4557 0.5801088951351558 0.6363636363643335 0
-4558 0.7025771340541335 0.5858585858597442 0
-4559 0.7025771340541518 0.4747474747488727 0
-4560 0.2214519097303953 0.1262626262628176 0
-4561 0.2127041783790319 0.1212121212122849 0
-4562 0.2127041783790598 0.1111111111112693 0
-4563 0.2301996410817593 0.1313131313133512 0
-4564 0.6675862086487053 0.4545454545468797 0
-4565 0.6588384772973527 0.4595959595973629 0
-4566 0.1689655216222907 0.1161616161617072 0
-4567 0.1777132529736712 0.1111111111112132 0
-4568 0.8425408356757536 0.5252525252540856 0
-4569 0.798802178919407 0.3080808080824607 0
-4570 0.07274047675722406 0.2626262626262757 0
-4571 0.7725589848656432 0.1717171717185649 0
-4572 0.8775317610820115 0.1818181818198019 0
-4573 0.8775317610819882 0.1919191919208235 0
-4574 0.7200725967576627 0.1414141414154772 0
-4575 0.711324865406341 0.1363636363649634 0
-4576 0.7025771340549924 0.1414141414154314 0
-4577 0.7025771340550206 0.1313131313144497 0
-4578 0.6938294027036737 0.1363636363649164 0
-4579 0.7288203281089849 0.1464646464659918 0
-4580 0.6938294027036939 0.1262626262639366 0
-4581 0.7550635221623099 0.5353535353548557 0
-4582 0.4051542681089852 0.25252525252595 0
-4583 0.4226497308110381 0.3333333333344461 0
-4584 0.4139019994596762 0.3383838383849389 0
-4585 0.4139019994596581 0.3484848484859431 0
-4586 0.5713611637839296 0.4696969696980633 0
-4587 0.6588384772963937 0.9141414141424777 0
-4588 0.6675862086496661 0.1111111111124168 0
-4589 0.6588384772983447 0.1060606060619083 0
-4590 0.1777132529736011 0.07070707070704725 0
-4591 0.3439201486479263 0.7929292929298194 0
-4592 0.3439201486478968 0.8030303030308169 0
-4593 0.6850816713504654 0.9292929292940324 0
-4594 0.9212704178389368 0.1464646464662912 0
-4595 0.9125226864875537 0.1515151515167899 0
-4596 0.615099820540669 0.585858585859476 0
-4597 0.5888566264864425 0.5505050505061058 0
-4598 0.9125226864875727 0.1414141414157622 0
-4599 0.9037749551361907 0.1464646464662608 0
-4600 0.9037749551362082 0.1363636363652355 0
-4601 0.05524501405288576 0.8989898989899482 0
-4602 0.04649728270153298 0.9040404040404338 0
-4603 0.7113248654042716 0.9545454545464295 0
-4604 0.965009074593728 0.9494949494965014 0
-4605 0.9650090745937039 0.9595959595975404 0
-4606 0.9650090745937475 0.9393939393954623 0
-4607 0.9650090745952004 0.4242424242446264 0
-4608 0.9650090745952268 0.4141414141436 0
-4609 0.9650090745957678 0.18181818181998 0
-4610 0.9650090745957824 0.1717171717189396 0
-4611 0.9650090721711485 0.05050505470663417 0
-4612 0.9650090732616571 0.04040404271679508 0
-4613 0.9562613420314404 0.03535353745639638 0
-4614 0.2214519097305749 0.03535353535349701 0
-4615 0.413901999458287 0.9646464646469148 0
-4616 0.4226497308096386 0.9595959595964439 0
-4617 0.3439201486499164 0.03535353535376029 0
-4618 0.2739382978388626 0.03535353535359891 0
-4619 0.8162976415593157 0.9646464644351056 0
-4620 0.8075499102469226 0.9595959595202456 0
-4621 0.8075499102512761 0.9494949494342967 0
-4622 0.7988021789132259 0.9545454545312135 0
-4623 0.7988021789146295 0.9646464646372043 0
-4624 0.7900544475657795 0.9595959595954093 0
-4625 0.09892003339275784 0.03546375859603556 0
-4626 0.9205684386397567 0.03479538102916748 0
-4627 0.03760405471261327 0.2624002269579865 0
-4628 0.03705436947468968 0.2519610321464026 0
-4629 0.03773338505861409 0.2727021576529685 0
-4630 0.03773993856751106 0.1313598160525583 0
-4631 0.03777635735454549 0.2221757928632216 0
-4632 0.03775252979654013 0.2121160533033543 0
-4633 0.0377495513514583 0.4343434343430423 0
-4634 0.03774955135143274 0.4444444444440365 0
-4635 0.03775847717800938 0.3636209036513398 0
-4636 0.03774093032569137 0.3736889712215542 0
-4637 0.03775054311015175 0.3535336357590341 0
-4638 0.036978617083327 0.4852854129222476 0
-4639 0.03764067284654178 0.5054301396016054 0
-4640 0.03746744127091137 0.5252522713520693 0
-4641 0.03654870652701824 0.5455102397280727 0
-4642 0.03764327986430788 0.5963323534547706 0
-4643 0.03831189067067406 0.6161390958733729 0
-4644 0.03785860766985238 0.6362548985052405 0
-4645 0.03774955135069245 0.6565656565653177 0
-4646 0.03774955135066688 0.6666666666663486 0
-4647 0.03774955135031612 0.8080808080806998 0
-4648 0.03774955135034461 0.7979797979796699 0
-4649 0.03774955135028947 0.8181818181817297 0
-4650 0.03773993856572663 0.8788345635273433 0
-4651 0.0377495513501047 0.8989898989899316 0
-4652 0.03774955135012296 0.9090909090909416 0
-4653 0.8512885670281395 0.03535353535524824 0
-4654 0.8425408356768016 0.04040404040574461 0
-4655 0.8512884615511163 0.9646461097354576 0
-4656 0.8425408356768173 0.03030303030476048 0
-4657 0.833793104325485 0.03535353535525089 0
-4658 0.5888566264878586 0.03535353535473532 0
-4659 0.3264246859448782 0.964646464646679 0
-4660 0.308929223244405 0.03535353535367827 0
-4661 0.7113248654042181 0.964646464647446 0
-4662 0.9037772145603093 0.9646425512068519 0
-4663 0.9036086643689983 0.03574373074386007 0
-4664 0.7638112535148829 0.03535353535526176 0
-4665 0.1689665768283348 0.9646446369729502 0
-4666 0.1339745962151583 0.9646464646464139 0
-4667 0.3614156113526892 0.03535353535380194 0
-4668 0.2039369580042986 0.9646127086707684 0
-4669 0.7288203281096437 0.03535353535518495 0
-4670 0.7200725967583205 0.04040404040564036 0
-4671 0.2214519097286379 0.9646464646464982 0
-4672 0.4838838502690454 0.9646464646471387 0
-4673 0.4751361189177144 0.9595959595966147 0
-4674 0.7988021789201509 0.03535353535532584 0
-4675 0.6063520891880945 0.9646464646474944 0
-4676 0.7900544475688419 0.0303030303048339 0
-4677 0.7900544475658575 0.9696969696967955 0
-4678 0.7813067162147883 0.9646464646472717 0
-4679 0.7200725967555781 0.9696969696979784 0
-4680 0.9650090745937382 0.7777777777788322 0
-4681 0.9650090745937254 0.7878787878797883 0
-4682 0.9650090745938024 0.7272727272739599 0
-4683 0.9650090745937772 0.7373737373749105 0
-4684 0.9650090745939148 0.6767676767691745 0
-4685 0.9650090745939348 0.6666666666682222 0
-4686 0.9650090745938934 0.6868686868701264 0
-4687 0.9650090745940907 0.5959595959614677 0
-4688 0.965009074594066 0.6060606060624247 0
-4689 0.9650090745941164 0.5858585858605092 0
-4690 0.9387658805397527 0.8434343434351669 0
-4691 0.9125226864856989 0.8585858585872623 0
-4692 0.8512885670265145 0.7929292929302711 0
-4693 0.9562613432423726 0.8636363636370441 0
-4694 0.9650090745936803 0.8686868686875492 0
-4695 0.8950272237830623 0.8383838383845573 0
-4696 0.8862794924317422 0.8434343434350368 0
-4697 0.9037749551356264 0.4292929292949922 0
-4698 0.545117969730065 0.2828282828296548 0
-4699 0.55386570108141 0.2878787878801603 0
-4700 0.5888566264873962 0.2171717171726101 0
-4701 0.7288203281074127 0.792929292930793 0
-4702 0.7725589848646089 0.7272727272737013 0
-4703 0.8862794924326178 0.3989898989917446 0
-4704 0.8862794924326368 0.3888888888907316 0
-4705 0.8775317610812851 0.3838383838402079 0
-4706 0.886279492432656 0.3787878787897169 0
-4707 0.5101270443253194 0.2121212121219486 0
-4708 0.5976043578371927 0.767676767677965 0
-4709 0.5888566264858521 0.762626262627437 0
-4710 0.7200725967582938 0.05050505050659596 0
-4711 0.7113248654069962 0.04545454545609485 0
-4712 0.7113248654070249 0.03535353535513954 0
-4713 0.7025771340557009 0.04040404040559176 0
-4714 0.6763339400007665 0.2171717171728048 0
-4715 0.6675862086494333 0.2121212121222842 0
-4716 0.6500907459458283 0.7070707070714947 0
-4717 0.6588384772971702 0.7121212121220106 0
-4718 0.6413430145944865 0.7020202020209781 0
-4719 0.6063520891904831 0.04545454545575137 0
-4720 0.6063520891904925 0.03535353535479017 0
-4721 0.6938294027029419 0.3484848484863855 0
-4722 0.5713611637837472 0.6616161616168252 0
-4723 0.728820328107796 0.7222222222234032 0
-4724 0.588856626486431 0.6717171717178679 0
-4725 0.5976043578377735 0.6767676767683886 0
-4726 0.7638112535128174 0.8232323232338296 0
-4727 0.7550635221614723 0.8181818181833245 0
-4728 0.6063520891900821 0.2171717171726466 0
-4729 0.6150998205414369 0.2121212121221683 0
-4730 0.4663883875670884 0.6919191919201082 0
-4731 0.4751361189184259 0.6969696969706349 0
-4732 0.5188747756766496 0.2171717171724644 0
-4733 0.6938294027020344 0.7828282828297195 0
-4734 0.6325952832434666 0.3434343434358179 0
-4735 0.6850816713512397 0.5656565656578292 0
-4736 0.7375680594587938 0.7979797979812387 0
-4737 0.7638112535132662 0.7222222222232295 0
-4738 0.7550635221629073 0.1919191919205044 0
-4739 0.1952087156760566 0.2222222222223351 0
-4740 0.5626134324329606 0.3232323232335111 0
-4741 0.5626134324329475 0.3333333333345113 0
-4742 0.2914337605397652 0.8333333333336799 0
-4743 0.2826860291884322 0.8282828282831587 0
-4744 0.6063520891903815 0.07575757575864997 0
-4745 0.597604357839046 0.08080808080911586 0
-4746 0.6150998205417166 0.07070707070818751 0
-4747 0.4488929248643856 0.6919191919200578 0
-4748 0.4401451935130192 0.6969696969705343 0
-4749 0.7025771340542092 0.545454545455753 0
-4750 0.1427223275677805 0.4141414141414322 0
-4751 0.1427223275677738 0.4242424242424437 0
-4752 0.3964065367562047 0.7222222222229437 0
-4753 0.4051542681075682 0.7171717171724644 0
-4754 0.3876588054048407 0.7272727272734216 0
-4755 0.3001814918907779 0.9494949494951516 0
-4756 0.3001814918907431 0.9595959595961389 0
-4757 0.2914337605393787 0.964646464646619 0
-4758 0.7725589848641599 0.8282828282843403 0
-4759 0.06399274540423813 0.8838383838384586 0
-4760 0.1427223275676012 0.4747474747474129 0
-4761 0.5713611637842915 0.3383838383850233 0
-4762 0.1427223275675561 0.4949494949494184 0
-4763 0.9037749551356029 0.4393939393959923 0
-4764 0.9125226864869556 0.4444444444465251 0
-4765 0.8862794924321482 0.6313131313146655 0
-4766 0.8950272237834833 0.6262626262641979 0
-4767 0.6850816713515709 0.343434343435889 0
-4768 0.1427223275675058 0.5151515151514299 0
-4769 0.1339745962164292 0.3686868686868761 0
-4770 0.79005444756829 0.1919191919206052 0
-4771 0.7900544475682639 0.2020202020216064 0
-4772 0.2826860291899574 0.2121212121216171 0
-4773 0.9562613432428141 0.5808080808100069 0
-4774 0.9650090745941422 0.5757575757595503 0
-4775 0.2914337605412867 0.2272727272731653 0
-4776 0.3001814918926385 0.2323232323236953 0
-4777 0.06398804933355216 0.4797979798151235 0
-4778 0.3176769545936409 0.8989898989902214 0
-4779 0.2039564470274497 0.2171717171718854 0
-4780 0.2127041783778726 0.7575757575757994 0
-4781 0.2127041783778482 0.7676767676768087 0
-4782 0.2214519097291936 0.772727272727334 0
-4783 0.2127041783778172 0.7777777777778321 0
-4784 0.2214519097291694 0.7828282828283434 0
-4785 0.2127041783777874 0.7878787878788558 0
-4786 0.2214519097291463 0.7929292929293524 0
-4787 0.2301996410805141 0.7878787878788653 0
-4788 0.2301996410804945 0.7979797979798645 0
-4789 0.2389473724318574 0.7929292929293884 0
-4790 0.2389473724318359 0.8030303030303867 0
-4791 0.2476951037831978 0.7979797979799144 0
-4792 0.2476951037831633 0.8080808080809323 0
-4793 0.2564428351345361 0.8030303030304415 0
-4794 0.2564428351344816 0.8131313131314912 0
-4795 0.06399167372176812 0.5000000006942305 0
-4796 0.8162976416221467 0.3080808080824703 0
-4797 0.8250453729735674 0.3030303030319463 0
-4798 0.8250453729735947 0.2929292929309287 0
-4799 0.1952087156746262 0.9494949494949984 0
-4800 0.9212704178374924 0.6111111111127916 0
-4801 0.8600362983794011 0.08080808080978759 0
-4802 0.2127041783779464 0.7272727272727694 0
-4803 0.06398851954456819 0.5202020453052635 0
-4804 0.1864609843247698 0.3181818181820029 0
-4805 0.1777132529734053 0.323232323232489 0
-4806 0.1952087156761338 0.3131313131315213 0
-4807 0.2301996410801208 0.8888888888890736 0
-4808 0.2389473724314587 0.8939393939395838 0
-4809 0.2214519097287838 0.8838383838385633 0
-4810 0.2127041783774315 0.8888888888890486 0
-4811 0.2127041783774456 0.8787878787880529 0
-4812 0.2039564470260914 0.8838383838385395 0
-4813 0.2039564470261049 0.8737373737375425 0
-4814 0.1952087156747505 0.8787878787880301 0
-4815 0.1952087156747626 0.868686868687032 0
-4816 0.1864609843234078 0.8737373737375213 0
-4817 0.1864609843234182 0.8636363636365219 0
-4818 0.177713252972067 0.8686868686870137 0
-4819 0.2914337605395324 0.8939393939397 0
-4820 0.1427223275676704 0.4545454545454168 0
-4821 0.06398430089622539 0.5404042854651601 0
-4822 0.8075499102702957 0.4545454545470906 0
-4823 0.7988021789189368 0.4595959595975755 0
-4824 0.1339745962152132 0.9343434343434267 0
-4825 0.8600362983784654 0.5151515151531108 0
-4826 0.8687840297298177 0.5101010101026309 0
-4827 0.8687840297306342 0.1868686868702923 0
-4828 0.868784029730609 0.1969696969713114 0
-4829 0.3789110740538397 0.6414141414145962 0
-4830 0.3701633427024753 0.6464646464650792 0
-4831 0.3876588054052035 0.6363636363641129 0
-4832 0.3876588054052251 0.6262626262631099 0
-4833 0.3964065367565661 0.6313131313136288 0
-4834 0.3964065367565877 0.621212121212626 0
-4835 0.4051542681079288 0.6262626262631454 0
-4836 0.05524501405453979 0.2525252525252142 0
-4837 0.1602177902699661 0.6262626262626045 0
-4838 0.8600362983774608 0.9191919191931972 0
-4839 0.8512885670261157 0.9141414141426706 0
-4840 0.8512885670276409 0.3181818181836261 0
-4841 0.2826860291899801 0.2020202020206002 0
-4842 0.0552450140546779 0.1111111111110586 0
-4843 0.956261343242639 0.6616161616177241 0
-4844 0.9650090745939569 0.6565656565672715 0
-4845 0.8775317610810944 0.5353535353551416 0
-4846 0.238947372432577 0.4696969696971721 0
-4847 0.238947372432553 0.4797979797981757 0
-4848 0.5013793129729983 0.4595959595971433 0
-4849 0.9562613432430486 0.5303030303048675 0
-4850 0.9650090745943629 0.5353535353553734 0
-4851 0.9650090745943444 0.5454545454563473 0
-4852 0.5188747756757682 0.4393939393951606 0
-4853 0.2739382978381359 0.4090909090912279 0
-4854 0.7113248654059976 0.2777777777791927 0
-4855 0.2564428351358979 0.1262626262628952 0
-4856 0.2651905664872853 0.1212121212123994 0
-4857 0.09023593945991618 0.2727272727273307 0
-4858 0.09898367081124937 0.2777777777778464 0
-4859 0.3351724172965038 0.8282828282832951 0
-4860 0.3264246859451433 0.8333333333337704 0
-4861 0.7200725967573418 0.2828282828297145 0
-4862 0.7288203281087068 0.2777777777792287 0
-4863 0.2651905664858544 0.8080808080810031 0
-4864 0.9562613432424043 0.792929292930255 0
-4865 0.9650090745937132 0.7979797979807433 0
-4866 0.1689655216220042 0.3484848484850105 0
-4867 0.1602177902706668 0.3434343434344902 0
-4868 0.1514700589192861 0.3484848484849604 0
-4869 0.151470058919328 0.3383838383839675 0
-4870 0.4401451935144669 0.2323232323240019 0
-4871 0.7550635221629777 0.161616161617533 0
-4872 0.3264246859449729 0.9040404040407376 0
-4873 0.2826860291881912 0.8888888888891811 0
-4874 0.273938297836834 0.8939393939396562 0
-4875 0.5188747756757847 0.4292929292941572 0
-4876 0.3526678799993312 0.777777777778346 0
-4877 0.06399191799453352 0.5909090909086956 0
-4878 0.3789110740529616 0.9545454545458321 0
-4879 0.3789110740529343 0.9646464646468189 0
-4880 0.2127041783787198 0.3636363636365843 0
-4881 0.2039564470273547 0.3686868686870641 0
-4882 0.2476951037840092 0.4343434343436819 0
-4883 0.238947372432649 0.4393939393941603 0
-4884 0.4488929248659871 0.1666666666674606 0
-4885 0.4488929248660145 0.1565656565664532 0
-4886 0.3176769545946569 0.5151515151518915 0
-4887 0.3176769545946329 0.5252525252528976 0
-4888 0.4051542681071801 0.8686868686874609 0
-4889 0.4051542681071529 0.878787878788459 0
-4890 0.3964065367557925 0.8838383838389318 0
-4891 0.4226497308117281 0.2424242424249746 0
-4892 0.6675862086496301 0.13131313131437 0
-4893 0.04649728270315531 0.2979797979797237 0
-4894 0.1602177902703981 0.4444444444444768 0
-4895 0.32642468594613 0.4595959595963834 0
-4896 0.3264246859461551 0.4494949494953793 0
-4897 0.3264246859461042 0.4696969696973878 0
-4898 0.317676954594738 0.4747474747478678 0
-4899 0.3526678799992355 0.8080808080813415 0
-4900 0.1602177902700228 0.6060606060605882 0
-4901 0.230199641080985 0.5656565656567049 0
-4902 0.3526678799990995 0.8686868686873284 0
-4903 0.8162976416216916 0.4292929292946027 0
-4904 0.8250453729730343 0.4343434343451191 0
-4905 0.8250453729730155 0.4444444444461209 0
-4906 0.06399555466009046 0.6111111111107579 0
-4907 0.4051542681073641 0.7979797979804683 0
-4908 0.3789110740551105 0.1464646464652323 0
-4909 0.2476951037838933 0.4848484848486981 0
-4910 0.2389473724325296 0.4898989898991794 0
-4911 0.431397462162211 0.4393939393950151 0
-4912 0.2651905664867222 0.4343434343437211 0
-4913 0.3176769545940066 0.797979797980116 0
-4914 0.4401451935136076 0.4141414141425195 0
-4915 0.4751361189179957 0.8585858585866499 0
-4916 0.3701633427026846 0.555555555556039 0
-4917 0.8950272237831798 0.7878787878796799 0
-4918 0.4051542681079516 0.6161616161621433 0
-4919 0.4139019994592921 0.6212121212126643 0
-4920 0.3351724172971283 0.6161616161619855 0
-4921 0.772558984864981 0.5454545454558866 0
-4922 0.772558984864997 0.5353535353548911 0
-4923 0.2389473724328896 0.3181818181821215 0
-4924 0.5713611637837896 0.5303030303040652 0
-4925 0.5626134324324288 0.5353535353545463 0
-4926 0.5626134324324076 0.5454545454555468 0
-4927 0.5538657010810683 0.5404040404050288 0
-4928 0.5538657010810554 0.5505050505060187 0
-4929 0.5451179697297088 0.5454545454555113 0
-4930 0.5451179697296964 0.5555555555565012 0
-4931 0.5363702383783484 0.5505050505059954 0
-4932 0.5363702383783372 0.5606060606069847 0
-4933 0.5276225070269884 0.5555555555564806 0
-4934 0.5276225070269782 0.5656565656574699 0
-4935 0.5188747756756295 0.5606060606069663 0
-4936 0.5188747756756111 0.5707070707079674 0
-4937 0.510127044324269 0.5656565656574521 0
-4938 0.5101270443242497 0.5757575757584537 0
-4939 0.5188747756756449 0.5505050505059667 0
-4940 0.5013793129729078 0.5707070707079359 0
-4941 0.5013793129728901 0.5808080808089389 0
-4942 0.501379312972927 0.5606060606069301 0
-4943 0.5363702383783669 0.5404040404049947 0
-4944 0.55386570108109 0.5303030303040269 0
-4945 0.1952087156761081 0.2020202020203389 0
-4946 0.2826860291890166 0.6060606060608565 0
-4947 0.2739382978376702 0.6010101010103348 0
-4948 0.816297641621365 0.7222222222232403 0
-4949 0.8075499102700159 0.7272727272737229 0
-4950 0.1777132529720723 0.8585858585860121 0
-4951 0.4139019994604241 0.2171717171724271 0
-4952 0.5626134324325769 0.4040404040417206 0
-4953 0.5101270443242325 0.5858585858594554 0
-4954 0.501379312972873 0.5909090909099413 0
-4955 0.3001814918917091 0.6161616161619048 0
-4956 0.09023593945901313 0.626262626262385 0
-4957 0.177713252973409 0.191919191919262 0
-4958 0.1689655216220596 0.1868686868687423 0
-4959 0.1602177902706922 0.1919191919192255 0
-4960 0.2039564470268244 0.6010101010101803 0
-4961 0.5188747756748838 0.8131313131322796 0
-4962 0.5101270443235417 0.8080808080817548 0
-4963 0.5276225070262268 0.8181818181828039 0
-4964 0.04649728270203006 0.6717171717168863 0
-4965 0.03774955135064136 0.6767676767673799 0
-4966 0.3089292232443002 0.07575757575784246 0
-4967 0.06399274540597259 0.1363636363635727 0
-4968 0.2564428351349145 0.6212121212123141 0
-4969 0.2564428351349363 0.6111111111113051 0
-4970 0.4226497308122085 0.05050505050561366 0
-4971 0.4226497308122353 0.04040404040458045 0
-4972 0.4139019994608698 0.0353535353540393 0
-4973 0.4226497308122638 0.03030303030354602 0
-4974 0.4313974621636283 0.03535353535408797 0
-4975 0.06399274540547703 0.4393939393936064 0
-4976 0.2214519097293426 0.712121212121277 0
-4977 0.2301996410807131 0.7070707070707923 0
-4978 0.2389473724320606 0.7121212121213175 0
-4979 0.7025771340541814 0.4040404040419313 0
-4980 0.2214519097302265 0.2979797979800705 0
-4981 0.2301996410815934 0.2929292929295875 0
-4982 0.2389473724329372 0.2979797979801091 0
-4983 0.8600362983780285 0.7070707070718778 0
-4984 0.8950272237832463 0.7575757575767795 0
-4985 0.5013793129724033 0.7222222222232082 0
-4986 0.5013793129724258 0.712121212122204 0
-4987 0.1777132529733399 0.3535353535355291 0
-4988 0.4139019994589057 0.7222222222229869 0
-4989 0.4139019994589321 0.7121212121219855 0
-4990 0.8337931043249456 0.2979797979814641 0
-4991 0.3789110740530928 0.9040404040408896 0
-4992 0.3964065367579609 0.09595959596018103 0
-4993 0.1689655216212976 0.6414141414141619 0
-4994 0.7288203281088924 0.1868686868699458 0
-4995 0.3264246859463784 0.3484848484853498 0
-4996 0.8775317610801774 0.9191919191932334 0
-4997 0.7288203281080442 0.6515151515162263 0
-4998 0.2389473724332967 0.05555555555561539 0
-4999 0.0639927454044065 0.9242424242422876 0
-5000 0.9125226864872411 0.3030303030321874 0
-5001 0.3001814918922619 0.3838383838387776 0
-5002 0.7288203281081329 0.6111111111122465 0
-5003 0.7375680594594866 0.606060606061765 0
-5004 0.7638112535136511 0.3989898989915288 0
-5005 0.7550635221622891 0.4040404040420136 0
-5006 0.3701633427017811 0.8888888888893712 0
-5007 0.1777132529726471 0.6464646464646907 0
-5008 0.1864609843240212 0.6414141414142035 0
-5009 0.1689655216207305 0.8636363636365015 0
-5010 0.886279492433415 0.1666666666682879 0
-5011 0.3351724172985204 0.04040404040426218 0
-5012 0.8862794924318708 0.7828282828291742 0
-5013 0.8775317610807737 0.6565656565670852 0
-5014 0.8687840297294546 0.6515151515165801 0
-5015 0.8687840297294778 0.6414141414156023 0
-5016 0.8600362983781387 0.6464646464660686 0
-5017 0.8250453729727082 0.7171717171727648 0
-5018 0.6850816713505551 0.8383838383852175 0
-5019 0.6938294027018961 0.8434343434357428 0
-5020 0.7025771340532634 0.838383838385262 0
-5021 0.1077314021623112 0.3939393939392554 0
-5022 0.7025771340542254 0.5353535353547727 0
-5023 0.947513611892735 0.3131313131332305 0
-5024 0.9562613432441298 0.3080808080827309 0
-5025 0.7113248654055142 0.4696969696983956 0
-5026 0.8250453729730509 0.5353535353550383 0
-5027 0.7200725967566898 0.6565656565667014 0
-5028 0.1252268648652596 0.2020202020201696 0
-5029 0.1339745962166252 0.1969696969696896 0
-5030 0.3439201486487513 0.5000000000004473 0
-5031 0.6150998205405422 0.646464646465417 0
-5032 0.6063520891883474 0.8434343434355382 0
-5033 0.3789110740552317 0.085858585859114 0
-5034 0.3789110740552066 0.09595959596014085 0
-5035 0.5013793129729817 0.4696969696981463 0
-5036 0.4926315816216214 0.474747474748633 0
-5037 0.8775317610804346 0.8383838383845311 0
-5038 0.8775317610804163 0.8484848484855156 0
-5039 0.09022886863585804 0.04041628743087242 0
-5040 0.1427223275673546 0.585858585858517 0
-5041 0.6325952832443602 0.09090909091036066 0
-5042 0.7900544475683159 0.1818181818196043 0
-5043 0.5013793129740733 0.166666666667438 0
-5044 0.5013793129740989 0.1565656565664399 0
-5045 0.6325952832432258 0.6565656565664614 0
-5046 0.3264246859464019 0.3383838383843469 0
-5047 0.475136118919987 0.1919191919200444 0
-5048 0.4751361189199619 0.2020202020210492 0
-5049 0.3876588054066955 0.05050505050552143 0
-5050 0.3876588054067321 0.04040404040448287 0
-5051 0.947513607280205 0.07070707869865739 0
-5052 0.956261342134638 0.07575757768170563 0
-5053 0.3876588054054408 0.5353535353540698 0
-5054 0.4051542681081595 0.4343434343444675 0
-5055 0.9387658805414757 0.2474747474765662 0
-5056 0.9475136118928682 0.2424242424260657 0
-5057 0.9562613432442428 0.247474747476591 0
-5058 0.956261343244263 0.2373737373755558 0
-5059 0.9650090745955442 0.2424242424260862 0
-5060 0.9650090745956434 0.2323232323250444 0
-5061 0.3701633427027579 0.5252525252530346 0
-5062 0.142722327568264 0.1111111111112294 0
-5063 0.1339745962168993 0.1161616161617205 0
-5064 0.7900544475678144 0.3333333333350372 0
-5065 0.781306716216453 0.3383838383855289 0
-5066 0.4051542681082161 0.4141414141424579 0
-5067 0.2739382978383335 0.3080808080811959 0
-5068 0.2826860291896735 0.3131313131317343 0
-5069 0.2651905664869878 0.3030303030306719 0
-5070 0.8775317610804737 0.8080808080815903 0
-5071 0.8687840297291455 0.8131313131320658 0
-5072 0.2389473724329618 0.2878787878791018 0
-5073 0.1864609843250176 0.1161616161617443 0
-5074 0.1864609843250452 0.1060606060607186 0
-5075 0.1777132529736909 0.1010101010101867 0
-5076 0.8862794924324543 0.5303030303046553 0
-5077 0.8862794924324843 0.5202020202036649 0
-5078 0.3876588054062388 0.2626262626269251 0
-5079 0.3789110740548659 0.2676767676774113 0
-5080 0.3701633427035162 0.2626262626268844 0
-5081 0.3701633427034933 0.272727272727898 0
-5082 0.3614156113521435 0.2676767676773715 0
-5083 0.3614156113521665 0.2575757575763574 0
-5084 0.3526678800007934 0.2626262626268445 0
-5085 0.3526678800008168 0.2525252525258299 0
-5086 0.3439201486494433 0.2575757575763171 0
-5087 0.5888566264854744 0.9040404040414991 0
-5088 0.5801088951341059 0.9090909090919936 0
-5089 0.4051542681083127 0.3434343434354288 0
-5090 0.4051542681082941 0.3535353535364325 0
-5091 0.8162976416206943 0.9242424242435967 0
-5092 0.8250453729720664 0.9191919191931088 0
-5093 0.5801088951352921 0.4646464646475839 0
-5094 0.5888566264866247 0.4696969696981147 0
-5095 0.6500907459450367 0.9090909090919518 0
-5096 0.6238475518920357 0.5808080808090064 0
-5097 0.632595283243341 0.5858585858595398 0
-5098 0.9300181491903096 0.141414141415797 0
-5099 0.4576406562161911 0.4848484848495778 0
-5100 0.4488929248648468 0.4797979797990612 0
-5101 0.4663883875675348 0.4898989899000945 0
-5102 0.6938294027018193 0.9343434343445384 0
-5103 0.6938294027018413 0.9242424242435354 0
-5104 0.5801088951350816 0.5555555555565854 0
-5105 0.1689655216222408 0.06565656565652968 0
-5106 0.4139019994594693 0.459595959596995 0
-5107 0.422649730810814 0.4646464646475119 0
-5108 0.4051542681081237 0.4545454545464776 0
-5109 0.702577134052864 0.9595959595969217 0
-5110 0.9650090745954094 0.3535353535374234 0
-5111 0.9650090745953865 0.3636363636384636 0
-5112 0.9650090745953013 0.3333333333353475 0
-5113 0.9650090745955026 0.313131313133271 0
-5114 0.9650090745955259 0.3030303030322303 0
-5115 0.9650090745957951 0.1111111111129843 0
-5116 0.9650090745958022 0.1010101010119584 0
-5117 0.9650090738752662 0.07070707195704146 0
-5118 0.1602060871884495 0.9696726378697963 0
-5119 0.8600362983794749 0.03030303030475215 0
-5120 0.860036199964052 0.9696966401272399 0
-5121 0.3351724172962218 0.9696969696971927 0
-5122 0.7550635221635856 0.03030303030476676 0
-5123 0.4751361189176854 0.9696969696976097 0
-5124 0.4663883875663556 0.9646464646470874 0
-5125 0.3001814918930318 0.03030303030313376 0
-5126 0.4051542681069357 0.9696969696973857 0
-5127 0.1773913675619626 0.02939229156292053 0
-5128 0.1688296439323759 0.0354257423462235 0
-5129 0.7025771340528274 0.9696969696979375 0
-5130 0.4663883875663278 0.9747474747480813 0
-5131 0.4576406562149988 0.9696969696975601 0
-5132 0.457640656215026 0.9595959595965675 0
-5133 0.4488929248636638 0.9646464646470352 0
-5134 0.4488929248636926 0.954545454546046 0
-5135 0.2301996410819704 0.03030303030299158 0
-5136 0.2389473724333446 0.03535353535353215 0
-5137 0.2389473724333687 0.02525252525248717 0
-5138 0.02900182000045852 0.3080808080806754 0
-5139 0.02900182000048076 0.2979797979796894 0
-5140 0.02897068805346331 0.05555555555537126 0
-5141 0.02896228703476693 0.06565656565638728 0
-5142 0.02900127165051139 0.1666666666664907 0
-5143 0.02900121072271042 0.1767676767674809 0
-5144 0.02900175907277438 0.1565656565655006 0
-5145 0.02881753415587146 0.2174220561502666 0
-5146 0.02950421612872758 0.2277083025944231 0
-5147 0.02898167473381168 0.2070979493106068 0
-5148 0.02883836081320584 0.2674228263704074 0
-5149 0.02901184778055611 0.3585684899607309 0
-5150 0.02875445550224075 0.3484344695898074 0
-5151 0.02873204906193871 0.4393939393935159 0
-5152 0.02870207451322721 0.4494949494945104 0
-5153 0.02897184545144282 0.4292929292925234 0
-5154 0.0290018199989282 0.8131313131311925 0
-5155 0.02900181999890227 0.8232323232322221 0
-5156 0.0290682082667815 0.954660442398246 0
-5157 0.0287613371233305 0.9647087628607398 0
-5158 0.02900181999930292 0.661616161615811 0
-5159 0.02896574613815507 0.9040404040404297 0
-5160 0.02896173793140716 0.9141414141414549 0
-5161 0.03772356057216829 0.9697051553234254 0
-5162 0.3001814918907166 0.9696969696971407 0
-5163 0.1074447405221711 0.03079026521727487 0
-5164 0.8250453729191958 0.9696969695153123 0
-5165 0.2651905664874886 0.03030303030306057 0
-5166 0.4926315816203759 0.9696969696976646 0
-5167 0.5013793129717388 0.9646464646471933 0
-5168 0.9650090743128824 0.03030303079499296 0
-5169 0.3349680746358917 0.03000230169217495 0
-5170 0.597604357836715 0.9696969696979936 0
-5171 0.4226497308096117 0.9696969696974327 0
-5172 0.7025771340557303 0.03030303030463912 0
-5173 0.6938294027044078 0.03535353535508965 0
-5174 0.8957676534974797 0.9697472850251402 0
-5175 0.1952847265477665 0.03043468499398219 0
-5176 0.09016444556993061 0.03042686135323 0
-5177 0.0377382416009884 0.03030896067980272 0
-5178 0.04648471631336785 0.02525911456007541 0
-5179 0.9562613430783004 0.02520747544509704 0
-5180 0.6938294027044374 0.02525252525413858 0
-5181 0.6851259797554757 0.03030303030458812 0
-5182 0.2739382978388849 0.0252525252525534 0
-5183 0.8162976416077251 0.9747474747047742 0
-5184 0.9737568059451226 0.9444444444459972 0
-5185 0.9737568059450202 0.8333333333341578 0
-5186 0.9737568059450417 0.7828282828293187 0
-5187 0.9737568059452104 0.6818181818196689 0
-5188 0.9737568059450989 0.7727272727283463 0
-5189 0.9737568059450711 0.8232323232331795 0
-5190 0.9737568059451905 0.6919191919206233 0
-5191 0.8075499102699017 0.7676767676777067 0
-5192 0.8162976416212102 0.7727272727282696 0
-5193 0.7813067162159395 0.7323232323242138 0
-5194 0.8950272237842533 0.4343434343454724 0
-5195 0.8950272237842677 0.4242424242444849 0
-5196 0.7025771340556441 0.05050505050655957 0
-5197 0.5363702383787246 0.277777777779141 0
-5198 0.6150998205414155 0.2222222222231632 0
-5199 0.623847551892771 0.2171717171726835 0
-5200 0.6850816713520836 0.2222222222233552 0
-5201 0.7113248654058976 0.3383838383852522 0
-5202 0.7200725967572336 0.3434343434357827 0
-5203 0.6675862086494074 0.2222222222232807 0
-5204 0.6588384772980745 0.2171717171727596 0
-5205 0.6588384772981005 0.2070707070717639 0
-5206 0.6500907459467493 0.2121212121222369 0
-5207 0.650090745946772 0.2020202020212416 0
-5208 0.6500907459467206 0.2222222222232717 0
-5209 0.7025771340533947 0.7777777777792377 0
-5210 0.5976043578372439 0.7575757575769274 0
-5211 0.6063520891886071 0.7626262626274183 0
-5212 0.5888566264858851 0.7525252525264253 0
-5213 0.5801088951345127 0.7575757575769049 0
-5214 0.5801088951345443 0.7474747474758965 0
-5215 0.5101270443252929 0.2222222222229461 0
-5216 0.5013793129739678 0.2171717171724404 0
-5217 0.5538657010814214 0.2777777777791715 0
-5218 0.5626134324327603 0.2828282828296855 0
-5219 0.5888566264863885 0.6818181818189004 0
-5220 0.5976043578377495 0.6868686868693966 0
-5221 0.6238475518921228 0.3383838383853046 0
-5222 0.6150998205407657 0.3434343434357927 0
-5223 0.4401451935130492 0.6868686868695312 0
-5224 0.9737568059451562 0.7323232323244557 0
-5225 0.9737568059451375 0.7424242424254067 0
-5226 0.9737568059451258 0.7222222222235063 0
-5227 0.3876588054048702 0.7171717171724205 0
-5228 0.6413430145944692 0.7121212121219807 0
-5229 0.6325952832431416 0.7070707070714631 0
-5230 0.9737568059456806 0.5404040404058734 0
-5231 0.9737568059456293 0.5505050505069153 0
-5232 0.9737568059457004 0.5303030303049033 0
-5233 0.6850865945089023 0.04040404040553918 0
-5234 0.6763548640057749 0.03553680246647457 0
-5235 0.7725589848645563 0.7373737373747411 0
-5236 0.8162976416218758 0.3383838383855781 0
-5237 0.5101270443237894 0.7070707070717192 0
-5238 0.5013793129724518 0.7020202020211994 0
-5239 0.5451179697291678 0.7272727272738027 0
-5240 0.5538657010805097 0.7323232323243272 0
-5241 0.9737568059453019 0.6616161616177654 0
-5242 0.9737568059452768 0.6515151515168154 0
-5243 0.5276225070264737 0.7171717171727562 0
-5244 0.8862794924317059 0.8535353535360251 0
-5245 0.8775317610803955 0.8585858585865038 0
-5246 0.8687840297290538 0.8535353535361337 0
-5247 0.1339745962164225 0.4191919191919105 0
-5248 0.1339745962164135 0.4292929292929222 0
-5249 0.9737568059454367 0.6010101010119671 0
-5250 0.9737568059454181 0.6111111111129192 0
-5251 0.7638112535128516 0.813131313132784 0
-5252 0.5626134324327595 0.2929292929306569 0
-5253 0.34392014864942 0.2676767676773315 0
-5254 0.6850816713512436 0.5757575757588209 0
-5255 0.6763339399998536 0.5808080808093029 0
-5256 0.956261343242355 0.8737373737380293 0
-5257 0.9650090745936739 0.8787878787885416 0
-5258 0.9737568059454438 0.5808080808100525 0
-5259 0.9737568059454684 0.5707070707090943 0
-5260 0.8950272237839884 0.3939393939412544 0
-5261 0.545117969729747 0.5656565656574526 0
-5262 0.5363702383783422 0.6515151515157979 0
-5263 0.5451179697296811 0.6565656565663107 0
-5264 0.5276225070269761 0.6464646464652883 0
-5265 0.1339745962163944 0.4090909090908778 0
-5266 0.1339745962164063 0.3787878787878729 0
-5267 0.5626134324329303 0.3434343434355046 0
-5268 0.5538657010815903 0.338383838385 0
-5269 0.6938294027030023 0.3383838383853515 0
-5270 0.2214519097291058 0.8030303030303786 0
-5271 0.7025771340550481 0.1212121212134705 0
-5272 0.5101270443242178 0.5959595959604577 0
-5273 0.5013793129728575 0.6010101010109442 0
-5274 0.510127044324202 0.6060606060614612 0
-5275 0.5013793129728417 0.6111111111119474 0
-5276 0.2389473724317776 0.8131313131313925 0
-5277 0.728820328109011 0.1363636363650073 0
-5278 0.6063520891903507 0.08585858585962067 0
-5279 0.5976043578390201 0.0909090909100891 0
-5280 0.9475136118911593 0.7373737373748698 0
-5281 0.9387658805398635 0.7323232323243709 0
-5282 0.7113248654058304 0.3484848484863021 0
-5283 0.8425408356767762 0.05050505050675899 0
-5284 0.1777133702171905 0.9595957565211746 0
-5285 0.1777144384522317 0.9696949163847566 0
-5286 0.3176769545936075 0.9090909090912171 0
-5287 0.8950272237840022 0.4040404040423001 0
-5288 0.273938297838602 0.2070707070710895 0
-5289 0.2739382978385824 0.2171717171721063 0
-5290 0.3351724172980662 0.2626262626268061 0
-5291 0.3351724172980926 0.2525252525257897 0
-5292 0.3264246859467035 0.2575757575762838 0
-5293 0.5101270443241905 0.6161616161624637 0
-5294 0.501379312972825 0.6212121212129503 0
-5295 0.5101270443241747 0.6262626262634666 0
-5296 0.9737568059451291 0.9343434343449391 0
-5297 0.4576406562173848 0.1515151515159735 0
-5298 0.8775317610810038 0.555555555557156 0
-5299 0.8600362983794405 0.06060606060775069 0
-5300 0.1602177902692418 0.9393939393939839 0
-5301 0.4488929248644271 0.6818181818190303 0
-5302 0.8075499102702772 0.4646464646480905 0
-5303 0.7113248654061488 0.2171717171728914 0
-5304 0.7200725967575089 0.2121212121224137 0
-5305 0.8162976416218908 0.3282828282845686 0
-5306 0.06399142862442245 0.4696969697006785 0
-5307 0.6763339400009857 0.1161616161629232 0
-5308 0.6763339400010063 0.1060606060619477 0
-5309 0.2739382978368587 0.8838383838386616 0
-5310 0.2651905664855025 0.888888888889137 0
-5311 0.1864609843234283 0.85353535353552 0
-5312 0.7375680594587739 0.8080808080822677 0
-5313 0.5013793129729868 0.4797979797991362 0
-5314 0.7550635221615296 0.8080808080822159 0
-5315 0.781306716214848 0.9545454545463598 0
-5316 0.1777132659991665 0.9494949269311438 0
-5317 0.1689655216217353 0.4494949494949967 0
-5318 0.2039564470261189 0.8636363636365433 0
-5319 0.8862794924333441 0.1969696969713567 0
-5320 0.1689655216216198 0.5000000000000121 0
-5321 0.9650090745937363 0.8181818181827046 0
-5322 0.9737568059450746 0.8131313131321837 0
-5323 0.2214519097288052 0.8737373737375652 0
-5324 0.6938294027036441 0.146464646465898 0
-5325 0.2739382978381604 0.3989898989902223 0
-5326 0.510127044324342 0.4646464646476595 0
-5327 0.6850816713523248 0.1414141414153821 0
-5328 0.9650090745942806 0.5555555555574226 0
-5329 0.5101270443244244 0.4343434343446444 0
-5330 0.9650090745939762 0.6464646464663227 0
-5331 0.973756805945289 0.6414141414158644 0
-5332 0.02894578775327082 0.2777467715131912 0
-5333 0.3789110740538167 0.6515151515156002 0
-5334 0.370163342702455 0.6565656565660877 0
-5335 0.8600362983781648 0.6363636363650923 0
-5336 0.1252268648650353 0.4242424242423636 0
-5337 0.1252268648650031 0.4343434343433675 0
-5338 0.4139019994592671 0.6313131313136704 0
-5339 0.4226497308106321 0.6262626262631891 0
-5340 0.4226497308106546 0.6161616161621828 0
-5341 0.3964065367565512 0.6414141414146444 0
-5342 0.2389473724314718 0.8838383838385878 0
-5343 0.9387658805413402 0.3181818181837358 0
-5344 0.2214519097303742 0.1363636363638456 0
-5345 0.641343014595692 0.09595959596088753 0
-5346 0.1689655216215541 0.5303030303030292 0
-5347 0.7988021789189248 0.4696969696985796 0
-5348 0.4313974621616845 0.6919191919200085 0
-5349 0.03774515880018321 0.07070707070690975 0
-5350 0.04649728270333607 0.1060606060605402 0
-5351 0.03774955135197395 0.1111111111110226 0
-5352 0.03774955135198052 0.1010101010100138 0
-5353 0.02896086552692296 0.0757575757573983 0
-5354 0.03774451279354204 0.08080808080791929 0
-5355 0.02896063580311474 0.08585858585842472 0
-5356 0.3789110740549327 0.2373737373743747 0
-5357 0.2301996410812126 0.4747474747476531 0
-5358 0.2301996410812366 0.4646464646466499 0
-5359 0.08148820810765635 0.6212121212118524 0
-5360 0.7725589848641451 0.8383838383853464 0
-5361 0.7813067162155014 0.8333333333348497 0
-5362 0.7813067162154852 0.8434343434358569 0
-5363 0.7900544475668401 0.8383838383853699 0
-5364 0.7900544475668263 0.8484848484863717 0
-5365 0.7988021789181813 0.8434343434358829 0
-5366 0.7988021789181713 0.8535353535368814 0
-5367 0.7900544475668413 0.8585858585873302 0
-5368 0.8075499102695464 0.8484848484863178 0
-5369 0.8425408356765911 0.1414141414157996 0
-5370 0.4488929248660434 0.1464646464654448 0
-5371 0.4926315816215475 0.5757575757584202 0
-5372 0.448892924866185 0.09595959596029743 0
-5373 0.3789110740535083 0.7222222222228968 0
-5374 0.1252268648655667 0.1010101010101671 0
-5375 0.8075499102714664 0.04040404040580304 0
-5376 0.8075371275147019 0.03039662126597737 0
-5377 0.5451179697298782 0.4040404040416915 0
-5378 0.8162976416210149 0.7929292929306234 0
-5379 0.5801088951365254 0.04040404040518793 0
-5380 0.5801088951365595 0.03030303030422687 0
-5381 0.5713611637852264 0.03535353535467783 0
-5382 0.3701633427016111 0.9595959595963031 0
-5383 0.3701633427015854 0.9696969696972894 0
-5384 0.3614156113502611 0.9646464646467755 0
-5385 0.0377494836543099 0.1818181818179943 0
-5386 0.02873197384278949 0.186868686868472 0
-5387 0.9387658805400333 0.6515151515166984 0
-5388 0.2826860291886173 0.7979797979799925 0
-5389 0.2826860291885722 0.8080808080810316 0
-5390 0.6413430145936602 0.9141414141424448 0
-5391 0.9125226864862922 0.575757575759194 0
-5392 0.9212704178376335 0.570707070708724 0
-5393 0.9387658805398392 0.7424242424253253 0
-5394 0.9650090745940538 0.6161616161633792 0
-5395 0.9737568059453524 0.6212121212138794 0
-5396 0.965009074594028 0.6262626262643539 0
-5397 0.7900544475670359 0.7777777777790257 0
-5398 0.265190566485478 0.8989898989901304 0
-5399 0.7813067162163347 0.5404040404054018 0
-5400 0.7813067162163486 0.5303030303044046 0
-5401 0.7900544475676885 0.5353535353549145 0
-5402 0.07274047675564271 0.8686868686869451 0
-5403 0.08148820810702197 0.8636363636364569 0
-5404 0.08148820810705204 0.8535353535354354 0
-5405 0.0902359394584018 0.8585858585859723 0
-5406 0.09023593945843278 0.8484848484849521 0
-5407 0.7463157908109466 0.3989898989915035 0
-5408 0.387658805404258 0.9696969696973361 0
-5409 0.7463157908116473 0.1565656565670175 0
-5410 0.755063522163001 0.151515151516543 0
-5411 0.2564428351345663 0.7929292929294379 0
-5412 0.7463157908104251 0.732323232324492 0
-5413 0.7463157908105021 0.7222222222233829 0
-5414 0.1602177902708261 0.1616161616162712 0
-5415 0.5713611637827575 0.9040404040414542 0
-5416 0.1602177902706882 0.3333333333334901 0
-5417 0.7288203281082644 0.5404040404052951 0
-5418 0.7288203281082846 0.530303030304305 0
-5419 0.7288203281086865 0.2878787878802356 0
-5420 0.7375680594600511 0.2828282828297498 0
-5421 0.8425408356754397 0.6666666666679222 0
-5422 0.7813067162168985 0.2070707070720863 0
-5423 0.6675862086486093 0.6666666666675253 0
-5424 0.6763339399999708 0.6616161616170465 0
-5425 0.6675862086486367 0.6565656565665337 0
-5426 0.6150998205418281 0.06060606060724519 0
-5427 0.8862794924335218 0.03535353535524125 0
-5428 0.8775317610821715 0.03030303030473563 0
-5429 0.5888566264853496 0.964646464647466 0
-5430 0.5713611637828661 0.8636363636374137 0
-5431 0.03774764392715062 0.2020226557336053 0
-5432 0.466388387568596 0.2070707070715306 0
-5433 0.1689655216216896 0.4696969696970014 0
-5434 0.6500907459460069 0.4545454545468566 0
-5435 0.6500907459459978 0.4646464646478509 0
-5436 0.6413430145946516 0.4595959595973451 0
-5437 0.1514700589179075 0.934343434343468 0
-5438 0.7375680594600714 0.2727272727287432 0
-5439 0.1339745962158401 0.6313131313130004 0
-5440 0.1164791335125778 0.9040404040403658 0
-5441 0.5626134324325198 0.6060606060613418 0
-5442 0.08148820810707452 0.9545454545453457 0
-5443 0.2476951037845112 0.1313131313133908 0
-5444 0.3176769545954766 0.161616161616627 0
-5445 0.3264246859468364 0.166666666667159 0
-5446 0.3176769545954546 0.1717171717176515 0
-5447 0.8775317610821293 0.07070707070876529 0
-5448 0.413901999459441 0.5606060606066482 0
-5449 0.4226497308108056 0.5555555555561733 0
-5450 0.4139019994594693 0.5505050505056445 0
-5451 0.7463157908114155 0.2777777777792638 0
-5452 0.7463157908114358 0.2676767676782573 0
-5453 0.7550635221627802 0.272727272728778 0
-5454 0.02900673761837156 0.8939548539241723 0
-5455 0.5101270443233393 0.8787878787887546 0
-5456 0.5101270443233087 0.8888888888897513 0
-5457 0.5013793129719739 0.8838383838392314 0
-5458 0.5013793129719436 0.8939393939402306 0
-5459 0.4926315816206091 0.888888888889707 0
-5460 0.4926315816206377 0.8787878787887068 0
-5461 0.4838838502692741 0.8838383838391844 0
-5462 0.7988021789189175 0.5909090909104199 0
-5463 0.09898367081029419 0.6717171717170537 0
-5464 0.4751361189188966 0.4848484848496077 0
-5465 0.7113248654047341 0.7828282828297568 0
-5466 0.5801088951360635 0.2121212121220956 0
-5467 0.5801088951360428 0.2222222222230895 0
-5468 0.5713611637847091 0.2171717171725745 0
-5469 0.1427223275664896 0.969696969696929 0
-5470 0.04649728270286794 0.4090909090905848 0
-5471 0.0377495513515122 0.4141414141410584 0
-5472 0.03774955135153987 0.4040404040400681 0
-5473 0.1514700589193491 0.3282828282829758 0
-5474 0.1427223275679905 0.3333333333334477 0
-5475 0.5363702383794478 0.1666666666675221 0
-5476 0.5363702383794724 0.1565656565665275 0
-5477 0.5451179697308032 0.161616161617046 0
-5478 0.1864609843244858 0.4393939393940572 0
-5479 0.7375680594594022 0.6464646464657471 0
-5480 0.2651905664853829 0.9494949494950917 0
-5481 0.2301996410799867 0.9595959595960193 0
-5482 0.2651905664853642 0.9595959595960805 0
-5483 0.2564428351340314 0.9545454545455683 0
-5484 0.2564428351340099 0.9646464646465558 0
-5485 0.2651905664853424 0.9696969696970679 0
-5486 0.2301996410799683 0.9696969696970079 0
-5487 0.5276225070273673 0.2828282828296249 0
-5488 0.3789110740534765 0.7323232323238993 0
-5489 0.3701633427021414 0.7272727272733754 0
-5490 0.3701633427021128 0.7373737373743784 0
-5491 0.5276225070263829 0.757575757576779 0
-5492 0.9387658805397751 0.7929292929302365 0
-5493 0.9037749551349054 0.6010101010116268 0
-5494 0.9125226864862488 0.5959595959612011 0
-5495 0.7900544475675795 0.4646464646480623 0
-5496 0.0552476946547041 0.2323185893871373 0
-5497 0.8162976416216366 0.4595959595976076 0
-5498 0.3876588054052459 0.6161616161621062 0
-5499 0.7813067162169204 0.2272727272742585 0
-5500 0.6150998205416773 0.1010101010112676 0
-5501 0.790054447566706 0.8888888888900074 0
-5502 0.1864609843246871 0.2272727272728191 0
-5503 0.1952087156760327 0.2323232323233447 0
-5504 0.1864609843246582 0.2373737373738231 0
-5505 0.3089292232423092 0.8838383838387179 0
-5506 0.09898367081097476 0.388888888888732 0
-5507 0.5626134324325691 0.474747474748545 0
-5508 0.5626134324325964 0.4646464646475535 0
-5509 0.378911074053426 0.7525252525259036 0
-5510 0.3789110740532517 0.8232323232329001 0
-5511 0.3701633427019147 0.8181818181823816 0
-5512 0.06399274540585563 0.2878787878787629 0
-5513 0.8775317610810974 0.48484848485024 0
-5514 0.7025771340541276 0.575757575758762 0
-5515 0.737568059460968 0.03030303030473 0
-5516 0.4838838502703575 0.4292929292941005 0
-5517 0.370163342702636 0.5757575757580474 0
-5518 0.6938294027027937 0.4797979797993552 0
-5519 0.6938294027028159 0.4696969696983544 0
-5520 0.6850816713514541 0.4747474747488526 0
-5521 0.02885750833212473 0.6512651963750563 0
-5522 0.1427223275678784 0.2424242424242152 0
-5523 0.151470058919217 0.2474747474747401 0
-5524 0.1427223275678768 0.252525252525265 0
-5525 0.2301996410814521 0.3535353535356229 0
-5526 0.6850816713514952 0.3939393939409022 0
-5527 0.685081671351479 0.4040404040419044 0
-5528 0.6763339400001367 0.39898989899139 0
-5529 0.7725589848650115 0.3939393939410442 0
-5530 0.6238475518910863 0.8333333333345811 0
-5531 0.6238475518910608 0.8434343434355903 0
-5532 0.6325952832424302 0.8383838383851085 0
-5533 0.8862794924334249 0.1060606060623215 0
-5534 0.8950272237835597 0.6060606060621183 0
-5535 0.08148820810805892 0.4696969696966369 0
-5536 0.6150998205405481 0.5252525252536656 0
-5537 0.2739382978370676 0.8333333333336382 0
-5538 0.6238475518920353 0.3989898989913123 0
-5539 0.2127041783788609 0.3030303030305549 0
-5540 0.265190566487308 0.1111111111113683 0
-5541 0.273938297838673 0.1161616161619035 0
-5542 0.4051542681071225 0.8888888888894557 0
-5543 0.4139019994584829 0.8838383838389835 0
-5544 0.6413430145948088 0.348484848486332 0
-5545 0.6413430145948255 0.3383838383853312 0
-5546 0.6500907459461664 0.3434343434358459 0
-5547 0.6500907459460628 0.4141414141428517 0
-5548 0.6588384772974214 0.4090909090923655 0
-5549 0.6500907459460799 0.4040404040418502 0
-5550 0.1864609843245861 0.3989898989900471 0
-5551 0.6850816713513838 0.5252525252538085 0
-5552 0.1077314021628894 0.06060606060601925 0
-5553 0.3089292232432908 0.5202020202023736 0
-5554 0.3089292232432658 0.5303030303033792 0
-5555 0.3089292232433133 0.5101010101013661 0
-5556 0.3176769545946076 0.5353535353539036 0
-5557 0.2914337605408939 0.3888888888892589 0
-5558 0.4576406562163869 0.3737373737385301 0
-5559 0.2564428351358113 0.1969696969700608 0
-5560 0.3001814918910956 0.8383838383842035 0
-5561 0.4313974621616543 0.7020202020210147 0
-5562 0.4226497308103225 0.6969696969704906 0
-5563 0.1689655216215106 0.5505050505050464 0
-5564 0.8162976416218618 0.3484848484865863 0
-5565 0.4051542681080004 0.595959595960138 0
-5566 0.5801088951343472 0.8181818181829508 0
-5567 0.5713611637829783 0.8232323232334312 0
-5568 0.5626134324316375 0.8181818181829026 0
-5569 0.5626134324316098 0.8282828282839114 0
-5570 0.5713611637829499 0.8333333333344394 0
-5571 0.5538657010802704 0.8232323232333804 0
-5572 0.6063520891892 0.6414141414148943 0
-5573 0.317676954594894 0.4141414141418406 0
-5574 0.326424685946261 0.4090909090913597 0
-5575 0.3264246859462342 0.4191919191923661 0
-5576 0.3264246859462862 0.3989898989903538 0
-5577 0.3351724172976282 0.4040404040408784 0
-5578 0.2476951037838695 0.494949494949702 0
-5579 0.2389473724325062 0.5000000000001833 0
-5580 0.2301996410811651 0.4949494949496613 0
-5581 0.2301996410811388 0.5050505050506651 0
-5582 0.238947372432483 0.510101010101187 0
-5583 0.2301996410811151 0.5151515151516688 0
-5584 0.2389473724324604 0.5202020202021909 0
-5585 0.2301996410810951 0.525252525252673 0
-5586 0.2389473724324377 0.5303030303031959 0
-5587 0.2301996410810722 0.5353535353536781 0
-5588 0.9562613432431343 0.5101010101028847 0
-5589 0.3526678800000654 0.5151515151519815 0
-5590 0.3614156113511111 0.6515151515155621 0
-5591 0.361415611351091 0.6616161616165708 0
-5592 0.7113248654055406 0.3989898989914434 0
-5593 0.5713611637839203 0.4090909090922339 0
-5594 0.2651905664863775 0.5757575757577983 0
-5595 0.3176769545941707 0.7373737373740579 0
-5596 0.2914337605412624 0.2373737373741824 0
-5597 0.3001814918926139 0.2424242424247119 0
-5598 0.3089292232439897 0.2373737373742252 0
-5599 0.3089292232439652 0.2474747474752415 0
-5600 0.2826860291899124 0.2323232323236583 0
-5601 0.6763339400002104 0.3484848484863811 0
-5602 0.6763339400002231 0.3383838383853782 0
-5603 0.5013793129740409 0.1767676767684369 0
-5604 0.6238475518927886 0.2070707070716898 0
-5605 0.4313974621632409 0.1767676767684146 0
-5606 0.947513611739883 0.03029802500384676 0
-5607 0.1689504241011736 0.04546256845364086 0
-5608 0.2389473724320821 0.6818181818183404 0
-5609 0.1252268648650488 0.3838383838383506 0
-5610 0.1339745962163845 0.3888888888888711 0
-5611 0.1602177902697867 0.7070707070707373 0
-5612 0.2127041783779205 0.73737373737378 0
-5613 0.5276225070280048 0.2121212121219828 0
-5614 0.5276225070279863 0.2222222222229788 0
-5615 0.5363702383793401 0.2171717171724978 0
-5616 0.4488929248649016 0.449494949496048 0
-5617 0.5713611637839341 0.3989898989912317 0
-5618 0.4401451935126792 0.8282828282835623 0
-5619 0.5801088951350238 0.6767676767684093 0
-5620 0.7113248654053612 0.6515151515161889 0
-5621 0.6413430145945614 0.5404040404052258 0
-5622 0.1602177902705812 0.2424242424242586 0
-5623 0.1602177902705576 0.2525252525252626 0
-5624 0.1689655216219222 0.2474747474747819 0
-5625 0.3176769545950446 0.3333333333338304 0
-5626 0.4926315816207768 0.828282828283692 0
-5627 0.1252268648638743 0.9292929292929123 0
-5628 0.1339745962152303 0.9242424242424274 0
-5629 0.3351724172969571 0.6969696969700685 0
-5630 0.1164791335140584 0.1464646464646752 0
-5631 0.3876588054064077 0.1818181818188184 0
-5632 0.4226497308096662 0.9494949494954574 0
-5633 0.7025771340546549 0.2727272727286707 0
-5634 0.7025771340546334 0.282828282829679 0
-5635 0.693829402703291 0.277777777779153 0
-5636 0.4139019994588282 0.7525252525259907 0
-5637 0.1164791335138989 0.2070707070706504 0
-5638 0.8862794924315486 0.9141414141427462 0
-5639 0.4139019994596416 0.35858585858695 0
-5640 0.4051542681082781 0.3636363636374396 0
-5641 0.4139019994596252 0.3686868686879569 0
-5642 0.4051542681082627 0.3737373737384466 0
-5643 0.3964065367569384 0.3686868686879294 0
-5644 0.1339745962164508 0.3585858585858819 0
-5645 0.6763339400001205 0.4090909090923913 0
-5646 0.04649728270200488 0.681818181817917 0
-5647 0.03774955135061679 0.686868686868412 0
-5648 0.02846471071061817 0.6819091561209808 0
-5649 0.02865362079200791 0.6919720162943784 0
-5650 0.03774955135059525 0.6969696969694437 0
-5651 0.02865661720451004 0.7020260713949382 0
-5652 0.03771119548449679 0.7070713592232534 0
-5653 0.02834617438242244 0.7121219367350602 0
-5654 0.03767244007468128 0.7171718701456045 0
-5655 0.02861388857275574 0.7222223197317489 0
-5656 0.0376978799391658 0.7272727551040784 0
-5657 0.02868320430130877 0.7323232462498458 0
-5658 0.0377084083383751 0.7373737420133887 0
-5659 0.0286920758710422 0.7424242444870268 0
-5660 0.03771056389046164 0.7474747482193571 0
-5661 0.02896259071819517 0.7525252528462638 0
-5662 0.03774521941045837 0.7575757576583872 0
-5663 0.02900574545990426 0.7626110802125384 0
-5664 0.03774950618608799 0.7676750807510145 0
-5665 0.02854702791013366 0.7726561385872875 0
-5666 0.04649679635689727 0.7626260751991835 0
-5667 0.04648696998817434 0.7323232359309992 0
-5668 0.04649302093906354 0.7020202744813971 0
-5669 0.8775317610813127 0.3737373737392085 0
-5670 0.8687840297299351 0.3787878787896851 0
-5671 0.7725589848648816 0.5959595959608602 0
-5672 0.6675862086485276 0.7070707070715241 0
-5673 0.6675862086485127 0.7171717171725233 0
-5674 0.6588384772971488 0.7222222222230348 0
-5675 0.5888566264877073 0.08585858585958091 0
-5676 0.5888566264876857 0.0959595959605519 0
-5677 0.5801088951363655 0.09090909091004835 0
-5678 0.781306716216127 0.6414141414153325 0
-5679 0.7813067162161068 0.6515151515163224 0
-5680 0.7900544475674578 0.6464646464658469 0
-5681 0.9300181491900901 0.252525252527066 0
-5682 0.2914337605413598 0.1969696969701095 0
-5683 0.07274047675571275 0.9595959595958335 0
-5684 0.08148820810705601 0.964646464646351 0
-5685 0.07274047675569542 0.9696969696968364 0
-5686 0.5276225070271442 0.4242424242436703 0
-5687 0.5188747756758013 0.4191919191931543 0
-5688 0.8512885670278107 0.2272727272744008 0
-5689 0.6588384772974385 0.3989898989913646 0
-5690 0.6850816713513077 0.666666666667566 0
-5691 0.422649730810192 0.7474747474755119 0
-5692 0.9387658805405064 0.4797979797998666 0
-5693 0.8512885670261681 0.8939393939406496 0
-5694 0.7988021789196537 0.1868686868701264 0
-5695 0.3526678799997465 0.6565656565660446 0
-5696 0.3526678799997238 0.6666666666670491 0
-5697 0.3439201486483812 0.6616161616165263 0
-5698 0.3439201486483578 0.6717171717175309 0
-5699 0.5451179697287504 0.8787878787888472 0
-5700 0.09023593945896098 0.6464646464644302 0
-5701 0.5363702383785182 0.4090909090921798 0
-5702 0.3089292232432405 0.5404040404043848 0
-5703 0.4488929248642501 0.7424242424250748 0
-5704 0.9212704178376018 0.5808080808097502 0
-5705 0.9300181491889306 0.5757575757593136 0
-5706 0.1427223275679669 0.2020202020202045 0
-5707 0.4751361189197149 0.2323232323241683 0
-5708 0.3614156113505549 0.8232323232328617 0
-5709 0.7463157908121941 0.0656565656580993 0
-5710 0.7375680594608612 0.07070707070854847 0
-5711 0.7463157908121205 0.07575757575906955 0
-5712 0.7288203281095647 0.0656565656580574 0
-5713 0.8250453729728986 0.6060606060619678 0
-5714 0.3789110740532738 0.8131313131319017 0
-5715 0.4926315816214984 0.6060606060614315 0
-5716 0.9125226864861603 0.6161616161632339 0
-5717 0.720072596756849 0.4747474747489189 0
-5718 0.7200725967568764 0.4646464646479276 0
-5719 0.728820328108212 0.4696969696984478 0
-5720 0.256442835134893 0.6313131313133227 0
-5721 0.2651905664862375 0.6363636363638471 0
-5722 0.4226497308102166 0.7373737373745114 0
-5723 0.5363702383775915 0.813131313132322 0
-5724 0.5976043578368486 0.898989898990981 0
-5725 0.816297641622322 0.2474747474763667 0
-5726 0.3876588054066651 0.06060606060655691 0
-5727 0.1252268648648442 0.4646464646462665 0
-5728 0.1252268648648199 0.4747474747472682 0
-5729 0.7113248654055234 0.4090909090924449 0
-5730 0.7200725967568836 0.4040404040419592 0
-5731 0.7900544475669253 0.8181818181831277 0
-5732 0.6850816713506735 0.7878787878802007 0
-5733 0.6850816713506952 0.7777777777791994 0
-5734 0.6763339399993336 0.7828282828296798 0
-5735 0.2826860291890372 0.5959595959598484 0
-5736 0.641343014594584 0.5303030303042253 0
-5737 0.6325952832432455 0.5252525252537072 0
-5738 0.7025771340547892 0.2222222222233672 0
-5739 0.2476951037838237 0.5151515151517088 0
-5740 0.8075499102703487 0.4242424242440885 0
-5741 0.8162976416217067 0.4191919191935996 0
-5742 0.676333939999869 0.7121212121220382 0
-5743 0.6763339399998519 0.7222222222230387 0
-5744 0.685081671351214 0.7171717171726322 0
-5745 0.4926315816205789 0.8989898989907066 0
-5746 0.4139019994596105 0.3787878787889626 0
-5747 0.6500907459458664 0.5656565656577418 0
-5748 0.7900544475673129 0.7171717171727531 0
-5749 0.1602177902704731 0.424242424242488 0
-5750 0.3176769545945832 0.5454545454549087 0
-5751 0.75506352216164 0.7878787878799947 0
-5752 0.8337931043240316 0.7222222222232735 0
-5753 0.9650090745954216 0.2525252525271259 0
-5754 0.8687840297296572 0.5606060606076297 0
-5755 0.2564428351356227 0.3080808080811511 0
-5756 0.2564428351356389 0.2979797979801547 0
-5757 0.2476951037835484 0.6262626262628012 0
-5758 0.3964065367581123 0.03535353535398759 0
-5759 0.3876588054067618 0.03030303030344215 0
-5760 0.1077314021612601 0.8787878787878785 0
-5761 0.3001814918907798 0.9292929292931846 0
-5762 0.3089292232421453 0.9242424242427051 0
-5763 0.308929223242154 0.934343434343693 0
-5764 0.9650090745937623 0.9292929292944235 0
-5765 0.9737568059451429 0.924242424243899 0
-5766 0.9650090745937783 0.9191919191933869 0
-5767 0.973756805945155 0.914141414142861 0
-5768 0.9650090745937933 0.9090909090923529 0
-5769 0.9737568059451652 0.9040404040418287 0
-5770 0.9650090745937688 0.898989898991154 0
-5771 0.9737568059451173 0.8939393939405744 0
-5772 0.6675862086477501 0.9191919191930017 0
-5773 0.4751361189183952 0.7070707070716378 0
-5774 0.7200725967564083 0.7272727272739555 0
-5775 0.7200725967564469 0.7171717171729217 0
-5776 0.711324865405072 0.7222222222234448 0
-5777 0.4226497308120712 0.101010101010748 0
-5778 0.6763339399992142 0.8333333333346937 0
-5779 0.973756805945036 0.8636363636370717 0
-5780 0.8862794924323569 0.5505050505066796 0
-5781 0.9562613432439916 0.3686868686889627 0
-5782 0.9650090745953638 0.3737373737395041 0
-5783 0.9562613432439684 0.3787878787900025 0
-5784 0.9650090745952722 0.3838383838405439 0
-5785 0.9562613432439419 0.3888888888910377 0
-5786 0.7288203281086013 0.3383838383852804 0
-5787 0.7288203281085761 0.3484848484863002 0
-5788 0.7375680594599462 0.3434343434357978 0
-5789 0.8862794924331785 0.2777777777795772 0
-5790 0.2739382978386501 0.1262626262629342 0
-5791 0.8775317610811804 0.4444444444462783 0
-5792 0.335172417297016 0.6666666666670087 0
-5793 0.3351724172969918 0.6767676767680144 0
-5794 0.3264246859456497 0.6717171717174895 0
-5795 0.5276225070281422 0.1515151515160093 0
-5796 0.956261343244408 0.1666666666684075 0
-5797 0.965009074595797 0.1616161616179003 0
-5798 0.5013793129723807 0.7323232323242126 0
-5799 0.4051542681082485 0.3838383838394521 0
-5800 0.7375680594602251 0.1919191919204619 0
-5801 0.256442835135875 0.1363636363639247 0
-5802 0.2476951037844893 0.1414141414144195 0
-5803 0.6150998205394731 0.9595959595969974 0
-5804 0.6150998205394559 0.9696969696980255 0
-5805 0.6238475518908373 0.9646464646475289 0
-5806 0.8687840297291202 0.8232323232330472 0
-5807 0.9562613432444227 0.1565656565673672 0
-5808 0.9650090745958124 0.1515151515168609 0
-5809 0.9300181491886084 0.7070707070719683 0
-5810 0.9300181491885863 0.7171717171729238 0
-5811 0.06399274540488603 0.6313131313128169 0
-5812 0.440145193514671 0.1515151515159172 0
-5813 0.04649728270173687 0.7929292929291871 0
-5814 0.3614156113521897 0.247474747475346 0
-5815 0.9387658805404152 0.5202020202038421 0
-5816 0.18646098432409 0.6111111111111567 0
-5817 0.09898367080978171 0.8535353535354876 0
-5818 0.09898367080981199 0.8434343434344693 0
-5819 0.7900544475674356 0.6565656565668347 0
-5820 0.2914337605403839 0.601010101010372 0
-5821 0.8337931043249651 0.2878787878804397 0
-5822 0.8250453729736158 0.2828282828299146 0
-5823 0.8337931043249855 0.2777777777794248 0
-5824 0.8250453729736356 0.2727272727289001 0
-5825 0.807549910270365 0.4141414141430895 0
-5826 0.5188747756750703 0.7424242424252557 0
-5827 0.7813067162160867 0.6616161616173076 0
-5828 0.05524361778919143 0.03030376244816412 0
-5829 0.4926315816210631 0.7171717171726876 0
-5830 0.3176769545953524 0.2424242424247508 0
-5831 0.9475136118918611 0.4747474747493844 0
-5832 0.9387658805405231 0.4696969696988669 0
-5833 0.9475136118918819 0.464646464648382 0
-5834 0.3701633427038436 0.09090909090961084 0
-5835 0.08148820810768231 0.6111111111108257 0
-5836 0.03772217660284584 0.343428554915149 0
-5837 0.02872131882275078 0.3382508939385576 0
-5838 0.5363702383775675 0.8232323232333262 0
-5839 0.2564428351348702 0.6414141414143313 0
-5840 0.2651905664862143 0.6464646464648577 0
-5841 0.8862794924318905 0.7727272727282046 0
-5842 0.1952087156747403 0.8888888888890237 0
-5843 0.3089292232443588 0.05555555555576427 0
-5844 0.8687840297295023 0.631313131314625 0
-5845 0.1339745962160069 0.5808080808079874 0
-5846 0.1339745962160251 0.5707070707069833 0
-5847 0.1952087156760149 0.3636363636365444 0
-5848 0.1952087156759912 0.3737373737375458 0
-5849 0.2039564470273304 0.3787878787880672 0
-5850 0.7725589848649912 0.404040404042044 0
-5851 0.7813067162163541 0.3989898989915607 0
-5852 0.5451179697308297 0.1515151515160545 0
-5853 0.5538657010821587 0.1565656565665719 0
-5854 0.763811253513428 0.65151515151629 0
-5855 0.1427223275672469 0.6161616161614983 0
-5856 0.05524501405434667 0.3535353535351622 0
-5857 0.7550635221622449 0.4242424242439971 0
-5858 0.7463157908109036 0.4191919191934864 0
-5859 0.7375680594587533 0.8282828282842962 0
-5860 0.7288203281073925 0.833333333334784 0
-5861 0.2564428351360713 0.04545454545460952 0
-5862 0.833793104325006 0.2676767676784111 0
-5863 0.3176769545957525 0.05050505050526662 0
-5864 0.1602177902706922 0.323232323232488 0
-5865 0.07274047675745005 0.05050505050493829 0
-5866 0.5188747756748531 0.8232323232332783 0
-5867 0.2039564470264651 0.7727272727273231 0
-5868 0.2564428351360506 0.05555555555565037 0
-5869 0.5538657010810759 0.6414141414148216 0
-5870 0.6150998205405639 0.6363636363644229 0
-5871 0.7025771340541139 0.5959595959607346 0
-5872 0.886279492432091 0.6616161616175862 0
-5873 0.8775317610807591 0.6666666666680527 0
-5874 0.3964065367579265 0.1161616161622033 0
-5875 0.1689655216212752 0.6515151515151731 0
-5876 0.1777132529726237 0.6565656565657 0
-5877 0.5101270443254515 0.1515151515159646 0
-5878 0.8075499102692949 0.9292929292940829 0
-5879 0.08147947869607383 0.03536865513974936 0
-5880 0.5013793129719111 0.9040404040412258 0
-5881 0.1164791335139163 0.1969696969696528 0
-5882 0.1077314021625576 0.2020202020201306 0
-5883 0.1077314021625769 0.1919191919191309 0
-5884 0.3264246859468144 0.176767676768181 0
-5885 0.3351724172981945 0.1717171717176908 0
-5886 0.7113248654054538 0.6010101010112439 0
-5887 0.3701633427038182 0.1010101010106357 0
-5888 0.3614156113524533 0.09595959596010421 0
-5889 0.3614156113524295 0.1060606060611304 0
-5890 0.3526678800010643 0.1010101010105984 0
-5891 0.291433760540918 0.3787878787882545 0
-5892 0.2826860291895515 0.3838383838387346 0
-5893 0.1777132529720619 0.8787878787880072 0
-5894 0.3964065367557642 0.8939393939399284 0
-5895 0.04649728270332411 0.09595959595950923 0
-5896 0.9562613432438641 0.4090909090930681 0
-5897 0.3526678800010414 0.111111111111625 0
-5898 0.3439201486496757 0.1060606060610936 0
-5899 0.3439201486496529 0.11616161616212 0
-5900 0.5538657010802408 0.8333333333343848 0
-5901 0.4313974621619933 0.6212121212127055 0
-5902 0.4313974621620153 0.611111111111703 0
-5903 0.921270417837284 0.7121212121224286 0
-5904 0.06399274540544687 0.4494949494945909 0
-5905 0.9037749551350457 0.5404040404057365 0
-5906 0.7025771340532392 0.8484848484862658 0
-5907 0.1864609843247932 0.308080808081 0
-5908 0.1952087156761512 0.3030303030305268 0
-5909 0.8950272237848298 0.1414141414157351 0
-5910 0.8950272237848433 0.1313131313147174 0
-5911 0.9650090745952027 0.39393939394158 0
-5912 0.9475136118910845 0.8585858585866286 0
-5913 0.9737568055294916 0.04545454617975711 0
-5914 0.816297641621381 0.7121212121222662 0
-5915 0.8250453729727235 0.707070707071789 0
-5916 0.711324865405345 0.6616161616171743 0
-5917 0.72882032810803 0.6616161616172138 0
-5918 0.860036298378116 0.6565656565670382 0
-5919 0.4313974621621161 0.5707070707077035 0
-5920 0.4313974621620928 0.5808080808086993 0
-5921 0.1602177902699203 0.6464646464646352 0
-5922 0.69382940270188 0.8535353535367403 0
-5923 0.2826860291899882 0.1919191919195871 0
-5924 0.2914337605413669 0.186868686869098 0
-5925 0.6850816713513342 0.6565656565665716 0
-5926 0.3789110740552634 0.07575757575808409 0
-5927 0.8512885670268246 0.641414141415542 0
-5928 0.7113248654046198 0.8434343434357792 0
-5929 0.6325952832424062 0.8484848484861147 0
-5930 0.6413430145937747 0.8434343434356353 0
-5931 0.2127041783788564 0.2929292929295568 0
-5932 0.9562613432442776 0.2272727272745229 0
-5933 0.9650090745956675 0.2222222222240028 0
-5934 0.2301996410815909 0.2828282828285866 0
-5935 0.1777132529720832 0.8484848484850107 0
-5936 0.5888566264865218 0.6313131313138598 0
-5937 0.3439201486487726 0.4898989898994465 0
-5938 0.6325952832432574 0.6363636363645143 0
-5939 0.2389473724320787 0.702020202020315 0
-5940 0.5276225070259424 0.9090909090917531 0
-5941 0.5363702383772878 0.9141414141422719 0
-5942 0.6063520891892256 0.6313131313139003 0
-5943 0.9300181491901055 0.2424242424260441 0
-5944 0.1427223275679912 0.1919191919192055 0
-5945 0.04649722364521951 0.7727270644657855 0
-5946 0.4051542681075953 0.7070707070714648 0
-5947 0.5801088951351807 0.6262626262633385 0
-5948 0.571361163783817 0.6313131313138132 0
-5949 0.3351724172977468 0.3434343434348724 0
-5950 0.3351724172977601 0.3333333333338795 0
-5951 0.2214519097293663 0.7020202020202698 0
-5952 0.2301996410817424 0.1414141414143794 0
-5953 0.7463157908116643 0.1464646464660362 0
-5954 0.2826860291895732 0.373737373737733 0
-5955 0.3351724172974932 0.4545454545459063 0
-5956 0.3351724172975177 0.4444444444449026 0
-5957 0.3264246859461796 0.4393939393943758 0
-5958 0.3351724172975443 0.4343434343438949 0
-5959 0.8862794924315227 0.9242424242437496 0
-5960 0.8950272237828896 0.9191919191932632 0
-5961 0.3351724172976497 0.3939393939398773 0
-5962 0.32642468594631 0.3888888888893483 0
-5963 0.3351724172976732 0.3838383838388711 0
-5964 0.1602177902707197 0.1818181818182287 0
-5965 0.1427223275672835 0.6060606060604941 0
-5966 0.1339745962159272 0.6010101010099527 0
-5967 0.3351724172977222 0.3535353535358742 0
-5968 0.947513611892751 0.3030303030322007 0
-5969 0.3351724172981763 0.1818181818187118 0
-5970 0.3439201486495518 0.1767676767682226 0
-5971 0.6850816713514511 0.4646464646478548 0
-5972 0.212704178377992 0.707070707070764 0
-5973 0.2739382978383398 0.2979797979802045 0
-5974 0.6413430145945967 0.6414141414150326 0
-5975 0.6500907459459522 0.6363636363645602 0
-5976 0.6500907459459424 0.6464646464655488 0
-5977 0.6588384772973022 0.6414141414150686 0
-5978 0.667586208648701 0.4646464646478692 0
-5979 0.9212704178387207 0.2474747474765398 0
-5980 0.2476951037834277 0.7070707070708391 0
-5981 0.2476951037834086 0.7171717171718422 0
-5982 0.2564428351347767 0.7121212121213616 0
-5983 0.2564428351347542 0.7222222222223666 0
-5984 0.2651905664861207 0.7171717171718868 0
-5985 0.2651905664860977 0.7272727272728916 0
-5986 0.2739382978374635 0.7222222222224155 0
-5987 0.2739382978374423 0.7323232323234158 0
-5988 0.2826860291888069 0.7272727272729412 0
-5989 0.2826860291887872 0.7373737373739405 0
-5990 0.29143376054015 0.7323232323234641 0
-5991 0.2914337605401297 0.7424242424244633 0
-5992 0.6938294027037171 0.1161616161629664 0
-5993 0.8600362983784851 0.5050505050521221 0
-5994 0.8512885670271196 0.5101010101026117 0
-5995 0.5363702383773086 0.9040404040412731 0
-5996 0.5451179697286557 0.9090909090917876 0
-5997 0.545117969728675 0.8989898989907947 0
-5998 0.6413430145946438 0.4696969696983389 0
-5999 0.7638112535143288 0.1565656565670669 0
-6000 0.9562613432444207 0.09595959596143407 0
-6001 0.2389473724329526 0.277777777778105 0
-6002 0.2476951037843153 0.2828282828286351 0
-6003 0.6938294027027632 0.5909090909102438 0
-6004 0.1777132529734341 0.1818181818182624 0
-6005 0.9650090743924529 0.080808081162231 0
-6006 0.798802178919674 0.1767676767691307 0
-6007 0.7900544475683341 0.1717171717186115 0
-6008 0.1602177902709174 0.1212121212122169 0
-6009 0.1602177902709403 0.1111111111112064 0
-6010 0.9562613432442882 0.2171717171734976 0
-6011 0.1864609843247878 0.1868686868687952 0
-6012 0.667586208647764 0.9090909090919929 0
-6013 0.3789110740553204 0.05555555555600711 0
-6014 0.1602010152474739 0.0404129548474722 0
-6015 0.1601007162141553 0.03048544398194961 0
-6016 0.1514551867995097 0.03537479403367149 0
-6017 0.5713611637827223 0.9141414141424529 0
-6018 0.9387658805405726 0.4595959595979203 0
-6019 0.9300181491892167 0.4646464646484118 0
-6020 0.7025771340540774 0.5151515151528627 0
-6021 0.4139019994597185 0.3282828282839316 0
-6022 0.4226497308110579 0.3232323232334388 0
-6023 0.7725589848650167 0.5252525252539092 0
-6024 0.7200725967569077 0.5252525252538194 0
-6025 0.1252268648648827 0.4545454545452807 0
-6026 0.5888566264854523 0.9141414141424838 0
-6027 0.9475136118929949 0.1313131313149608 0
-6028 0.3876588054062054 0.2727272727279383 0
-6029 0.3964065367575776 0.267676767677452 0
-6030 0.9650090745956792 0.2121212121229781 0
-6031 0.5713611637840955 0.2878787878801869 0
-6032 0.5713611637841183 0.2777777777791955 0
-6033 0.5801088951354525 0.2828282828296989 0
-6034 0.90377495513621 0.1262626262642366 0
-6035 0.7900544475676875 0.5252525252539417 0
-6036 0.1689655216222222 0.07575757575754745 0
-6037 0.1777132529736123 0.08080808080809704 0
-6038 0.8250453729722251 0.8585858585870898 0
-6039 0.7725589848635256 0.959595959597013 0
-6040 0.7725589848634927 0.9696969696980554 0
-6041 0.7638112535121814 0.9646464646475447 0
-6042 0.763922501756942 0.974554787136294 0
-6043 0.4926315816216141 0.484848484849621 0
-6044 0.5626134324329501 0.3131313131325222 0
-6045 0.6413430145936884 0.9040404040414399 0
-6046 0.632595283242302 0.9090909090919224 0
-6047 0.6413430145957193 0.08585858585992474 0
-6048 0.6325952832443764 0.08080808080935493 0
-6049 0.650090745947033 0.09090909091042443 0
-6050 0.6150998205406799 0.5757575757584907 0
-6051 0.7550758830768995 0.9696755599633264 0
-6052 0.973756805946533 0.4191919191941372 0
-6053 0.5888566264864249 0.5606060606070959 0
-6054 0.4488929248648408 0.4898989899000493 0
-6055 0.5626134324324055 0.5555555555565165 0
-6056 0.3614156113507891 0.7323232323238552 0
-6057 0.3614156113507803 0.7424242424248569 0
-6058 0.7988021789152563 0.9444444444369989 0
-6059 0.09023593945837721 0.8686868686869809 0
-6060 0.4139019994594629 0.4696969696979826 0
-6061 0.6850816713504899 0.9191919191930301 0
-6062 0.553865701081243 0.4696969696980466 0
-6063 0.7988021789190254 0.5303030303044531 0
-6064 0.4751361189189251 0.4949494949505828 0
-6065 0.4663883875675794 0.5000000000010498 0
-6066 0.9037749551354879 0.4494949494969633 0
-6067 0.9737568059470512 0.1767676767694729 0
-6068 0.03774509778713583 0.9191919191919266 0
-6069 0.02883506887942908 0.9244695827396046 0
-6070 0.440145193513503 0.4848484848495469 0
-6071 0.4401451935135045 0.4747474747485441 0
-6072 0.632595283243357 0.5757575757585749 0
-6073 0.650090745945865 0.575757575758742 0
-6074 0.6588384772971632 0.5808080808092616 0
-6075 0.6500907459458459 0.5858585858597065 0
-6076 0.1602177902708939 0.07070707070706528 0
-6077 0.4226497308108084 0.4747474747484977 0
-6078 0.1514700589197004 0.05555555555557359 0
-6079 0.9737568059467466 0.2373737373755661 0
-6080 0.7025771340531888 0.9292929292940324 0
-6081 0.702577134053222 0.9191919191930454 0
-6082 0.7988021789181747 0.8636363636378159 0
-6083 0.711324865404555 0.9242424242435221 0
-6084 0.7113248654046027 0.9141414141425523 0
-6085 0.7200725967559273 0.9191919191930223 0
-6086 0.7200725967559654 0.9090909090920403 0
-6087 0.7288203281073007 0.9141414141425295 0
-6088 0.7288203281073405 0.9040404040415579 0
-6089 0.7375680594586813 0.909090909092051 0
-6090 0.7375680594587175 0.8989898989910647 0
-6091 0.7463157908100502 0.9040404040415524 0
-6092 0.7463157908100746 0.8939393939405517 0
-6093 0.7550635221614055 0.8989898989910343 0
-6094 0.755063522161441 0.888888888890064 0
-6095 0.7638112535127685 0.8939393939405311 0
-6096 0.7638112535127815 0.8838383838395646 0
-6097 0.7900544475667634 0.8787878787890422 0
-6098 0.3964065367569956 0.3484848484859144 0
-6099 0.6938294027014923 0.9646464646473992 0
-6100 0.8862794924326949 0.3686868686887356 0
-6101 0.8950272237840322 0.3737373737392283 0
-6102 0.8950272237840592 0.3636363636382272 0
-6103 0.1689655216222617 0.0858585858586081 0
-6104 0.9125226864867858 0.4545454545475057 0
-6105 0.9212704178382182 0.449494949497053 0
-6106 0.3964065367570508 0.3383838383848352 0
-6107 0.9737568059464492 0.4292929292951743 0
-6108 0.9737568059465264 0.378787878790038 0
-6109 0.9737568059466377 0.3585858585879624 0
-6110 0.9737568059464685 0.4090909090930995 0
-6111 0.9737568059469651 0.2171717171734914 0
-6112 0.9737568059469633 0.20707070707247 0
-6113 0.973756805947023 0.1868686868705057 0
-6114 0.9737568059465469 0.3484848484868199 0
-6115 0.9737568059469685 0.1565656565673959 0
-6116 0.9737568056313073 0.05555555610440747 0
-6117 0.9737568058443146 0.07575757593729288 0
-6118 0.973756805912921 0.08585858591940206 0
-6119 0.9737568059468232 0.1464646464661877 0
-6120 0.3615093586060336 0.9745850997376494 0
-6121 0.3961797301339297 0.02511346042542579 0
-6122 0.2915173893591739 0.9746026253827357 0
-6123 0.02900182000063116 0.1060606060605082 0
-6124 0.02898328138980569 0.11619284091625 0
-6125 0.02900056336162818 0.03535419428410252 0
-6126 0.0202118166413642 0.1616237897975805 0
-6127 0.02004377885357243 0.2124081254770119 0
-6128 0.02885998650796373 0.4087655220435145 0
-6129 0.02904277300289986 0.3988555163235359 0
-6130 0.03775410168519754 0.3939244625317444 0
-6131 0.0289883373157193 0.388841073681278 0
-6132 0.01912810398419652 0.7269473526075081 0
-6133 0.02025893159751991 0.7575588882179649 0
-6134 0.0199768889567398 0.818164893560884 0
-6135 0.02890671281436269 0.9745391524986121 0
-6136 0.02906980168207079 0.02539894296707302 0
-6137 0.7112764112665693 0.02504389873456944 0
-6138 0.2215563100002574 0.9745666481726882 0
-6139 0.2214593146109936 0.02507681417900636 0
-6140 0.8337681745635045 0.02525704058438931 0
-6141 0.9040703272130077 0.974752582199918 0
-6142 0.9125229375327906 0.9696965348716545 0
-6143 0.7638207077275971 0.02516306433402056 0
-6144 0.08140862809276125 0.02539036188341208 0
-6145 0.4313974621636582 0.02525252525305566 0
-6146 0.4401451935150195 0.03030303030359853 0
-6147 0.133875390161866 0.974575644822721 0
-6148 0.1252158419689981 0.9696778774830389 0
-6149 0.8864015601863833 0.02568573761162595 0
-6150 0.6239437722768586 0.9745808161512112 0
-6151 0.6326059743962072 0.9696784520761361 0
-6152 0.4227127337607295 0.0203111445102284 0
-6153 0.6851985798211905 0.02031564568743326 0
-6154 0.7287350254324008 0.02531575289266637 0
-6155 0.9475550095707569 0.02026679349750334 0
-6156 0.9387596845950318 0.0250793075136805 0
-6157 0.8511876924278671 0.9745727180044805 0
-6158 0.5887536201059081 0.9745690624658219 0
-6159 0.5800974499806985 0.9696771461110044 0
-6160 0.5799931719175626 0.9795975413085861 0
-6161 0.5715048236859155 0.9747230011843189 0
-6162 0.326319635438018 0.9745655219324753 0
-6163 0.9825045372966298 0.6868686868701275 0
-6164 0.95626134324234 0.8838383838390278 0
-6165 0.9037749551343295 0.8535353535365132 0
-6166 0.9125226864856913 0.848484848486178 0
-6167 0.9212704178370461 0.8535353535367782 0
-6168 0.6238475518934733 0.04545454545608194 0
-6169 0.6238475518934463 0.03535353535513783 0
-6170 0.6325952832448557 0.03030303030476501 0
-6171 0.6239437722794755 0.02541918385136522 0
-6172 0.6238475518931828 0.06565656565777564 0
-6173 0.5801088951355008 0.272727272728678 0
-6174 0.5888566264868142 0.2777777777792255 0
-6175 0.7375680594588161 0.787878787880224 0
-6176 0.7288203281074364 0.7828282828297849 0
-6177 0.7113248654047776 0.7727272727287205 0
-6178 0.5713611637846884 0.2272727272735687 0
-6179 0.5626134324333543 0.2222222222230533 0
-6180 0.7375680594592904 0.70707070707166 0
-6181 0.606352089190058 0.2272727272736447 0
-6182 0.982504537297097 0.5353535353553912 0
-6183 0.7288203281095321 0.07575757575900519 0
-6184 0.9037749551354045 0.3686868686887375 0
-6185 0.5976043578373198 0.7474747474758556 0
-6186 0.6325952832431038 0.7171717171724945 0
-6187 0.6500907459462154 0.3333333333348293 0
-6188 0.5538657010805359 0.7222222222233228 0
-6189 0.5888566264863376 0.6919191919199393 0
-6190 0.5538657010815381 0.3484848484860069 0
-6191 0.5451179697302251 0.3434343434354836 0
-6192 0.4751361189184627 0.6868686868696039 0
-6193 0.466388387567111 0.6818181818190697 0
-6194 0.4838838502697926 0.6919191919201547 0
-6195 0.8250453729732256 0.3434343434360937 0
-6196 0.8250453729732139 0.3535353535371016 0
-6197 0.5538657010815811 0.3181818181830083 0
-6198 0.5276225070269721 0.6565656565662776 0
-6199 0.7113248654061131 0.2272727272738903 0
-6200 0.6850816713513583 0.5454545454558027 0
-6201 0.711324865405089 0.7121212121224475 0
-6202 0.5188747756756338 0.5909090909099333 0
-6203 0.3001814918911341 0.8282828282831889 0
-6204 0.7988021789186059 0.7525252525262009 0
-6205 0.7988021789186485 0.742424242425178 0
-6206 0.6238475518927502 0.2272727272736793 0
-6207 0.5888566264873765 0.2272727272736036 0
-6208 0.536370238379322 0.2272727272734936 0
-6209 0.5976043578390082 0.1010101010111056 0
-6210 0.6850816713511958 0.72727272727364 0
-6211 0.7900544475682483 0.2121212121226268 0
-6212 0.7988021789196059 0.2070707070721301 0
-6213 0.956261343242843 0.5707070707090404 0
-6214 0.3176769545935317 0.9292929292932283 0
-6215 0.3176769545935951 0.9494949494951784 0
-6216 0.3089292232420872 0.9646464646466482 0
-6217 0.3089292232420717 0.9747474747476598 0
-6218 0.6763339399993795 0.7727272727286406 0
-6219 0.6675862086479971 0.7777777777791548 0
-6220 0.5801088951363593 0.101010101011043 0
-6221 0.5713611637850244 0.09595959596054211 0
-6222 0.4139019994597922 0.318181818182841 0
-6223 0.04634741032078357 0.2372246148592409 0
-6224 0.5276225070274155 0.2727272727285849 0
-6225 0.5188747756760289 0.2777777777791095 0
-6226 0.8600362983777745 0.8181818181826425 0
-6227 0.1427223275678144 0.3636363636364087 0
-6228 0.3614156113521185 0.2777777777783887 0
-6229 0.3701633427034602 0.2828282828289124 0
-6230 0.4313974621617446 0.6818181818189581 0
-6231 0.0989836708112292 0.2676767676767856 0
-6232 0.1077314021625904 0.272727272727341 0
-6233 0.09023593945989383 0.2626262626262812 0
-6234 0.1077314021625807 0.2828282828283588 0
-6235 0.1164791335139384 0.2777777777778805 0
-6236 0.1164791335139456 0.2676767676768576 0
-6237 0.125226864865296 0.2727272727273999 0
-6238 0.1252268648653161 0.2626262626264035 0
-6239 0.1339745962166331 0.2676767676769211 0
-6240 0.851288567026246 0.8535353535366408 0
-6241 0.3089292232422603 0.9040404040407073 0
-6242 0.8250453729734848 0.313131313132996 0
-6243 0.3789110740535508 0.7121212121218948 0
-6244 0.8862794924321746 0.6212121212136714 0
-6245 0.8425408356762877 0.3131313131330875 0
-6246 0.3264246859451725 0.8232323232327772 0
-6247 0.8250414995928047 0.0303392468614675 0
-6248 0.825044942598437 0.04040806446760992 0
-6249 0.2739382978370968 0.8232323232326383 0
-6250 0.2651905664857332 0.8282828282831124 0
-6251 0.2914337605395492 0.8838383838387069 0
-6252 0.851288567026094 0.9242424242436843 0
-6253 0.9650090745937694 0.7474747474758736 0
-6254 0.9737568059450604 0.752525252526358 0
-6255 0.1602177902692624 0.9292929292929899 0
-6256 0.1864611290705184 0.9646462139368508 0
-6257 0.186461132126272 0.9747472187450783 0
-6258 0.8775317610801366 0.929292929294237 0
-6259 0.9212704178372648 0.7222222222233895 0
-6260 0.3614156113510718 0.6717171717175844 0
-6261 0.2039564470265653 0.7323232323232673 0
-6262 0.2039564470265356 0.7424242424242885 0
-6263 0.2039564470266048 0.7222222222222519 0
-6264 0.1252268648646582 0.5757575757574576 0
-6265 0.6150998205408047 0.3333333333347617 0
-6266 0.6063520891894334 0.3383838383852768 0
-6267 0.833793104324378 0.4393939393956392 0
-6268 0.8337931043243952 0.4292929292946372 0
-6269 0.8337931043243585 0.4494949494966423 0
-6270 0.3614156113504337 0.8737373737378483 0
-6271 0.3526678799990786 0.8787878787883255 0
-6272 0.2651905664867886 0.4040404040407047 0
-6273 0.2651905664867689 0.4141414141417087 0
-6274 0.8075499102702713 0.4747474747490981 0
-6275 0.3264246859449442 0.9141414141417419 0
-6276 0.3351724172963015 0.909090909091259 0
-6277 0.6500907459471453 0.08080808080948121 0
-6278 0.5713611637842428 0.3484848484860379 0
-6279 0.5801088951356145 0.3434343434355762 0
-6280 0.3264246859456247 0.6818181818184972 0
-6281 0.3176769545942823 0.6767676767679706 0
-6282 0.6938294027032679 0.2878787878801611 0
-6283 0.6850816713519267 0.2828282828296339 0
-6284 0.8512885670276619 0.3080808080826027 0
-6285 0.177713252973384 0.3333333333335066 0
-6286 0.7725589848662007 0.03030303030480349 0
-6287 0.2389473724313145 0.9646464646465284 0
-6288 0.2389473724312977 0.9747474747475159 0
-6289 0.2389473724313364 0.9545454545455383 0
-6290 0.4314088443645039 0.9646267500921292 0
-6291 0.4314999019928015 0.9745700437544402 0
-6292 0.7113248654059621 0.2979797979812273 0
-6293 0.2739382978374176 0.742424242424424 0
-6294 0.5101270443243657 0.4545454545466553 0
-6295 0.037741529291791 0.2828220471239056 0
-6296 0.9650090745938706 0.6969696969710797 0
-6297 0.9737568059451659 0.7020202020215858 0
-6298 0.4401451935149862 0.04040404040463559 0
-6299 0.4488929248663737 0.0353535353541433 0
-6300 0.4487774719770485 0.02545249552336147 0
-6301 0.457627828118943 0.03032524922256929 0
-6302 0.4576392308734146 0.04040650917344671 0
-6303 0.4663868038532072 0.0353562784305981 0
-6304 0.4662563831667147 0.02510564036829356 0
-6305 0.4750780735585043 0.02998631980124784 0
-6306 0.4751359429520165 0.04040434519100312 0
-6307 0.4838773812351124 0.03531837916356113 0
-6308 0.4839087919239434 0.02504281526152381 0
-6309 0.4926308628413417 0.03029912406035437 0
-6310 0.4926307829766581 0.04039970013432025 0
-6311 0.5013791443713811 0.03535261907497333 0
-6312 0.8600362983792595 0.1919191919207793 0
-6313 0.8600362983792333 0.2020202020217982 0
-6314 0.8687840297305834 0.2070707070723304 0
-6315 0.86003629837928 0.1818181818197678 0
-6316 0.8600362983792027 0.2121212121228276 0
-6317 0.5713758543103874 0.9646415427417632 0
-6318 0.5627223924184634 0.9695786533981132 0
-6319 0.9475136118919762 0.4545454545474542 0
-6320 0.9562613432432462 0.4595959595979226 0
-6321 0.3526782963606662 0.9696789280294558 0
-6322 0.8950272237847938 0.1616161616177942 0
-6323 0.8862794924334388 0.1565656565672621 0
-6324 0.8775317610820428 0.1616161616177766 0
-6325 0.7375680594599044 0.3535353535368277 0
-6326 0.7463157908112596 0.3484848484863162 0
-6327 0.5626134324324039 0.6565656565663072 0
-6328 0.5626134324323395 0.6666666666673632 0
-6329 0.8687840297296839 0.550505050506645 0
-6330 0.282695321279119 0.9696808753232242 0
-6331 0.1252268648638926 0.9191919191919072 0
-6332 0.9562613432424018 0.8030303030312234 0
-6333 0.1952087156759672 0.3838383838385488 0
-6334 0.326424685946083 0.4797979797983932 0
-6335 0.3176769545947153 0.4848484848488727 0
-6336 0.3351724172974391 0.4747474747479113 0
-6337 0.7113248654046447 0.8333333333347721 0
-6338 0.711324865405523 0.4595959595974113 0
-6339 0.553865701080025 0.9040404040413264 0
-6340 0.5538657010800002 0.9141414141423237 0
-6341 0.930018149188501 0.767676767677815 0
-6342 0.3439201486477412 0.873737373737808 0
-6343 0.4576406562150523 0.9494949494955743 0
-6344 0.448892924863723 0.9444444444450555 0
-6345 0.4401451935123584 0.9494949494955223 0
-6346 0.44014519351239 0.9393939393945335 0
-6347 0.781306716216317 0.5505050505064017 0
-6348 0.3701633427016359 0.9494949494953153 0
-6349 0.4838838502693009 0.8737373737381829 0
-6350 0.7550635221620946 0.6464646464657827 0
-6351 0.2389473724318847 0.7828282828283836 0
-6352 0.3701633427017914 0.8686868686873718 0
-6353 0.5538657010821337 0.1666666666675636 0
-6354 0.5626134324334877 0.1616161616170894 0
-6355 0.5626134324335138 0.1515151515160995 0
-6356 0.5713611637848417 0.1565656565666166 0
-6357 0.5713611637848175 0.166666666667607 0
-6358 0.5801088951361706 0.1616161616171348 0
-6359 0.5801088951361968 0.1515151515161457 0
-6360 0.5888566264875235 0.1565656565666637 0
-6361 0.5888566264875534 0.146464646465676 0
-6362 0.5976043578388787 0.151515151516192 0
-6363 0.6413430145938004 0.8333333333346252 0
-6364 0.6500907459451444 0.8383838383851517 0
-6365 0.6500907459451148 0.8484848484861556 0
-6366 0.6588384772964847 0.8434343434356655 0
-6367 0.6588384772965099 0.8333333333346622 0
-6368 0.9300181491899259 0.3333333333352877 0
-6369 0.6588384772981261 0.1969696969707695 0
-6370 0.2389473724326258 0.4494949494951624 0
-6371 0.2301996410812858 0.4444444444446376 0
-6372 0.230199641081308 0.4343434343436394 0
-6373 0.247695103782811 0.8888888888890987 0
-6374 0.2476951037827971 0.8989898989900929 0
-6375 0.2476951037828313 0.8787878787881067 0
-6376 0.5713611637831727 0.7525252525263739 0
-6377 0.5713611637832031 0.7424242424253662 0
-6378 0.5713611637831424 0.7626262626273836 0
-6379 0.09023593945962073 0.3939393939392017 0
-6380 0.6500907459460961 0.3939393939408491 0
-6381 0.6413430145947372 0.3989898989913352 0
-6382 0.8425408356763184 0.292929292930985 0
-6383 0.4401451935135386 0.4545454545465353 0
-6384 0.4751361189199031 0.2121212121220861 0
-6385 0.4663883875685438 0.2171717171725588 0
-6386 0.4838838502712824 0.2070707070715854 0
-6387 0.562613432433376 0.2121212121220589 0
-6388 0.886279492431844 0.7929292929301454 0
-6389 0.7550635221627999 0.2626262626277708 0
-6390 0.5626134324325904 0.3939393939407189 0
-6391 0.5801088951344547 0.777777777778924 0
-6392 0.6063520891891162 0.6818181818189086 0
-6393 0.6063520891890952 0.6919191919199157 0
-6394 0.6413430145946052 0.5202020202032251 0
-6395 0.1164791335135241 0.4494949494947556 0
-6396 0.2651905664865979 0.4848484848487425 0
-6397 0.238947372432414 0.5404040404042009 0
-6398 0.2301996410810486 0.5454545454546831 0
-6399 0.247695103783779 0.535353535353719 0
-6400 0.5976043578377871 0.5555555555566146 0
-6401 0.5976043578378345 0.5656565656575712 0
-6402 0.7725589848650825 0.353535353537025 0
-6403 0.7638112535137762 0.3484848484864607 0
-6404 0.8337931043239298 0.7727272727281789 0
-6405 0.8337931043238676 0.7828282828292725 0
-6406 0.6063520891893356 0.5808080808089673 0
-6407 0.2739382978380626 0.4393939393942455 0
-6408 0.2739382978380875 0.4292929292932404 0
-6409 0.7288203281073771 0.8434343434357865 0
-6410 0.3526678800008383 0.2424242424248205 0
-6411 0.6063520891893942 0.3585858585872803 0
-6412 0.5976043578380813 0.353535353536768 0
-6413 0.5976043578379423 0.4848484848496263 0
-6414 0.6063520891892928 0.4797979797991624 0
-6415 0.6325952832432965 0.464646464647834 0
-6416 0.3264246859458078 0.6010101010104587 0
-6417 0.3176769545944431 0.606060606060942 0
-6418 0.3089292232430991 0.6010101010104196 0
-6419 0.6325952832431466 0.6969696969704611 0
-6420 0.623847551891815 0.7020202020209753 0
-6421 0.3701633427019371 0.8080808080813845 0
-6422 0.1689655216217641 0.439393939393998 0
-6423 0.05524501405339293 0.6767676767674221 0
-6424 0.3089292232433729 0.4797979797983472 0
-6425 0.3089292232433478 0.4898989898993497 0
-6426 0.7025771340541633 0.4141414141429312 0
-6427 0.3439201486495372 0.1868686868692416 0
-6428 0.3526678800009107 0.1818181818187513 0
-6429 0.352667880000932 0.1717171717177319 0
-6430 0.3614156113522909 0.1767676767682616 0
-6431 0.4226497308106769 0.6060606060611804 0
-6432 0.4313974621620387 0.6010101010107014 0
-6433 0.5801088951352789 0.4040404040417462 0
-6434 0.6675862086488655 0.3434343434358697 0
-6435 0.667586208648886 0.3333333333348828 0
-6436 0.4226497308101657 0.7575757575765129 0
-6437 0.7638112535141448 0.2676767676782928 0
-6438 0.6675862086479718 0.7878787878801607 0
-6439 0.6588384772966313 0.7828282828296402 0
-6440 0.6588384772967 0.7727272727285637 0
-6441 0.6500907459453171 0.7777777777790723 0
-6442 0.8950272237831557 0.7979797979806519 0
-6443 0.04649728270162167 0.8333333333332913 0
-6444 0.03774955135023569 0.8383838383837824 0
-6445 0.03774955135020795 0.8484848484848094 0
-6446 0.02896574613833843 0.8434343434342725 0
-6447 0.02900181999881844 0.8535353535353003 0
-6448 0.8162976416217269 0.4090909090926009 0
-6449 0.4051542681090909 0.2020202020208916 0
-6450 0.1514700589187009 0.5909090909090476 0
-6451 0.6850816713514624 0.4141414141429054 0
-6452 0.3964065367576793 0.227272727273401 0
-6453 0.5801088951352917 0.3939393939407437 0
-6454 0.9125226864861289 0.6262626262642351 0
-6455 0.3176769545938118 0.8282828282832504 0
-6456 0.3176769545937826 0.8383838383842463 0
-6457 0.6500907459452667 0.7878787878801146 0
-6458 0.6413430145939263 0.7828282828295876 0
-6459 0.6413430145940002 0.7727272727285127 0
-6460 0.6325952832425841 0.7777777777790644 0
-6461 0.6325952832425558 0.7878787878800703 0
-6462 0.6238475518912157 0.7828282828295431 0
-6463 0.6238475518912426 0.7727272727285373 0
-6464 0.7375680594596211 0.5353535353548143 0
-6465 0.737568059459644 0.525252525253827 0
-6466 0.4751361189179371 0.8787878787886627 0
-6467 0.4751361189179156 0.8888888888896636 0
-6468 0.4313974621615532 0.7424242424250326 0
-6469 0.2127041783774037 0.9090909090910336 0
-6470 0.8600362983790146 0.3131313131331383 0
-6471 0.0552450140540813 0.45454545454506 0
-6472 0.8162976416216136 0.5202020202035975 0
-6473 0.825045372972943 0.5151515151531219 0
-6474 0.6500907459458731 0.5555555555567424 0
-6475 0.7463157908112961 0.3383838383853095 0
-6476 0.34392014864786 0.8232323232328184 0
-6477 0.2739382978376931 0.5909090909093271 0
-6478 0.2651905664863257 0.5959595959598122 0
-6479 0.8687840297296362 0.5707070707086135 0
-6480 0.8600362983783175 0.5656565656581027 0
-6481 0.6850816713519488 0.2727272727286313 0
-6482 0.6763339400005857 0.2777777777791123 0
-6483 0.6763339400005637 0.2878787878801165 0
-6484 0.6675862086492228 0.2828282828295935 0
-6485 0.5713611637850469 0.08585858585954247 0
-6486 0.5626134324337014 0.09090909091001283 0
-6487 0.5626134324336812 0.1010101010110325 0
-6488 0.5538657010823584 0.0959595959604828 0
-6489 0.6763339400008171 0.1969696969708147 0
-6490 0.5538657010823824 0.08585858585949774 0
-6491 0.5451179697310362 0.09090909090997078 0
-6492 0.545117969731019 0.1010101010109698 0
-6493 0.5363702383796846 0.09595959596046209 0
-6494 0.0814882081081611 0.4393939393936577 0
-6495 0.553865701082022 0.2171717171725369 0
-6496 0.5538657010820014 0.2272727272735321 0
-6497 0.08148820810763087 0.6313131313128741 0
-6498 0.2826860291902613 0.03030303030309533 0
-6499 0.5451179697302503 0.3333333333344977 0
-6500 0.5363702383788937 0.3383838383849909 0
-6501 0.5363702383788693 0.3484848484859673 0
-6502 0.5276225070275369 0.3434343434354827 0
-6503 0.7813067162164717 0.328282828284531 0
-6504 0.7725589848651261 0.3333333333349854 0
-6505 0.7900544475678398 0.3232323232340497 0
-6506 0.4226497308102672 0.7171717171725088 0
-6507 0.2651905664855285 0.8787878787881465 0
-6508 0.08148820810866836 0.1363636363635946 0
-6509 0.6675862086492452 0.272727272728593 0
-6510 0.6588384772978827 0.2777777777790733 0
-6511 0.6588384772978588 0.2878787878800744 0
-6512 0.6500907459465201 0.2828282828295527 0
-6513 0.8250453729720925 0.9090909090921053 0
-6514 0.5363702383797146 0.08585858585945695 0
-6515 0.5276225070283607 0.09090909090993057 0
-6516 0.527622507028332 0.101010101010961 0
-6517 0.5188747756770075 0.09595959596041602 0
-6518 0.3176769545943086 0.6666666666669659 0
-6519 0.3089292232429415 0.6717171717174484 0
-6520 0.2127041783791609 0.05050505050504223 0
-6521 0.5013793129721393 0.8232323232332168 0
-6522 0.492631581620805 0.8181818181826943 0
-6523 0.8425296156663881 0.9696775128475282 0
-6524 0.6325966031377753 0.9595936734708705 0
-6525 0.6413442024995876 0.9646444071340206 0
-6526 0.6413443344891216 0.9747451886224346 0
-6527 0.6500910245895685 0.9696964870714679 0
-6528 0.5013793129728037 0.6313131313139508 0
-6529 0.4926315816214548 0.6262626262634323 0
-6530 0.5101270443241428 0.6363636363644547 0
-6531 0.6500907459465427 0.2727272727285542 0
-6532 0.6413430145951817 0.2777777777790318 0
-6533 0.6413430145951566 0.2878787878800316 0
-6534 0.6325952832438192 0.2828282828295075 0
-6535 0.0902351538130117 0.05050641128572663 0
-6536 0.5188747756770349 0.08585858585941525 0
-6537 0.5101270443256775 0.09090909090989228 0
-6538 0.5101270443256543 0.101010101010902 0
-6539 0.5013793129743216 0.09595959596037559 0
-6540 0.5013793129743461 0.08585858585937642 0
-6541 0.4926315816229859 0.09090909090985687 0
-6542 0.4926315816229632 0.1010101010108608 0
-6543 0.4838838502716259 0.0959595959603395 0
-6544 0.4838838502716472 0.08585858585933949 0
-6545 0.4751361189202851 0.09090909090982299 0
-6546 0.475136118920265 0.1010101010108255 0
-6547 0.4663883875689205 0.09595959596031083 0
-6548 0.930018149188549 0.7373737373748348 0
-6549 0.4401451935134583 0.5757575757582378 0
-6550 0.72007259675753 0.2020202020214138 0
-6551 0.7288203281088653 0.2070707070719345 0
-6552 0.9387658805415948 0.1969696969714831 0
-6553 0.3264246859463331 0.3787878787883435 0
-6554 0.335172417297699 0.3737373737378605 0
-6555 0.7200725967568635 0.4141414141429585 0
-6556 0.7288203281082252 0.4090909090924741 0
-6557 0.7288203281082448 0.3989898989914752 0
-6558 0.09898367081121819 0.1969696969696152 0
-6559 0.6325952832438433 0.2727272727285109 0
-6560 0.6238475518924823 0.2777777777789837 0
-6561 0.623847551892454 0.2878787878799822 0
-6562 0.6150998205410591 0.2828282828295297 0
-6563 0.87753176108056 0.7777777777786784 0
-6564 0.755063522163035 0.141414141415577 0
-6565 0.7288203281081509 0.6010101010112572 0
-6566 0.7375680594595065 0.5959595959607739 0
-6567 0.7463157908108412 0.6010101010112823 0
-6568 0.7463157908108609 0.5909090909102925 0
-6569 0.7550635221621957 0.5959595959608062 0
-6570 0.8250453729736521 0.2626262626278891 0
-6571 0.7025771340551191 0.1111111111125165 0
-6572 0.6588384772971776 0.5909090909102229 0
-6573 0.2039486403834358 0.03535368413157144 0
-6574 0.2038101763570891 0.02512220956432085 0
-6575 0.05524495345301852 0.7676767237113162 0
-6576 0.1339745962163673 0.4393939393939028 0
-6577 0.6938294027026662 0.6616161616170984 0
-6578 0.5888566264868195 0.2878787878801951 0
-6579 0.5976043578381616 0.2828282828297293 0
-6580 0.5976043578381987 0.2727272727287073 0
-6581 0.06399274540601502 0.1161616161615752 0
-6582 0.06399274540602787 0.1060606060605634 0
-6583 0.7900544475675739 0.4747474747490663 0
-6584 0.7813067162162237 0.4696969696985491 0
-6585 0.6500907459468012 0.1919191919202494 0
-6586 0.641343014595453 0.1969696969707215 0
-6587 0.3876588054065632 0.1111111111116763 0
-6588 0.8075499102705455 0.3232323232340627 0
-6589 0.1514700589190681 0.4393939393939568 0
-6590 0.781306716216334 0.4090909090925587 0
-6591 0.7900544475676968 0.4040404040420735 0
-6592 0.7900544475677139 0.3939393939410735 0
-6593 0.1864609843250714 0.09595959595969643 0
-6594 0.1952087156764213 0.1010101010102272 0
-6595 0.6150998205410763 0.2727272727285419 0
-6596 0.9650090745944507 0.5151515151534067 0
-6597 0.9737568059458143 0.5101010101029361 0
-6598 0.4926315816205455 0.9090909090917 0
-6599 0.7550635221620831 0.6565656565667699 0
-6600 0.4926315816227157 0.1717171717179379 0
-6601 0.492631581622694 0.1818181818189449 0
-6602 0.3526678800001086 0.4949494949499892 0
-6603 0.3001814918914907 0.7373737373739915 0
-6604 0.2476951037847387 0.03030303030302968 0
-6605 0.9212701194315702 0.06565708251509889 0
-6606 0.930018059336549 0.07070722634018316 0
-6607 0.09898367081124083 0.1868686868686177 0
-6608 0.1077314021623709 0.3737373737373062 0
-6609 0.0989836708110375 0.3686868686867898 0
-6610 0.3264019812068557 0.03532012106360605 0
-6611 0.3260463918567167 0.02505618391183827 0
-6612 0.1252268648650172 0.39393939393934 0
-6613 0.6588384772973818 0.4797979797993019 0
-6614 0.6763339399991923 0.8434343434356939 0
-6615 0.3439201486489931 0.3989898989904261 0
-6616 0.3089292232436275 0.3787878787883018 0
-6617 0.7025771340541022 0.6060606060617221 0
-6618 0.8775317610805768 0.7676767676777025 0
-6619 0.833793104323437 0.914141414142628 0
-6620 0.5713611637838409 0.621212121212821 0
-6621 0.5013793129741252 0.1464646464654464 0
-6622 0.4926315816227858 0.1515151515159364 0
-6623 0.7288203281082269 0.4595959595974563 0
-6624 0.7375680594595716 0.4646464646479795 0
-6625 0.7375680594595448 0.4747474747489714 0
-6626 0.7463157908108984 0.4696969696985021 0
-6627 0.3876588054044425 0.8888888888894093 0
-6628 0.6238475518910419 0.8535353535365902 0
-6629 0.5976043578369583 0.8585858585869812 0
-6630 0.588856626485606 0.8535353535364583 0
-6631 0.860036298377431 0.9292929292941996 0
-6632 0.3176769545954446 0.1818181818186715 0
-6633 0.3089292232440835 0.1767676767681442 0
-6634 0.5188747756746033 0.9040404040412403 0
-6635 0.3351724172982972 0.1111111111115872 0
-6636 0.3351724172982763 0.1212121212126127 0
-6637 0.9300181491888433 0.5959595959613876 0
-6638 0.1252268648653275 0.1818181818182019 0
-6639 0.6150998205405902 0.6262626262634329 0
-6640 0.6938294027026931 0.6515151515161126 0
-6641 0.6325952832441133 0.2121212121222005 0
-6642 0.26519056648614 0.7070707070708868 0
-6643 0.05524501405306529 0.9191919191917943 0
-6644 0.06399274540442769 0.9141414141413196 0
-6645 0.07274047675578617 0.9191919191918141 0
-6646 0.5276225070270188 0.5757575757584337 0
-6647 0.9475136112572042 0.0808080819112641 0
-6648 0.9475136118915207 0.5757575757595027 0
-6649 0.4226497308108323 0.5454545454551755 0
-6650 0.4139019994594967 0.5404040404046453 0
-6651 0.4313974621621671 0.5505050505057154 0
-6652 0.03750487806248478 0.7878787878786552 0
-6653 0.02817976153702783 0.7928306018636244 0
-6654 0.938765880541528 0.2272727272745556 0
-6655 0.8950272237837993 0.5252525252541959 0
-6656 0.8950272237838247 0.5151515151532154 0
-6657 0.8862794924324995 0.5101010101026919 0
-6658 0.07273066459868666 0.0303200254603514 0
-6659 0.6938294027028108 0.4595959595973686 0
-6660 0.833793104323385 0.9242424242436338 0
-6661 0.142722327568238 0.1212121212122436 0
-6662 0.1339745962168683 0.1262626262627328 0
-6663 0.125226864865524 0.1212121212122111 0
-6664 0.1252268648654834 0.1313131313132175 0
-6665 0.8687840297291696 0.8030303030310948 0
-6666 0.2039564470276832 0.116161616161767 0
-6667 0.2039564470276664 0.1262626262627883 0
-6668 0.8162976416206044 0.9343434343446104 0
-6669 0.3701633427040502 0.04040404040436561 0
-6670 0.3701764594107795 0.030325749105758 0
-6671 0.3616072019687421 0.02511669596318649 0
-6672 0.8950272237848187 0.121212121213731 0
-6673 0.03771624629730578 0.4545454545450194 0
-6674 0.02896481438438244 0.4595959595954977 0
-6675 0.8687840297298273 0.5000000000016578 0
-6676 0.7725589848636107 0.9494949494959939 0
-6677 0.5013793129730179 0.4898989899000823 0
-6678 0.6325952832433035 0.4747474747488129 0
-6679 0.6238475518919508 0.4696969696983047 0
-6680 0.6238475518919551 0.4595959595973203 0
-6681 0.6150998205406075 0.4646464646477917 0
-6682 0.6150998205406126 0.4545454545468079 0
-6683 0.6063520891892771 0.4595959595972791 0
-6684 0.7813067162153812 0.8838383838394829 0
-6685 0.7813067162154219 0.8737373737385447 0
-6686 0.3351724172965903 0.7979797979802925 0
-6687 0.3351724172966392 0.7878787878792575 0
-6688 0.3351724172965571 0.8080808080812968 0
-6689 0.6063520891881935 0.914141414142392 0
-6690 0.6150998205395689 0.9090909090918901 0
-6691 0.7025771340537798 0.7171717171729379 0
-6692 0.7025771340537573 0.7272727272739321 0
-6693 0.6325952832423417 0.8989898989909426 0
-6694 0.9562613432444089 0.1464646464663583 0
-6695 0.5888566264866423 0.4595959595971431 0
-6696 0.5801088951353038 0.4545454545466169 0
-6697 0.8687840297300062 0.3686868686887059 0
-6698 0.8600362983785985 0.3737373737391836 0
-6699 0.7200725967559768 0.8989898989910776 0
-6700 0.6500907459450764 0.8989898989909754 0
-6701 0.746315790810081 0.8838383838395909 0
-6702 0.7463157908100009 0.9141414141425285 0
-6703 0.5801088951350943 0.5656565656575435 0
-6704 0.440145193513531 0.4949494949505002 0
-6705 0.7025771340531395 0.9393939393950013 0
-6706 0.413901999459484 0.4797979797989144 0
-6707 0.6938294027015824 0.9545454545463983 0
-6708 0.9825045372977015 0.4242424242445955 0
-6709 0.9737568059467373 0.3080808080827704 0
-6710 0.9737568059467381 0.2979797979817287 0
-6711 0.9650090745955444 0.2929292929311929 0
-6712 0.9737568059466254 0.3181818181838041 0
-6713 0.9737568059467541 0.2878787878806844 0
-6714 0.9650090745955379 0.2828282828301664 0
-6715 0.9737568059467261 0.2777777777796249 0
-6716 0.9825045372980318 0.2121212121228352 0
-6717 0.9825045372980787 0.1818181818198245 0
-6718 0.9737568059469397 0.1060606060624868 0
-6719 0.9737568059468165 0.1161616161634654 0
-6720 0.9825045372166367 0.05050505064776132 0
-6721 0.501488817402245 0.02544182742715499 0
-6722 0.5101391927508424 0.03032396206988132 0
-6723 0.5101285253977292 0.04040652276465453 0
-6724 0.5188761255022265 0.03535586110615976 0
-6725 0.501488915997766 0.9745576367383989 0
-6726 0.5101270443230719 0.9696969696977182 0
-6727 0.5101270443231011 0.9595959595967187 0
-6728 0.5188747756744361 0.9646464646472435 0
-6729 0.1514604085216911 0.02539470458608342 0
-6730 0.1427196028439404 0.0303211900821677 0
-6731 0.256331166380982 0.974554058793718 0
-6732 0.309043035239237 0.02544965341015991 0
-6733 0.7551061524233834 0.02022544462197659 0
-6734 0.7556590588461105 0.9806832347475984 0
-6735 0.7464618100485052 0.9747075347570606 0
-6736 0.3437355088382514 0.02473799037238335 0
-6737 0.08141754179134825 0.9746250770981971 0
-6738 0.09022808764554217 0.9696833699580739 0
-6739 0.4487774719742414 0.9745475044777187 0
-6740 0.7986658166906537 0.9747265717637256 0
-6741 0.7894845785867984 0.9807484876623298 0
-6742 0.5714762868316964 0.02545192421926638 0
-6743 0.5626262238835299 0.03032518574478377 0
-6744 0.5626148537060661 0.04040650212075524 0
-6745 0.5538672802738953 0.03535627059420156 0
-6746 0.5539537722116412 0.02540506892379432 0
-6747 0.5451279308779834 0.03032028351629708 0
-6748 0.5451192519910149 0.04040626134416155 0
-6749 0.5363714876473185 0.03535569914914079 0
-6750 0.536371483981539 0.02525468269878094 0
-6751 0.5187662199623149 0.02544573117520706 0
-6752 0.5187647201538513 0.9745568529949876 0
-6753 0.5276102786346023 0.9696757895029658 0
-6754 0.5887536201085352 0.02543093753632305 0
-6755 0.6939339164240137 0.974566451670837 0
-6756 0.6850932839859705 0.9696768560226035 0
-6757 0.3008404233359784 0.01931676081261227 0
-6758 0.8424372137595907 0.02037720259763428 0
-6759 0.2645857692461742 0.9806935685482875 0
-6760 0.05513648044831299 0.02038813230299796 0
-6761 0.5270537745589872 0.980699048200942 0
-6762 0.5362294743754789 0.9747132356712057 0
-6763 0.5363532392223948 0.9646403069504221 0
-6764 0.5450340162616087 0.96957743103089 0
-6765 0.4931891393352842 0.9807031339877694 0
-6766 0.2475589509974163 0.02024507185031478 0
-6767 0.7025172034804894 0.9795494494222434 0
-6768 0.3347136958638201 0.980705827669245 0
-6769 0.6855218192093816 0.980719344641708 0
-6770 0.6763301572522812 0.97502816690834 0
-6771 0.8426431146095426 0.9795506341544624 0
-6772 0.5971971295118994 0.9807099725868591 0
-6773 0.4230351920969105 0.9807254007683345 0
-6774 0.8596901222995919 0.9807283815469549 0
-6775 0.86848781107108 0.9741335320244348 0
-6776 0.8255280863574984 0.9791785862288405 0
-6777 0.8171782329624917 0.9845868796568999 0
-6778 0.2645858265721858 0.01921736649303965 0
-6779 0.2737177866319582 0.01599458829258515 0
-6780 0.2385074914068303 0.01511476964268905 0
-6781 0.07226237868410476 0.01931773639120515 0
-6782 0.07222785277927882 0.9806888990492164 0
-6783 0.06388576320408024 0.9745621761409831 0
-6784 0.1605699424508065 0.01966643981075529 0
-6785 0.04617418224571909 0.01528351750904507 0
-6786 0.5451992946959147 0.9805516994888499 0
-6787 0.02003419125810514 0.1515159990907146 0
-6788 0.02898630601374217 0.1464802006243805 0
-6789 0.01998559006369214 0.1414314238138336 0
-6790 0.01972840258822768 0.2020551081973032 0
-6791 0.0197453144093601 0.8080238187988923 0
-6792 0.01970083884429616 0.8282621426350458 0
-6793 0.09042099035156642 0.01944528908783159 0
-6794 0.09036760069139547 0.9807490346507166 0
-6795 0.09908859921606217 0.9746937222298391 0
-6796 0.5713229749987775 0.9847099885690677 0
-6797 0.02003889491748706 0.3030303030301205 0
-6798 0.02021104888763493 0.3130999240736776 0
-6799 0.01997891064244933 0.2929292929290651 0
-6800 0.02002041964284548 0.03027111396876943 0
-6801 0.01995577095261697 0.04044882554261103 0
-6802 0.01045412424995439 0.04564701225125613 0
-6803 0.01016606431327506 0.02515120046891366 0
-6804 0.01975062446590541 0.353474205828871 0
-6805 0.0199937380271278 0.3636121796144694 0
-6806 0.02003683507203075 0.1111145805281716 0
-6807 0.01997868177076419 0.1010104865007746 0
-6808 0.01995407510754921 0.1212472008747108 0
-6809 0.01998066197873931 0.06065352296099843 0
-6810 0.01948233736150118 0.1818190293936658 0
-6811 0.02009865945446862 0.3938209211810879 0
-6812 0.01996551445954629 0.3837886826426528 0
-6813 0.01995361247073506 0.08080808080790569 0
-6814 0.01947615550546497 0.4343434343428654 0
-6815 0.01972461528217645 0.4240152657445156 0
-6816 0.01971659191676767 0.4545454545449341 0
-6817 0.0198964322108595 0.4646546550993824 0
-6818 0.02885221162563987 0.4699230053647418 0
-6819 0.01926713615914305 0.4750343506094725 0
-6820 0.02001525053076764 0.2726956118859422 0
-6821 0.01958035237088097 0.2623200475044546 0
-6822 0.02002286028675364 0.6565378837718728 0
-6823 0.01965431080774631 0.6459566741679219 0
-6824 0.01971047755365945 0.6667172010042045 0
-6825 0.01900849710606371 0.6970236808521618 0
-6826 0.01975765136580348 0.9596692782516675 0
-6827 0.01971783723589526 0.9496364939993112 0
-6828 0.01999935925080665 0.89899161676594 0
-6829 0.0199839900177183 0.8889062575136809 0
-6830 0.02001665700096043 0.9192171590249514 0
-6831 0.01954648012923903 0.9295501620194351 0
-6832 0.01999881284881267 0.8484848484847055 0
-6833 0.0200105309383613 0.85858585858573 0
-6834 0.02895621942033858 0.8636675883910148 0
-6835 0.01986141874171466 0.868721562858648 0
-6836 0.8335508883390008 0.01525172482556317 0
-6837 0.1422366355949398 0.01923811717989948 0
-6838 0.1337912600933459 0.02557947530208878 0
-6839 0.2827294513406332 0.9807436306328393 0
-6840 0.7375508097235287 0.01926274986266531 0
-6841 0.4750754858909376 0.9793422086728023 0
-6842 0.4667903604235016 0.9844189788935576 0
-6843 0.3528679414111216 0.9807429435618433 0
-6844 0.6153547095568678 0.9807410664181537 0
-6845 0.8780086153621633 0.01926333703335937 0
-6846 0.1423968050689551 0.9807364071925413 0
-6847 0.03766904174551714 0.9795091685517033 0
-6848 0.04648544932574995 0.9747162941229401 0
-6849 0.04610615958403272 0.9846981712474108 0
-6850 0.1955344525215803 0.02080710354967989 0
-6851 0.3703139930090703 0.02053519069544223 0
-6852 0.3701592541517592 0.979702165044229 0
-6853 0.6326096005413659 0.0203029989262787 0
-6854 0.641320658712655 0.02526374511235897 0
-6855 0.6413773071951532 0.01515365169988097 0
-6856 0.6502406198065269 0.02018685582111371 0
-6857 0.6594016399349369 0.01601940237932142 0
-6858 0.6587295566184139 0.02574802389619811 0
-6859 0.6676536434479714 0.02141155362237398 0
-6860 0.3877607826429604 0.02053152791755053 0
-6861 0.125188166239673 0.9796886078519798 0
-6862 0.1164635261993612 0.9747297665699021 0
-6863 0.1163883892135268 0.9848175754108812 0
-6864 0.9125833824283252 0.9797242642991839 0
-6865 0.921185317902006 0.9745801091592288 0
-6866 0.9041381023234023 0.9848136828360686 0
-6867 0.6501005591932815 0.9797186263237645 0
-6868 0.6586430072432091 0.9748757923694042 0
-6869 0.6413636160220952 0.9848210314626833 0
-6870 0.9649825085700636 0.02002580271401629 0
-6871 0.973753854135082 0.02523294558763783 0
-6872 0.9740012846869285 0.01508544473344452 0
-6873 0.9827273995043522 0.0201387331158997 0
-6874 0.177577762760845 0.9799083870435705 0
-6875 0.1865595144257628 0.9849012435295328 0
-6876 0.1680422584546826 0.98488760732143 0
-6877 0.1954347389573785 0.9798063142619031 0
-6878 0.2046326517255342 0.9840234758711079 0
-6879 0.7725790310958641 0.01997045994780937 0
-6880 0.7725879049654237 0.9794388024622191 0
-6881 0.8427877956109575 0.009862871721631895 0
-6882 0.5803042233764003 0.9901268424305217 0
-6883 0.01057104395148397 0.3080849485890222 0
-6884 0.01028635915048805 0.4595799450247901 0
-6885 0.01058124298764233 0.2071064647963226 0
-6886 0.01057060662881608 0.1565742264978505 0
-6887 0.01035962395124655 0.2878787878782509 0
-6888 0.01035551595922198 0.0959596387917388 0
-6889 0.01035628354731753 0.1363655566300602 0
-6890 0.01035813548638938 0.3787823564320517 0
-6891 0.01036471645971266 0.116165899392528 0
-6892 0.01012709702586539 0.4189033667442832 0
-6893 0.01929311286803138 0.4132321006504901 0
-6894 0.01876988408456313 0.191923164558155 0
-6895 0.01029941379970751 0.813099325269655 0
-6896 0.01854614635875872 0.7977470450665382 0
-6897 0.01044988188266051 0.3988423526832658 0
-6898 0.01873458821847021 0.4444444444438437 0
-6899 0.01004507904531004 0.6410830350063272 0
-6900 0.01818961389551627 0.63465877228483 0
-6901 0.01645258110700772 0.6245887458061782 0
-6902 0.02509569559656992 0.6279862959148441 0
-6903 0.02361184698165747 0.6179920630019434 0
-6904 0.02815694971519328 0.639261569391153 0
-6905 0.01027229147144314 0.9545929599841168 0
-6906 0.01889712897322259 0.9699174733301769 0
-6907 0.02007493824640371 0.9805057631530377 0
-6908 0.01028596908573632 0.6616240526963044 0
-6909 0.0185917523803157 0.6769762526401465 0
-6910 0.01033103534103869 0.8434324629205929 0
-6911 0.01035610576364666 0.883840313685356 0
-6912 0.01039512861527318 0.86363636363608 0
-6913 0.01036189601780558 0.9040405949042305 0
-6914 0.01037860478671748 0.2676390382048831 0
-6915 0.01792232493924823 0.2519230035701831 0
-6916 0.01040158013183442 0.3585710152618484 0
-6917 0.01887498425009741 0.3431785979755541 0
-6918 0.01958515156964075 0.3330035881808782 0
-6919 0.01037882285705231 0.9242758400527473 0
-6920 0.01869494354069148 0.9397880580017719 0
-6921 0.02829443262328622 0.9352627497243264 0
-6922 0.02776327206850797 0.2564697958273 0
-6923 0.02674910081846289 0.2452371210843924 0
-6924 0.01670658775824447 0.241860979098603 0
-6925 0.03717082213375347 0.2415580267253178 0
-6926 0.01988216094312857 0.01913757179076583 0
-6927 0.05527438906835784 0.009879805685423799 0
-6928 0.9559422341338107 0.0150064707766155 0
-6929 0.01056843179802009 0.1666921985774033 0
-6930 0.01059183383843472 0.3181504540378433 0
-6931 0.0102971579005896 0.2174895308042921 0
-6932 0.01928752015580744 0.2244668849865543 0
-6933 0.009626176950818969 0.8231719357307116 0
-6934 0.009517469383911742 0.4696806830901592 0
-6935 0.01787284949750962 0.4851520374036942 0
-6936 0.02773226133547753 0.4808262449604479 0
-6937 0.02582105685897639 0.4914445792641309 0
-6938 0.03643806949500197 0.4954122536206785 0
-6939 0.02818227368571898 0.5018495356303538 0
-6940 0.0299558906312541 0.5116295790436042 0
-6941 0.02115896430933437 0.5084895620267351 0
-6942 0.02312698933778856 0.5185519988844242 0
-6943 0.009458893069392378 0.9445660801222461 0
-6944 0.6936773088960142 0.01524629939339274 0
-6945 0.9463726909987928 0.009699167399578653 0
-6946 0.009006325484113583 0.7928030047022807 0
-6947 0.0180100682252811 0.7876196007011779 0
-6948 0.02763009078697742 0.7827265374752448 0
-6949 0.01860749188205121 0.7775413803534091 0
-6950 0.6854756302786102 0.0106638500545315 0
-6951 0.4312146888453878 0.01530975376854524 0
-6952 0.4229931703648095 0.01067692429430636 0
-6953 0.6674058924920111 0.03093880715246995 0
-6954 0.01976697389692384 0.09090913850040182 0
-6955 0.01035080554789986 0.07576232199292945 0
-6956 0.0197628414141875 0.1313658474224252 0
-6957 0.01976438678728477 0.07071761789691935 0
-6958 0.009392012489946056 0.4393939393929658 0
-6959 0.02886408419766059 0.1263901722077977 0
-6960 0.009400096881316621 0.1868700700235025 0
-6961 0.01977673722256317 0.2828213198163318 0
-6962 0.01977718205069327 0.909093925587897 0
-6963 0.01976930611535708 0.3736818659339465 0
-6964 0.02886674550169827 0.378656363791918 0
-6965 0.01975616192743563 0.8788228541515837 0
-6966 0.02886929132467489 0.8738590195046394 0
-6967 0.01971225506664704 0.8383794505190312 0
-6968 0.01986281267220212 0.05055441358039134 0
-6969 0.009410540989044942 0.338301218017668 0
-6970 0.009378633307479947 0.9748402626525206 0
-6971 0.01704972154612359 0.9910824276296198 0
-6972 0.009094373144335382 0.6818941812899316 0
-6973 0.008802024070836911 0.4895794457444441 0
-6974 0.01985671273451834 0.1717217979224978 0
-6975 0.9825045372966579 0.8989898989908804 0
-6976 0.9825045372966676 0.9393939393951207 0
-6977 0.9825045372966703 0.9494949494961412 0
-6978 0.9825045372966884 0.9191919191930005 0
-6979 0.9825045372964557 0.8282828282835893 0
-6980 0.9825045372964938 0.8383838383845749 0
-6981 0.9825045372964958 0.7777777777787733 0
-6982 0.9825045372965285 0.787878787879728 0
-6983 0.9825045372965135 0.7474747474758442 0
-6984 0.98250453729656 0.7575757575768048 0
-6985 0.9825045372966756 0.7272727272738436 0
-6986 0.982504537296659 0.6767676767691578 0
-6987 0.9825045372967883 0.6565656565671766 0
-6988 0.9825045372966529 0.71717171717288 0
-6989 0.9825045372968675 0.616161616163303 0
-6990 0.9825045372968917 0.5757575757594982 0
-6991 0.9212704178370585 0.8434343434356492 0
-6992 0.9125226864857109 0.8383838383849711 0
-6993 0.8862794924316461 0.8636363636371091 0
-6994 0.8775317610803143 0.868686868687515 0
-6995 0.9825045372969257 0.5656565656585295 0
-6996 0.9650090745936848 0.8888888888896793 0
-6997 0.9737568059450472 0.8838383838391553 0
-6998 0.8162976416210732 0.7828282828295381 0
-6999 0.9912522686481547 0.7525252525260949 0
-7000 0.8075499102697568 0.7777777777789771 0
-7001 0.8600362983777354 0.8282828282837182 0
-7002 0.676375154948984 0.04554132056302166 0
-7003 0.9912522686481002 0.7828282828289851 0
-7004 0.8250453729724082 0.7878787878800319 0
-7005 0.7988021789184601 0.7727272727283352 0
-7006 0.7900544475671399 0.7575757575769252 0
-7007 0.7900544475672553 0.7474747474757351 0
-7008 0.9912522686482342 0.6818181818194446 0
-7009 0.8862794924328213 0.4292929292949194 0
-7010 0.8862794924328004 0.4191919191939039 0
-7011 0.7725589848644488 0.747474747475946 0
-7012 0.9825045372968128 0.6262626262642611 0
-7013 0.9912522686481378 0.8333333333337773 0
-7014 0.9825045372966419 0.8181818181824546 0
-7015 0.9825045372966209 0.8080808080814558 0
-7016 0.9300181491884175 0.8484848484860463 0
-7017 0.9037749551353832 0.3989898989918099 0
-7018 0.9037749551354664 0.4090909090928804 0
-7019 0.7463157908106092 0.7121212121221991 0
-7020 0.7550635221619735 0.7070707070716987 0
-7021 0.7025771340538084 0.70707070707187 0
-7022 0.7200725967564939 0.7070707070718565 0
-7023 0.7200725967581931 0.07070707070855797 0
-7024 0.9037749551354067 0.3787878787897595 0
-7025 0.7375680594588558 0.7777777777791904 0
-7026 0.7288203281075043 0.7727272727287066 0
-7027 0.7550635221616138 0.7979797979810236 0
-7028 0.5276225070279531 0.2323232323239988 0
-7029 0.7638112535129326 0.8030303030315927 0
-7030 0.7025771340534585 0.7676767676781699 0
-7031 0.5188747756761405 0.2676767676779886 0
-7032 0.5101270443247309 0.2727272727285366 0
-7033 0.5101270443246743 0.2828282828295851 0
-7034 0.5013793129733422 0.2777777777790661 0
-7035 0.501379312973312 0.2878787878800719 0
-7036 0.4926315816219868 0.2828282828295489 0
-7037 0.4926315816219516 0.2929292929305555 0
-7038 0.48388385027062 0.2878787878800312 0
-7039 0.4838838502705884 0.2979797979810395 0
-7040 0.4751361189192539 0.2929292929305192 0
-7041 0.4751361189192267 0.3030303030315233 0
-7042 0.4663883875678903 0.2979797979810032 0
-7043 0.4663883875678623 0.3080808080820078 0
-7044 0.4576406562165259 0.3030303030314868 0
-7045 0.4576406562164984 0.313131313132492 0
-7046 0.4488929248651612 0.3080808080819701 0
-7047 0.4751361189193469 0.2828282828294337 0
-7048 0.4488929248651337 0.3181818181829763 0
-7049 0.4401451935137955 0.313131313132455 0
-7050 0.5013793129734527 0.2676767676779489 0
-7051 0.685081671350761 0.7676767676781284 0
-7052 0.4226497308111432 0.3131313131323497 0
-7053 0.5363702383788339 0.267676767678022 0
-7054 0.7988021789182042 0.8333333333348195 0
-7055 0.9825045372968846 0.585858585860443 0
-7056 0.5013793129738972 0.2272727272734921 0
-7057 0.5101270443252296 0.2323232323240133 0
-7058 0.4576406562166084 0.2929292929304121 0
-7059 0.492631581622548 0.2222222222230275 0
-7060 0.70257713405433 0.3535353535368732 0
-7061 0.7025771340545144 0.3333333333347619 0
-7062 0.7550635221618237 0.727272727273912 0
-7063 0.6763339399998141 0.7323232323240574 0
-7064 0.4401451935138745 0.3030303030313842 0
-7065 0.9475136118910387 0.8787878787886417 0
-7066 0.5713611637842227 0.2676767676780868 0
-7067 0.6850867978088816 0.05051469218510404 0
-7068 0.5188747756755832 0.6111111111119335 0
-7069 0.7025771340547577 0.2323232323244037 0
-7070 0.1164791335139273 0.2575757575758083 0
-7071 0.5626134324318932 0.7272727272738244 0
-7072 0.5801088951346112 0.7373737373748398 0
-7073 0.6413430145944046 0.7222222222230776 0
-7074 0.05522865941199861 0.2424071573740465 0
-7075 0.9825045372971195 0.5252525252544261 0
-7076 0.956261343242373 0.8939393939402712 0
-7077 0.5188747756755442 0.6313131313139242 0
-7078 0.5188747756755718 0.6515151515158132 0
-7079 0.7288203281088392 0.2171717171729818 0
-7080 0.4838838502698419 0.681818181819102 0
-7081 0.492631581621158 0.6868686868696796 0
-7082 0.6938294027028458 0.5404040404052582 0
-7083 0.6938294027027792 0.5505050505062711 0
-7084 0.5101270443238536 0.6969696969706637 0
-7085 0.5188747756751887 0.7020202020211896 0
-7086 0.7725589848642578 0.8080808080821797 0
-7087 0.1689655216219324 0.2575757575758183 0
-7088 0.1777132529732824 0.2525252525253102 0
-7089 0.5451179697292021 0.7171717171727826 0
-7090 0.9037749551354748 0.3585858585877294 0
-7091 0.8950272237841573 0.3535353535372251 0
-7092 0.8337931043245949 0.3484848484866119 0
-7093 0.8337931043245681 0.3585858585876169 0
-7094 0.1252268648652741 0.2525252525253211 0
-7095 0.1077314021611909 0.8484848484849634 0
-7096 0.9125226864868458 0.3737373737392951 0
-7097 0.7813067162155367 0.823232323233786 0
-7098 0.6588384772984618 0.08585858585999105 0
-7099 0.3876588054049115 0.7070707070714064 0
-7100 0.8862794924327589 0.4393939393959054 0
-7101 0.6063520891895255 0.3282828282841927 0
-7102 0.623847551892192 0.3282828282842589 0
-7103 0.6413430145949013 0.3282828282842947 0
-7104 0.3614156113508327 0.7222222222228137 0
-7105 0.3526678799994994 0.7272727272732712 0
-7106 0.5801088951355245 0.3535353535366257 0
-7107 0.7200725967581403 0.08080808080954957 0
-7108 0.7113248654067945 0.06565656565813303 0
-7109 0.1164791335136138 0.4191919191917695 0
-7110 0.9825045372966125 0.8888888888895432 0
-7111 0.9825045372966564 0.8787878787884034 0
-7112 0.6763339400002728 0.3282828282843766 0
-7113 0.7813067162169015 0.2171717171731459 0
-7114 0.1602177902705734 0.2626262626263063 0
-7115 0.3614156113520814 0.2878787878794039 0
-7116 0.3701633427034002 0.2929292929299503 0
-7117 0.3351724172980287 0.2727272727278234 0
-7118 0.343920148649388 0.2777777777783415 0
-7119 0.6150998205418942 0.0404040404053614 0
-7120 0.3001814918912331 0.8181818181820933 0
-7121 0.5276225070274734 0.3535353535364799 0
-7122 0.518874775676094 0.348484848486011 0
-7123 0.7288203281084796 0.3585858585873754 0
-7124 0.7988021789195999 0.2171717171731668 0
-7125 0.8075499102709703 0.2121212121226853 0
-7126 0.2826860291884848 0.8181818181821258 0
-7127 0.6151105116959742 0.03032154792631723 0
-7128 0.6063208900823202 0.02537441098026221 0
-7129 0.6153527564209643 0.01927230533109594 0
-7130 0.7463157908111749 0.3585858585873913 0
-7131 0.6238475518930355 0.07575757575872061 0
-7132 0.6325952832444943 0.07070707070834577 0
-7133 0.6238475518929841 0.08585858585973703 0
-7134 0.1952087156760338 0.242424242424375 0
-7135 0.203956447027428 0.2373737373739191 0
-7136 0.6850816713512859 0.5858585858597972 0
-7137 0.676333939999916 0.5909090909102689 0
-7138 0.1339745962162032 0.4696969696968145 0
-7139 0.8950272237835184 0.6161616161631798 0
-7140 0.982504537297233 0.494949494951466 0
-7141 0.7725589848651808 0.3232323232339673 0
-7142 0.1427203723632975 0.04040842023277438 0
-7143 0.5276225070275078 0.3333333333345133 0
-7144 0.8862794924334561 0.1262626262642307 0
-7145 0.1427223275677537 0.3838383838384032 0
-7146 0.1427223275677211 0.3939393939393947 0
-7147 0.1514700589192162 0.3686868686869582 0
-7148 0.5538657010815227 0.3080808080820352 0
-7149 0.3176652823149173 0.9696767527176997 0
-7150 0.3175589348882763 0.9795935636724571 0
-7151 0.3086550686276579 0.9847221018773786 0
-7152 0.3177797858924097 0.9901233276985928 0
-7153 0.5713611637841336 0.297979797981143 0
-7154 0.6938294027026595 0.5707070707083166 0
-7155 0.1427223275679879 0.3232323232324547 0
-7156 0.6938294027028334 0.5303030303042826 0
-7157 0.6063520891892984 0.5707070707079978 0
-7158 0.6150998205410511 0.2929292929305393 0
-7159 0.6938294027026783 0.5606060606073112 0
-7160 0.7113248654060814 0.2373737373749678 0
-7161 0.6938294027033702 0.2373737373750053 0
-7162 0.6850816713519962 0.232323232324489 0
-7163 0.8162976416219681 0.3181818181835532 0
-7164 0.8250453729733338 0.3232323232340675 0
-7165 0.3001814918925645 0.2525252525257321 0
-7166 0.2826860291898621 0.2424242424246812 0
-7167 0.300077178215268 0.9797090184782835 0
-7168 0.518874775675551 0.6616161616168206 0
-7169 0.9737568059451294 0.7626262626273268 0
-7170 0.5188750902212861 0.04545507968999608 0
-7171 0.8600362983781935 0.6262626262640978 0
-7172 0.2651905664872175 0.2121212121215846 0
-7173 0.265190566487205 0.2222222222226061 0
-7174 0.2564428351357955 0.227272727273121 0
-7175 0.2651905664871683 0.2323232323236325 0
-7176 0.9475136118911417 0.7474747474758466 0
-7177 0.938765880539826 0.7525252525263185 0
-7178 0.7375680594602216 0.2121212121225379 0
-7179 0.3001814918909087 0.8888888888892187 0
-7180 0.7025771340553889 0.07070707070865194 0
-7181 0.7025771340554989 0.06060606060760795 0
-7182 0.0464967878613453 0.924242424242314 0
-7183 0.1952087156752096 0.7272727272727665 0
-7184 0.9825045372967982 0.7676767676777259 0
-7185 0.1252268648646742 0.565656565656448 0
-7186 0.1339745962160517 0.5606060606059727 0
-7187 0.8687840297295308 0.621212121213615 0
-7188 0.7113248654064224 0.1161616161630305 0
-7189 0.1427223275678504 0.3535353535354157 0
-7190 0.737568059459229 0.7171717171727447 0
-7191 0.03774441549017431 0.09090909090895735 0
-7192 0.04649615221216233 0.08585858585845564 0
-7193 0.9650090745939958 0.6363636363653562 0
-7194 0.8512885670271071 0.5000000000016316 0
-7195 0.4576406562174131 0.1414141414149586 0
-7196 0.4663883875687669 0.146464646465477 0
-7197 0.6850816713523488 0.1111111111124619 0
-7198 0.685081671352427 0.1010101010115058 0
-7199 0.6763339400011161 0.09595959596100075 0
-7200 0.5101272438387102 0.05050538568300224 0
-7201 0.1689655216206059 0.9343434343434933 0
-7202 0.5626134324319513 0.7171717171727742 0
-7203 0.8512885670279039 0.1868686868702676 0
-7204 0.8512885670279112 0.1767676767692717 0
-7205 0.1864609843234559 0.8434343434345123 0
-7206 0.1777132529721207 0.8383838383839951 0
-7207 0.1952087156748043 0.8484848484850237 0
-7208 0.4488929248660736 0.1363636363644179 0
-7209 0.4313974621619721 0.6313131313137172 0
-7210 0.4401451935133368 0.6262626262632419 0
-7211 0.6063520891895723 0.2777777777791877 0
-7212 0.6063520891896393 0.2676767676781312 0
-7213 0.623847551892428 0.2979797979810225 0
-7214 0.3526678800011028 0.09090909090955514 0
-7215 0.2651905664872223 0.202020202020571 0
-7216 0.8425408356763024 0.3030303030320424 0
-7217 0.982504537297248 0.4646464646484001 0
-7218 0.9825045372972393 0.4545454545473742 0
-7219 0.9737568059458908 0.459595959597897 0
-7220 0.9737568059459214 0.4494949494969548 0
-7221 0.1252268648649902 0.4141414141413151 0
-7222 0.4663883875688966 0.1060606060613191 0
-7223 0.1339745962166118 0.3282828282829203 0
-7224 0.1339745962165815 0.3383838383839144 0
-7225 0.6850816713523317 0.1212121212134308 0
-7226 0.3351724172983289 0.101010101010545 0
-7227 0.8687840297305578 0.2171717171733584 0
-7228 0.6063520891895784 0.2878787878801742 0
-7229 0.1164791335136142 0.429292929292787 0
-7230 0.3789110740537989 0.6616161616166222 0
-7231 0.1514700589179275 0.9242424242424678 0
-7232 0.3176769545942618 0.6868686868689894 0
-7233 0.8862794924324099 0.5404040404056638 0
-7234 0.2214519097299397 0.439393939394118 0
-7235 0.2214519097299613 0.4292929292931207 0
-7236 0.3351724172969697 0.6868686868690311 0
-7237 0.9912522686484652 0.8838383838382082 0
-7238 0.9825045372966419 0.8686868686873379 0
-7239 0.4663883875687919 0.1363636363644512 0
-7240 0.4751361189201579 0.1414141414149347 0
-7241 0.4751361189201265 0.1515151515159733 0
-7242 0.8425408356757423 0.4343434343451587 0
-7243 0.8425408356757571 0.4242424242441576 0
-7244 0.8600362983790328 0.3030303030321059 0
-7245 0.1164791335141375 0.1262626262626896 0
-7246 0.4698497883675553 0.008645192960785086 0
-7247 0.4749181881632595 0.01823519351314558 0
-7248 0.9650090745937333 0.8080808080817218 0
-7249 0.7725589848655535 0.2121212121226096 0
-7250 0.1777132529736855 0.09090909090915883 0
-7251 0.1689655216223235 0.09595959595967291 0
-7252 0.8512885670278504 0.2070707070723151 0
-7253 0.3001814918909359 0.8787878787882204 0
-7254 0.1952087156764387 0.09090909090919883 0
-7255 0.2039564470277885 0.09595959595973014 0
-7256 0.9737568059453525 0.6313131313148562 0
-7257 0.982504537296781 0.6363636363652536 0
-7258 0.1339745962161841 0.4797979797978196 0
-7259 0.8688262178681069 0.02526780112759962 0
-7260 0.7463157908101493 0.8131313131327689 0
-7261 0.7463157908102204 0.803030303031625 0
-7262 0.9037749551348693 0.61111111111265 0
-7263 0.56262717137736 0.9595822664629584 0
-7264 0.9737568059451644 0.7121212121225352 0
-7265 0.2214519097297886 0.5000000000001463 0
-7266 0.2214519097299116 0.4494949494951245 0
-7267 0.9475136118915697 0.5656565656584852 0
-7268 0.956261343242911 0.5606060606079778 0
-7269 0.5276225419778477 0.05050510986535382 0
-7270 0.2914337605395976 0.8737373737377054 0
-7271 0.9300181491888705 0.5858585858603884 0
-7272 0.2389473724315006 0.8737373737375947 0
-7273 0.1777132529733652 0.3434343434345273 0
-7274 0.1864609843247025 0.3484848484850447 0
-7275 0.982504537297292 0.4444444444464549 0
-7276 0.6763339400000582 0.4595959595973805 0
-7277 0.8862794924322149 0.6111111111126215 0
-7278 0.8775317610808697 0.6161616161631132 0
-7279 0.2214519097297421 0.5202020202021527 0
-7280 0.1077314021612291 0.8383838383839546 0
-7281 0.09898367080984787 0.8333333333334487 0
-7282 0.1077314021612492 0.8282828282829551 0
-7283 0.09898367080987834 0.8232323232324337 0
-7284 0.1077314021612585 0.8181818181819513 0
-7285 0.09898367080990694 0.8131313131314167 0
-7286 0.1077314021612879 0.8080808080809356 0
-7287 0.1164791335126562 0.8131313131314606 0
-7288 0.1164791335126711 0.8030303030304542 0
-7289 0.1077314021613194 0.7979797979799139 0
-7290 0.1164791335127028 0.7929292929294373 0
-7291 0.1252268648640502 0.7979797979799742 0
-7292 0.1252268648640834 0.7878787878789559 0
-7293 0.1164791335127347 0.7828282828284193 0
-7294 0.1252268648641162 0.7777777777779374 0
-7295 0.1164791335127666 0.7727272727274 0
-7296 0.1252268648641484 0.7676767676769186 0
-7297 0.1164791335127997 0.76262626262638 0
-7298 0.1252268648641825 0.7575757575758999 0
-7299 0.1164791335128332 0.7525252525253593 0
-7300 0.1252268648642168 0.7474747474748793 0
-7301 0.1164791335128665 0.7424242424243394 0
-7302 0.12522686486425 0.7373737373738574 0
-7303 0.1164791335128992 0.7323232323233184 0
-7304 0.125226864864282 0.7272727272728352 0
-7305 0.1164791335129302 0.7222222222222969 0
-7306 0.1252268648643135 0.7171717171718127 0
-7307 0.1164791335129608 0.7121212121212724 0
-7308 0.1252268648643468 0.7070707070707909 0
-7309 0.1164791335129938 0.7020202020202518 0
-7310 0.1339745962154935 0.7727272727274559 0
-7311 0.133974596215601 0.742424242424399 0
-7312 0.1339745962154343 0.7929292929294911 0
-7313 0.1339745962156988 0.7121212121213302 0
-7314 0.1252268648643794 0.6969696969697688 0
-7315 0.1077314021615665 0.7171717171717381 0
-7316 0.1077314021614751 0.7474747474748052 0
-7317 0.10773140216138 0.7777777777778706 0
-7318 0.1164791335130264 0.6919191919192289 0
-7319 0.1077314021616445 0.6969696969697066 0
-7320 0.1077314021616739 0.6868686868686877 0
-7321 0.1339745962154221 0.8030303030304862 0
-7322 0.1427223275667872 0.7979797979800173 0
-7323 0.1427223275668239 0.7878787878789886 0
-7324 0.1514700589181818 0.792929292929482 0
-7325 0.1514700589181685 0.8030303030304895 0
-7326 0.1252268648644064 0.6868686868687361 0
-7327 0.1339745962157662 0.691919191919268 0
-7328 0.0989836708102783 0.691919191919147 0
-7329 0.107731402161196 0.8585858585859598 0
-7330 0.7200725967560223 0.8383838383852757 0
-7331 0.273938297836894 0.8737373737376707 0
-7332 0.5306028486886756 0.9911352922463651 0
-7333 0.2214519097296999 0.5404040404041627 0
-7334 0.2214519097296808 0.5505050505051684 0
-7335 0.4895443390157151 0.00892970788400712 0
-7336 0.2127041783783052 0.5555555555556605 0
-7337 0.3876588054051651 0.6565656565661417 0
-7338 0.07273979240536282 0.4747474747495369 0
-7339 0.07273987893185195 0.4848484848503122 0
-7340 0.4401451935133138 0.6363636363642565 0
-7341 0.4226497308106059 0.6363636363642117 0
-7342 0.413901999459241 0.6414141414146908 0
-7343 0.07274033044770328 0.4646464646465305 0
-7344 0.9562613432426788 0.6414141414158127 0
-7345 0.3614156113520013 0.2979797979804363 0
-7346 0.45029053612665 0.009082077063104465 0
-7347 0.3176769545953272 0.2525252525257661 0
-7348 0.3351724172979673 0.2828282828288322 0
-7349 0.326424685946641 0.267676767677308 0
-7350 0.5188747756757102 0.4595959595971699 0
-7351 0.5188747756756925 0.4696969696981622 0
-7352 0.4401451935133783 0.6060606060612382 0
-7353 0.1339745962152522 0.9141414141414193 0
-7354 0.6850816713522929 0.1515151515163672 0
-7355 0.6938294027036152 0.1565656565668828 0
-7356 0.6763339400009645 0.1464646464658489 0
-7357 0.6675862086496003 0.1515151515163237 0
-7358 0.6763339400009833 0.1363636363648702 0
-7359 0.03771934898739022 0.191919464553833 0
-7360 0.3264246859467321 0.2474747474752674 0
-7361 0.3351724172981146 0.2424242424247793 0
-7362 0.9300181491889741 0.5656565656582949 0
-7363 0.7288203281074007 0.8232323232337844 0
-7364 0.7988021789190253 0.5404040404054314 0
-7365 0.8075499102703715 0.535353535354969 0
-7366 0.9825045372966721 0.7070707070719298 0
-7367 0.9825045372967326 0.6969696969710115 0
-7368 0.8775317610819366 0.2121212121228683 0
-7369 0.5101091194798096 0.9902378332805704 0
-7370 0.6763339400000706 0.4696969696983734 0
-7371 0.3439201486488832 0.4393939393944415 0
-7372 0.3439201486489097 0.4292929292934424 0
-7373 0.2214519097298147 0.4898989898991427 0
-7374 0.3089292232421888 0.9141414141417101 0
-7375 0.9125226864859517 0.7171717171729103 0
-7376 0.7025771340546153 0.2929292929306992 0
-7377 0.9737568059451243 0.7929292929302497 0
-7378 0.904040404040007 0.008734622763477298 0
-7379 0.9090909090905269 0.01743501754746556 0
-7380 0.9190327925272219 0.01739687475191525 0
-7381 0.9143226553603415 0.02583725760538868 0
-7382 0.8989429037857843 0.01691672503302262 0
-7383 0.8075499102709663 0.222222222223727 0
-7384 0.973756805945547 0.560606060608051 0
-7385 0.9825045372969817 0.5555555555574938 0
-7386 0.8837362913868996 0.008830838619896291 0
-7387 0.1864609843248352 0.1767676767677995 0
-7388 0.2214519097298639 0.4696969696971348 0
-7389 0.7900544475682711 0.2222222222237328 0
-7390 0.09898367081029705 0.6818181818181182 0
-7391 0.1077314021616931 0.6767676767676378 0
-7392 0.8600362983791805 0.2222222222238719 0
-7393 0.9125226864859433 0.7272727272738948 0
-7394 0.9037749551346285 0.7121212121224345 0
-7395 0.008665738727632842 0.5303941926949972 0
-7396 0.01743898304218725 0.5354457106609902 0
-7397 0.01750439954003215 0.5454911357262568 0
-7398 0.02644774136531102 0.5404245359424823 0
-7399 0.0265331045038057 0.5506110586533342 0
-7400 0.02663016534235215 0.5292646163026843 0
-7401 0.0359383946347912 0.5557953411454273 0
-7402 0.02654171208079224 0.5608137275396528 0
-7403 0.03616040394510505 0.5352474347330552 0
-7404 0.01763935760749886 0.5557073239034339 0
-7405 0.01771432954793791 0.5658740805669689 0
-7406 0.02667249360605968 0.5709063790846796 0
-7407 0.01792315323088597 0.5761879076915165 0
-7408 0.02706270506862982 0.5813749230604044 0
-7409 0.0365549957436129 0.5861687109594925 0
-7410 0.02834892007942117 0.5924247122844194 0
-7411 0.02992749665889487 0.6023749853273442 0
-7412 0.02118590074695596 0.5990185461803628 0
-7413 0.01829265493775295 0.5880941437147188 0
-7414 0.008959770492030061 0.5709079677549741 0
-7415 0.008772278033356878 0.5505356151762789 0
-7416 0.7113248654046059 0.853535353536779 0
-7417 0.09023593945852217 0.8181818181818952 0
-7418 0.9562613432427054 0.6313131313148234 0
-7419 0.2826860291900405 0.1212121212124375 0
-7420 0.2826860291900256 0.1313131313134679 0
-7421 0.9562613432424626 0.7525252525263816 0
-7422 0.2739382978372359 0.8030303030305032 0
-7423 0.5505732535938181 0.9909408969681756 0
-7424 0.5551251523210515 0.9829118665039277 0
-7425 0.4139019994584585 0.8939393939399791 0
-7426 0.291433760541437 0.1161616161619386 0
-7427 0.6500907459470163 0.1010101010113973 0
-7428 0.8425408356763577 0.2727272727289418 0
-7429 0.8425408356763785 0.2626262626279275 0
-7430 0.7813067162158889 0.7424242424252717 0
-7431 0.7638112535131398 0.7424242424253428 0
-7432 0.7813089435763748 0.02522679633700661 0
-7433 0.7814382877324616 0.01519784378109703 0
-7434 0.7636791570880552 0.0148481324479979 0
-7435 0.7540359694079877 0.009694379885753208 0
-7436 0.7813069637018223 0.03535067658670468 0
-7437 0.212704178378583 0.4343434343436109 0
-7438 0.4401451935134306 0.5858585858592373 0
-7439 0.247695103782669 0.9595959595960465 0
-7440 0.2476951037826972 0.9494949494950574 0
-7441 0.9912522686486214 0.4898989899009964 0
-7442 0.9825045372972353 0.5050505050524767 0
-7443 0.8512885670271085 0.4292929292946798 0
-7444 0.8425408356757316 0.4444444444461678 0
-7445 0.8512885670270831 0.4494949494966979 0
-7446 0.05508137199786209 0.9795719264324156 0
-7447 0.05526266229483894 0.9901146464565226 0
-7448 0.2651905664868103 0.3939393939397042 0
-7449 0.3439213060211062 0.9646444600169706 0
-7450 0.9562613432424136 0.8131313131322044 0
-7451 0.3176769545935655 0.9191919191922285 0
-7452 0.3264246859449162 0.9242424242427734 0
-7453 0.3614156113522753 0.1868686868692779 0
-7454 0.8687840297292451 0.7727272727281878 0
-7455 0.2739382978382074 0.3787878787882148 0
-7456 0.2739382978382217 0.368686868687212 0
-7457 0.2564428351354126 0.4090909090911926 0
-7458 0.2564428351353917 0.4191919191921961 0
-7459 0.3176769545946945 0.4949494949498763 0
-7460 0.2651905664868603 0.3636363636366998 0
-7461 0.2739382978382254 0.3585858585862107 0
-7462 0.807549910271033 0.1818181818196699 0
-7463 0.8075499102710599 0.1717171717186812 0
-7464 0.8075499102710116 0.1919191919206752 0
-7465 0.9242594803906941 0.008737367218949271 0
-7466 0.9296624427838038 0.01839613657213021 0
-7467 0.9825045372968226 0.73737373737478 0
-7468 0.9300181491899464 0.323232323234251 0
-7469 0.9212704178385785 0.3181818181837265 0
-7470 0.8775317610801304 0.8787878787886975 0
-7471 0.895027223782908 0.8686868686879544 0
-7472 0.1164791335141715 0.116161616161677 0
-7473 0.1077314021628204 0.1111111111111305 0
-7474 0.8250453729723533 0.7979797979811158 0
-7475 0.8337931043237394 0.792929292930531 0
-7476 0.8337931043236835 0.8030303030316265 0
-7477 0.842540835675069 0.7979797979810286 0
-7478 0.8425408356750167 0.8080808080821053 0
-7479 0.8512885670264221 0.8030303030314411 0
-7480 0.00812354002979968 0.5100668792452528 0
-7481 0.5626134324318293 0.7474747474758491 0
-7482 0.02892159974952331 0.04546507958158258 0
-7483 0.0252455098775603 0.008866478299829929 0
-7484 0.4751361189179639 0.8686868686876561 0
-7485 0.09899445709792301 0.9646389810623397 0
-7486 0.7550635221621775 0.606060606061799 0
-7487 0.3438387162587908 0.9748307787088417 0
-7488 0.8775317610811598 0.5050505050521729 0
-7489 0.912522686486212 0.6060606060621971 0
-7490 0.746315790811395 0.2878787878802726 0
-7491 0.2039564470273081 0.3888888888890734 0
-7492 0.9300181491884091 0.8585858585871734 0
-7493 0.8512885670280116 0.106060606062284 0
-7494 0.6850816713522602 0.1616161616173597 0
-7495 0.9825045372969063 0.6666666666681134 0
-7496 0.1777132529731042 0.4444444444445227 0
-7497 0.1777132529730802 0.4545454545455239 0
-7498 0.2739382978386988 0.1060606060608714 0
-7499 0.7900544475673063 0.7272727272737316 0
-7500 0.8775317610821118 0.08080808080978724 0
-7501 0.8687840297307621 0.07575757575927267 0
-7502 0.3176756576737008 0.9595937132651162 0
-7503 0.3089290791399827 0.9545452049533145 0
-7504 0.8250453729730706 0.4141414141431168 0
-7505 0.2476826961434263 0.9696754790354988 0
-7506 0.2475451647295495 0.9797310496368977 0
-7507 0.2385059595976003 0.9848825771892078 0
-7508 0.5801092557311522 0.9595932100977538 0
-7509 0.6588167893620424 0.9646606685358099 0
-7510 0.9125226864868716 0.393939393941393 0
-7511 0.1864609843247259 0.3383838383840367 0
-7512 0.7813067162154833 0.8535353535368339 0
-7513 0.04649391936295672 0.1868687171612724 0
-7514 0.8687840297292324 0.7828282828291853 0
-7515 0.9037749551356171 0.4191919191939802 0
-7516 0.825045372973203 0.3636363636381107 0
-7517 0.895027502724285 0.9393934562544276 0
-7518 0.7463157908107446 0.6515151515162635 0
-7519 0.2127041783786732 0.3838383838385944 0
-7520 0.7375680594603294 0.1414141414155271 0
-7521 0.7375680594603879 0.1313131313145591 0
-7522 0.728820328109071 0.1262626262640464 0
-7523 0.2476951037833829 0.7272727272728541 0
-7524 0.9825045372967912 0.6464646464661961 0
-7525 0.03773259269877121 0.3838114211574442 0
-7526 0.44889292486375 0.9343434343440603 0
-7527 0.9650090745938518 0.7070707070720449 0
-7528 0.8775317610820222 0.1717171717187862 0
-7529 0.352669165969519 0.9595937322298654 0
-7530 0.6238475518909202 0.9141414141424146 0
-7531 0.3439201486489634 0.4090909090914312 0
-7532 0.07274078889575966 0.6161616161613107 0
-7533 0.6588384772981583 0.1868686868697774 0
-7534 0.2564428351348493 0.6515151515153448 0
-7535 0.3001814918919475 0.515151515151848 0
-7536 0.8337931043248702 0.3181818181835658 0
-7537 0.9387651582298504 0.03533379143600002 0
-7538 0.4838838502693322 0.8636363636371734 0
-7539 0.4663883875666301 0.8636363636371259 0
-7540 0.763811253514362 0.1464646464660871 0
-7541 0.2651905664859018 0.7979797979799692 0
-7542 0.1339745962157768 0.681818181818202 0
-7543 0.7113248654046642 0.8232323232337646 0
-7544 0.08148820810708136 0.8434343434344137 0
-7545 0.2651905664859348 0.7878787878789558 0
-7546 0.2564428351345975 0.7828282828284271 0
-7547 0.1164791335142037 0.09595959595963013 0
-7548 0.6413065055355225 0.03535430492445647 0
-7549 0.5363702383785345 0.3989898989911769 0
-7550 0.5451179697298946 0.3939393939406906 0
-7551 0.8512885670279553 0.1363636363653051 0
-7552 0.8425408356766116 0.1313131313147853 0
-7553 0.842540835676629 0.1212121212137815 0
-7554 0.8337931043252714 0.1262626262642681 0
-7555 0.8337931043252905 0.1161616161632658 0
-7556 0.8250453729739342 0.1212121212137523 0
-7557 0.8250453729739547 0.1111111111127557 0
-7558 0.8162976416226013 0.1161616161632395 0
-7559 0.8162976416226262 0.1060606060622423 0
-7560 0.8075499102712742 0.1111111111127267 0
-7561 0.8075499102712994 0.1010101010117333 0
-7562 0.7988021789199451 0.1060606060622245 0
-7563 0.7988021789199711 0.09595959596123321 0
-7564 0.7900544475686231 0.1010101010117136 0
-7565 0.7900544475686511 0.09090909091072494 0
-7566 0.7813067162173107 0.09595959596119258 0
-7567 0.7813067162173354 0.08585858586021743 0
-7568 0.7725589848659974 0.09090909091068185 0
-7569 0.7813067162172753 0.1060606060621917 0
-7570 0.8075499102712466 0.1212121212137239 0
-7571 0.7725589848660317 0.08080808080969845 0
-7572 0.7638112535146897 0.08585858586017218 0
-7573 0.7638112535146452 0.09595959596116888 0
-7574 0.755063522163318 0.0909090909106517 0
-7575 0.7900544475686856 0.08080808080973084 0
-7576 0.7638112535147432 0.07575757575916862 0
-7577 0.8075499102713288 0.09090909091073632 0
-7578 0.8250453729739853 0.1010101010117444 0
-7579 0.8250453729739129 0.1313131313147565 0
-7580 0.8425408356766495 0.1111111111127748 0
-7581 0.8337931043252512 0.136363636365279 0
-7582 0.9562613432427268 0.6212121212138468 0
-7583 0.2737976645464825 0.9748129330780944 0
-7584 0.5975894461183522 0.03033639674972305 0
-7585 0.5972001367971342 0.01929049292592124 0
-7586 0.6063520891892785 0.4494949494962895 0
-7587 0.615099820540624 0.4444444444458062 0
-7588 0.7113248654059759 0.2878787878802042 0
-7589 0.6500907459460082 0.4747474747488297 0
-7590 0.5276225070270538 0.4646464646476854 0
-7591 0.5276225070270815 0.4747474747486513 0
-7592 0.5363702383784591 0.4696969696981494 0
-7593 0.7375680594603113 0.1515151515165065 0
-7594 0.02874270979614967 0.1969773466811505 0
-7595 0.04648723345899999 0.7424242434232668 0
-7596 0.0552427516136368 0.7373737378854938 0
-7597 0.3701633427017725 0.8787878787883697 0
-7598 0.2301996410810226 0.5555555555556898 0
-7599 0.8512885670279901 0.1161616161632924 0
-7600 0.4139019994585119 0.8737373737379822 0
-7601 0.4139019994585392 0.8636363636369837 0
-7602 0.4226497308098752 0.8686868686875066 0
-7603 0.4226497308098454 0.8787878787885082 0
-7604 0.4313974621611849 0.8838383838390295 0
-7605 0.9825045372970753 0.5454545454563848 0
-7606 0.9562613432430962 0.5202020202038793 0
-7607 0.9475136118917745 0.5151515151533625 0
-7608 0.9562613432424093 0.9141414141428635 0
-7609 0.8162976416224232 0.1868686868702605 0
-7610 0.4663883875665779 0.8838383838391396 0
-7611 0.4663883875665542 0.893939393940138 0
-7612 0.2476951037832283 0.7878787878789089 0
-7613 0.7375680594596022 0.5454545454558126 0
-7614 0.86878871730163 0.03535523267450127 0
-7615 0.8596943015878609 0.0192707188233227 0
-7616 0.5013793129727754 0.6414141414149458 0
-7617 0.9300181491890006 0.5555555555572756 0
-7618 0.2476951037837537 0.5454545454547256 0
-7619 0.2564428351351182 0.5404040404042444 0
-7620 0.5976043578377102 0.6969696969704269 0
-7621 0.6063520891890751 0.7020202020209646 0
-7622 0.457640656215107 0.9292929292935814 0
-7623 0.8337931043254055 0.06565656565827943 0
-7624 0.8425408356767452 0.06060606060779312 0
-7625 0.8337931043254185 0.05555555555729472 0
-7626 0.8512885670280731 0.06565656565829109 0
-7627 0.3439201486496453 0.1262626262631387 0
-7628 0.3001814918919699 0.5050505050508387 0
-7629 0.2914337605406268 0.5000000000003121 0
-7630 0.04649444051641684 0.3787795048769271 0
-7631 0.492631581621228 0.6767676767686026 0
-7632 0.4751361189185369 0.6767676767684683 0
-7633 0.4663883875671541 0.6717171717179703 0
-7634 0.8512885670280945 0.05555555555727384 0
-7635 0.4401451935147315 0.131313131313865 0
-7636 0.2127538161459991 0.9695893660162606 0
-7637 0.3789110740531285 0.8737373737378918 0
-7638 0.7200725967573223 0.2929292929307286 0
-7639 0.7288203281086697 0.2979797979812482 0
-7640 0.5101251543775207 0.02047694231140461 0
-7641 0.6238475518909502 0.9040404040414128 0
-7642 0.6150998205395987 0.8989898989909076 0
-7643 0.3351724172962808 0.9191919191922516 0
-7644 0.3439201486476416 0.9242424242427456 0
-7645 0.1513764929695563 0.9747252238957985 0
-7646 0.7200725967576882 0.1313131313145013 0
-7647 0.7375680594593876 0.6565656565667402 0
-7648 0.09898367081119958 0.2070707070706164 0
-7649 0.9125226864862702 0.5858585858602106 0
-7650 0.04649129881431366 0.7525252319028771 0
-7651 0.6938294027018778 0.914141414142564 0
-7652 0.4051542681081307 0.5454545454551186 0
-7653 0.4051542681081617 0.5353535353541186 0
-7654 0.4139019994595256 0.5303030303036601 0
-7655 0.34392014864772 0.8838383838388018 0
-7656 0.352667879999062 0.8888888888893204 0
-7657 0.3439201486477017 0.8939393939397985 0
-7658 0.7988021789186636 0.7222222222232484 0
-7659 0.8425408356766774 0.1010101010117622 0
-7660 0.3614157542359042 0.9545452070606326 0
-7661 0.3001814918918975 0.5353535353538585 0
-7662 0.3001814918918726 0.5454545454548642 0
-7663 0.755063522162738 0.2929292929307998 0
-7664 0.2214519097298857 0.4595959595961325 0
-7665 0.7638112535127887 0.8434343434358389 0
-7666 0.5188747756757456 0.449494949496166 0
-7667 0.9475136118925747 0.3838383838404933 0
-7668 0.8512885670276703 0.2979797979815431 0
-7669 0.868784029730404 0.2979797979815981 0
-7670 0.2127041783780021 0.6969696969697645 0
-7671 0.5363702383784636 0.459595959597175 0
-7672 0.6587999832402751 0.04551618673379645 0
-7673 0.4576406562172257 0.2121212121220184 0
-7674 0.9387658805413577 0.3080808080827016 0
-7675 0.9300181491899681 0.3131313131332112 0
-7676 0.5801088951340663 0.9191919191929776 0
-7677 0.1427223275665912 0.91919191919194 0
-7678 0.8337931043240491 0.712121212122297 0
-7679 0.842540835675372 0.7171717171728084 0
-7680 0.8162976416224692 0.1666666666682531 0
-7681 0.09898367080978571 0.8636363636364875 0
-7682 0.09898367080980938 0.8737373737374644 0
-7683 0.4313974621612413 0.8636363636370323 0
-7684 0.9212704178376572 0.5606060606077465 0
-7685 0.4401451935124192 0.9292929292935358 0
-7686 0.4401451935124455 0.9191919191925374 0
-7687 0.431397462161059 0.9343434343440076 0
-7688 0.4313974621624359 0.3181818181829379 0
-7689 0.1864609843246512 0.3686868686870317 0
-7690 0.8425408356757126 0.4545454545471707 0
-7691 0.8337931043243494 0.459595959597649 0
-7692 0.23000895358386 0.9797439587857527 0
-7693 0.7988021789200039 0.0858585858602335 0
-7694 0.8337931043236693 0.8131313131326158 0
-7695 0.711324865406934 0.05555555555707795 0
-7696 0.9737568059458533 0.5000000000019375 0
-7697 0.8248248784975922 0.0202064416181021 0
-7698 0.8156023401201049 0.0159979698622987 0
-7699 0.4931576606130821 0.01929380167631509 0
-7700 0.9037749551361721 0.1565656565672904 0
-7701 0.1077314021627491 0.1313131313131537 0
-7702 0.3614156272264859 0.9444444169464465 0
-7703 0.7638112535141237 0.2777777777793012 0
-7704 0.9212704178370351 0.8636363636377631 0
-7705 0.9387658805397545 0.8636363636375077 0
-7706 0.2389473724314451 0.9040404040405787 0
-7707 0.2476951037827787 0.9090909090910899 0
-7708 0.04649380955926257 0.9646451732493484 0
-7709 0.7112040308580263 0.9745221023329225 0
-7710 0.7194301534073689 0.9808302963170534 0
-7711 0.7287489455126712 0.9748621765838341 0
-7712 0.7292100051696617 0.9845973881430005 0
-7713 0.527622507026197 0.8282828282838061 0
-7714 0.5363702383775383 0.8333333333343292 0
-7715 0.05524488844453834 0.08080808080796845 0
-7716 0.8775317610817208 0.3232323232341712 0
-7717 0.4751361189202343 0.1111111111118504 0
-7718 0.4576406562175125 0.1111111111118206 0
-7719 0.7988021789190556 0.3989898989915869 0
-7720 0.9212609901826614 0.96462782015722 0
-7721 0.9300076461227447 0.9696763019117669 0
-7722 0.9298859297894848 0.9807301478029639 0
-7723 0.9388174711435021 0.9747332598770717 0
-7724 0.9300159346638053 0.9595915915666237 0
-7725 0.930017903129956 0.949494464159661 0
-7726 0.04649334124434182 0.1969700032629797 0
-7727 0.9737568059454398 0.5909090909109983 0
-7728 0.9825045372969186 0.5959595959613956 0
-7729 0.9300181491887088 0.6565656565671665 0
-7730 0.9387658805400166 0.6616161616176646 0
-7731 0.9475136118913388 0.6565656565672081 0
-7732 0.9300181491886919 0.6666666666681316 0
-7733 0.9912522686487056 0.1565656565665844 0
-7734 0.221451909730372 0.1464646464648788 0
-7735 0.2127041783790126 0.1414141414143503 0
-7736 0.3964065367567884 0.540404040404593 0
-7737 0.3964065367568128 0.5303030303035983 0
-7738 0.3876588054054644 0.5252525252530824 0
-7739 0.4313974621635991 0.04545454545512362 0
-7740 0.4313974621635689 0.05555555555615847 0
-7741 0.9912522686486648 0.1363636363642229 0
-7742 0.9825045372974349 0.1313131313139739 0
-7743 0.8162976416209956 0.8030303030316117 0
-7744 0.4663883875689654 0.07575757575830512 0
-7745 0.7900544475668682 0.8282828282842969 0
-7746 0.02891108847376558 0.2878738762141679 0
-7747 0.5713611637832692 0.7323232323243085 0
-7748 0.5888566264874999 0.166666666667652 0
-7749 0.676342923350344 0.05557290974280724 0
-7750 0.851288567026883 0.621212121213539 0
-7751 0.8687840297307851 0.06565656565824868 0
-7752 0.9387658805397526 0.813131313132176 0
-7753 0.58010889513432 0.8282828282839584 0
-7754 0.5801088951342876 0.8383838383849619 0
-7755 0.5713611637829158 0.8434343434354385 0
-7756 0.07274047675737833 0.09090909090902517 0
-7757 0.06399274540601942 0.09595959595952595 0
-7758 0.9650090745956551 0.141414141415806 0
-7759 0.2651905664860702 0.7373737373739007 0
-7760 0.2651905664860437 0.7474747474749097 0
-7761 0.1339745962155663 0.7525252525254217 0
-7762 0.1427223275669582 0.7474747474749305 0
-7763 0.1427223275669881 0.7373737373739208 0
-7764 0.1427223275669263 0.757575757575924 0
-7765 0.1514700589183436 0.742424242424423 0
-7766 0.1514700589183621 0.7323232323234036 0
-7767 0.1427223275670146 0.7272727272728872 0
-7768 0.7375680594601742 0.2222222222236522 0
-7769 0.7463157908116264 0.2070707070721005 0
-7770 0.3176769545953748 0.232323232323736 0
-7771 0.8432038912971161 0.9902873897594399 0
-7772 0.8600362983779533 0.7575757575767426 0
-7773 0.08148820810873511 0.095959595959551 0
-7774 0.7725589848655613 0.202020202021568 0
-7775 0.7638112535142292 0.2070707070720798 0
-7776 0.8337931043245556 0.3686868686886231 0
-7777 0.8425408356759436 0.3636363636381325 0
-7778 0.8425408356758973 0.3737373737391402 0
-7779 0.825045372973888 0.141414141415777 0
-7780 0.5451179697301214 0.2727272727286036 0
-7781 0.5538657010815302 0.2676767676780544 0
-7782 0.492631581620918 0.7777777777786969 0
-7783 0.4926315816208937 0.7878787878797013 0
-7784 0.4838838502695533 0.782828282829178 0
-7785 0.4838838502695298 0.79292929293018 0
-7786 0.47513611891819 0.787878787879659 0
-7787 0.4751361189181675 0.7979797979806604 0
-7788 0.4663883875668275 0.7929292929301393 0
-7789 0.4663883875668062 0.8030303030311419 0
-7790 0.4576406562154657 0.7979797979806196 0
-7791 0.4926315816208695 0.797979797980703 0
-7792 0.4576406562154431 0.8080808080816205 0
-7793 0.475136118918144 0.8080808080816611 0
-7794 0.4663883875668505 0.7828282828291365 0
-7795 0.4488929248641031 0.8030303030310975 0
-7796 0.4488929248640756 0.8131313131320971 0
-7797 0.4488929248641269 0.7929292929300921 0
-7798 0.4401451935127378 0.8080808080815727 0
-7799 0.4663883875667811 0.81313131313214 0
-7800 0.877531761080504 0.797979797980618 0
-7801 0.7200725967561024 0.7777777777792623 0
-7802 0.4838838502702779 0.4898989899000918 0
-7803 0.04648397949029021 0.7121213096308189 0
-7804 0.05524306238948588 0.7070707259562015 0
-7805 0.8162976416225766 0.1262626262642394 0
-7806 0.8075499102712158 0.1313131313147362 0
-7807 0.8512885670267623 0.6717171717184387 0
-7808 0.9037749551346624 0.7020202020214608 0
-7809 0.1077314021626049 0.181818181818138 0
-7810 0.3439201486490376 0.3787878787884105 0
-7811 0.3439201486490621 0.3686868686874083 0
-7812 0.8075499102703635 0.5454545454559506 0
-7813 0.5101270443244008 0.4444444444456488 0
-7814 0.501379312973057 0.4393939393951329 0
-7815 0.5013793129730794 0.429292929294129 0
-7816 0.8775317610811507 0.5151515151531514 0
-7817 0.5188744148405674 0.954545117041407 0
-7818 0.7024837168189895 0.01993084198923863 0
-7819 0.7113817131830213 0.01453820507162285 0
-7820 0.7201054406418564 0.01989667675010994 0
-7821 0.6763339399999979 0.6515151515160594 0
-7822 0.7463157908109759 0.5303030303043308 0
-7823 0.7463157908109807 0.5202020202033629 0
-7824 0.7550635221623225 0.5252525252538744 0
-7825 0.9562613432425522 0.702020202021545 0
-7826 0.4401341310137676 0.9696229601140719 0
-7827 0.4400472618795183 0.979529009366371 0
-7828 0.07603184140155714 0.008970267944714946 0
-7829 0.09023593945859699 0.7878787878788037 0
-7830 0.09898367080995792 0.7929292929293551 0
-7831 0.4926315816217113 0.434343434344617 0
-7832 0.4926315816217328 0.4242424242436144 0
-7833 0.9212704178372336 0.7424242424253475 0
-7834 0.2214519097286803 0.9444444444445173 0
-7835 0.868784029729436 0.6616161616175491 0
-7836 0.9737568059451065 0.9545454545469992 0
-7837 0.9737568059450593 0.9646464646480817 0
-7838 0.9650090745936745 0.969696969698581 0
-7839 0.9737568059450324 0.9747474747491263 0
-7840 0.964959893926102 0.9799689157799426 0
-7841 0.9562362204024715 0.9748168985543602 0
-7842 0.9738318933913808 0.9848033316463687 0
-7843 0.9559440690046617 0.9849729216756571 0
-7844 0.9475070333927099 0.9797204363705182 0
-7845 0.946292342182933 0.9902488059549406 0
-7846 0.9825045372965762 0.9696969696982881 0
-7847 0.7900544475676708 0.5454545454559182 0
-7848 0.4751360993683553 0.05050508437092516 0
-7849 0.4838830210269277 0.04545019458754176 0
-7850 0.4663880315045525 0.04545516217706088 0
-7851 0.4926314007463154 0.05050408482377578 0
-7852 0.4576404582833755 0.05050539333800246 0
-7853 0.8687840297307473 0.08585858586029532 0
-7854 0.5713611637848711 0.1464646464656282 0
-7855 0.3439201486483375 0.6818181818185483 0
-7856 0.8638003743059594 0.9911875486151884 0
-7857 0.09898358351739332 0.05555570675334883 0
-7858 0.0989836611121624 0.06565658245628167 0
-7859 0.6325952832429683 0.7272727272736572 0
-7860 0.6500907459457258 0.7272727272736623 0
-7861 0.1077314021611783 0.9292929292928752 0
-7862 0.1864609843236555 0.7929292929294017 0
-7863 0.1952087156750248 0.7878787878789149 0
-7864 0.1952087156750622 0.7777777777778808 0
-7865 0.1952087156750027 0.7979797979799242 0
-7866 0.2039564470263837 0.7929292929294113 0
-7867 0.2039564470263585 0.8030303030304288 0
-7868 0.2039564470263253 0.8131313131314575 0
-7869 0.2127041783776965 0.8080808080809445 0
-7870 0.8512885557909073 0.9343433946087885 0
-7871 0.658838477297276 0.6616161616170166 0
-7872 0.7025771340544584 0.3434343434357943 0
-7873 0.6938294027030805 0.3282828282843177 0
-7874 0.7113248654057078 0.3585858585873837 0
-7875 0.09589759687343287 0.008982455132330166 0
-7876 0.1012213497258443 0.01737936513886345 0
-7877 0.1111395535105129 0.0170660117677925 0
-7878 0.1161647764286464 0.008687008636335571 0
-7879 0.1211594411511847 0.0169436127112968 0
-7880 0.9562613432429904 0.5505050505068581 0
-7881 0.9037749551360901 0.1969696969714074 0
-7882 0.09023593945878795 0.7171717171716154 0
-7883 0.09898367081019244 0.7121212121211491 0
-7884 0.09023593945876024 0.7272727272726437 0
-7885 0.09898367081012793 0.7323232323232003 0
-7886 0.09898367081010101 0.7424242424242252 0
-7887 0.8512885670280614 0.07575757575928421 0
-7888 0.6063520891883081 0.8636363636375077 0
-7889 0.8425408356757011 0.5555555555570439 0
-7890 0.8425408356756778 0.5656565656580365 0
-7891 0.8337931043243304 0.5707070707085061 0
-7892 0.8425408356756573 0.575757575759025 0
-7893 0.8337931043243114 0.5808080808094933 0
-7894 0.842540835675632 0.5858585858600139 0
-7895 0.0552445761146178 0.2020202360526402 0
-7896 0.6150998205406346 0.4343434343448035 0
-7897 0.9037749551360693 0.2070707070724371 0
-7898 0.8950272237847052 0.2020202020218981 0
-7899 0.8950272237846844 0.2121212121229288 0
-7900 0.7813067162172267 0.1161616161632256 0
-7901 0.7900544475685813 0.111111111112735 0
-7902 0.7725589848659237 0.111111111112681 0
-7903 0.8687840297299168 0.3888888888906987 0
-7904 0.3614156113505764 0.8131313131318639 0
-7905 0.2476951037832568 0.7777777777779009 0
-7906 0.8250453729729794 0.5757575757589841 0
-7907 0.8250453729729619 0.5858585858599725 0
-7908 0.8075499102714446 0.05050505050677952 0
-7909 0.8162975884899837 0.04545504225404505 0
-7910 0.8250453251545712 0.05050549762477934 0
-7911 0.8250453676608004 0.06060611028755034 0
-7912 0.8337930511926374 0.04545504225404698 0
-7913 0.3964065367569264 0.3787878787889375 0
-7914 0.3964065367569451 0.3888888888899237 0
-7915 0.3876588054056412 0.3737373737383644 0
-7916 0.1514583623590668 0.9646412887932502 0
-7917 0.4139019994589607 0.7020202020209797 0
-7918 0.4051542681076573 0.6969696969704079 0
-7919 0.4226497308121804 0.06060606060664765 0
-7920 0.6675862086497024 0.1010101010114522 0
-7921 0.658838477298381 0.09595959596094644 0
-7922 0.6500907459470001 0.1111111111123761 0
-7923 0.6063520891890044 0.7121212121220402 0
-7924 0.6150998205404667 0.7070707070715609 0
-7925 0.4399359578891568 0.0203642503611647 0
-7926 0.27393829783681 0.9040404040406504 0
-7927 0.2651905664854557 0.9090909090911262 0
-7928 0.3789110740531539 0.8636363636368939 0
-7929 0.09023593945870843 0.7474747474746997 0
-7930 0.09023593945868028 0.7575757575757248 0
-7931 0.09898367081004286 0.7626262626262772 0
-7932 0.09898367081001327 0.7727272727273027 0
-7933 0.06399610525831394 0.6010101010097234 0
-7934 0.07274083815430143 0.5959595959592372 0
-7935 0.07274042497720595 0.5858585858582052 0
-7936 0.08148824250981955 0.5909090909087542 0
-7937 0.07274119689498808 0.6060606060602709 0
-7938 0.7638112535141635 0.2575757575772835 0
-7939 0.991252268648709 0.1161616161624106 0
-7940 0.2476951037835688 0.6161616161617915 0
-7941 0.2476951037835917 0.6060606060607814 0
-7942 0.755063522163266 0.1010101010116948 0
-7943 0.7463157908119533 0.09595959596114041 0
-7944 0.7463157908119725 0.08585858586010327 0
-7945 0.405154268107099 0.8989898989904503 0
-7946 0.3964065367557457 0.9040404040409263 0
-7947 0.3964065367557382 0.9141414141419217 0
-7948 0.8512885670262628 0.8434343434356341 0
-7949 0.8600362983776674 0.8383838383849511 0
-7950 0.7550635221621116 0.6363636363647871 0
-7951 0.457010005406684 0.9807855957253671 0
-7952 0.2651905664857055 0.8383838383841147 0
-7953 0.256442835134372 0.8333333333335887 0
-7954 0.2564428351344077 0.8232323232325733 0
-7955 0.2476951037830315 0.8282828282830427 0
-7956 0.387658805404611 0.818181818182418 0
-7957 0.3876588054046328 0.8080808080814204 0
-7958 0.3964065367559719 0.8131313131319396 0
-7959 0.6413430145956569 0.1161616161628476 0
-7960 0.7813067162157036 0.7727272727285412 0
-7961 0.8163163632225623 0.03540418601899693 0
-7962 0.2039564470276266 0.1767676767679071 0
-7963 0.203956447027593 0.1868686868689222 0
-7964 0.2127041783789609 0.1919191919194571 0
-7965 0.2039564470275394 0.1969696969699201 0
-7966 0.2127041783789228 0.2020202020204677 0
-7967 0.2214519097303141 0.1969696969699857 0
-7968 0.2214519097302916 0.207070707071003 0
-7969 0.2127041783788879 0.2121212121214726 0
-7970 0.2214519097302686 0.2171717171720181 0
-7971 0.2127041783788671 0.2222222222224787 0
-7972 0.2214519097302458 0.2272727272730345 0
-7973 0.2127041783788516 0.2323232323234946 0
-7974 0.2301996410816743 0.2020202020205163 0
-7975 0.1952087156762166 0.1818181818183708 0
-7976 0.238947372431362 0.9444444444445482 0
-7977 0.86878402972956 0.6111111111125695 0
-7978 0.8075499102702905 0.5757575757589524 0
-7979 0.8162976416216251 0.5808080808094657 0
-7980 0.8162976416216113 0.5909090909104597 0
-7981 0.825045372972937 0.5959595959609699 0
-7982 0.8512885670275346 0.3484848484866652 0
-7983 0.8512885670274383 0.3585858585876707 0
-7984 0.4139714301215316 0.9747307863564885 0
-7985 0.4049002767733677 0.9807544802660202 0
-7986 0.3962814500644489 0.9746859767281241 0
-7987 0.4051542681081006 0.5555555555561225 0
-7988 0.6500907459464974 0.2929292929305647 0
-7989 0.6588384772978382 0.2979797979810959 0
-7990 0.6413430145951362 0.2979797979810553 0
-7991 0.4226497308119717 0.1414141414148219 0
-7992 0.4313974621633244 0.1464646464653634 0
-7993 0.4226497308119446 0.1515151515158444 0
-7994 0.1777132529733162 0.2323232323233004 0
-7995 0.4313987268502738 0.9545432640398863 0
-7996 0.09023593945843761 0.9494949494948569 0
-7997 0.4139019994583744 0.93434343434395 0
-7998 0.7288203281070806 0.9343434343444224 0
-7999 0.2389473724331258 0.1363636363638858 0
-8000 0.2389473724331087 0.1464646464649139 0
-8001 0.2476951037844786 0.1515151515154463 0
-8002 0.2389473724331079 0.1565656565659432 0
-8003 0.597604357836791 0.9292929292939068 0
-8004 0.4838838502702655 0.4797979797991147 0
-8005 0.9300181491896975 0.4343434343455552 0
-8006 0.1689655216206287 0.9242424242424906 0
-8007 0.1777132544194309 0.9393939368868929 0
-8008 0.1864609844841532 0.9343434340649203 0
-8009 0.3614156113523143 0.1666666666672409 0
-8010 0.3701633427036741 0.1717171717177705 0
-8011 0.6588384772964226 0.9040404040414786 0
-8012 0.6675862086477913 0.8989898989910241 0
-8013 0.6413430145938259 0.8232323232336145 0
-8014 0.8075499102700432 0.6969696969708062 0
-8015 0.8075499102700319 0.707070707071786 0
-8016 0.938765880540442 0.5101010101028502 0
-8017 0.2214519097296121 0.5707070707071904 0
-8018 0.3964065367560549 0.7828282828289508 0
-8019 0.3876588054046906 0.7878787878794282 0
-8020 0.895027223783427 0.6565656565671161 0
-8021 0.8950272237834083 0.6666666666680822 0
-8022 0.1364456157396298 0.008879004769040568 0
-8023 0.1952087156747792 0.8585858585860299 0
-8024 0.2039564470261537 0.853535353535531 0
-8025 0.2127041783775027 0.8585858585860394 0
-8026 0.632595283243499 0.3333333333348148 0
-8027 0.6325952832422792 0.9191919191929401 0
-8028 0.4569712348979768 0.0193403827314926 0
-8029 0.8250453729730522 0.4242424242441187 0
-8030 0.448892924866211 0.08585858585928091 0
-8031 0.4926315816210394 0.72727272727369 0
-8032 0.4926315816210166 0.7373737373746925 0
-8033 0.2739382978375826 0.6414141414143724 0
-8034 0.2739382978375603 0.6515151515153831 0
-8035 0.2826860291889273 0.6464646464648965 0
-8036 0.2826860291889053 0.6565656565659046 0
-8037 0.2914337605402724 0.6515151515154195 0
-8038 0.2914337605402484 0.6616161616164269 0
-8039 0.2739382978375416 0.6616161616163941 0
-8040 0.3001814918916199 0.6565656565659387 0
-8041 0.9387658805399945 0.6717171717186373 0
-8042 0.2301996410800312 0.9393939393940371 0
-8043 0.5802000453970128 0.02047144617326389 0
-8044 0.6413430145946641 0.4494949494963443 0
-8045 0.7988021789186771 0.7121212121222679 0
-8046 0.527622507028298 0.1111111111120345 0
-8047 0.5363702383796634 0.1060606060615231 0
-8048 0.5188747756769798 0.1060606060614588 0
-8049 0.5101270443256194 0.1111111111119512 0
-8050 0.5013793129742938 0.1060606060613993 0
-8051 0.4926315816229277 0.1111111111118976 0
-8052 0.5451179697310157 0.1111111111119993 0
-8053 0.9212704178383169 0.4393939393960419 0
-8054 0.8162976416216242 0.4696969696986102 0
-8055 0.8162976416216241 0.4797979797996141 0
-8056 0.5363702383778215 0.7222222222232738 0
-8057 0.5363702383778578 0.7121212121222524 0
-8058 0.07274047675569724 0.8484848484848979 0
-8059 0.6850816713514216 0.5353535353548059 0
-8060 0.3264246859463492 0.3686868686873421 0
-8061 0.5188747756756147 0.6010101010109214 0
-8062 0.5801088951364887 0.05050505050615439 0
-8063 0.9562585518156637 0.9646541784041776 0
-8064 0.623847551891699 0.7222222222230408 0
-8065 0.2301996410812585 0.4545454545456462 0
-8066 0.9387657731919608 0.06565675159360281 0
-8067 0.7375680594600916 0.2626262626277359 0
-8068 0.5276225070270043 0.5454545454554798 0
-8069 0.5276225070270251 0.5353535353544783 0
-8070 0.5363702383783879 0.5303030303039921 0
-8071 0.5188747756756614 0.5404040404049656 0
-8072 0.5101270443243014 0.5454545454554482 0
-8073 0.5101270443243212 0.5353535353544445 0
-8074 0.5276225070270492 0.5252525252534733 0
-8075 0.1252268648655844 0.09090909090914134 0
-8076 0.3089292232422932 0.8939393939397117 0
-8077 0.8162976415111682 0.944444444065122 0
-8078 0.03773111944104805 0.1212349495941981 0
-8079 0.1164791335131562 0.6111111111109165 0
-8080 0.8950087470329632 0.04044739544892709 0
-8081 0.3439201486477637 0.8636363636368114 0
-8082 0.05524501405455438 0.1717171717170446 0
-8083 0.02881712475700724 0.4190294904098609 0
-8084 0.7025771340533136 0.8181818181832465 0
-8085 0.1164791335131816 0.6010101010098964 0
-8086 0.1252268648645766 0.5959595959594193 0
-8087 0.2826860291886388 0.7878787878789892 0
-8088 0.1564415766928366 0.00893336043510486 0
-8089 0.1715272964979785 0.0190220046378574 0
-8090 0.176710523101595 0.009931738967805505 0
-8091 0.1813014901968673 0.01917390038988827 0
-8092 0.186385899234446 0.01007437862975141 0
-8093 0.6063520891904699 0.05555555555671893 0
-8094 0.9212704178389417 0.1363636363652865 0
-8095 0.9300181491902951 0.1313131313148077 0
-8096 0.9125226864875763 0.1313131313147637 0
-8097 0.9475136118910993 0.7878787878797676 0
-8098 0.5101270443237246 0.7373737373747342 0
-8099 0.2214519097298378 0.4797979797981388 0
-8100 0.6938294027032464 0.2979797979811765 0
-8101 0.9125226864875119 0.1717171717188521 0
-8102 0.9475136118913975 0.6262626262643113 0
-8103 0.1427223275667085 0.8686868686868857 0
-8104 0.1514700589180698 0.8636363636364145 0
-8105 0.1514700589180939 0.8535353535354141 0
-8106 0.1514700589180481 0.8737373737374151 0
-8107 0.1427223275667547 0.8484848484848696 0
-8108 0.2389473724331459 0.1262626262628564 0
-8109 0.7463157908122653 0.03535353535522629 0
-8110 0.4926315816215292 0.585858585859423 0
-8111 0.4838838502701886 0.5808080808089032 0
-8112 0.4838838502702077 0.5707070707078972 0
-8113 0.6325952832426568 0.7676767676779916 0
-8114 0.6238475518913363 0.7626262626274349 0
-8115 0.5276225070261639 0.8383838383848046 0
-8116 0.6150998205419664 0.05050505050632238 0
-8117 0.7463157908107595 0.6414141414152659 0
-8118 0.4576406562164766 0.3232323232334982 0
-8119 0.1864609843249828 0.07575757575759179 0
-8120 0.3876588054064938 0.1414141414147413 0
-8121 0.3876588054064693 0.1515151515157651 0
-8122 0.3789110740550867 0.1565656565662553 0
-8123 0.3876588054064479 0.1616161616167852 0
-8124 0.3789110740550647 0.1666666666672763 0
-8125 0.3701633427037036 0.1616161616167465 0
-8126 0.378911074055041 0.1767676767682966 0
-8127 0.1777132529721856 0.828282828282962 0
-8128 0.1427223275666191 0.909090909090926 0
-8129 0.1864609843236315 0.8030303030304141 0
-8130 0.291433760539908 0.8131313131315552 0
-8131 0.9037749551349514 0.5808080808096699 0
-8132 0.3964065367559982 0.8030303030309415 0
-8133 0.9300181491895922 0.444444444446573 0
-8134 0.2039564470265058 0.7626262626262927 0
-8135 0.5538657010820445 0.2070707070715422 0
-8136 0.4139019994585957 0.8434343434349898 0
-8137 0.25644283513417 0.8838383838386199 0
-8138 0.2564428351342045 0.8737373737376295 0
-8139 0.5976043578370557 0.8181818181829998 0
-8140 0.5101270443235718 0.7979797979807546 0
-8141 0.5013793129722054 0.8030303030312297 0
-8142 0.991252268648696 0.3181818181833143 0
-8143 0.9912522686486748 0.09595959596040822 0
-8144 0.9912522686486996 0.29797979798123 0
-8145 0.9212704178371914 0.7626262626273123 0
-8146 0.9300181491885174 0.7575757575768304 0
-8147 0.8950272237848126 0.1515151515167603 0
-8148 0.886279492433443 0.146464646466244 0
-8149 0.2826860291887601 0.7474747474749498 0
-8150 0.2914337605400978 0.7525252525254775 0
-8151 0.8839207996530004 0.9911927991933747 0
-8152 0.8884066490085724 0.9823220387655796 0
-8153 0.8790005796876007 0.982850550983086 0
-8154 0.8832360710494557 0.9746064823803474 0
-8155 0.1339745962154683 0.7828282828284716 0
-8156 0.1427223275668553 0.7777777777779424 0
-8157 0.1864609843241122 0.6010101010101435 0
-8158 0.08148820810864973 0.1464646464646003 0
-8159 0.8337931039526897 0.9343434330543828 0
-8160 0.1864609843237153 0.7727272727273595 0
-8161 0.9912522686486389 0.33838383838527 0
-8162 0.9825045372973573 0.3333333333349552 0
-8163 0.1252268648639431 0.898989898989876 0
-8164 0.7200613842100965 0.03025294782303934 0
-8165 0.7725589848650289 0.3838383838400402 0
-8166 0.7620238080788455 0.9909114690045465 0
-8167 0.1427223275674718 0.5353535353534746 0
-8168 0.1339745962161036 0.5404040404039608 0
-8169 0.1339745962161095 0.5303030303029242 0
-8170 0.1252268648647323 0.535353535353395 0
-8171 0.1252268648647166 0.5454545454544143 0
-8172 0.7813067162168346 0.2777777777793349 0
-8173 0.1689655216214886 0.5606060606060584 0
-8174 0.1777132529728579 0.5555555555555728 0
-8175 0.1864609843242047 0.5606060606061029 0
-8176 0.6238475518928911 0.1565656565667404 0
-8177 0.6150998205415639 0.1515151515162277 0
-8178 0.6238475518929154 0.1464646464657545 0
-8179 0.6063520891902107 0.1565656565667027 0
-8180 0.6063520891902369 0.1464646464657165 0
-8181 0.06398102233275577 0.5707081394965056 0
-8182 0.07273917419283403 0.5656566844105847 0
-8183 0.07273929586463784 0.5555557248154623 0
-8184 0.08148806337851505 0.5606060738006161 0
-8185 0.08148804729745916 0.5707070853677401 0
-8186 0.06398166271738639 0.5808087058309785 0
-8187 0.06398356467170933 0.5505064418981752 0
-8188 0.07273838718601162 0.5454547460891641 0
-8189 0.07273930630322448 0.5353535848749417 0
-8190 0.08148784588298635 0.5404040681988481 0
-8191 0.4051542681081089 0.4646464646474461 0
-8192 0.3964065367567527 0.4595959595969448 0
-8193 0.3964065367567871 0.449494949495941 0
-8194 0.387658805405437 0.4545454545463607 0
-8195 0.3876588054053973 0.4646464646473334 0
-8196 0.510127044323477 0.828282828283742 0
-8197 0.8162976416222825 0.2676767676783801 0
-8198 0.3964065367566103 0.6111111111116226 0
-8199 0.7900544475665884 0.9292929292940274 0
-8200 0.9737568059452916 0.6717171717186935 0
-8201 0.7375680594595706 0.4545454545469788 0
-8202 0.03775568531483088 0.1414365168320816 0
-8203 0.8687840297293487 0.7121212121223821 0
-8204 0.8600362983780147 0.7171717171728543 0
-8205 0.6325952832433245 0.5959595959605215 0
-8206 0.168965521622206 0.15656565656579 0
-8207 0.1689655216221639 0.1666666666667897 0
-8208 0.05524501405452541 0.2828282828282483 0
-8209 0.05524501405450431 0.292929292929241 0
-8210 0.06399274540583431 0.2979797979797557 0
-8211 0.04649639136316928 0.2878780950226936 0
-8212 0.8687840297306433 0.1767676767692869 0
-8213 0.8075499102694473 0.878787878789082 0
-8214 0.4751361189200098 0.1818181818190272 0
-8215 0.4838838502713512 0.1868686868695167 0
-8216 0.4838838502713284 0.1969696969705446 0
-8217 0.4926315816226721 0.2020202020210236 0
-8218 0.6325952832440964 0.2222222222231976 0
-8219 0.6325952832440537 0.2323232323242499 0
-8220 0.6238475518926845 0.2373737373747685 0
-8221 0.6413430145953016 0.2373737373749531 0
-8222 0.6500907459466631 0.2323232323244475 0
-8223 0.3089292232429198 0.6818181818184655 0
-8224 0.3001814918915746 0.6767676767679451 0
-8225 0.2914337605402172 0.6818181818184558 0
-8226 0.2914337605402231 0.6717171717174393 0
-8227 0.2651905664867442 0.4242424242427156 0
-8228 0.6675862086492009 0.2929292929306056 0
-8229 0.6763339400005453 0.2979797979811408 0
-8230 0.9912522686486853 0.3585858585875115 0
-8231 0.7900544475675956 0.4545454545470612 0
-8232 0.107732600637591 0.9595951280865427 0
-8233 0.5538657010811537 0.6111111111118244 0
-8234 0.9912522686486837 0.3787878787896052 0
-8235 0.2826860291896774 0.2828282828287456 0
-8236 0.1077314021621655 0.4545454545452239 0
-8237 0.6816193115061293 0.9911851715092956 0
-8238 0.9737568059468149 0.2272727272745326 0
-8239 0.6150998205398742 0.7777777777790157 0
-8240 0.7931386352666953 0.9912817815747466 0
-8241 0.1864609843237613 0.7525252525253394 0
-8242 0.5626134324333206 0.2323232323240725 0
-8243 0.553865701081935 0.2373737373746114 0
-8244 0.5713611637846221 0.2373737373746478 0
-8245 0.4139019994604669 0.1969696969704033 0
-8246 0.5013793129718003 0.944444444445196 0
-8247 0.991252268648646 0.3989898989916163 0
-8248 0.9825045372973837 0.3939393939412779 0
-8249 0.3526678799990506 0.8989898989903183 0
-8250 0.3439201486476794 0.9040404040408005 0
-8251 0.4226497308118918 0.1717171717178816 0
-8252 0.4313974621632666 0.1666666666673992 0
-8253 0.6850816713511292 0.7373737373746866 0
-8254 0.6675862086484003 0.7373737373745904 0
-8255 0.5188747756766238 0.2272727272734713 0
-8256 0.2651905664869847 0.2727272727276964 0
-8257 0.265190566486969 0.2828282828287023 0
-8258 0.1952087156748681 0.8383838383840029 0
-8259 0.09898367081106861 0.3585858585858007 0
-8260 0.09023593945973205 0.3535353535352793 0
-8261 0.09023593945976 0.3434343434342886 0
-8262 0.08148820810839734 0.34848484848476 0
-8263 0.09023593945970108 0.3636363636362679 0
-8264 0.08148820810842866 0.3383838383837708 0
-8265 0.09023593945978331 0.3333333333332934 0
-8266 0.07274047675706802 0.3434343434342416 0
-8267 0.06399274540574212 0.3383838383837214 0
-8268 0.3964065367576112 0.2575757575764385 0
-8269 0.4051542681089618 0.262626262626963 0
-8270 0.4139019994603299 0.2575757575764654 0
-8271 0.4139019994602852 0.2676767676774807 0
-8272 0.4051542681088999 0.2727272727279769 0
-8273 0.08148820810813259 0.449494949494649 0
-8274 0.04648034952273887 0.7222222535468575 0
-8275 0.5538657010815999 0.3282828282840013 0
-8276 0.5451179697302048 0.3232323232335206 0
-8277 0.1777132529728352 0.5656565656565868 0
-8278 0.5101270443246181 0.3333333333345875 0
-8279 0.5801088951344837 0.7676767676779159 0
-8280 0.571361163783114 0.7727272727283938 0
-8281 0.5626134324317724 0.7676767676778671 0
-8282 0.4838838502697605 0.7020202020211612 0
-8283 0.2389473724320365 0.7222222222223289 0
-8284 0.702183453561624 0.9902183815606246 0
-8285 0.1514700589191595 0.3787878787879562 0
-8286 0.5626134324336601 0.1111111111121132 0
-8287 0.5713611637850194 0.1060606060616081 0
-8288 0.5801088951363748 0.1111111111120738 0
-8289 0.6063520891884782 0.7929292929305043 0
-8290 0.03772569915239105 0.4242243765996419 0
-8291 0.1164791335130506 0.6818181818181759 0
-8292 0.632595283243795 0.2929292929305229 0
-8293 0.221451909730479 0.08585858585868902 0
-8294 0.2301996410818405 0.09090909090922389 0
-8295 0.2214519097304636 0.09595959595973041 0
-8296 0.2301996410818205 0.101010101010258 0
-8297 0.9037749551351099 0.500000000001789 0
-8298 0.3614156113525654 0.07575757575799516 0
-8299 0.5888566264869208 0.2676767676781154 0
-8300 0.7025771340532916 0.828282828284252 0
-8301 0.8250453729726251 0.7575757575766936 0
-8302 0.5188747756767838 0.1565656565664828 0
-8303 0.5188747756768164 0.1464646464654916 0
-8304 0.6617622075410797 0.9912127178546952 0
-8305 0.6670459441408657 0.9817290607261359 0
-8306 0.553865701082113 0.1767676767685574 0
-8307 0.1602177902692914 0.9191919191919753 0
-8308 0.7813067162162376 0.4595959595975485 0
-8309 0.7725589848648809 0.4646464646480378 0
-8310 0.7725589848648775 0.4747474747490409 0
-8311 0.7638112535135415 0.4696969696985315 0
-8312 0.7638112535135476 0.4595959595975263 0
-8313 0.4401451935145881 0.1818181818189462 0
-8314 0.1514700589196579 0.09595959595971025 0
-8315 0.4488929248642733 0.7323232323240702 0
-8316 0.1077314021612132 0.9090909090908563 0
-8317 0.1689655216207418 0.853535353535502 0
-8318 0.4751361189189166 0.4747474747486027 0
-8319 0.2564428351359688 0.09595959595979844 0
-8320 0.3264246859460684 0.4898989898993988 0
-8321 0.2127041783790205 0.1313131313133148 0
-8322 0.3991389094293775 0.008802268991103574 0
-8323 0.4044858024037115 0.01826571734662161 0
-8324 0.8337931043252285 0.1464646464662923 0
-8325 0.5538657010821896 0.146464646465583 0
-8326 0.168965521621533 0.5404040404040374 0
-8327 0.1777132529728996 0.5353535353535522 0
-8328 0.1777132529729226 0.5252525252525457 0
-8329 0.1864609843242703 0.5303030303030726 0
-8330 0.01964218592731335 0.7474446208437718 0
-8331 0.01068161084414287 0.7524981383188487 0
-8332 0.01886163468474582 0.737081840676001 0
-8333 0.009714115284705664 0.7314497027418303 0
-8334 0.01058216919206858 0.7625981695652784 0
-8335 0.7521794772163007 0.9912254972667147 0
-8336 0.7725589848649623 0.555555555556884 0
-8337 0.7813067162169772 0.1767676767690835 0
-8338 0.7813067162170007 0.1666666666680877 0
-8339 0.7900544475683637 0.1616161616176289 0
-8340 0.7813067162170312 0.1565656565671136 0
-8341 0.6763339400001063 0.4797979797993637 0
-8342 0.1077314021616953 0.6666666666665786 0
-8343 0.3001814918923714 0.2929292929298016 0
-8344 0.3001814918923548 0.3030303030308135 0
-8345 0.3089292232436969 0.3080808080813388 0
-8346 0.3001814918923425 0.3131313131318196 0
-8347 0.3089292232436818 0.3181818181823401 0
-8348 0.3176769545950434 0.3131313131318598 0
-8349 0.2914337605410195 0.2979797979802857 0
-8350 0.7200725967566725 0.6767676767686499 0
-8351 0.2914337605403638 0.6111111111113797 0
-8352 0.06399274540426333 0.8737373737374361 0
-8353 0.07274047675561782 0.8787878787879708 0
-8354 0.07274047675562313 0.8888888888889779 0
-8355 0.08148820810703233 0.8838383838384583 0
-8356 0.9562613432424139 0.9040404040417348 0
-8357 0.3526678799997036 0.6767676767680632 0
-8358 0.361415611351051 0.6818181818186085 0
-8359 0.6209871022053474 0.9910661497385215 0
-8360 0.4488929248658357 0.2272727272735173 0
-8361 0.4488929248658031 0.2373737373745293 0
-8362 0.4401451935144384 0.2424242424250037 0
-8363 0.4576406562171465 0.2323232323240599 0
-8364 0.4488929248657436 0.2474747474755438 0
-8365 0.4576406562171882 0.2222222222230391 0
-8366 0.3789812720234272 0.007769817645135272 0
-8367 0.308929223243121 0.590909090909413 0
-8368 0.7113248654061972 0.1969696969708957 0
-8369 0.3584998989817401 0.008740640453645096 0
-8370 0.3531488338805543 0.01824643247616995 0
-8371 0.2975848038714692 0.008872107947094201 0
-8372 0.4313974621621757 0.4595959595970243 0
-8373 0.4488927445020414 0.04545485785530531 0
-8374 0.991252268648707 0.2373737373749365 0
-8375 0.9912522686486636 0.247474747475885 0
-8376 0.9825045372973457 0.2525252525265871 0
-8377 0.9825045372974033 0.2626262626276253 0
-8378 0.9125226864873037 0.2727272727290996 0
-8379 0.9037749551359349 0.267676767678572 0
-8380 0.9125226864873226 0.2626262626280663 0
-8381 0.9037749551359552 0.2575757575775446 0
-8382 0.895027223784572 0.2626262626280491 0
-8383 0.06399402715661123 0.5101010172498149 0
-8384 0.07274014963331808 0.5151515187347556 0
-8385 0.4051542681093456 0.09090909090969208 0
-8386 0.4051542681093268 0.1010101010107143 0
-8387 0.4139019994607335 0.08585858585919776 0
-8388 0.1514700589190847 0.3989898989899464 0
-8389 0.5626134324333995 0.2020202020210643 0
-8390 0.2739382978385845 0.1767676767680625 0
-8391 0.2739382978385763 0.1868686868690771 0
-8392 0.6413430145947203 0.4090909090923366 0
-8393 0.851138201894597 0.02534319272403023 0
-8394 0.2476951037842834 0.2626262626266431 0
-8395 0.9562613432427433 0.6111111111128846 0
-8396 0.2127041783775703 0.8484848484850116 0
-8397 0.2214519097288506 0.8636363636365563 0
-8398 0.378911074054001 0.5707070707075653 0
-8399 0.300181491892281 0.3737373737377783 0
-8400 0.3384067253885333 0.008578848661755331 0
-8401 0.3339840659657482 0.01818075613474849 0
-8402 0.5626134324324511 0.5252525252535457 0
-8403 0.5713611637838129 0.5202020202030647 0
-8404 0.5538657010811134 0.5202020202030259 0
-8405 0.5451179697297521 0.5252525252535065 0
-8406 0.9387658805413981 0.2878787878806935 0
-8407 0.317963490880381 0.009693699855516186 0
-8408 0.6675862086494578 0.2020202020212891 0
-8409 0.7900544475673384 0.7070707070717628 0
-8410 0.6675862086480927 0.7676767676780365 0
-8411 0.3614156113524164 0.1161616161621499 0
-8412 0.3701633427018182 0.8585858585863738 0
-8413 0.7550635221619985 0.6969696969707051 0
-8414 0.3351724172967974 0.7676767676771266 0
-8415 0.34392014864814 0.7626262626266924 0
-8416 0.3351724172967387 0.7777777777781745 0
-8417 0.3264246859464193 0.3080808080813784 0
-8418 0.3264246859463944 0.3181818181823796 0
-8419 0.466388387567841 0.3181818181830135 0
-8420 0.4576406562164576 0.3333333333345053 0
-8421 0.6063520891892809 0.43939393939529 0
-8422 0.6413432932382164 0.9545449719199036 0
-8423 0.3789110740544763 0.3484848484856309 0
-8424 0.6325952832432686 0.5151515151527064 0
-8425 0.1952087156759453 0.3939393939395565 0
-8426 0.1864609843246054 0.3888888888890373 0
-8427 0.282686029188222 0.878787878788187 0
-8428 0.3876588054045882 0.828282828283421 0
-8429 0.0377444846192437 0.8585893280030237 0
-8430 0.483883850270568 0.3080808080820435 0
-8431 0.3089292232427037 0.7828282828285512 0
-8432 0.3176769545940644 0.777777777778075 0
-8433 0.5276225070263556 0.7676767676777834 0
-8434 0.1252268648640598 0.8080808080809642 0
-8435 0.3439201486491205 0.318181818182428 0
-8436 0.09023593945885747 0.696969696969578 0
-8437 0.7200725967560735 0.7878787878802729 0
-8438 0.1864609843237726 0.7424242424243315 0
-8439 0.1952087156751431 0.7474747474748294 0
-8440 0.6011717376235841 0.9911346846637059 0
-8441 0.3176769545950693 0.3030303030308519 0
-8442 0.6325952832442412 0.1515151515162671 0
-8443 0.7463157908103948 0.7424242424254994 0
-8444 0.4751361189182921 0.7474747474756401 0
-8445 0.9125226864864238 0.5151515151532905 0
-8446 0.1689655232288813 0.9444444416588311 0
-8447 0.3351724172982189 0.1616161616166665 0
-8448 0.05524501405422266 0.4040404040401107 0
-8449 0.8687840297297558 0.4797979797997246 0
-8450 0.1777132529734205 0.3131313131314815 0
-8451 0.1777132529734199 0.3030303030304834 0
-8452 0.1689655216220404 0.3181818181819758 0
-8453 0.2301996410802351 0.8585858585860717 0
-8454 0.151470058919446 0.1666666666667514 0
-8455 0.3176769545946774 0.5050505050508828 0
-8456 0.07274047675716548 0.3030303030302719 0
-8457 0.3701633444656786 0.9393939363389538 0
-8458 0.008004512359575902 0.6010381512523058 0
-8459 0.6850816713516201 0.3333333333348767 0
-8460 0.8687840297294082 0.6818181818194602 0
-8461 0.7025771340541636 0.5555555555567619 0
-8462 0.4838838502700498 0.6414141414148936 0
-8463 0.405154268108075 0.565656565657127 0
-8464 0.2476951037830798 0.8181818181819985 0
-8465 0.238947372431687 0.8232323232324377 0
-8466 0.2301996410803735 0.8181818181818784 0
-8467 0.1164791335138956 0.2979797979798671 0
-8468 0.7813067162167305 0.3080808080824106 0
-8469 0.6675862086479465 0.7979797979811625 0
-8470 0.04649877972786223 0.328282828282689 0
-8471 0.04649440740038138 0.3383831952148968 0
-8472 0.1689655216216669 0.4797979797980046 0
-8473 0.1777132529730351 0.4747474747475285 0
-8474 0.1777132529730067 0.4848484848485324 0
-8475 0.1864609843243515 0.4898989898990698 0
-8476 0.1689655216216426 0.4898989898990089 0
-8477 0.3876588054052691 0.6060606060611015 0
-8478 0.3789110740539054 0.6111111111115838 0
-8479 0.3789110740543519 0.3989898989906099 0
-8480 0.3876588054056846 0.4040404040411911 0
-8481 0.3876588054056376 0.4141414141421893 0
-8482 0.2127041783788385 0.3131313131315596 0
-8483 0.7725589848654684 0.2828282828298245 0
-8484 0.3789110740549627 0.2171717171723553 0
-8485 0.3876588054063197 0.2222222222228805 0
-8486 0.3701633427035864 0.2222222222228435 0
-8487 0.3701633427035697 0.232323232323857 0
-8488 0.2389473724329255 0.2575757575761169 0
-8489 0.9912522686487057 0.277777777779069 0
-8490 0.8862794924326578 0.4090909090928068 0
-8491 0.08148820810868723 0.1262626262625894 0
-8492 0.3089292232439139 0.2575757575762609 0
-8493 0.3176769545952682 0.2626262626267864 0
-8494 0.4313974621614258 0.7929292929300372 0
-8495 0.2651905664874243 0.06060606060618753 0
-8496 0.4838838502696763 0.7323232323241691 0
-8497 0.2914337605413487 0.1666666666670781 0
-8498 0.3001814918927175 0.1717171717176106 0
-8499 0.2389473724327955 0.3585858585861476 0
-8500 0.2301996410814295 0.363636363636631 0
-8501 0.2301996410814072 0.3737373737376375 0
-8502 0.2214519097300635 0.3686868686871126 0
-8503 0.6238475518920503 0.3888888888903112 0
-8504 0.8075499102704975 0.3535353535370782 0
-8505 0.08148820810818719 0.4292929292926622 0
-8506 0.5713611637847985 0.1767676767685988 0
-8507 0.1427223275672168 0.6262626262625125 0
-8508 0.1427223275671949 0.6363636363635297 0
-8509 0.151470058918604 0.6212121212120434 0
-8510 0.1339745962158188 0.6414141414140205 0
-8511 0.142722327567175 0.6464646464645517 0
-8512 0.1514700589185549 0.6414141414140726 0
-8513 0.1252268648644391 0.646464646464512 0
-8514 0.1427223275671519 0.6565656565655767 0
-8515 0.116479133513366 0.5202020202017761 0
-8516 0.1252268648647323 0.5151515151512891 0
-8517 0.1252268648647532 0.50505050505028 0
-8518 0.1339745962161142 0.5101010101008291 0
-8519 0.125226864864722 0.5252525252523232 0
-8520 0.1339745962161399 0.4999999999998256 0
-8521 0.1339745962161016 0.5202020202018568 0
-8522 0.1864609843245139 0.429292929293056 0
-8523 0.8250453729729985 0.4545454545471255 0
-8524 0.6063520891891375 0.6717171717179037 0
-8525 0.1427223275675299 0.5050505050504231 0
-8526 0.1777132529730597 0.4646464646465272 0
-8527 0.02901650035048385 0.3181292658034931 0
-8528 0.3964065367578524 0.1464646464652743 0
-8529 0.5976043578380064 0.3838383838397718 0
-8530 0.536370238379504 0.1464646464655379 0
-8531 0.0902359394598061 0.3232323232322967 0
-8532 0.09898367081113918 0.3282828282828149 0
-8533 0.8512885670261385 0.9040404040416594 0
-8534 0.6588384772974545 0.388888888890363 0
-8535 0.3614156113505985 0.8030303030308656 0
-8536 0.3701633427020943 0.7474747474753805 0
-8537 0.3614156113507582 0.7525252525258597 0
-8538 0.3789110740534507 0.7424242424249021 0
-8539 0.5976043578390013 0.1111111111121997 0
-8540 0.6063520891903392 0.1060606060617315 0
-8541 0.9300181491884475 0.7979797979807062 0
-8542 0.9387658805397573 0.8030303030312037 0
-8543 0.9387658805398229 0.762626262627339 0
-8544 0.2651905664872622 0.1313131313134297 0
-8545 0.2651905664872479 0.1414141414144582 0
-8546 0.06399274540567397 0.3585858585856778 0
-8547 0.4663883875663834 0.9545454545460933 0
-8548 0.4663883875664111 0.9444444444450996 0
-8549 0.4751361189177427 0.9494949494956193 0
-8550 0.5801088951351516 0.5252525252535851 0
-8551 0.6238475518911881 0.7929292929305515 0
-8552 0.2476951037830124 0.8383838383840704 0
-8553 0.2301996410805405 0.7777777777778583 0
-8554 0.2914337605412082 0.247474747475205 0
-8555 0.9037749551344741 0.8030303030311512 0
-8556 0.5801088951342369 0.8585858585869381 0
-8557 0.2071517134041179 0.008786668805722901 0
-8558 0.2172670985887406 0.00867970063235117 0
-8559 0.2123871628624501 0.01828883740001751 0
-8560 0.7375680594595863 0.404040404041989 0
-8561 0.008949060424855481 0.7020200321809043 0
-8562 0.01818146877785972 0.7070665047905265 0
-8563 0.01818715152587565 0.7170260460248857 0
-8564 0.7200725967561882 0.767676767678157 0
-8565 0.09023593945862557 0.7777777777777802 0
-8566 0.09023593945978296 0.2424242424240942 0
-8567 0.09023593945980039 0.2525252525251405 0
-8568 0.08148820810845071 0.2474747474746085 0
-8569 0.08148820810844798 0.2373737373735761 0
-8570 0.07274047675710142 0.2424242424240617 0
-8571 0.0727404767571289 0.252525252525127 0
-8572 0.7988021789190767 0.3888888888905849 0
-8573 0.4488929248651128 0.3282828282839847 0
-8574 0.7463157908109621 0.3888888888905018 0
-8575 0.2389473724319321 0.7626262626263691 0
-8576 0.2476951037839663 0.4545454545456866 0
-8577 0.7988021789189328 0.5101010101025695 0
-8578 0.1514700589192525 0.3585858585859591 0
-8579 0.1864609843244571 0.4494949494950591 0
-8580 0.4051542681082503 0.4040404040414476 0
-8581 0.1339745962156642 0.7222222222223512 0
-8582 0.1427223275670443 0.717171717171865 0
-8583 0.1427223275670884 0.7070707070708301 0
-8584 0.1514700589184327 0.7121212121213205 0
-8585 0.483883850270272 0.540404040404878 0
-8586 0.4926315816216093 0.5454545454553974 0
-8587 0.4838838502702503 0.5505050505058794 0
-8588 0.4926315816215882 0.5555555555564012 0
-8589 0.6413430145937499 0.8535353535366349 0
-8590 0.04649679464201026 0.06565656565642089 0
-8591 0.2474393322343102 0.009393470561081344 0
-8592 0.9125226864875368 0.111111111112876 0
-8593 0.5013793129737607 0.237373737374672 0
-8594 0.3089292232441147 0.1565656565660945 0
-8595 0.7375680594595421 0.575757575758805 0
-8596 0.2914337605406452 0.4898989898993066 0
-8597 0.553865701081232 0.5808080808088352 0
-8598 0.5538657010812018 0.570707070707872 0
-8599 0.5451179697298736 0.5858585858593161 0
-8600 0.5363702383785038 0.5808080808088389 0
-8601 0.536370238378439 0.5101010101019886 0
-8602 0.2739382978371547 0.8131313131315918 0
-8603 0.04649778829552006 0.3989882399443341 0
-8604 0.1339745962156333 0.7323232323233753 0
-8605 0.2651905664865237 0.5151515151517556 0
-8606 0.09023593945935997 0.4949494949491907 0
-8607 0.08148819668888346 0.500000000043934 0
-8608 0.08148817176094161 0.5101010104988463 0
-8609 0.08148814168303981 0.4898989898989055 0
-8610 0.0727402826063757 0.4949494950314937 0
-8611 0.1077314021625388 0.3030303030303462 0
-8612 0.5188747756750153 0.7626262626272607 0
-8613 0.4401451935127891 0.7878787878795601 0
-8614 0.3614156113512706 0.5808080808085292 0
-8615 0.1864609843238665 0.7020202020202652 0
-8616 0.195208715675237 0.7070707070707809 0
-8617 0.6150998205406316 0.4848484848496841 0
-8618 0.2039564470274492 0.2777777777780518 0
-8619 0.5801088951348734 0.6969696969705601 0
-8620 0.5801088951349143 0.686868686869532 0
-8621 0.5713611637835598 0.681818181819024 0
-8622 0.5888566264862827 0.7020202020209799 0
-8623 0.5626134324321552 0.6868686868695582 0
-8624 0.5626134324322174 0.676767676768494 0
-8625 0.5538657010808775 0.6717171717179659 0
-8626 0.1076984959950381 0.9797136879989637 0
-8627 0.3526678800007211 0.2828282828288769 0
-8628 0.1427223275666895 0.8787878787878965 0
-8629 0.9912522686486801 0.07575757575833834 0
-8630 0.545117969729729 0.5353535353545094 0
-8631 0.06399274540581336 0.3080808080807496 0
-8632 0.07274047675576054 0.9292929292928136 0
-8633 0.8075499102547439 0.9393939393449933 0
-8634 0.07274047675729024 0.1515151515150855 0
-8635 0.09898367080993546 0.8030303030303917 0
-8636 0.4051542681070179 0.9393939393944208 0
-8637 0.3351724172974655 0.4646464646469075 0
-8638 0.3439201486488287 0.4595959595964497 0
-8639 0.8075499102702755 0.5858585858599475 0
-8640 0.3964065367568273 0.5101010101016624 0
-8641 0.5626134324315185 0.8585858585868898 0
-8642 0.2389473724321432 0.6515151515153114 0
-8643 0.09898367081130745 0.1666666666666373 0
-8644 0.7900544475682688 0.2323232323247903 0
-8645 0.03775795549150911 0.8889112538430347 0
-8646 0.4751361189189099 0.5454545454553592 0
-8647 0.3264246859458776 0.5707070707074401 0
-8648 0.3351724172972452 0.5656565656569579 0
-8649 0.3264246859459028 0.5606060606064344 0
-8650 0.3351724172972693 0.5555555555559526 0
-8651 0.3439201486486113 0.5606060606064768 0
-8652 0.4139019994584481 0.9040404040409733 0
-8653 0.07273777443273152 0.5757577787825837 0
-8654 0.2389473724319105 0.7727272727273771 0
-8655 0.3176769545948678 0.4242424242428464 0
-8656 0.2914337605402938 0.6414141414144089 0
-8657 0.4838838502702275 0.5606060606068842 0
-8658 0.7813067162168726 0.2575757575773142 0
-8659 0.6150998205413745 0.2323232323241983 0
-8660 0.6063520891899884 0.2373737373747342 0
-8661 0.1427223275674879 0.5252525252524505 0
-8662 0.7813067162162554 0.4494949494965449 0
-8663 0.4751361189191849 0.3232323232335343 0
-8664 0.3176769545953957 0.2222222222227195 0
-8665 0.2301996410808857 0.6060606060607444 0
-8666 0.2301996410809074 0.5959595959597342 0
-8667 0.11647913351341 0.499999999999758 0
-8668 0.1777132529725618 0.6767676767677051 0
-8669 0.8950272237848014 0.1010101010118364 0
-8670 0.2301996410811863 0.4848484848486577 0
-8671 0.1602177902708986 0.131313131313232 0
-8672 0.4488929248649703 0.4090909090920325 0
-8673 0.4488929248649519 0.4191919191930372 0
-8674 0.4401451935135894 0.4242424242435237 0
-8675 0.4488929248649347 0.429292929294041 0
-8676 0.7463157908108219 0.6111111111122786 0
-8677 0.7638112535135086 0.6111111111123216 0
-8678 0.5451179697298439 0.4242424242436968 0
-8679 0.230199641080841 0.6262626262627667 0
-8680 0.055245014053418 0.6666666666663924 0
-8681 0.3789110740545278 0.3282828282835266 0
-8682 0.3876588054058974 0.3232323232330414 0
-8683 0.3964065367571915 0.328282828283673 0
-8684 0.5451179697289319 0.8181818181828459 0
-8685 0.9212704178373247 0.6919191919205235 0
-8686 0.8337931043243594 0.4696969696986569 0
-8687 0.3001814918929615 0.06060606060626445 0
-8688 0.2914337605415656 0.0656565656567645 0
-8689 0.6150998205414572 0.2020202020211752 0
-8690 0.5013793129732904 0.2979797979810747 0
-8691 0.5801088951360855 0.2020202020211012 0
-8692 0.8775317610819149 0.2222222222239102 0
-8693 0.2826860291899368 0.2222222222226363 0
-8694 0.1339745962167019 0.1767676767677223 0
-8695 0.1864609843246816 0.2575757575758588 0
-8696 0.08148820810700912 0.8737373737374635 0
-8697 0.4576406562159609 0.6565656565663333 0
-8698 0.7638112535135891 0.4292929292945107 0
-8699 0.7638112535136039 0.4191919191935136 0
-8700 0.6938294027035865 0.1666666666678741 0
-8701 0.4751361189191302 0.3535353535365496 0
-8702 0.4751361189191121 0.3636363636375552 0
-8703 0.4838838502704743 0.3585858585870674 0
-8704 0.4838838502704564 0.3686868686880728 0
-8705 0.4926315816218183 0.3636363636375851 0
-8706 0.4751361189190939 0.3737373737385604 0
-8707 0.4926315816218001 0.3737373737385912 0
-8708 0.4926315816218358 0.3535353535365794 0
-8709 0.5013793129731794 0.3585858585870971 0
-8710 0.5013793129731426 0.3787878787891113 0
-8711 0.3264246859459499 0.5404040404044266 0
-8712 0.8075499102713759 0.08080808080971548 0
-8713 0.8162976416226688 0.09595959596121717 0
-8714 0.50137931297322 0.3383838383850856 0
-8715 0.5101270443246197 0.3434343434355815 0
-8716 0.9475136118914848 0.5858585858604649 0
-8717 0.116479133513879 0.2171717171716531 0
-8718 0.2476951037838007 0.5252525252527129 0
-8719 0.9125226864875332 0.1616161616178224 0
-8720 0.3964065367566604 0.5909090909096163 0
-8721 0.1514700589193041 0.2777777777779167 0
-8722 0.8337931043241562 0.6414141414154407 0
-8723 0.8337931043241803 0.6313131313144534 0
-8724 0.8425408356755069 0.6363636363649847 0
-8725 0.5713611637839547 0.4595959595970769 0
-8726 0.5626134324326029 0.4545454545465976 0
-8727 0.8075499102701567 0.6363636363648933 0
-8728 0.6150998205407366 0.3636363636377931 0
-8729 0.6850816713512988 0.5555555555568134 0
-8730 0.545117969728983 0.797979797980843 0
-8731 0.4401451935131282 0.6767676767684477 0
-8732 0.09023593945959668 0.4040404040401956 0
-8733 0.08148820810826372 0.3989898989896782 0
-8734 0.4139019994603569 0.2474747474754608 0
-8735 0.4226497308117006 0.2525252525259765 0
-8736 0.4313974621630696 0.2474747474754884 0
-8737 0.4313974621630128 0.2575757575765028 0
-8738 0.1602177902706718 0.2020202020202359 0
-8739 0.2914337605404061 0.5909090909093652 0
-8740 0.07273984081906514 0.5252525339420024 0
-8741 0.7200725967569011 0.3939393939409577 0
-8742 0.728820328108262 0.388888888890473 0
-8743 0.7113248654053801 0.6414141414151934 0
-8744 0.9737568059450137 0.8535353535360902 0
-8745 0.9825045372965838 0.8585858585863406 0
-8746 0.9825045372966262 0.8484848484854264 0
-8747 0.9737568059451175 0.8737373737380266 0
-8748 0.7025771340545447 0.3232323232337497 0
-8749 0.2739237043701294 0.9646519495306654 0
-8750 0.3964065367577156 0.207070707071379 0
-8751 0.4051542681090701 0.212121212121905 0
-8752 0.6588384772982809 0.1363636363648463 0
-8753 0.510127044324358 0.4747474747486336 0
-8754 0.2039564470274805 0.2474747474749955 0
-8755 0.2389473724314234 0.9141414141415747 0
-8756 0.422649730810972 0.3737373737384728 0
-8757 0.4226497308109561 0.3838383838394781 0
-8758 0.3876588054048133 0.737373737374423 0
-8759 0.2739382978367886 0.9141414141416442 0
-8760 0.2214519097300855 0.358585858586104 0
-8761 0.6150998205404604 0.6868686868694266 0
-8762 0.61509982054048 0.6767676767684229 0
-8763 0.2651905664866221 0.4747474747477383 0
-8764 0.1252268648655485 0.1111111111111902 0
-8765 0.3526678800001319 0.4747474747480209 0
-8766 0.7550635221628349 0.2424242424257544 0
-8767 0.7550635221628181 0.2525252525267627 0
-8768 0.1689655216215772 0.5202020202020226 0
-8769 0.1777132529729473 0.515151515151542 0
-8770 0.1689655216216002 0.510101010101017 0
-8771 0.1777132529729674 0.5050505050505386 0
-8772 0.6150998205398469 0.7878787878800249 0
-8773 0.6938294027027703 0.4898989899003571 0
-8774 0.2214519097301845 0.267676767677084 0
-8775 0.2214519097301832 0.2777777777780849 0
-8776 0.7900544475674958 0.6262626262638683 0
-8777 0.4926315816215122 0.5959595959604269 0
-8778 0.4838838502701511 0.601010101010909 0
-8779 0.4838838502701364 0.6111111111119119 0
-8780 0.4051542681081803 0.4242424242434632 0
-8781 0.3964065367568164 0.4292929292939145 0
-8782 0.3964065367568076 0.4393939393949304 0
-8783 0.5363702383779485 0.7020202020211808 0
-8784 0.3089292232435267 0.4191919191923211 0
-8785 0.06399274540425179 0.8939393939394596 0
-8786 0.07274047675568068 0.8989898989899524 0
-8787 0.2389473724326798 0.409090909091175 0
-8788 0.2389473724326612 0.4191919191921775 0
-8789 0.2476951037840269 0.4141414141416903 0
-8790 0.6413430145945693 0.6616161616169799 0
-8791 0.3789106197695975 0.974736828664022 0
-8792 0.3788770291574994 0.9848182339569682 0
-8793 0.1514700589192038 0.2575757575757744 0
-8794 0.1514700589192295 0.2676767676768351 0
-8795 0.1339745962166118 0.2878787878789069 0
-8796 0.1952087156752431 0.696969696969773 0
-8797 0.2039564470266134 0.7020202020202816 0
-8798 0.7725589848642128 0.8181818181832546 0
-8799 0.4226497308118186 0.2020202020209284 0
-8800 0.5976043578379043 0.6161616161624242 0
-8801 0.1252268648645386 0.6060606060604313 0
-8802 0.6413430145938962 0.7929292929305958 0
-8803 0.7375680594595448 0.4242424242439736 0
-8804 0.6850816713505217 0.8686868686882097 0
-8805 0.8775317610817605 0.3030303030321258 0
-8806 0.4663883875677495 0.3686868686880432 0
-8807 0.457640656216405 0.3636363636375248 0
-8808 0.3526678800007664 0.272727272727859 0
-8809 0.6063520891901878 0.1666666666676909 0
-8810 0.5276225070273479 0.2929292929306238 0
-8811 0.5801088951344266 0.7878787878799318 0
-8812 0.5713611637830855 0.7828282828294051 0
-8813 0.5801088951351762 0.5151515151525845 0
-8814 0.2914337605408689 0.3989898989902653 0
-8815 0.4751361189190571 0.3939393939405707 0
-8816 0.4751361189190746 0.3838383838395655 0
-8817 0.6413430145956757 0.106060606061866 0
-8818 0.1952087156760943 0.2828282828285387 0
-8819 0.2039564470274603 0.2878787878790572 0
-8820 0.4401451935129889 0.7070707070715415 0
-8821 0.5888566264866065 0.4191919191932632 0
-8822 0.5801088951352642 0.4141414141427489 0
-8823 0.5276225070269889 0.6363636363643114 0
-8824 0.1339745962157363 0.7020202020203047 0
-8825 0.1427223275671208 0.6969696969697686 0
-8826 0.08148820810872201 0.1060606060605702 0
-8827 0.1689655216220137 0.2676767676769267 0
-8828 0.09023593945889594 0.6767676767675233 0
-8829 0.4751361189195269 0.2727272727282482 0
-8830 0.7288203281087267 0.2676767676782215 0
-8831 0.230199641081632 0.2222222222225516 0
-8832 0.06399304325025616 0.227272211390774 0
-8833 0.2739382978381115 0.4191919191922348 0
-8834 0.8687840297303456 0.3282828282846683 0
-8835 0.4226497308110049 0.3535353535364598 0
-8836 0.9650090722540965 0.06060606466395081 0
-8837 0.2214519097297205 0.5303030303031576 0
-8838 0.2389473724326011 0.4595959595961682 0
-8839 0.51012704432345 0.8383838383847405 0
-8840 0.05524464035006423 0.1818181851839014 0
-8841 0.3789110740534016 0.7626262626269056 0
-8842 0.3701633427020685 0.7575757575763815 0
-8843 0.1427223275681535 0.1414141414142197 0
-8844 0.1339745962162523 0.4595959595958263 0
-8845 0.1864609843240671 0.6212121212121695 0
-8846 0.1864609843240451 0.6313131313131851 0
-8847 0.1952087156753928 0.6363636363637132 0
-8848 0.1952087156753709 0.6464646464647301 0
-8849 0.9912522686486468 0.2676767676779345 0
-8850 0.6850816713515105 0.3838383838399004 0
-8851 0.8250453729722522 0.8484848484860938 0
-8852 0.09023593945963991 0.3838383838382153 0
-8853 0.14272232756763 0.4646464646464123 0
-8854 0.8337931043241172 0.6616161616174073 0
-8855 0.8425408356754597 0.6565656565669464 0
-8856 0.2127041783783369 0.5353535353536468 0
-8857 0.3963926382343712 0.9646396315335646 0
-8858 0.3876120323192627 0.9797096398015854 0
-8859 0.0989836708111165 0.3383838383838105 0
-8860 0.3264246859457635 0.621212121212467 0
-8861 0.3176769545943974 0.6262626262629503 0
-8862 0.4751361189192049 0.3131313131325283 0
-8863 0.5538657010811977 0.4494949494961766 0
-8864 0.2564428351355998 0.318181818182159 0
-8865 0.4838838502694424 0.8232323232331725 0
-8866 0.2564428351350088 0.5808080808082814 0
-8867 0.6238475518909019 0.9242424242434352 0
-8868 0.7025771340541739 0.464646464647878 0
-8869 0.4051542681077672 0.6868686868692767 0
-8870 0.7550635221622335 0.5757575757588376 0
-8871 0.8950272237847283 0.1919191919208703 0
-8872 0.2127041783774687 0.8686868686870513 0
-8873 0.5713611637837933 0.6414141414148165 0
-8874 0.5626134324324515 0.6363636363643058 0
-8875 0.7833086808377379 0.9910254255581711 0
-8876 0.4576406562162973 0.4242424242435535 0
-8877 0.2301996410816046 0.2323232323235687 0
-8878 0.4051542681074641 0.7575757575764681 0
-8879 0.8250453729731778 0.3737373737391191 0
-8880 0.7550635221622123 0.4848484848499994 0
-8881 0.5013793129732053 0.3484848484860891 0
-8882 0.5101270443245801 0.3535353535365779 0
-8883 0.510127044324536 0.3636363636376033 0
-8884 0.5188747756759732 0.3585858585870363 0
-8885 0.7288203281081772 0.5101010101024053 0
-8886 0.3264246859469015 0.1363636363640898 0
-8887 0.7900544475666794 0.8989898989910148 0
-8888 0.0727404767571872 0.2929292929292787 0
-8889 0.7288203281076384 0.7626262626275153 0
-8890 0.6763339400001968 0.3585858585873838 0
-8891 0.2914337605405276 0.5404040404043362 0
-8892 0.2476951037846435 0.07070707070718987 0
-8893 0.6063520891888013 0.7424242424252148 0
-8894 0.6063520891887362 0.7525252525262713 0
-8895 0.6850816713506525 0.7979797979812029 0
-8896 0.3439201486490852 0.3484848484854109 0
-8897 0.5101270443244398 0.4242424242436414 0
-8898 0.5101270443244537 0.4141414141426384 0
-8899 0.5188747756758127 0.4090909090921535 0
-8900 0.1077314010851748 0.07070707257369012 0
-8901 0.7900544475675904 0.4848484848500678 0
-8902 0.4138977287696242 0.02515862972204072 0
-8903 0.2127041783786537 0.3939393939396044 0
-8904 0.2039564470268477 0.5909090909091703 0
-8905 0.3439201486485163 0.6010101010104986 0
-8906 0.3614156113513427 0.5505050505055167 0
-8907 0.3614156113513191 0.5606060606065216 0
-8908 0.676333940000013 0.6313131313141138 0
-8909 0.3176769545941461 0.7474747474750605 0
-8910 0.7200725967573078 0.3030303030317447 0
-8911 0.2739382978387292 0.09595959595983669 0
-8912 0.4401451935135359 0.5353535353542749 0
-8913 0.4488929248648737 0.5404040404048003 0
-8914 0.3001814918920581 0.4646464646468201 0
-8915 0.6675862086487631 0.4141414141428796 0
-8916 0.4751361189182137 0.7777777777786561 0
-8917 0.4663883875668755 0.7727272727281326 0
-8918 0.1689655216218376 0.4191919191920117 0
-8919 0.1602177902706389 0.3030303030304614 0
-8920 0.1602177902706421 0.3131313131314685 0
-8921 0.4313974621611636 0.8939393939400253 0
-8922 0.728820328108962 0.1565656565669786 0
-8923 0.7638112535135788 0.5101010101024894 0
-8924 0.4663883875687306 0.1565656565664938 0
-8925 0.4838838502714437 0.1565656565664982 0
-8926 0.1864609843243424 0.5000000000000707 0
-8927 0.5363702383797518 0.07575757575846892 0
-8928 0.2564428351355765 0.3282828282831672 0
-8929 0.1864609843244156 0.4696969696970638 0
-8930 0.6588384772964534 0.8636363636376461 0
-8931 0.5976043578389114 0.1414141414152053 0
-8932 0.5713611637840694 0.3585858585871566 0
-8933 0.08148820810858229 0.1767676767676009 0
-8934 0.9387658805411276 0.4090909090930278 0
-8935 0.8425408356764544 0.2222222222238812 0
-8936 0.6588384772973264 0.5101010101022686 0
-8937 0.04649728270319579 0.2777777777777322 0
-8938 0.5888566665517221 0.9545451490465275 0
-8939 0.7813067162162949 0.560606060607404 0
-8940 0.8075499102700942 0.6666666666678501 0
-8941 0.3789110740548309 0.2777777777784251 0
-8942 0.387658805406136 0.2828282828289698 0
-8943 0.06397891959393651 0.5303031968544876 0
-8944 0.8250453729732717 0.3333333333350848 0
-8945 0.3614156113511337 0.6414141414145579 0
-8946 0.3526678799997914 0.6363636363640366 0
-8947 0.606352089189211 0.5202020202031439 0
-8948 0.4139019994593151 0.6111111111116616 0
-8949 0.5626134324337293 0.08080808080902954 0
-8950 0.2739382978373837 0.7525252525254408 0
-8951 0.2127041783784272 0.4949494949496325 0
-8952 0.6150998205405716 0.5151515151526653 0
-8953 0.2127041783783787 0.5151515151516378 0
-8954 0.2127041783788157 0.3232323232325652 0
-8955 0.6413430145947047 0.4191919191933395 0
-8956 0.7288203281082455 0.5505050505062927 0
-8957 0.09023593945855041 0.8080808080808687 0
-8958 0.4226497308107286 0.585858585859178 0
-8959 0.6413430145946287 0.5101010101022266 0
-8960 0.6238475518919319 0.510101010102186 0
-8961 0.3439201486478766 0.8131313131318199 0
-8962 0.7813067162163494 0.5202020202034414 0
-8963 0.8775317610810375 0.5454545454561636 0
-8964 0.9037749551343945 0.8333333333341215 0
-8965 0.448892924864853 0.5505050505058013 0
-8966 0.440145193513496 0.555555555556268 0
-8967 0.3351724172970612 0.6464646464650026 0
-8968 0.3789110740541354 0.5000000000006256 0
-8969 0.3701633427027732 0.5050505050510985 0
-8970 0.3614156113514325 0.5000000000005564 0
-8971 0.2039564470267405 0.6414141414142381 0
-8972 0.2039564470267196 0.6515151515152501 0
-8973 0.3351724172975967 0.414141414141892 0
-8974 0.5451179697286084 0.929292929293799 0
-8975 0.3876588054051425 0.6666666666671766 0
-8976 0.3964065367565428 0.651515151515679 0
-8977 0.1427223275679377 0.3131313131314435 0
-8978 0.5801088951359996 0.2323232323241273 0
-8979 0.5888566264873131 0.2373737373746812 0
-8980 0.3089292232434748 0.4393939393943309 0
-8981 0.2039564470274328 0.2272727272728932 0
-8982 0.212704178379142 0.06060606060608034 0
-8983 0.05524501405448385 0.3030303030302364 0
-8984 0.9212704178371734 0.7727272727282772 0
-8985 0.6500907459459437 0.5252525252537428 0
-8986 0.3176769545955423 0.1313131313135509 0
-8987 0.8337931043243162 0.500000000001649 0
-8988 0.8425408356757005 0.5050505050521454 0
-8989 0.8337931043243213 0.5101010101026389 0
-8990 0.8250453729729592 0.5050505050521297 0
-8991 0.833793104324338 0.5202020202036173 0
-8992 0.4926315816219089 0.3131313131325639 0
-8993 0.6588384772982623 0.1464646464658276 0
-8994 0.09023593945906566 0.6060606060603395 0
-8995 0.2214519097301094 0.3484848484850983 0
-8996 0.2476951037842093 0.3333333333336512 0
-8997 0.1777132529732462 0.3939393939395296 0
-8998 0.8250453729727331 0.6868686868698523 0
-8999 0.8337931043240618 0.6919191919203587 0
-9000 0.5451179697298547 0.4848484848495219 0
-9001 0.6063520891891508 0.5505050505061305 0
-9002 0.1164791335138485 0.2474747474746922 0
-9003 0.8425408356758667 0.3838383838401558 0
-9004 0.7988021789199172 0.1161616161632228 0
-9005 0.3089292232440963 0.1666666666671196 0
-9006 0.6500907459461084 0.3838383838398473 0
-9007 0.51012704432463 0.303030303031593 0
-9008 0.1252268648652002 0.3232323232323808 0
-9009 0.0727404767568563 0.4242424242421409 0
-9010 0.0552446982557699 0.3838374534036085 0
-9011 0.5101270443237037 0.7474747474757393 0
-9012 0.3701633427024427 0.666666666667118 0
-9013 0.4838838502704378 0.3787878787890784 0
-9014 0.4313974621624046 0.3282828282839547 0
-9015 0.08148820810845139 0.3282828282827728 0
-9016 0.7025771340542648 0.363636363637912 0
-9017 0.5538657010804037 0.7727272727283516 0
-9018 0.1864607760628023 0.9545449817823077 0
-9019 0.1952065663107744 0.959592181075426 0
-9020 0.1952394394359575 0.9696657168097409 0
-9021 0.5976043578368745 0.8888888888899922 0
-9022 0.4838838502704193 0.3888888888900841 0
-9023 0.3964065367569853 0.358585858586922 0
-9024 0.4838838502703338 0.4393939393951052 0
-9025 0.6413430145936404 0.9242424242434648 0
-9026 0.8512885670267086 0.7020202020213742 0
-9027 0.4576406562163685 0.3838383838395348 0
-9028 0.5276225070271043 0.5959595959603221 0
-9029 0.8162976416218479 0.3585858585875925 0
-9030 0.5188747756758171 0.3989898989911514 0
-9031 0.7986943064011256 0.02544730489108803 0
-9032 0.7900930717998511 0.02031076269503764 0
-9033 0.7910335303523468 0.009725678461093937 0
-9034 0.2651905664863035 0.6060606060608202 0
-9035 0.08148805826347455 0.479797979798193 0
-9036 0.4401451935135566 0.444444444445531 0
-9037 0.168965521621714 0.4595959595960001 0
-9038 0.6675862086488531 0.3535353535368707 0
-9039 0.6588384772974947 0.3585858585873578 0
-9040 0.3701633427037279 0.1515151515157233 0
-9041 0.5188747756755849 0.6212121212129239 0
-9042 0.4838838502703824 0.419191919193098 0
-9043 0.186460984323382 0.9040404040404832 0
-9044 0.6588384772980398 0.2272727272738214 0
-9045 0.6675862086493511 0.2323232323243755 0
-9046 0.03773847969329483 0.2929279773486698 0
-9047 0.6238475518911114 0.8232323232335724 0
-9048 0.6325952832424547 0.8282828282840986 0
-9049 0.5976043578379636 0.4141414141427759 0
-9050 0.6850816713513694 0.5151515151528187 0
-9051 0.4313974621621933 0.4494949494960201 0
-9052 0.1427223275675783 0.484848484848412 0
-9053 0.4313974621630966 0.2373737373744853 0
-9054 0.6675862086486731 0.6262626262635997 0
-9055 0.2564428351343478 0.8434343434345962 0
-9056 0.5801088951347363 0.7272727272736925 0
-9057 0.2476951037842557 0.3131313131316362 0
-9058 0.4051542681081428 0.4444444444454675 0
-9059 0.5801088951350841 0.6666666666673534 0
-9060 0.9650090745937691 0.7676767676778451 0
-9061 0.7988021789191825 0.3282828282845498 0
-9062 0.7988021789192264 0.3181818181835523 0
-9063 0.5538657010812101 0.4797979797990289 0
-9064 0.5451179697298771 0.4747474747485504 0
-9065 0.8862794924324393 0.489898989900755 0
-9066 0.5188747756760091 0.2878787878801076 0
-9067 0.2739382978377456 0.5707070707073149 0
-9068 0.2214519097300406 0.3787878787881176 0
-9069 0.4488929248648645 0.4696969696980575 0
-9070 0.5538657010811375 0.5101010101020252 0
-9071 0.3089292232428505 0.722222222222529 0
-9072 0.7113248654054234 0.5101010101023808 0
-9073 0.7113248654054645 0.5202020202033647 0
-9074 0.6238475518918842 0.6515151515159421 0
-9075 0.1164791335125567 0.9141414141413775 0
-9076 0.6325952832433932 0.3939393939408234 0
-9077 0.6325952832434075 0.3838383838398222 0
-9078 0.8250453729729987 0.565656565657993 0
-9079 0.448892924865095 0.3383838383849934 0
-9080 0.3176769545937601 0.8484848484852452 0
-9081 0.3264246859451181 0.8434343434347686 0
-9082 0.8250453729729899 0.4646464646481341 0
-9083 0.116479133512635 0.8535353535353675 0
-9084 0.6938294027028212 0.4090909090924193 0
-9085 0.9737568055601878 0.06565656632831987 0
-9086 0.4051542681073105 0.8181818181824665 0
-9087 0.4576406562161996 0.4949494949505435 0
-9088 0.0552442884051405 0.7575757295740372 0
-9089 0.1077314021625281 0.2626262626262134 0
-9090 0.6675862086485446 0.6969696969705246 0
-9091 0.4751361189189333 0.4646464646475995 0
-9092 0.265190566487406 0.07070707070722615 0
-9093 0.3526678799991725 0.8383838383843344 0
-9094 0.5976043578378619 0.6363636363643802 0
-9095 0.1164791335125173 0.9343434343433965 0
-9096 0.2739382978380371 0.4494949494952494 0
-9097 0.4226497308098192 0.8888888888895049 0
-9098 0.5713611637850788 0.07575757575856261 0
-9099 0.3439201486494666 0.2474747474753046 0
-9100 0.6238475518920208 0.4090909090923132 0
-9101 0.1164791335137092 0.3787878787878275 0
-9102 0.9387658580469983 0.07575761472136056 0
-9103 0.9300181367071443 0.08080810243136639 0
-9104 0.3876588054054781 0.4343434343443089 0
-9105 0.3439201486484933 0.6111111111115032 0
-9106 0.2214519097292667 0.7424242424243058 0
-9107 0.1952087156759272 0.4040404040405701 0
-9108 0.3439201486486577 0.5404040404044685 0
-9109 0.317676954594535 0.5656565656569171 0
-9110 0.3089292232433982 0.4696969696973434 0
-9111 0.6588384772972474 0.6717171717180092 0
-9112 0.273938297837042 0.8434343434346384 0
-9113 0.212704178377652 0.8181818181819815 0
-9114 0.2651905664865739 0.494949494949747 0
-9115 0.2564428351352094 0.5000000000002266 0
-9116 0.615099820539696 0.8484848484860638 0
-9117 0.4663883875666603 0.8535353535361256 0
-9118 0.5626134324324742 0.5151515151525456 0
-9119 0.2826860291896537 0.3232323232327314 0
-9120 0.2914337605409953 0.3282828282832617 0
-9121 0.833793104324009 0.7323232323242553 0
-9122 0.3584037896354687 0.9910709898335701 0
-9123 0.2914337605401628 0.7121212121214858 0
-9124 0.6588384772972313 0.5505050505062633 0
-9125 0.05524501405309035 0.7979797979797264 0
-9126 0.7375680594594236 0.6363636363647482 0
-9127 0.6413430145946393 0.6010101010110471 0
-9128 0.2301996410803401 0.82828282828299 0
-9129 0.4051542681079761 0.6060606060611402 0
-9130 0.3964065367566359 0.6010101010106191 0
-9131 0.3351724172971738 0.5959595959599759 0
-9132 0.3789110740539295 0.6010101010105769 0
-9133 0.3701633427025656 0.6060606060610597 0
-9134 0.1602177902698622 0.6666666666666493 0
-9135 0.4488929248640164 0.833333333334084 0
-9136 0.1689638441199293 0.05555644699985263 0
-9137 0.5713611637838367 0.5101010101020638 0
-9138 0.06399252855316906 0.7020202041184215 0
-9139 0.09581940175638615 0.9910762933657244 0
-9140 0.5101270443235975 0.7878787878797509 0
-9141 0.5976043578379717 0.5858585858594494 0
-9142 0.3001814918919226 0.5252525252528533 0
-9143 0.2214519097303403 0.186868686868968 0
-9144 0.116479133513308 0.5505050505048359 0
-9145 0.5101270443233673 0.8686868686877509 0
-9146 0.3264246859459748 0.5303030303034213 0
-9147 0.7813067162164253 0.3585858585875418 0
-9148 0.1164791335126633 0.8232323232324427 0
-9149 0.4838838502715998 0.1060606060613551 0
-9150 0.4313974621612692 0.8535353535360346 0
-9151 0.212704178378523 0.4545454545456217 0
-9152 0.5101270443244327 0.4949494949504832 0
-9153 0.06399125916157705 0.2373712658326853 0
-9154 0.5276225070280245 0.202020202020987 0
-9155 0.4051542681072334 0.8484848484854646 0
-9156 0.5188747756753177 0.6919191919200447 0
-9157 0.5626134324328267 0.2727272727286204 0
-9158 0.7113248654055576 0.3888888888904415 0
-9159 0.03830902426969965 0.6263696345583499 0
-9160 0.7375680594602929 0.1616161616174928 0
-9161 0.912522686487337 0.2525252525270409 0
-9162 0.8250453729725393 0.7777777777787702 0
-9163 0.6763339400001527 0.3888888888903883 0
-9164 0.3964065367577866 0.1767676767683281 0
-9165 0.9212704178369582 0.9040404040417952 0
-9166 0.9125226864855875 0.9090909090922834 0
-9167 0.9125226864855635 0.919191919193303 0
-9168 0.9125226864856187 0.8989898989912672 0
-9169 0.9212704178369084 0.9242424242438338 0
-9170 0.3789110740542851 0.4191919191926048 0
-9171 0.2039564470274743 0.3181818181820433 0
-9172 0.2680217585227302 0.991128449431065 0
-9173 0.4838838502702783 0.4696969696981161 0
-9174 0.597604357837805 0.545454545455622 0
-9175 0.6413430145947933 0.3585858585873324 0
-9176 0.4576406562163152 0.414141414142549 0
-9177 0.4926315816219294 0.303030303031559 0
-9178 0.3351724172985012 0.05050505050530527 0
-9179 0.4663883875676265 0.5202020202028534 0
-9180 0.3439201486495754 0.1666666666672 0
-9181 0.3439201486487261 0.5101010101014528 0
-9182 0.6413430145945377 0.5505050505062221 0
-9183 0.7725589848659613 0.1010101010116756 0
-9184 0.3089292232430536 0.6212121212124284 0
-9185 0.8162976416216563 0.4494949494966059 0
-9186 0.6325952832433087 0.4545454545468323 0
-9187 0.1777132529733415 0.2222222222222924 0
-9188 0.5013793129730224 0.4494949494961385 0
-9189 0.5101270443246504 0.2929292929305902 0
-9190 0.06399274540475459 0.6818181818179558 0
-9191 0.4226497308117957 0.2121212121219402 0
-9192 0.4313974621610868 0.9242424242430075 0
-9193 0.4576406562157484 0.6868686868695755 0
-9194 0.3001814918910696 0.8484848484852032 0
-9195 0.483883850270352 0.5101010101019118 0
-9196 0.1164791335134568 0.479797979797748 0
-9197 0.9125226864855348 0.9292929292943243 0
-9198 0.6938294027025641 0.7020202020211563 0
-9199 0.7113248654051612 0.7020202020213332 0
-9200 0.6238475518919081 0.5202020202031865 0
-9201 0.5626134324325469 0.4848484848495462 0
-9202 0.825045372972108 0.8989898989910974 0
-9203 0.2476951037834326 0.6868686868688643 0
-9204 0.2389473724327494 0.3787878787881601 0
-9205 0.2301996410813839 0.3838383838386419 0
-9206 0.8862794924319517 0.7424242424253197 0
-9207 0.08148820810713157 0.8232323232323667 0
-9208 0.6238475518918749 0.5606060606071348 0
-9209 0.3526678800004709 0.3232323232329576 0
-9210 0.9650090745950473 0.4343434343456599 0
-9211 0.2739382978376063 0.6313131313133602 0
-9212 0.282893272411843 0.01912417822718465 0
-9213 0.5451179697307794 0.1717171717180402 0
-9214 0.4576406562162638 0.4444444444455621 0
-9215 0.06399274540477974 0.6717171717169281 0
-9216 0.4313974621622456 0.4191919191930063 0
-9217 0.5713611637847316 0.2070707070715801 0
-9218 0.2474046694785831 0.9906224049962614 0
-9219 0.3614156113514097 0.5202020202025128 0
-9220 0.1427223275683351 0.07070707070712332 0
-9221 0.8775317610818644 0.2525252525270123 0
-9222 0.8862794924332437 0.2474747474765167 0
-9223 0.09023592281001649 0.4747474747472383 0
-9224 0.3264246859455935 0.7020202020205543 0
-9225 0.4751361189177732 0.9393939393946239 0
-9226 0.3526678799990188 0.9191919191922945 0
-9227 0.238947372432866 0.3282828282831283 0
-9228 0.8162976416222464 0.2878787878804052 0
-9229 0.3176769545956166 0.1010101010104594 0
-9230 0.588856626486582 0.4898989899001057 0
-9231 0.5888566264866048 0.479797979799107 0
-9232 0.4401451935137708 0.3232323232334629 0
-9233 0.09898367081120461 0.2979797979798318 0
-9234 0.1689655216220252 0.3383838383840075 0
-9235 0.790054447568748 0.0707070707087059 0
-9236 0.6325952832431647 0.6868686868694591 0
-9237 0.623847551891808 0.6919191919199471 0
-9238 0.3876588054051849 0.6464646464651238 0
-9239 0.5626134324326029 0.3838383838397161 0
-9240 0.5626134324316655 0.8080808080818953 0
-9241 0.5188747756758848 0.3686868686881184 0
-9242 0.3089292232436859 0.3383838383843079 0
-9243 0.9125226864869812 0.4141414141434651 0
-9244 0.7725589848649004 0.5858585858598679 0
-9245 0.2826860291895273 0.3939393939397406 0
-9246 0.6238475518929438 0.1363636363647714 0
-9247 0.06399274540485785 0.6414141414138427 0
-9248 0.6150998205416681 0.1111111111122866 0
-9249 0.5976043578378384 0.6464646464653776 0
-9250 0.2914337605405757 0.5202020202023252 0
-9251 0.8950272237836727 0.5555555555571973 0
-9252 0.6063520891901242 0.1969696969706608 0
-9253 0.6850816713521757 0.19191919192034 0
-9254 0.6325954608577997 0.9494946418568087 0
-9255 0.2878675094782464 0.9910881260951542 0
-9256 0.3001814918916405 0.646464646464929 0
-9257 0.2127041783784747 0.4747474747476273 0
-9258 0.4576406562154881 0.7878787878796125 0
-9259 0.3089292232429074 0.6919191919195025 0
-9260 0.3264246859456058 0.691919191919522 0
-9261 0.343920420130281 0.9545449843239427 0
-9262 0.33857071391107 0.9911332658148139 0
-9263 0.9650090745957285 0.1919191919210022 0
-9264 0.4226497308102403 0.7272727272735104 0
-9265 0.2127041783777593 0.7979797979798753 0
-9266 0.1602177902706051 0.2323232323232547 0
-9267 0.6063520891893082 0.5909090909099584 0
-9268 0.9562613432441446 0.2979797979817024 0
-9269 0.5801088951356331 0.3333333333345589 0
-9270 0.9300181491891516 0.4848484848503489 0
-9271 0.2172075630536713 0.991929434054676 0
-9272 0.2127041783786962 0.3737373737375889 0
-9273 0.2564428351341064 0.9141414141416077 0
-9274 0.6500907459460196 0.4444444444458558 0
-9275 0.1427223275665517 0.9393939393939446 0
-9276 0.8337931043253198 0.1060606060622515 0
-9277 0.781306716215359 0.8939393939404925 0
-9278 0.1864609843241343 0.590909090909133 0
-9279 0.08148820810828607 0.3888888888886871 0
-9280 0.7113248654063651 0.1262626262639934 0
-9281 0.6763339400000645 0.4494949494963857 0
-9282 0.09898367081034366 0.6414141414139405 0
-9283 0.5363702383793588 0.2070707070715027 0
-9284 0.0814882081085742 0.2676767676768098 0
-9285 0.3439201486495247 0.2070707070712575 0
-9286 0.2039564470268017 0.6111111111111901 0
-9287 0.72007259675747 0.2222222222234382 0
-9288 0.05524501405300788 0.8282828282828002 0
-9289 0.7725589848655261 0.2525252525267931 0
-9290 0.291433760540693 0.4696969696973002 0
-9291 0.3176769545955658 0.1212121212125287 0
-9292 0.3992076015274034 0.9910731488303939 0
-9293 0.3176769545948149 0.4444444444448554 0
-9294 0.2214519097297551 0.5101010101011496 0
-9295 0.9737568059450629 0.8434343434350937 0
-9296 0.8075499102695594 0.8383838383852774 0
-9297 0.3439201486485866 0.5707070707074818 0
-9298 0.6238475518918851 0.5303030303041866 0
-9299 0.3351724172963774 0.8787878787882815 0
-9300 0.3089292232440163 0.2272727272732079 0
-9301 0.09023626551122939 0.9595936170044364 0
-9302 0.4313974621613432 0.8232323232330393 0
-9303 0.1339745962165416 0.2373737373736953 0
-9304 0.6938294027018715 0.8737373737387353 0
-9305 0.8775317610809631 0.5757575757591236 0
-9306 0.7288203281087446 0.2575757575772143 0
-9307 0.4313974621613705 0.8131313131320401 0
-9308 0.3176769545951736 0.2727272727278096 0
-9309 0.5888566264866362 0.398989898991258 0
-9310 0.4139019994588005 0.762626262626991 0
-9311 0.9387658805413158 0.3282828282847824 0
-9312 0.1514700589181203 0.8434343434343964 0
-9313 0.6500907459457982 0.7171717171725293 0
-9314 0.6238475518919778 0.439393939395317 0
-9315 0.5713611637839042 0.4191919191932365 0
-9316 0.03774850235727209 0.1515193659125681 0
-9317 0.2301996410807331 0.6767676767678159 0
-9318 0.7813067162160521 0.6818181818192752 0
-9319 0.7725589848647239 0.6767676767687608 0
-9320 0.3351724172974271 0.4848484848489176 0
-9321 0.4838838502695787 0.7727272727281744 0
-9322 0.4226497308105783 0.6464646464652319 0
-9323 0.5101270443253761 0.1818181818189556 0
-9324 0.1602177902696377 0.7676767676768159 0
-9325 0.2389473724331176 0.1666666666669677 0
-9326 0.1602177902698002 0.696969696969703 0
-9327 0.4313974621622283 0.4292929292940106 0
-9328 0.2739382978381855 0.3888888888892197 0
-9329 0.1077314021622442 0.4242424242422376 0
-9330 0.1689655216223155 0.1060606060606949 0
-9331 0.3789110740541218 0.5101010101016135 0
-9332 0.6675862086487471 0.4242424242438798 0
-9333 0.3701633427035401 0.2525252525258722 0
-9334 0.1252268648651169 0.3535353535353656 0
-9335 0.4488929248658831 0.2070707070714943 0
-9336 0.4139019994583432 0.944444444444939 0
-9337 0.4401451935135206 0.4646464646475398 0
-9338 0.4838838502704925 0.3484848484860613 0
-9339 0.5538657010800874 0.8838383838393694 0
-9340 0.9037749551360087 0.2373737373755203 0
-9341 0.2826860291897674 0.2525252525257062 0
-9342 0.3789110740531784 0.853535353535896 0
-9343 0.5976043578374295 0.7373737373747319 0
-9344 0.9475136118926216 0.3636363636384213 0
-9345 0.03765175961380129 0.6461856170175831 0
-9346 0.3176769545948407 0.4343434343438508 0
-9347 0.8162976416223832 0.2070707070722776 0
-9348 0.2564428351340509 0.9444444444445806 0
-9349 0.2651905664854006 0.9393939393941036 0
-9350 0.2301996410807308 0.6969696969697937 0
-9351 0.1077314021621894 0.4444444444442295 0
-9352 0.475136118918887 0.5555555555563614 0
-9353 0.5363702383792535 0.2373737373745722 0
-9354 0.8775317610806207 0.7474747474757906 0
-9355 0.5363702383776424 0.7929292929303184 0
-9356 0.3351724172971504 0.606060606060981 0
-9357 0.7113248654049196 0.7626262626275239 0
-9358 0.3526678800009573 0.1616161616167087 0
-9359 0.9912522686485333 0.6616161616172799 0
-9360 0.3527220916328211 0.03001348009259796 0
-9361 0.4313974621623511 0.3585858585869763 0
-9362 0.0814882081085135 0.2070707070705886 0
-9363 0.4226497308101396 0.7676767676775145 0
-9364 0.6938294027020651 0.7727272727287049 0
-9365 0.8162976416215471 0.6111111111124438 0
-9366 0.7113248654055057 0.570707070708261 0
-9367 0.5801088951352245 0.6060606060613836 0
-9368 0.1689655216207076 0.8939393939394554 0
-9369 0.1864609843249948 0.1262626262627682 0
-9370 0.2564428351358243 0.2070707070710785 0
-9371 0.2564428351358133 0.1868686868690456 0
-9372 0.5538657010813761 0.3585858585871074 0
-9373 0.536370238379425 0.1767676767685188 0
-9374 0.5101245499021333 0.9794128959932011 0
-9375 0.5451179697307131 0.2020202020210245 0
-9376 0.7725589848656639 0.1616161616175816 0
-9377 0.7988021789188949 0.6010101010114127 0
-9378 0.8775317610819623 0.2020202020218429 0
-9379 0.3789110740540262 0.560606060606561 0
-9380 0.2826860291894026 0.4444444444447687 0
-9381 0.1366431544196795 0.991059965788226 0
-9382 0.7900544475674782 0.6363636363648578 0
-9383 0.6413430145945056 0.6919191919199764 0
-9384 0.1252268648647794 0.4949494949492785 0
-9385 0.7725589848655781 0.2222222222237145 0
-9386 0.0814882081075772 0.6515151515149197 0
-9387 0.2301996410816966 0.1919191919194976 0
-9388 0.3176769545941915 0.7272727272730537 0
-9389 0.4488929248642263 0.7525252525260768 0
-9390 0.5888566264877346 0.07575757575860748 0
-9391 0.2914337605405037 0.5505050505053428 0
-9392 0.6500907459459757 0.6262626262635611 0
-9393 0.2564428351359436 0.1060606060608324 0
-9394 0.3089292232423417 0.8737373737377192 0
-9395 0.4751361189187354 0.6262626262633759 0
-9396 0.2564428351353734 0.4292929292932003 0
-9397 0.1252268648644612 0.6363636363634889 0
-9398 0.04649560929051992 0.3888830158354433 0
-9399 0.702577134054675 0.2626262626276664 0
-9400 0.5276225070271597 0.4141414141426703 0
-9401 0.1574869540897628 0.990668937909374 0
-9402 0.7288203281095919 0.05555555555709598 0
-9403 0.6063520891894186 0.3484848484862785 0
-9404 0.7988021789189912 0.429292929294575 0
-9405 0.2564428351349585 0.6010101010102965 0
-9406 0.4838838502694148 0.8333333333341715 0
-9407 0.5188747756757139 0.5202020202029511 0
-9408 0.9387658805416537 0.1666666666683828 0
-9409 0.5013793129720034 0.8737373737382292 0
-9410 0.4926315816206673 0.868686868687701 0
-9411 0.3964065367568745 0.4191919191928801 0
-9412 0.3526678799999522 0.5656565656570017 0
-9413 0.4226497308096996 0.9393939393944706 0
-9414 0.2826860291894527 0.424242424242759 0
-9415 0.8250453729736936 0.2424242424258777 0
-9416 0.991252268648493 0.7121212121219932 0
-9417 0.08148820810855664 0.1868686868685978 0
-9418 0.6413430145947513 0.3888888888903349 0
-9419 0.5013793129730927 0.4191919191931276 0
-9420 0.1339745962163582 0.3989898989898569 0
-9421 0.7375680594600327 0.2929292929307599 0
-9422 0.9912522686485451 0.621212121213482 0
-9423 0.4401451935149173 0.06060606060670692 0
-9424 0.4051542681092852 0.1212121212127381 0
-9425 0.2564428351352568 0.4797979797982176 0
-9426 0.9212704178374371 0.6313131313147382 0
-9427 0.9125226864861078 0.6363636363652033 0
-9428 0.9912522686484819 0.8636363636361957 0
-9429 0.2389473724333188 0.04545454545457471 0
-9430 0.7288203281079416 0.702020202021179 0
-9431 0.9475136118910109 0.9292929292944009 0
-9432 0.2039564470267573 0.6313131313132154 0
-9433 0.772558984863964 0.9090909090919825 0
-9434 0.5276225070270162 0.6161616161623185 0
-9435 0.9912522686485256 0.6414141414153792 0
-9436 0.221451909730442 0.1060606060607669 0
-9437 0.4751361189196713 0.2424242424251793 0
-9438 0.1252268648651857 0.3333333333333789 0
-9439 0.3614156113526309 0.0555555555558965 0
-9440 0.6500907459451702 0.8282828282841366 0
-9441 0.2389473724322733 0.5909090909092484 0
-9442 0.9912522686485032 0.7323232323238865 0
-9443 0.5451179697288367 0.8484848484858416 0
-9444 0.2826860291902379 0.04040404040414 0
-9445 0.4226497308109379 0.3939393939404818 0
-9446 0.6500907459463772 0.3232323232337121 0
-9447 0.9475136118917997 0.5050505050523695 0
-9448 0.3001814918917535 0.5959595959598941 0
-9449 0.7463157908113209 0.3282828282843064 0
-9450 0.2039564470260808 0.8939393939395307 0
-9451 0.5101270443232183 0.9191919191927168 0
-9452 0.3614156113506781 0.7727272727278662 0
-9453 0.361415611350726 0.7626262626268622 0
-9454 0.5713611637827853 0.8939393939404437 0
-9455 0.2476951037844925 0.1616161616164719 0
-9456 0.6210063297651621 0.008932791410969443 0
-9457 0.5363702383774107 0.8737373737383228 0
-9458 0.1864609843239969 0.651515151515214 0
-9459 0.1864609843242281 0.5505050505050935 0
-9460 0.1602177902696138 0.7777777777778315 0
-9461 0.1514700589182627 0.7727272727273358 0
-9462 0.8950272237845388 0.2828282828301031 0
-9463 0.05524429957798093 0.6969697073523148 0
-9464 0.3176769545956932 0.07070707070734422 0
-9465 0.4663883875677307 0.3787878787890478 0
-9466 0.8600362983785532 0.3939393939411913 0
-9467 0.6850816713512846 0.6767676767685633 0
-9468 0.6675862086486597 0.6363636363645884 0
-9469 0.6588384772972561 0.5404040404052639 0
-9470 0.9737564777417779 0.03535136022840647 0
-9471 0.6413430145941432 0.7626262626273356 0
-9472 0.06399274540595272 0.1464646464645711 0
-9473 0.1252268648648023 0.4848484848482745 0
-9474 0.9037749551358579 0.3080808080826805 0
-9475 0.9037749551358386 0.3181818181837044 0
-9476 0.7550635221635189 0.06060606060764016 0
-9477 0.1077314021625209 0.2222222222221365 0
-9478 0.6325952832442676 0.1414141414152828 0
-9479 0.9300181491899053 0.3434343434363175 0
-9480 0.7988021789188081 0.6414141414153708 0
-9481 0.9212704178387787 0.2272727272745269 0
-9482 0.1777113890821484 0.05050604099870418 0
-9483 0.2914337605414092 0.1363636363640008 0
-9484 0.8862794924315657 0.9040404040417305 0
-9485 0.4576406562172542 0.2020202020210074 0
-9486 0.7463970859313385 0.02528668738896479 0
-9487 0.8950272237830199 0.8484848484856123 0
-9488 0.3001814918929086 0.08080808080834126 0
-9489 0.2914337605415398 0.07575757575780317 0
-9490 0.6150998205398195 0.797979797981033 0
-9491 0.4139019994607093 0.09595959596022295 0
-9492 0.8075499102704803 0.3636363636380845 0
-9493 0.5188747756770721 0.07575757575842329 0
-9494 0.924429197514956 0.9910569352455791 0
-9495 0.5713611637836831 0.6717171717178844 0
-9496 0.9475136118910792 0.8080808080817017 0
-9497 0.4139019994588791 0.7323232323239899 0
-9498 0.7323895015834512 0.00890653349224947 0
-9499 0.7375680594600162 0.3030303030317773 0
-9500 0.3001814918927124 0.2020202020206411 0
-9501 0.4926315816215658 0.5656565656574108 0
-9502 0.2564428351358647 0.1464646464649516 0
-9503 0.2651905664870681 0.2424242424246609 0
-9504 0.09898367081122596 0.2878787878788389 0
-9505 0.8950272237838015 0.4646464646483023 0
-9506 0.8950272237838881 0.4545454545473424 0
-9507 0.3964065367580327 0.06565656565709463 0
-9508 0.4051542681073387 0.8080808080814663 0
-9509 0.2826860291894279 0.4343434343437644 0
-9510 0.5888566264874819 0.1767676767686413 0
-9511 0.3001814918924668 0.2626262626267585 0
-9512 0.1427223275673971 0.5656565656565009 0
-9513 0.9562613432424614 0.7424242424253779 0
-9514 0.1427223275677858 0.3737373737374067 0
-9515 0.7813067162161451 0.631313131314343 0
-9516 0.07597488318115526 0.9911287230832075 0
-9517 0.1864609843234014 0.883838383838513 0
-9518 0.1952087156925275 0.9393939393630413 0
-9519 0.5363702383784861 0.4292929292941849 0
-9520 0.6763339399998834 0.7020202020210407 0
-9521 0.1427223275679443 0.2121212121212078 0
-9522 0.4926315816206953 0.8585858585866939 0
-9523 0.8637743000853557 0.008862472861400935 0
-9524 0.2651905664872546 0.1515151515154843 0
-9525 0.5888566264857145 0.813131313132471 0
-9526 0.2301996410805627 0.7676767676768506 0
-9527 0.7813067162163709 0.3888888888905574 0
-9528 0.1602177902700694 0.5858585858585671 0
-9529 0.7025771340539776 0.6767676767686122 0
-9530 0.3789110740538839 0.6212121212125897 0
-9531 0.6238475518928047 0.1969696969706952 0
-9532 0.04649358214119383 0.4494949494945494 0
-9533 0.07274047675732816 0.1313131313130816 0
-9534 0.457640656216279 0.5151515151523512 0
-9535 0.08148820810833254 0.3686868686867164 0
-9536 0.1252268648654064 0.1515151515151938 0
-9537 0.4190268829888806 0.9911533184689154 0
-9538 0.9912522686485562 0.5808080808097066 0
-9539 0.501379312973163 0.3686868686881032 0
-9540 0.3001814918920334 0.474747474747823 0
-9541 0.7725589848654886 0.2727272727288149 0
-9542 0.9562613432424 0.8232323232331713 0
-9543 0.125226864863918 0.9090909090908892 0
-9544 0.8512885670262444 0.8636363636376254 0
-9545 0.8600362983776326 0.8585858585869892 0
-9546 0.6763339399993105 0.7929292929306807 0
-9547 0.5801088951353041 0.3838383838397434 0
-9548 0.7813067162150095 0.9444444444455061 0
-9549 0.606352089188538 0.7727272727284837 0
-9550 0.2651905664859612 0.7777777777779376 0
-9551 0.5013793129740267 0.1868686868694407 0
-9552 0.3526678799997688 0.6464646464650406 0
-9553 0.9562613432423769 0.9343434343449304 0
-9554 0.9562613432423923 0.9242424242438987 0
-9555 0.7988021789187864 0.651515151516358 0
-9556 0.5805989389738132 0.009785303941050524 0
-9557 0.7200725967567791 0.6161616161627262 0
-9558 0.2826860291900662 0.111111111111406 0
-9559 0.04649685995406144 0.1767676805073666 0
-9560 0.1864609843239379 0.6717171717172215 0
-9561 0.3789110740530665 0.9141414141418789 0
-9562 0.9125226864864732 0.474747474749331 0
-9563 0.2299983465209431 0.02021613112349814 0
-9564 0.4751361189187093 0.636363636364375 0
-9565 0.8250453729740213 0.09090909091072656 0
-9566 0.9912522686484984 0.8131313131314063 0
-9567 0.3439201486483224 0.691919191919586 0
-9568 0.4139019994593386 0.601010101010659 0
-9569 0.6763339400007099 0.2272727272738574 0
-9570 0.6500907459468722 0.1717171717182781 0
-9571 0.9387658805401978 0.5808080808099407 0
-9572 0.06399274540436529 0.9545454545453198 0
-9573 0.1339745962154605 0.8232323232323535 0
-9574 0.3176769545949449 0.3939393939398299 0
-9575 0.7288203281086172 0.3282828282842761 0
-9576 0.6500907459461506 0.3535353535368454 0
-9577 0.256442835135233 0.4898989898992215 0
-9578 0.2914337605400584 0.7626262626264981 0
-9579 0.1427223275674247 0.5555555555554905 0
-9580 0.6325952832433782 0.4040404040418237 0
-9581 0.4488929248646006 0.6616161616168152 0
-9582 0.4488929248645335 0.6717171717178836 0
-9583 0.2476951037842328 0.3232323232326443 0
-9584 0.7113248654047152 0.7929292929307605 0
-9585 0.9475136118930424 0.1010101010119295 0
-9586 0.7900544475669586 0.8080808080820764 0
-9587 0.247695103783352 0.737373737373867 0
-9588 0.8862794924318167 0.8030303030311208 0
-9589 0.30018149189085 0.9090909090912012 0
-9590 0.8687840297296199 0.5808080808095977 0
-9591 0.2826860291900213 0.141414141414496 0
-9592 0.3789110742489895 0.9444444441053589 0
-9593 0.04649728270156952 0.8535353535353433 0
-9594 0.09898367081036928 0.6313131313129171 0
-9595 0.387658805404464 0.8787878787884102 0
-9596 0.195208715675503 0.5858585858586463 0
-9597 0.4396148374935867 0.9902173381772482 0
-9598 0.440145193514614 0.1717171717179362 0
-9599 0.6588384772965333 0.8232323232336487 0
-9600 0.3614156113512948 0.5707070707075252 0
-9601 0.7988021789187474 0.6717171717183278 0
-9602 0.8075499102708971 0.2828282828298848 0
-9603 0.6238475518919664 0.4494949494963198 0
-9604 0.4488929248659599 0.1767676767684676 0
-9605 0.02869703592700506 0.6717560699961544 0
-9606 0.4226497308102933 0.7070707070715041 0
-9607 0.790054447567732 0.3838383838400701 0
-9608 0.9125226864864349 0.5050505050522996 0
-9609 0.5713611637839461 0.3888888888902299 0
-9610 0.5713611637837476 0.5505050505060614 0
-9611 0.9475136118930378 0.1515151515168567 0
-9612 0.2564428351346207 0.7727272727274137 0
-9613 0.4751361189186157 0.6666666666674081 0
-9614 0.1864609843247536 0.1969696969697982 0
-9615 0.1777132529728797 0.5454545454545622 0
-9616 0.3351724172981692 0.2020202020207303 0
-9617 0.702577134054964 0.1515151515164145 0
-9618 0.5976043578379538 0.474747474748647 0
-9619 0.7900544475681068 0.3030303030319106 0
-9620 0.7550635221627592 0.2828282828297862 0
-9621 0.3351724172984792 0.06060606060634541 0
-9622 0.6938294027026418 0.6717171717180908 0
-9623 0.4313974621621721 0.4797979797990117 0
-9624 0.6325952832425297 0.7979797979810779 0
-9625 0.8600362983785713 0.3838383838401829 0
-9626 0.4313974621623176 0.3787878787889884 0
-9627 0.4226497308109877 0.3636363636374668 0
-9628 0.2127041783778957 0.7474747474747925 0
-9629 0.5451179697299025 0.3838383838396878 0
-9630 0.571361163783884 0.6010101010108641 0
-9631 0.895027223784557 0.2727272727290775 0
-9632 0.5451179697297769 0.5151515151525062 0
-9633 0.7638112535133037 0.7121212121222071 0
-9634 0.8775317610807239 0.6868686868699658 0
-9635 0.6063520891892337 0.5101010101021448 0
-9636 0.1339745962161693 0.4898989898988229 0
-9637 0.2826854401463278 0.9595947807639118 0
-9638 0.1864609843249758 0.1363636363637898 0
-9639 0.04649604100633042 0.07575757575743579 0
-9640 0.5976043578381171 0.343434343435755 0
-9641 0.2389473724332737 0.06565656565665361 0
-9642 0.300181491892008 0.4848484848488249 0
-9643 0.5101270443244575 0.4040404040416368 0
-9644 0.8075499102699975 0.7373737373746979 0
-9645 0.6675862086487789 0.4040404040418784 0
-9646 0.1164791335132924 0.5707070707069063 0
-9647 0.2739382978386355 0.1363636363639626 0
-9648 0.5633133141718824 0.01935164118402623 0
-9649 0.781306743715752 0.04545422781529976 0
-9650 0.6011807036904514 0.008848659915082734 0
-9651 0.06399274540444704 0.8030303030302655 0
-9652 0.06399274540447425 0.7929292929292425 0
-9653 0.9737568059459026 0.4696969696989214 0
-9654 0.623847551891481 0.7525252525262648 0
-9655 0.5188747756751346 0.7121212121222342 0
-9656 0.8950272237829116 0.9090909090922514 0
-9657 0.4226497308099073 0.8585858585865102 0
-9658 0.3351724172964057 0.8686868686872873 0
-9659 0.06399274540550043 0.429292929292613 0
-9660 0.9912522686485867 0.6010101010116061 0
-9661 0.8775323068484098 0.9393926021863968 0
-9662 0.5976043578387283 0.2222222222231244 0
-9663 0.6675862086478711 0.8282828282841732 0
-9664 0.5453746607369747 0.01916308620677494 0
-9665 0.536315662617899 0.0160229819257971 0
-9666 0.4895959762242176 0.9912464195691842 0
-9667 0.6150998205407521 0.3535353535367928 0
-9668 0.790054447567649 0.5555555555569244 0
-9669 0.9300181491884099 0.8383838383847385 0
-9670 0.7638112535143082 0.1666666666680519 0
-9671 0.6150998205414753 0.1919191919201832 0
-9672 0.3701633427025427 0.616161616162067 0
-9673 0.8425408356748293 0.8888888888901272 0
-9674 0.5363702383782991 0.6616161616168086 0
-9675 0.7375680594602271 0.2020202020214791 0
-9676 0.06398554457715164 0.4898989900976434 0
-9677 0.1689655216219465 0.2373737373737785 0
-9678 0.56261359035297 0.05050532403005804 0
-9679 0.5013793129743809 0.0757575757583802 0
-9680 0.9475136118913164 0.6666666666681784 0
-9681 0.4838838502695051 0.8030303030311796 0
-9682 0.8775317610811326 0.4545454545472674 0
-9683 0.4488929248649199 0.4393939393950444 0
-9684 0.2739382978377204 0.5808080808083212 0
-9685 0.1077314021625402 0.212121212121134 0
-9686 0.4139019994585668 0.8535353535359866 0
-9687 0.7463157908115762 0.1868686868699868 0
-9688 0.6850816713514463 0.4242424242439042 0
-9689 0.5888566264856573 0.8333333333344854 0
-9690 0.6850816713519046 0.2929292929306467 0
-9691 0.7463157908114549 0.2575757575772493 0
-9692 0.7375680594593579 0.6767676767686904 0
-9693 0.6938294027034563 0.217171717172849 0
-9694 0.6938305193278878 0.04545561675366157 0
-9695 0.8337931043234528 0.9040404040416176 0
-9696 0.9650090745953553 0.3232323232343079 0
-9697 0.3789110740551897 0.1060606060611608 0
-9698 0.632613224147512 0.9796916391723128 0
-9699 0.4576406562152974 0.8585858585866025 0
-9700 0.8950272237840101 0.3838383838402415 0
-9701 0.8250453729722685 0.8383838383851077 0
-9702 0.7813067162173836 0.07575757575921403 0
-9703 0.8600362983782984 0.5757575757590851 0
-9704 0.3264246859457856 0.6111111111114624 0
-9705 0.4401451935128879 0.747474747475554 0
-9706 0.6588384772973161 0.6313131313140766 0
-9707 0.9387658805403861 0.5303030303048286 0
-9708 0.2127041783773874 0.9191919191920253 0
-9709 0.2651905664857799 0.8181818181820822 0
-9710 0.9300181491900754 0.2626262626281 0
-9711 0.1602177902700454 0.5959595959595787 0
-9712 0.2039564470265243 0.752525252525294 0
-9713 0.7463157908109362 0.550505050506336 0
-9714 0.9650090745956496 0.1212121212139647 0
-9715 0.4576406562175644 0.09090909090980143 0
-9716 0.886279492432241 0.6010101010116025 0
-9717 0.807549910270952 0.252525252526855 0
-9718 0.3351724172963327 0.8989898989902692 0
-9719 0.2914337605394264 0.9343434343436599 0
-9720 0.6763339399992406 0.8232323232336898 0
-9721 0.09023593945846238 0.8383838383839319 0
-9722 0.4313974621615021 0.7626262626270359 0
-9723 0.1864609843238355 0.7222222222222842 0
-9724 0.4313974621621626 0.4696969696980232 0
-9725 0.4226497308107018 0.5959595959601792 0
-9726 0.8425408356751934 0.7878787878797748 0
-9727 0.3614156113505311 0.8333333333338583 0
-9728 0.7463157908114733 0.2474747474762427 0
-9729 0.9387658805398897 0.7222222222234186 0
-9730 0.9125224116212335 0.06060653669031339 0
-9731 0.02866417833351216 0.8029871437790098 0
-9732 0.5801088951363933 0.08080808080907258 0
-9733 0.09898367080998589 0.7828282828283311 0
-9734 0.7811382870231061 0.9746255558827571 0
-9735 0.431397462162066 0.5909090909097031 0
-9736 0.676333940000105 0.4191919191933918 0
-9737 0.545106752770568 0.9595819933341801 0
-9738 0.457640656215081 0.9393939393945802 0
-9739 0.1514700589180297 0.8838383838384173 0
-9740 0.1602177902693841 0.8787878787879438 0
-9741 0.08148820810712623 0.9242424242423272 0
-9742 0.3789110740540981 0.5303030303035554 0
-9743 0.4840144365922202 0.9746668572538844 0
-9744 0.6675862086477328 0.92929292929402 0
-9745 0.5188747756756378 0.5808080808089472 0
-9746 0.7988021789198787 0.1262626262642405 0
-9747 0.6325952832441719 0.181818181819225 0
-9748 0.09023593542075327 0.5151515151954382 0
-9749 0.5888566264859579 0.7424242424253585 0
-9750 0.2564428351341486 0.8939393939396127 0
-9751 0.1164791335126378 0.8737373737373619 0
-9752 0.8425395547596549 0.959593680468217 0
-9753 0.7725589848655081 0.2626262626278052 0
-9754 0.2127041783774194 0.8989898989900412 0
-9755 0.5363702383773764 0.8838383838393173 0
-9756 0.807534758899465 0.9696946471060893 0
-9757 0.9562613432425722 0.6919191919205877 0
-9758 0.3089292232426757 0.7929292929295566 0
-9759 0.2127041783782666 0.5656565656566688 0
-9760 0.9737568059465782 0.3686868686890026 0
-9761 0.8075499102695913 0.8282828282841412 0
-9762 0.7025771340549367 0.161616161617401 0
-9763 0.3439201486484043 0.651515151515523 0
-9764 0.947513488339661 0.04040136545484421 0
-9765 0.7813067162164407 0.3484848484865367 0
-9766 0.06399250445853116 0.7121212144526068 0
-9767 0.8775317610812684 0.4141414141432666 0
-9768 0.8162976416207405 0.904040404041581 0
-9769 0.04648654505392075 0.9343813102041162 0
-9770 0.6675862086494856 0.1919191919202967 0
-9771 0.3701633427019596 0.797979797980386 0
-9772 0.5538659813008091 0.9545423812800612 0
-9773 0.1164791335133288 0.54040404040382 0
-9774 0.2039564470274959 0.3080808080810422 0
-9775 0.3526678799999777 0.5555555555559976 0
-9776 0.6938294027021455 0.762626262627615 0
-9777 0.1077314021613517 0.7878787878788935 0
-9778 0.352667879999196 0.8282828282833382 0
-9779 0.4313974621615765 0.7323232323240311 0
-9780 0.4401451935129129 0.7373737373745514 0
-9781 0.1164169728345339 0.0354601699632418 0
-9782 0.04649691510551591 0.2070704443174079 0
-9783 0.4313974621623006 0.3888888888899932 0
-9784 0.05524493466721584 0.6868686880220993 0
-9785 0.0464967209659353 0.6919192012520472 0
-9786 0.4576406562152696 0.8686868686876013 0
-9787 0.7638112535127309 0.863636363637808 0
-9788 0.7725589848641049 0.8585858585873093 0
-9789 0.9562613432442004 0.2575757575776257 0
-9790 0.09898367081015752 0.7222222222221788 0
-9791 0.4051542681094766 0.04040404040453263 0
-9792 0.4663883875670294 0.7121212121221124 0
-9793 0.5013793129722344 0.7929292929302296 0
-9794 0.09023593945984706 0.2121212121211038 0
-9795 0.5538657010804299 0.7626262626273455 0
-9796 0.9562613432431972 0.4797979797999034 0
-9797 0.8950272237832666 0.7474747474758174 0
-9798 0.1077314021615381 0.7272727272727642 0
-9799 0.9037749551347957 0.6313131313147033 0
-9800 0.3351724172972919 0.5454545454549488 0
-9801 0.5188747756756867 0.5303030303039588 0
-9802 0.5976043578379939 0.3939393939407718 0
-9803 0.8862794924333187 0.2070707070723809 0
-9804 0.6675862086485179 0.5757575757587818 0
-9805 0.4401451935135728 0.4343434343445265 0
-9806 0.3089292232424267 0.8434343434347258 0
-9807 0.8775317610812502 0.4343434343452903 0
-9808 0.2476951037838459 0.5050505050507058 0
-9809 0.7200725967568233 0.4848484848499146 0
-9810 0.3701633427026598 0.5656565656570439 0
-9811 0.4401451935127627 0.7979797979805647 0
-9812 0.982504537297014 0.6060606060623458 0
-9813 0.247695103783616 0.5959595959597725 0
-9814 0.422649730812048 0.111111111111765 0
-9815 0.5363702383784145 0.5202020202029881 0
-9816 0.7550635221616606 0.777777777779005 0
-9817 0.7200725967582415 0.0606060606075754 0
-9818 0.6675862086488106 0.3838383838398743 0
-9819 0.2389473724329128 0.308080808081115 0
-9820 0.7113248654062149 0.186868686869904 0
-9821 0.7200725967575653 0.1818181818194301 0
-9822 0.3439201486486347 0.5505050505054725 0
-9823 0.1339745962155325 0.7626262626264289 0
-9824 0.1952087156754802 0.5959595959596556 0
-9825 0.151470058919354 0.1868686868687164 0
-9826 0.588856626486622 0.4090909090922625 0
-9827 0.3001814918927309 0.1919191919196306 0
-9828 0.7988021789189369 0.580808080809427 0
-9829 0.3176769545945604 0.5555555555559126 0
-9830 0.4051542681072064 0.8585858585864616 0
-9831 0.09023593945898731 0.6363636363634076 0
-9832 0.1164791333945165 0.06565656586395753 0
-9833 0.04649728270164909 0.8232323232322661 0
-9834 0.5626134324315762 0.8383838383849128 0
-9835 0.5013793129717696 0.9545454545461948 0
-9836 0.9387658805411827 0.3888888888909782 0
-9837 0.4313974621615271 0.7525252525260321 0
-9838 0.85128856702708 0.4595959595976971 0
-9839 0.8687840297306491 0.1565656565673219 0
-9840 0.7200725967563841 0.7373737373749558 0
-9841 0.5801088951342125 0.8686868686879406 0
-9842 0.5976043578388524 0.1616161616171786 0
-9843 0.7988021789187647 0.6616161616173434 0
-9844 0.1252253261257415 0.9595933736474406 0
-9845 0.8600362983791694 0.2323232323249264 0
-9846 0.7375680594589685 0.7676767676780348 0
-9847 0.7375680594599614 0.3333333333347936 0
-9848 0.510127044324287 0.5555555555564484 0
-9849 0.4926315816230102 0.08080808080885961 0
-9850 0.3876588054043903 0.9191919191923975 0
-9851 0.03764776359282745 0.02025539359456423 0
-9852 0.09898366961405247 0.07575757783159233 0
-9853 0.5188747756765508 0.2373737373745529 0
-9854 0.2301996410800101 0.9494949494950252 0
-9855 0.2039564470277714 0.05555555555554482 0
-9856 0.5626134324313212 0.9292929292938518 0
-9857 0.8250453729721909 0.8686868686880909 0
-9858 0.6500907459456381 0.7373737373747236 0
-9859 0.7725589848648627 0.6060606060618493 0
-9860 0.7725589848651112 0.343434343436002 0
-9861 0.6938294027033121 0.2676767676781504 0
-9862 0.3264246859462059 0.4292929292933716 0
-9863 0.3001814918918493 0.555555555555869 0
-9864 0.1077314021614439 0.7575757575758266 0
-9865 0.5451179697294876 0.6767676767684837 0
-9866 0.9300181491902253 0.191919191920945 0
-9867 0.6150998205394883 0.9494949494959726 0
-9868 0.8425408356753272 0.7373737373747633 0
-9869 0.9475136118929556 0.2020202020220084 0
-9870 0.2914337605416352 0.03535353535363758 0
-9871 0.6500907459459212 0.5353535353547435 0
-9872 0.3439201486481758 0.752525252525679 0
-9873 0.5363702383785021 0.4191919191931829 0
-9874 0.8250453729725938 0.7676767676777008 0
-9875 0.930018149188633 0.696969696971014 0
-9876 0.6150998205415916 0.1414141414152441 0
-9877 0.763811253513329 0.7020202020212136 0
-9878 0.8512885670271163 0.5202020202035971 0
-9879 0.5013793721365292 0.04545416715588162 0
-9880 0.4926315816214817 0.6161616161624338 0
-9881 0.5538657010804836 0.7424242424253338 0
-9882 0.317676954594422 0.6161616161619461 0
-9883 0.3876588054066445 0.0707070707075885 0
-9884 0.7988021789183697 0.7828282828295436 0
-9885 0.8162976416223661 0.217171717173293 0
-9886 0.3001814918917318 0.6060606060608997 0
-9887 0.7988021789179671 0.9242424242435521 0
-9888 0.3176769545949688 0.3838383838388263 0
-9889 0.658838477297535 0.3383838383853576 0
-9890 0.2739382978372729 0.7929292929294769 0
-9891 0.7025771340541451 0.4242424242439286 0
-9892 0.816297641622266 0.2777777777793938 0
-9893 0.3089292232432163 0.5505050505053883 0
-9894 0.3351724172970394 0.6565656565660061 0
-9895 0.2389473724321854 0.6313131313132907 0
-9896 0.8337931043239479 0.7626262626271998 0
-9897 0.2651905664873337 0.1010101010103359 0
-9898 0.2476951037827176 0.9393939393940691 0
-9899 0.9212704178386257 0.2979797979816899 0
-9900 0.7813067162162248 0.4797979797995509 0
-9901 0.7463157908096973 0.9545454545464676 0
-9902 0.09898367081007259 0.7525252525252542 0
-9903 0.1077314021616088 0.7070707070707191 0
-9904 0.1514700589193082 0.2070707070707239 0
-9905 0.5363702383772636 0.9242424242432783 0
-9906 0.6588384772973045 0.5202020202032659 0
-9907 0.9037749551344939 0.792929292930182 0
-9908 0.2301996410801384 0.8787878787880786 0
-9909 0.1077314021615073 0.7373737373737834 0
-9910 0.562613432433465 0.1717171717180807 0
-9911 0.9650090745953267 0.343434343436361 0
-9912 0.50137931297299 0.5303030303039156 0
-9913 0.9125226864863849 0.5353535353552696 0
-9914 0.501379312972567 0.6818181818191249 0
-9915 0.1077314021614122 0.7676767676768506 0
-9916 0.03774955135026365 0.8282828282827561 0
-9917 0.7025771340541307 0.5656565656577679 0
-9918 0.5363702383776148 0.8030303030313206 0
-9919 0.9037749551348241 0.6212121212137142 0
-9920 0.3264246859459264 0.5505050505054304 0
-9921 0.6500907459459652 0.5151515151527453 0
-9922 0.4226497308120953 0.09090909090972749 0
-9923 0.6588384772981962 0.1767676767687897 0
-9924 0.5888566264866484 0.3888888888902571 0
-9925 0.1427223275665697 0.9292929292929473 0
-9926 0.9037749245955156 0.06565661855635645 0
-9927 0.8950272237831363 0.8080808080816249 0
-9928 0.4051542681073905 0.787878787879471 0
-9929 0.2564428351347238 0.7323232323233817 0
-9930 0.6500907459452397 0.7979797979811214 0
-9931 0.5538657010812361 0.3989898989912077 0
-9932 0.860036298379414 0.07070707070878229 0
-9933 0.265190566486351 0.5858585858588043 0
-9934 0.9300709561414285 0.03003712172472778 0
-9935 0.9037749517427982 0.0757575816368796 0
-9936 0.9475136118930219 0.171717171718916 0
-9937 0.2651905664861813 0.6666666666668888 0
-9938 0.2564428351349842 0.5909090909092882 0
-9939 0.4751361189187806 0.6060606060613735 0
-9940 0.8775317610818214 0.2727272727290512 0
-9941 0.4139019994595954 0.3888888888899659 0
-9942 0.9125226864857527 0.8282828282836675 0
-9943 0.7200725967568083 0.5959595959607584 0
-9944 0.2039564470260532 0.914141414141513 0
-9945 0.6763339400008479 0.1868686868698219 0
-9946 0.07274047675624519 0.6363636363633582 0
-9947 0.7988021789196298 0.1969696969711309 0
-9948 0.07274047675743171 0.06060606060596542 0
-9949 0.7638112535142396 0.1969696969710329 0
-9950 0.3089292232430777 0.6111111111114239 0
-9951 0.8600362983775098 0.8989898989911695 0
-9952 0.7900544475655048 0.949494949493195 0
-9953 0.9475136118910399 0.9090909090923114 0
-9954 0.9912522686486286 0.4494949494968626 0
-9955 0.807549910270255 0.5959595959609398 0
-9956 0.1952087156751606 0.737373737373815 0
-9957 0.6938294027041103 0.0656565656581182 0
-9958 0.09023589921203475 0.5353535384415572 0
-9959 0.6150998205404511 0.696969696970452 0
-9960 0.05524485891411536 0.04040412175336485 0
-9961 0.9387658805412281 0.3686868686889151 0
-9962 0.7725589848642994 0.7979797979810542 0
-9963 0.8600362983780001 0.7272727272738283 0
-9964 0.9125219179098382 0.9595934048464542 0
-9965 0.8950272237832267 0.7676767676777423 0
-9966 0.2914337605414669 0.106060606060907 0
-9967 0.7375680594596035 0.393939393940989 0
-9968 0.877531761080442 0.8282828282835507 0
-9969 0.9300181491902065 0.2020202020219768 0
-9970 0.7200725967571361 0.3535353535368747 0
-9971 0.4838838502701697 0.590909090909903 0
-9972 0.6675862086487953 0.3939393939408778 0
-9973 0.5888566264856867 0.8232323232334782 0
-9974 0.5976043578369991 0.8383838383850113 0
-9975 0.658838477297509 0.3484848484863581 0
-9976 0.5276225070264106 0.747474747475776 0
-9977 0.6763339399991103 0.9242424242435173 0
-9978 0.8775317610820541 0.1515151515167705 0
-9979 0.6850816713512259 0.7070707070716152 0
-9980 0.9737568059469189 0.1666666666684345 0
-9981 0.6850816713505354 0.8484848484862155 0
-9982 0.6500907459458973 0.5454545454557427 0
-9983 0.2564428351351858 0.5101010101012293 0
-9984 0.4139019994604456 0.2070707070714157 0
-9985 0.2127041783779762 0.7171717171717666 0
-9986 0.8075499102701379 0.6464646464658789 0
-9987 0.3964065367562328 0.7121212121219449 0
-9988 0.5188747355818469 0.944444406944705 0
-9989 0.300181491890788 0.9393939393941682 0
-9990 0.4576406562151895 0.8989898989906006 0
-9991 0.2476951037842786 0.3030303030306316 0
-9992 0.8775317610808142 0.6363636363651337 0
-9993 0.6413430145945473 0.5606060606072025 0
-9994 0.6938294027028048 0.4191919191934177 0
-9995 0.396406536757832 0.1565656565662934 0
-9996 0.1864609628113894 0.9444443890952182 0
-9997 0.9300181491888174 0.6060606060623474 0
-9998 0.3264246859456759 0.6616161616164875 0
-9999 0.4313974621635335 0.06565656565719064 0
-10000 0.08148820810760381 0.6414141414138962 0
-10001 0.5713613392508889 0.04545484937115103 0
-10002 0.5451179697306919 0.21212121212202 0
-10003 0.9387658805412943 0.3383838383858169 0
-10004 0.1602177902699968 0.6161616161615939 0
-10005 0.5626134324318007 0.7575757575768596 0
-10006 0.2564428351360338 0.06565656565669013 0
-10007 0.2476951037834881 0.6565656565658373 0
-10008 0.772558984864758 0.6565656565667974 0
-10009 0.8687840297293341 0.7222222222233546 0
-10010 0.3614156113504219 0.8838383838388484 0
-10011 0.5363702383785437 0.388888888890174 0
-10012 0.7288123967075834 0.9646592092958358 0
-10013 0.1952087156754575 0.6060606060606658 0
-10014 0.6063520891903348 0.09595959596063623 0
-10015 0.728820328107353 0.8535353535367891 0
-10016 0.720072596756001 0.8484848484862785 0
-10017 0.2651905664864554 0.5454545454547733 0
-10018 0.9475136118924825 0.4141414141435613 0
-10019 0.5451179697286322 0.919191919192794 0
-10020 0.195208715675123 0.7676767676768125 0
-10021 0.4751361189188482 0.5757575757583768 0
-10022 0.3351724172975672 0.4242424242428993 0
-10023 0.9037749551361502 0.1666666666683244 0
-10024 0.5713643626794166 0.9545430807087558 0
-10025 0.06399249402245516 0.7323232323799708 0
-10026 0.7463157908101177 0.8232323232338068 0
-10027 0.8862794924319107 0.7626262626272382 0
-10028 0.4838838502692474 0.8939393939401804 0
-10029 0.5801088951361489 0.171717171718124 0
-10030 0.0902359394584924 0.8282828282829131 0
-10031 0.0639808584932106 0.9646258759122875 0
-10032 0.2564428351350899 0.550505050505254 0
-10033 0.5713611637837503 0.5606060606070247 0
-10034 0.08148778839488877 0.5505050961586083 0
-10035 0.71132486540505 0.7323232323244397 0
-10036 0.833791714868347 0.9646440479256184 0
-10037 0.1077314021625588 0.2929292929293534 0
-10038 0.2389473724322505 0.6010101010102574 0
-10039 0.9125226864856482 0.8888888888902626 0
-10040 0.7550635221619239 0.7171717171727432 0
-10041 0.8775317610820615 0.1111111111128168 0
-10042 0.3789110740552918 0.06565656565704847 0
-10043 0.08148796267867844 0.5303030402021124 0
-10044 0.7988021789190133 0.4191919191935782 0
-10045 0.9037749551347264 0.6717171717185669 0
-10046 0.685081671352339 0.1313131313144053 0
-10047 0.9650090745938292 0.7171717171730057 0
-10048 0.2916098735925373 0.02516648902558905 0
-10049 0.8687840297288035 0.9242424242437123 0
-10050 0.6850816713519676 0.2626262626276311 0
-10051 0.6675862086485206 0.5858585858597644 0
-10052 0.5801088951362325 0.1414141414151593 0
-10053 0.5363667424196504 0.954542881045957 0
-10054 0.6588384772966092 0.792929292930641 0
-10055 0.9037749551347437 0.6616161616176035 0
-10056 0.7638112535136647 0.5303030303043899 0
-10057 0.03772812815372915 0.8687094269844851 0
-10058 0.291433760540433 0.5808080808083604 0
-10059 0.8425408356753518 0.727272727273784 0
-10060 0.6675862086484899 0.7272727272735261 0
-10061 0.5976043578386844 0.2323232323241645 0
-10062 0.2651905664861975 0.6565656565658726 0
-10063 0.07274047675731067 0.1414141414140859 0
-10064 0.3089292232424544 0.8333333333337241 0
-10065 0.9037749551354055 0.3888888888907893 0
-10066 0.5538657010802988 0.8131313131323722 0
-10067 0.2476951037842968 0.2929292929296327 0
-10068 0.2039564470260696 0.9040404040405208 0
-10069 0.6063520891902696 0.1363636363647323 0
-10070 0.05521192319911923 0.969645368282702 0
-10071 0.3526678799992179 0.8181818181823411 0
-10072 0.6938294027034166 0.2272727272738883 0
-10073 0.7113248654055022 0.4191919191934421 0
-10074 0.7725590154198024 0.04040368747136261 0
-10075 0.5101270443236772 0.7575757575767414 0
-10076 0.1339745962160791 0.5505050505049629 0
-10077 0.4488929248661556 0.1060606060613101 0
-10078 0.4051542681082564 0.3939393939404445 0
-10079 0.3001814918909106 0.8989898989902083 0
-10080 0.3001814918929328 0.07070707070730521 0
-10081 0.947513611893037 0.1616161616178787 0
-10082 0.2039564470264119 0.7828282828283891 0
-10083 0.8075499102695274 0.8585858585872784 0
-10084 0.807549910270932 0.262626262627865 0
-10085 0.4751361189183652 0.7171717171726387 0
-10086 0.07274047675683083 0.4343434343431333 0
-10087 0.7288203281081862 0.4494949494964623 0
-10088 0.9912522686485761 0.5606060606078026 0
-10089 0.3876588054064299 0.1717171717178022 0
-10090 0.9300181491884322 0.8080808080816771 0
-10091 0.5601591748013903 0.008895698488344893 0
-10092 0.2389473724322055 0.621212121212279 0
-10093 0.9299434608708089 0.04031457578965182 0
-10094 0.1777132529732871 0.2424242424243003 0
-10095 0.1514700589185756 0.6313131313130573 0
-10096 0.5451179697306719 0.2222222222230156 0
-10097 0.3001814918914241 0.7575757575760173 0
-10098 0.8775317610821467 0.06060606060774937 0
-10099 0.7375680594587192 0.8484848484862996 0
-10100 0.2826860291890631 0.5858585858588425 0
-10101 0.7638112535130719 0.7525252525265048 0
-10102 0.4313974621632928 0.156565656566386 0
-10103 0.4051542681090525 0.2222222222229148 0
-10104 0.2389473724323864 0.5505050505052068 0
-10105 0.6063027755840923 0.9748337664696174 0
-10106 0.5013793129723567 0.7424242424252135 0
-10107 0.1077314021627161 0.141414141414155 0
-10108 0.9300181491891745 0.4747474747493585 0
-10109 0.4401451935146423 0.161616161616927 0
-10110 0.0902358767433908 0.5555555620939959 0
-10111 0.2914337605398158 0.8232323232326494 0
-10112 0.8600362983789912 0.3232323232341493 0
-10113 0.6763339400006066 0.2676767676781132 0
-10114 0.6675862086492672 0.2626262626275961 0
-10115 0.1164791335139162 0.2878787878788741 0
-10116 0.5101269997757374 0.9494949078284574 0
-10117 0.1514700589186765 0.6010101010100487 0
-10118 0.4576406562155141 0.7777777777786096 0
-10119 0.545118112204485 0.0505052972770553 0
-10120 0.2651905664868723 0.3535353535356979 0
-10121 0.3001814918914604 0.7474747474749982 0
-10122 0.2127041783786075 0.4242424242426112 0
-10123 0.4926315816208383 0.8080808080816994 0
-10124 0.4838838502697283 0.7121212121221653 0
-10125 0.9387656071415112 0.9545449152838865 0
-10126 0.4313974621616271 0.7121212121220252 0
-10127 0.5538657010799743 0.9242424242433227 0
-10128 0.6588384772979785 0.2373737373750114 0
-10129 0.9475136118925985 0.3737373737394555 0
-10130 0.02887613586059188 0.8333305473874284 0
-10131 0.2389473724322281 0.6111111111112671 0
-10132 0.9125226864871969 0.3232323232342323 0
-10133 0.1514700589193297 0.1969696969697192 0
-10134 0.9475136118910851 0.7979797979807273 0
-10135 0.4838838502701117 0.6212121212129105 0
-10136 0.8949686040166226 0.03076119241295887 0
-10137 0.5451179697289033 0.8282828282838517 0
-10138 0.8077118323462771 0.9793136540887368 0
-10139 0.1952087156754353 0.6161616161616772 0
-10140 0.5451179697289549 0.8080808080818441 0
-10141 0.2564428351341273 0.9040404040406076 0
-10142 0.1164763077645345 0.9646422833240877 0
-10143 0.7288203281073966 0.8131313131327845 0
-10144 0.3176769545940307 0.787878787879099 0
-10145 0.7550635221626137 0.3333333333348336 0
-10146 0.3089292232433294 0.5000000000003538 0
-10147 0.4838838502692148 0.904040404041172 0
-10148 0.9212704178387061 0.2575757575775658 0
-10149 0.833973009607716 0.9744472900029552 0
-10150 0.5188747756750438 0.7525252525262598 0
-10151 0.1077314021628253 0.1010101010101144 0
-10152 0.3089292232443265 0.06565656565680683 0
-10153 0.7288203281081821 0.4797979797994406 0
-10154 0.4926315816209946 0.7474747474756911 0
-10155 0.4838838502696557 0.742424242425168 0
-10156 0.8775317610820512 0.1212121212138055 0
-10157 0.1514700589191069 0.4292929292929615 0
-10158 0.9475136118925445 0.39393939394152 0
-10159 0.2039555796228606 0.04545456198540688 0
-10160 0.4313974621618568 0.6717171717178191 0
-10161 0.7463157908109577 0.5404040404053364 0
-10162 0.7638112535135499 0.5909090909103411 0
-10163 0.1164791335136801 0.3888888888888122 0
-10164 0.7200725967568418 0.4242424242439528 0
-10165 0.5538657010824167 0.07575757575851332 0
-10166 0.4050543188849157 0.03006200105746053 0
-10167 0.8862794924331969 0.2676767676785563 0
-10168 0.6150998205399344 0.7676767676779597 0
-10169 0.3876588054046612 0.797979797980426 0
-10170 0.6675862086478505 0.8383838383851739 0
-10171 0.3176769545943324 0.656565656565966 0
-10172 0.07274047675680324 0.4444444444441223 0
-10173 0.1952087156754129 0.626262626262691 0
-10174 0.2389473724323554 0.5606060606062211 0
-10175 0.8075499102709887 0.2020202020216794 0
-10176 0.7900544475674181 0.6666666666678169 0
-10177 0.7813067162160717 0.6717171717182894 0
-10178 0.9650090745941891 0.5656565656585471 0
-10179 0.6763339399991288 0.9141414141425268 0
-10180 0.3964065367576964 0.2171717171723905 0
-10181 0.2564428351351383 0.5303030303032363 0
-10182 0.4838838502697028 0.722222222223166 0
-10183 0.6588384772979029 0.267676767678077 0
-10184 0.2476951037846627 0.06060606060615395 0
-10185 0.06399442292634437 0.6212121212117924 0
-10186 0.7375680594587704 0.8181818181832896 0
-10187 0.475136118920308 0.08080808080882296 0
-10188 0.5626134324335511 0.1414141414151137 0
-10189 0.868661254651017 0.9644124237417162 0
-10190 0.0552450140531252 0.78787878787871 0
-10191 0.2476951037835296 0.6363636363638084 0
-10192 0.2651905664864785 0.5353535353537633 0
-10193 0.5276192595207027 0.9595929220532494 0
-10194 0.2564428351351607 0.5202020202022324 0
-10195 0.9562613432432161 0.4696969696989053 0
-10196 0.8862794924334479 0.1363636363652431 0
-10197 0.4751361189183121 0.7373737373746392 0
-10198 0.03771212570574274 0.3333077996301358 0
-10199 0.5451179697306288 0.2323232323240549 0
-10200 0.4313974621616 0.7222222222230302 0
-10201 0.3001814918919863 0.4949494949498275 0
-10202 0.9475136118917334 0.5252525252543553 0
-10203 0.07274069782970687 0.6262626262623358 0
-10204 0.4576406562152172 0.8888888888896062 0
-10205 0.483883850271675 0.07575757575834081 0
-10206 0.553865701081013 0.6616161616168248 0
-10207 0.4838838502691833 0.9141414141421627 0
-10208 0.3964065367560272 0.7929292929299465 0
-10209 0.1602177902699445 0.6363636363636193 0
-10210 0.1164791335125375 0.9242424242423942 0
-10211 0.553865701081249 0.388888888890204 0
-10212 0.7200725967560346 0.8282828282842756 0
-10213 0.1252268648652735 0.2828282828283945 0
-10214 0.4663883875666014 0.8737373737381269 0
-10215 0.09023589854189976 0.5656565694778831 0
-10216 0.1514700589185349 0.6515151515151004 0
-10217 0.5276225070265244 0.7070707070717186 0
-10218 0.8775317610808391 0.6262626262641461 0
-10219 0.107738688154873 0.9696782753735873 0
-10220 0.37016334270242 0.6767676767681401 0
-10221 0.8425408356765386 0.1717171717188042 0
-10222 0.4051542681079086 0.6363636363641565 0
-10223 0.6763339400009801 0.1262626262638975 0
-10224 0.6500907459465624 0.2626262626275599 0
-10225 0.378911074053297 0.8030303030309095 0
-10226 0.317676954593599 0.9393939393942039 0
-10227 0.7025771340537248 0.7373737373749175 0
-10228 0.0814878880509671 0.5808081049951088 0
-10229 0.9912522686486204 0.540404040405857 0
-10230 0.3876588054063069 0.2323232323238893 0
-10231 0.0814883321009004 0.6010101010097958 0
-10232 0.5451179697310696 0.08080808080898179 0
-10233 0.7288203281082036 0.4191919191934678 0
-10234 0.4576406562154125 0.8181818181826137 0
-10235 0.7725589848661061 0.07070707070866614 0
-10236 0.7463157908102804 0.7828282828295379 0
-10237 0.2476951037835078 0.6464646464648194 0
-10238 0.3089292232429673 0.6616161616164495 0
-10239 0.5451179697308707 0.1414141414150676 0
-10240 0.9387701693857912 0.964642043542147 0
-10241 0.6500885300850671 0.9595972019438901 0
-10242 0.5276225070283946 0.08080808080893923 0
-10243 0.8687840297303663 0.3181818181836557 0
-10244 0.2127032145959269 0.04040405877167134 0
-10245 0.37891107405503 0.1868686868693095 0
-10246 0.09023590771970526 0.5858585885457732 0
-10247 0.1864609843246295 0.3787878787880365 0
-10248 0.4488929248640414 0.823232323233091 0
-10249 0.9212704178378444 0.4696969696988834 0
-10250 0.5101270443257095 0.08080808080889743 0
-10251 0.9475136118910803 0.8484848484855922 0
-10252 0.1777132529732658 0.383838383838528 0
-10253 0.08148820810715138 0.9141414141413367 0
-10254 0.9650090745954371 0.2626262626281518 0
-10255 0.6238477182809736 0.9545451663503499 0
-10256 0.5626134324318581 0.7373737373748378 0
-10257 0.3789110740549452 0.2272727272733652 0
-10258 0.5888566264875927 0.1363636363646884 0
-10259 0.1252268648646945 0.5555555555554283 0
-10260 0.8425408356748059 0.8989898989911295 0
-10261 0.1339745962166269 0.2777777777779152 0
-10262 0.3264246859467519 0.2373737373742585 0
-10263 0.9387658805415681 0.2070707070725106 0
-10264 0.8512885670269402 0.5909090909105421 0
-10265 0.9300181491885721 0.7272727272738752 0
-10266 0.05524141083098655 0.7171717338439676 0
-10267 0.7638112535135316 0.6010101010113331 0
-10268 0.7725589848647413 0.6666666666677785 0
-10269 0.6500905306988289 0.9494950339093907 0
-10270 0.1689655216218046 0.4292929292930053 0
-10271 0.641343014595202 0.2676767676780383 0
-10272 0.9387658805416605 0.146464646466341 0
-10273 0.4663883875667453 0.823232323233133 0
-10274 0.667583798877192 0.9595975378068299 0
-10275 0.8687840297297239 0.5404040404056429 0
-10276 0.3176769545957207 0.0606060606063087 0
-10277 0.05524130706027664 0.7272727330696702 0
-10278 0.3439201486494856 0.237373737374298 0
-10279 0.7725589848641314 0.8484848484863374 0
-10280 0.5013793129729439 0.5505050505059208 0
-10281 0.8337931043242821 0.5909090909104878 0
-10282 0.8512885670277548 0.2575757575774533 0
-10283 0.1864609843243003 0.5202020202020718 0
-10284 0.5363705393742967 0.04545506666264252 0
-10285 0.466388387568941 0.08585858585930913 0
-10286 0.8687840297291027 0.8333333333340975 0
-10287 0.1777132529733119 0.363636363636527 0
-10288 0.0727404767573754 0.1010101010100524 0
-10289 0.4226497308104835 0.6767676767683198 0
-10290 0.370163342703562 0.2424242424248644 0
-10291 0.9212704178369872 0.893939393940781 0
-10292 0.5276225070281837 0.1414141414150226 0
-10293 0.06399274540599065 0.126262626262574 0
-10294 0.5276225070271718 0.4040404040416711 0
-10295 0.4926315816210906 0.7070707070716865 0
-10296 0.6763339399995256 0.7626262626274414 0
-10297 0.3789110740536222 0.7020202020208393 0
-10298 0.7375680594595181 0.4848484848499606 0
-10299 0.1952087156760413 0.3535353535355508 0
-10300 0.5626134324324276 0.6464646464653093 0
-10301 0.2564428351357153 0.237373737374136 0
-10302 0.8162976416222988 0.2575757575773727 0
-10303 0.4401451935127042 0.8181818181825685 0
-10304 0.3964065367563956 0.6919191919197697 0
-10305 0.09023593945986448 0.2020202020201073 0
-10306 0.3264246859471136 0.05555555555580855 0
-10307 0.4313976026820522 0.94444420105543 0
-10308 0.2826860291895927 0.3535353535357422 0
-10309 0.8600362983783459 0.5555555555571162 0
-10310 0.2476951037846836 0.05050505050511356 0
-10311 0.8337931043246639 0.3383838383856093 0
-10312 0.7463157908102502 0.792929292930562 0
-10313 0.195208715676064 0.3434343434345506 0
-10314 0.04649403178157112 0.3484839429886692 0
-10315 0.6588384772968496 0.7626262626273634 0
-10316 0.2826860291888842 0.6666666666669158 0
-10317 0.3701633427036607 0.1818181818187846 0
-10318 0.7200725967575446 0.1919191919204184 0
-10319 0.1689655216220066 0.3080808080809695 0
-10320 0.8250453729736714 0.2525252525268847 0
-10321 0.501379312972169 0.8131313131322246 0
-10322 0.8512885670277337 0.2676767676784676 0
-10323 0.1777132529731383 0.4343434343435276 0
-10324 0.9212704178373082 0.7020202020214771 0
-10325 0.2127041783780638 0.656565656565764 0
-10326 0.2126525504086765 0.03005647003432997 0
-10327 0.8512885670271276 0.4191919191936817 0
-10328 0.05524433336281381 0.343434171360322 0
-10329 0.4838838502694732 0.8131313131321796 0
-10330 0.2127041783780871 0.6464646464647521 0
-10331 0.9125226864872145 0.3131313131332064 0
-10332 0.4926315816217428 0.4141414141426145 0
-10333 0.4401453695561333 0.9595853024138008 0
-10334 0.5538657010811028 0.6313131313138168 0
-10335 0.4751361189188273 0.5858585858593752 0
-10336 0.7638112535136262 0.4090909090925214 0
-10337 0.6325952832438611 0.2626262626275197 0
-10338 0.7288203281088762 0.1969696969709378 0
-10339 0.1952087156747332 0.8989898989900094 0
-10340 0.5713611637849154 0.1363636363646427 0
-10341 0.5101270443235055 0.8181818181827487 0
-10342 0.4051542681078759 0.6565656565662183 0
-10343 0.4576406562175461 0.1010101010108078 0
-10344 0.3614156113522743 0.196969696970288 0
-10345 0.1777132529729819 0.4949494949495366 0
-10346 0.3351724172965307 0.8181818181823002 0
-10347 0.8862794924319362 0.7525252525262797 0
-10348 0.8425408356765298 0.1818181818198031 0
-10349 0.09023593824938692 0.07070707280411064 0
-10350 0.09023593945988496 0.1919191919191107 0
-10351 0.4051542681078973 0.6464646464651943 0
-10352 0.3964065367562883 0.7020202020209054 0
-10353 0.9562613432426618 0.6515151515167701 0
-10354 0.9125226190200407 0.07070718756603328 0
-10355 0.9912522686486371 0.5101010101029987 0
-10356 0.510102491092824 0.009784626795084376 0
-10357 0.9475159881893168 0.9696948539379251 0
-10358 0.8162976416215758 0.6010101010114578 0
-10359 0.7550635221622621 0.414141414143005 0
-10360 0.3526678800009011 0.1919191919197629 0
-10361 0.8162976416217628 0.3989898989916077 0
-10362 0.4926315816211219 0.6969696969706792 0
-10363 0.5451179697288719 0.8383838383848488 0
-10364 0.0639924660910806 0.7424242424873171 0
-10365 0.8337931043242481 0.6010101010114935 0
-10366 0.4139019994606947 0.1060606060612387 0
-10367 0.8337931043244153 0.4191919191936418 0
-10368 0.7375680594595662 0.4141414141429813 0
-10369 0.2214519097296509 0.5606060606061745 0
-10370 0.5626134324324771 0.626262626263308 0
-10371 0.8425408356763355 0.2828282828299626 0
-10372 0.851288567027697 0.2878787878805156 0
-10373 0.3789110740543975 0.3686868686876602 0
-10374 0.1864609843247839 0.2979797979800125 0
-10375 0.1777132529733811 0.29292929292949 0
-10376 0.7900544475676774 0.4141414141430668 0
-10377 0.4401451935147034 0.1414141414148998 0
-10378 0.4226497308103817 0.6868686868694461 0
-10379 0.317676954593866 0.8181818181822283 0
-10380 0.5188747756748177 0.8333333333342734 0
-10381 0.7463157908108786 0.4797979797994871 0
-10382 0.5101270443254953 0.1414141414149777 0
-10383 0.5276225070261279 0.848484848485798 0
-10384 0.7463157908109267 0.4090909090924955 0
-10385 0.6500907459454571 0.7676767676778891 0
-10386 0.2214519097302361 0.2373737373740548 0
-10387 0.4751361189178871 0.8989898989906521 0
-10388 0.5013793129729629 0.5404040404049185 0
-10389 0.7725589848649644 0.4141414141430357 0
-10390 0.1689655216220378 0.3282828282829988 0
-10391 0.7813067162163088 0.4191919191935505 0
-10392 0.4401451734744757 0.05050508521680256 0
-10393 0.9912522686486199 0.5303030303049037 0
-10394 0.7638112535134137 0.6616161616172705 0
-10395 0.1864609843239695 0.6616161616162178 0
-10396 0.2039564470266917 0.6616161616162546 0
-10397 0.4751361189181116 0.8181818181826569 0
-10398 0.7375680594595291 0.5858585858597903 0
-10399 0.1952087156753478 0.6565656565657332 0
-10400 0.3264246859469966 0.09595959595996989 0
-10401 0.8512885670266882 0.7222222222233262 0
-10402 0.8337931043250211 0.2575757575774068 0
-10403 0.2476951037840095 0.4242424242426877 0
-10404 0.5363702383775029 0.8434343434353244 0
-10405 0.6238475518924953 0.267676767678003 0
-10406 0.2039564470275008 0.2979797979800508 0
-10407 0.1602177902704356 0.4343434343434799 0
-10408 0.4838838502715037 0.1363636363644231 0
-10409 0.6500907459468416 0.1818181818192601 0
-10410 0.2476951037847074 0.04040404040407374 0
-10411 0.05524501405468163 0.101010101010043 0
-10412 0.7288203281081709 0.5909090909102728 0
-10413 0.9212703656441698 0.07575766616336288 0
-10414 0.7463157908108826 0.5808080808093108 0
-10415 0.7550635221622143 0.5858585858598221 0
-10416 0.5271439338070423 0.01925254537466698 0
-10417 0.5101270443241385 0.6464646464654216 0
-10418 0.3089292072308616 0.9444444167121916 0
-10419 0.8950272237837046 0.5454545454562063 0
-10420 0.8687840297303846 0.3080808080826381 0
-10421 0.3176769545949873 0.3737373737378294 0
-10422 0.9475136118925056 0.4040404040425379 0
-10423 0.5538657010822357 0.1363636363645961 0
-10424 0.5538662103176172 0.04545542747661382 0
-10425 0.2651905664868351 0.3838383838387072 0
-10426 0.2301996410801749 0.868686868687081 0
-10427 0.3264246859468093 0.1868686868691937 0
-10428 0.693829402701886 0.863636363637734 0
-10429 0.1864609843246749 0.3585858585860373 0
-10430 0.7288203281078949 0.7121212121222427 0
-10431 0.5363702383795533 0.1363636363645512 0
-10432 0.09023584125444435 0.06060623070326666 0
-10433 0.1864609843233933 0.893939393939498 0
-10434 0.256442835135419 0.3989898989901953 0
-10435 0.510127044323246 0.9090909090917266 0
-10436 0.4926315816214166 0.6363636363644229 0
-10437 0.8425408356763959 0.2525252525269235 0
-10438 0.9475136118913535 0.646464646466251 0
-10439 0.2826860291888696 0.6767676767679418 0
-10440 0.7988021789190312 0.4090909090925818 0
-10441 0.09023593945990954 0.1818181818181153 0
-10442 0.413901999459025 0.6919191919199184 0
-10443 0.7550635221634732 0.07070707070861774 0
-10444 0.8250453729730994 0.4040404040421232 0
-10445 0.2739382978385636 0.2272727272731333 0
-10446 0.8512885670278835 0.1969696969712896 0
-10447 0.4488929248646831 0.631313131313804 0
-10448 0.05524487448786288 0.09090909090899696 0
-10449 0.7200725967568014 0.6060606060617426 0
-10450 0.3439201486497176 0.09595959596005027 0
-10451 0.5013793129727449 0.6515151515159296 0
-10452 0.06399274540570304 0.3484848484847011 0
-10453 0.4663883875665188 0.9040404040411245 0
-10454 0.142722327567715 0.4444444444444258 0
-10455 0.8512885670267005 0.7121212121223466 0
-10456 0.4051542681093123 0.1111111111117248 0
-10457 0.5538023667114074 0.9645015714409033 0
-10458 0.1427223275677413 0.4343434343434342 0
-10459 0.8862794924332147 0.257575757577537 0
-10460 0.2564428351360989 0.03535353535357108 0
-10461 0.3701633427022079 0.7171717171723522 0
-10462 0.9212704178385996 0.3080808080827059 0
-10463 0.8950272237833278 0.7070707070719305 0
-10464 0.8950272237837547 0.5353535353551926 0
-10465 0.3001814918915995 0.6666666666669401 0
-10466 0.07274047675734834 0.1212121212120842 0
-10467 0.3264221631982156 0.04545083275586474 0
-10468 0.3089292232425082 0.8232323232326998 0
-10469 0.5013793129725097 0.6919191919201636 0
-10470 0.3264246859463555 0.3585858585863471 0
-10471 0.4926315816205168 0.9191919191926866 0
-10472 0.2214519097299647 0.4191919191921285 0
-10473 0.3439201486497745 0.08585858585897486 0
-10474 0.5275576976683252 0.03021973898011256 0
-10475 0.9125226864859771 0.707070707071947 0
-10476 0.8862794924320764 0.6717171717185451 0
-10477 0.4488929248647026 0.6212121212127977 0
-10478 0.851288567027226 0.3787878787896692 0
-10479 0.2739382978385091 0.2373737373741682 0
-10480 0.6150998205400688 0.7575757575767995 0
-10481 0.3351724172977084 0.3636363636368716 0
-10482 0.9037749551342859 0.8939393939407441 0
-10483 0.9825045372971695 0.5151515151534567 0
-10484 0.2914337605409302 0.3686868686872613 0
-10485 0.8337931043249091 0.3080808080825006 0
-10486 0.6675862086496114 0.1414141414153446 0
-10487 0.378911074053109 0.8939393939398972 0
-10488 0.1777132529725948 0.6666666666667009 0
-10489 0.3614156113522042 0.2373737373743417 0
-10490 0.6413430145954899 0.1868686868697319 0
-10491 0.2739382978382385 0.3484848484852129 0
-10492 0.05524286954971911 0.747474742246885 0
-10493 0.04633726735652749 0.2472973426255917 0
-10494 0.807549910270391 0.4040404040420963 0
-10495 0.3001814918922857 0.3636363636367857 0
-10496 0.3876588054044102 0.9090909090914115 0
-10497 0.4401451935133538 0.6161616161622452 0
-10498 0.3526678800008491 0.2323232323238152 0
-10499 0.6938294027027496 0.6111111111121854 0
-10500 0.1164791335135558 0.4393939393937771 0
-10501 0.8950272237833953 0.6767676767690411 0
-10502 0.4488929248647456 0.6010101010107938 0
-10503 0.4838838502700715 0.6313131313139027 0
-10504 0.8950272237833077 0.7171717171729177 0
-10505 0.1689655216212513 0.6616161616161751 0
-10506 0.160217790269897 0.6565656565656436 0
-10507 0.7463157908115697 0.1969696969709944 0
-10508 0.1689655216207694 0.8434343434344876 0
-10509 0.6150998205411303 0.2626262626275095 0
-10510 0.8162976416217143 0.5404040404055022 0
-10511 0.7550635221620666 0.6666666666677448 0
-10512 0.3176741515414137 0.04039991518322536 0
-10513 0.7550635221633908 0.08080808080964302 0
-10514 0.3439201486495362 0.1969696969702504 0
-10515 0.3614156113524973 0.0858585858590668 0
-10516 0.4401451935133994 0.5959595959602418 0
-10517 0.9212704162978029 0.08585858852968964 0
-10518 0.2562488449717048 0.02534131875517756 0
-10519 0.8950272237845986 0.2525252525270323 0
-10520 0.9650090745945626 0.4646464646484167 0
-10521 0.8075499102702861 0.4848484848501113 0
-10522 0.2914337605413483 0.1767676767680916 0
-10523 0.2127041783788114 0.2828282828285655 0
-10524 0.5538657010806118 0.712121212122254 0
-10525 0.6675862086478319 0.8484848484861658 0
-10526 0.09898367081127374 0.1767676767676287 0
-10527 0.3439201486482266 0.7222222222226439 0
-10528 0.5188747756768672 0.1363636363645045 0
-10529 0.3701633427038855 0.08080808080857632 0
-10530 0.3526678799995838 0.717171717172164 0
-10531 0.8425408356764922 0.2020202020218284 0
-10532 0.08148810990292546 0.0555557256530269 0
-10533 0.06399265804365158 0.7626262546298429 0
-10534 0.30892922324282 0.7424242424245334 0
-10535 0.7113248654054467 0.611111111112224 0
-10536 0.2214519097302202 0.2878787878790775 0
-10537 0.116479133514198 0.1060606060606558 0
-10538 0.825045372972727 0.6969696969708221 0
-10539 0.1077314021626429 0.1717171717171497 0
-10540 0.2826860291899748 0.1818181818185792 0
-10541 0.5013793129718781 0.9141414141422111 0
-10542 0.317644733496867 0.03029894667046837 0
-10543 0.8775317610806026 0.7575757575767478 0
-10544 0.8425408356759934 0.3535353535371366 0
-10545 0.07274047675702644 0.3535353535352182 0
-10546 0.842540835675786 0.4141414141431655 0
-10547 0.3351724172981232 0.2323232323237746 0
-10548 0.5013793129741775 0.1363636363644601 0
-10549 0.2651905664871892 0.1919191919195634 0
-10550 0.2739382978386 0.1969696969700835 0
-10551 0.3526678799993898 0.7676767676773359 0
-10552 0.08148820810835983 0.3585858585857381 0
-10553 0.06399076308504856 0.2474725745200393 0
-10554 0.4488929248647964 0.5808080808087932 0
-10555 0.2301996410815454 0.2727272727275928 0
-10556 0.1339745962164991 0.3484848484848986 0
-10557 0.07274047675736441 0.1111111111110785 0
-10558 0.3964065367579466 0.1060606060611926 0
-10559 0.3789110740531203 0.8838383838388899 0
-10560 0.8775317610807485 0.6767676767690075 0
-10561 0.3876588054065788 0.1010101010106634 0
-10562 0.6938294027027777 0.6010101010112128 0
-10563 0.711324865405481 0.4494949494964299 0
-10564 0.06399274540454163 0.7727272727272015 0
-10565 0.06399274540585759 0.2575757575757169 0
-10566 0.8162976416213893 0.7020202020212969 0
-10567 0.3789110740551828 0.1161616161621725 0
-10568 0.1427223275679335 0.3434343434344311 0
-10569 0.5626134324314068 0.8989898989908978 0
-10570 0.6763339399991792 0.8535353535366871 0
-10571 0.9650090745943947 0.5252525252544021 0
-10572 0.7113248654046116 0.8636363636377715 0
-10573 0.6238475518919487 0.6212121212129827 0
-10574 0.4488929248648184 0.5707070707077928 0
-10575 0.8512885670267787 0.6616161616174761 0
-10576 0.08148820810853866 0.2575757575757536 0
-10577 0.8337931043240566 0.7020202020213305 0
-10578 0.9562613432441724 0.2777777777796824 0
-10579 0.2389473724329158 0.2676767676771157 0
-10580 0.1777132529720573 0.8888888888889872 0
-10581 0.6325952832441213 0.202020202021204 0
-10582 0.08148635432102135 0.04545775630905208 0
-10583 0.5101270443232737 0.8989898989907371 0
-10584 0.343920148647993 0.7828282828288086 0
-10585 0.8425408356753809 0.7070707070718409 0
-10586 0.6238475518919282 0.6313131313139824 0
-10587 0.8512885670278205 0.2171717171733706 0
-10588 0.09898367081115413 0.2575757575756605 0
-10589 0.7025771340540911 0.6161616161627002 0
-10590 0.5538657010802006 0.8434343434353753 0
-10591 0.6150998205416809 0.08080808080916142 0
-10592 0.2826860291882765 0.8686868686871898 0
-10593 0.1602177902695572 0.8080808080809093 0
-10594 0.3264246859452217 0.8131313131317673 0
-10595 0.632595283244144 0.1919191919202077 0
-10596 0.317676954595451 0.1919191919196817 0
-10597 0.11647913351394 0.1868686868686663 0
-10598 0.8425408356754779 0.6464646464659755 0
-10599 0.8425408356747623 0.9191919191931527 0
-10600 0.7025771340539979 0.6666666666676333 0
-10601 0.02891194870172257 0.09595964407974096 0
-10602 0.8600362983779293 0.7676767676777072 0
-10603 0.3701633427038058 0.111111111111649 0
-10604 0.7988021789189379 0.4797979797995938 0
-10605 0.4313974621621368 0.5606060606067166 0
-10606 0.7375680594593796 0.6666666666677161 0
-10607 0.1339745962165563 0.2474747474747377 0
-10608 0.308929223243639 0.36868686868731 0
-10609 0.3264246859453758 0.7828282828286439 0
-10610 0.1339745962166085 0.2575757575758727 0
-10611 0.7988021789185613 0.7626262626272431 0
-10612 0.7725589848648916 0.4848484848500438 0
-10613 0.7463157908107375 0.6616161616172406 0
-10614 0.5801088951342549 0.848484848485949 0
-10615 0.8512885670268031 0.6515151515165116 0
-10616 0.9562613432438878 0.3989898989920549 0
-10617 0.728820328108026 0.671717171718186 0
-10618 0.2476951037828867 0.8686868686871113 0
-10619 0.2826860291895827 0.3636363636367421 0
-10620 0.3614156113524145 0.1262626262631591 0
-10621 0.3701633427040047 0.05050505050541865 0
-10622 0.9037749551359808 0.2474747474765307 0
-10623 0.07273821060642088 0.0404079654926263 0
-10624 0.9037749551342628 0.9040404040417545 0
-10625 0.7025771340540216 0.6565656565666536 0
-10626 0.3089292232428429 0.7323232323235307 0
-10627 0.1164791335140831 0.1363636363636846 0
-10628 0.5626134324313765 0.9090909090918888 0
-10629 0.1252268648652815 0.1919191919191841 0
-10630 0.8425408356747832 0.9090909090921401 0
-10631 0.5626134324315402 0.8484848484859013 0
-10632 0.1689655216207188 0.8838383838384707 0
-10633 0.3526678800010333 0.1212121212126367 0
-10634 0.7200725967566838 0.6666666666676762 0
-10635 0.7113248654053401 0.6717171717181469 0
-10636 0.3001814918915006 0.7272727272730002 0
-10637 0.2389473724326602 0.4292929292931718 0
-10638 0.5276156670530084 0.04039540851870526 0
-10639 0.5713611637828835 0.853535353536424 0
-10640 0.2301996410817502 0.1616161616164448 0
-10641 0.965009074595199 0.4040404040425926 0
-10642 0.641343014595437 0.2070707070717128 0
-10643 0.1427223275679466 0.2727272727274186 0
-10644 0.527622507026891 0.666666666667332 0
-10645 0.8512885670269695 0.5808080808095546 0
-10646 0.2301996410817492 0.1515151515154107 0
-10647 0.06399123099321082 0.03535595021349994 0
-10648 0.1164791335136408 0.3989898989897893 0
-10649 0.6325952832423929 0.8585858585871038 0
-10650 0.3876588054044257 0.898989898990412 0
-10651 0.8425408343851815 0.9292929247357079 0
-10652 0.6500907459450924 0.858585858587142 0
-10653 0.6413430145937384 0.8636363636376215 0
-10654 0.2651905664855801 0.8686868686871525 0
-10655 0.6238475518910308 0.8636363636375768 0
-10656 0.05524500075796434 0.7777777497525052 0
-10657 0.3439201486496504 0.1363636363641442 0
-10658 0.2301996410813154 0.424242424242652 0
-10659 0.6588384772964586 0.8535353535366546 0
-10660 0.8512885670268591 0.6313131313145559 0
-10661 0.6150998205396793 0.8585858585870514 0
-10662 0.851288567026992 0.5707070707085689 0
-10663 0.3876588054058355 0.3333333333341323 0
-10664 0.8600362983781024 0.6666666666679946 0
-10665 0.8687840297294277 0.671717171718504 0
-10666 0.5188747756746376 0.893939393940259 0
-10667 0.8075499102700342 0.7171717171727549 0
-10668 0.3351724172981771 0.1919191919197255 0
-10669 0.6850816713505249 0.8585858585872076 0
-10670 0.2651905664861425 0.6969696969698994 0
-10671 0.7638112535135519 0.4797979797995311 0
-10672 0.2564428351347895 0.7020202020203725 0
-10673 0.0902359394596596 0.3737373737372418 0
-10674 0.8687840297292713 0.7626262626272221 0
-10675 0.2914337605401585 0.7222222222224792 0
-10676 0.7025771340540401 0.6464646464656636 0
-10677 0.6938294027027028 0.641414141415134 0
-10678 0.1252268648654295 0.1414141414142037 0
-10679 0.9125226864873619 0.2424242424260323 0
-10680 0.1602177902695619 0.7979797979799144 0
-10681 0.09898367081099532 0.3787878787877604 0
-10682 0.1077314021623326 0.3838383838382808 0
-10683 0.9300181478032741 0.09090909331328467 0
-10684 0.8687840297301983 0.3585858585877088 0
-10685 0.7025771340532393 0.8585858585872539 0
-10686 0.2739382978383134 0.2878787878792152 0
-10687 0.5888566264856245 0.8434343434354744 0
-10688 0.440145193513527 0.5454545454552713 0
-10689 0.8512885670270151 0.5606060606075798 0
-10690 0.5626134324324927 0.6161616161623242 0
-10691 0.5538657010810445 0.6515151515158152 0
-10692 0.1339745962166599 0.1868686868687067 0
-10693 0.5713611637838674 0.6111111111118457 0
-10694 0.23019964108073 0.6868686868688081 0
-10695 0.4576406562157923 0.6767676767685079 0
-10696 0.9212704178372574 0.7323232323243519 0
-10697 0.6763339400006293 0.2373737373749973 0
-10698 0.5451179697296049 0.6666666666673576 0
-10699 0.3439201486487881 0.4696969696974487 0
-10700 0.4401451935134779 0.5656565656572519 0
-10701 0.1514700589186459 0.6111111111110445 0
-10702 0.2127041783790274 0.1515151515153884 0
-10703 0.1252268648649892 0.4040404040403206 0
-10704 0.6938294027027707 0.4494949494963936 0
-10705 0.5538657010823452 0.1060606060614976 0
-10706 0.1689655216207326 0.8737373737374905 0
-10707 0.9737568059457598 0.5202020202039304 0
-10708 0.5801088951352057 0.616161616162362 0
-10709 0.921270417838747 0.237373737375534 0
-10710 0.6850816713513583 0.6464646464655994 0
-10711 0.4926315816228192 0.1414141414149347 0
-10712 0.2039564470276727 0.1464646464648598 0
-10713 0.4051542681083957 0.3333333333343961 0
-10714 0.7638112535132204 0.7323232323242662 0
-10715 0.8600362983783818 0.5454545454561186 0
-10716 0.7725589848640555 0.8787878787890328 0
-10717 0.5976043578378909 0.6262626262633991 0
-10718 0.5276225070259631 0.8989898989907713 0
-10719 0.5888566264865466 0.6212121212128831 0
-10720 0.3526678800001959 0.454545454546024 0
-10721 0.3176769545950289 0.323232323232849 0
-10722 0.5976043578369731 0.8484848484859979 0
-10723 0.8775317610805454 0.7878787878796504 0
-10724 0.6413430145954213 0.2171717171727195 0
-10725 0.2826860291888159 0.7171717171719557 0
-10726 0.9037749551342389 0.9141414141427737 0
-10727 0.1514700589182393 0.7828282828283777 0
-10728 0.6063520891883319 0.853535353536523 0
-10729 0.6588384772973027 0.6515151515160424 0
-10730 0.34392014864885 0.4494949494954571 0
-10731 0.3351724172977512 0.323232323232895 0
-10732 0.7988021789186712 0.7323232323242119 0
-10733 0.9475136118928926 0.2323232323250531 0
-10734 0.2214519097293768 0.6919191919192845 0
-10735 0.2039564470276712 0.1363636363638176 0
-10736 0.7550635221622178 0.4747474747490167 0
-10737 0.2127041783780032 0.6868686868687729 0
-10738 0.2739382978374767 0.7121212121214274 0
-10739 0.3526678800004483 0.3434343434349653 0
-10740 0.606352089189254 0.6212121212129245 0
-10741 0.6763339400000091 0.641414141415088 0
-10742 0.6675862086486593 0.646464646465563 0
-10743 0.9300181491885355 0.7474747474758151 0
-10744 0.2739382978374927 0.7020202020204331 0
-10745 0.4313974621621848 0.5404040404047294 0
-10746 0.1952087156763266 0.1313131313132953 0
-10747 0.9037749551342092 0.9242424242437886 0
-10748 0.07274044243737013 0.4545454545452067 0
-10749 0.7900544475673013 0.7373737373747128 0
-10750 0.7550635221629111 0.2020202020215287 0
-10751 0.3089292232440919 0.1868686868691584 0
-10752 0.6500907459459397 0.6565656565665188 0
-10753 0.6413430145953845 0.2272727272737756 0
-10754 0.6150998205406112 0.6161616161624539 0
-10755 0.3439201486491039 0.3383838383844223 0
-10756 0.6850816713517262 0.3232323232338409 0
-10757 0.3351724172982751 0.1313131313136201 0
-10758 0.6238475518919044 0.6414141414149627 0
-10759 0.247695103783432 0.6969696969698536 0
-10760 0.6850816713514275 0.4545454545468757 0
-10761 0.3526678800002517 0.4343434343440196 0
-10762 0.6325952832432442 0.6464646464654872 0
-10763 0.4226497308108528 0.5353535353542009 0
-10764 0.7550635221622234 0.4646464646480205 0
-10765 0.6413430145945882 0.6515151515160061 0
-10766 0.5363702383773377 0.8939393939402951 0
-10767 0.7463157908109035 0.4595959595975078 0
-10768 0.3526678800002712 0.4242424242430138 0
-10769 0.9475136118929045 0.22222222222404 0
-10770 0.9387658764304745 0.0858585929812043 0
-10771 0.3439201486489243 0.4191919191924469 0
-10772 0.9300181491899817 0.3030303030321988 0
-10773 0.9300181491901327 0.23232323232504 0
-10774 0.1689655216208204 0.8333333333334384 0
-10775 0.04649317096763331 0.4595959595955154 0
-10776 0.7113248654046097 0.9040404040415849 0
-10777 0.3439201486491208 0.3282828282834316 0
-10778 0.326424685946914 0.1262626262630827 0
-10779 0.8600362983784718 0.4949494949511628 0
-10780 0.2389473724320829 0.6919191919193314 0
-10781 0.8512885670270646 0.4898989899006616 0
-10782 0.343920148648771 0.4797979797984464 0
-10783 0.895027223784349 0.3434343434362189 0
-10784 0.3614156113514648 0.4898989898995491 0
-10785 0.4051542681085906 0.313131313132139 0
-10786 0.5626134324313371 0.9191919191928734 0
-10787 0.4226497308108759 0.5252525252532209 0
-10788 0.1427223275673315 0.5959595959595035 0
-10789 0.30018149189273 0.1818181818186279 0
-10790 0.04644451715157214 0.7828260988620235 0
-10791 0.7288203281094334 0.08585858586002892 0
-10792 0.676333940000084 0.4898989899003376 0
-10793 0.1427223275668774 0.7676767676769203 0
-10794 0.7200725967570115 0.3636363636379384 0
-10795 0.895027254776346 0.9292928756119445 0
-10796 0.6850816713514422 0.4848484848498578 0
-10797 0.1864609843246488 0.2474747474748333 0
-10798 0.9475136118929188 0.2121212121230227 0
-10799 0.3264246859463997 0.3282828282833669 0
-10800 0.3264246859469389 0.1161616161620684 0
-10801 0.7375680594587145 0.8888888888900923 0
-10802 0.3526678800000717 0.5050505050509861 0
-10803 0.4139019994599452 0.3080808080816266 0
-10804 0.133974596215984 0.5909090909089699 0
-10805 0.1339745962168186 0.1363636363637219 0
-10806 0.07274043687087074 0.5050505063781547 0
-10807 0.9387658805414907 0.2373737373755589 0
-10808 0.4139019994595326 0.520202020202686 0
-10809 0.1602177902693958 0.8686868686869629 0
-10810 0.1427223275680256 0.1818181818182251 0
-10811 0.9650090745945936 0.4545454545474688 0
-10812 0.3176409129953641 0.02049503961204496 0
-10813 0.4313974621625282 0.3080808080818539 0
-10814 0.1602177902707724 0.1717171717172536 0
-10815 0.3439201486490616 0.3585858585864166 0
-10816 0.5976043578368244 0.9191919191929107 0
-10817 0.3264246859469649 0.1060606060610317 0
-10818 0.4313974621626717 0.297979797980677 0
-10819 0.03751940703822491 0.7777583583687935 0
-10820 0.9037749551350898 0.5303030303047493 0
-10821 0.5101270443249162 0.2626262626273295 0
-10822 0.9387658805413679 0.2979797979816969 0
-10823 0.4488929248652631 0.2979797979808812 0
-10824 0.4926315816222413 0.2626262626272769 0
-10825 0.8425408356757553 0.5151515151531159 0
-10826 0.2039564470266296 0.712121212121268 0
-10827 0.8687840297291987 0.792929292930144 0
-10828 0.5451179697303046 0.262626262627401 0
-10829 0.2127041783791289 0.09090909090920686 0
-10830 0.9475136118927604 0.2929292929311981 0
-10831 0.4926315816220844 0.2727272727284732 0
-10832 0.448892924865416 0.2878787878796907 0
-10833 0.08148806934399301 0.5202020227144757 0
-10834 0.4838838502707318 0.2777777777789415 0
-10835 0.3526678800003279 0.4040404040410056 0
-10836 0.7463157908108961 0.4494949494964898 0
-10837 0.3089292232436884 0.3282828282833259 0
-10838 0.9562613432441549 0.2878787878806915 0
-10839 0.4663883875679948 0.2878787878799117 0
-10840 0.4051542681081886 0.525252525253149 0
-10841 0.4663883875681502 0.2777777777787211 0
-10842 0.5451179697287035 0.8888888888898234 0
-10843 0.3789110740541226 0.5202020202025829 0
-10844 0.6063520891882218 0.9040404040414042 0
-10845 0.3001814918923428 0.3232323232328065 0
-10846 0.5276225070276095 0.262626262627365 0
-10847 0.5626134324329974 0.2626262626274343 0
-10848 0.151470058918301 0.7626262626263381 0
-10849 0.1514700589193964 0.176767676767736 0
-10850 0.9475136113655898 0.09090909182449716 0
-10851 0.3876588054054763 0.5151515151521151 0
-10852 0.7550635221617666 0.7373737373749378 0
-10853 0.9650090745954886 0.2727272727291556 0
-10854 0.2039564470277763 0.08585858585868462 0
-10855 0.9650090745937765 0.7575757575768435 0
-10856 0.3526678800001261 0.4848484848490055 0
-10857 0.1427223275681938 0.1313131313132344 0
-10858 0.9037749551356737 0.3484848484867406 0
-10859 0.2914337605410045 0.3181818181822795 0
-10860 0.3526678800003482 0.39393939394 0
-10861 0.9737568059451331 0.803030303031173 0
-10862 0.5801088951356882 0.2626262626274733 0
-10863 0.8600362983778443 0.7979797979806853 0
-10864 0.8337931043243949 0.5303030303045753 0
-10865 0.6150998205416547 0.09090909091018011 0
-10866 0.6588384772973623 0.4696969696983351 0
-10867 0.3701633427027695 0.5151515151520677 0
-10868 0.5976043578383853 0.2626262626275067 0
-10869 0.2914337605410198 0.3080808080812873 0
-10870 0.1689655216220941 0.1767676767677656 0
-10871 0.1164791335132757 0.5808080808078998 0
-10872 0.195208715675244 0.7171717171717671 0
-10873 0.7725589848656925 0.1515151515166199 0
-10874 0.5538657010800434 0.8939393939403492 0
-10875 0.3439201486490041 0.388888888889433 0
-10876 0.2826860291896776 0.303030303030747 0
-10877 0.1602177902694171 0.8585858585859742 0
-10878 0.1514700589193199 0.3181818181819833 0
-10879 0.3614156113514168 0.5101010101015374 0
-10880 0.3439201486476328 0.9141414141417743 0
-10881 0.7813067162171023 0.1464646464661636 0
-10882 0.7900544475684219 0.1515151515166727 0
-10883 0.1252268648646318 0.5858585858584364 0
-10884 0.807549910271115 0.1616161616177124 0
-10885 0.8862798664511263 0.9343427429780999 0
-10886 0.1864609843250421 0.08585858585866829 0
-10887 0.8250453729729891 0.5252525252540845 0
-10888 0.3526678800003959 0.3737373737379848 0
-10889 0.256442835135642 0.2878787878791737 0
-10890 0.396406536756831 0.5202020202026304 0
-10891 0.2826860291896839 0.292929292929751 0
-10892 0.7988021789197036 0.1666666666681666 0
-10893 0.7550635221631217 0.1313131313146343 0
-10894 0.18646098432489 0.1666666666668144 0
-10895 0.7375680594605146 0.1212121212136166 0
-10896 0.09898367081025101 0.7020202020201475 0
-10897 0.1952087156763372 0.1212121212122716 0
-10898 0.7638112535144342 0.1363636363651401 0
-10899 0.05524359782759037 0.4646464646487367 0
-10900 0.1514700589195609 0.1262626262627403 0
-10901 0.3526678800004166 0.3636363636369801 0
-10902 0.6938300963797518 0.05555674588772744 0
-10903 0.2651905664869829 0.2929292929296941 0
-10904 0.912522686486879 0.3636363636382881 0
-10905 0.6500907459460368 0.4848484848497892 0
-10906 0.7463157908116992 0.1363636363650854 0
-10907 0.6675862086487248 0.4747474747488425 0
-10908 0.5888566264876851 0.1060606060615661 0
-10909 0.1952087156761265 0.2929292929295448 0
-10910 0.4838838502711764 0.2171717171726447 0
-10911 0.3264246859449565 0.9343434343437451 0
-10912 0.2564428351356533 0.2777777777781771 0
-10913 0.9562613429692567 0.08585858633704294 0
-10914 0.1952087156763647 0.1111111111112514 0
-10915 0.7200725967568627 0.454545454546952 0
-10916 0.7813067162156138 0.813131313132617 0
-10917 0.4838838502713858 0.1666666666674941 0
-10918 0.2476951037843035 0.2727272727276487 0
-10919 0.4576406562158957 0.6666666666673594 0
-10920 0.6938294027027508 0.5202020202033184 0
-10921 0.728820328109167 0.1161616161631129 0
-10922 0.1952087156751535 0.757575757575816 0
-10923 0.8687840472615164 0.9343429685211415 0
-10924 0.483883850271365 0.1767676767684814 0
-10925 0.7025771340541538 0.4545454545469094 0
-10926 0.8600362983792655 0.1717171717187967 0
-10927 0.06381916825948875 0.02536248724245856 0
-10928 0.790054447567083 0.7676767676779567 0
-10929 0.2039564470277321 0.106060606060764 0
-10930 0.4926315816226939 0.1919191919199637 0
-10931 0.1602177902694383 0.8484848484849619 0
-10932 0.8687840297306288 0.1666666666683046 0
-10933 0.15147005891958 0.1161616161617397 0
-10934 0.1952087156761418 0.1919191919193568 0
-10935 0.8512885670278969 0.1666666666682971 0
-10936 0.5013793129740107 0.2070707070714575 0
-10937 0.4838838502714814 0.146464646465422 0
-10938 0.1602177902696949 0.7474747474748503 0
-10939 0.6413430145946714 0.4797979797992947 0
-10940 0.8600361623986224 0.939393233394014 0
-10941 0.7113248654065614 0.106060606062092 0
-10942 0.3789110740553766 0.04545454545496372 0
-10943 0.4751361189198021 0.2222222222231364 0
-10944 0.9650090745388198 0.09090909100960637 0
-10945 0.7638112535136694 0.520202020203437 0
-10946 0.1164791335130573 0.6717171717170852 0
-10947 0.9037749551351221 0.5202020202037575 0
-10948 0.711324865405572 0.5303030303043194 0
-10949 0.6325952832435953 0.3232323232337735 0
-10950 0.2127041783791037 0.1010101010102587 0
-10951 0.1777132529734926 0.1717171717172919 0
-10952 0.7200725967577301 0.1212121212135571 0
-10953 0.151470058919611 0.1060606060607251 0
-10954 0.2301996410804487 0.8080808080808716 0
-10955 0.8512885670272751 0.3686868686886583 0
-10956 0.7200725967568279 0.5151515151528645 0
-10957 0.151470058918387 0.7222222222223408 0
-10958 0.2039564470274705 0.207070707070901 0
-10959 0.632595283243339 0.4848484848497601 0
-10960 0.7725589848649995 0.5151515151529658 0
-10961 0.6938294027027444 0.5808080808092824 0
-10962 0.5976043578382972 0.3232323232335768 0
-10963 0.3701633427039371 0.07070707070753683 0
-10964 0.7025771340552293 0.1010101010115933 0
-10965 0.9737568059367686 0.09595959597899727 0
-10966 0.7288203281082807 0.5202020202033548 0
-10967 0.5976043578381893 0.3333333333347057 0
-10968 0.6150998205409651 0.3232323232336188 0
-10969 0.6588384772976085 0.3282828282843477 0
-10970 0.1602177902697057 0.7373737373738627 0
-10971 0.9825045372968186 0.7979797979805549 0
-10972 0.9562613432443082 0.2070707070724987 0
-10973 0.1602177902709783 0.1010101010102109 0
-10974 0.4663883875683964 0.2373737373746359 0
-10975 0.06399258283984452 0.4595959595960639 0
-10976 0.9037749551351322 0.5101010101027759 0
-10977 0.5888566264867651 0.3585858585872346 0
-10978 0.6850816713526143 0.09090909091058288 0
-10979 0.737568059459622 0.5151515151528859 0
-10980 0.6238475518919731 0.4797979797992505 0
-10981 0.2214519097290117 0.813131313131451 0
-10982 0.667586208648989 0.3232323232338427 0
-10983 0.1602177902697803 0.7171717171717664 0
-10984 0.6763339400013074 0.08585858586008449 0
-10985 0.7375680594597396 0.3636363636379596 0
-10986 0.3701633427039699 0.06060606060648831 0
-10987 0.4576406562169955 0.2525252525261227 0
-10988 0.7550635221629372 0.2121212121226496 0
-10989 0.6938294027037982 0.1060606060620331 0
-10990 0.1339745962163268 0.4494949494948618 0
-10991 0.1252268648649124 0.4444444444443276 0
-10992 0.8775317610820295 0.141414141415788 0
-10993 0.921270417837549 0.6010101010118187 0
-10994 0.5626134324328287 0.3535353535365361 0
-10995 0.6675862086498029 0.09090909091052202 0
-10996 0.4401451935143668 0.2525252525260092 0
-10997 0.755063522162406 0.3636363636379961 0
-10998 0.816297641620941 0.8434343434356356 0
-10999 0.1427223275671308 0.6868686868686822 0
-11000 0.1427223275677184 0.4040404040403791 0
-11001 0.7550635221625562 0.3434343434358476 0
-11002 0.4401451935142702 0.2626262626270782 0
-11003 0.4226497308116305 0.2626262626269799 0
-11004 0.6150998205406222 0.4747474747487361 0
-11005 0.9650090745956883 0.2020202020219921 0
-11006 0.5188747756761181 0.3383838383850415 0
-11007 0.3439201486493019 0.2878787878793403 0
-11008 0.3701633427032837 0.303030303031007 0
-11009 0.545117969730152 0.3535353535364836 0
-11010 0.8775317610811393 0.4949494949512209 0
-11011 0.3789110740546578 0.2979797979805175 0
-11012 0.4926315816227704 0.1616161616169542 0
-11013 0.396406536757398 0.2878787878795374 0
-11014 0.3964065367574908 0.2777777777784769 0
-11015 0.3789110740547427 0.2878787878794618 0
-11016 0.8687840297297914 0.4898989899007056 0
-11017 0.4226497308115445 0.2727272727280392 0
-11018 0.4139019994601855 0.2777777777785073 0
-11019 0.6588384772986907 0.07575757575907417 0
-11020 0.8862794924324766 0.5000000000017396 0
-11021 0.1514700589184639 0.7020202020202341 0
-11022 0.8950272237838113 0.5050505050522582 0
-11023 0.03772465904254604 0.46467157972023 0
-11024 0.3789256481739711 0.03537877846773647 0
-11025 0.5713611637826781 0.9242424242434161 0
-11026 0.6063520891892821 0.4696969696982209 0
-11027 0.527622507027385 0.3232323232335672 0
-11028 0.9737568059468901 0.1969696969714675 0
-11029 0.6588384772970994 0.7323232323240632 0
-11030 0.6500907459473682 0.07070707070857608 0
-11031 0.7200725967574179 0.2323232323244896 0
-11032 0.3790291244157509 0.02545699447479398 0
-11033 0.536370238378762 0.3585858585870001 0
-11034 0.03750018706991343 0.4749381796379555 0
-11035 0.4576406562170713 0.2424242424250899 0
-11036 0.160217790270977 0.09090909090918703 0
-11037 0.4663883875684667 0.2272727272735974 0
-11038 0.5976043578379547 0.4646464646476977 0
-11039 0.9212704178375772 0.5909090909108261 0
-11040 0.5363702383788664 0.3282828282840404 0
-11041 0.6763339399991445 0.893939393940629 0
-11042 0.6413430145958365 0.07575757575898248 0
-11043 0.7463157908098765 0.9242424242434899 0
-11044 0.8162976416209258 0.8535353535366298 0
-11045 0.5801088951340295 0.9292929292939325 0
-11046 0.1602177902709334 0.08080808080810223 0
-11047 0.7638112535139601 0.3181818181833548 0
-11048 0.6763339399991291 0.9040404040415777 0
-11049 0.5888566264854158 0.9242424242434435 0
-11050 0.5451179697300714 0.3131313131325678 0
-11051 0.5801088951352741 0.4444444444456846 0
-11052 0.5976043578379706 0.454545454546751 0
-11053 0.7813067162165603 0.31818181818353 0
-11054 0.5538657010814373 0.2979797979810991 0
-11055 0.8162976416208806 0.86363636363762 0
-11056 0.6675862086485809 0.5959595959607095 0
-11057 0.8162976416216904 0.5303030303045562 0
-11058 0.5713611637842591 0.3080808080820768 0
-11059 0.6763339400000649 0.6010101010111988 0
-11060 0.5801088951354744 0.2929292929306466 0
-11061 0.7900544475679503 0.3131313131330267 0
-11062 0.4926315816226285 0.2121212121220209 0
-11063 0.8600362983778301 0.8080808080816673 0
-11064 0.5713611637839598 0.4494949494961411 0
-11065 0.6850816713514204 0.5959595959607329 0
-11066 0.5888566264866212 0.4494949494962 0
-11067 0.5976043578368238 0.909090909091937 0
-11068 0.5888566264869386 0.2979797979811242 0
-11069 0.9387658805402689 0.5707070707089287 0
-11070 0.8075499102706599 0.3131313131330488 0
-11071 0.5626134324325657 0.4444444444456598 0
-11072 0.6238475518920098 0.5707070707080644 0
-11073 0.8512885670263619 0.8131313131324539 0
-11074 0.8862794924334048 0.116161616163274 0
-11075 0.8250453729308145 0.9292929291507357 0
-11076 0.6063520891891856 0.5606060606070719 0
-11077 0.606352089189672 0.2979797979811188 0
-11078 0.9387658805416547 0.1262626262643906 0
-11079 0.9825295874912116 0.9797640251525537 0
-11080 0.9831980939253411 0.9904420020318231 0
-11081 0.6063520891882196 0.893939393940454 0
-11082 0.5976043578379611 0.5757575757585033 0
-11083 0.5538657010812614 0.4595959595971136 0
-11084 0.160214062487985 0.05050703149244915 0
-11085 0.5888566264864983 0.5707070707080178 0
-11086 0.8950272237841688 0.4141414141434507 0
-11087 0.7725589848640779 0.8888888888899835 0
-11088 0.825045372451424 0.9393939375829484 0
-11089 0.6150998205396345 0.8888888888899784 0
-11090 0.8512885670263528 0.8232323232334275 0
-11091 0.8950272237847757 0.1111111111127919 0
-11092 0.1514659111272605 0.04545860478117 0
-11093 0.5451179697298879 0.4646464646476141 0
-11094 0.9387658805416373 0.1363636363653575 0
-11095 0.8950272237841115 0.4444444444464118 0
-11096 0.737568059458598 0.9191919191929898 0
-11097 0.1164791335126897 0.8333333333334006 0
-11098 0.6238475518909996 0.8939393939404714 0
-11099 0.9037749551361751 0.1161616161632997 0
-11100 0.7813067162162957 0.5101010101025099 0
-11101 0.5538657010810941 0.5606060606069503 0
-11102 0.1514700589183375 0.7525252525253726 0
-11103 0.7988021789160061 0.9343434343380062 0
-11104 0.6325952832423714 0.8888888888900157 0
-11105 0.7900544475676443 0.5151515151530135 0
-11106 0.09023593945843403 0.8787878787879287 0
-11107 0.1077314021612639 0.868686868686921 0
-11108 0.9037749551352058 0.4595959595978971 0
-11109 0.1252268648641029 0.8181818181819103 0
-11110 0.1339743789719811 0.04545503210217991 0
-11111 0.133974596215473 0.8131313131314185 0
-11112 0.9125226864865288 0.4646464646484218 0
-11113 0.7725589848640488 0.8989898989909862 0
-11114 0.5451179697298668 0.5757575757583802 0
-11115 0.8862794924325369 0.4494949494968455 0
-11116 0.7025771340529863 0.9494949494959575 0
-11117 0.536370238378522 0.4797979797990833 0
-11118 0.7988021789189843 0.5202020202035269 0
-11119 0.5363702383783973 0.5707070707079139 0
-11120 0.9212704178389107 0.1262626262643309 0
-11121 0.8075499102703236 0.5252525252540354 0
-11122 0.3264246859453342 0.792929292929718 0
-11123 0.1339536814060399 0.03539242160956634 0
-11124 0.6413430145937359 0.8939393939405087 0
-11125 0.09898367080989488 0.8838383838384014 0
-11126 0.9912717591484657 0.974714764385199 0
-11127 0.08148820810713425 0.8939393939394069 0
-11128 0.1427223275668161 0.8080808080809505 0
-11129 0.9125226864875449 0.1212121212138179 0
-11130 0.5276225070271537 0.4848484848495577 0
-11131 0.7375680594607688 0.08080808080951302 0
-11132 0.5801088951352003 0.5757575757584599 0
-11133 0.3264246859452968 0.803030303030744 0
-11134 0.6500907459451007 0.888888888890055 0
-11135 0.7900544475659019 0.9393939393930124 0
-11136 0.7725589848637705 0.9393939393949609 0
-11137 0.5276225070271227 0.5858585858593759 0
-11138 0.9300181491902537 0.1212121212138694 0
-11139 0.597604357838236 0.2929292929306468 0
-11140 0.3701633427022972 0.7070707070713077 0
-11141 0.518874775675754 0.4797979797990806 0
-11142 0.1514700589196172 0.07575757575763532 0
-11143 0.1252464363134945 0.03071957142296307 0
-11144 0.6588384772964624 0.8939393939405461 0
-11145 0.5101270443244286 0.4848484848495611 0
-11146 0.1514700589182012 0.8131313131314313 0
-11147 0.6675862086478072 0.8888888888900982 0
-11148 0.5188747756755179 0.6414141414148686 0
-11149 0.623847551891807 0.712121212121998 0
-11150 0.04649673287906916 0.9141414141413744 0
-11151 0.352667879999512 0.7373737373743001 0
-11152 0.7463157908109168 0.5101010101024375 0
-11153 0.05524495296163517 0.9090909090908783 0
-11154 0.8687840297290923 0.8434343434351441 0
-11155 0.3439201486480808 0.7727272727277728 0
-11156 0.763811253512696 0.9040404040414821 0
-11157 0.3526678799994992 0.7474747474753033 0
-11158 0.3439201486481832 0.7323232323237104 0
-11159 0.5013793129730725 0.5000000000009988 0
-11160 0.7550635221622786 0.5151515151529424 0
-11161 0.7025771340541627 0.5252525252538391 0
-11162 0.7638112704683877 0.9444444150768175 0
-11163 0.8600362983776155 0.848484848485961 0
-11164 0.3526678799994667 0.7575757575763066 0
-11165 0.4926315816216776 0.4949494949505306 0
-11166 0.7638112535138373 0.3383838383854111 0
-11167 0.6588384772972873 0.6010101010111603 0
-11168 0.7638114061162027 0.9545451902287893 0
-11169 0.03763999929078695 0.9294623995691188 0
-11170 0.142722327567898 0.2626262626263725 0
-11171 0.07274047675579771 0.9090909090908783 0
-11172 0.4838838502703616 0.5000000000010042 0
-11173 0.9475136118922419 0.4444444444465431 0
-11174 0.7550635221613454 0.9090909090919868 0
-11175 0.4751361189190239 0.5050505050514791 0
-11176 0.6850816713505246 0.909090909092101 0
-11177 0.7550648955960874 0.9595935807375524 0
-11178 0.6938294027017261 0.9444444444454615 0
-11179 0.9825045372966144 0.9595959595971616 0
-11180 0.9475136118929998 0.1414141414158982 0
-11181 0.4663883875676544 0.5101010101019404 0
-11182 0.6938294027018809 0.9040404040416495 0
-11183 0.7463335412085114 0.9646393836934936 0
-11184 0.9562613432443278 0.1363636363654175 0
-11185 0.7550635221612831 0.9191919191929752 0
-11186 0.4576406562162496 0.5050505050514441 0
-11187 0.5888566264869001 0.3383838383851681 0
-11188 0.7375774434187152 0.9697059058688767 0
-11189 0.7113248654045532 0.893939393940665 0
-11190 0.7025771340532617 0.9090909090921182 0
-11191 0.4313974621622282 0.5000000000008814 0
-11192 0.9912522686484871 0.9545454545457019 0
-11193 0.8775317610814282 0.3636363636382635 0
-11194 0.868784029729065 0.863636363637123 0
-11195 0.4488929248649018 0.500000000000953 0
-11196 0.9650090745955447 0.1313131313148607 0
-11197 0.4313974621622282 0.4898989898999651 0
-11198 0.7200725967559765 0.8888888888901764 0
-11199 0.4401451935136065 0.5050505050513877 0
-11200 0.728820328107383 0.893939393940627 0
-11201 0.9912522686484559 0.944444444444723 0
-11202 0.737587730768078 0.9793190968832186 0
-11203 0.4051542681081426 0.4848484848492401 0
-11204 0.7375680594586504 0.8787878787891874 0
-11205 0.7463157908100714 0.873737373738709 0
-11206 0.8600362983787371 0.3636363636382204 0
-11207 0.4226497308108635 0.4848484848494017 0
-11208 0.755063522161461 0.878787878789167 0
-11209 0.7638112535127386 0.8737373737386881 0
-11210 0.7288203281072051 0.9242424242434587 0
-11211 0.3789110740540834 0.4696969696976542 0
-11212 0.7550635221624756 0.3535353535368901 0
-11213 0.4139019994595638 0.4898989898998074 0
-11214 0.982504537296647 0.9292929292940539 0
-11215 0.632595283243265 0.5656565656576149 0
-11216 0.3876588054054829 0.4444444444452944 0
-11217 0.3789110740541002 0.4595959595966667 0
-11218 0.5626134324328345 0.3030303030315682 0
-11219 0.3789110740541581 0.4393939393946504 0
-11220 0.4051542681081454 0.4747474747483466 0
-11221 0.7638112535138801 0.3282828282843752 0
-11222 0.615099820540586 0.5656565656575471 0
-11223 0.886279492432792 0.3585858585877726 0
-11224 0.3876588054055272 0.4242424242432082 0
-11225 0.3964065367567431 0.4696969696978328 0
-11226 0.9912522686484844 0.9242424242425753 0
-11227 0.6500907459458992 0.5959595959606141 0
-11228 0.7200725967558321 0.9292929292939403 0
-11229 0.6413430145946176 0.5707070707081955 0
-11230 0.3964065367569745 0.4090909090918737 0
-11231 0.5626134324324654 0.5656565656574156 0
-11232 0.5713611637838156 0.5707070707079335 0
-11233 0.6413430145946113 0.580808080809165 0
-11234 0.3876588054054506 0.4747474747482465 0
-11235 0.6938294027024883 0.7323232323243559 0
-11236 0.9825045372966645 0.9090909090919074 0
-11237 0.1514700589196231 0.06565656565661404 0
-11238 0.6938294027025245 0.7222222222233543 0
-11239 0.6938294027025412 0.7121212121223184 0
-11240 0.6413430145945842 0.5909090909100853 0
-11241 0.3964065367569943 0.3989898989908837 0
-11242 0.06399274540434469 0.9040404040404214 0
-11243 0.8862794924329017 0.3484848484867322 0
-11244 0.1602171896836939 0.06060637976516868 0
-11245 0.9912522686484624 0.904040404040496 0
-11246 0.5888566264868645 0.3484848484862071 0
-11247 0.7113248654044769 0.9343434343444476 0
-11248 0.3876588054056564 0.3939393939402706 0
-11249 0.8075499102694738 0.8686868686881862 0
-11250 0.3876588054056724 0.3838383838393543 0
-11251 0.7113248654044051 0.9444444444454264 0
-11252 0.3876588054057263 0.3636363636373499 0
-11253 0.3789110740543426 0.3787878787887128 0
-11254 0.7988021789181609 0.8737373737386611 0
-11255 0.3876588054057619 0.3535353535363387 0
-11256 0.895027223782935 0.8585858585867093 0
-11257 0.6325952832447963 0.06060606060748325 0
-11258 0.9037749551343089 0.8434343434352352 0
-11259 0.7900544475668548 0.8686868686881806 0
-11260 0.3876588054057874 0.3434343434352897 0
-11261 0.9912522686487536 0.4191919191937328 0
-11262 0.6238475518934445 0.05555555555693908 0
-11263 0.7813067162154836 0.8636363636377068 0
-11264 0.6850818221512287 0.9494950607903421 0
-11265 0.93876588053981 0.8535353535362451 0
-11266 0.4051542681085196 0.3232323232333106 0
-11267 0.6850830285582001 0.9595969612464896 0
-11268 0.973756805946368 0.3989898989920528 0
-11269 0.6763345422343565 0.9646755931690237 0
-11270 0.7725589848640407 0.8686868686881756 0
-11271 0.9475136118911054 0.8686868686876599 0
-11272 0.9912522686398098 0.04545454547083481 0
-11273 0.9562613432433936 0.4494949494970619 0
-11274 0.9387658805396717 0.8737373737385116 0
-11275 0.6675014294503 0.9699619698454609 0
-11276 0.9212704178379876 0.4595959595980074 0
-11277 0.9300181491893671 0.45454545454755 0
-11278 0.9475136118911023 0.8888888888897674 0
-11279 0.9387658805407649 0.4494949494970528 0
-11280 0.9825045372974205 0.3434343434358841 0
-11281 0.973756805946522 0.2676767676785664 0
-11282 0.9912522686488661 0.176767676768644 0
-11283 0.9912522686488856 0.2070707070717394 0
-11284 0.9825045372975308 0.1414141414149845 0
-11285 0.8687840297290073 0.8737373737380623 0
-11286 0.9650090745947613 0.444444444446622 0
-11287 0.9912522686485377 0.6919191919202708 0
-11288 0.9737568059461176 0.4393939393961533 0
-11289 0.9825045372974971 0.4040404040424287 0
-11290 0.9912522686485316 0.7626262626269181 0
-11291 0.9825045372974768 0.4343434343456046 0
-11292 0.9912522686487879 0.4292929292949555 0
-11293 0.991252268648489 0.7929292929298213 0
-11294 0.9825045372975568 0.4141414141435131 0
-11295 0.9737568059462907 0.3888888888910296 0
-11296 0.9825045372974919 0.3838383838404101 0
-11297 0.9912522686485352 0.8434343434345432 0
-11298 0.9825045372975967 0.2727272727288246 0
-11299 0.9825045372975576 0.3737373737394034 0
-11300 0.9825045372975695 0.3636363636383921 0
-11301 0.9825045372975632 0.3535353535372553 0
-11302 0.9737568059462931 0.3383838383857674 0
-11303 0.9737568059463254 0.3282828282847613 0
-11304 0.9825045372975352 0.3232323232341379 0
-11305 0.9825045372976126 0.3131313131331808 0
-11306 0.9825045372976337 0.3030303030321324 0
-11307 0.9825045372976476 0.2929292929310673 0
-11308 0.9825045372976268 0.2828282828300004 0
-11309 0.9737568059463134 0.2575757575775221 0
-11310 0.9737568059463944 0.2474747474765268 0
-11311 0.9825045372975926 0.2424242424258407 0
-11312 0.9825045372976758 0.2323232323248864 0
-11313 0.9825045372977677 0.2222222222239246 0
-11314 0.9912522686489496 0.2171717171730929 0
-11315 0.982504537297773 0.2020202020217553 0
-11316 0.9825045372978138 0.1919191919208663 0
-11317 0.9912522686489766 0.1868686868699981 0
-11318 0.973756805946405 0.136363636365036 0
-11319 0.9825045372977821 0.1717171717187301 0
-11320 0.9825045372976887 0.161616161617737 0
-11321 0.9825045372976816 0.1515151515165444 0
-11322 0.9737568059464371 0.1262626262642607 0
-11323 0.9825045372976644 0.1212121212134189 0
-11324 0.9825045372976449 0.1111111111127008 0
-11325 0.982504537296511 0.1010101010136581 0
-11326 0.9825045372925939 0.09090909091943866 0
-11327 0.9825045372818894 0.08080808083697616 0
-11328 0.9825045372318724 0.07070707082263868 0
-11329 0.9825045372106614 0.06060606075859752 0
-11330 0.9912522686292718 0.05555555559072897 0
-11331 0.9825072116653016 0.04040274892278076 0
-11332 0.9825289353187926 0.03029358120665897 0
-11333 0.9913115177241245 0.02529948061069354 0
-11334 0.1689055234088935 0.9747117718319331 0
-11335 0.01048054543952397 0.05571510894440543 0
-11336 0.01843206002630463 0.68705517678546 0
-11337 0.03597623973537066 0.5658757458211837 0
-11338 0.009005507873898724 0.7827423060456805 0
-11339 0.02896077016797111 0.3281924010883012 0
-11340 0.01971635916353669 0.7675823438287028 0
-11341 0.02893194469346642 0.3686079956272253 0
-11342 0.02892894802817744 0.8839134859520316 0
-11343 0.02892676698729376 0.1364413672925515 0
-11344 0.009026300538722878 0.581206818612041 0
-11345 0.01892380167799201 0.4994196690319945 0
-11346 0.02350212746392613 0.2350115038880863 0
-11347 0.6499400785693812 0.03035296211961103 0
-11348 0.1596678297159659 0.9797595682099831 0
-11349 0.2040282834303905 0.9744959055065254 0
-11350 0.8231923017832206 0.9921879377715394 0
-11351 0.8865389259050828 0.9653433391786399 0
-11352 0.8162245852627998 0.02553215949291416 0
-11353 0.6765422376202529 0.02560417327809944 0
-11354 0.0199374388209891 0.3230435701347247 0
-11355 0.4600633682523672 0.9915030413946712 0
-11356 0.03807472378018496 0.2319336412231509 0
-11357 0.008660705561679659 0.2474194574540984 0
-11358 0.7226227867441819 0.9915114968231307 0
-11359 0.9038415119578374 0.02594370469085231 0
-11360 0.1162030643820302 0.02543195292364715 0
-11361 0.9916935559662452 0.0154664430322515 0
-11362 0.6586094761325962 0.03553804223964258 0
-11363 0.2128579435317999 0.978972613314807 0
-11364 0.008654812876106357 0.01526603848911973 0
-11365 0.8073903228304797 0.0210402449436682 0
-11366 0.6676507166717175 0.04071799062913366 0
-11367 0.2680299796307282 0.008605573034805405 0
-11368 0.02597527772470206 0.9876970401213369 0
-11369 0.008390525957293523 0.2371772258172271 0
-11370 0.5306710973331644 0.008611566907290834 0
-11371 0.01673585744953113 0.5252294357729741 0
-11372 0.03846295707034446 0.606248279577894 0
-11373 0.02272973140891396 0.6086335069494007 0
-11374 0.03837273933520996 0.5153631732240487 0
-11375 0.008936928041467692 0.7217672250237834 0
-11376 0.01997737543726467 0.4035278862448423 0
-11377 0.1310830974952512 0.0168914834192712 0
-11378 0.8890235409367957 0.01682735256617815 0
-11379 0.02887093780901702 0.9449751889107643 0
-11380 0.007967182590326154 0.6209790588457007 0
-11381 0.4147107900786746 0.01535374642434638 0
-11382 0.09882944086116377 0.02613906312580628 0
-11383 0.5539689346046808 0.9742283635801251 0
-11384 0.6762747579906235 0.01556608250273465 0
-11385 0.1872849824976033 0.02582502302353082 0
-11386 0.9393987657039696 0.01637237461122926 0
-11387 0.343512778819842 0.01585840254771655 0
-11388 0.3435953851418783 0.9837224127575513 0
-11389 0.676553812765605 0.9839295386185664 0
-11390 0.9394208072744834 0.9834355075981487 0
-11391 0.6061598847956015 0.01630248551774945 0
-11392 0.606156133499228 0.9837248957214808 0
-11393 0.4140669318794118 0.9837177866985327 0
-11394 0.8687491215629924 0.01628548375396369 0
-11395 0.8696475970070393 0.9830349282062737 0
-11396 0.1515101281483569 0.9835218566401179 0
-11397 0.1514808590042712 0.0163611779224481 0
-11398 0.08105428016596643 0.9836864773201903 0
-11399 0.08107240817814962 0.01635557457166794 0
-11400 0.221938210447929 0.01630246305968316 0
-11401 0.2208636205049976 0.9837261144541561 0
-11402 0.7992211488774359 0.01634287728729315 0
-11403 0.7995015946932809 0.9840257990343021 0
-11404 0.4843600875460982 0.01612473322315925 0
-11405 0.4832385625337696 0.9840014882202099 0
-11406 0.53582661302365 0.9836440482931439 0
-11407 0.7471035199644923 0.01659566980974117 0
-11408 0.7457559447806552 0.9839826040298618 0
-11409 0.5631356311209341 0.979568985376998 0
-11410 0.2733351448179376 0.9836645848390775 0
-11411 0.5409613037535784 0.008524977800764716 0
-11412 0.02963633753860705 0.01653403203529146 0
-11413 0.8129197663278381 0.007632998646899431 0
-11414 0.2072667655438434 0.9923884075573149 0
-11415 0.876757384586323 0.9687607726783324 0
-11416 0.2921526033351112 0.01634029047286389 0
-11417 0.2921784151220408 0.9834238288854548 0
-11418 0.2783768951371292 0.00850487117152288 0
-11419 0.5545875929261154 0.01662172532784188 0
-11420 0.7281050611759612 0.01649579425471005 0
-11421 0.4656067069213496 0.01620578237637942 0
-11422 0.7323854374807846 0.9926347671555624 0
-11423 0.2031097214260159 0.01659050874836068 0
-11424 0.09988010185473656 0.9833953123399456 0
-11425 0.6618570400917789 0.007592290159885722 0
-11426 0.4698804438274464 0.9926300463019585 0
-11427 0.9227577328146517 0.02533381877500544 0
-11428 0.9203723905955993 0.9833727115246235 0
-11429 0.8131229140194944 0.9927347116746783 0
-11430 0.3624678038264141 0.01651703638821576 0
-11431 0.362370367817428 0.9833639173047485 0
-11432 0.6578067609887585 0.9835516256745962 0
-11433 0.6248885365235715 0.01662854112177032 0
-11434 0.6248592775534831 0.9833477110041923 0
-11435 0.3953495613138797 0.9833990318497702 0
-11436 0.3953084502310966 0.01652469010460183 0
-11437 0.1328919374538181 0.9833290264423312 0
-11438 0.1678106981626007 0.02680329862121884 0
-11439 0.01556607968360297 0.2330374698177357 0
-11440 0.8501090225202603 0.01677015408375076 0
-11441 0.8502112340419701 0.9832489757353691 0
-11442 0.4325182424035338 0.9832273805994357 0
-11443 0.587719815391613 0.01677835712590941 0
-11444 0.5876421775686218 0.983199140882936 0
-11445 0.1670033134482851 0.9932469557002491 0
-11446 0.03075929626460144 0.6117420647723564 0
-11447 0.695007691328387 0.9832177034333772 0
-11448 0.03103831365556867 0.5200745092718132 0
-11449 0.3251667815990323 0.9831860235048405 0
-11450 0.8964760893315881 0.9795963113841891 0
-11451 0.06268663005897616 0.9831687943066254 0
-11452 0.06269126555084595 0.01681598032021695 0
-11453 0.2376351071002556 0.9932200481612793 0
-11454 0.2376399330433903 0.006781714823958636 0
-11455 0.7800040872681584 0.983202647093922 0
-11456 0.5026976827839048 0.01681669342198435 0
-11457 0.5027026962798794 0.9831711330063152 0
-11458 0.0455038399924937 0.9931298187353764 0
-11459 0.04561350641301294 0.006854882168319468 0
-11460 0.5175399696905144 0.01680895663530711 0
-11461 0.5175375794227305 0.9831680280061103 0
-11462 0.9745490254185643 0.00667849653241311 0
-11463 0.9744182662874276 0.9932489217459175 0
-11464 0.3081972034811 0.993149899093038 0
-11465 0.570837973175868 0.9931388764415825 0
-11466 0.7651874920155587 0.9831541206008679 0
-11467 0.8333350573590363 0.006812713798729234 0
-11468 0.1868006646354033 0.9933205542806091 0
-11469 0.2550287582870611 0.9833358481984615 0
-11470 0.2550068502504916 0.01671659065297464 0
-11471 0.1162151261666205 0.9932386982147489 0
-11472 0.9040801640034984 0.9932282732650669 0
-11473 0.3788087954459941 0.9932397533534459 0
-11474 0.6414230023886405 0.006721929042736805 0
-11475 0.6414021912615911 0.9932402406414518 0
-11476 0.310371050276644 0.01683392994889798 0
-11477 0.7098443284970977 0.9831778145104278 0
-11478 0.5728769788005901 0.01685506672476638 0
-11479 0.4473612264187057 0.01680272864664082 0
-11480 0.4473682295457643 0.983164869870287 0
-11481 0.8345768487249078 0.9833825143942785 0
-11482 0.01556355360313367 0.6153178665352312 0
-11483 0.3793162569234254 0.01607570122124171 0
-11484 0.3249118799015617 0.01641564602926197 0
-11485 0.7822306697808528 0.006816074891369418 0
-11486 0.9550267899375051 0.993295596781978 0
-11487 0.03118066576903347 0.6217688596034193 0
-11488 0.9550749568181833 0.006707909544036787 0
-11489 0.6929272947599527 0.00697652533066596 0
-11490 0.4303975183097167 0.007073108497575364 0
-11491 0.01522355026271963 0.5147918880871055 0
-11492 0.7629570889495317 0.00657401577151458 0
-11493 0.01498462219037487 0.6054734426633809 0
-11494 0.7119086226860442 0.006322485636245752 0
-11495 0.006996196620448535 0.007005044421472373 0
-11496 0.007309575077898615 0.9928511641993281 0
-11497 0.9928018113698521 0.9928590542211259 0
-11498 0.9929452270850095 0.007090043551570668 0
-11499 0.1259422039879557 0.02300594279283608 0
-11500 0.894296896733079 0.0229989453984676 0
-11501 0.9109638280619433 0.03272299365772763 0
-11502 0.0311508853951659 0.2360810225905643 0
-11503 0.03184083636143516 0.6310801966790955 0
-11504 0.1066652885539102 0.02324502956681879 0
-11505 0.01438172673933027 0.5060006716224866 0
-11506 0.6671015158821718 0.01381765804389114 0
-11507 0.8756344277543704 0.9763529191601416 0
-11508 0.01415459252481883 0.5966245905331481 0
-11509 0.8079095225580829 0.01373331916480678 0
-11510 0.8083995977645773 0.9866851301768167 0
-11511 0.2122659387982858 0.9862945733227804 0
-11512 0.4745917832203858 0.9866513131989917 0
-11513 0.02560345152356758 0.994171759060594 0
-11514 0.7371514716415539 0.9866714681223325 0
-11515 0.4166881495454142 0.006914414378807866 0
-11516 0.02999318565653565 0.9822991448993974 0
-11517 0.8903930387535213 0.9747610952947439 0
-11518 0.1890416400053099 0.01751886712595411 0
-11519 0.01603829453420018 0.49273684611102 0
-11520 0.679120684873149 0.00684889017632354 0
-11521 0.827241858982932 0.9861886118307603 0
+2 0 10 0
+3 10 10 0
+4 10 0 0
+5 1.249999999998973 10 0
+6 2.499999999995371 10 0
+7 3.749999999991722 10 0
+8 4.999999999992412 10 0
+9 6.249999999994314 10 0
+10 7.499999999996209 10 0
+11 8.749999999998105 10 0
+12 10 8.749999999999996 0
+13 10 7.499999999999991 0
+14 10 6.249999999999988 0
+15 10 4.999999999999983 0
+16 10 3.749999999999982 0
+17 10 2.499999999999989 0
+18 10 1.249999999999995 0
+19 8.749999999999996 0 0
+20 7.499999999999991 0 0
+21 6.249999999999988 0 0
+22 4.999999999999983 0 0
+23 3.749999999999982 0 0
+24 2.499999999999989 0 0
+25 1.249999999999995 0 0
+26 0 1.249999999998973 0
+27 0 2.499999999995371 0
+28 0 3.749999999991722 0
+29 0 4.999999999992412 0
+30 0 6.249999999994314 0
+31 0 7.499999999996209 0
+32 0 8.749999999998105 0
+33 5.173787975656859 5.085045179576663 0
+34 3.031364394973262 2.995765707965804 0
+35 2.995765707966181 6.968635605026964 0
+36 7.008787139054464 2.981299261368599 0
+37 6.785255896460566 6.880804791167919 0
+38 4.984442231378654 2.096535650707435 0
+39 2.097343666220826 5.013201056705908 0
+40 7.903464349292699 4.98444223137876 0
+41 4.957440624148479 7.869392229780525 0
+42 1.700961977199405 1.680679898365461 0
+43 1.680679898365822 8.299038022800783 0
+44 8.299038022800305 1.680679898365364 0
+45 8.299038022800552 8.319320101634261 0
+46 3.548812102952463 4.316109948871402 0
+47 4.315476190476668 6.398809523809786 0
+48 5.683270608328813 3.546679908285533 0
+49 6.359523371713019 5.59292943887881 0
+50 1.536710838181838 3.607654600302749 0
+51 3.607654600302805 8.463289161818345 0
+52 3.707210563238025 1.476553281976585 0
+53 6.392345399698044 1.536710838181512 0
+54 1.45262492874672 6.252574266267288 0
+55 8.540771750810315 3.707392584507128 0
+56 8.463289161818672 6.392345399697989 0
+57 6.327028873276959 8.486407897092512 0
+58 4.196514992706012 3.18714819774071 0
+59 3.187248262461653 5.801083467659856 0
+60 5.606304146112091 6.687021608343258 0
+61 6.75251186372686 4.253657382326634 0
+62 0.8759974756754687 5.372059720513433 0
+63 4.634210612263091 0.9436412383540602 0
+64 5.352792380308166 9.004088475281169 0
+65 9.058833766329872 4.63423661530154 0
+66 0.9937277967549705 2.652888935255312 0
+67 2.652888935255445 9.006272203245086 0
+68 2.606328333024968 1.090910760831789 0
+69 7.304090354364384 0.9836094605874712 0
+70 8.909089239168296 2.606328333025176 0
+71 9.006272203244992 7.347111064742569 0
+72 1.090910760831986 7.393671666975671 0
+73 7.36751917833812 8.938023647432846 0
+74 2.540450587740446 3.886391957268869 0
+75 3.883455983146382 7.455090724357011 0
+76 6.087361749816728 2.530804838191685 0
+77 7.45005368428116 6.08837792360363 0
+78 0.8487587908561302 4.397641718771652 0
+79 4.413420597880402 9.132580617751277 0
+80 5.581396154894826 0.8611262039801124 0
+81 9.139054189947379 5.581398050159993 0
+82 4.761983574842397 4.25713995380524 0
+83 4.247705354472837 5.280986985902764 0
+84 5.926235033294744 4.696649721425565 0
+85 6.151704300182071 7.479814709529951 0
+86 0.9711512445888467 0.9711512445886189 0
+87 0.9711512445883793 9.028848755410968 0
+88 9.028848755411254 0.9711512445887419 0
+89 9.028848755411076 9.028848755411495 0
+90 2.101026448925906 2.803354162164832 0
+91 2.802864833144627 7.898230436423871 0
+92 7.920863709620026 2.773292598841395 0
+93 7.866827644983449 7.171869234502567 0
+94 2.802531761453046 2.055834512369694 0
+95 2.075401154077064 7.190806392590654 0
+96 7.176836064102227 2.05697407056305 0
+97 7.13289565267362 7.879373396893342 0
+98 5.068424493691744 5.900378956892553 0
+99 3.667311641950786 2.429560795407032 0
+100 2.404821709578857 6.30082676898258 0
+101 7.570439204593126 3.667311641951442 0
+102 0.7331682037086446 1.810944015640747 0
+103 1.810944015640798 9.266831796291369 0
+104 1.80568831096264 0.7485483807571737 0
+105 8.176395426515185 0.7270881207083155 0
+106 9.247395203475971 1.801631895195853 0
+107 9.266831796291324 8.189055984357664 0
+108 0.7485483807572375 8.194311689036347 0
+109 8.189081191308814 9.257238500895722 0
 $EndNodes
 $Elements
-23044
-1 15 2 0 1 1
-2 15 2 0 2 2
-3 15 2 0 3 3
-4 15 2 0 4 4
-5 1 2 0 1 3 5
-6 1 2 0 1 5 6
-7 1 2 0 1 6 7
-8 1 2 0 1 7 8
-9 1 2 0 1 8 9
-10 1 2 0 1 9 10
-11 1 2 0 1 10 11
-12 1 2 0 1 11 12
-13 1 2 0 1 12 13
-14 1 2 0 1 13 14
-15 1 2 0 1 14 15
-16 1 2 0 1 15 16
-17 1 2 0 1 16 17
-18 1 2 0 1 17 18
-19 1 2 0 1 18 19
-20 1 2 0 1 19 20
-21 1 2 0 1 20 21
-22 1 2 0 1 21 22
-23 1 2 0 1 22 23
-24 1 2 0 1 23 24
-25 1 2 0 1 24 25
-26 1 2 0 1 25 26
-27 1 2 0 1 26 27
-28 1 2 0 1 27 28
-29 1 2 0 1 28 29
-30 1 2 0 1 29 30
-31 1 2 0 1 30 31
-32 1 2 0 1 31 32
-33 1 2 0 1 32 33
-34 1 2 0 1 33 34
-35 1 2 0 1 34 35
-36 1 2 0 1 35 36
-37 1 2 0 1 36 37
-38 1 2 0 1 37 38
-39 1 2 0 1 38 39
-40 1 2 0 1 39 40
-41 1 2 0 1 40 41
-42 1 2 0 1 41 42
-43 1 2 0 1 42 43
-44 1 2 0 1 43 44
-45 1 2 0 1 44 45
-46 1 2 0 1 45 46
-47 1 2 0 1 46 47
-48 1 2 0 1 47 48
-49 1 2 0 1 48 49
-50 1 2 0 1 49 50
-51 1 2 0 1 50 51
-52 1 2 0 1 51 52
-53 1 2 0 1 52 53
-54 1 2 0 1 53 54
-55 1 2 0 1 54 55
-56 1 2 0 1 55 56
-57 1 2 0 1 56 57
-58 1 2 0 1 57 58
-59 1 2 0 1 58 59
-60 1 2 0 1 59 60
-61 1 2 0 1 60 61
-62 1 2 0 1 61 62
-63 1 2 0 1 62 63
-64 1 2 0 1 63 64
-65 1 2 0 1 64 65
-66 1 2 0 1 65 66
-67 1 2 0 1 66 67
-68 1 2 0 1 67 68
-69 1 2 0 1 68 69
-70 1 2 0 1 69 70
-71 1 2 0 1 70 71
-72 1 2 0 1 71 72
-73 1 2 0 1 72 73
-74 1 2 0 1 73 74
-75 1 2 0 1 74 75
-76 1 2 0 1 75 76
-77 1 2 0 1 76 77
-78 1 2 0 1 77 78
-79 1 2 0 1 78 79
-80 1 2 0 1 79 80
-81 1 2 0 1 80 81
-82 1 2 0 1 81 82
-83 1 2 0 1 82 83
-84 1 2 0 1 83 84
-85 1 2 0 1 84 85
-86 1 2 0 1 85 86
-87 1 2 0 1 86 87
-88 1 2 0 1 87 88
-89 1 2 0 1 88 89
-90 1 2 0 1 89 90
-91 1 2 0 1 90 91
-92 1 2 0 1 91 92
-93 1 2 0 1 92 93
-94 1 2 0 1 93 94
-95 1 2 0 1 94 95
-96 1 2 0 1 95 96
-97 1 2 0 1 96 97
-98 1 2 0 1 97 98
-99 1 2 0 1 98 99
-100 1 2 0 1 99 100
-101 1 2 0 1 100 101
-102 1 2 0 1 101 102
-103 1 2 0 1 102 2
-104 1 2 0 2 2 103
-105 1 2 0 2 103 104
-106 1 2 0 2 104 105
-107 1 2 0 2 105 106
-108 1 2 0 2 106 107
-109 1 2 0 2 107 108
-110 1 2 0 2 108 109
-111 1 2 0 2 109 110
-112 1 2 0 2 110 111
-113 1 2 0 2 111 112
-114 1 2 0 2 112 113
-115 1 2 0 2 113 114
-116 1 2 0 2 114 115
-117 1 2 0 2 115 116
-118 1 2 0 2 116 117
-119 1 2 0 2 117 118
-120 1 2 0 2 118 119
-121 1 2 0 2 119 120
-122 1 2 0 2 120 121
-123 1 2 0 2 121 122
-124 1 2 0 2 122 123
-125 1 2 0 2 123 124
-126 1 2 0 2 124 125
-127 1 2 0 2 125 126
-128 1 2 0 2 126 127
-129 1 2 0 2 127 128
-130 1 2 0 2 128 129
-131 1 2 0 2 129 130
-132 1 2 0 2 130 131
-133 1 2 0 2 131 132
-134 1 2 0 2 132 133
-135 1 2 0 2 133 134
-136 1 2 0 2 134 135
-137 1 2 0 2 135 136
-138 1 2 0 2 136 137
-139 1 2 0 2 137 138
-140 1 2 0 2 138 139
-141 1 2 0 2 139 140
-142 1 2 0 2 140 141
-143 1 2 0 2 141 142
-144 1 2 0 2 142 143
-145 1 2 0 2 143 144
-146 1 2 0 2 144 145
-147 1 2 0 2 145 146
-148 1 2 0 2 146 147
-149 1 2 0 2 147 148
-150 1 2 0 2 148 149
-151 1 2 0 2 149 150
-152 1 2 0 2 150 151
-153 1 2 0 2 151 152
-154 1 2 0 2 152 153
-155 1 2 0 2 153 154
-156 1 2 0 2 154 155
-157 1 2 0 2 155 156
-158 1 2 0 2 156 157
-159 1 2 0 2 157 158
-160 1 2 0 2 158 159
-161 1 2 0 2 159 160
-162 1 2 0 2 160 161
-163 1 2 0 2 161 162
-164 1 2 0 2 162 163
-165 1 2 0 2 163 164
-166 1 2 0 2 164 165
-167 1 2 0 2 165 166
-168 1 2 0 2 166 167
-169 1 2 0 2 167 168
-170 1 2 0 2 168 169
-171 1 2 0 2 169 170
-172 1 2 0 2 170 171
-173 1 2 0 2 171 172
-174 1 2 0 2 172 173
-175 1 2 0 2 173 174
-176 1 2 0 2 174 175
-177 1 2 0 2 175 176
-178 1 2 0 2 176 177
-179 1 2 0 2 177 178
-180 1 2 0 2 178 179
-181 1 2 0 2 179 180
-182 1 2 0 2 180 181
-183 1 2 0 2 181 182
-184 1 2 0 2 182 183
-185 1 2 0 2 183 184
-186 1 2 0 2 184 185
-187 1 2 0 2 185 186
-188 1 2 0 2 186 187
-189 1 2 0 2 187 188
-190 1 2 0 2 188 189
-191 1 2 0 2 189 190
-192 1 2 0 2 190 191
-193 1 2 0 2 191 192
-194 1 2 0 2 192 193
-195 1 2 0 2 193 194
-196 1 2 0 2 194 195
-197 1 2 0 2 195 196
-198 1 2 0 2 196 197
-199 1 2 0 2 197 198
-200 1 2 0 2 198 199
-201 1 2 0 2 199 200
-202 1 2 0 2 200 1
-203 1 2 0 3 1 201
-204 1 2 0 3 201 202
-205 1 2 0 3 202 203
-206 1 2 0 3 203 204
-207 1 2 0 3 204 205
-208 1 2 0 3 205 206
-209 1 2 0 3 206 207
-210 1 2 0 3 207 208
-211 1 2 0 3 208 209
-212 1 2 0 3 209 210
-213 1 2 0 3 210 211
-214 1 2 0 3 211 212
-215 1 2 0 3 212 213
-216 1 2 0 3 213 214
-217 1 2 0 3 214 215
-218 1 2 0 3 215 216
-219 1 2 0 3 216 217
-220 1 2 0 3 217 218
-221 1 2 0 3 218 219
-222 1 2 0 3 219 220
-223 1 2 0 3 220 221
-224 1 2 0 3 221 222
-225 1 2 0 3 222 223
-226 1 2 0 3 223 224
-227 1 2 0 3 224 225
-228 1 2 0 3 225 226
-229 1 2 0 3 226 227
-230 1 2 0 3 227 228
-231 1 2 0 3 228 229
-232 1 2 0 3 229 230
-233 1 2 0 3 230 231
-234 1 2 0 3 231 232
-235 1 2 0 3 232 233
-236 1 2 0 3 233 234
-237 1 2 0 3 234 235
-238 1 2 0 3 235 236
-239 1 2 0 3 236 237
-240 1 2 0 3 237 238
-241 1 2 0 3 238 239
-242 1 2 0 3 239 240
-243 1 2 0 3 240 241
-244 1 2 0 3 241 242
-245 1 2 0 3 242 243
-246 1 2 0 3 243 244
-247 1 2 0 3 244 245
-248 1 2 0 3 245 246
-249 1 2 0 3 246 247
-250 1 2 0 3 247 248
-251 1 2 0 3 248 249
-252 1 2 0 3 249 250
-253 1 2 0 3 250 251
-254 1 2 0 3 251 252
-255 1 2 0 3 252 253
-256 1 2 0 3 253 254
-257 1 2 0 3 254 255
-258 1 2 0 3 255 256
-259 1 2 0 3 256 257
-260 1 2 0 3 257 258
-261 1 2 0 3 258 259
-262 1 2 0 3 259 260
-263 1 2 0 3 260 261
-264 1 2 0 3 261 262
-265 1 2 0 3 262 263
-266 1 2 0 3 263 264
-267 1 2 0 3 264 265
-268 1 2 0 3 265 266
-269 1 2 0 3 266 267
-270 1 2 0 3 267 268
-271 1 2 0 3 268 269
-272 1 2 0 3 269 270
-273 1 2 0 3 270 271
-274 1 2 0 3 271 272
-275 1 2 0 3 272 273
-276 1 2 0 3 273 274
-277 1 2 0 3 274 275
-278 1 2 0 3 275 276
-279 1 2 0 3 276 277
-280 1 2 0 3 277 278
-281 1 2 0 3 278 279
-282 1 2 0 3 279 280
-283 1 2 0 3 280 281
-284 1 2 0 3 281 282
-285 1 2 0 3 282 283
-286 1 2 0 3 283 284
-287 1 2 0 3 284 285
-288 1 2 0 3 285 286
-289 1 2 0 3 286 287
-290 1 2 0 3 287 288
-291 1 2 0 3 288 289
-292 1 2 0 3 289 290
-293 1 2 0 3 290 291
-294 1 2 0 3 291 292
-295 1 2 0 3 292 293
-296 1 2 0 3 293 294
-297 1 2 0 3 294 295
-298 1 2 0 3 295 296
-299 1 2 0 3 296 297
-300 1 2 0 3 297 298
-301 1 2 0 3 298 4
-302 1 2 0 4 4 299
-303 1 2 0 4 299 300
-304 1 2 0 4 300 301
-305 1 2 0 4 301 302
-306 1 2 0 4 302 303
-307 1 2 0 4 303 304
-308 1 2 0 4 304 305
-309 1 2 0 4 305 306
-310 1 2 0 4 306 307
-311 1 2 0 4 307 308
-312 1 2 0 4 308 309
-313 1 2 0 4 309 310
-314 1 2 0 4 310 311
-315 1 2 0 4 311 312
-316 1 2 0 4 312 313
-317 1 2 0 4 313 314
-318 1 2 0 4 314 315
-319 1 2 0 4 315 316
-320 1 2 0 4 316 317
-321 1 2 0 4 317 318
-322 1 2 0 4 318 319
-323 1 2 0 4 319 320
-324 1 2 0 4 320 321
-325 1 2 0 4 321 322
-326 1 2 0 4 322 323
-327 1 2 0 4 323 324
-328 1 2 0 4 324 325
-329 1 2 0 4 325 326
-330 1 2 0 4 326 327
-331 1 2 0 4 327 328
-332 1 2 0 4 328 329
-333 1 2 0 4 329 330
-334 1 2 0 4 330 331
-335 1 2 0 4 331 332
-336 1 2 0 4 332 333
-337 1 2 0 4 333 334
-338 1 2 0 4 334 335
-339 1 2 0 4 335 336
-340 1 2 0 4 336 337
-341 1 2 0 4 337 338
-342 1 2 0 4 338 339
-343 1 2 0 4 339 340
-344 1 2 0 4 340 341
-345 1 2 0 4 341 342
-346 1 2 0 4 342 343
-347 1 2 0 4 343 344
-348 1 2 0 4 344 345
-349 1 2 0 4 345 346
-350 1 2 0 4 346 347
-351 1 2 0 4 347 348
-352 1 2 0 4 348 349
-353 1 2 0 4 349 350
-354 1 2 0 4 350 351
-355 1 2 0 4 351 352
-356 1 2 0 4 352 353
-357 1 2 0 4 353 354
-358 1 2 0 4 354 355
-359 1 2 0 4 355 356
-360 1 2 0 4 356 357
-361 1 2 0 4 357 358
-362 1 2 0 4 358 359
-363 1 2 0 4 359 360
-364 1 2 0 4 360 361
-365 1 2 0 4 361 362
-366 1 2 0 4 362 363
-367 1 2 0 4 363 364
-368 1 2 0 4 364 365
-369 1 2 0 4 365 366
-370 1 2 0 4 366 367
-371 1 2 0 4 367 368
-372 1 2 0 4 368 369
-373 1 2 0 4 369 370
-374 1 2 0 4 370 371
-375 1 2 0 4 371 372
-376 1 2 0 4 372 373
-377 1 2 0 4 373 374
-378 1 2 0 4 374 375
-379 1 2 0 4 375 376
-380 1 2 0 4 376 377
-381 1 2 0 4 377 378
-382 1 2 0 4 378 379
-383 1 2 0 4 379 380
-384 1 2 0 4 380 381
-385 1 2 0 4 381 382
-386 1 2 0 4 382 383
-387 1 2 0 4 383 384
-388 1 2 0 4 384 385
-389 1 2 0 4 385 386
-390 1 2 0 4 386 387
-391 1 2 0 4 387 388
-392 1 2 0 4 388 389
-393 1 2 0 4 389 390
-394 1 2 0 4 390 391
-395 1 2 0 4 391 392
-396 1 2 0 4 392 393
-397 1 2 0 4 393 394
-398 1 2 0 4 394 395
-399 1 2 0 4 395 396
-400 1 2 0 4 396 3
-401 2 2 0 6 441 7346 8028
-402 2 2 0 6 560 10091 9648
-403 2 2 0 6 458 11355 7951
-404 2 2 0 6 454 6851 11483
-405 2 2 0 6 4628 6925 6923
-406 2 2 0 6 524 8371 6757
-407 2 2 0 6 7346 11479 8028
-408 2 2 0 6 458 7951 11480
-409 2 2 0 6 476 11358 7710
-410 2 2 0 6 5169 6736 8401
-411 2 2 0 6 560 9648 11478
-412 2 2 0 6 454 11483 8366
-413 2 2 0 6 423 9172 6759
-414 2 2 0 6 122 9033 429
-415 2 2 0 6 8166 6734 8335
-416 2 2 0 6 6876 11348 9401
-417 2 2 0 6 419 6778 11367
-418 2 2 0 6 476 7710 11477
-419 2 2 0 6 501 7332 6761
-420 2 2 0 6 397 7335 7699
-421 2 2 0 6 398 6765 9666
-422 2 2 0 6 108 469 6945
-423 2 2 0 6 524 6757 11476
-424 2 2 0 6 6741 8875 8240
-425 2 2 0 6 558 10416 11370
-426 2 2 0 6 471 9516 6782
-427 2 2 0 6 465 6781 7828
-428 2 2 0 6 391 7845 470
-429 2 2 0 6 4638 6936 6937
-430 2 2 0 6 4628 6923 6922
-431 2 2 0 6 4638 6937 6938
-432 2 2 0 6 415 9262 6768
-433 2 2 0 6 514 6769 8237
-434 2 2 0 6 8323 10166 8902
-435 2 2 0 6 406 7585 9650
-436 2 2 0 6 402 8440 6772
-437 2 2 0 6 554 6773 9537
-438 2 2 0 6 477 9563 6780
-439 2 2 0 6 483 7507 7692
-440 2 2 0 6 434 7615 9523
-441 2 2 0 6 438 7856 6774
-442 2 2 0 6 513 8088 6784
-443 2 2 0 6 5145 6127 6932
-444 2 2 0 6 419 11470 6778
-445 2 2 0 6 423 6759 11469
-446 2 2 0 6 439 6846 9381
-447 2 2 0 6 435 8022 6837
-448 2 2 0 6 6770 11275 8305
-449 2 2 0 6 510 6845 7386
-450 2 2 0 6 6736 9360 8370
-451 2 2 0 6 8166 11466 6734
-452 2 2 0 6 407 7985 9292
-453 2 2 0 6 551 7129 9456
-454 2 2 0 6 528 8359 6844
-455 2 2 0 6 535 9122 6843
-456 2 2 0 6 5127 8091 8089
-457 2 2 0 6 449 6806 6807
-458 2 2 0 6 496 6801 6800
-459 2 2 0 6 440 6787 6789
-460 2 2 0 6 226 227 6914
-461 2 2 0 6 482 6797 6799
-462 2 2 0 6 220 221 6885
-463 2 2 0 6 221 6931 6885
-464 2 2 0 6 221 222 6931
-465 2 2 0 6 235 236 6916
-466 2 2 0 6 541 6811 6812
-467 2 2 0 6 556 6814 6815
-468 2 2 0 6 245 246 6884
-469 2 2 0 6 4641 7398 7399
-470 2 2 0 6 531 6822 6823
-471 2 2 0 6 519 8561 6825
-472 2 2 0 6 5651 8562 5653
-473 2 2 0 6 5653 8562 8563
-474 2 2 0 6 5653 8563 5655
-475 2 2 0 6 274 275 8331
-476 2 2 0 6 275 8334 8331
-477 2 2 0 6 275 276 8334
-478 2 2 0 6 294 295 6905
-479 2 2 0 6 280 281 6895
-480 2 2 0 6 436 6833 6832
-481 2 2 0 6 455 6828 6829
-482 2 2 0 6 291 292 6919
-483 2 2 0 6 547 6810 6974
-484 2 2 0 6 6156 7466 9934
-485 2 2 0 6 470 7722 9494
-486 2 2 0 6 530 9139 6794
-487 2 2 0 6 507 6793 7875
-488 2 2 0 6 555 6819 6934
-489 2 2 0 6 516 6792 6933
-490 2 2 0 6 443 7423 6786
-491 2 2 0 6 216 217 6929
-492 2 2 0 6 231 232 6930
-493 2 2 0 6 513 6784 8089
-494 2 2 0 6 422 9498 6840
-495 2 2 0 6 537 9255 6839
-496 2 2 0 6 561 6926 7483
-497 2 2 0 6 6139 8559 10326
-498 2 2 0 6 558 11460 10416
-499 2 2 0 6 501 6761 11461
-500 2 2 0 6 6815 8083 6893
-501 2 2 0 6 273 420 8333
-502 2 2 0 6 561 11364 6926
-503 2 2 0 6 397 7699 11456
-504 2 2 0 6 398 11457 6765
-505 2 2 0 6 416 6918 11354
-506 2 2 0 6 216 6929 6886
-507 2 2 0 6 231 6930 6883
-508 2 2 0 6 408 11376 6897
-509 2 2 0 6 6305 6308 7247
-510 2 2 0 6 205 206 11335
-511 2 2 0 6 5648 11336 5649
-512 2 2 0 6 540 6961 6820
-513 2 2 0 6 546 6956 6808
-514 2 2 0 6 533 6954 6813
-515 2 2 0 6 459 6963 6805
-516 2 2 0 6 472 6957 6809
-517 2 2 0 6 547 6960 6810
-518 2 2 0 6 556 6958 6814
-519 2 2 0 6 516 6967 6792
-520 2 2 0 6 523 6965 6835
-521 2 2 0 6 518 6830 6962
-522 2 2 0 6 5521 9345 6904
-523 2 2 0 6 6876 9401 11445
-524 2 2 0 6 6132 8563 11375
-525 2 2 0 6 6837 8022 11377
-526 2 2 0 6 6741 11455 8875
-527 2 2 0 6 6653 6947 6896
-528 2 2 0 6 6845 11378 7386
-529 2 2 0 6 489 9851 6785
-530 2 2 0 6 495 6849 6847
-531 2 2 0 6 416 6969 6918
-532 2 2 0 6 562 6907 6970
-533 2 2 0 6 6069 6921 11169
-534 2 2 0 6 464 11411 9664
-535 2 2 0 6 6817 6934 6819
-536 2 2 0 6 6134 6933 6792
-537 2 2 0 6 478 11418 9212
-538 2 2 0 6 564 6872 6873
-539 2 2 0 6 3861 3863 11337
-540 2 2 0 6 4226 7406 7408
-541 2 2 0 6 127 422 7435
-542 2 2 0 6 465 11452 6781
-543 2 2 0 6 471 6782 11451
-544 2 2 0 6 228 229 6887
-545 2 2 0 6 213 214 6889
-546 2 2 0 6 209 210 6888
-547 2 2 0 6 237 238 6890
-548 2 2 0 6 211 212 6891
-549 2 2 0 6 241 242 6892
-550 2 2 0 6 207 208 6955
-551 2 2 0 6 215 216 6886
-552 2 2 0 6 5386 6894 7594
-553 2 2 0 6 239 240 6897
-554 2 2 0 6 230 231 6883
-555 2 2 0 6 5151 6898 5152
-556 2 2 0 6 263 264 6899
-557 2 2 0 6 3867 3869 7403
-558 2 2 0 6 265 266 6908
-559 2 2 0 6 283 284 6910
-560 2 2 0 6 287 288 6911
-561 2 2 0 6 5657 8332 5659
-562 2 2 0 6 285 286 6912
-563 2 2 0 6 289 290 6913
-564 2 2 0 6 205 11335 6802
-565 2 2 0 6 5648 6909 11336
-566 2 2 0 6 6818 6936 11034
-567 2 2 0 6 4627 6922 5148
-568 2 2 0 6 481 7151 7167
-569 2 2 0 6 408 6893 11376
-570 2 2 0 6 6132 11375 8333
-571 2 2 0 6 6304 6305 7247
-572 2 2 0 6 182 183 8092
-573 2 2 0 6 3863 7401 11337
-574 2 2 0 6 6574 10326 8559
-575 2 2 0 6 415 6768 11449
-576 2 2 0 6 6827 11379 6920
-577 2 2 0 6 514 11447 6769
-578 2 2 0 6 6671 8370 9360
-579 2 2 0 6 204 205 6802
-580 2 2 0 6 202 203 6803
-581 2 2 0 6 3863 3865 7401
-582 2 2 0 6 5150 5837 6917
-583 2 2 0 6 5648 9605 6909
-584 2 2 0 6 5157 6906 6135
-585 2 2 0 6 6653 6896 9731
-586 2 2 0 6 5127 8089 11438
-587 2 2 0 6 477 6780 11454
-588 2 2 0 6 483 11453 7507
-589 2 2 0 6 6793 7876 7875
-590 2 2 0 6 6868 8305 11275
-591 2 2 0 6 6121 10166 8323
-592 2 2 0 6 6652 10819 6948
-593 2 2 0 6 406 11443 7585
-594 2 2 0 6 402 6772 11444
-595 2 2 0 6 424 6821 6915
-596 2 2 0 6 496 6800 6803
-597 2 2 0 6 538 6804 6917
-598 2 2 0 6 496 6802 6801
-599 2 2 0 6 555 6935 6819
-600 2 2 0 6 4641 7399 7401
-601 2 2 0 6 428 6791 6896
-602 2 2 0 6 412 6909 6824
-603 2 2 0 6 490 6906 6826
-604 2 2 0 6 554 11442 6773
-605 2 2 0 6 553 7697 6836
-606 2 2 0 6 3875 3877 6938
-607 2 2 0 6 5169 8401 6611
-608 2 2 0 6 6128 6893 8083
-609 2 2 0 6 272 273 8333
-610 2 2 0 6 431 6877 6875
-611 2 2 0 6 5145 6932 5146
-612 2 2 0 6 416 11354 6930
-613 2 2 0 6 3857 3859 7409
-614 2 2 0 6 6920 11379 6921
-615 2 2 0 6 434 11440 7615
-616 2 2 0 6 438 6774 11441
-617 2 2 0 6 447 6863 8626
-618 2 2 0 6 6736 11387 8401
-619 2 2 0 6 502 6796 11409
-620 2 2 0 6 7407 11344 7413
-621 2 2 0 6 543 6864 6866
-622 2 2 0 6 122 123 9033
-623 2 2 0 6 6786 7423 7424
-624 2 2 0 6 6846 11437 9381
-625 2 2 0 6 6653 6948 6947
-626 2 2 0 6 183 8090 8092
-627 2 2 0 6 544 7819 7820
-628 2 2 0 6 429 9033 11402
-629 2 2 0 6 107 108 6945
-630 2 2 0 6 457 8792 6852
-631 2 2 0 6 479 11340 8334
-632 2 2 0 6 479 6949 11340
-633 2 2 0 6 548 6855 6856
-634 2 2 0 6 522 6867 6869
-635 2 2 0 6 482 6883 6797
-636 2 2 0 6 440 6886 6787
-637 2 2 0 6 449 6891 6806
-638 2 2 0 6 449 6807 6888
-639 2 2 0 6 546 6808 6891
-640 2 2 0 6 432 6790 6894
-641 2 2 0 6 440 6789 6889
-642 2 2 0 6 533 6813 6955
-643 2 2 0 6 541 6897 6811
-644 2 2 0 6 482 6799 6887
-645 2 2 0 6 460 6816 6898
-646 2 2 0 6 541 6812 6890
-647 2 2 0 6 556 6815 6892
-648 2 2 0 6 4641 7403 7398
-649 2 2 0 6 4640 7400 7403
-650 2 2 0 6 531 6908 6822
-651 2 2 0 6 412 6824 6908
-652 2 2 0 6 420 8330 8332
-653 2 2 0 6 531 6823 6899
-654 2 2 0 6 436 6912 6833
-655 2 2 0 6 455 6913 6828
-656 2 2 0 6 523 6835 6912
-657 2 2 0 6 436 6832 6910
-658 2 2 0 6 455 6829 6911
-659 2 2 0 6 466 6920 6831
-660 2 2 0 6 7985 11435 9292
-661 2 2 0 6 391 392 7845
-662 2 2 0 6 469 11386 6945
-663 2 2 0 6 7129 11433 9456
-664 2 2 0 6 6844 8359 11434
-665 2 2 0 6 5146 6932 11346
-666 2 2 0 6 424 6914 6821
-667 2 2 0 6 226 6914 424
-668 2 2 0 6 538 6916 6804
-669 2 2 0 6 235 6916 538
-670 2 2 0 6 432 6885 6790
-671 2 2 0 6 220 6885 432
-672 2 2 0 6 460 6884 6816
-673 2 2 0 6 245 6884 460
-674 2 2 0 6 222 486 6931
-675 2 2 0 6 227 540 6914
-676 2 2 0 6 540 6820 6914
-677 2 2 0 6 236 459 6916
-678 2 2 0 6 459 6805 6916
-679 2 2 0 6 5655 8563 6132
-680 2 2 0 6 420 8331 8330
-681 2 2 0 6 274 8331 420
-682 2 2 0 6 428 6895 6791
-683 2 2 0 6 280 6895 428
-684 2 2 0 6 295 490 6905
-685 2 2 0 6 490 6826 6905
-686 2 2 0 6 518 6919 6830
-687 2 2 0 6 291 6919 518
-688 2 2 0 6 6825 8561 8562
-689 2 2 0 6 5651 6825 8562
-690 2 2 0 6 276 479 8334
-691 2 2 0 6 292 466 6919
-692 2 2 0 6 466 6831 6919
-693 2 2 0 6 463 6853 6855
-694 2 2 0 6 452 6869 9698
-695 2 2 0 6 6917 6918 6969
-696 2 2 0 6 6906 6970 6907
-697 2 2 0 6 246 6934 6884
-698 2 2 0 6 281 6933 6895
-699 2 2 0 6 294 6905 6943
-700 2 2 0 6 547 6974 6929
-701 2 2 0 6 536 8858 8792
-702 2 2 0 6 395 396 11080
-703 2 2 0 6 4228 11169 6921
-704 2 2 0 6 6803 6926 11364
-705 2 2 0 6 6843 9122 11431
-706 2 2 0 6 427 11518 6850
-707 2 2 0 6 217 547 6929
-708 2 2 0 6 232 416 6930
-709 2 2 0 6 204 6802 496
-710 2 2 0 6 203 496 6803
-711 2 2 0 6 5150 6917 6804
-712 2 2 0 6 3865 4641 7401
-713 2 2 0 6 6824 6909 9605
-714 2 2 0 6 5157 6826 6906
-715 2 2 0 6 6791 9731 6896
-716 2 2 0 6 470 7845 11390
-717 2 2 0 6 6823 6904 6900
-718 2 2 0 6 6127 6931 6932
-719 2 2 0 6 4644 6904 9345
-720 2 2 0 6 5521 6904 6823
-721 2 2 0 6 539 6861 6863
-722 2 2 0 6 489 6785 11459
-723 2 2 0 6 495 11458 6849
-724 2 2 0 6 7466 11427 9934
-725 2 2 0 6 7722 11428 9494
-726 2 2 0 6 472 6809 11335
-727 2 2 0 6 519 6825 11336
-728 2 2 0 6 4226 7408 7409
-729 2 2 0 6 6794 9139 11424
-730 2 2 0 6 6223 6925 10493
-731 2 2 0 6 4628 10493 6925
-732 2 2 0 6 542 6875 6874
-733 2 2 0 6 564 11462 6872
-734 2 2 0 6 4638 11034 6936
-735 2 2 0 6 4627 4628 6922
-736 2 2 0 6 427 8092 11518
-737 2 2 0 6 4640 11448 7400
-738 2 2 0 6 6827 6920 6943
-739 2 2 0 6 6318 11383 11409
-740 2 2 0 6 6815 6893 6892
-741 2 2 0 6 6823 6900 6899
-742 2 2 0 6 420 8332 8333
-743 2 2 0 6 126 127 7435
-744 2 2 0 6 5837 6918 6917
-745 2 2 0 6 6135 6906 6907
-746 2 2 0 6 6779 9212 11418
-747 2 2 0 6 540 6887 6961
-748 2 2 0 6 459 6890 6963
-749 2 2 0 6 546 6889 6956
-750 2 2 0 6 533 6888 6954
-751 2 2 0 6 472 6955 6957
-752 2 2 0 6 6810 6960 6894
-753 2 2 0 6 516 6910 6967
-754 2 2 0 6 523 6911 6965
-755 2 2 0 6 6814 6958 6898
-756 2 2 0 6 518 6962 6913
-757 2 2 0 6 228 6887 540
-758 2 2 0 6 229 482 6887
-759 2 2 0 6 214 440 6889
-760 2 2 0 6 210 449 6888
-761 2 2 0 6 209 6888 533
-762 2 2 0 6 213 6889 546
-763 2 2 0 6 238 541 6890
-764 2 2 0 6 237 6890 459
-765 2 2 0 6 212 546 6891
-766 2 2 0 6 215 6886 440
-767 2 2 0 6 211 6891 449
-768 2 2 0 6 241 6892 408
-769 2 2 0 6 242 556 6892
-770 2 2 0 6 208 533 6955
-771 2 2 0 6 207 6955 472
-772 2 2 0 6 230 6883 482
-773 2 2 0 6 5386 6810 6894
-774 2 2 0 6 6790 7594 6894
-775 2 2 0 6 239 6897 541
-776 2 2 0 6 240 408 6897
-777 2 2 0 6 5151 6814 6898
-778 2 2 0 6 5152 6898 6816
-779 2 2 0 6 264 531 6899
-780 2 2 0 6 263 6899 456
-781 2 2 0 6 3869 4640 7403
-782 2 2 0 6 3867 7403 4641
-783 2 2 0 6 266 412 6908
-784 2 2 0 6 265 6908 531
-785 2 2 0 6 284 436 6910
-786 2 2 0 6 283 6910 516
-787 2 2 0 6 287 6911 523
-788 2 2 0 6 288 455 6911
-789 2 2 0 6 5659 8332 8330
-790 2 2 0 6 5657 6132 8332
-791 2 2 0 6 285 6912 436
-792 2 2 0 6 286 523 6912
-793 2 2 0 6 290 518 6913
-794 2 2 0 6 289 6913 455
-795 2 2 0 6 8323 8902 11381
-796 2 2 0 6 6942 7400 11448
-797 2 2 0 6 6817 6884 6934
-798 2 2 0 6 6134 6895 6933
-799 2 2 0 6 6827 6943 6905
-800 2 2 0 6 464 9664 11419
-801 2 2 0 6 9665 9664 11411
-802 2 2 0 6 481 11464 7151
-803 2 2 0 6 183 184 8090
-804 2 2 0 6 117 6881 434
-805 2 2 0 6 6818 6819 6936
-806 2 2 0 6 5148 6922 6821
-807 2 2 0 6 6069 6831 6921
-808 2 2 0 6 182 8092 427
-809 2 2 0 6 206 472 11335
-810 2 2 0 6 5649 11336 6825
-811 2 2 0 6 6839 9255 11417
-812 2 2 0 6 478 9212 11416
-813 2 2 0 6 562 6971 6907
-814 2 2 0 6 6942 11371 7400
-815 2 2 0 6 6840 9498 11420
-816 2 2 0 6 4226 11337 7406
-817 2 2 0 6 117 118 6881
-818 2 2 0 6 7407 7413 7408
-819 2 2 0 6 7408 7413 7410
-820 2 2 0 6 525 11483 6860
-821 2 2 0 6 5665 6948 10819
-822 2 2 0 6 6652 6948 6653
-823 2 2 0 6 355 356 6882
-824 2 2 0 6 299 300 6971
-825 2 2 0 6 329 330 7152
-826 2 2 0 6 450 6866 11450
-827 2 2 0 6 6926 11412 7483
-828 2 2 0 6 492 6870 6872
-829 2 2 0 6 494 7842 7840
-830 2 2 0 6 303 304 7447
-831 2 2 0 6 195 196 6927
-832 2 2 0 6 3861 11337 4226
-833 2 2 0 6 3877 4638 6938
-834 2 2 0 6 3875 6938 4639
-835 2 2 0 6 356 402 6882
-836 2 2 0 6 537 6839 11410
-837 2 2 0 6 502 11465 6796
-838 2 2 0 6 422 6840 11407
-839 2 2 0 6 6900 6904 6902
-840 2 2 0 6 3859 4226 7409
-841 2 2 0 6 3857 7409 4642
-842 2 2 0 6 553 7698 7697
-843 2 2 0 6 431 6878 6877
-844 2 2 0 6 6770 8305 11389
-845 2 2 0 6 148 11370 11411
-846 2 2 0 6 174 11367 11418
-847 2 2 0 6 404 7413 11344
-848 2 2 0 6 396 11497 11080
-849 2 2 0 6 443 6786 11406
-850 2 2 0 6 548 6856 6857
-851 2 2 0 6 6736 8370 11387
-852 2 2 0 6 6932 11439 11346
-853 2 2 0 6 7408 7410 7409
-854 2 2 0 6 6771 11481 7771
-855 2 2 0 6 542 6874 6876
-856 2 2 0 6 485 7818 7819
-857 2 2 0 6 494 7840 7843
-858 2 2 0 6 330 415 7152
-859 2 2 0 6 488 7434 6879
-860 2 2 0 6 530 6794 11398
-861 2 2 0 6 507 11399 6793
-862 2 2 0 6 6156 11386 7466
-863 2 2 0 6 553 6836 11467
-864 2 2 0 6 499 7925 11479
-865 2 2 0 6 7827 9597 11480
-866 2 2 0 6 470 11390 7722
-867 2 2 0 6 488 6879 7433
-868 2 2 0 6 544 11494 7819
-869 2 2 0 6 5665 6949 6948
-870 2 2 0 6 7506 7507 9218
-871 2 2 0 6 6766 8591 6780
-872 2 2 0 6 8043 9556 11478
-873 2 2 0 6 431 6875 11468
-874 2 2 0 6 422 11407 7435
-875 2 2 0 6 7410 7413 7412
-876 2 2 0 6 535 6843 11388
-877 2 2 0 6 492 6928 6870
-878 2 2 0 6 6767 8284 11477
-879 2 2 0 6 9665 11370 10416
-880 2 2 0 6 304 471 7447
-881 2 2 0 6 195 6927 465
-882 2 2 0 6 7424 11409 11383
-883 2 2 0 6 447 11471 6863
-884 2 2 0 6 8407 11476 10812
-885 2 2 0 6 6779 11367 6778
-886 2 2 0 6 485 6944 7818
-887 2 2 0 6 6139 11400 8559
-888 2 2 0 6 543 6866 11472
-889 2 2 0 6 7710 11358 7712
-890 2 2 0 6 184 513 8090
-891 2 2 0 6 6837 11377 6838
-892 2 2 0 6 6137 7820 7819
-893 2 2 0 6 551 11391 7129
-894 2 2 0 6 528 6844 11392
-895 2 2 0 6 6842 7951 11355
-896 2 2 0 6 5665 11340 6949
-897 2 2 0 6 499 6951 7925
-898 2 2 0 6 6902 6904 11503
-899 2 2 0 6 6149 11378 6845
-900 2 2 0 6 407 11393 7985
-901 2 2 0 6 11348 11396 9401
-902 2 2 0 6 5234 11353 6953
-903 2 2 0 6 6766 11470 8591
-904 2 2 0 6 7506 9218 11469
-905 2 2 0 6 473 6880 11466
-906 2 2 0 6 525 8366 11483
-907 2 2 0 6 457 11473 8792
-908 2 2 0 6 6137 7819 7818
-909 2 2 0 6 564 6873 11361
-910 2 2 0 6 510 11394 6845
-911 2 2 0 6 479 11338 6949
-912 2 2 0 6 202 6803 11364
-913 2 2 0 6 502 11409 7424
-914 2 2 0 6 548 11474 6855
-915 2 2 0 6 522 6869 11475
-916 2 2 0 6 7640 11460 10356
-917 2 2 0 6 7369 11461 9374
-918 2 2 0 6 439 11396 6846
-919 2 2 0 6 435 6837 11397
-920 2 2 0 6 7640 10356 11456
-921 2 2 0 6 7369 9374 11457
-922 2 2 0 6 6308 11404 7247
-923 2 2 0 6 299 6971 11496
-924 2 2 0 6 6784 8088 11397
-925 2 2 0 6 6859 6953 11353
-926 2 2 0 6 6154 7820 8164
-927 2 2 0 6 6143 7434 6733
-928 2 2 0 6 473 11455 6880
-929 2 2 0 6 513 8089 8090
-930 2 2 0 6 7615 11394 9523
-931 2 2 0 6 6774 7856 11395
-932 2 2 0 6 463 6855 11474
-933 2 2 0 6 452 11475 6869
-934 2 2 0 6 7672 11366 11362
-935 2 2 0 6 6143 6879 7434
-936 2 2 0 6 536 8792 11473
-937 2 2 0 6 6776 6777 11521
-938 2 2 0 6 6777 11350 11521
-939 2 2 0 6 6773 11393 9537
-940 2 2 0 6 11370 9665 11411
-941 2 2 0 6 6779 11418 11367
-942 2 2 0 6 224 11357 11369
-943 2 2 0 6 7585 11391 9650
-944 2 2 0 6 6772 8440 11392
-945 2 2 0 6 6137 8164 7820
-946 2 2 0 6 506 7771 11481
-947 2 2 0 6 6767 11447 8284
-948 2 2 0 6 450 11450 8152
-949 2 2 0 6 6947 6949 11338
-950 2 2 0 6 5174 11351 11517
-951 2 2 0 6 6821 6922 6915
-952 2 2 0 6 6819 6935 6936
-953 2 2 0 6 7399 7402 7401
-954 2 2 0 6 8043 11443 9556
-955 2 2 0 6 450 11472 6866
-956 2 2 0 6 7827 11442 9597
-957 2 2 0 6 11351 8154 11517
-958 2 2 0 6 6769 11389 8237
-959 2 2 0 6 6800 6926 6803
-960 2 2 0 6 428 6896 6946
-961 2 2 0 6 6768 9262 11388
-962 2 2 0 6 6771 7771 11441
-963 2 2 0 6 539 6863 11471
-964 2 2 0 6 499 11479 7346
-965 2 2 0 6 458 11480 9597
-966 2 2 0 6 539 11437 6861
-967 2 2 0 6 560 11478 9556
-968 2 2 0 6 6223 11356 6925
-969 2 2 0 6 542 11468 6875
-970 2 2 0 6 536 11435 8858
-971 2 2 0 6 6782 9516 11398
-972 2 2 0 6 7828 6781 11399
-973 2 2 0 6 463 11433 6853
-974 2 2 0 6 452 9698 11434
-975 2 2 0 6 5127 11385 8091
-976 2 2 0 6 6923 6925 11502
-977 2 2 0 6 7840 7841 7843
-978 2 2 0 6 483 7692 11401
-979 2 2 0 6 477 11400 9563
-980 2 2 0 6 6733 7434 7435
-981 2 2 0 6 522 11432 6867
-982 2 2 0 6 6741 8240 11403
-983 2 2 0 6 257 258 11344
-984 2 2 0 6 454 11430 6851
-985 2 2 0 6 457 6852 11431
-986 2 2 0 6 525 6860 11436
-987 2 2 0 6 538 6917 6969
-988 2 2 0 6 6801 6802 6968
-989 2 2 0 6 555 6973 6935
-990 2 2 0 6 490 6970 6906
-991 2 2 0 6 412 6972 6909
-992 2 2 0 6 7335 11404 7699
-993 2 2 0 6 6765 11405 9666
-994 2 2 0 6 4626 11427 7381
-995 2 2 0 6 543 11428 6864
-996 2 2 0 6 6761 7332 11406
-997 2 2 0 6 447 8626 11424
-998 2 2 0 6 256 7414 504
-999 2 2 0 6 427 6850 11423
-1000 2 2 0 6 6734 11408 8335
-1001 2 2 0 6 476 11477 8284
-1002 2 2 0 6 6759 9172 11410
-1003 2 2 0 6 489 11412 9851
-1004 2 2 0 6 441 8028 11421
-1005 2 2 0 6 9648 10091 11419
-1006 2 2 0 6 6757 8371 11416
-1007 2 2 0 6 481 7167 11417
-1008 2 2 0 6 424 6915 11357
-1009 2 2 0 6 5179 6870 6928
-1010 2 2 0 6 5179 6928 6155
-1011 2 2 0 6 504 7414 7405
-1012 2 2 0 6 524 11476 8407
-1013 2 2 0 6 466 6943 6920
-1014 2 2 0 6 6797 6883 6798
-1015 2 2 0 6 7398 7403 7400
-1016 2 2 0 6 6126 6787 6886
-1017 2 2 0 6 6806 6891 6808
-1018 2 2 0 6 6822 6908 6824
-1019 2 2 0 6 6833 6912 6835
-1020 2 2 0 6 6856 6858 6857
-1021 2 2 0 6 6124 6959 8078
-1022 2 2 0 6 6834 6966 10057
-1023 2 2 0 6 6131 7525 6964
-1024 2 2 0 6 243 244 6958
-1025 2 2 0 6 218 219 6960
-1026 2 2 0 6 5141 6957 5353
-1027 2 2 0 6 5355 6954 10601
-1028 2 2 0 6 5159 6962 5160
-1029 2 2 0 6 5332 6961 7746
-1030 2 2 0 6 6446 10130 6967
-1031 2 2 0 6 495 6847 11516
-1032 2 2 0 6 486 6932 6931
-1033 2 2 0 6 8407 10812 11484
-1034 2 2 0 6 4626 7381 11501
-1035 2 2 0 6 233 234 6969
-1036 2 2 0 6 5140 7482 6968
-1037 2 2 0 6 296 297 6970
-1038 2 2 0 6 267 268 6972
-1039 2 2 0 6 248 249 6973
-1040 2 2 0 6 7397 7415 7404
-1041 2 2 0 6 293 6943 466
-1042 2 2 0 6 7841 7844 7843
-1043 2 2 0 6 282 516 6933
-1044 2 2 0 6 281 282 6933
-1045 2 2 0 6 246 247 6934
-1046 2 2 0 6 247 555 6934
-1047 2 2 0 6 256 257 7414
-1048 2 2 0 6 293 294 6943
-1049 2 2 0 6 6937 6939 6938
-1050 2 2 0 6 6789 11343 6956
-1051 2 2 0 6 6829 11342 6965
-1052 2 2 0 6 6805 6963 11341
-1053 2 2 0 6 6798 6883 6930
-1054 2 2 0 6 6126 6886 6929
-1055 2 2 0 6 408 6892 6893
-1056 2 2 0 6 456 6899 6900
-1057 2 2 0 6 6132 8333 8332
-1058 2 2 0 6 6831 6920 6921
-1059 2 2 0 6 5837 11339 6918
-1060 2 2 0 6 257 11344 7414
-1061 2 2 0 6 6793 11382 7876
-1062 2 2 0 6 279 428 6946
-1063 2 2 0 6 278 279 6946
-1064 2 2 0 6 6874 11334 6876
-1065 2 2 0 6 6947 6948 6949
-1066 2 2 0 6 6953 11362 11366
-1067 2 2 0 6 4639 6938 6939
-1068 2 2 0 6 8089 8091 8090
-1069 2 2 0 6 4642 7409 7410
-1070 2 2 0 6 504 7405 7404
-1071 2 2 0 6 7401 7402 11337
-1072 2 2 0 6 6155 6928 6945
-1073 2 2 0 6 6956 11343 6959
-1074 2 2 0 6 6966 6965 11342
-1075 2 2 0 6 6963 6964 11341
-1076 2 2 0 6 6807 6954 6888
-1077 2 2 0 6 6799 6961 6887
-1078 2 2 0 6 6789 6956 6889
-1079 2 2 0 6 6813 6957 6955
-1080 2 2 0 6 432 6894 6960
-1081 2 2 0 6 6812 6963 6890
-1082 2 2 0 6 460 6898 6958
-1083 2 2 0 6 6832 6967 6910
-1084 2 2 0 6 6829 6965 6911
-1085 2 2 0 6 6828 6913 6962
-1086 2 2 0 6 4630 8078 6959
-1087 2 2 0 6 4650 10057 6966
-1088 2 2 0 6 4636 6964 7525
-1089 2 2 0 6 243 6958 556
-1090 2 2 0 6 244 460 6958
-1091 2 2 0 6 219 432 6960
-1092 2 2 0 6 218 6960 547
-1093 2 2 0 6 5353 6957 6813
-1094 2 2 0 6 5141 6809 6957
-1095 2 2 0 6 6807 10601 6954
-1096 2 2 0 6 5355 6813 6954
-1097 2 2 0 6 5159 6828 6962
-1098 2 2 0 6 5160 6962 6830
-1099 2 2 0 6 6799 7746 6961
-1100 2 2 0 6 5332 6820 6961
-1101 2 2 0 6 6792 6967 10130
-1102 2 2 0 6 6446 6967 6832
-1103 2 2 0 6 419 8591 11470
-1104 2 2 0 6 423 11469 9218
-1105 2 2 0 6 6124 6808 6959
-1106 2 2 0 6 6131 6964 6812
-1107 2 2 0 6 6834 6835 6966
-1108 2 2 0 6 6924 11369 11357
-1109 2 2 0 6 6915 6922 6923
-1110 2 2 0 6 6935 6937 6936
-1111 2 2 0 6 272 8333 11375
-1112 2 2 0 6 6128 11376 6893
-1113 2 2 0 6 233 6969 416
-1114 2 2 0 6 234 538 6969
-1115 2 2 0 6 5140 6968 6809
-1116 2 2 0 6 6801 6968 7482
-1117 2 2 0 6 297 562 6970
-1118 2 2 0 6 296 6970 490
-1119 2 2 0 6 267 6972 412
-1120 2 2 0 6 268 519 6972
-1121 2 2 0 6 249 400 6973
-1122 2 2 0 6 248 6973 555
-1123 2 2 0 6 504 7404 7415
-1124 2 2 0 6 7397 7404 7399
-1125 2 2 0 6 473 11466 8166
-1126 2 2 0 6 6896 6947 6946
-1127 2 2 0 6 7399 7404 7402
-1128 2 2 0 6 196 11459 6927
-1129 2 2 0 6 303 7447 11458
-1130 2 2 0 6 258 404 11344
-1131 2 2 0 6 7402 7406 11337
-1132 2 2 0 6 6857 6858 6859
-1133 2 2 0 6 6877 6878 11349
-1134 2 2 0 6 7697 7698 11352
-1135 2 2 0 6 456 6900 6901
-1136 2 2 0 6 492 6872 11462
-1137 2 2 0 6 494 11463 7842
-1138 2 2 0 6 558 10356 11460
-1139 2 2 0 6 501 11461 7369
-1140 2 2 0 6 4639 6939 6940
-1141 2 2 0 6 8091 8092 8090
-1142 2 2 0 6 7841 10357 7844
-1143 2 2 0 6 7723 7844 10357
-1144 2 2 0 6 4642 7410 7411
-1145 2 2 0 6 6126 6929 6974
-1146 2 2 0 6 434 6881 11440
-1147 2 2 0 6 6915 6923 6924
-1148 2 2 0 6 6909 6972 11336
-1149 2 2 0 6 519 11336 6972
-1150 2 2 0 6 6802 11335 6968
-1151 2 2 0 6 6809 6968 11335
-1152 2 2 0 6 7843 7844 7845
-1153 2 2 0 6 6858 6953 6859
-1154 2 2 0 6 397 11456 10356
-1155 2 2 0 6 398 7369 11457
-1156 2 2 0 6 6900 6902 6901
-1157 2 2 0 6 6939 6941 6940
-1158 2 2 0 6 7410 7412 7411
-1159 2 2 0 6 5142 6974 5143
-1160 2 2 0 6 6808 6956 6959
-1161 2 2 0 6 6812 6964 6963
-1162 2 2 0 6 6835 6965 6966
-1163 2 2 0 6 6901 6902 6903
-1164 2 2 0 6 7402 7404 7405
-1165 2 2 0 6 6941 6942 6940
-1166 2 2 0 6 5143 6974 6810
-1167 2 2 0 6 5142 6126 6974
-1168 2 2 0 6 7402 7405 7406
-1169 2 2 0 6 7405 7407 7406
-1170 2 2 0 6 7406 7407 7408
-1171 2 2 0 6 7405 7414 7407
-1172 2 2 0 6 21 552 7013
-1173 2 2 0 6 552 6979 7013
-1174 2 2 0 6 6980 8746 11297
-1175 2 2 0 6 487 6981 7003
-1176 2 2 0 6 26 487 7003
-1177 2 2 0 6 445 7110 6975
-1178 2 2 0 6 29 421 6999
-1179 2 2 0 6 421 6983 6999
-1180 2 2 0 6 6163 7367 11287
-1181 2 2 0 6 425 7015 9566
-1182 2 2 0 6 6984 7184 11290
-1183 2 2 0 6 20 21 7013
-1184 2 2 0 6 433 8746 8745
-1185 2 2 0 6 552 7014 6979
-1186 2 2 0 6 36 413 7008
-1187 2 2 0 6 28 29 6999
-1188 2 2 0 6 25 26 7003
-1189 2 2 0 6 413 6986 7008
-1190 2 2 0 6 433 8745 9428
-1191 2 2 0 6 7238 9428 8745
-1192 2 2 0 6 1322 1439 11285
-1193 2 2 0 6 549 6985 9442
-1194 2 2 0 6 549 6988 6985
-1195 2 2 0 6 437 11284 11321
-1196 2 2 0 6 509 7238 7111
-1197 2 2 0 6 6988 9416 7366
-1198 2 2 0 6 549 9416 6988
-1199 2 2 0 6 7014 9566 7015
-1200 2 2 0 6 445 7237 7110
-1201 2 2 0 6 467 6976 11201
-1202 2 2 0 6 484 7366 9416
-1203 2 2 0 6 6982 10971 11293
-1204 2 2 0 6 484 7367 7366
-1205 2 2 0 6 491 7846 11126
-1206 2 2 0 6 445 6975 11245
-1207 2 2 0 6 7846 11079 11126
-1208 2 2 0 6 7110 7237 7111
-1209 2 2 0 6 6977 11179 11192
-1210 2 2 0 6 35 36 7008
-1211 2 2 0 6 527 6978 11226
-1212 2 2 0 6 509 9428 7238
-1213 2 2 0 6 527 11236 6978
-1214 2 2 0 6 461 7012 7257
-1215 2 2 0 6 467 11214 6976
-1216 2 2 0 6 563 11079 11080
-1217 2 2 0 6 487 7184 6981
-1218 2 2 0 6 563 11126 11079
-1219 2 2 0 6 545 6987 9359
-1220 2 2 0 6 545 7524 6987
-1221 2 2 0 6 7257 7524 9435
-1222 2 2 0 6 491 11179 7846
-1223 2 2 0 6 1513 1776 7470
-1224 2 2 0 6 545 9435 7524
-1225 2 2 0 6 491 11192 11179
-1226 2 2 0 6 509 7111 7237
-1227 2 2 0 6 461 7257 9435
-1228 2 2 0 6 2852 3250 11278
-1229 2 2 0 6 7492 7705 11265
-1230 2 2 0 6 421 7467 6983
-1231 2 2 0 6 5770 5771 6996
-1232 2 2 0 6 5770 7076 8356
-1233 2 2 0 6 6989 7012 9422
-1234 2 2 0 6 461 9422 7012
-1235 2 2 0 6 5771 6997 6996
-1236 2 2 0 6 6985 7467 9442
-1237 2 2 0 6 433 11297 8746
-1238 2 2 0 6 5770 6996 7076
-1239 2 2 0 6 98 11272 11330
-1240 2 2 0 6 550 6989 9422
-1241 2 2 0 6 462 7605 7385
-1242 2 2 0 6 6165 6166 11258
-1243 2 2 0 6 552 9566 7014
-1244 2 2 0 6 425 10971 7015
-1245 2 2 0 6 6976 6977 11201
-1246 2 2 0 6 484 11287 7367
-1247 2 2 0 6 405 7055 7728
-1248 2 2 0 6 405 7728 9660
-1249 2 2 0 6 11214 11226 6978
-1250 2 2 0 6 467 11226 11214
-1251 2 2 0 6 6975 11236 11245
-1252 2 2 0 6 85 11282 11317
-1253 2 2 0 6 527 11245 11236
-1254 2 2 0 6 1231 7949 7001
-1255 2 2 0 6 7001 7949 10286
-1256 2 2 0 6 405 9538 7055
-1257 2 2 0 6 6990 7055 9538
-1258 2 2 0 6 413 7495 6986
-1259 2 2 0 6 6991 7016 9669
-1260 2 2 0 6 4130 9942 6992
-1261 2 2 0 6 4130 6992 6991
-1262 2 2 0 6 4690 9669 7016
-1263 2 2 0 6 6987 7495 9359
-1264 2 2 0 6 4130 6991 9669
-1265 2 2 0 6 82 11283 11314
-1266 2 2 0 6 6977 11192 11201
-1267 2 2 0 6 7377 10861 10971
-1268 2 2 0 6 559 6990 9538
-1269 2 2 0 6 6992 9942 8964
-1270 2 2 0 6 559 6995 6990
-1271 2 2 0 6 3250 8356 7076
-1272 2 2 0 6 5188 7184 7169
-1273 2 2 0 6 6995 10088 7385
-1274 2 2 0 6 559 10088 6995
-1275 2 2 0 6 3310 6993 6994
-1276 2 2 0 6 517 11280 11301
-1277 2 2 0 6 5771 7110 6997
-1278 2 2 0 6 5224 5225 7467
-1279 2 2 0 6 6998 7004 9162
-1280 2 2 0 6 6405 9162 7004
-1281 2 2 0 6 5192 7000 6998
-1282 2 2 0 6 5912 11265 7705
-1283 2 2 0 6 5191 7000 5192
-1284 2 2 0 6 6405 7004 7475
-1285 2 2 0 6 5192 6998 9162
-1286 2 2 0 6 462 7385 10088
-1287 2 2 0 6 6405 7475 9726
-1288 2 2 0 6 2416 11256 7471
-1289 2 2 0 6 7475 7477 9726
-1290 2 2 0 6 4692 7477 7479
-1291 2 2 0 6 4692 9726 7477
-1292 2 2 0 6 550 9812 6989
-1293 2 2 0 6 4287 7006 7007
-1294 2 2 0 6 6204 7007 7006
-1295 2 2 0 6 6165 11258 9487
-1296 2 2 0 6 4692 7479 10863
-1297 2 2 0 6 7728 9812 9660
-1298 2 2 0 6 4287 7007 7430
-1299 2 2 0 6 3250 7076 11278
-1300 2 2 0 6 421 9442 7467
-1301 2 2 0 6 5241 8200 7495
-1302 2 2 0 6 6224 10846 7031
-1303 2 2 0 6 7032 10821 7050
-1304 2 2 0 6 7053 7780 10828
-1305 2 2 0 6 5426 11262 8116
-1306 2 2 0 6 7781 9157 10847
-1307 2 2 0 6 6168 6169 7119
-1308 2 2 0 6 3337 7749 7002
-1309 2 2 0 6 6169 7127 7119
-1310 2 2 0 6 893 11029 9858
-1311 2 2 0 6 6173 10862 7066
-1312 2 2 0 6 5191 7005 7000
-1313 2 2 0 6 6169 6171 7127
-1314 2 2 0 6 5249 5250 9812
-1315 2 2 0 6 6580 10868 8299
-1316 2 2 0 6 7002 7749 7067
-1317 2 2 0 6 1776 3310 7470
-1318 2 2 0 6 3310 7471 6993
-1319 2 2 0 6 2778 7067 7749
-1320 2 2 0 6 5235 7011 7430
-1321 2 2 0 6 5397 9884 7005
-1322 2 2 0 6 1439 7470 11285
-1323 2 2 0 6 4287 7430 7011
-1324 2 2 0 6 1439 1513 7470
-1325 2 2 0 6 913 7050 10821
-1326 2 2 0 6 917 7031 10846
-1327 2 2 0 6 921 7053 10828
-1328 2 2 0 6 7025 9846 7026
-1329 2 2 0 6 907 8564 8889
-1330 2 2 0 6 919 920 9353
-1331 2 2 0 6 7026 8889 8564
-1332 2 2 0 6 413 9359 7495
-1333 2 2 0 6 7026 9846 8889
-1334 2 2 0 6 900 9776 903
-1335 2 2 0 6 6177 9357 7030
-1336 2 2 0 6 919 9353 7028
-1337 2 2 0 6 925 7781 10847
-1338 2 2 0 6 903 9776 7030
-1339 2 2 0 6 3889 9846 7025
-1340 2 2 0 6 4723 10430 5775
-1341 2 2 0 6 903 7030 9357
-1342 2 2 0 6 931 932 8979
-1343 2 2 0 6 5287 8490 11086
-1344 2 2 0 6 927 928 8244
-1345 2 2 0 6 923 924 8243
-1346 2 2 0 6 4737 10040 7062
-1347 2 2 0 6 931 8979 8978
-1348 2 2 0 6 927 8244 8242
-1349 2 2 0 6 6218 10296 8410
-1350 2 2 0 6 916 9853 915
-1351 2 2 0 6 6182 7605 10229
-1352 2 2 0 6 4270 7190 4723
-1353 2 2 0 6 7062 10040 5413
-1354 2 2 0 6 3273 9199 7022
-1355 2 2 0 6 61 11261 11292
-1356 2 2 0 6 923 8243 10199
-1357 2 2 0 6 929 7066 10862
-1358 2 2 0 6 6441 10385 6459
-1359 2 2 0 6 915 9853 7057
-1360 2 2 0 6 3273 7022 9430
-1361 2 2 0 6 915 7057 8593
-1362 2 2 0 6 5413 10040 7019
-1363 2 2 0 6 937 7212 10509
-1364 2 2 0 6 4723 7190 10430
-1365 2 2 0 6 2778 10902 7067
-1366 2 2 0 6 940 8220 939
-1367 2 2 0 6 7056 8593 7057
-1368 2 2 0 6 939 8220 8659
-1369 2 2 0 6 897 898 8253
-1370 2 2 0 6 895 8410 10296
-1371 2 2 0 6 3478 8593 7056
-1372 2 2 0 6 7100 7009 9807
-1373 2 2 0 6 933 8299 10868
-1374 2 2 0 6 897 8253 7063
-1375 2 2 0 6 6459 9471 8113
-1376 2 2 0 6 7100 9807 5791
-1377 2 2 0 6 462 10229 7605
-1378 2 2 0 6 3478 7056 7059
-1379 2 2 0 6 1826 10791 1914
-1380 2 2 0 6 5771 6975 7110
-1381 2 2 0 6 3478 7059 4171
-1382 2 2 0 6 2489 10904 2614
-1383 2 2 0 6 935 8660 10061
-1384 2 2 0 6 6459 10385 9471
-1385 2 2 0 6 888 8114 8113
-1386 2 2 0 6 1231 7001 11090
-1387 2 2 0 6 3273 3274 9199
-1388 2 2 0 6 888 8113 9471
-1389 2 2 0 6 1357 9807 7009
-1390 2 2 0 6 5312 7260 7261
-1391 2 2 0 6 5251 7029 5314
-1392 2 2 0 6 6182 10393 7075
-1393 2 2 0 6 5314 7029 7027
-1394 2 2 0 6 1357 7009 7010
-1395 2 2 0 6 2778 9957 10902
-1396 2 2 0 6 888 9654 8114
-1397 2 2 0 6 7127 7129 7128
-1398 2 2 0 6 6265 10968 7101
-1399 2 2 0 6 1793 1877 7471
-1400 2 2 0 6 5211 10168 10480
-1401 2 2 0 6 1404 10994 9372
-1402 2 2 0 6 6182 10229 10393
-1403 2 2 0 6 1409 11033 1498
-1404 2 2 0 6 1357 7010 9767
-1405 2 2 0 6 3127 3128 10982
-1406 2 2 0 6 1914 7107 1972
-1407 2 2 0 6 935 936 8660
-1408 2 2 0 6 5235 7431 7011
-1409 2 2 0 6 3135 3136 10949
-1410 2 2 0 6 5210 5211 8894
-1411 2 2 0 6 6168 7119 8116
-1412 2 2 0 6 8568 8571 10576
-1413 2 2 0 6 7010 8490 9767
-1414 2 2 0 6 4141 7073 7859
-1415 2 2 0 6 870 873 8064
-1416 2 2 0 6 3324 7017 7018
-1417 2 2 0 6 6185 8893 9343
-1418 2 2 0 6 2614 7096 2616
-1419 2 2 0 6 5211 10480 8894
-1420 2 2 0 6 3324 7018 9243
-1421 2 2 0 6 6186 7859 7073
-1422 2 2 0 6 4652 6068 11150
-1423 2 2 0 6 5189 6979 7014
-1424 2 2 0 6 3058 7024 10065
-1425 2 2 0 6 487 11290 7184
-1426 2 2 0 6 5189 7014 5322
-1427 2 2 0 6 6185 9343 9749
-1428 2 2 0 6 7097 10916 8798
-1429 2 2 0 6 893 894 8254
-1430 2 2 0 6 9198 9979 11239
-1431 2 2 0 6 856 10524 859
-1432 2 2 0 6 1914 10791 7107
-1433 2 2 0 6 858 8057 7089
-1434 2 2 0 6 871 9749 9343
-1435 2 2 0 6 1130 7745 7054
-1436 2 2 0 6 4570 10576 8571
-1437 2 2 0 6 5731 7097 7745
-1438 2 2 0 6 7000 7005 9884
-1439 2 2 0 6 9044 10128 9045
-1440 2 2 0 6 8621 9495 8624
-1441 2 2 0 6 4133 10101 7431
-1442 2 2 0 6 7018 7515 9243
-1443 2 2 0 6 1400 7106 8932
-1444 2 2 0 6 6328 8625 8624
-1445 2 2 0 6 6325 10985 7130
-1446 2 2 0 6 4569 9619 11061
-1447 2 2 0 6 6197 7148 11050
-1448 2 2 0 6 871 7072 9749
-1449 2 2 0 6 893 8254 11029
-1450 2 2 0 6 6328 10206 8625
-1451 2 2 0 6 6278 8932 7106
-1452 2 2 0 6 6187 9446 7103
-1453 2 2 0 6 3567 9156 7085
-1454 2 2 0 6 7620 3341 7621
-1455 2 2 0 6 8222 10128 9044
-1456 2 2 0 6 2926 11070 4796
-1457 2 2 0 6 5208 8222 9044
-1458 2 2 0 6 5200 7162 10072
-1459 2 2 0 6 7054 9296 9761
-1460 2 2 0 6 8278 8715 11006
-1461 2 2 0 6 7085 9156 7084
-1462 2 2 0 6 1043 7084 9156
-1463 2 2 0 6 557 7075 10393
-1464 2 2 0 6 6984 7169 7184
-1465 2 2 0 6 859 7202 861
-1466 2 2 0 6 3135 7103 9446
-1467 2 2 0 6 3486 7071 7747
-1468 2 2 0 6 7982 10544 7983
-1469 2 2 0 6 1130 7054 9761
-1470 2 2 0 6 1130 5731 7745
-1471 2 2 0 6 871 9056 7072
-1472 2 2 0 6 844 9914 846
-1473 2 2 0 6 6328 8624 9495
-1474 2 2 0 6 2326 7023 7108
-1475 2 2 0 6 3563 7070 9002
-1476 2 2 0 6 5219 5619 8620
-1477 2 2 0 6 5619 8621 8620
-1478 2 2 0 6 951 9045 10128
-1479 2 2 0 6 3673 9761 9296
-1480 2 2 0 6 5328 7268 10178
-1481 2 2 0 6 7070 7094 9002
-1482 2 2 0 6 6984 11290 6999
-1483 2 2 0 6 3323 7536 7164
-1484 2 2 0 6 3567 7085 10217
-1485 2 2 0 6 5619 9495 8621
-1486 2 2 0 6 3320 10311 4021
-1487 2 2 0 6 3051 9002 7094
-1488 2 2 0 6 2614 10904 7096
-1489 2 2 0 6 844 7631 9914
-1490 2 2 0 6 5674 9313 7860
-1491 2 2 0 6 842 7631 844
-1492 2 2 0 6 859 10524 7202
-1493 2 2 0 6 7072 9056 7747
-1494 2 2 0 6 6202 11137 9745
-1495 2 2 0 6 5251 7086 7029
-1496 2 2 0 6 866 868 7923
-1497 2 2 0 6 5731 10916 7097
-1498 2 2 0 6 550 9660 9812
-1499 2 2 0 6 8354 8786 11127
-1500 2 2 0 6 3486 7747 9056
-1501 2 2 0 6 7621 7924 9959
-1502 2 2 0 6 5282 7872 7060
-1503 2 2 0 6 862 864 8622
-1504 2 2 0 6 4417 7633 9613
-1505 2 2 0 6 3323 7164 8944
-1506 2 2 0 6 5188 6981 7184
-1507 2 2 0 6 1043 10469 7084
-1508 2 2 0 6 7015 10971 10861
-1509 2 2 0 6 5254 7136 10961
-1510 2 2 0 6 4721 7060 7872
-1511 2 2 0 6 6595 7212 7211
-1512 2 2 0 6 4021 10311 7092
-1513 2 2 0 6 847 849 10644
-1514 2 2 0 6 1094 8695 1133
-1515 2 2 0 6 5224 7467 6985
-1516 2 2 0 6 7010 11086 8490
-1517 2 2 0 6 5225 6983 7467
-1518 2 2 0 6 3123 3124 10756
-1519 2 2 0 6 7122 8715 8882
-1520 2 2 0 6 6232 6236 9089
-1521 2 2 0 6 557 10483 7075
-1522 2 2 0 6 6562 6595 7211
-1523 2 2 0 6 963 968 11031
-1524 2 2 0 6 5282 7060 7874
-1525 2 2 0 6 3143 7101 10968
-1526 2 2 0 6 5269 7061 7873
-1527 2 2 0 6 897 7063 8254
-1528 2 2 0 6 7777 7983 10544
-1529 2 2 0 6 3135 10949 7103
-1530 2 2 0 6 8781 11224 9104
-1531 2 2 0 6 5301 9582 8731
-1532 2 2 0 6 6048 11042 7132
-1533 2 2 0 6 845 847 7168
-1534 2 2 0 6 6562 7211 7228
-1535 2 2 0 6 1148 9865 10698
-1536 2 2 0 6 2589 8731 9582
-1537 2 2 0 6 6386 10910 11062
-1538 2 2 0 6 5269 7872 7061
-1539 2 2 0 6 2616 7096 3058
-1540 2 2 0 6 4721 7872 5269
-1541 2 2 0 6 7769 10507 9675
-1542 2 2 0 6 787 10297 1522
-1543 2 2 0 6 6190 9372 10994
-1544 2 2 0 6 6562 7228 7158
-1545 2 2 0 6 852 8783 854
-1546 2 2 0 6 3058 7096 7024
-1547 2 2 0 6 3127 10982 7112
-1548 2 2 0 6 959 7160 7069
-1549 2 2 0 6 5328 7880 7268
-1550 2 2 0 6 1200 8794 8721
-1551 2 2 0 6 7108 7695 7181
-1552 2 2 0 6 960 7160 959
-1553 2 2 0 6 4350 11260 10663
-1554 2 2 0 6 6595 10509 7212
-1555 2 2 0 6 1366 7123 10794
-1556 2 2 0 6 7681 7682 11107
-1557 2 2 0 6 1795 7134 10797
-1558 2 2 0 6 6982 11293 7003
-1559 2 2 0 6 1522 10297 7099
-1560 2 2 0 6 5246 11154 11163
-1561 2 2 0 6 1200 7114 8794
-1562 2 2 0 6 2326 7107 7023
-1563 2 2 0 6 7005 10611 10928
-1564 2 2 0 6 10 467 11201
-1565 2 2 0 6 6982 7377 10971
-1566 2 2 0 6 1972 7107 2326
-1567 2 2 0 6 5196 7181 7695
-1568 2 2 0 6 6192 7632 6193
-1569 2 2 0 6 1200 8827 7114
-1570 2 2 0 6 4736 7261 10312
-1571 2 2 0 6 7108 9817 7695
-1572 2 2 0 6 959 7069 7161
-1573 2 2 0 6 5246 11163 9545
-1574 2 2 0 6 847 10644 7168
-1575 2 2 0 6 7087 7114 8827
-1576 2 2 0 6 1201 1231 11090
-1577 2 2 0 6 1498 11033 7121
-1578 2 2 0 6 3390 7087 8827
-1579 2 2 0 6 6163 11287 7008
-1580 2 2 0 6 3381 11194 9545
-1581 2 2 0 6 4141 7860 7073
-1582 2 2 0 6 3390 7088 7087
-1583 2 2 0 6 4323 7362 11069
-1584 2 2 0 6 6242 7164 7536
-1585 2 2 0 6 2587 11266 10785
-1586 2 2 0 6 4796 7163 6242
-1587 2 2 0 6 3648 9962 7086
-1588 2 2 0 6 5270 10981 10954
-1589 2 2 0 6 4108 10865 5500
-1590 2 2 0 6 5264 8823 11148
-1591 2 2 0 6 7161 10072 7162
-1592 2 2 0 6 2658 7510 2740
-1593 2 2 0 6 1148 10698 9674
-1594 2 2 0 6 7011 7431 10101
-1595 2 2 0 6 5241 7495 6987
-1596 2 2 0 6 7323 7324 10727
-1597 2 2 0 6 6242 7163 7164
-1598 2 2 0 6 7154 9917 7159
-1599 2 2 0 6 960 963 7160
-1600 2 2 0 6 6986 7495 8200
-1601 2 2 0 6 5514 9917 7154
-1602 2 2 0 6 1362 7130 10985
-1603 2 2 0 6 3058 10065 7510
-1604 2 2 0 6 7431 10714 10852
-1605 2 2 0 6 6226 11063 11073
-1606 2 2 0 6 4270 5413 7190
-1607 2 2 0 6 1606 9128 8466
-1608 2 2 0 6 894 897 8254
-1609 2 2 0 6 939 8659 8660
-1610 2 2 0 6 5413 7019 7190
-1611 2 2 0 6 6980 11297 7013
-1612 2 2 0 6 1472 1473 8288
-1613 2 2 0 6 7159 9917 8461
-1614 2 2 0 6 7122 11006 8715
-1615 2 2 0 6 8221 8222 10753
-1616 2 2 0 6 6200 8729 7083
-1617 2 2 0 6 3277 9198 7021
-1618 2 2 0 6 6204 7006 10611
-1619 2 2 0 6 991 8064 11149
-1620 2 2 0 6 7123 9970 10794
-1621 2 2 0 6 3277 7021 9199
-1622 2 2 0 6 3925 7768 7079
-1623 2 2 0 6 6200 7083 7082
-1624 2 2 0 6 5314 7027 7261
-1625 2 2 0 6 3324 7510 7017
-1626 2 2 0 6 6202 8061 9028
-1627 2 2 0 6 4108 5041 7133
-1628 2 2 0 6 7083 7159 8461
-1629 2 2 0 6 1476 8539 10908
-1630 2 2 0 6 1758 7632 7080
-1631 2 2 0 6 7120 8130 10111
-1632 2 2 0 6 6222 10803 10785
-1633 2 2 0 6 7083 8729 7159
-1634 2 2 0 6 1795 8754 7134
-1635 2 2 0 6 8849 8377 11298
-1636 2 2 0 6 6048 7132 7131
-1637 2 2 0 6 6003 10961 7136
-1638 2 2 0 6 3925 7079 9287
-1639 2 2 0 6 5208 10753 8222
-1640 2 2 0 6 5500 10014 8540
-1641 2 2 0 6 943 8221 8219
-1642 2 2 0 6 3264 7267 7268
-1643 2 2 0 6 7134 8754 7135
-1644 2 2 0 6 4295 11050 7148
-1645 2 2 0 6 7120 10111 6203
-1646 2 2 0 6 4719 8093 8116
-1647 2 2 0 6 5231 7384 7385
-1648 2 2 0 6 940 943 8220
-1649 2 2 0 6 9548 9952 11135
-1650 2 2 0 6 5249 9812 7728
-1651 2 2 0 6 7047 10834 8829
-1652 2 2 0 6 3382 7135 8754
-1653 2 2 0 6 943 8219 8220
-1654 2 2 0 6 5250 6989 9812
-1655 2 2 0 6 7023 9817 7108
-1656 2 2 0 6 932 935 8979
-1657 2 2 0 6 7079 7768 7178
-1658 2 2 0 6 2918 9028 8061
-1659 2 2 0 6 3268 7132 11042
-1660 2 2 0 6 7073 7860 9313
-1661 2 2 0 6 1322 11285 3381
-1662 2 2 0 6 5389 7126 8130
-1663 2 2 0 6 988 7178 7768
-1664 2 2 0 6 928 931 8244
-1665 2 2 0 6 4569 11061 9062
-1666 2 2 0 6 557 10355 10483
-1667 2 2 0 6 935 10061 8979
-1668 2 2 0 6 931 8978 8244
-1669 2 2 0 6 7574 10513 7944
-1670 2 2 0 6 924 927 8243
-1671 2 2 0 6 1588 10727 7324
-1672 2 2 0 6 5704 7649 11039
-1673 2 2 0 6 2918 8061 7068
-1674 2 2 0 6 927 8242 8243
-1675 2 2 0 6 7006 10928 10611
-1676 2 2 0 6 5231 5328 7384
-1677 2 2 0 6 7126 10111 8130
-1678 2 2 0 6 7633 7632 9613
-1679 2 2 0 6 907 9357 8564
-1680 2 2 0 6 5499 7389 7113
-1681 2 2 0 6 7016 7492 11265
-1682 2 2 0 6 8247 8248 11289
-1683 2 2 0 6 920 923 9353
-1684 2 2 0 6 7029 7086 9962
-1685 2 2 0 6 5210 8894 6185
-1686 2 2 0 6 5389 8602 7126
-1687 2 2 0 6 6166 6992 11258
-1688 2 2 0 6 4755 10418 9989
-1689 2 2 0 6 5313 6677 11145
-1690 2 2 0 6 936 939 8660
-1691 2 2 0 6 6106 8683 10663
-1692 2 2 0 6 1178 7052 10813
-1693 2 2 0 6 3491 11000 4750
-1694 2 2 0 6 1498 7121 8884
-1695 2 2 0 6 5389 7422 8602
-1696 2 2 0 6 4796 11070 7163
-1697 2 2 0 6 919 7028 9853
-1698 2 2 0 6 6209 8539 8540
-1699 2 2 0 6 5231 7385 7605
-1700 2 2 0 6 6185 8894 8893
-1701 2 2 0 6 3274 3277 9199
-1702 2 2 0 6 7949 11154 10286
-1703 2 2 0 6 6209 8540 10014
-1704 2 2 0 6 6222 7052 10803
-1705 2 2 0 6 6177 8564 9357
-1706 2 2 0 6 923 10199 9353
-1707 2 2 0 6 2311 7345 7115
-1708 2 2 0 6 6068 7182 11150
-1709 2 2 0 6 916 919 9853
-1710 2 2 0 6 1047 7345 2311
-1711 2 2 0 6 7031 10821 7032
-1712 2 2 0 6 7592 11093 7671
-1713 2 2 0 6 6175 10236 7025
-1714 2 2 0 6 3370 10831 10824
-1715 2 2 0 6 6224 7053 10846
-1716 2 2 0 6 1464 1465 8052
-1717 2 2 0 6 8884 8883 9241
-1718 2 2 0 6 3486 7202 7071
-1719 2 2 0 6 898 901 8253
-1720 2 2 0 6 4736 10312 6175
-1721 2 2 0 6 6218 7051 10296
-1722 2 2 0 6 6016 7142 11092
-1723 2 2 0 6 5328 10178 7384
-1724 2 2 0 6 1207 7348 7117
-1725 2 2 0 6 1053 7348 1207
-1726 2 2 0 6 861 7202 3486
-1727 2 2 0 6 1524 7168 7078
-1728 2 2 0 6 7065 11271 11274
-1729 2 2 0 6 8989 8991 10825
-1730 2 2 0 6 3123 10756 7873
-1731 2 2 0 6 899 9776 900
-1732 2 2 0 6 5247 7221 5336
-1733 2 2 0 6 3889 7025 10236
-1734 2 2 0 6 7280 11097 7282
-1735 2 2 0 6 3264 4323 7267
-1736 2 2 0 6 6175 10312 10236
-1737 2 2 0 6 990 10839 10841
-1738 2 2 0 6 5336 7221 7109
-1739 2 2 0 6 6440 8410 10315
-1740 2 2 0 6 7949 11163 11154
-1741 2 2 0 6 4108 7133 10865
-1742 2 2 0 6 7780 7781 10828
-1743 2 2 0 6 963 11031 7160
-1744 2 2 0 6 1042 1142 7383
-1745 2 2 0 6 845 7168 1524
-1746 2 2 0 6 4736 5312 7261
-1747 2 2 0 6 3386 10823 10832
-1748 2 2 0 6 6231 9089 10588
-1749 2 2 0 6 899 10296 7051
-1750 2 2 0 6 3386 10818 7064
-1751 2 2 0 6 5500 10865 10014
-1752 2 2 0 6 990 7058 10839
-1753 2 2 0 6 2851 7065 11274
-1754 2 2 0 6 3310 6994 7470
-1755 2 2 0 6 6192 7080 7632
-1756 2 2 0 6 7122 8882 8884
-1757 2 2 0 6 7066 10847 9157
-1758 2 2 0 6 2416 6165 11256
-1759 2 2 0 6 6440 10315 10385
-1760 2 2 0 6 1877 2416 7471
-1761 2 2 0 6 1793 7471 3310
-1762 2 2 0 6 3567 10217 8783
-1763 2 2 0 6 5775 10430 7022
-1764 2 2 0 6 3386 7064 10823
-1765 2 2 0 6 6440 10385 6441
-1766 2 2 0 6 3907 7077 8823
-1767 2 2 0 6 5397 7005 10928
-1768 2 2 0 6 1874 11131 10791
-1769 2 2 0 6 895 10315 8410
-1770 2 2 0 6 899 7051 9776
-1771 2 2 0 6 5219 8620 6189
-1772 2 2 0 6 6189 8620 8619
-1773 2 2 0 6 7287 9148 11109
-1774 2 2 0 6 7479 11073 11063
-1775 2 2 0 6 8583 8584 11021
-1776 2 2 0 6 4041 11206 10684
-1777 2 2 0 6 1468 8286 10705
-1778 2 2 0 6 6173 8299 10862
-1779 2 2 0 6 716 11213 11203
-1780 2 2 0 6 1515 7943 1778
-1781 2 2 0 6 6106 10713 8683
-1782 2 2 0 6 6211 7113 7389
-1783 2 2 0 6 7022 10430 9430
-1784 2 2 0 6 4659 7149 6162
-1785 2 2 0 6 5314 7261 7260
-1786 2 2 0 6 7860 9858 11029
-1787 2 2 0 6 3264 7268 7880
-1788 2 2 0 6 1681 1690 7542
-1789 2 2 0 6 2851 2852 11278
-1790 2 2 0 6 873 7859 8064
-1791 2 2 0 6 5375 7909 7961
-1792 2 2 0 6 3341 7923 7621
-1793 2 2 0 6 6580 7212 10868
-1794 2 2 0 6 6420 9959 7924
-1795 2 2 0 6 858 8783 8057
-1796 2 2 0 6 2496 2498 8388
-1797 2 2 0 6 2254 11127 8786
-1798 2 2 0 6 2918 7068 9434
-1799 2 2 0 6 2488 10858 7090
-1800 2 2 0 6 870 8064 991
-1801 2 2 0 6 6221 6487 8287
-1802 2 2 0 6 1178 10803 7052
-1803 2 2 0 6 917 10821 7031
-1804 2 2 0 6 793 795 11140
-1805 2 2 0 6 1049 11007 1051
-1806 2 2 0 6 5246 9545 11194
-1807 2 2 0 6 1524 7078 10417
-1808 2 2 0 6 8221 10753 8219
-1809 2 2 0 6 3563 9089 7070
-1810 2 2 0 6 5322 7014 7015
-1811 2 2 0 6 6487 8286 8287
-1812 2 2 0 6 5200 9569 7162
-1813 2 2 0 6 1690 7326 7542
-1814 2 2 0 6 5202 9970 5787
-1815 2 2 0 6 991 11149 7924
-1816 2 2 0 6 913 10824 7050
-1817 2 2 0 6 6223 10493 7074
-1818 2 2 0 6 8216 8217 10930
-1819 2 2 0 6 7050 10824 10831
-1820 2 2 0 6 7111 7238 8747
-1821 2 2 0 6 7620 8622 3341
-1822 2 2 0 6 6193 7632 7633
-1823 2 2 0 6 6186 8064 7859
-1824 2 2 0 6 6248 7961 7909
-1825 2 2 0 6 3482 7955 8465
-1826 2 2 0 6 8571 10553 10565
-1827 2 2 0 6 6220 6221 8287
-1828 2 2 0 6 8114 10480 10168
-1829 2 2 0 6 921 10846 7053
-1830 2 2 0 6 8114 9654 10480
-1831 2 2 0 6 7139 9919 7262
-1832 2 2 0 6 6189 8619 8622
-1833 2 2 0 6 7327 8825 10999
-1834 2 2 0 6 3907 9041 7077
-1835 2 2 0 6 7047 10841 10839
-1836 2 2 0 6 3653 9083 7329
-1837 2 2 0 6 7047 8829 10841
-1838 2 2 0 6 7062 10852 10714
-1839 2 2 0 6 990 10832 7058
-1840 2 2 0 6 8414 11155 8415
-1841 2 2 0 6 5265 9420 10703
-1842 2 2 0 6 6209 10908 8539
-1843 2 2 0 6 3123 7873 8748
-1844 2 2 0 6 956 7161 955
-1845 2 2 0 6 3141 7158 11077
-1846 2 2 0 6 7058 10832 10823
-1847 2 2 0 6 4755 7503 10418
-1848 2 2 0 6 6202 9028 11137
-1849 2 2 0 6 7479 11063 10863
-1850 2 2 0 6 2657 7198 10989
-1851 2 2 0 6 7573 7574 7942
-1852 2 2 0 6 925 10828 7781
-1853 2 2 0 6 6248 7909 7910
-1854 2 2 0 6 5524 11170 8793
-1855 2 2 0 6 3599 3601 8059
-1856 2 2 0 6 7095 7329 9083
-1857 2 2 0 6 7178 7769 9675
-1858 2 2 0 6 1370 7874 9016
-1859 2 2 0 6 4737 7062 10714
-1860 2 2 0 6 8625 10206 10698
-1861 2 2 0 6 7442 10483 10355
-1862 2 2 0 6 3054 7098 10995
-1863 2 2 0 6 9582 10695 10919
-1864 2 2 0 6 3382 7973 7135
-1865 2 2 0 6 842 1758 7631
-1866 2 2 0 6 425 11293 10971
-1867 2 2 0 6 3760 11092 7142
-1868 2 2 0 6 8169 8661 8521
-1869 2 2 0 6 1538 7573 7942
-1870 2 2 0 6 5247 5265 7221
-1871 2 2 0 6 5534 7139 7262
-1872 2 2 0 6 1745 7095 9083
-1873 2 2 0 6 7060 9016 7874
-1874 2 2 0 6 2374 9957 2476
-1875 2 2 0 6 4836 7074 10493
-1876 2 2 0 6 4794 8464 7954
-1877 2 2 0 6 4836 10553 7074
-1878 2 2 0 6 7966 10958 7969
-1879 2 2 0 6 4755 4756 7503
-1880 2 2 0 6 4570 8571 10565
-1881 2 2 0 6 846 9914 1043
-1882 2 2 0 6 7241 8925 10937
-1883 2 2 0 6 866 7923 3341
-1884 2 2 0 6 1758 7080 7631
-1885 2 2 0 6 5704 7271 5705
-1886 2 2 0 6 5711 7944 10513
-1887 2 2 0 6 5336 7109 7229
-1888 2 2 0 6 929 10847 7066
-1889 2 2 0 6 8119 6037 10886
-1890 2 2 0 6 868 991 7923
-1891 2 2 0 6 8567 8568 10576
-1892 2 2 0 6 6171 7129 7127
-1893 2 2 0 6 6119 11321 11284
-1894 2 2 0 6 952 955 10697
-1895 2 2 0 6 2559 2851 11274
-1896 2 2 0 6 4792 8464 4794
-1897 2 2 0 6 6492 6493 8047
-1898 2 2 0 6 7918 10304 10352
-1899 2 2 0 6 7197 10989 7198
-1900 2 2 0 6 8465 8466 9128
-1901 2 2 0 6 2340 8170 8519
-1902 2 2 0 6 951 10697 9045
-1903 2 2 0 6 9506 11095 11115
-1904 2 2 0 6 4836 10565 10553
-1905 2 2 0 6 7061 8748 7873
-1906 2 2 0 6 1745 7280 7095
-1907 2 2 0 6 6200 7082 8059
-1908 2 2 0 6 864 3341 8622
-1909 2 2 0 6 8169 8521 8519
-1910 2 2 0 6 862 8622 8619
-1911 2 2 0 6 8169 8519 8170
-1912 2 2 0 6 7963 10934 7965
-1913 2 2 0 6 1538 9183 7573
-1914 2 2 0 6 1826 1874 10791
-1915 2 2 0 6 4654 4657 7912
-1916 2 2 0 6 989 7249 7775
-1917 2 2 0 6 7867 7869 9265
-1918 2 2 0 6 956 959 7161
-1919 2 2 0 6 856 858 10524
-1920 2 2 0 6 5041 6048 7133
-1921 2 2 0 6 4783 5867 10082
-1922 2 2 0 6 5705 7271 9571
-1923 2 2 0 6 1874 7944 11131
-1924 2 2 0 6 6233 6231 10588
-1925 2 2 0 6 7864 10020 8160
-1926 2 2 0 6 933 10862 8299
-1927 2 2 0 6 5270 9265 7869
-1928 2 2 0 6 3320 3323 10311
-1929 2 2 0 6 5760 11107 7682
-1930 2 2 0 6 1133 8695 3390
-1931 2 2 0 6 1043 9914 10469
-1932 2 2 0 6 5551 8059 7156
-1933 2 2 0 6 1920 8988 7194
-1934 2 2 0 6 1522 10352 10304
-1935 2 2 0 6 5994 7194 8988
-1936 2 2 0 6 6487 10705 8286
-1937 2 2 0 6 6048 7131 7133
-1938 2 2 0 6 6232 9089 6231
-1939 2 2 0 6 1094 1795 8695
-1940 2 2 0 6 937 10868 7212
-1941 2 2 0 6 5867 10020 7864
-1942 2 2 0 6 3924 11212 10997
-1943 2 2 0 6 6236 7070 9089
-1944 2 2 0 6 6104 11108 11112
-1945 2 2 0 6 7918 10442 8869
-1946 2 2 0 6 6576 10991 10990
-1947 2 2 0 6 7571 10235 7576
-1948 2 2 0 6 1795 10797 8695
-1949 2 2 0 6 6066 11108 6104
-1950 2 2 0 6 4868 7189 8578
-1951 2 2 0 6 3370 8829 10834
-1952 2 2 0 6 5463 7390 7391
-1953 2 2 0 6 4392 10880 9226
-1954 2 2 0 6 1768 1871 8342
-1955 2 2 0 6 7621 7923 7924
-1956 2 2 0 6 6227 7147 8578
-1957 2 2 0 6 5283 7625 7624
-1958 2 2 0 6 7223 9438 7224
-1959 2 2 0 6 6227 8578 7189
-1960 2 2 0 6 7021 9198 11239
-1961 2 2 0 6 6066 11095 9506
-1962 2 2 0 6 5867 7864 10082
-1963 2 2 0 6 4568 10825 8991
-1964 2 2 0 6 5162 6122 7167
-1965 2 2 0 6 6227 9514 7147
-1966 2 2 0 6 2595 7224 9438
-1967 2 2 0 6 5265 10703 7221
-1968 2 2 0 6 2846 7145 7146
-1969 2 2 0 6 7223 9008 9438
-1970 2 2 0 6 5524 10607 10610
-1971 2 2 0 6 8450 8451 10319
-1972 2 2 0 6 852 3567 8783
-1973 2 2 0 6 399 7140 7442
-1974 2 2 0 6 6233 10588 8567
-1975 2 2 0 6 2489 2488 10904
-1976 2 2 0 6 854 8783 858
-1977 2 2 0 6 6256 6257 9020
-1978 2 2 0 6 5463 8828 7390
-1979 2 2 0 6 6025 10990 10991
-1980 2 2 0 6 5352 5895 7191
-1981 2 2 0 6 5269 7873 8459
-1982 2 2 0 6 6230 10160 10289
-1983 2 2 0 6 7064 10818 10813
-1984 2 2 0 6 6217 7151 7150
-1985 2 2 0 6 1178 10813 10818
-1986 2 2 0 6 4133 7431 10852
-1987 2 2 0 6 6275 7452 7643
-1988 2 2 0 6 6277 7098 11019
-1989 2 2 0 6 5895 7192 7191
-1990 2 2 0 6 6493 6516 8047
-1991 2 2 0 6 3268 11042 11030
-1992 2 2 0 6 3127 7112 10756
-1993 2 2 0 6 6993 7471 11256
-1994 2 2 0 6 4021 10544 7982
-1995 2 2 0 6 6233 8567 10576
-1996 2 2 0 6 3494 9702 9235
-1997 2 2 0 6 803 11018 812
-1998 2 2 0 6 6230 8731 10160
-1999 2 2 0 6 2589 10160 8731
-2000 2 2 0 6 6261 7183 9956
-2001 2 2 0 6 7105 10530 10527
-2002 2 2 0 6 6516 8046 8047
-2003 2 2 0 6 2658 3058 7510
-2004 2 2 0 6 7918 8869 10304
-2005 2 2 0 6 1207 7117 7349
-2006 2 2 0 6 14 445 11245
-2007 2 2 0 6 6277 11019 11030
-2008 2 2 0 6 786 7345 1047
-2009 2 2 0 6 6168 8116 11262
-2010 2 2 0 6 6230 10289 10378
-2011 2 2 0 6 1051 7348 1053
-2012 2 2 0 6 807 7104 10461
-2013 2 2 0 6 3891 7576 10235
-2014 2 2 0 6 3323 8944 10311
-2015 2 2 0 6 4364 7177 8543
-2016 2 2 0 6 2374 7180 9957
-2017 2 2 0 6 2740 7510 3324
-2018 2 2 0 6 3051 7094 10607
-2019 2 2 0 6 6162 7149 7150
-2020 2 2 0 6 4323 11069 7267
-2021 2 2 0 6 7575 9235 9702
-2022 2 2 0 6 3921 10967 10962
-2023 2 2 0 6 858 7089 10524
-2024 2 2 0 6 7633 10919 10695
-2025 2 2 0 6 6668 8633 8077
-2026 2 2 0 6 787 793 10297
-2027 2 2 0 6 4171 7059 10910
-2028 2 2 0 6 3842 4799 9019
-2029 2 2 0 6 5878 8633 6668
-2030 2 2 0 6 7135 7973 8981
-2031 2 2 0 6 7971 8981 7973
-2032 2 2 0 6 4395 7206 7205
-2033 2 2 0 6 10144 11122 10609
-2034 2 2 0 6 6037 6103 7250
-2035 2 2 0 6 6265 7102 10968
-2036 2 2 0 6 4799 9018 9019
-2037 2 2 0 6 1869 9956 7183
-2038 2 2 0 6 7769 10750 10507
-2039 2 2 0 6 1432 7902 1435
-2040 2 2 0 6 6103 7251 7250
-2041 2 2 0 6 3131 10969 10982
-2042 2 2 0 6 4364 7176 7177
-2043 2 2 0 6 1078 1076 7174
-2044 2 2 0 6 5716 7262 9919
-2045 2 2 0 6 3136 3139 10949
-2046 2 2 0 6 6516 8048 8046
-2047 2 2 0 6 5716 7489 7262
-2048 2 2 0 6 4364 7421 7176
-2049 2 2 0 6 7094 10610 10607
-2050 2 2 0 6 1476 10908 8288
-2051 2 2 0 6 3480 10319 8451
-2052 2 2 0 6 1844 9646 2341
-2053 2 2 0 6 2341 9646 7185
-2054 2 2 0 6 3131 9446 10969
-2055 2 2 0 6 7176 7421 9513
-2056 2 2 0 6 989 9385 7249
-2057 2 2 0 6 781 10378 10289
-2058 2 2 0 6 4779 7971 7969
-2059 2 2 0 6 4779 8981 7971
-2060 2 2 0 6 6687 8416 10609
-2061 2 2 0 6 1472 8288 8287
-2062 2 2 0 6 3059 9235 7575
-2063 2 2 0 6 1400 10977 7106
-2064 2 2 0 6 399 7441 7140
-2065 2 2 0 6 7339 8610 8609
-2066 2 2 0 6 5762 7451 7374
-2067 2 2 0 6 5286 7374 7451
-2068 2 2 0 6 1473 1476 8288
-2069 2 2 0 6 7104 10530 7105
-2070 2 2 0 6 7137 11059 11065
-2071 2 2 0 6 5270 7869 10981
-2072 2 2 0 6 5779 7238 8745
-2073 2 2 0 6 849 1148 10644
-2074 2 2 0 6 4021 7092 10544
-2075 2 2 0 6 5534 7277 7139
-2076 2 2 0 6 3453 7124 7389
-2077 2 2 0 6 4800 7489 5716
-2078 2 2 0 6 1404 8932 10994
-2079 2 2 0 6 4032 10379 10594
-2080 2 2 0 6 3128 3131 10982
-2081 2 2 0 6 6216 7502 7503
-2082 2 2 0 6 3077 3078 7200
-2083 2 2 0 6 7339 9676 8610
-2084 2 2 0 6 3059 7575 7693
-2085 2 2 0 6 7577 8712 7693
-2086 2 2 0 6 7069 10072 7161
-2087 2 2 0 6 6214 10226 10911
-2088 2 2 0 6 2488 7090 10904
-2089 2 2 0 6 1522 7099 10352
-2090 2 2 0 6 5337 7229 10500
-2091 2 2 0 6 807 10530 7104
-2092 2 2 0 6 4863 8602 7422
-2093 2 2 0 6 1584 7207 8024
-2094 2 2 0 6 3370 10834 10831
-2095 2 2 0 6 8148 10196 10992
-2096 2 2 0 6 1408 9372 11009
-2097 2 2 0 6 7175 10301 9503
-2098 2 2 0 6 781 8869 10442
-2099 2 2 0 6 3137 7213 3138
-2100 2 2 0 6 3059 7693 8712
-2101 2 2 0 6 7391 8291 10946
-2102 2 2 0 6 2317 7173 7172
-2103 2 2 0 6 4719 8116 7119
-2104 2 2 0 6 6245 10485 7536
-2105 2 2 0 6 2211 7180 2374
-2106 2 2 0 6 1588 7324 10680
-2107 2 2 0 6 7012 7256 7257
-2108 2 2 0 6 12 527 11226
-2109 2 2 0 6 3124 3127 10756
-2110 2 2 0 6 3077 7200 9879
-2111 2 2 0 6 1584 8024 8396
-2112 2 2 0 6 4311 10940 4314
-2113 2 2 0 6 6217 7150 7149
-2114 2 2 0 6 1468 10705 8052
-2115 2 2 0 6 2311 7115 8627
-2116 2 2 0 6 5499 7113 9385
-2117 2 2 0 6 3453 7383 7124
-2118 2 2 0 6 1556 1587 10970
-2119 2 2 0 6 8625 10698 9865
-2120 2 2 0 6 3054 10995 10984
-2121 2 2 0 6 7198 10978 7199
-2122 2 2 0 6 7077 11148 8823
-2123 2 2 0 6 6226 11090 7001
-2124 2 2 0 6 6172 7132 11257
-2125 2 2 0 6 5426 6172 11262
-2126 2 2 0 6 4032 4031 10379
-2127 2 2 0 6 5426 8116 8093
-2128 2 2 0 6 7574 7944 7943
-2129 2 2 0 6 3073 3074 7851
-2130 2 2 0 6 6050 11072 11222
-2131 2 2 0 6 7162 9569 10697
-2132 2 2 0 6 1042 7383 3453
-2133 2 2 0 6 5287 11086 7018
-2134 2 2 0 6 1409 1408 11033
-2135 2 2 0 6 5704 11039 7271
-2136 2 2 0 6 3390 8695 7088
-2137 2 2 0 6 1408 11009 11033
-2138 2 2 0 6 4184 10930 8217
-2139 2 2 0 6 4299 4301 7634
-2140 2 2 0 6 5368 10998 9296
-2141 2 2 0 6 4820 8844 8853
-2142 2 2 0 6 4243 10885 9661
-2143 2 2 0 6 3907 9434 9041
-2144 2 2 0 6 7349 8493 9308
-2145 2 2 0 6 2332 8146 10743
-2146 2 2 0 6 7138 8853 8844
-2147 2 2 0 6 1287 8977 10878
-2148 2 2 0 6 4760 8853 7138
-2149 2 2 0 6 8721 8794 10643
-2150 2 2 0 6 2137 7833 10696
-2151 2 2 0 6 4990 7216 6382
-2152 2 2 0 6 3137 8292 7213
-2153 2 2 0 6 3610 8712 7577
-2154 2 2 0 6 4760 7138 7258
-2155 2 2 0 6 4760 7258 9052
-2156 2 2 0 6 781 10442 10378
-2157 2 2 0 6 7199 10978 10984
-2158 2 2 0 6 5767 6978 11236
-2159 2 2 0 6 5395 7256 7012
-2160 2 2 0 6 8008 9996 9518
-2161 2 2 0 6 3216 11279 11173
-2162 2 2 0 6 7136 7137 11065
-2163 2 2 0 6 983 10988 988
-2164 2 2 0 6 3628 11055 11249
-2165 2 2 0 6 7068 9041 9434
-2166 2 2 0 6 5299 7626 9932
-2167 2 2 0 6 4659 7502 7149
-2168 2 2 0 6 7086 8798 10916
-2169 2 2 0 6 1465 1468 8052
-2170 2 2 0 6 3066 7643 7452
-2171 2 2 0 6 8024 8025 8396
-2172 2 2 0 6 4031 7120 10468
-2173 2 2 0 6 6211 7389 7124
-2174 2 2 0 6 2844 3064 8285
-2175 2 2 0 6 1673 10922 8241
-2176 2 2 0 6 10793 9461 10848
-2177 2 2 0 6 7562 7564 7901
-2178 2 2 0 6 5299 9932 7751
-2179 2 2 0 6 5301 10695 9582
-2180 2 2 0 6 3958 10079 4819
-2181 2 2 0 6 1464 8052 8047
-2182 2 2 0 6 6325 7123 10985
-2183 2 2 0 6 7090 10858 7091
-2184 2 2 0 6 6622 10937 8925
-2185 2 2 0 6 4430 9008 7223
-2186 2 2 0 6 6172 11257 11262
-2187 2 2 0 6 10083 11055 11044
-2188 2 2 0 6 5505 7179 8076
-2189 2 2 0 6 6997 7110 7111
-2190 2 2 0 6 1919 7387 7975
-2191 2 2 0 6 4430 7223 7155
-2192 2 2 0 6 1142 9885 7383
-2193 2 2 0 6 4756 6216 7503
-2194 2 2 0 6 2065 11059 11056
-2195 2 2 0 6 8193 11216 8194
-2196 2 2 0 6 7017 7510 10065
-2197 2 2 0 6 9045 10697 9569
-2198 2 2 0 6 1148 9674 10644
-2199 2 2 0 6 3476 8396 8025
-2200 2 2 0 6 1679 1681 7542
-2201 2 2 0 6 988 7769 7178
-2202 2 2 0 6 7121 7122 8884
-2203 2 2 0 6 2017 7171 7187
-2204 2 2 0 6 759 11253 10373
-2205 2 2 0 6 3476 8025 8397
-2206 2 2 0 6 4031 10468 10379
-2207 2 2 0 6 1573 8127 1575
-2208 2 2 0 6 4694 5257 8747
-2209 2 2 0 6 5505 7253 7179
-2210 2 2 0 6 6011 7975 7387
-2211 2 2 0 6 1597 10654 1600
-2212 2 2 0 6 5368 10083 11044
-2213 2 2 0 6 2017 7187 7977
-2214 2 2 0 6 5611 11021 8584
-2215 2 2 0 6 5763 9989 10418
-2216 2 2 0 6 6687 10584 8416
-2217 2 2 0 6 7323 10727 8156
-2218 2 2 0 6 1498 8884 9241
-2219 2 2 0 6 7559 8713 7561
-2220 2 2 0 6 8882 8883 8884
-2221 2 2 0 6 5191 10611 7005
-2222 2 2 0 6 6324 10932 7528
-2223 2 2 0 6 3141 7213 7158
-2224 2 2 0 6 1207 7349 9308
-2225 2 2 0 6 6165 9487 11256
-2226 2 2 0 6 5336 7229 5337
-2227 2 2 0 6 1359 10196 7144
-2228 2 2 0 6 5779 8747 7238
-2229 2 2 0 6 6689 10844 11067
-2230 2 2 0 6 7059 11062 10910
-2231 2 2 0 6 7764 10793 10848
-2232 2 2 0 6 6997 7111 8747
-2233 2 2 0 6 4762 8520 8525
-2234 2 2 0 6 4363 9060 10855
-2235 2 2 0 6 7120 6203 10468
-2236 2 2 0 6 3081 7269 7170
-2237 2 2 0 6 4795 8383 10806
-2238 2 2 0 6 4389 7462 7609
-2239 2 2 0 6 8384 8740 10833
-2240 2 2 0 6 5535 7343 7338
-2241 2 2 0 6 4768 8518 8521
-2242 2 2 0 6 2664 10175 9347
-2243 2 2 0 6 7143 11040 11027
-2244 2 2 0 6 1515 7942 7943
-2245 2 2 0 6 3988 8278 11006
-2246 2 2 0 6 2927 11047 7141
-2247 2 2 0 6 1456 8049 8050
-2248 2 2 0 6 7174 10301 7175
-2249 2 2 0 6 2249 7343 5535
-2250 2 2 0 6 5535 7338 9035
-2251 2 2 0 6 5235 10714 7431
-2252 2 2 0 6 955 7161 7162
-2253 2 2 0 6 6216 7149 7502
-2254 2 2 0 6 5505 9394 7253
-2255 2 2 0 6 1281 9104 11224
-2256 2 2 0 6 8518 8525 8520
-2257 2 2 0 6 6037 7250 10886
-2258 2 2 0 6 5368 11044 10998
-2259 2 2 0 6 5971 7276 7370
-2260 2 2 0 6 6316 7252 10587
-2261 2 2 0 6 2744 10896 8436
-2262 2 2 0 6 1778 7943 1874
-2263 2 2 0 6 2556 2631 10854
-2264 2 2 0 6 6242 7536 10485
-2265 2 2 0 6 5992 7197 7225
-2266 2 2 0 6 4316 10651 8159
-2267 2 2 0 6 8468 2927 11053
-2268 2 2 0 6 1425 10882 2399
-2269 2 2 0 6 1431 10898 1975
-2270 2 2 0 6 6307 7849 6310
-2271 2 2 0 6 3139 7102 10949
-2272 2 2 0 6 1456 8050 8051
-2273 2 2 0 6 7113 7249 9385
-2274 2 2 0 6 1448 1449 7717
-2275 2 2 0 6 7147 9514 8285
-2276 2 2 0 6 3482 8465 9128
-2277 2 2 0 6 5296 6976 11214
-2278 2 2 0 6 3081 7170 7200
-2279 2 2 0 6 7338 7339 9035
-2280 2 2 0 6 8468 11053 11061
-2281 2 2 0 6 7258 9636 9052
-2282 2 2 0 6 6214 10911 7452
-2283 2 2 0 6 4291 7241 8924
-2284 2 2 0 6 4389 7463 7462
-2285 2 2 0 6 7181 10902 9957
-2286 2 2 0 6 1601 10592 1604
-2287 2 2 0 6 3138 7213 3141
-2288 2 2 0 6 4768 8525 8518
-2289 2 2 0 6 1593 10618 1596
-2290 2 2 0 6 3078 3081 7200
-2291 2 2 0 6 3921 9269 11187
-2292 2 2 0 6 6248 7910 7912
-2293 2 2 0 6 5254 10961 7154
-2294 2 2 0 6 8466 10954 10981
-2295 2 2 0 6 2846 8285 7145
-2296 2 2 0 6 6244 7277 7278
-2297 2 2 0 6 5375 7961 5376
-2298 2 2 0 6 7166 9341 8554
-2299 2 2 0 6 7101 10962 10967
-2300 2 2 0 6 1434 9746 9004
-2301 2 2 0 6 6597 7442 7696
-2302 2 2 0 6 3988 7143 11027
-2303 2 2 0 6 7177 8146 8543
-2304 2 2 0 6 4580 5992 7225
-2305 2 2 0 6 1690 8291 7326
-2306 2 2 0 6 2498 2846 8388
-2307 2 2 0 6 3133 7990 3134
-2308 2 2 0 6 7339 8609 9035
-2309 2 2 0 6 5316 8007 8446
-2310 2 2 0 6 2496 8388 3491
-2311 2 2 0 6 1452 8051 9149
-2312 2 2 0 6 7574 7943 7942
-2313 2 2 0 6 1538 7902 9183
-2314 2 2 0 6 1064 7165 8554
-2315 2 2 0 6 1082 9370 1086
-2316 2 2 0 6 7165 9511 8492
-2317 2 2 0 6 6197 11050 8276
-2318 2 2 0 6 8468 11061 9619
-2319 2 2 0 6 3617 9341 7166
-2320 2 2 0 6 1607 7253 9394
-2321 2 2 0 6 5286 6241 7374
-2322 2 2 0 6 5193 7430 10749
-2323 2 2 0 6 6277 11030 11042
-2324 2 2 0 6 5520 5971 7370
-2325 2 2 0 6 3054 11019 7098
-2326 2 2 0 6 7592 9064 11093
-2327 2 2 0 6 6992 8964 11258
-2328 2 2 0 6 3143 10962 7101
-2329 2 2 0 6 1064 8554 9341
-2330 2 2 0 6 5763 10226 6214
-2331 2 2 0 6 4295 7148 11054
-2332 2 2 0 6 2664 7609 7464
-2333 2 2 0 6 5864 8452 8920
-2334 2 2 0 6 1051 11007 7348
-2335 2 2 0 6 6284 7244 7668
-2336 2 2 0 6 4346 10660 7750
-2337 2 2 0 6 7187 7278 7977
-2338 2 2 0 6 5283 7624 7634
-2339 2 2 0 6 4240 11110 11123
-2340 2 2 0 6 4389 7680 7463
-2341 2 2 0 6 4316 4314 7870
-2342 2 2 0 6 6241 9589 7374
-2343 2 2 0 6 3139 10968 7102
-2344 2 2 0 6 4845 8963 7233
-2345 2 2 0 6 4794 9709 4863
-2346 2 2 0 6 3599 8059 5551
-2347 2 2 0 6 2664 7464 10175
-2348 2 2 0 6 5787 9970 7123
-2349 2 2 0 6 6240 9545 11163
-2350 2 2 0 6 4863 9709 8602
-2351 2 2 0 6 955 7162 10697
-2352 2 2 0 6 6571 10941 10964
-2353 2 2 0 6 4762 9636 8520
-2354 2 2 0 6 4395 8127 7206
-2355 2 2 0 6 1840 10871 1842
-2356 2 2 0 6 4726 4758 8798
-2357 2 2 0 6 1448 7717 7222
-2358 2 2 0 6 4417 10919 7633
-2359 2 2 0 6 3593 8493 8492
-2360 2 2 0 6 7140 7696 7442
-2361 2 2 0 6 1936 8006 2195
-2362 2 2 0 6 3301 7153 11058
-2363 2 2 0 6 4395 7205 8258
-2364 2 2 0 6 1447 7239 1450
-2365 2 2 0 6 1348 9839 9978
-2366 2 2 0 6 3593 8492 9511
-2367 2 2 0 6 1064 9511 7165
-2368 2 2 0 6 7125 7383 9885
-2369 2 2 0 6 4768 8521 8661
-2370 2 2 0 6 1607 7270 7253
-2371 2 2 0 6 5202 5282 9970
-2372 2 2 0 6 4794 7954 9709
-2373 2 2 0 6 3601 6200 8059
-2374 2 2 0 6 2235 10858 2488
-2375 2 2 0 6 3133 7988 7990
-2376 2 2 0 6 7100 11115 11095
-2377 2 2 0 6 7125 9347 10175
-2378 2 2 0 6 6253 9513 7421
-2379 2 2 0 6 7125 9885 9347
-2380 2 2 0 6 4779 7969 10958
-2381 2 2 0 6 3593 9308 8493
-2382 2 2 0 6 3436 10563 10915
-2383 2 2 0 6 7196 7241 7240
-2384 2 2 0 6 8214 8215 10924
-2385 2 2 0 6 6324 9978 9839
-2386 2 2 0 6 4351 9723 10872
-2387 2 2 0 6 1595 10426 7272
-2388 2 2 0 6 5895 10448 7192
-2389 2 2 0 6 4795 8610 9676
-2390 2 2 0 6 3491 8388 11000
-2391 2 2 0 6 7462 7464 7609
-2392 2 2 0 6 4792 5276 8464
-2393 2 2 0 6 2921 9565 7578
-2394 2 2 0 6 1359 7144 10156
-2395 2 2 0 6 1460 8048 8049
-2396 2 2 0 6 4657 6248 7912
-2397 2 2 0 6 8171 9773 9144
-2398 2 2 0 6 7038 10834 7047
-2399 2 2 0 6 3740 10275 4845
-2400 2 2 0 6 1078 7174 2317
-2401 2 2 0 6 5762 6214 7451
-2402 2 2 0 6 1578 8258 1580
-2403 2 2 0 6 2326 7108 7180
-2404 2 2 0 6 5780 7233 8963
-2405 2 2 0 6 5551 7156 10920
-2406 2 2 0 6 1607 1604 7270
-2407 2 2 0 6 4430 7155 8977
-2408 2 2 0 6 5162 7167 6217
-2409 2 2 0 6 1587 7766 10970
-2410 2 2 0 6 6187 10969 9446
-2411 2 2 0 6 1936 8307 8006
-2412 2 2 0 6 4945 7965 10934
-2413 2 2 0 6 1745 11097 7280
-2414 2 2 0 6 8170 9773 8171
-2415 2 2 0 6 1906 8307 1936
-2416 2 2 0 6 4865 6332 7248
-2417 2 2 0 6 6278 10994 8932
-2418 2 2 0 6 5463 7391 8342
-2419 2 2 0 6 7775 10750 10988
-2420 2 2 0 6 6401 7157 11076
-2421 2 2 0 6 4001 7390 8828
-2422 2 2 0 6 7091 10858 10783
-2423 2 2 0 6 7657 9718 8250
-2424 2 2 0 6 7098 7921 10995
-2425 2 2 0 6 2508 11243 10783
-2426 2 2 0 6 2926 4569 11070
-2427 2 2 0 6 6384 10910 6386
-2428 2 2 0 6 2340 9773 8170
-2429 2 2 0 6 6578 11060 11068
-2430 2 2 0 6 3842 9019 4668
-2431 2 2 0 6 7570 9004 9746
-2432 2 2 0 6 6660 8159 10651
-2433 2 2 0 6 4762 9052 9636
-2434 2 2 0 6 3137 7990 8292
-2435 2 2 0 6 1827 7668 7244
-2436 2 2 0 6 2179 11082 11085
-2437 2 2 0 6 4443 7392 9845
-2438 2 2 0 6 6332 7450 7248
-2439 2 2 0 6 1584 8258 7207
-2440 2 2 0 6 2621 9548 11135
-2441 2 2 0 6 7324 7325 10680
-2442 2 2 0 6 5763 10418 10226
-2443 2 2 0 6 7762 7764 11102
-2444 2 2 0 6 2735 7644 2737
-2445 2 2 0 6 3673 9296 10998
-2446 2 2 0 6 2476 9957 2778
-2447 2 2 0 6 7522 10921 10952
-2448 2 2 0 6 3129 7989 3130
-2449 2 2 0 6 2211 2326 7180
-2450 2 2 0 6 1452 1453 8051
-2451 2 2 0 6 4690 7016 11265
-2452 2 2 0 6 399 7442 10355
-2453 2 2 0 6 7658 10667 8045
-2454 2 2 0 6 1446 7208 7195
-2455 2 2 0 6 6275 7451 7452
-2456 2 2 0 6 4001 7328 7390
-2457 2 2 0 6 7866 7867 9265
-2458 2 2 0 6 968 3925 11031
-2459 2 2 0 6 4845 10275 8963
-2460 2 2 0 6 3551 10999 8825
-2461 2 2 0 6 5928 7416 10016
-2462 2 2 0 6 4654 7912 5283
-2463 2 2 0 6 7522 10895 10921
-2464 2 2 0 6 5341 10351 10222
-2465 2 2 0 6 2017 7750 7171
-2466 2 2 0 6 8003 10816 11049
-2467 2 2 0 6 6244 7139 7277
-2468 2 2 0 6 2916 9434 3295
-2469 2 2 0 6 7955 8464 8465
-2470 2 2 0 6 1446 7239 1447
-2471 2 2 0 6 2341 10259 9144
-2472 2 2 0 6 4783 10082 4785
-2473 2 2 0 6 1719 1768 8342
-2474 2 2 0 6 1871 5463 8342
-2475 2 2 0 6 4785 7866 9265
-2476 2 2 0 6 6024 10956 9073
-2477 2 2 0 6 6257 6877 9020
-2478 2 2 0 6 6538 8049 8048
-2479 2 2 0 6 1444 7208 1446
-2480 2 2 0 6 6190 11009 9372
-2481 2 2 0 6 7193 5396 7418
-2482 2 2 0 6 5322 7015 10861
-2483 2 2 0 6 3134 7990 3137
-2484 2 2 0 6 1595 8453 10426
-2485 2 2 0 6 1942 7677 7231
-2486 2 2 0 6 1460 8046 8048
-2487 2 2 0 6 812 11018 8272
-2488 2 2 0 6 5341 9238 8976
-2489 2 2 0 6 6382 7216 7668
-2490 2 2 0 6 3129 8228 7989
-2491 2 2 0 6 5188 7169 9060
-2492 2 2 0 6 1589 8453 1591
-2493 2 2 0 6 6337 10212 7543
-2494 2 2 0 6 3531 10587 7252
-2495 2 2 0 6 5395 5396 7256
-2496 2 2 0 6 7158 7228 11077
-2497 2 2 0 6 6677 9152 11145
-2498 2 2 0 6 2317 7174 7173
-2499 2 2 0 6 2404 7201 8007
-2500 2 2 0 6 6024 10966 10956
-2501 2 2 0 6 1673 8160 10020
-2502 2 2 0 6 7196 8924 7241
-2503 2 2 0 6 6256 9020 9019
-2504 2 2 0 6 7 491 11126
-2505 2 2 0 6 4001 8436 7328
-2506 2 2 0 6 6106 10663 11260
-2507 2 2 0 6 6068 6069 11169
-2508 2 2 0 6 7315 7883 9790
-2509 2 2 0 6 8171 9144 10259
-2510 2 2 0 6 1446 7195 7239
-2511 2 2 0 6 1432 7900 7902
-2512 2 2 0 6 7569 7900 7901
-2513 2 2 0 6 5283 7912 7625
-2514 2 2 0 6 7199 10984 10995
-2515 2 2 0 6 1366 10985 7123
-2516 2 2 0 6 4327 7393 7375
-2517 2 2 0 6 1435 7902 1538
-2518 2 2 0 6 2657 10978 7198
-2519 2 2 0 6 6564 10893 10906
-2520 2 2 0 6 7193 7256 5396
-2521 2 2 0 6 2317 7172 9370
-2522 2 2 0 6 4785 10082 7866
-2523 2 2 0 6 7236 9567 7855
-2524 2 2 0 6 5928 7330 6337
-2525 2 2 0 6 5196 10902 7181
-2526 2 2 0 6 1456 1457 8049
-2527 2 2 0 6 1443 1445 7718
-2528 2 2 0 6 7501 7751 9932
-2529 2 2 0 6 7769 10988 10750
-2530 2 2 0 6 4930 5261 11101
-2531 2 2 0 6 4443 7227 7392
-2532 2 2 0 6 3606 7209 7341
-2533 2 2 0 6 8885 10966 10979
-2534 2 2 0 6 1975 10898 7540
-2535 2 2 0 6 8394 10579 10918
-2536 2 2 0 6 1869 7183 9723
-2537 2 2 0 6 1452 9149 7717
-2538 2 2 0 6 7082 7156 8059
-2539 2 2 0 6 7187 10218 7278
-2540 2 2 0 6 5928 10016 7330
-2541 2 2 0 6 732 7340 734
-2542 2 2 0 6 3253 7344 7418
-2543 2 2 0 6 3606 7340 7209
-2544 2 2 0 6 4799 9996 9018
-2545 2 2 0 6 5299 7634 7626
-2546 2 2 0 6 3077 9879 7851
-2547 2 2 0 6 4319 11088 8077
-2548 2 2 0 6 734 7340 3606
-2549 2 2 0 6 6262 6261 9956
-2550 2 2 0 6 8600 11114 11119
-2551 2 2 0 6 7196 7240 7239
-2552 2 2 0 6 7356 7358 10486
-2553 2 2 0 6 4934 6646 11119
-2554 2 2 0 6 5559 9370 7215
-2555 2 2 0 6 5261 8598 11101
-2556 2 2 0 6 3440 10087 8201
-2557 2 2 0 6 6066 9506 11108
-2558 2 2 0 6 1190 10909 8818
-2559 2 2 0 6 1604 10592 7270
-2560 2 2 0 6 6492 8047 8052
-2561 2 2 0 6 7230 8975 7337
-2562 2 2 0 6 3630 7337 8975
-2563 2 2 0 6 7569 7902 7900
-2564 2 2 0 6 1600 10654 7331
-2565 2 2 0 6 4316 7870 10651
-2566 2 2 0 6 7175 9503 10479
-2567 2 2 0 6 623 8885 10979
-2568 2 2 0 6 2745 9312 10931
-2569 2 2 0 6 6724 10474 6751
-2570 2 2 0 6 7458 10403 9396
-2571 2 2 0 6 2725 7852 3002
-2572 2 2 0 6 1519 11158 10527
-2573 2 2 0 6 5688 9845 7392
-2574 2 2 0 6 7177 10743 8146
-2575 2 2 0 6 1743 11109 9148
-2576 2 2 0 6 2631 7254 10854
-2577 2 2 0 6 3133 7989 7988
-2578 2 2 0 6 5629 7236 9260
-2579 2 2 0 6 5992 10989 7197
-2580 2 2 0 6 7564 7569 7901
-2581 2 2 0 6 3538 7278 7277
-2582 2 2 0 6 1921 8357 7855
-2583 2 2 0 6 5912 7705 11271
-2584 2 2 0 6 4182 7514 7454
-2585 2 2 0 6 5629 9567 7236
-2586 2 2 0 6 1362 10997 7130
-2587 2 2 0 6 1917 8054 8055
-2588 2 2 0 6 4602 4652 11150
-2589 2 2 0 6 6244 7278 10218
-2590 2 2 0 6 7109 9329 7229
-2591 2 2 0 6 5322 10861 7248
-2592 2 2 0 6 4301 5283 7634
-2593 2 2 0 6 6332 9496 7450
-2594 2 2 0 6 7777 10955 7983
-2595 2 2 0 6 1842 9646 1844
-2596 2 2 0 6 3074 3077 7851
-2597 2 2 0 6 6241 10079 9589
-2598 2 2 0 6 6262 8439 9712
-2599 2 2 0 6 6548 10696 7833
-2600 2 2 0 6 1448 7222 7718
-2601 2 2 0 6 4291 8925 7241
-2602 2 2 0 6 1025 8975 7230
-2603 2 2 0 6 3648 7086 10916
-2604 2 2 0 6 6220 8287 8288
-2605 2 2 0 6 7325 10593 10680
-2606 2 2 0 6 6306 7849 6307
-2607 2 2 0 6 8355 11106 8696
-2608 2 2 0 6 2242 10016 7416
-2609 2 2 0 6 5347 6583 10604
-2610 2 2 0 6 4694 8747 5779
-2611 2 2 0 6 3308 7579 7805
-2612 2 2 0 6 1921 7855 9567
-2613 2 2 0 6 2383 7229 9329
-2614 2 2 0 6 8450 10319 8452
-2615 2 2 0 6 7201 8446 8007
-2616 2 2 0 6 4601 4602 11153
-2617 2 2 0 6 56 565 497
-2618 2 2 0 6 3428 8863 11071
-2619 2 2 0 6 1453 1456 8051
-2620 2 2 0 6 2490 11047 2927
-2621 2 2 0 6 7571 9702 10235
-2622 2 2 0 6 602 1917 8055
-2623 2 2 0 6 3129 8229 8228
-2624 2 2 0 6 7189 10568 10556
-2625 2 2 0 6 6400 6401 11076
-2626 2 2 0 6 4868 10568 7189
-2627 2 2 0 6 6646 9745 11137
-2628 2 2 0 6 1190 10375 10374
-2629 2 2 0 6 2586 8797 7670
-2630 2 2 0 6 6259 7375 7393
-2631 2 2 0 6 4469 7656 8249
-2632 2 2 0 6 1537 10425 1801
-2633 2 2 0 6 6213 7268 7267
-2634 2 2 0 6 3446 10043 9958
-2635 2 2 0 6 8235 10686 10891
-2636 2 2 0 6 6222 10785 11266
-2637 2 2 0 6 5355 10601 7191
-2638 2 2 0 6 6262 9956 8439
-2639 2 2 0 6 5830 10262 7770
-2640 2 2 0 6 6623 8201 10087
-2641 2 2 0 6 1596 10618 8138
-2642 2 2 0 6 3130 7989 3133
-2643 2 2 0 6 5292 8493 7349
-2644 2 2 0 6 8988 8989 10825
-2645 2 2 0 6 6601 10924 8215
-2646 2 2 0 6 3073 7851 7849
-2647 2 2 0 6 5972 7670 8797
-2648 2 2 0 6 6337 7330 10212
-2649 2 2 0 6 5292 7347 8493
-2650 2 2 0 6 3432 10704 10925
-2651 2 2 0 6 7705 11274 11271
-2652 2 2 0 6 154 7246 498
-2653 2 2 0 6 6272 7448 10434
-2654 2 2 0 6 6538 8050 8049
-2655 2 2 0 6 8156 10727 9461
-2656 2 2 0 6 6563 7454 7514
-2657 2 2 0 6 3610 7577 8713
-2658 2 2 0 6 7100 5791 11115
-2659 2 2 0 6 2399 10882 8339
-2660 2 2 0 6 4295 11054 4296
-2661 2 2 0 6 6299 8373 6302
-2662 2 2 0 6 1157 1184 7694
-2663 2 2 0 6 5293 5295 9041
-2664 2 2 0 6 5341 8976 10351
-2665 2 2 0 6 6226 11073 11090
-2666 2 2 0 6 5251 8798 7086
-2667 2 2 0 6 5292 7360 7347
-2668 2 2 0 6 1961 8190 10034
-2669 2 2 0 6 7315 9903 7883
-2670 2 2 0 6 7027 10312 7261
-2671 2 2 0 6 7266 9151 7664
-2672 2 2 0 6 5711 10513 10443
-2673 2 2 0 6 6724 7170 10638
-2674 2 2 0 6 2341 7185 10259
-2675 2 2 0 6 3494 10235 9702
-2676 2 2 0 6 5923 10540 8391
-2677 2 2 0 6 5830 7347 7360
-2678 2 2 0 6 2846 7146 8388
-2679 2 2 0 6 4763 11095 6066
-2680 2 2 0 6 3639 4469 8249
-2681 2 2 0 6 3064 7147 8285
-2682 2 2 0 6 1921 8358 8357
-2683 2 2 0 6 6571 7188 10941
-2684 2 2 0 6 6600 11012 10917
-2685 2 2 0 6 2844 8285 2846
-2686 2 2 0 6 2015 2018 7750
-2687 2 2 0 6 565 566 497
-2688 2 2 0 6 3308 7779 7579
-2689 2 2 0 6 1587 10957 7766
-2690 2 2 0 6 6276 8250 9718
-2691 2 2 0 6 7192 10448 7715
-2692 2 2 0 6 5190 7367 6163
-2693 2 2 0 6 4299 7634 5299
-2694 2 2 0 6 3301 11058 3300
-2695 2 2 0 6 1449 1452 7717
-2696 2 2 0 6 5629 9260 9224
-2697 2 2 0 6 5026 10864 10887
-2698 2 2 0 6 4799 9518 9996
-2699 2 2 0 6 1952 7473 1954
-2700 2 2 0 6 6751 10474 10416
-2701 2 2 0 6 6306 7848 7849
-2702 2 2 0 6 1457 1460 8049
-2703 2 2 0 6 1573 1577 8127
-2704 2 2 0 6 8923 10945 10960
-2705 2 2 0 6 8007 9996 8008
-2706 2 2 0 6 6258 9661 10885
-2707 2 2 0 6 8156 9461 10793
-2708 2 2 0 6 7007 10749 7430
-2709 2 2 0 6 4602 11150 11153
-2710 2 2 0 6 1444 7635 7208
-2711 2 2 0 6 7561 8713 7577
-2712 2 2 0 6 1575 8127 4395
-2713 2 2 0 6 6646 8600 11119
-2714 2 2 0 6 152 153 7335
-2715 2 2 0 6 6020 10920 11161
-2716 2 2 0 6 5119 7614 7259
-2717 2 2 0 6 5119 7259 7615
-2718 2 2 0 6 3121 8100 3122
-2719 2 2 0 6 986 998 9385
-2720 2 2 0 6 3617 7166 10479
-2721 2 2 0 6 8941 11015 8942
-2722 2 2 0 6 8452 10319 8920
-2723 2 2 0 6 9439 10986 10621
-2724 2 2 0 6 6306 7850 7848
-2725 2 2 0 6 1920 7194 10781
-2726 2 2 0 6 988 10988 7769
-2727 2 2 0 6 1224 7373 8099
-2728 2 2 0 6 3204 7812 3207
-2729 2 2 0 6 7555 9276 7557
-2730 2 2 0 6 2221 2224 7357
-2731 2 2 0 6 1308 9322 7342
-2732 2 2 0 6 2603 7899 9803
-2733 2 2 0 6 7315 9790 9798
-2734 2 2 0 6 6114 11301 11280
-2735 2 2 0 6 4805 8452 10390
-2736 2 2 0 6 1319 1507 8692
-2737 2 2 0 6 8190 9958 10043
-2738 2 2 0 6 8435 10731 10777
-2739 2 2 0 6 4795 10806 8610
-2740 2 2 0 6 1450 7239 7240
-2741 2 2 0 6 4453 7691 8686
-2742 2 2 0 6 3958 9589 10079
-2743 2 2 0 6 498 7246 7247
-2744 2 2 0 6 2921 7578 9276
-2745 2 2 0 6 8451 10374 10375
-2746 2 2 0 6 3480 8451 10375
-2747 2 2 0 6 6029 11014 8272
-2748 2 2 0 6 5334 5591 9012
-2749 2 2 0 6 3308 7805 7806
-2750 2 2 0 6 2404 8006 7201
-2751 2 2 0 6 1076 10301 7174
-2752 2 2 0 6 7559 7578 8713
-2753 2 2 0 6 1568 1588 10680
-2754 2 2 0 6 615 8923 10960
-2755 2 2 0 6 7316 7886 9902
-2756 2 2 0 6 1170 1172 10327
-2757 2 2 0 6 6516 6517 8048
-2758 2 2 0 6 113 114 7386
-2759 2 2 0 6 6517 6538 8048
-2760 2 2 0 6 8354 11127 8355
-2761 2 2 0 6 1961 9958 8190
-2762 2 2 0 6 5931 8819 10406
-2763 2 2 0 6 1223 7234 7437
-2764 2 2 0 6 7521 10895 7522
-2765 2 2 0 6 3125 9690 8229
-2766 2 2 0 6 7394 10475 7808
-2767 2 2 0 6 5397 10928 7960
-2768 2 2 0 6 8025 8872 8397
-2769 2 2 0 6 1587 10983 10957
-2770 2 2 0 6 4892 10486 7358
-2771 2 2 0 6 7885 7886 9909
-2772 2 2 0 6 7570 9746 7806
-2773 2 2 0 6 7576 10443 10513
-2774 2 2 0 6 2941 7443 7242
-2775 2 2 0 6 1606 8466 10981
-2776 2 2 0 6 7388 9257 8099
-2777 2 2 0 6 3244 7263 10024
-2778 2 2 0 6 7137 11056 11059
-2779 2 2 0 6 1434 9004 7901
-2780 2 2 0 6 1424 7806 1426
-2781 2 2 0 6 500 7275 9954
-2782 2 2 0 6 1445 1448 7718
-2783 2 2 0 6 952 10697 951
-2784 2 2 0 6 3988 11006 7143
-2785 2 2 0 6 602 8055 604
-2786 2 2 0 6 6528 10436 7616
-2787 2 2 0 6 1119 1121 8475
-2788 2 2 0 6 7934 10231 7936
-2789 2 2 0 6 1223 7266 7234
-2790 2 2 0 6 28 6999 11290
-2791 2 2 0 6 3338 10377 7635
-2792 2 2 0 6 8390 8391 10540
-2793 2 2 0 6 1690 10946 8291
-2794 2 2 0 6 2603 9803 7368
-2795 2 2 0 6 5830 7360 10262
-2796 2 2 0 6 7562 7901 9004
-2797 2 2 0 6 3596 10473 7214
-2798 2 2 0 6 1224 8099 9257
-2799 2 2 0 6 836 10987 8364
-2800 2 2 0 6 793 11140 10297
-2801 2 2 0 6 2941 7242 7444
-2802 2 2 0 6 6310 7849 7851
-2803 2 2 0 6 3891 10443 7576
-2804 2 2 0 6 6284 7668 7216
-2805 2 2 0 6 4166 7388 7664
-2806 2 2 0 6 7265 7373 8951
-2807 2 2 0 6 7337 8976 9238
-2808 2 2 0 6 4166 9257 7388
-2809 2 2 0 6 5855 10701 5965
-2810 2 2 0 6 1224 8951 7373
-2811 2 2 0 6 5514 7154 10961
-2812 2 2 0 6 4819 10079 7179
-2813 2 2 0 6 3596 10515 8298
-2814 2 2 0 6 2876 8635 7830
-2815 2 2 0 6 1534 8789 7457
-2816 2 2 0 6 10523 10536 8775
-2817 2 2 0 6 1223 9151 7266
-2818 2 2 0 6 7289 7830 8635
-2819 2 2 0 6 7885 9798 9790
-2820 2 2 0 6 2195 8006 2404
-2821 2 2 0 6 7432 9032 7433
-2822 2 2 0 6 4166 7664 9151
-2823 2 2 0 6 3125 8229 3126
-2824 2 2 0 6 5934 8775 10536
-2825 2 2 0 6 7579 7779 7581
-2826 2 2 0 6 1897 7455 7456
-2827 2 2 0 6 7980 10358 7981
-2828 2 2 0 6 1168 7443 2941
-2829 2 2 0 6 3149 11027 11040
-2830 2 2 0 6 1967 11125 11106
-2831 2 2 0 6 3493 7265 8951
-2832 2 2 0 6 5257 6997 8747
-2833 2 2 0 6 4453 7690 7691
-2834 2 2 0 6 7457 8789 7458
-2835 2 2 0 6 8184 10110 10034
-2836 2 2 0 6 3259 7450 9496
-2837 2 2 0 6 736 9322 738
-2838 2 2 0 6 5934 6001 10555
-2839 2 2 0 6 7644 9226 10880
-2840 2 2 0 6 1967 11106 8355
-2841 2 2 0 6 6317 10024 7263
-2842 2 2 0 6 1897 7456 7460
-2843 2 2 0 6 5323 8397 8872
-2844 2 2 0 6 8017 10369 9759
-2845 2 2 0 6 5282 7874 9970
-2846 2 2 0 6 7193 7418 7344
-2847 2 2 0 6 7578 9565 8713
-2848 2 2 0 6 1082 2317 9370
-2849 2 2 0 6 7547 10151 10537
-2850 2 2 0 6 3149 11040 8276
-2851 2 2 0 6 4726 8798 5251
-2852 2 2 0 6 3082 3085 7269
-2853 2 2 0 6 3617 10479 9503
-2854 2 2 0 6 4314 10940 7870
-2855 2 2 0 6 826 11002 3471
-2856 2 2 0 6 4603 11251 11116
-2857 2 2 0 6 4141 9858 7860
-2858 2 2 0 6 2827 3988 11027
-2859 2 2 0 6 2595 10556 7224
-2860 2 2 0 6 8384 10833 8608
-2861 2 2 0 6 2968 7203 10348
-2862 2 2 0 6 7224 10556 10568
-2863 2 2 0 6 7203 7204 10348
-2864 2 2 0 6 7885 9909 9798
-2865 2 2 0 6 620 623 11152
-2866 2 2 0 6 8737 11002 10996
-2867 2 2 0 6 8298 10515 10529
-2868 2 2 0 6 3207 7812 7364
-2869 2 2 0 6 8391 10549 10550
-2870 2 2 0 6 1086 9370 5559
-2871 2 2 0 6 7052 7688 10813
-2872 2 2 0 6 7873 10756 8459
-2873 2 2 0 6 3081 3082 7269
-2874 2 2 0 6 7179 10079 8076
-2875 2 2 0 6 152 7335 397
-2876 2 2 0 6 5921 8512 10216
-2877 2 2 0 6 3189 10400 7226
-2878 2 2 0 6 1359 10992 10196
-2879 2 2 0 6 1168 1170 7443
-2880 2 2 0 6 6701 11205 11204
-2881 2 2 0 6 5534 9716 7277
-2882 2 2 0 6 1749 8224 8225
-2883 2 2 0 6 7063 10060 8254
-2884 2 2 0 6 1189 7279 8953
-2885 2 2 0 6 4676 9032 7432
-2886 2 2 0 6 1580 8258 1584
-2887 2 2 0 6 6542 8051 8050
-2888 2 2 0 6 7691 9082 8686
-2889 2 2 0 6 5674 7860 11029
-2890 2 2 0 6 6260 10220 9012
-2891 2 2 0 6 1865 8128 1867
-2892 2 2 0 6 6001 10579 10555
-2893 2 2 0 6 6582 10288 7757
-2894 2 2 0 6 4758 7097 8798
-2895 2 2 0 6 6285 7273 7511
-2896 2 2 0 6 4133 10852 8443
-2897 2 2 0 6 1906 1942 8307
-2898 2 2 0 6 7931 9915 9864
-2899 2 2 0 6 832 10987 836
-2900 2 2 0 6 5634 6282 7376
-2901 2 2 0 6 2096 10504 10463
-2902 2 2 0 6 4038 6285 7511
-2903 2 2 0 6 497 567 7441
-2904 2 2 0 6 7669 10420 8805
-2905 2 2 0 6 1578 4395 8258
-2906 2 2 0 6 6228 8808 8627
-2907 2 2 0 6 2372 10609 8416
-2908 2 2 0 6 9229 10817 10400
-2909 2 2 0 6 6327 10300 10691
-2910 2 2 0 6 7766 10957 7767
-2911 2 2 0 6 1189 8837 7279
-2912 2 2 0 6 1156 10122 1258
-2913 2 2 0 6 6597 10707 10483
-2914 2 2 0 6 1106 7336 1108
-2915 2 2 0 6 1266 1286 8977
-2916 2 2 0 6 7316 9909 7886
-2917 2 2 0 6 4801 7853 7501
-2918 2 2 0 6 567 7140 7441
-2919 2 2 0 6 8263 8260 10552
-2920 2 2 0 6 2737 7644 3066
-2921 2 2 0 6 7194 10779 10781
-2922 2 2 0 6 4323 7617 7362
-2923 2 2 0 6 114 510 7386
-2924 2 2 0 6 1749 8223 8224
-2925 2 2 0 6 2990 7848 7850
-2926 2 2 0 6 989 7775 10988
-2927 2 2 0 6 1758 9613 7632
-2928 2 2 0 6 3149 8276 11050
-2929 2 2 0 6 565 7217 566
-2930 2 2 0 6 7205 7207 8258
-2931 2 2 0 6 6698 10955 10478
-2932 2 2 0 6 6697 10684 11206
-2933 2 2 0 6 351 443 7332
-2934 2 2 0 6 5905 10464 10419
-2935 2 2 0 6 8014 8015 10566
-2936 2 2 0 6 3471 11002 8737
-2937 2 2 0 6 2990 7850 7852
-2938 2 2 0 6 5316 9996 8007
-2939 2 2 0 6 2968 10446 7203
-2940 2 2 0 6 7214 10473 10450
-2941 2 2 0 6 1827 7244 7669
-2942 2 2 0 6 3990 7333 8856
-2943 2 2 0 6 1397 10977 1400
-2944 2 2 0 6 3456 11016 8449
-2945 2 2 0 6 2775 9788 10279
-2946 2 2 0 6 255 504 7415
-2947 2 2 0 6 613 8901 9900
-2948 2 2 0 6 5931 10523 8819
-2949 2 2 0 6 6181 8660 8659
-2950 2 2 0 6 7333 8837 8856
-2951 2 2 0 6 3559 7232 9259
-2952 2 2 0 6 1942 7231 8307
-2953 2 2 0 6 4580 7225 10046
-2954 2 2 0 6 1201 11090 1202
-2955 2 2 0 6 4443 8692 7227
-2956 2 2 0 6 3536 7936 10231
-2957 2 2 0 6 7972 7973 10386
-2958 2 2 0 6 7500 7501 7853
-2959 2 2 0 6 6699 11198 11189
-2960 2 2 0 6 6403 9860 11166
-2961 2 2 0 6 3990 7334 7333
-2962 2 2 0 6 6245 7216 10485
-2963 2 2 0 6 1183 10894 1919
-2964 2 2 0 6 1961 10034 10110
-2965 2 2 0 6 7252 10446 10531
-2966 2 2 0 6 9072 9073 10956
-2967 2 2 0 6 8340 10881 10873
-2968 2 2 0 6 7232 8223 9259
-2969 2 2 0 6 1189 8856 8837
-2970 2 2 0 6 4750 11000 5265
-2971 2 2 0 6 6260 8358 10220
-2972 2 2 0 6 2627 11185 11043
-2973 2 2 0 6 1749 9259 8223
-2974 2 2 0 6 5352 7191 10601
-2975 2 2 0 6 59 500 9954
-2976 2 2 0 6 3126 8229 3129
-2977 2 2 0 6 3559 9260 7232
-2978 2 2 0 6 1537 7448 10425
-2979 2 2 0 6 9101 10682 10163
-2980 2 2 0 6 2927 7141 11053
-2981 2 2 0 6 3645 9578 8150
-2982 2 2 0 6 54 55 7441
-2983 2 2 0 6 8057 8783 10217
-2984 2 2 0 6 1917 9082 8054
-2985 2 2 0 6 6324 9839 10932
-2986 2 2 0 6 4392 8250 10880
-2987 2 2 0 6 3177 7245 7472
-2988 2 2 0 6 8771 8926 10345
-2989 2 2 0 6 15 7237 445
-2990 2 2 0 6 2916 2918 9434
-2991 2 2 0 6 8415 11155 10551
-2992 2 2 0 6 8271 11017 11003
-2993 2 2 0 6 5581 9294 5583
-2994 2 2 0 6 2735 9226 7644
-2995 2 2 0 6 8901 6583 9900
-2996 2 2 0 6 7204 10221 10348
-2997 2 2 0 6 7375 10475 7394
-2998 2 2 0 6 1673 10020 10922
-2999 2 2 0 6 7018 11086 7515
-3000 2 2 0 6 7329 7681 11107
-3001 2 2 0 6 6297 7527 7264
-3002 2 2 0 6 1135 7497 8526
-3003 2 2 0 6 7650 9088 10492
-3004 2 2 0 6 7317 7932 9733
-3005 2 2 0 6 4453 9838 7690
-3006 2 2 0 6 7468 7675 7469
-3007 2 2 0 6 4128 4676 7436
-3008 2 2 0 6 9136 11084 11244
-3009 2 2 0 6 1591 8453 1595
-3010 2 2 0 6 1589 3476 8453
-3011 2 2 0 6 7145 8285 9514
-3012 2 2 0 6 153 498 7335
-3013 2 2 0 6 157 499 7346
-3014 2 2 0 6 1025 7230 9012
-3015 2 2 0 6 348 7369 398
-3016 2 2 0 6 3538 7277 9716
-3017 2 2 0 6 7931 7932 9915
-3018 2 2 0 6 5600 10445 10479
-3019 2 2 0 6 3538 7977 7278
-3020 2 2 0 6 1537 10434 7448
-3021 2 2 0 6 4949 10667 7658
-3022 2 2 0 6 1716 10874 10569
-3023 2 2 0 6 5923 8391 10550
-3024 2 2 0 6 788 8358 794
-3025 2 2 0 6 5147 5431 7594
-3026 2 2 0 6 2494 7354 7356
-3027 2 2 0 6 1157 7694 4131
-3028 2 2 0 6 3295 9434 3907
-3029 2 2 0 6 3177 7701 7245
-3030 2 2 0 6 5006 7597 10010
-3031 2 2 0 6 5937 10856 10782
-3032 2 2 0 6 8470 10198 8471
-3033 2 2 0 6 1075 1077 8877
-3034 2 2 0 6 6217 7167 7151
-3035 2 2 0 6 2876 8957 8635
-3036 2 2 0 6 4837 10095 10209
-3037 2 2 0 6 7150 7151 7152
-3038 2 2 0 6 7418 7582 8102
-3039 2 2 0 6 5931 10536 10523
-3040 2 2 0 6 1443 7718 10077
-3041 2 2 0 6 3645 8150 8149
-3042 2 2 0 6 1424 3308 7806
-3043 2 2 0 6 8885 10956 10966
-3044 2 2 0 6 5431 7359 7594
-3045 2 2 0 6 7606 7607 10202
-3046 2 2 0 6 3630 8976 7337
-3047 2 2 0 6 5551 10920 9050
-3048 2 2 0 6 1170 10327 7443
-3049 2 2 0 6 6345 6346 10307
-3050 2 2 0 6 4843 7731 9680
-3051 2 2 0 6 5372 10077 10343
-3052 2 2 0 6 3514 4038 7511
-3053 2 2 0 6 1135 8526 8929
-3054 2 2 0 6 6285 9234 7273
-3055 2 2 0 6 7458 8789 10403
-3056 2 2 0 6 2725 2990 7852
-3057 2 2 0 6 5934 10555 8775
-3058 2 2 0 6 6297 7264 7366
-3059 2 2 0 6 713 1166 7445
-3060 2 2 0 6 4676 7432 7436
-3061 2 2 0 6 6298 7739 10392
-3062 2 2 0 6 54 7441 399
-3063 2 2 0 6 1942 8128 7677
-3064 2 2 0 6 5290 7349 7117
-3065 2 2 0 6 2874 8957 2876
-3066 2 2 0 6 1302 7635 1324
-3067 2 2 0 6 8473 8929 8526
-3068 2 2 0 6 5338 7341 5339
-3069 2 2 0 6 3002 7852 8373
-3070 2 2 0 6 3509 8929 8473
-3071 2 2 0 6 3509 8473 8474
-3072 2 2 0 6 7317 9733 9777
-3073 2 2 0 6 612 615 11100
-3074 2 2 0 6 5290 5292 7349
-3075 2 2 0 6 5462 9377 9955
-3076 2 2 0 6 3704 10715 3706
-3077 2 2 0 6 5516 9024 7831
-3078 2 2 0 6 6384 6385 10943
-3079 2 2 0 6 5339 7341 7209
-3080 2 2 0 6 4455 7419 7420
-3081 2 2 0 6 7445 7690 9838
-3082 2 2 0 6 7917 10442 7918
-3083 2 2 0 6 7358 10046 10223
-3084 2 2 0 6 6215 7503 7502
-3085 2 2 0 6 35 7008 11287
-3086 2 2 0 6 7493 7659 7580
-3087 2 2 0 6 4455 7420 9483
-3088 2 2 0 6 5713 7981 10358
-3089 2 2 0 6 5343 7675 7468
-3090 2 2 0 6 8512 10209 10095
-3091 2 2 0 6 3204 3697 7812
-3092 2 2 0 6 4906 7532 7937
-3093 2 2 0 6 8038 8226 10465
-3094 2 2 0 6 6466 10214 7610
-3095 2 2 0 6 5864 10390 8452
-3096 2 2 0 6 8001 8002 9455
-3097 2 2 0 6 2503 7946 7947
-3098 2 2 0 6 3125 8100 9690
-3099 2 2 0 6 794 8358 1921
-3100 2 2 0 6 4990 10485 7216
-3101 2 2 0 6 7363 10186 10143
-3102 2 2 0 6 6024 9073 10948
-3103 2 2 0 6 5337 10991 6576
-3104 2 2 0 6 3301 11060 7153
-3105 2 2 0 6 5133 5134 10333
-3106 2 2 0 6 3706 10275 3740
-3107 2 2 0 6 7931 9864 9902
-3108 2 2 0 6 6302 8373 7852
-3109 2 2 0 6 3975 7889 10689
-3110 2 2 0 6 7730 9680 7731
-3111 2 2 0 6 3207 7364 7847
-3112 2 2 0 6 112 446 7378
-3113 2 2 0 6 1219 10444 2389
-3114 2 2 0 6 1262 9003 7778
-3115 2 2 0 6 3352 9543 7353
-3116 2 2 0 6 1804 2180 9042
-3117 2 2 0 6 1370 10794 7874
-3118 2 2 0 6 6739 7826 7827
-3119 2 2 0 6 8215 8216 10930
-3120 2 2 0 6 3559 9224 9260
-3121 2 2 0 6 5835 7937 7532
-3122 2 2 0 6 3626 9502 8001
-3123 2 2 0 6 8542 9496 10134
-3124 2 2 0 6 5516 7831 7832
-3125 2 2 0 6 2224 2494 7357
-3126 2 2 0 6 5483 7439 5484
-3127 2 2 0 6 3615 9395 10135
-3128 2 2 0 6 812 8272 11014
-3129 2 2 0 6 4681 4865 7377
-3130 2 2 0 6 8002 9325 9455
-3131 2 2 0 6 8126 10089 8124
-3132 2 2 0 6 7225 10223 10046
-3133 2 2 0 6 5963 10875 7810
-3134 2 2 0 6 5494 7489 10993
-3135 2 2 0 6 8119 10886 2631
-3136 2 2 0 6 7830 9777 9733
-3137 2 2 0 6 2503 7945 7946
-3138 2 2 0 6 2015 7750 2017
-3139 2 2 0 6 3639 8249 4392
-3140 2 2 0 6 6201 9199 7021
-3141 2 2 0 6 5447 7751 7501
-3142 2 2 0 6 4250 10070 10031
-3143 2 2 0 6 2494 7494 7354
-3144 2 2 0 6 5133 7826 6739
-3145 2 2 0 6 1952 3177 7473
-3146 2 2 0 6 4469 5006 10010
-3147 2 2 0 6 446 7382 7378
-3148 2 2 0 6 7433 9032 9033
-3149 2 2 0 6 1935 10215 8185
-3150 2 2 0 6 1917 8686 9082
-3151 2 2 0 6 5478 7496 8579
-3152 2 2 0 6 5895 10411 10448
-3153 2 2 0 6 7155 10878 8977
-3154 2 2 0 6 7169 10855 9060
-3155 2 2 0 6 5484 7439 7505
-3156 2 2 0 6 6995 7385 7384
-3157 2 2 0 6 5435 7589 10866
-3158 2 2 0 6 3824 7485 8232
-3159 2 2 0 6 1202 7478 7694
-3160 2 2 0 6 7328 8436 10896
-3161 2 2 0 6 4116 7590 7671
-3162 2 2 0 6 5559 7215 10549
-3163 2 2 0 6 2603 7368 8692
-3164 2 2 0 6 253 444 7395
-3165 2 2 0 6 811 10818 3386
-3166 2 2 0 6 5147 7594 6790
-3167 2 2 0 6 352 7423 443
-3168 2 2 0 6 3615 8779 9939
-3169 2 2 0 6 4346 8724 10660
-3170 2 2 0 6 1136 8771 8769
-3171 2 2 0 6 4961 10341 5866
-3172 2 2 0 6 944 8221 943
-3173 2 2 0 6 1039 10439 10316
-3174 2 2 0 6 2968 10531 10446
-3175 2 2 0 6 2018 4346 7750
-3176 2 2 0 6 3645 8149 8950
-3177 2 2 0 6 1502 10322 3180
-3178 2 2 0 6 4837 10004 8509
-3179 2 2 0 6 5524 10610 11170
-3180 2 2 0 6 3266 4182 10602
-3181 2 2 0 6 5952 7734 10646
-3182 2 2 0 6 3440 10836 3441
-3183 2 2 0 6 5295 7077 9041
-3184 2 2 0 6 57 442 565
-3185 2 2 0 6 3253 10438 7344
-3186 2 2 0 6 3596 7214 10515
-3187 2 2 0 6 55 56 497
-3188 2 2 0 6 3244 9772 7263
-3189 2 2 0 6 155 441 7246
-3190 2 2 0 6 2851 11278 7065
-3191 2 2 0 6 1935 8185 10228
-3192 2 2 0 6 348 349 7369
-3193 2 2 0 6 153 154 498
-3194 2 2 0 6 4131 7474 7743
-3195 2 2 0 6 944 947 8221
-3196 2 2 0 6 1135 8579 7497
-3197 2 2 0 6 2561 7492 7704
-3198 2 2 0 6 6724 10638 10474
-3199 2 2 0 6 3189 10450 10473
-3200 2 2 0 6 6639 10586 10573
-3201 2 2 0 6 5518 5520 10796
-3202 2 2 0 6 1111 8329 1521
-3203 2 2 0 6 7590 7592 7671
-3204 2 2 0 6 7342 10222 10351
-3205 2 2 0 6 1913 10952 10921
-3206 2 2 0 6 3219 9639 7715
-3207 2 2 0 6 7215 10550 10549
-3208 2 2 0 6 1842 10871 9646
-3209 2 2 0 6 3189 7226 10450
-3210 2 2 0 6 3626 8001 9455
-3211 2 2 0 6 3626 9524 9502
-3212 2 2 0 6 6731 7505 7506
-3213 2 2 0 6 1262 7778 7776
-3214 2 2 0 6 6201 7022 9199
-3215 2 2 0 6 6213 10178 7268
-3216 2 2 0 6 6298 8373 6299
-3217 2 2 0 6 4361 4680 9060
-3218 2 2 0 6 4398 10572 10685
-3219 2 2 0 6 7362 7617 7684
-3220 2 2 0 6 7042 10839 7058
-3221 2 2 0 6 4849 7606 10202
-3222 2 2 0 6 8511 10216 8512
-3223 2 2 0 6 3122 8100 3125
-3224 2 2 0 6 8545 9502 9524
-3225 2 2 0 6 6795 10219 7485
-3226 2 2 0 6 2137 10696 7393
-3227 2 2 0 6 639 10792 3739
-3228 2 2 0 6 3121 7376 8100
-3229 2 2 0 6 3569 7616 10436
-3230 2 2 0 6 7234 7235 7437
-3231 2 2 0 6 5293 9041 7068
-3232 2 2 0 6 5190 6297 7367
-3233 2 2 0 6 8328 10283 8769
-3234 2 2 0 6 1121 3509 8475
-3235 2 2 0 6 9384 9636 9473
-3236 2 2 0 6 5121 6768 7487
-3237 2 2 0 6 6267 6269 7444
-3238 2 2 0 6 986 9385 989
-3239 2 2 0 6 4837 8509 10095
-3240 2 2 0 6 599 1920 10781
-3241 2 2 0 6 3720 10525 10659
-3242 2 2 0 6 1136 8926 8771
-3243 2 2 0 6 1010 10784 8970
-3244 2 2 0 6 8874 10370 10334
-3245 2 2 0 6 5478 8522 10323
-3246 2 2 0 6 2746 7602 7603
-3247 2 2 0 6 6049 7427 7921
-3248 2 2 0 6 7557 9276 7578
-3249 2 2 0 6 3180 10322 7428
-3250 2 2 0 6 6025 8844 10990
-3251 2 2 0 6 3493 9294 7265
-3252 2 2 0 6 7316 9902 9864
-3253 2 2 0 6 4469 10010 7656
-3254 2 2 0 6 7183 10872 9723
-3255 2 2 0 6 4131 7476 7474
-3256 2 2 0 6 7620 6189 8622
-3257 2 2 0 6 8804 10428 10669
-3258 2 2 0 6 8722 10598 8724
-3259 2 2 0 6 1815 1817 7426
-3260 2 2 0 6 444 7396 7395
-3261 2 2 0 6 3484 8942 11015
-3262 2 2 0 6 349 501 7369
-3263 2 2 0 6 4327 7375 7394
-3264 2 2 0 6 254 255 7415
-3265 2 2 0 6 6711 6714 10838
-3266 2 2 0 6 6293 8950 8149
-3267 2 2 0 6 1184 1202 7694
-3268 2 2 0 6 1212 9647 8545
-3269 2 2 0 6 1521 8329 8327
-3270 2 2 0 6 7970 7972 8831
-3271 2 2 0 6 8778 9939 8779
-3272 2 2 0 6 5494 11039 7649
-3273 2 2 0 6 4116 7350 7590
-3274 2 2 0 6 3352 7353 8128
-3275 2 2 0 6 5431 7726 7359
-3276 2 2 0 6 7756 7757 10288
-3277 2 2 0 6 1108 7336 3990
-3278 2 2 0 6 7581 7779 8324
-3279 2 2 0 6 1516 10906 10893
-3280 2 2 0 6 4589 7921 7427
-3281 2 2 0 6 5429 8938 7508
-3282 2 2 0 6 6292 7638 7588
-3283 2 2 0 6 1507 2603 8692
-3284 2 2 0 6 3453 7389 8644
-3285 2 2 0 6 1156 7437 10122
-3286 2 2 0 6 6267 7444 7242
-3287 2 2 0 6 6980 9295 8746
-3288 2 2 0 6 1760 10294 7549
-3289 2 2 0 6 7463 10884 10892
-3290 2 2 0 6 250 251 7480
-3291 2 2 0 6 4348 10210 9075
-3292 2 2 0 6 6294 7666 7813
-3293 2 2 0 6 3482 8552 7955
-3294 2 2 0 6 3301 11068 11060
-3295 2 2 0 6 4294 9718 7657
-3296 2 2 0 6 5343 7468 9311
-3297 2 2 0 6 694 10021 2313
-3298 2 2 0 6 5334 9012 7230
-3299 2 2 0 6 1583 1586 9128
-3300 2 2 0 6 7512 10279 9788
-3301 2 2 0 6 1867 8128 1942
-3302 2 2 0 6 113 7386 446
-3303 2 2 0 6 5927 8724 10598
-3304 2 2 0 6 7046 10823 7064
-3305 2 2 0 6 1597 1596 10654
-3306 2 2 0 6 812 11014 11013
-3307 2 2 0 6 109 7465 469
-3308 2 2 0 6 3485 7610 10214
-3309 2 2 0 6 5836 8471 10198
-3310 2 2 0 6 3615 10135 8779
-3311 2 2 0 6 5479 7647 7518
-3312 2 2 0 6 5428 7259 7614
-3313 2 2 0 6 5591 6260 9012
-3314 2 2 0 6 3531 7252 10531
-3315 2 2 0 6 3115 9499 7639
-3316 2 2 0 6 7493 7580 7599
-3317 2 2 0 6 4569 9062 11070
-3318 2 2 0 6 7685 9192 7687
-3319 2 2 0 6 5971 10760 7276
-3320 2 2 0 6 1319 8692 4443
-3321 2 2 0 6 2221 7357 8993
-3322 2 2 0 6 5484 7505 6731
-3323 2 2 0 6 7713 10380 8115
-3324 2 2 0 6 6193 7633 10695
-3325 2 2 0 6 5634 7376 7588
-3326 2 2 0 6 6377 7747 10256
-3327 2 2 0 6 1308 7342 10351
-3328 2 2 0 6 5921 10209 8512
-3329 2 2 0 6 2857 3514 10313
-3330 2 2 0 6 1337 1339 7680
-3331 2 2 0 6 7210 10447 10477
-3332 2 2 0 6 7420 9647 9591
-3333 2 2 0 6 8583 11021 8825
-3334 2 2 0 6 5631 10089 8126
-3335 2 2 0 6 2314 7970 8831
-3336 2 2 0 6 5869 8874 10334
-3337 2 2 0 6 7936 10246 10228
-3338 2 2 0 6 7639 9499 9421
-3339 2 2 0 6 7192 7715 9639
-3340 2 2 0 6 2398 9550 7545
-3341 2 2 0 6 3104 7417 8957
-3342 2 2 0 6 4915 7484 7538
-3343 2 2 0 6 8184 8185 10215
-3344 2 2 0 6 2390 7760 2455
-3345 2 2 0 6 1516 10895 7521
-3346 2 2 0 6 8901 10604 6583
-3347 2 2 0 6 3666 10098 5447
-3348 2 2 0 6 8682 10663 8683
-3349 2 2 0 6 10179 11176 11048
-3350 2 2 0 6 7317 9915 7932
-3351 2 2 0 6 8475 10345 8926
-3352 2 2 0 6 6316 10587 7392
-3353 2 2 0 6 4336 5343 9311
-3354 2 2 0 6 7279 9294 8953
-3355 2 2 0 6 5705 11069 7362
-3356 2 2 0 6 4568 8991 10864
-3357 2 2 0 6 4455 7426 7419
-3358 2 2 0 6 5815 7607 8016
-3359 2 2 0 6 6044 11058 11218
-3360 2 2 0 6 7108 7181 7180
-3361 2 2 0 6 6260 8357 8358
-3362 2 2 0 6 6294 7813 9188
-3363 2 2 0 6 2494 7356 7357
-3364 2 2 0 6 5497 9082 8523
-3365 2 2 0 6 7555 7580 9276
-3366 2 2 0 6 998 5499 9385
-3367 2 2 0 6 6551 9675 10338
-3368 2 2 0 6 7380 7466 7465
-3369 2 2 0 6 7963 7975 10934
-3370 2 2 0 6 5899 7627 10633
-3371 2 2 0 6 5914 10566 8015
-3372 2 2 0 6 8991 10887 10864
-3373 2 2 0 6 7171 7750 10660
-3374 2 2 0 6 4096 8320 7459
-3375 2 2 0 6 7172 7215 9370
-3376 2 2 0 6 7244 10420 7669
-3377 2 2 0 6 7657 8250 8249
-3378 2 2 0 6 1760 9030 10294
-3379 2 2 0 6 3067 7770 10262
-3380 2 2 0 6 1904 7500 7853
-3381 2 2 0 6 6542 9149 8051
-3382 2 2 0 6 6282 8100 7376
-3383 2 2 0 6 3990 7336 7334
-3384 2 2 0 6 6335 7459 8320
-3385 2 2 0 6 3760 7142 11110
-3386 2 2 0 6 442 7217 565
-3387 2 2 0 6 1420 1505 10332
-3388 2 2 0 6 6295 9046 8211
-3389 2 2 0 6 1595 7272 10618
-3390 2 2 0 6 7370 10907 8341
-3391 2 2 0 6 8498 10522 10789
-3392 2 2 0 6 1138 1223 7437
-3393 2 2 0 6 5561 5562 9606
-3394 2 2 0 6 3739 8341 10907
-3395 2 2 0 6 6289 7440 7976
-3396 2 2 0 6 5396 7582 7418
-3397 2 2 0 6 7206 10774 10508
-3398 2 2 0 6 2108 10281 10365
-3399 2 2 0 6 7545 9550 7546
-3400 2 2 0 6 736 3606 9322
-3401 2 2 0 6 1593 1595 10618
-3402 2 2 0 6 1600 10592 1601
-3403 2 2 0 6 4020 8425 9107
-3404 2 2 0 6 5483 7440 7439
-3405 2 2 0 6 3382 10386 7973
-3406 2 2 0 6 4128 7436 9649
-3407 2 2 0 6 1138 7437 1156
-3408 2 2 0 6 5499 8644 7389
-3409 2 2 0 6 2332 10743 7833
-3410 2 2 0 6 738 9322 1308
-3411 2 2 0 6 2371 2486 8700
-3412 2 2 0 6 7276 10760 9281
-3413 2 2 0 6 6783 10031 10070
-3414 2 2 0 6 5812 7992 10102
-3415 2 2 0 6 1212 8545 9524
-3416 2 2 0 6 5479 7518 8117
-3417 2 2 0 6 4294 7657 7655
-3418 2 2 0 6 3383 7352 10497
-3419 2 2 0 6 3253 7418 8102
-3420 2 2 0 6 4221 7482 5140
-3421 2 2 0 6 2503 8652 7945
-3422 2 2 0 6 1919 10894 7387
-3423 2 2 0 6 7118 8627 8808
-3424 2 2 0 6 6342 9299 7655
-3425 2 2 0 6 7813 7814 9188
-3426 2 2 0 6 7210 7340 10447
-3427 2 2 0 6 7356 10486 7357
-3428 2 2 0 6 1324 7635 1444
-3429 2 2 0 6 3389 7516 9029
-3430 2 2 0 6 7453 10317 6430
-3431 2 2 0 6 5121 7487 7449
-3432 2 2 0 6 5332 7746 6295
-3433 2 2 0 6 8826 10288 10557
-3434 2 2 0 6 199 561 7483
-3435 2 2 0 6 3783 9254 8422
-3436 2 2 0 6 7604 9097 8921
-3437 2 2 0 6 2464 7687 9192
-3438 2 2 0 6 7966 7965 10958
-3439 2 2 0 6 7425 7945 8652
-3440 2 2 0 6 7570 7806 7805
-3441 2 2 0 6 6349 7538 7484
-3442 2 2 0 6 156 7346 441
-3443 2 2 0 6 7233 10419 10464
-3444 2 2 0 6 6228 8627 7115
-3445 2 2 0 6 2313 8112 8657
-3446 2 2 0 6 4302 7363 10143
-3447 2 2 0 6 5956 10730 7371
-3448 2 2 0 6 1954 7473 10151
-3449 2 2 0 6 3456 10781 10779
-3450 2 2 0 6 7116 7345 11008
-3451 2 2 0 6 4393 7798 9811
-3452 2 2 0 6 5369 7551 7552
-3453 2 2 0 6 4256 7614 4300
-3454 2 2 0 6 1166 2941 7445
-3455 2 2 0 6 770 10699 8765
-3456 2 2 0 6 250 7480 400
-3457 2 2 0 6 7142 11123 11110
-3458 2 2 0 6 7730 8041 9680
-3459 2 2 0 6 1212 9591 9647
-3460 2 2 0 6 4942 9848 10280
-3461 2 2 0 6 1222 8778 9971
-3462 2 2 0 6 6296 7527 6297
-3463 2 2 0 6 350 7332 501
-3464 2 2 0 6 1049 2311 11007
-3465 2 2 0 6 3484 11015 11011
-3466 2 2 0 6 4116 7666 7350
-3467 2 2 0 6 7608 8356 9953
-3468 2 2 0 6 1729 1731 9312
-3469 2 2 0 6 1119 8475 8926
-3470 2 2 0 6 7116 11008 11011
-3471 2 2 0 6 1426 7806 9746
-3472 2 2 0 6 5520 7370 8341
-3473 2 2 0 6 6049 7921 7098
-3474 2 2 0 6 3115 7639 8910
-3475 2 2 0 6 7798 7795 9811
-3476 2 2 0 6 7453 4026 10317
-3477 2 2 0 6 1286 4430 8977
-3478 2 2 0 6 7496 7497 8579
-3479 2 2 0 6 6296 7825 7527
-3480 2 2 0 6 4182 7454 10602
-3481 2 2 0 6 3809 8749 9637
-3482 2 2 0 6 3523 7371 10730
-3483 2 2 0 6 4892 7358 10223
-3484 2 2 0 6 2389 10444 7504
-3485 2 2 0 6 3089 10424 10119
-3486 2 2 0 6 6483 8228 8229
-3487 2 2 0 6 8184 10215 10110
-3488 2 2 0 6 4020 7491 8425
-3489 2 2 0 6 349 350 501
-3490 2 2 0 6 1262 7776 8879
-3491 2 2 0 6 2313 10021 8112
-3492 2 2 0 6 2314 7968 7970
-3493 2 2 0 6 4003 9188 7814
-3494 2 2 0 6 6294 7350 7666
-3495 2 2 0 6 57 58 442
-3496 2 2 0 6 55 497 7441
-3497 2 2 0 6 7601 9657 9686
-3498 2 2 0 6 155 156 441
-3499 2 2 0 6 2371 8700 7494
-3500 2 2 0 6 6330 7583 6839
-3501 2 2 0 6 3239 7529 7660
-3502 2 2 0 6 4527 9764 7537
-3503 2 2 0 6 5869 10300 8874
-3504 2 2 0 6 4006 10334 10370
-3505 2 2 0 6 497 566 567
-3506 2 2 0 6 4589 7427 7922
-3507 2 2 0 6 2842 10438 3253
-3508 2 2 0 6 6214 7452 7451
-3509 2 2 0 6 1209 8073 9801
-3510 2 2 0 6 7718 10343 10077
-3511 2 2 0 6 1266 8977 1287
-3512 2 2 0 6 7874 10794 9970
-3513 2 2 0 6 4003 7814 7831
-3514 2 2 0 6 6292 7588 7376
-3515 2 2 0 6 4020 8903 7491
-3516 2 2 0 6 2386 10506 10216
-3517 2 2 0 6 4019 10121 10097
-3518 2 2 0 6 1576 1579 7868
-3519 2 2 0 6 7372 10761 10768
-3520 2 2 0 6 5983 9929 5985
-3521 2 2 0 6 1075 8877 1080
-3522 2 2 0 6 6295 7746 9046
-3523 2 2 0 6 6464 10161 7822
-3524 2 2 0 6 3199 10491 10308
-3525 2 2 0 6 2874 3104 8957
-3526 2 2 0 6 5478 10323 7496
-3527 2 2 0 6 1815 7426 4455
-3528 2 2 0 6 56 57 565
-3529 2 2 0 6 2226 2371 7494
-3530 2 2 0 6 3259 9542 7450
-3531 2 2 0 6 1516 7521 10906
-3532 2 2 0 6 2561 7705 7492
-3533 2 2 0 6 5515 8109 9486
-3534 2 2 0 6 1421 10884 7680
-3535 2 2 0 6 7173 7174 7175
-3536 2 2 0 6 1913 10941 7188
-3537 2 2 0 6 7757 10448 10411
-3538 2 2 0 6 1208 10516 10502
-3539 2 2 0 6 7473 10537 10151
-3540 2 2 0 6 6322 7700 8147
-3541 2 2 0 6 5409 5953 7593
-3542 2 2 0 6 5489 10461 7104
-3543 2 2 0 6 7730 7732 8041
-3544 2 2 0 6 7700 10023 8719
-3545 2 2 0 6 4863 7422 7541
-3546 2 2 0 6 3523 10730 10720
-3547 2 2 0 6 4899 8961 10071
-3548 2 2 0 6 3769 7508 8938
-3549 2 2 0 6 1865 3352 8128
-3550 2 2 0 6 1542 2586 10737
-3551 2 2 0 6 8418 10721 10799
-3552 2 2 0 6 7289 9777 7830
-3553 2 2 0 6 4061 9943 10412
-3554 2 2 0 6 1895 1897 7460
-3555 2 2 0 6 6321 7449 7487
-3556 2 2 0 6 1895 7460 1982
-3557 2 2 0 6 5264 11148 7078
-3558 2 2 0 6 112 113 446
-3559 2 2 0 6 469 7465 7466
-3560 2 2 0 6 7112 8459 10756
-3561 2 2 0 6 7128 7585 7584
-3562 2 2 0 6 1287 10878 8920
-3563 2 2 0 6 5606 7537 9764
-3564 2 2 0 6 5581 7265 9294
-3565 2 2 0 6 1106 9759 7336
-3566 2 2 0 6 6289 7439 7440
-3567 2 2 0 6 109 110 7465
-3568 2 2 0 6 3835 4246 7548
-3569 2 2 0 6 6795 8626 10219
-3570 2 2 0 6 7336 9759 10369
-3571 2 2 0 6 3383 10497 10477
-3572 2 2 0 6 6491 10232 6514
-3573 2 2 0 6 7371 10761 7372
-3574 2 2 0 6 5133 10333 7826
-3575 2 2 0 6 251 503 7480
-3576 2 2 0 6 4003 7831 9024
-3577 2 2 0 6 3514 7511 10313
-3578 2 2 0 6 7767 8582 8581
-3579 2 2 0 6 4302 7543 10212
-3580 2 2 0 6 4300 7614 5119
-3581 2 2 0 6 4658 7584 6754
-3582 2 2 0 6 2404 8007 8008
-3583 2 2 0 6 566 7217 9653
-3584 2 2 0 6 5953 7520 7593
-3585 2 2 0 6 1492 10539 1494
-3586 2 2 0 6 8179 9842 8809
-3587 2 2 0 6 6708 11292 11261
-3588 2 2 0 6 3476 8397 8453
-3589 2 2 0 6 5583 9294 7279
-3590 2 2 0 6 2873 8613 7797
-3591 2 2 0 6 7625 7912 7910
-3592 2 2 0 6 1302 3338 7635
-3593 2 2 0 6 4502 9951 8533
-3594 2 2 0 6 7624 7626 7634
-3595 2 2 0 6 3643 9421 9499
-3596 2 2 0 6 5815 10202 7607
-3597 2 2 0 6 3104 9207 7417
-3598 2 2 0 6 5312 10186 7260
-3599 2 2 0 6 5447 10098 7751
-3600 2 2 0 6 3824 9301 7485
-3601 2 2 0 6 5562 7917 9606
-3602 2 2 0 6 3675 8312 3993
-3603 2 2 0 6 6375 8137 8138
-3604 2 2 0 6 7546 9550 9612
-3605 2 2 0 6 7378 7382 7379
-3606 2 2 0 6 8380 8381 8379
-3607 2 2 0 6 5555 8455 10146
-3608 2 2 0 6 5744 6210 11238
-3609 2 2 0 6 1077 8831 8877
-3610 2 2 0 6 8010 8126 8124
-3611 2 2 0 6 7767 8581 8604
-3612 2 2 0 6 5889 8411 10603
-3613 2 2 0 6 4294 7655 9299
-3614 2 2 0 6 6401 11085 11082
-3615 2 2 0 6 5369 7581 8324
-3616 2 2 0 6 5312 10143 10186
-3617 2 2 0 6 7978 9828 8639
-3618 2 2 0 6 6538 6539 8050
-3619 2 2 0 6 5766 7608 9554
-3620 2 2 0 6 6338 10915 10563
-3621 2 2 0 6 1127 1129 8579
-3622 2 2 0 6 4536 7528 4572
-3623 2 2 0 6 813 10771 10768
-3624 2 2 0 6 1111 1113 8329
-3625 2 2 0 6 6657 7488 7816
-3626 2 2 0 6 7937 10231 7934
-3627 2 2 0 6 4581 7824 7822
-3628 2 2 0 6 154 155 7246
-3629 2 2 0 6 3110 7544 3957
-3630 2 2 0 6 4131 7694 7476
-3631 2 2 0 6 2011 2013 7977
-3632 2 2 0 6 1259 8009 8125
-3633 2 2 0 6 1935 10228 10246
-3634 2 2 0 6 5805 6524 10255
-3635 2 2 0 6 3937 8102 7582
-3636 2 2 0 6 1904 1938 7500
-3637 2 2 0 6 5338 7342 7341
-3638 2 2 0 6 6347 9668 7847
-3639 2 2 0 6 3364 7867 7865
-3640 2 2 0 6 7491 8903 7519
-3641 2 2 0 6 4221 4252 7482
-3642 2 2 0 6 6046 7641 7530
-3643 2 2 0 6 7953 7955 8552
-3644 2 2 0 6 7208 7635 10377
-3645 2 2 0 6 1535 7519 8903
-3646 2 2 0 6 2381 7659 7493
-3647 2 2 0 6 2465 7623 7911
-3648 2 2 0 6 2924 9620 7663
-3649 2 2 0 6 3968 10047 7527
-3650 2 2 0 6 4231 7584 4658
-3651 2 2 0 6 7516 8879 7776
-3652 2 2 0 6 5693 8533 9951
-3653 2 2 0 6 5550 8426 8997
-3654 2 2 0 6 4581 10056 7824
-3655 2 2 0 6 2314 7974 7968
-3656 2 2 0 6 2475 10473 3596
-3657 2 2 0 6 1975 7540 10873
-3658 2 2 0 6 4915 7539 7484
-3659 2 2 0 6 7639 7638 8910
-3660 2 2 0 6 8121 8123 9995
-3661 2 2 0 6 2703 7895 2705
-3662 2 2 0 6 7886 7929 9902
-3663 2 2 0 6 6317 7508 10024
-3664 2 2 0 6 14 15 445
-3665 2 2 0 6 4656 8393 6758
-3666 2 2 0 6 8010 8124 8125
-3667 2 2 0 6 2721 10492 9088
-3668 2 2 0 6 4869 10568 4868
-3669 2 2 0 6 8224 10465 8226
-3670 2 2 0 6 6539 6542 8050
-3671 2 2 0 6 2226 7494 2494
-3672 2 2 0 6 6210 11235 11238
-3673 2 2 0 6 6331 9543 9075
-3674 2 2 0 6 3231 4077 7517
-3675 2 2 0 6 5369 7552 7581
-3676 2 2 0 6 3957 10030 9207
-3677 2 2 0 6 5966 8086 8801
-3678 2 2 0 6 2796 7707 8755
-3679 2 2 0 6 1345 7551 5369
-3680 2 2 0 6 1136 8769 10283
-3681 2 2 0 6 2180 5516 9042
-3682 2 2 0 6 3239 9261 7529
-3683 2 2 0 6 1765 2381 7493
-3684 2 2 0 6 7992 7993 10102
-3685 2 2 0 6 4328 5481 9854
-3686 2 2 0 6 3809 5482 8749
-3687 2 2 0 6 3643 7490 9421
-3688 2 2 0 6 111 7378 520
-3689 2 2 0 6 7882 9790 7883
-3690 2 2 0 6 6401 11082 7157
-3691 2 2 0 6 3207 7847 9668
-3692 2 2 0 6 3364 7868 7867
-3693 2 2 0 6 6323 8147 8148
-3694 2 2 0 6 6334 9320 6336
-3695 2 2 0 6 4882 9396 10403
-3696 2 2 0 6 771 10815 10901
-3697 2 2 0 6 2249 10748 7343
-3698 2 2 0 6 3361 7513 7726
-3699 2 2 0 6 5428 6845 7259
-3700 2 2 0 6 5550 8425 8426
-3701 2 2 0 6 6331 9075 10210
-3702 2 2 0 6 3338 7992 10377
-3703 2 2 0 6 3563 10588 9089
-3704 2 2 0 6 1142 1160 9885
-3705 2 2 0 6 3844 10241 7509
-3706 2 2 0 6 5449 10605 6651
-3707 2 2 0 6 2866 3067 10547
-3708 2 2 0 6 2921 9276 7659
-3709 2 2 0 6 5402 8696 5403
-3710 2 2 0 6 7898 9803 7899
-3711 2 2 0 6 7071 10256 7747
-3712 2 2 0 6 4861 7588 7638
-3713 2 2 0 6 7691 8523 9082
-3714 2 2 0 6 6269 7690 7444
-3715 2 2 0 6 1918 9419 8898
-3716 2 2 0 6 6582 7757 10411
-3717 2 2 0 6 7607 9447 8016
-3718 2 2 0 6 3899 10005 7481
-3719 2 2 0 6 8195 11217 11211
-3720 2 2 0 6 4399 7425 8652
-3721 2 2 0 6 2773 7665 3033
-3722 2 2 0 6 8150 10097 10121
-3723 2 2 0 6 4342 8365 7673
-3724 2 2 0 6 7485 10219 8232
-3725 2 2 0 6 4405 9686 9657
-3726 2 2 0 6 5391 7649 5704
-3727 2 2 0 6 6345 10307 7995
-3728 2 2 0 6 5744 11239 9979
-3729 2 2 0 6 8744 8746 9295
-3730 2 2 0 6 8009 8010 8125
-3731 2 2 0 6 1505 1804 9042
-3732 2 2 0 6 4653 8393 4656
-3733 2 2 0 6 6331 7353 9543
-3734 2 2 0 6 8020 8021 10055
-3735 2 2 0 6 6489 9945 9770
-3736 2 2 0 6 6363 6364 9440
-3737 2 2 0 6 5841 9965 10027
-3738 2 2 0 6 3352 8163 9543
-3739 2 2 0 6 2746 7603 7604
-3740 2 2 0 6 1576 7868 3364
-3741 2 2 0 6 7420 9591 9483
-3742 2 2 0 6 7580 7659 9276
-3743 2 2 0 6 7981 10365 10281
-3744 2 2 0 6 1258 10122 1525
-3745 2 2 0 6 1339 1421 7680
-3746 2 2 0 6 351 352 443
-3747 2 2 0 6 4680 5188 9060
-3748 2 2 0 6 1337 7680 4389
-3749 2 2 0 6 5516 7832 9042
-3750 2 2 0 6 2746 7683 7602
-3751 2 2 0 6 947 8222 8221
-3752 2 2 0 6 6318 7263 10457
-3753 2 2 0 6 5034 9697 10561
-3754 2 2 0 6 6349 9410 7538
-3755 2 2 0 6 5331 7524 7257
-3756 2 2 0 6 1014 9432 8971
-3757 2 2 0 6 252 7395 503
-3758 2 2 0 6 2044 8677 7486
-3759 2 2 0 6 5462 9955 8639
-3760 2 2 0 6 6527 7509 10241
-3761 2 2 0 6 1680 8514 1682
-3762 2 2 0 6 6210 8253 11235
-3763 2 2 0 6 2334 2562 7732
-3764 2 2 0 6 3219 8590 9639
-3765 2 2 0 6 6524 8422 9254
-3766 2 2 0 6 1894 8917 2347
-3767 2 2 0 6 251 252 503
-3768 2 2 0 6 4399 9097 7425
-3769 2 2 0 6 8098 10106 9011
-3770 2 2 0 6 5193 10749 7499
-3771 2 2 0 6 2929 2455 7760
-3772 2 2 0 6 1918 8898 9643
-3773 2 2 0 6 4172 9771 10225
-3774 2 2 0 6 7089 8057 8056
-3775 2 2 0 6 6322 8147 6323
-3776 2 2 0 6 6382 10372 10371
-3777 2 2 0 6 5431 9782 7726
-3778 2 2 0 6 8847 8971 9432
-3779 2 2 0 6 3993 8312 8309
-3780 2 2 0 6 1437 7493 7599
-3781 2 2 0 6 3165 8956 3168
-3782 2 2 0 6 1898 11189 11198
-3783 2 2 0 6 1600 7331 10592
-3784 2 2 0 6 6385 7673 8365
-3785 2 2 0 6 3331 5193 7499
-3786 2 2 0 6 8387 9491 9922
-3787 2 2 0 6 8070 9815 8074
-3788 2 2 0 6 6298 10392 8373
-3789 2 2 0 6 5363 7054 7745
-3790 2 2 0 6 2044 7486 8676
-3791 2 2 0 6 1524 10417 10451
-3792 2 2 0 6 5462 8639 9828
-3793 2 2 0 6 4410 7685 7526
-3794 2 2 0 6 2300 7629 2302
-3795 2 2 0 6 6046 6693 7641
-3796 2 2 0 6 3536 10246 7936
-3797 2 2 0 6 1801 10425 1897
-3798 2 2 0 6 5902 10497 7352
-3799 2 2 0 6 1808 1910 7899
-3800 2 2 0 6 2763 7783 9793
-3801 2 2 0 6 8378 8380 8379
-3802 2 2 0 6 2108 7894 10281
-3803 2 2 0 6 713 7445 9838
-3804 2 2 0 6 353 502 7423
-3805 2 2 0 6 5550 9107 8425
-3806 2 2 0 6 6334 6335 8320
-3807 2 2 0 6 7144 10196 5910
-3808 2 2 0 6 6321 7529 7449
-3809 2 2 0 6 2334 7732 2336
-3810 2 2 0 6 6293 7760 8950
-3811 2 2 0 6 2636 7622 9738
-3812 2 2 0 6 3093 10001 9678
-3813 2 2 0 6 6597 10483 7442
-3814 2 2 0 6 6569 10267 10162
-3815 2 2 0 6 2381 2410 7659
-3816 2 2 0 6 8846 8847 10173
-3817 2 2 0 6 7217 7219 9653
-3818 2 2 0 6 5994 8988 10825
-3819 2 2 0 6 1913 7188 10952
-3820 2 2 0 6 2390 8950 7760
-3821 2 2 0 6 1222 9939 8778
-3822 2 2 0 6 8194 11217 8195
-3823 2 2 0 6 2776 2992 7908
-3824 2 2 0 6 5552 7858 8900
-3825 2 2 0 6 4681 7377 5186
-3826 2 2 0 6 7868 9113 7869
-3827 2 2 0 6 4687 7727 4689
-3828 2 2 0 6 1760 7549 10011
-3829 2 2 0 6 7906 7979 7907
-3830 2 2 0 6 7531 8973 10771
-3831 2 2 0 6 1817 9966 7426
-3832 2 2 0 6 1443 10077 1442
-3833 2 2 0 6 5870 10586 6639
-3834 2 2 0 6 2445 10400 3189
-3835 2 2 0 6 1808 7899 2603
-3836 2 2 0 6 4096 7459 8455
-3837 2 2 0 6 4029 7979 7906
-3838 2 2 0 6 3573 8194 11216
-3839 2 2 0 6 2929 7760 7759
-3840 2 2 0 6 4626 10093 9934
-3841 2 2 0 6 3257 9542 3259
-3842 2 2 0 6 6529 10503 10436
-3843 2 2 0 6 5289 7173 10445
-3844 2 2 0 6 4906 10185 7532
-3845 2 2 0 6 8071 9801 8073
-3846 2 2 0 6 8174 8277 8175
-3847 2 2 0 6 4841 5923 10550
-3848 2 2 0 6 3957 7544 9721
-3849 2 2 0 6 6272 10434 7457
-3850 2 2 0 6 2316 10646 7734
-3851 2 2 0 6 3239 7660 7702
-3852 2 2 0 6 3361 8840 7513
-3853 2 2 0 6 1731 8107 9312
-3854 2 2 0 6 3110 8058 7544
-3855 2 2 0 6 4155 4570 10565
-3856 2 2 0 6 3180 10371 10372
-3857 2 2 0 6 7365 7812 10510
-3858 2 2 0 6 2265 10032 3151
-3859 2 2 0 6 2652 2863 9762
-3860 2 2 0 6 7055 7727 7728
-3861 2 2 0 6 189 7878 512
-3862 2 2 0 6 6270 6271 10010
-3863 2 2 0 6 3565 10344 10360
-3864 2 2 0 6 4574 7646 4575
-3865 2 2 0 6 5378 7743 7474
-3866 2 2 0 6 4668 9019 9020
-3867 2 2 0 6 3355 7608 9953
-3868 2 2 0 6 7327 10999 7542
-3869 2 2 0 6 4147 7502 4659
-3870 2 2 0 6 3664 8266 8264
-3871 2 2 0 6 4285 4283 7774
-3872 2 2 0 6 8642 10007 10237
-3873 2 2 0 6 2745 10508 10774
-3874 2 2 0 6 3718 7523 8283
-3875 2 2 0 6 3470 8911 7498
-3876 2 2 0 6 7752 8542 10090
-3877 2 2 0 6 5780 10419 7233
-3878 2 2 0 6 59 60 500
-3879 2 2 0 6 4079 7736 5053
-3880 2 2 0 6 6334 8320 9320
-3881 2 2 0 6 8226 10316 10439
-3882 2 2 0 6 4147 6215 7502
-3883 2 2 0 6 3263 3264 7880
-3884 2 2 0 6 2628 7919 2932
-3885 2 2 0 6 6515 10242 6536
-3886 2 2 0 6 4256 4300 4299
-3887 2 2 0 6 157 158 499
-3888 2 2 0 6 3829 7708 4250
-3889 2 2 0 6 3355 9554 7608
-3890 2 2 0 6 3364 7865 8129
-3891 2 2 0 6 7922 8817 7959
-3892 2 2 0 6 520 7378 7379
-3893 2 2 0 6 2160 8432 2372
-3894 2 2 0 6 6330 8749 7583
-3895 2 2 0 6 4399 8921 9097
-3896 2 2 0 6 2705 7895 2982
-3897 2 2 0 6 7235 10122 7437
-3898 2 2 0 6 3443 7586 8421
-3899 2 2 0 6 2108 10264 7894
-3900 2 2 0 6 5800 10338 9675
-3901 2 2 0 6 3496 9649 10074
-3902 2 2 0 6 3675 4034 8312
-3903 2 2 0 6 1995 7684 7617
-3904 2 2 0 6 2410 2921 7659
-3905 2 2 0 6 6322 10023 7700
-3906 2 2 0 6 6351 7612 7905
-3907 2 2 0 6 4272 9584 5465
-3908 2 2 0 6 1352 1437 7599
-3909 2 2 0 6 1227 1271 9544
-3910 2 2 0 6 2644 3011 7772
-3911 2 2 0 6 2305 7535 7628
-3912 2 2 0 6 825 1749 8225
-3913 2 2 0 6 4636 7525 7630
-3914 2 2 0 6 5817 7681 7329
-3915 2 2 0 6 4172 10225 10169
-3916 2 2 0 6 2941 7444 7445
-3917 2 2 0 6 2775 7665 2773
-3918 2 2 0 6 7603 9097 7604
-3919 2 2 0 6 4300 4653 4301
-3920 2 2 0 6 6297 7366 7367
-3921 2 2 0 6 7774 9949 7775
-3922 2 2 0 6 5561 9606 10126
-3923 2 2 0 6 7341 7342 9322
-3924 2 2 0 6 4117 9977 9744
-3925 2 2 0 6 7535 9250 9142
-3926 2 2 0 6 7258 9473 9636
-3927 2 2 0 6 5866 10341 8196
-3928 2 2 0 6 5319 7898 8871
-3929 2 2 0 6 3718 9587 7523
-3930 2 2 0 6 4940 9501 5371
-3931 2 2 0 6 6332 10134 9496
-3932 2 2 0 6 254 7415 444
-3933 2 2 0 6 1583 9128 1606
-3934 2 2 0 6 9535 8263 10552
-3935 2 2 0 6 6602 8970 10784
-3936 2 2 0 6 4893 8209 8211
-3937 2 2 0 6 6754 7584 7585
-3938 2 2 0 6 6376 7481 10005
-3939 2 2 0 6 4354 7928 7637
-3940 2 2 0 6 7877 7879 7878
-3941 2 2 0 6 3509 8474 8475
-3942 2 2 0 6 6645 8632 9741
-3943 2 2 0 6 3664 8267 8266
-3944 2 2 0 6 1733 1736 8107
-3945 2 2 0 6 5361 5363 7745
-3946 2 2 0 6 3825 7720 7724
-3947 2 2 0 6 6687 10609 11122
-3948 2 2 0 6 2873 7797 9258
-3949 2 2 0 6 3852 10185 4906
-3950 2 2 0 6 4999 8632 6645
-3951 2 2 0 6 1586 3482 9128
-3952 2 2 0 6 7546 9612 7905
-3953 2 2 0 6 4880 8502 8760
-3954 2 2 0 6 6350 8117 7518
-3955 2 2 0 6 3219 3220 8590
-3956 2 2 0 6 6167 7704 7492
-3957 2 2 0 6 6181 10061 8660
-3958 2 2 0 6 5013 7835 5873
-3959 2 2 0 6 4687 5249 7727
-3960 2 2 0 6 9165 10291 9168
-3961 2 2 0 6 4442 8280 8281
-3962 2 2 0 6 2167 7604 2169
-3963 2 2 0 6 5401 7847 7364
-3964 2 2 0 6 6664 7245 10627
-3965 2 2 0 6 4893 8211 9046
-3966 2 2 0 6 1577 1727 10774
-3967 2 2 0 6 1412 1760 10011
-3968 2 2 0 6 1029 1280 9884
-3969 2 2 0 6 7653 7737 7736
-3970 2 2 0 6 5667 7596 10277
-3971 2 2 0 6 6763 10053 10193
-3972 2 2 0 6 4572 7528 8212
-3973 2 2 0 6 2347 8917 8916
-3974 2 2 0 6 2324 2404 8008
-3975 2 2 0 6 1612 9658 1614
-3976 2 2 0 6 3316 3968 7825
-3977 2 2 0 6 3972 9256 8040
-3978 2 2 0 6 4981 5934 10536
-3979 2 2 0 6 347 348 398
-3980 2 2 0 6 3372 10062 7534
-3981 2 2 0 6 4302 10212 7363
-3982 2 2 0 6 1172 1193 10327
-3983 2 2 0 6 7422 9890 7541
-3984 2 2 0 6 7858 9852 8900
-3985 2 2 0 6 6240 9544 9545
-3986 2 2 0 6 2305 9250 7535
-3987 2 2 0 6 1335 4389 7609
-3988 2 2 0 6 8174 9459 9615
-3989 2 2 0 6 7231 7677 9925
-3990 2 2 0 6 6457 9930 10054
-3991 2 2 0 6 502 7424 7423
-3992 2 2 0 6 1345 1347 7551
-3993 2 2 0 6 8037 8040 9256
-3994 2 2 0 6 5999 9670 9376
-3995 2 2 0 6 3835 7548 4245
-3996 2 2 0 6 6549 7438 10554
-3997 2 2 0 6 199 200 561
-3998 2 2 0 6 3781 9025 8027
-3999 2 2 0 6 2395 2561 7704
-4000 2 2 0 6 7308 8824 7314
-4001 2 2 0 6 5500 8540 9248
-4002 2 2 0 6 4285 7774 5422
-4003 2 2 0 6 8264 8265 9015
-4004 2 2 0 6 4670 8164 4712
-4005 2 2 0 6 1696 1699 7888
-4006 2 2 0 6 8295 10829 10950
-4007 2 2 0 6 3539 7958 7956
-4008 2 2 0 6 8520 9636 9384
-4009 2 2 0 6 569 7696 7140
-4010 2 2 0 6 7394 10463 10504
-4011 2 2 0 6 87 7733 505
-4012 2 2 0 6 6549 10554 10574
-4013 2 2 0 6 3485 10204 7610
-4014 2 2 0 6 1273 8572 1759
-4015 2 2 0 6 4321 8077 4621
-4016 2 2 0 6 7952 7953 9055
-4017 2 2 0 6 6125 6800 6801
-4018 2 2 0 6 5187 6986 8200
-4019 2 2 0 6 5493 7489 5494
-4020 2 2 0 6 3151 10032 7618
-4021 2 2 0 6 7563 7577 7693
-4022 2 2 0 6 1209 9912 8073
-4023 2 2 0 6 7625 7910 7911
-4024 2 2 0 6 3636 10633 7627
-4025 2 2 0 6 5628 9925 7677
-4026 2 2 0 6 3664 8264 9015
-4027 2 2 0 6 7417 9207 10030
-4028 2 2 0 6 1948 7701 1950
-4029 2 2 0 6 2841 3061 8020
-4030 2 2 0 6 5479 8117 9126
-4031 2 2 0 6 3937 7582 8395
-4032 2 2 0 6 3989 9995 8123
-4033 2 2 0 6 3925 9287 11031
-4034 2 2 0 6 5402 8353 8696
-4035 2 2 0 6 6362 9842 8179
-4036 2 2 0 6 1360 1361 8574
-4037 2 2 0 6 4671 7636 6138
-4038 2 2 0 6 1521 8327 9615
-4039 2 2 0 6 7726 9782 7895
-4040 2 2 0 6 3968 7527 7825
-4041 2 2 0 6 2013 2017 7977
-4042 2 2 0 6 7554 7579 7581
-4043 2 2 0 6 5356 10257 8487
-4044 2 2 0 6 8744 8745 8746
-4045 2 2 0 6 2324 8008 2405
-4046 2 2 0 6 6337 7543 8300
-4047 2 2 0 6 7788 9258 7790
-4048 2 2 0 6 6473 8989 8990
-4049 2 2 0 6 4361 9060 4363
-4050 2 2 0 6 6269 7691 7690
-4051 2 2 0 6 512 7878 7879
-4052 2 2 0 6 90 511 7741
-4053 2 2 0 6 1275 1279 9607
-4054 2 2 0 6 7958 9508 8132
-4055 2 2 0 6 5409 7593 9160
-4056 2 2 0 6 7440 9898 7976
-4057 2 2 0 6 7972 8877 8831
-4058 2 2 0 6 5840 7534 10062
-4059 2 2 0 6 4279 5239 8056
-4060 2 2 0 6 825 8225 831
-4061 2 2 0 6 2486 2652 8700
-4062 2 2 0 6 8150 9578 10097
-4063 2 2 0 6 253 254 444
-4064 2 2 0 6 111 112 7378
-4065 2 2 0 6 3383 10502 7352
-4066 2 2 0 6 4997 7647 5479
-4067 2 2 0 6 8500 8760 8502
-4068 2 2 0 6 4255 7614 4256
-4069 2 2 0 6 4442 8281 9017
-4070 2 2 0 6 4363 10855 7421
-4071 2 2 0 6 3606 7341 9322
-4072 2 2 0 6 3637 9685 7648
-4073 2 2 0 6 3235 4128 9649
-4074 2 2 0 6 4581 7822 10161
-4075 2 2 0 6 7623 7625 7911
-4076 2 2 0 6 2337 2483 8014
-4077 2 2 0 6 3533 8074 9815
-4078 2 2 0 6 5660 7650 7595
-4079 2 2 0 6 7628 10146 10201
-4080 2 2 0 6 3250 9953 8356
-4081 2 2 0 6 2839 7729 5387
-4082 2 2 0 6 2903 9243 4136
-4083 2 2 0 6 6292 8910 7638
-4084 2 2 0 6 5129 6767 7709
-4085 2 2 0 6 6274 10521 8055
-4086 2 2 0 6 2992 7909 7908
-4087 2 2 0 6 8112 9501 8657
-4088 2 2 0 6 5543 7603 7600
-4089 2 2 0 6 3328 3595 8656
-4090 2 2 0 6 3022 8506 9910
-4091 2 2 0 6 4051 4504 7630
-4092 2 2 0 6 1208 7438 10516
-4093 2 2 0 6 5213 6378 8279
-4094 2 2 0 6 3470 9558 9966
-4095 2 2 0 6 7685 7686 9192
-4096 2 2 0 6 5429 7508 6159
-4097 2 2 0 6 5403 8696 6059
-4098 2 2 0 6 5337 10500 10991
-4099 2 2 0 6 1085 1089 7974
-4100 2 2 0 6 350 351 7332
-4101 2 2 0 6 6348 7702 7660
-4102 2 2 0 6 4366 8857 5126
-4103 2 2 0 6 4055 5552 9832
-4104 2 2 0 6 6046 7530 8027
-4105 2 2 0 6 511 7742 7741
-4106 2 2 0 6 2168 10204 3485
-4107 2 2 0 6 5783 10129 7667
-4108 2 2 0 6 732 10447 7340
-4109 2 2 0 6 2011 7977 3538
-4110 2 2 0 6 2800 8759 7927
-4111 2 2 0 6 2045 8676 2048
-4112 2 2 0 6 3111 3671 8058
-4113 2 2 0 6 2465 7911 2641
-4114 2 2 0 6 4442 8812 8280
-4115 2 2 0 6 4254 7916 4305
-4116 2 2 0 6 1759 8572 7719
-4117 2 2 0 6 1938 2327 7500
-4118 2 2 0 6 4805 10390 6285
-4119 2 2 0 6 2112 7393 4327
-4120 2 2 0 6 7862 8129 7865
-4121 2 2 0 6 1950 7701 3177
-4122 2 2 0 6 6362 8179 8180
-4123 2 2 0 6 4299 4300 4301
-4124 2 2 0 6 5390 8027 9025
-4125 2 2 0 6 3828 4255 4256
-4126 2 2 0 6 4621 8633 6058
-4127 2 2 0 6 6633 9005 8498
-4128 2 2 0 6 5372 9715 8030
-4129 2 2 0 6 2775 10279 7665
-4130 2 2 0 6 8173 8277 8174
-4131 2 2 0 6 2759 2865 10498
-4132 2 2 0 6 6373 8137 6375
-4133 2 2 0 6 6001 10918 10579
-4134 2 2 0 6 3008 7752 10090
-4135 2 2 0 6 1616 8081 1619
-4136 2 2 0 6 7752 9496 8542
-4137 2 2 0 6 1910 7897 7899
-4138 2 2 0 6 3781 3782 9025
-4139 2 2 0 6 4136 9243 7515
-4140 2 2 0 6 2794 7976 9898
-4141 2 2 0 6 5343 7674 7675
-4142 2 2 0 6 1973 4341 7716
-4143 2 2 0 6 1139 4131 7743
-4144 2 2 0 6 1365 1368 8742
-4145 2 2 0 6 1977 9837 9722
-4146 2 2 0 6 2726 7744 3071
-4147 2 2 0 6 3668 3827 3828
-4148 2 2 0 6 6241 8076 10079
-4149 2 2 0 6 5969 10427 10668
-4150 2 2 0 6 2756 8485 10180
-4151 2 2 0 6 2518 8336 2685
-4152 2 2 0 6 4893 8983 8209
-4153 2 2 0 6 1334 2968 10348
-4154 2 2 0 6 198 7483 489
-4155 2 2 0 6 5185 9295 6980
-4156 2 2 0 6 3061 4163 8020
-4157 2 2 0 6 1890 10118 1892
-4158 2 2 0 6 5460 9410 6349
-4159 2 2 0 6 3627 9142 9250
-4160 2 2 0 6 1480 9248 8540
-4161 2 2 0 6 1295 8528 1297
-4162 2 2 0 6 7706 8755 7707
-4163 2 2 0 6 4077 10795 7517
-4164 2 2 0 6 8209 8983 8210
-4165 2 2 0 6 577 8016 9447
-4166 2 2 0 6 4600 8096 6034
-4167 2 2 0 6 4301 4653 4654
-4168 2 2 0 6 5364 7512 5367
-4169 2 2 0 6 7499 10749 10732
-4170 2 2 0 6 7449 7529 9261
-4171 2 2 0 6 3654 9955 9377
-4172 2 2 0 6 1563 1565 8160
-4173 2 2 0 6 7344 10438 10353
-4174 2 2 0 6 7679 10401 10455
-4175 2 2 0 6 4684 5187 8200
-4176 2 2 0 6 4402 8772 8239
-4177 2 2 0 6 5486 6138 7692
-4178 2 2 0 6 6361 10258 10052
-4179 2 2 0 6 4861 7638 5419
-4180 2 2 0 6 4224 10198 8470
-4181 2 2 0 6 995 1006 7960
-4182 2 2 0 6 1129 5478 8579
-4183 2 2 0 6 4601 11242 8785
-4184 2 2 0 6 6720 11330 11272
-4185 2 2 0 6 6363 8013 9048
-4186 2 2 0 6 4536 5010 7528
-4187 2 2 0 6 6351 7905 8654
-4188 2 2 0 6 2779 7749 3337
-4189 2 2 0 6 5391 8131 7649
-4190 2 2 0 6 7569 9183 7902
-4191 2 2 0 6 6347 8939 9668
-4192 2 2 0 6 7597 10559 7637
-4193 2 2 0 6 1089 9387 7974
-4194 2 2 0 6 7327 8824 8825
-4195 2 2 0 6 1680 2386 8514
-4196 2 2 0 6 2745 10931 10508
-4197 2 2 0 6 2729 8457 9592
-4198 2 2 0 6 4615 5126 7984
-4199 2 2 0 6 7354 7494 7355
-4200 2 2 0 6 156 157 7346
-4201 2 2 0 6 3913 4748 8820
-4202 2 2 0 6 1752 4398 9304
-4203 2 2 0 6 353 354 502
-4204 2 2 0 6 114 115 510
-4205 2 2 0 6 4653 4656 4654
-4206 2 2 0 6 110 111 520
-4207 2 2 0 6 5965 10701 10117
-4208 2 2 0 6 5658 5660 7595
-4209 2 2 0 6 7907 7979 7980
-4210 2 2 0 6 6193 10695 9193
-4211 2 2 0 6 4289 8076 4778
-4212 2 2 0 6 6352 7637 7928
-4213 2 2 0 6 3647 8498 9005
-4214 2 2 0 6 3980 9715 10285
-4215 2 2 0 6 5869 10691 10300
-4216 2 2 0 6 2881 3174 8413
-4217 2 2 0 6 3033 7665 3917
-4218 2 2 0 6 5562 10442 7917
-4219 2 2 0 6 4697 7515 5195
-4220 2 2 0 6 2573 3998 7993
-4221 2 2 0 6 4598 8096 4600
-4222 2 2 0 6 1250 9358 1259
-4223 2 2 0 6 4410 7526 7622
-4224 2 2 0 6 3164 8956 3165
-4225 2 2 0 6 3751 11036 11046
-4226 2 2 0 6 8898 8899 9643
-4227 2 2 0 6 5764 5766 9554
-4228 2 2 0 6 1765 1875 2381
-4229 2 2 0 6 3616 9522 9410
-4230 2 2 0 6 7266 7664 8065
-4231 2 2 0 6 4889 5543 7600
-4232 2 2 0 6 2160 2162 8432
-4233 2 2 0 6 5952 8000 7999
-4234 2 2 0 6 2478 7919 2628
-4235 2 2 0 6 5119 7615 8393
-4236 2 2 0 6 7426 9966 9558
-4237 2 2 0 6 4334 4336 9311
-4238 2 2 0 6 1333 1335 7609
-4239 2 2 0 6 8021 10045 10055
-4240 2 2 0 6 3389 8879 7516
-4241 2 2 0 6 4078 7736 4079
-4242 2 2 0 6 8486 8487 10257
-4243 2 2 0 6 8658 9289 9753
-4244 2 2 0 6 4433 7706 4435
-4245 2 2 0 6 8383 8384 10806
-4246 2 2 0 6 5023 7674 5343
-4247 2 2 0 6 5387 7729 7730
-4248 2 2 0 6 2138 2332 7833
-4249 2 2 0 6 1975 10873 10881
-4250 2 2 0 6 7292 8155 7294
-4251 2 2 0 6 6367 9599 9440
-4252 2 2 0 6 2114 7808 4493
-4253 2 2 0 6 91 7939 511
-4254 2 2 0 6 2418 9897 8911
-4255 2 2 0 6 3827 4255 3828
-4256 2 2 0 6 3181 9663 9720
-4257 2 2 0 6 5777 9922 9491
-4258 2 2 0 6 2430 2924 7663
-4259 2 2 0 6 2998 3337 7672
-4260 2 2 0 6 9529 10635 10600
-4261 2 2 0 6 7586 7587 8421
-4262 2 2 0 6 972 7768 3925
-4263 2 2 0 6 5374 8075 7547
-4264 2 2 0 6 1127 8579 1135
-4265 2 2 0 6 1085 7974 2314
-4266 2 2 0 6 6363 9440 8013
-4267 2 2 0 6 7932 8565 9733
-4268 2 2 0 6 2328 4356 8984
-4269 2 2 0 6 4970 7740 7739
-4270 2 2 0 6 8899 9030 9643
-4271 2 2 0 6 6449 8751 9984
-4272 2 2 0 6 3766 4334 10003
-4273 2 2 0 6 4349 8511 8510
-4274 2 2 0 6 8516 8521 8518
-4275 2 2 0 6 4342 7673 9335
-4276 2 2 0 6 2929 7759 9929
-4277 2 2 0 6 2204 8075 2323
-4278 2 2 0 6 3470 7498 9558
-4279 2 2 0 6 6140 6758 6836
-4280 2 2 0 6 2284 8739 9448
-4281 2 2 0 6 4778 8076 6241
-4282 2 2 0 6 7610 10204 7611
-4283 2 2 0 6 6196 9029 7516
-4284 2 2 0 6 3066 7644 7643
-4285 2 2 0 6 2257 7947 2473
-4286 2 2 0 6 1843 10215 1935
-4287 2 2 0 6 7537 9934 10093
-4288 2 2 0 6 7456 7461 7460
-4289 2 2 0 6 6716 11314 11283
-4290 2 2 0 6 3625 4701 8437
-4291 2 2 0 6 4403 9973 9689
-4292 2 2 0 6 2365 7622 2636
-4293 2 2 0 6 6385 8365 11037
-4294 2 2 0 6 1780 1827 7669
-4295 2 2 0 6 6347 8336 8939
-4296 2 2 0 6 1430 7900 1432
-4297 2 2 0 6 6479 9703 9590
-4298 2 2 0 6 3508 8115 10380
-4299 2 2 0 6 4071 4325 8535
-4300 2 2 0 6 6436 9310 9363
-4301 2 2 0 6 1330 3531 10531
-4302 2 2 0 6 7264 7527 10047
-4303 2 2 0 6 4901 10369 8017
-4304 2 2 0 6 3624 4302 10143
-4305 2 2 0 6 5405 7681 5817
-4306 2 2 0 6 7236 6280 9260
-4307 2 2 0 6 698 702 10335
-4308 2 2 0 6 5605 8252 8251
-4309 2 2 0 6 1478 8931 10069
-4310 2 2 0 6 7352 10502 10516
-4311 2 2 0 6 2068 2083 8854
-4312 2 2 0 6 6758 6881 6836
-4313 2 2 0 6 7311 7761 7762
-4314 2 2 0 6 110 520 7465
-4315 2 2 0 6 3539 7956 8428
-4316 2 2 0 6 7600 7603 7602
-4317 2 2 0 6 7935 8653 8186
-4318 2 2 0 6 3110 3111 8058
-4319 2 2 0 6 2327 3666 5447
-4320 2 2 0 6 5497 8054 9082
-4321 2 2 0 6 6540 9679 9849
-4322 2 2 0 6 5402 8352 8353
-4323 2 2 0 6 3829 4251 7708
-4324 2 2 0 6 1877 1986 1987
-4325 2 2 0 6 8206 5414 8207
-4326 2 2 0 6 1089 1093 9387
-4327 2 2 0 6 6433 9826 9309
-4328 2 2 0 6 2484 7533 9770
-4329 2 2 0 6 1740 8628 8103
-4330 2 2 0 6 3946 3947 8352
-4331 2 2 0 6 3389 9029 9492
-4332 2 2 0 6 566 568 567
-4333 2 2 0 6 6834 10057 8429
-4334 2 2 0 6 6341 8146 8145
-4335 2 2 0 6 297 298 562
-4336 2 2 0 6 77 417 8849
-4337 2 2 0 6 8180 10069 8931
-4338 2 2 0 6 1555 1869 9723
-4339 2 2 0 6 8187 8183 8188
-4340 2 2 0 6 1193 1195 10546
-4341 2 2 0 6 1695 1696 7888
-4342 2 2 0 6 189 190 7878
-4343 2 2 0 6 5482 5485 8749
-4344 2 2 0 6 3539 9086 7958
-4345 2 2 0 6 6744 9678 10001
-4346 2 2 0 6 1892 8917 1894
-4347 2 2 0 6 5122 9486 8109
-4348 2 2 0 6 8530 10431 10292
-4349 2 2 0 6 3833 4663 8080
-4350 2 2 0 6 4801 7501 9932
-4351 2 2 0 6 8403 8813 9137
-4352 2 2 0 6 6391 8280 8812
-4353 2 2 0 6 4256 4299 4298
-4354 2 2 0 6 6295 8211 8937
-4355 2 2 0 6 3724 8053 8005
-4356 2 2 0 6 2884 10116 9988
-4357 2 2 0 6 5779 8745 8744
-4358 2 2 0 6 5748 8045 8409
-4359 2 2 0 6 5471 6128 8083
-4360 2 2 0 6 2531 2533 8436
-4361 2 2 0 6 1259 9358 8009
-4362 2 2 0 6 2167 2746 7604
-4363 2 2 0 6 1731 1733 8107
-4364 2 2 0 6 8265 8531 9015
-4365 2 2 0 6 2764 8378 4501
-4366 2 2 0 6 2548 8565 2550
-4367 2 2 0 6 4789 7612 6351
-4368 2 2 0 6 7628 10201 7629
-4369 2 2 0 6 9121 9868 10059
-4370 2 2 0 6 16 17 509
-4371 2 2 0 6 7587 7896 8421
-4372 2 2 0 6 1729 9312 2745
-4373 2 2 0 6 2257 2503 7947
-4374 2 2 0 6 5985 9929 7759
-4375 2 2 0 6 5662 5666 7650
-4376 2 2 0 6 6717 11317 11282
-4377 2 2 0 6 4901 10174 7598
-4378 2 2 0 6 252 253 7395
-4379 2 2 0 6 5013 5014 7835
-4380 2 2 0 6 3043 9048 8013
-4381 2 2 0 6 1780 7669 1782
-4382 2 2 0 6 4494 6513 9768
-4383 2 2 0 6 7763 7767 8604
-4384 2 2 0 6 6404 9896 9874
-4385 2 2 0 6 5272 8061 6202
-4386 2 2 0 6 3687 7922 7959
-4387 2 2 0 6 5748 7658 8045
-4388 2 2 0 6 8085 8801 8086
-4389 2 2 0 6 6380 8534 9006
-4390 2 2 0 6 1535 9068 7519
-4391 2 2 0 6 5230 7605 6182
-4392 2 2 0 6 7436 10074 9649
-4393 2 2 0 6 5053 7736 7737
-4394 2 2 0 6 6476 10071 8961
-4395 2 2 0 6 3700 4028 7889
-4396 2 2 0 6 3813 8202 9316
-4397 2 2 0 6 969 9728 973
-4398 2 2 0 6 4942 10280 8588
-4399 2 2 0 6 2006 3339 8131
-4400 2 2 0 6 4067 9710 10148
-4401 2 2 0 6 8516 8519 8521
-4402 2 2 0 6 4391 9232 9014
-4403 2 2 0 6 2398 7545 9890
-4404 2 2 0 6 5021 10163 10682
-4405 2 2 0 6 5249 7728 7727
-4406 2 2 0 6 1776 1793 3310
-4407 2 2 0 6 6346 7687 10307
-4408 2 2 0 6 6346 7526 7685
-4409 2 2 0 6 4604 4605 7836
-4410 2 2 0 6 2087 2417 7807
-4411 2 2 0 6 8082 9559 8840
-4412 2 2 0 6 8067 3656 9306
-4413 2 2 0 6 5025 6338 8868
-4414 2 2 0 6 3177 7472 7473
-4415 2 2 0 6 5263 10698 10206
-4416 2 2 0 6 4185 5479 9126
-4417 2 2 0 6 6323 8148 9978
-4418 2 2 0 6 7953 8552 9055
-4419 2 2 0 6 1382 9006 8534
-4420 2 2 0 6 352 353 7423
-4421 2 2 0 6 3164 9713 7613
-4422 2 2 0 6 7353 7677 8128
-4423 2 2 0 6 4545 5321 9542
-4424 2 2 0 6 2738 2987 7996
-4425 2 2 0 6 2376 8087 2375
-4426 2 2 0 6 4393 9307 7798
-4427 2 2 0 6 53 54 399
-4428 2 2 0 6 788 10220 8358
-4429 2 2 0 6 2668 2671 8101
-4430 2 2 0 6 8575 9526 8654
-4431 2 2 0 6 5347 10604 6274
-4432 2 2 0 6 6722 6751 7640
-4433 2 2 0 6 4621 8077 8633
-4434 2 2 0 6 7300 7761 7311
-4435 2 2 0 6 5164 10149 10036
-4436 2 2 0 6 4712 8164 6137
-4437 2 2 0 6 3687 4097 7922
-4438 2 2 0 6 12 13 527
-4439 2 2 0 6 451 7875 7876
-4440 2 2 0 6 4328 9854 7834
-4441 2 2 0 6 151 152 397
-4442 2 2 0 6 5440 9543 8163
-4443 2 2 0 6 8005 8053 8133
-4444 2 2 0 6 1911 5372 8030
-4445 2 2 0 6 7926 7927 8759
-4446 2 2 0 6 4826 7816 7488
-4447 2 2 0 6 2919 3303 8368
-4448 2 2 0 6 7210 10477 10497
-4449 2 2 0 6 6288 7506 7505
-4450 2 2 0 6 6058 8633 11103
-4451 2 2 0 6 7427 8817 7922
-4452 2 2 0 6 4504 4636 7630
-4453 2 2 0 6 5820 9448 8739
-4454 2 2 0 6 5308 7199 7920
-4455 2 2 0 6 8265 8532 8531
-4456 2 2 0 6 6537 10250 6540
-4457 2 2 0 6 5242 7524 5331
-4458 2 2 0 6 5848 7689 10247
-4459 2 2 0 6 6140 6836 7697
-4460 2 2 0 6 2940 7757 7756
-4461 2 2 0 6 7490 7663 9620
-4462 2 2 0 6 3880 4543 4545
-4463 2 2 0 6 4253 7916 4254
-4464 2 2 0 6 8444 10155 10197
-4465 2 2 0 6 8210 8631 8456
-4466 2 2 0 6 2703 3361 7895
-4467 2 2 0 6 4255 5428 7614
-4468 2 2 0 6 6485 9098 8949
-4469 2 2 0 6 905 9840 10035
-4470 2 2 0 6 3814 4221 4222
-4471 2 2 0 6 1227 9544 6240
-4472 2 2 0 6 2911 7667 10129
-4473 2 2 0 6 5552 7857 7858
-4474 2 2 0 6 6280 7232 9260
-4475 2 2 0 6 5494 10993 11039
-4476 2 2 0 6 3231 7517 3838
-4477 2 2 0 6 5239 7089 8056
-4478 2 2 0 6 7227 8692 7368
-4479 2 2 0 6 1748 5440 8163
-4480 2 2 0 6 7020 9633 9877
-4481 2 2 0 6 3899 7481 9881
-4482 2 2 0 6 5392 7362 7684
-4483 2 2 0 6 2719 3224 8267
-4484 2 2 0 6 4543 9295 5185
-4485 2 2 0 6 7175 10479 10445
-4486 2 2 0 6 2938 11138 11078
-4487 2 2 0 6 2493 7729 2839
-4488 2 2 0 6 2483 8015 8014
-4489 2 2 0 6 4078 7652 7736
-4490 2 2 0 6 6346 7685 7687
-4491 2 2 0 6 855 857 8623
-4492 2 2 0 6 3826 8857 4366
-4493 2 2 0 6 1343 5369 8324
-4494 2 2 0 6 3303 4309 8368
-4495 2 2 0 6 6371 7266 8065
-4496 2 2 0 6 3993 8309 8308
-4497 2 2 0 6 1437 1765 7493
-4498 2 2 0 6 9036 9683 9805
-4499 2 2 0 6 2249 8273 10748
-4500 2 2 0 6 7854 10340 10188
-4501 2 2 0 6 5056 10733 10807
-4502 2 2 0 6 7881 8871 7898
-4503 2 2 0 6 4097 4589 7922
-4504 2 2 0 6 6569 7486 10267
-4505 2 2 0 6 3004 7998 3807
-4506 2 2 0 6 4051 7630 9010
-4507 2 2 0 6 2764 2766 8378
-4508 2 2 0 6 8510 9397 8513
-4509 2 2 0 6 5515 9486 6840
-4510 2 2 0 6 3824 7996 9301
-4511 2 2 0 6 2433 9140 2435
-4512 2 2 0 6 2305 7629 2300
-4513 2 2 0 6 2640 7744 2726
-4514 2 2 0 6 3056 7982 4041
-4515 2 2 0 6 6043 8004 7802
-4516 2 2 0 6 7927 10141 9273
-4517 2 2 0 6 7552 7554 7581
-4518 2 2 0 6 2007 9716 2027
-4519 2 2 0 6 1875 2382 2381
-4520 2 2 0 6 5744 11238 11239
-4521 2 2 0 6 5258 4689 7727
-4522 2 2 0 6 4942 8588 9501
-4523 2 2 0 6 6615 7531 10835
-4524 2 2 0 6 3026 8306 9213
-4525 2 2 0 6 7979 7978 8639
-4526 2 2 0 6 5724 11067 10844
-4527 2 2 0 6 4279 8056 4420
-4528 2 2 0 6 79 8374 8375
-4529 2 2 0 6 4894 10407 6589
-4530 2 2 0 6 6105 8133 8053
-4531 2 2 0 6 346 347 9666
-4532 2 2 0 6 4563 5952 7999
-4533 2 2 0 6 2302 7629 8596
-4534 2 2 0 6 7958 9086 9508
-4535 2 2 0 6 2987 5442 7996
-4536 2 2 0 6 4252 6125 7482
-4537 2 2 0 6 2145 2337 8014
-4538 2 2 0 6 3643 7663 7490
-4539 2 2 0 6 3542 8315 5703
-4540 2 2 0 6 3322 7536 3323
-4541 2 2 0 6 3757 4595 8719
-4542 2 2 0 6 8070 8405 9815
-4543 2 2 0 6 4028 7890 7889
-4544 2 2 0 6 8379 8382 9631
-4545 2 2 0 6 6783 10070 7446
-4546 2 2 0 6 5372 10343 9715
-4547 2 2 0 6 8537 9453 8842
-4548 2 2 0 6 3884 4407 8301
-4549 2 2 0 6 1877 1987 2416
-4550 2 2 0 6 5561 10126 8820
-4551 2 2 0 6 5894 6627 10650
-4552 2 2 0 6 8074 9407 9801
-4553 2 2 0 6 3094 8062 3093
-4554 2 2 0 6 1494 10539 7809
-4555 2 2 0 6 4688 8395 5394
-4556 2 2 0 6 3864 8187 3866
-4557 2 2 0 6 1275 9607 8572
-4558 2 2 0 6 1910 2183 7897
-4559 2 2 0 6 1598 9112 7952
-4560 2 2 0 6 694 698 10021
-4561 2 2 0 6 1765 1811 1875
-4562 2 2 0 6 8348 8418 8417
-4563 2 2 0 6 4029 7978 7979
-4564 2 2 0 6 4782 4784 8553
-4565 2 2 0 6 3263 7880 3979
-4566 2 2 0 6 1190 10374 10909
-4567 2 2 0 6 5769 5771 5770
-4568 2 2 0 6 1209 9801 9407
-4569 2 2 0 6 5447 7501 7500
-4570 2 2 0 6 4574 5277 7646
-4571 2 2 0 6 1505 9042 10332
-4572 2 2 0 6 8269 8272 8271
-4573 2 2 0 6 5006 10559 7597
-4574 2 2 0 6 2632 2995 7861
-4575 2 2 0 6 383 7856 438
-4576 2 2 0 6 2843 3253 8102
-4577 2 2 0 6 7796 10303 10248
-4578 2 2 0 6 6293 7759 7760
-4579 2 2 0 6 7311 7763 8604
-4580 2 2 0 6 3180 7428 10371
-4581 2 2 0 6 2904 3724 8005
-4582 2 2 0 6 4306 5316 8446
-4583 2 2 0 6 5180 7818 6944
-4584 2 2 0 6 3866 8187 4821
-4585 2 2 0 6 3179 4172 8019
-4586 2 2 0 6 3075 9849 9679
-4587 2 2 0 6 4615 7984 5171
-4588 2 2 0 6 5525 8760 8500
-4589 2 2 0 6 193 7828 507
-4590 2 2 0 6 4654 4656 4657
-4591 2 2 0 6 4970 7739 4971
-4592 2 2 0 6 4433 8755 7706
-4593 2 2 0 6 6029 8272 8269
-4594 2 2 0 6 6508 9533 10063
-4595 2 2 0 6 3858 4877 8186
-4596 2 2 0 6 5230 6182 5232
-4597 2 2 0 6 6251 7270 8427
-4598 2 2 0 6 2696 7715 2940
-4599 2 2 0 6 7359 7726 7513
-4600 2 2 0 6 6370 6371 8065
-4601 2 2 0 6 4221 5140 4222
-4602 2 2 0 6 5410 5999 7540
-4603 2 2 0 6 9663 5778 9720
-4604 2 2 0 6 4506 7857 5552
-4605 2 2 0 6 3314 4017 8758
-4606 2 2 0 6 1521 9615 9459
-4607 2 2 0 6 2569 8654 7905
-4608 2 2 0 6 7323 8156 8155
-4609 2 2 0 6 2144 2328 8984
-4610 2 2 0 6 6379 8852 9279
-4611 2 2 0 6 2382 2411 2410
-4612 2 2 0 6 2719 8267 3664
-4613 2 2 0 6 8204 9963 10009
-4614 2 2 0 6 1006 5397 7960
-4615 2 2 0 6 6303 7850 6306
-4616 2 2 0 6 4250 7708 10070
-4617 2 2 0 6 6473 8991 8989
-4618 2 2 0 6 3616 9410 9409
-4619 2 2 0 6 2902 7978 4029
-4620 2 2 0 6 4656 6140 4657
-4621 2 2 0 6 5882 7648 9685
-4622 2 2 0 6 5752 7679 7678
-4623 2 2 0 6 5048 6386 8216
-4624 2 2 0 6 2484 9770 9945
-4625 2 2 0 6 8188 10034 8190
-4626 2 2 0 6 4604 7836 5184
-4627 2 2 0 6 567 568 569
-4628 2 2 0 6 377 430 8240
-4629 2 2 0 6 3627 7661 9142
-4630 2 2 0 6 5258 7055 6990
-4631 2 2 0 6 7789 7792 7799
-4632 2 2 0 6 5923 5924 10540
-4633 2 2 0 6 2593 2644 7772
-4634 2 2 0 6 4310 10923 10940
-4635 2 2 0 6 4231 4720 7584
-4636 2 2 0 6 2126 9377 5462
-4637 2 2 0 6 6462 8239 8772
-4638 2 2 0 6 3493 8953 9294
-4639 2 2 0 6 3475 9590 9703
-4640 2 2 0 6 191 7875 451
-4641 2 2 0 6 4041 7982 7983
-4642 2 2 0 6 7795 7797 9811
-4643 2 2 0 6 2173 2176 7686
-4644 2 2 0 6 3091 8949 9098
-4645 2 2 0 6 73 8144 515
-4646 2 2 0 6 4543 5185 4545
-4647 2 2 0 6 6125 6136 6800
-4648 2 2 0 6 3819 8290 3820
-4649 2 2 0 6 4592 8961 4899
-4650 2 2 0 6 2898 8019 8018
-4651 2 2 0 6 9721 10030 3957
-4652 2 2 0 6 3771 3772 8003
-4653 2 2 0 6 1039 8039 9937
-4654 2 2 0 6 7131 10591 7133
-4655 2 2 0 6 7601 7602 9657
-4656 2 2 0 6 2636 8548 9225
-4657 2 2 0 6 3154 10247 7689
-4658 2 2 0 6 8553 8654 9526
-4659 2 2 0 6 255 256 504
-4660 2 2 0 6 7308 7313 8824
-4661 2 2 0 6 1793 1876 1877
-4662 2 2 0 6 2518 8939 8336
-4663 2 2 0 6 8987 8990 8989
-4664 2 2 0 6 6452 10180 8485
-4665 2 2 0 6 1658 1656 9145
-4666 2 2 0 6 2523 2940 7756
-4667 2 2 0 6 2516 2898 8018
-4668 2 2 0 6 2562 8041 7732
-4669 2 2 0 6 1684 8513 1720
-4670 2 2 0 6 8621 8624 8623
-4671 2 2 0 6 1614 8081 1616
-4672 2 2 0 6 912 8443 5412
-4673 2 2 0 6 4907 8132 9508
-4674 2 2 0 6 4917 6442 9907
-4675 2 2 0 6 2305 7628 7629
-4676 2 2 0 6 5741 8029 7504
-4677 2 2 0 6 8515 8519 8516
-4678 2 2 0 6 3627 8891 7661
-4679 2 2 0 6 1360 8574 4043
-4680 2 2 0 6 5971 6659 10760
-4681 2 2 0 6 5605 9598 8252
-4682 2 2 0 6 5390 6046 8027
-4683 2 2 0 6 1682 8514 4349
-4684 2 2 0 6 2382 4801 7887
-4685 2 2 0 6 7591 11130 11117
-4686 2 2 0 6 5987 7759 6293
-4687 2 2 0 6 4959 9825 10133
-4688 2 2 0 6 6565 10412 9943
-4689 2 2 0 6 5464 7802 8004
-4690 2 2 0 6 3574 9892 8197
-4691 2 2 0 6 2383 10500 7229
-4692 2 2 0 6 6388 7800 9588
-4693 2 2 0 6 3255 3259 7752
-4694 2 2 0 6 3018 9510 10029
-4695 2 2 0 6 1955 1957 7773
-4696 2 2 0 6 6528 6529 10436
-4697 2 2 0 6 4009 8033 8035
-4698 2 2 0 6 2734 2736 7702
-4699 2 2 0 6 6664 10627 10678
-4700 2 2 0 6 7556 7805 7579
-4701 2 2 0 6 4357 8097 4359
-4702 2 2 0 6 4284 5042 8337
-4703 2 2 0 6 1569 8129 7862
-4704 2 2 0 6 5768 5769 5770
-4705 2 2 0 6 4906 7937 7933
-4706 2 2 0 6 2092 4983 8203
-4707 2 2 0 6 7997 9336 9413
-4708 2 2 0 6 4029 7906 9078
-4709 2 2 0 6 3366 9288 6443
-4710 2 2 0 6 813 7531 10771
-4711 2 2 0 6 8847 9432 10173
-4712 2 2 0 6 5186 6982 6981
-4713 2 2 0 6 1259 8125 9040
-4714 2 2 0 6 5721 8033 9211
-4715 2 2 0 6 5983 7523 9929
-4716 2 2 0 6 442 9954 7218
-4717 2 2 0 6 3072 10205 3075
-4718 2 2 0 6 4701 6176 8437
-4719 2 2 0 6 6651 10605 8966
-4720 2 2 0 6 7285 8957 7417
-4721 2 2 0 6 2924 7703 9620
-4722 2 2 0 6 4170 9241 8883
-4723 2 2 0 6 4931 4943 8068
-4724 2 2 0 6 3646 8549 3831
-4725 2 2 0 6 8925 10917 11012
-4726 2 2 0 6 5600 10479 7166
-4727 2 2 0 6 2539 2547 7884
-4728 2 2 0 6 1317 2573 7993
-4729 2 2 0 6 7553 7555 7554
-4730 2 2 0 6 521 8248 8247
-4731 2 2 0 6 4078 7987 7652
-4732 2 2 0 6 1280 7000 9884
-4733 2 2 0 6 8899 10294 9030
-4734 2 2 0 6 198 199 7483
-4735 2 2 0 6 3657 8809 9842
-4736 2 2 0 6 8210 8983 8631
-4737 2 2 0 6 8015 8045 10667
-4738 2 2 0 6 4877 7935 8186
-4739 2 2 0 6 1273 1275 8572
-4740 2 2 0 6 8071 8069 9801
-4741 2 2 0 6 4861 4854 7588
-4742 2 2 0 6 5118 7916 7645
-4743 2 2 0 6 3372 7534 10007
-4744 2 2 0 6 3709 9373 5475
-4745 2 2 0 6 2348 9321 2387
-4746 2 2 0 6 4545 5185 5189
-4747 2 2 0 6 8070 8630 8405
-4748 2 2 0 6 4571 9376 9670
-4749 2 2 0 6 7972 10386 8877
-4750 2 2 0 6 7538 9410 9522
-4751 2 2 0 6 6362 8180 8931
-4752 2 2 0 6 4009 9211 8033
-4753 2 2 0 6 4575 7646 9280
-4754 2 2 0 6 8103 8628 8106
-4755 2 2 0 6 4458 8078 4630
-4756 2 2 0 6 7294 8155 7310
-4757 2 2 0 6 4265 8938 5429
-4758 2 2 0 6 72 515 8142
-4759 2 2 0 6 4851 7880 5328
-4760 2 2 0 6 6483 8229 9690
-4761 2 2 0 6 2624 7749 2779
-4762 2 2 0 6 7929 7930 9902
-4763 2 2 0 6 6524 9254 10255
-4764 2 2 0 6 2413 7623 2465
-4765 2 2 0 6 2376 2398 8087
-4766 2 2 0 6 4197 5020 8300
-4767 2 2 0 6 5824 8197 9892
-4768 2 2 0 6 2272 9863 9391
-4769 2 2 0 6 3118 3120 8748
-4770 2 2 0 6 7740 9999 9423
-4771 2 2 0 6 3408 3442 8044
-4772 2 2 0 6 1317 7993 7991
-4773 2 2 0 6 2075 8205 2079
-4774 2 2 0 6 4485 5008 8846
-4775 2 2 0 6 2020 2022 8723
-4776 2 2 0 6 2261 10174 4901
-4777 2 2 0 6 6748 6749 10284
-4778 2 2 0 6 5764 5765 5766
-4779 2 2 0 6 2413 2471 7623
-4780 2 2 0 6 4656 6758 6140
-4781 2 2 0 6 6979 6980 7013
-4782 2 2 0 6 5856 10328 10314
-4783 2 2 0 6 8325 10423 10239
-4784 2 2 0 6 3067 8664 7770
-4785 2 2 0 6 5236 8944 5305
-4786 2 2 0 6 7461 10619 10308
-4787 2 2 0 6 1350 1352 3977
-4788 2 2 0 6 4251 5157 5161
-4789 2 2 0 6 2381 2382 2410
-4790 2 2 0 6 5547 8392 8955
-4791 2 2 0 6 7734 7735 10702
-4792 2 2 0 6 2398 9890 8087
-4793 2 2 0 6 3799 9988 7817
-4794 2 2 0 6 4954 8777 5273
-4795 2 2 0 6 3686 8461 3169
-4796 2 2 0 6 7980 9955 10358
-4797 2 2 0 6 6847 6849 6848
-4798 2 2 0 6 6287 6288 7505
-4799 2 2 0 6 4093 8455 4886
-4800 2 2 0 6 5563 8174 9615
-4801 2 2 0 6 5491 8612 8433
-4802 2 2 0 6 2411 2413 2412
-4803 2 2 0 6 5140 6809 5141
-4804 2 2 0 6 7519 9068 9272
-4805 2 2 0 6 5481 6289 9854
-4806 2 2 0 6 6367 9663 9599
-4807 2 2 0 6 6306 6307 6305
-4808 2 2 0 6 2810 7617 4323
-4809 2 2 0 6 4669 8164 4670
-4810 2 2 0 6 5103 7651 6061
-4811 2 2 0 6 1025 9012 10220
-4812 2 2 0 6 2672 10387 10453
-4813 2 2 0 6 2044 8676 2045
-4814 2 2 0 6 836 8364 10996
-4815 2 2 0 6 5220 6189 7620
-4816 2 2 0 6 6302 7850 6303
-4817 2 2 0 6 68 517 8230
-4818 2 2 0 6 6341 8543 8146
-4819 2 2 0 6 6378 8280 8279
-4820 2 2 0 6 5161 6135 6847
-4821 2 2 0 6 4874 5398 7926
-4822 2 2 0 6 4044 8842 9453
-4823 2 2 0 6 4464 8098 5826
-4824 2 2 0 6 5272 5274 8061
-4825 2 2 0 6 2173 7686 2175
-4826 2 2 0 6 8167 8661 8169
-4827 2 2 0 6 3548 3913 8820
-4828 2 2 0 6 5678 9382 9515
-4829 2 2 0 6 2204 7547 8075
-4830 2 2 0 6 1736 4345 8107
-4831 2 2 0 6 1040 3453 8644
-4832 2 2 0 6 5593 9315 8822
-4833 2 2 0 6 4280 9402 5712
-4834 2 2 0 6 1689 7683 2165
-4835 2 2 0 6 1838 8085 2229
-4836 2 2 0 6 4709 5213 8279
-4837 2 2 0 6 8303 10528 10382
-4838 2 2 0 6 5017 5752 7678
-4839 2 2 0 6 6849 7447 7446
-4840 2 2 0 6 7740 7919 9999
-4841 2 2 0 6 6342 9658 9299
-4842 2 2 0 6 5470 8603 5472
-4843 2 2 0 6 2537 7884 7882
-4844 2 2 0 6 5126 7985 7984
-4845 2 2 0 6 6748 10119 10424
-4846 2 2 0 6 5537 7952 9112
-4847 2 2 0 6 65 8234 521
-4848 2 2 0 6 6274 10604 10521
-4849 2 2 0 6 2932 7919 4970
-4850 2 2 0 6 1298 1317 7991
-4851 2 2 0 6 5186 6981 5188
-4852 2 2 0 6 1995 1997 7684
-4853 2 2 0 6 5387 7730 7731
-4854 2 2 0 6 94 532 8143
-4855 2 2 0 6 6296 9757 7825
-4856 2 2 0 6 5471 8083 8290
-4857 2 2 0 6 5670 6698 9625
-4858 2 2 0 6 4873 6251 8427
-4859 2 2 0 6 7790 9258 7797
-4860 2 2 0 6 6330 9637 8749
-4861 2 2 0 6 2411 2412 2410
-4862 2 2 0 6 7933 7937 7934
-4863 2 2 0 6 3281 9520 9979
-4864 2 2 0 6 5419 7638 7639
-4865 2 2 0 6 2413 2465 2414
-4866 2 2 0 6 1229 1238 8206
-4867 2 2 0 6 2085 2087 7807
-4868 2 2 0 6 6301 6302 6303
-4869 2 2 0 6 3073 7849 7848
-4870 2 2 0 6 2545 2550 7930
-4871 2 2 0 6 8584 10957 10983
-4872 2 2 0 6 4657 6140 6247
-4873 2 2 0 6 1297 8528 2572
-4874 2 2 0 6 4720 7119 7127
-4875 2 2 0 6 3854 4906 7933
-4876 2 2 0 6 8777 9971 8778
-4877 2 2 0 6 3607 8351 3609
-4878 2 2 0 6 1919 7975 7962
-4879 2 2 0 6 6303 6305 6304
-4880 2 2 0 6 1614 9658 8081
-4881 2 2 0 6 5677 9732 6485
-4882 2 2 0 6 4229 7636 4671
-4883 2 2 0 6 2000 5392 7684
-4884 2 2 0 6 69 8161 517
-4885 2 2 0 6 2073 4074 9392
-4886 2 2 0 6 4349 8514 8511
-4887 2 2 0 6 382 438 7771
-4888 2 2 0 6 6606 9103 9102
-4889 2 2 0 6 1759 10494 10361
-4890 2 2 0 6 2688 9335 9485
-4891 2 2 0 6 8609 8610 8607
-4892 2 2 0 6 6142 7720 9964
-4893 2 2 0 6 6352 7928 8412
-4894 2 2 0 6 4784 4787 8553
-4895 2 2 0 6 4222 5140 5141
-4896 2 2 0 6 2372 8416 8414
-4897 2 2 0 6 8106 9739 9740
-4898 2 2 0 6 1782 7669 8805
-4899 2 2 0 6 7288 8434 7291
-4900 2 2 0 6 6339 6340 10628
-4901 2 2 0 6 4852 7813 7666
-4902 2 2 0 6 7591 11117 7592
-4903 2 2 0 6 1464 8047 8046
-4904 2 2 0 6 6606 9102 8066
-4905 2 2 0 6 5684 6738 9301
-4906 2 2 0 6 6613 10866 7589
-4907 2 2 0 6 994 995 7960
-4908 2 2 0 6 6529 10135 10503
-4909 2 2 0 6 5236 6195 8944
-4910 2 2 0 6 6788 9316 8202
-4911 2 2 0 6 2088 9026 2090
-4912 2 2 0 6 7513 8840 9559
-4913 2 2 0 6 7291 8434 7321
-4914 2 2 0 6 3375 3809 9637
-4915 2 2 0 6 7963 7962 7975
-4916 2 2 0 6 8502 9272 9068
-4917 2 2 0 6 1693 3362 9841
-4918 2 2 0 6 6146 6298 6299
-4919 2 2 0 6 3946 8352 5402
-4920 2 2 0 6 5398 7927 7926
-4921 2 2 0 6 2041 8677 2044
-4922 2 2 0 6 7292 7312 8155
-4923 2 2 0 6 3249 8093 4719
-4924 2 2 0 6 2500 9672 9133
-4925 2 2 0 6 3154 10252 10247
-4926 2 2 0 6 8765 10699 10782
-4927 2 2 0 6 6309 6310 6311
-4928 2 2 0 6 3349 5389 8130
-4929 2 2 0 6 1782 8805 1784
-4930 2 2 0 6 5311 8023 7207
-4931 2 2 0 6 1563 8160 1673
-4932 2 2 0 6 4716 5228 9313
-4933 2 2 0 6 6307 6309 6308
-4934 2 2 0 6 4421 5869 10334
-4935 2 2 0 6 5161 6847 6848
-4936 2 2 0 6 2810 3264 3263
-4937 2 2 0 6 7453 10360 10344
-4938 2 2 0 6 7355 7494 8700
-4939 2 2 0 6 3881 4543 3880
-4940 2 2 0 6 1565 3384 8160
-4941 2 2 0 6 5492 8542 10134
-4942 2 2 0 6 1461 1464 8046
-4943 2 2 0 6 1631 1633 9086
-4944 2 2 0 6 64 521 8247
-4945 2 2 0 6 197 198 489
-4946 2 2 0 6 6685 11263 11270
-4947 2 2 0 6 8208 8937 8211
-4948 2 2 0 6 3463 8477 9130
-4949 2 2 0 6 1162 1919 7962
-4950 2 2 0 6 2736 3239 7702
-4951 2 2 0 6 2547 7885 7884
-4952 2 2 0 6 6748 10284 10119
-4953 2 2 0 6 6722 6723 6724
-4954 2 2 0 6 6386 8217 8216
-4955 2 2 0 6 3164 7613 8956
-4956 2 2 0 6 8210 8456 8888
-4957 2 2 0 6 6299 6301 6300
-4958 2 2 0 6 1619 8081 4902
-4959 2 2 0 6 6262 9712 9628
-4960 2 2 0 6 188 512 8022
-4961 2 2 0 6 3718 8283 3719
-4962 2 2 0 6 3098 8093 3249
-4963 2 2 0 6 1347 1350 7551
-4964 2 2 0 6 1368 8741 8742
-4965 2 2 0 6 7783 7791 9793
-4966 2 2 0 6 7549 7550 10011
-4967 2 2 0 6 7553 7599 7580
-4968 2 2 0 6 5088 6017 7676
-4969 2 2 0 6 3329 5748 8409
-4970 2 2 0 6 7611 10204 9990
-4971 2 2 0 6 7173 7175 10445
-4972 2 2 0 6 4912 6408 8227
-4973 2 2 0 6 5501 6684 9277
-4974 2 2 0 6 2506 2939 7881
-4975 2 2 0 6 2652 9762 8700
-4976 2 2 0 6 2347 8916 9321
-4977 2 2 0 6 1252 1259 9040
-4978 2 2 0 6 8306 6353 9213
-4979 2 2 0 6 1487 7959 8817
-4980 2 2 0 6 4109 7816 4826
-4981 2 2 0 6 5303 9287 5304
-4982 2 2 0 6 6400 9001 9174
-4983 2 2 0 6 3717 4537 8871
-4984 2 2 0 6 4458 4522 8078
-4985 2 2 0 6 2654 3329 8409
-4986 2 2 0 6 4588 5308 7920
-4987 2 2 0 6 2535 2537 7882
-4988 2 2 0 6 6561 7213 8292
-4989 2 2 0 6 9480 9555 9986
-4990 2 2 0 6 4880 9272 8502
-4991 2 2 0 6 4851 5328 5231
-4992 2 2 0 6 9163 9818 9972
-4993 2 2 0 6 2323 8075 2899
-4994 2 2 0 6 5394 8395 7582
-4995 2 2 0 6 1422 7779 3308
-4996 2 2 0 6 3015 3316 7825
-4997 2 2 0 6 6370 8065 8838
-4998 2 2 0 6 4662 6142 9964
-4999 2 2 0 6 6058 11135 9952
-5000 2 2 0 6 4391 8573 9232
-5001 2 2 0 6 2991 3073 7848
-5002 2 2 0 6 8231 8662 8308
-5003 2 2 0 6 1364 1365 8742
-5004 2 2 0 6 2151 2372 8414
-5005 2 2 0 6 3442 9186 8044
-5006 2 2 0 6 2696 3219 7715
-5007 2 2 0 6 7673 9485 9335
-5008 2 2 0 6 1776 1792 1793
-5009 2 2 0 6 6159 6317 6161
-5010 2 2 0 6 7797 8613 9811
-5011 2 2 0 6 3920 7994 9187
-5012 2 2 0 6 2048 8676 5003
-5013 2 2 0 6 5008 8847 8846
-5014 2 2 0 6 5552 8900 9832
-5015 2 2 0 6 1480 8540 8539
-5016 2 2 0 6 2431 7782 2763
-5017 2 2 0 6 2577 2581 8251
-5018 2 2 0 6 8568 8570 8571
-5019 2 2 0 6 6722 6724 6751
-5020 2 2 0 6 4720 7127 7128
-5021 2 2 0 6 2763 7782 7783
-5022 2 2 0 6 1361 1364 8574
-5023 2 2 0 6 2470 8030 3980
-5024 2 2 0 6 6311 6722 6721
-5025 2 2 0 6 4563 7999 8108
-5026 2 2 0 6 3884 8301 3013
-5027 2 2 0 6 2148 2349 8444
-5028 2 2 0 6 6356 6359 7854
-5029 2 2 0 6 2464 9413 7687
-5030 2 2 0 6 3249 4231 3804
-5031 2 2 0 6 5712 9817 7023
-5032 2 2 0 6 7526 9738 7622
-5033 2 2 0 6 5428 6149 6845
-5034 2 2 0 6 1238 5414 8206
-5035 2 2 0 6 6167 7016 6991
-5036 2 2 0 6 3006 8555 9927
-5037 2 2 0 6 3174 4448 8413
-5038 2 2 0 6 7498 8911 9897
-5039 2 2 0 6 4495 9279 8852
-5040 2 2 0 6 4452 9084 4979
-5041 2 2 0 6 7967 7968 7974
-5042 2 2 0 6 1839 10246 3536
-5043 2 2 0 6 2430 7663 2491
-5044 2 2 0 6 8068 8069 8071
-5045 2 2 0 6 1989 8445 3658
-5046 2 2 0 6 4851 5231 5230
-5047 2 2 0 6 5095 8011 6700
-5048 2 2 0 6 2471 7624 7623
-5049 2 2 0 6 4572 8212 4827
-5050 2 2 0 6 2533 2744 8436
-5051 2 2 0 6 1821 8079 1836
-5052 2 2 0 6 8123 8124 10089
-5053 2 2 0 6 5230 5231 7605
-5054 2 2 0 6 2517 8296 3377
-5055 2 2 0 6 4511 9263 4609
-5056 2 2 0 6 4661 5129 7709
-5057 2 2 0 6 2550 8565 7932
-5058 2 2 0 6 8379 8381 8382
-5059 2 2 0 6 4349 8510 8513
-5060 2 2 0 6 7554 7555 7556
-5061 2 2 0 6 8722 8724 8723
-5062 2 2 0 6 1987 4691 2416
-5063 2 2 0 6 1611 9394 3359
-5064 2 2 0 6 1817 1819 9966
-5065 2 2 0 6 2581 5605 8251
-5066 2 2 0 6 1633 1687 9086
-5067 2 2 0 6 6170 6853 6171
-5068 2 2 0 6 2586 7670 10737
-5069 2 2 0 6 5047 5048 8216
-5070 2 2 0 6 374 473 8166
-5071 2 2 0 6 2640 3980 7744
-5072 2 2 0 6 2165 7683 2746
-5073 2 2 0 6 9000 9063 9064
-5074 2 2 0 6 4827 8212 6315
-5075 2 2 0 6 6373 9750 8137
-5076 2 2 0 6 3168 8956 3749
-5077 2 2 0 6 4974 6298 6146
-5078 2 2 0 6 5768 8356 7608
-5079 2 2 0 6 3085 3084 3086
-5080 2 2 0 6 1836 8085 1838
-5081 2 2 0 6 2389 7504 10367
-5082 2 2 0 6 1988 1989 1990
-5083 2 2 0 6 4049 8302 4476
-5084 2 2 0 6 5448 5450 7987
-5085 2 2 0 6 5666 9088 7650
-5086 2 2 0 6 1477 1480 8539
-5087 2 2 0 6 3073 3072 3074
-5088 2 2 0 6 3255 3257 3259
-5089 2 2 0 6 4789 4791 7612
-5090 2 2 0 6 9114 9577 9115
-5091 2 2 0 6 2169 7604 8921
-5092 2 2 0 6 4501 8378 8379
-5093 2 2 0 6 1911 8030 2194
-5094 2 2 0 6 1822 8390 10540
-5095 2 2 0 6 8616 10872 10826
-5096 2 2 0 6 1973 7716 2230
-5097 2 2 0 6 4372 8326 5346
-5098 2 2 0 6 5371 9501 8112
-5099 2 2 0 6 1665 9457 5699
-5100 2 2 0 6 2465 2641 2466
-5101 2 2 0 6 2939 8871 7881
-5102 2 2 0 6 5422 7774 7249
-5103 2 2 0 6 4605 7837 7836
-5104 2 2 0 6 6721 6722 7640
-5105 2 2 0 6 5510 8428 7956
-5106 2 2 0 6 4304 4306 8446
-5107 2 2 0 6 4984 10027 9965
-5108 2 2 0 6 1037 1139 7743
-5109 2 2 0 6 2027 9716 5534
-5110 2 2 0 6 5221 8026 7102
-5111 2 2 0 6 4940 4942 9501
-5112 2 2 0 6 3814 3830 4221
-5113 2 2 0 6 2631 2630 8119
-5114 2 2 0 6 1990 1991 1992
-5115 2 2 0 6 3832 4674 4128
-5116 2 2 0 6 3686 4749 8461
-5117 2 2 0 6 5395 7012 6989
-5118 2 2 0 6 1177 4140 7903
-5119 2 2 0 6 8224 8226 8225
-5120 2 2 0 6 5660 5662 7650
-5121 2 2 0 6 2667 2668 8101
-5122 2 2 0 6 7049 7688 9232
-5123 2 2 0 6 584 1520 8297
-5124 2 2 0 6 3979 7880 4851
-5125 2 2 0 6 3542 3544 8315
-5126 2 2 0 6 6439 6457 10054
-5127 2 2 0 6 6364 6367 9440
-5128 2 2 0 6 2641 2776 2642
-5129 2 2 0 6 3804 4231 4658
-5130 2 2 0 6 6750 9664 9665
-5131 2 2 0 6 2484 9923 7533
-5132 2 2 0 6 2412 2413 2414
-5133 2 2 0 6 4915 9117 7539
-5134 2 2 0 6 5060 6079 8238
-5135 2 2 0 6 2327 3665 3666
-5136 2 2 0 6 5122 6143 6733
-5137 2 2 0 6 87 88 7733
-5138 2 2 0 6 6514 10232 8927
-5139 2 2 0 6 2258 2632 7861
-5140 2 2 0 6 4360 4364 8543
-5141 2 2 0 6 1612 1755 9658
-5142 2 2 0 6 3971 9513 4683
-5143 2 2 0 6 5606 6156 7537
-5144 2 2 0 6 2550 7931 7930
-5145 2 2 0 6 3928 3929 9512
-5146 2 2 0 6 5973 10891 10686
-5147 2 2 0 6 5273 8777 5715
-5148 2 2 0 6 7555 7557 7556
-5149 2 2 0 6 5154 9731 6791
-5150 2 2 0 6 4658 6754 5380
-5151 2 2 0 6 1074 1081 8488
-5152 2 2 0 6 1295 8120 8528
-5153 2 2 0 6 7647 10606 10613
-5154 2 2 0 6 2898 3179 8019
-5155 2 2 0 6 417 8377 8849
-5156 2 2 0 6 3552 10234 10248
-5157 2 2 0 6 7563 7693 7565
-5158 2 2 0 6 2083 5421 8854
-5159 2 2 0 6 4903 8029 5741
-5160 2 2 0 6 4435 7706 4808
-5161 2 2 0 6 4669 5515 6154
-5162 2 2 0 6 8360 8363 8365
-5163 2 2 0 6 7558 7559 7560
-5164 2 2 0 6 88 437 7733
-5165 2 2 0 6 4969 7941 7940
-5166 2 2 0 6 2814 2816 8420
-5167 2 2 0 6 1836 8079 8085
-5168 2 2 0 6 8791 8792 8858
-5169 2 2 0 6 4918 9129 8198
-5170 2 2 0 6 2701 8840 3361
-5171 2 2 0 6 3115 8910 3116
-5172 2 2 0 6 4951 9984 8751
-5173 2 2 0 6 7788 7794 9258
-5174 2 2 0 6 2726 2991 2990
-5175 2 2 0 6 4688 5250 5249
-5176 2 2 0 6 2327 5447 7500
-5177 2 2 0 6 5464 8004 8318
-5178 2 2 0 6 1210 5688 8935
-5179 2 2 0 6 2411 2471 2413
-5180 2 2 0 6 3094 3096 3097
-5181 2 2 0 6 6348 8457 7702
-5182 2 2 0 6 1740 1742 8628
-5183 2 2 0 6 7020 9877 8413
-5184 2 2 0 6 6299 6302 6301
-5185 2 2 0 6 5460 9409 9410
-5186 2 2 0 6 5356 10230 10257
-5187 2 2 0 6 3235 3832 4128
-5188 2 2 0 6 7593 8922 9160
-5189 2 2 0 6 2003 2006 8131
-5190 2 2 0 6 2000 5391 5392
-5191 2 2 0 6 5421 8855 8854
-5192 2 2 0 6 6303 6306 6305
-5193 2 2 0 6 3724 4137 8053
-5194 2 2 0 6 1270 4908 8120
-5195 2 2 0 6 444 7397 7396
-5196 2 2 0 6 4908 8121 8120
-5197 2 2 0 6 6029 8269 8268
-5198 2 2 0 6 3328 8656 9256
-5199 2 2 0 6 89 90 7741
-5200 2 2 0 6 4687 4688 5249
-5201 2 2 0 6 8419 8663 8862
-5202 2 2 0 6 7207 8023 8024
-5203 2 2 0 6 2582 2579 8245
-5204 2 2 0 6 8403 9137 9118
-5205 2 2 0 6 2991 3071 3072
-5206 2 2 0 6 6534 6561 8292
-5207 2 2 0 6 2674 2881 8413
-5208 2 2 0 6 1994 2810 2809
-5209 2 2 0 6 972 979 7768
-5210 2 2 0 6 7991 7993 7992
-5211 2 2 0 6 4231 4719 4720
-5212 2 2 0 6 3974 4852 7666
-5213 2 2 0 6 3772 3775 8003
-5214 2 2 0 6 4943 8069 8068
-5215 2 2 0 6 2685 8336 3206
-5216 2 2 0 6 8615 8616 8796
-5217 2 2 0 6 3028 8419 8118
-5218 2 2 0 6 3977 7553 7552
-5219 2 2 0 6 2890 10140 10066
-5220 2 2 0 6 5375 7908 7909
-5221 2 2 0 6 569 570 571
-5222 2 2 0 6 840 9613 1758
-5223 2 2 0 6 89 7741 437
-5224 2 2 0 6 2154 4401 8172
-5225 2 2 0 6 5826 8098 9011
-5226 2 2 0 6 7130 10997 11212
-5227 2 2 0 6 5185 6979 5189
-5228 2 2 0 6 1437 1511 1765
-5229 2 2 0 6 6357 9910 8506
-5230 2 2 0 6 569 7140 567
-5231 2 2 0 6 3098 3249 3097
-5232 2 2 0 6 2882 2883 9451
-5233 2 2 0 6 1035 1989 1988
-5234 2 2 0 6 3077 3076 3078
-5235 2 2 0 6 7314 8824 7327
-5236 2 2 0 6 1418 1918 9643
-5237 2 2 0 6 774 10342 3630
-5238 2 2 0 6 8715 8881 8882
-5239 2 2 0 6 4737 9633 10040
-5240 2 2 0 6 3097 3249 3804
-5241 2 2 0 6 5131 6739 7951
-5242 2 2 0 6 5493 5534 7262
-5243 2 2 0 6 3377 8296 3663
-5244 2 2 0 6 4821 8187 8188
-5245 2 2 0 6 4595 7700 8719
-5246 2 2 0 6 1987 2395 7704
-5247 2 2 0 6 6395 9351 8236
-5248 2 2 0 6 7562 7563 7564
-5249 2 2 0 6 2039 8677 2041
-5250 2 2 0 6 5297 8924 7196
-5251 2 2 0 6 7938 9753 9289
-5252 2 2 0 6 5465 7801 6177
-5253 2 2 0 6 186 435 8088
-5254 2 2 0 6 6447 6834 8429
-5255 2 2 0 6 2567 8575 2569
-5256 2 2 0 6 2487 9011 10106
-5257 2 2 0 6 2980 4331 8082
-5258 2 2 0 6 3259 9496 7752
-5259 2 2 0 6 1340 1343 8324
-5260 2 2 0 6 8705 9539 8709
-5261 2 2 0 6 2025 4431 8727
-5262 2 2 0 6 3668 3669 3827
-5263 2 2 0 6 4929 8630 4943
-5264 2 2 0 6 95 8629 532
-5265 2 2 0 6 2903 3724 2904
-5266 2 2 0 6 5511 6421 7904
-5267 2 2 0 6 2843 8102 3103
-5268 2 2 0 6 4264 5607 9482
-5269 2 2 0 6 8588 8657 9501
-5270 2 2 0 6 4974 6146 6145
-5271 2 2 0 6 2229 8085 8086
-5272 2 2 0 6 7557 7559 7558
-5273 2 2 0 6 4431 9480 8727
-5274 2 2 0 6 5126 8857 7986
-5275 2 2 0 6 1422 1424 1423
-5276 2 2 0 6 2726 3071 2991
-5277 2 2 0 6 3844 7509 10274
-5278 2 2 0 6 5010 6323 6324
-5279 2 2 0 6 450 8152 8151
-5280 2 2 0 6 4853 6273 8833
-5281 2 2 0 6 2523 2696 2940
-5282 2 2 0 6 857 1024 8623
-5283 2 2 0 6 2776 7908 2914
-5284 2 2 0 6 7541 9890 7545
-5285 2 2 0 6 7598 10174 10104
-5286 2 2 0 6 2997 9197 4077
-5287 2 2 0 6 6434 9975 9038
-5288 2 2 0 6 3339 5493 5494
-5289 2 2 0 6 8587 8646 9352
-5290 2 2 0 6 3153 4051 9010
-5291 2 2 0 6 2190 7622 2365
-5292 2 2 0 6 5570 7754 7753
-5293 2 2 0 6 6463 8114 10168
-5294 2 2 0 6 2909 3216 3215
-5295 2 2 0 6 5042 6007 8337
-5296 2 2 0 6 3603 8729 6200
-5297 2 2 0 6 4376 8770 4378
-5298 2 2 0 6 569 568 570
-5299 2 2 0 6 2079 8205 2111
-5300 2 2 0 6 7731 10353 10438
-5301 2 2 0 6 4476 8302 5877
-5302 2 2 0 6 1953 8826 2248
-5303 2 2 0 6 1989 1991 1990
-5304 2 2 0 6 8265 8859 8532
-5305 2 2 0 6 3941 4688 4687
-5306 2 2 0 6 4873 8427 5309
-5307 2 2 0 6 4359 8097 4362
-5308 2 2 0 6 5031 10758 5870
-5309 2 2 0 6 8101 8719 10023
-5310 2 2 0 6 3953 5409 9160
-5311 2 2 0 6 6007 8339 8338
-5312 2 2 0 6 4198 4403 9974
-5313 2 2 0 6 4541 4293 10899
-5314 2 2 0 6 403 8322 8323
-5315 2 2 0 6 5567 5570 7753
-5316 2 2 0 6 3947 3951 8352
-5317 2 2 0 6 3081 3080 3082
-5318 2 2 0 6 3882 9757 4686
-5319 2 2 0 6 1341 1422 1421
-5320 2 2 0 6 8606 8609 8607
-5321 2 2 0 6 8403 8550 8813
-5322 2 2 0 6 6309 6311 6721
-5323 2 2 0 6 2255 2523 7756
-5324 2 2 0 6 5141 5353 5349
-5325 2 2 0 6 2183 2361 7897
-5326 2 2 0 6 2796 9273 7707
-5327 2 2 0 6 6348 9592 8457
-5328 2 2 0 6 3090 3092 3093
-5329 2 2 0 6 3820 8290 4633
-5330 2 2 0 6 8468 9619 2385
-5331 2 2 0 6 3074 3075 3076
-5332 2 2 0 6 2336 7732 7729
-5333 2 2 0 6 5798 8031 8032
-5334 2 2 0 6 2147 2148 8444
-5335 2 2 0 6 1324 1443 1442
-5336 2 2 0 6 6247 6140 7697
-5337 2 2 0 6 3979 4851 4850
-5338 2 2 0 6 3825 7724 7725
-5339 2 2 0 6 5732 9546 8895
-5340 2 2 0 6 3696 8385 8387
-5341 2 2 0 6 3828 4256 4298
-5342 2 2 0 6 7518 7647 10613
-5343 2 2 0 6 1426 9746 1428
-5344 2 2 0 6 4128 4674 4676
-5345 2 2 0 6 2375 8087 3347
-5346 2 2 0 6 5392 5704 5705
-5347 2 2 0 6 2543 7930 7929
-5348 2 2 0 6 91 92 7939
-5349 2 2 0 6 2671 8719 8101
-5350 2 2 0 6 8348 8417 8441
-5351 2 2 0 6 3657 7748 9510
-5352 2 2 0 6 5020 6337 8300
-5353 2 2 0 6 3945 4822 9185
-5354 2 2 0 6 4341 10243 7716
-5355 2 2 0 6 2290 10192 10017
-5356 2 2 0 6 1231 7948 7949
-5357 2 2 0 6 3621 8504 4277
-5358 2 2 0 6 6753 6763 10193
-5359 2 2 0 6 1350 1351 1352
-5360 2 2 0 6 1684 4349 8513
-5361 2 2 0 6 5006 10487 10559
-5362 2 2 0 6 1230 10712 10735
-5363 2 2 0 6 1352 1353 1437
-5364 2 2 0 6 8496 10197 10155
-5365 2 2 0 6 3831 8549 4673
-5366 2 2 0 6 7662 7661 8891
-5367 2 2 0 6 4354 7637 9595
-5368 2 2 0 6 2531 8436 4001
-5369 2 2 0 6 5318 8872 8025
-5370 2 2 0 6 7459 10146 8455
-5371 2 2 0 6 6014 6016 11092
-5372 2 2 0 6 4967 10063 9533
-5373 2 2 0 6 1579 9113 7868
-5374 2 2 0 6 4273 5588 6596
-5375 2 2 0 6 269 8561 519
-5376 2 2 0 6 5172 7818 5180
-5377 2 2 0 6 5767 5769 5768
-5378 2 2 0 6 6307 6310 6309
-5379 2 2 0 6 5772 9744 9977
-5380 2 2 0 6 1443 1444 1445
-5381 2 2 0 6 8587 9352 8657
-5382 2 2 0 6 6615 10835 10860
-5383 2 2 0 6 5353 6813 5355
-5384 2 2 0 6 8198 9130 8477
-5385 2 2 0 6 2440 2442 9017
-5386 2 2 0 6 7565 7567 7566
-5387 2 2 0 6 1957 2255 7773
-5388 2 2 0 6 4968 4969 7940
-5389 2 2 0 6 5465 9584 8437
-5390 2 2 0 6 1854 8515 3472
-5391 2 2 0 6 5408 8858 7986
-5392 2 2 0 6 6445 8429 9593
-5393 2 2 0 6 4368 8173 5563
-5394 2 2 0 6 8382 10167 9631
-5395 2 2 0 6 1852 8515 1854
-5396 2 2 0 6 3630 10342 8976
-5397 2 2 0 6 5399 7847 5401
-5398 2 2 0 6 1339 1340 1341
-5399 2 2 0 6 964 9306 3656
-5400 2 2 0 6 4473 4475 8268
-5401 2 2 0 6 3647 9005 8594
-5402 2 2 0 6 3819 5471 8290
-5403 2 2 0 6 5486 7692 6288
-5404 2 2 0 6 5838 7713 7714
-5405 2 2 0 6 4983 8204 8203
-5406 2 2 0 6 3220 3814 8590
-5407 2 2 0 6 4338 4340 8801
-5408 2 2 0 6 5859 10186 7363
-5409 2 2 0 6 1924 8911 3470
-5410 2 2 0 6 1497 8707 9013
-5411 2 2 0 6 2989 3791 9261
-5412 2 2 0 6 2880 9319 4047
-5413 2 2 0 6 1426 1428 1427
-5414 2 2 0 6 5242 6987 7524
-5415 2 2 0 6 6305 6307 6308
-5416 2 2 0 6 6269 8523 7691
-5417 2 2 0 6 8551 8772 9490
-5418 2 2 0 6 3293 9584 4272
-5419 2 2 0 6 4587 8011 5095
-5420 2 2 0 6 8569 8570 8568
-5421 2 2 0 6 5766 5767 5768
-5422 2 2 0 6 2904 8005 2909
-5423 2 2 0 6 7373 8670 8099
-5424 2 2 0 6 3717 4035 4536
-5425 2 2 0 6 3666 3667 3668
-5426 2 2 0 6 2984 7998 3004
-5427 2 2 0 6 295 296 490
-5428 2 2 0 6 7798 10303 7796
-5429 2 2 0 6 372 8335 418
-5430 2 2 0 6 2776 2914 2777
-5431 2 2 0 6 3072 3075 3074
-5432 2 2 0 6 4252 5177 6125
-5433 2 2 0 6 4676 9031 9032
-5434 2 2 0 6 5555 10146 7628
-5435 2 2 0 6 3155 9106 3926
-5436 2 2 0 6 3549 10126 10200
-5437 2 2 0 6 4245 6170 6169
-5438 2 2 0 6 3700 7889 3702
-5439 2 2 0 6 3738 4119 8318
-5440 2 2 0 6 3339 7649 8131
-5441 2 2 0 6 3078 3079 3080
-5442 2 2 0 6 3285 5423 9111
-5443 2 2 0 6 3515 5536 8947
-5444 2 2 0 6 7868 7869 7867
-5445 2 2 0 6 7552 7553 7554
-5446 2 2 0 6 2757 2761 8486
-5447 2 2 0 6 579 1035 1988
-5448 2 2 0 6 2876 7830 7829
-5449 2 2 0 6 4119 5464 8318
-5450 2 2 0 6 2433 2763 9140
-5451 2 2 0 6 3183 8895 9546
-5452 2 2 0 6 2543 2545 7930
-5453 2 2 0 6 1874 7943 7944
-5454 2 2 0 6 4093 4096 8455
-5455 2 2 0 6 3968 3969 10047
-5456 2 2 0 6 5765 5767 5766
-5457 2 2 0 6 7456 10619 7461
-5458 2 2 0 6 7559 7561 7560
-5459 2 2 0 6 7662 8891 9391
-5460 2 2 0 6 8385 9491 8387
-5461 2 2 0 6 6436 9722 9837
-5462 2 2 0 6 4697 5194 4763
-5463 2 2 0 6 7458 9396 8227
-5464 2 2 0 6 5130 6842 6841
-5465 2 2 0 6 2551 8565 2548
-5466 2 2 0 6 3069 4342 9335
-5467 2 2 0 6 6513 9202 9768
-5468 2 2 0 6 3607 4955 8351
-5469 2 2 0 6 2414 2465 2466
-5470 2 2 0 6 6409 10015 10099
-5471 2 2 0 6 4424 9309 9826
-5472 2 2 0 6 6270 10010 7597
-5473 2 2 0 6 5654 5656 8274
-5474 2 2 0 6 5768 5770 8356
-5475 2 2 0 6 7453 10344 4026
-5476 2 2 0 6 3229 4246 3835
-5477 2 2 0 6 1937 2196 9043
-5478 2 2 0 6 249 250 400
-5479 2 2 0 6 80 474 8374
-5480 2 2 0 6 4586 5093 8725
-5481 2 2 0 6 3256 3257 3255
-5482 2 2 0 6 6124 6806 6808
-5483 2 2 0 6 3020 3021 8389
-5484 2 2 0 6 5439 9397 8510
-5485 2 2 0 6 2679 4343 8259
-5486 2 2 0 6 6378 8281 8280
-5487 2 2 0 6 1955 7773 8826
-5488 2 2 0 6 2883 2886 9451
-5489 2 2 0 6 78 79 8375
-5490 2 2 0 6 3379 9300 8664
-5491 2 2 0 6 5157 6135 5161
-5492 2 2 0 6 3719 8283 4189
-5493 2 2 0 6 88 89 437
-5494 2 2 0 6 5539 5931 10406
-5495 2 2 0 6 3257 3258 3880
-5496 2 2 0 6 4300 5119 4653
-5497 2 2 0 6 2641 2992 2776
-5498 2 2 0 6 4370 8326 4372
-5499 2 2 0 6 4611 8836 6116
-5500 2 2 0 6 7543 8084 8300
-5501 2 2 0 6 3093 8062 10001
-5502 2 2 0 6 3082 3084 3085
-5503 2 2 0 6 4985 8031 5798
-5504 2 2 0 6 5525 8500 8499
-5505 2 2 0 6 1615 1756 9081
-5506 2 2 0 6 2466 2641 2642
-5507 2 2 0 6 5392 5391 5704
-5508 2 2 0 6 5333 7337 9238
-5509 2 2 0 6 6153 6944 6950
-5510 2 2 0 6 3457 8300 8084
-5511 2 2 0 6 1774 9484 1775
-5512 2 2 0 6 4353 4888 9830
-5513 2 2 0 6 6219 8410 6440
-5514 2 2 0 6 6169 6170 6171
-5515 2 2 0 6 5766 5768 7608
-5516 2 2 0 6 2031 2035 8776
-5517 2 2 0 6 1986 2395 1987
-5518 2 2 0 6 8912 10745 10688
-5519 2 2 0 6 7556 7557 7558
-5520 2 2 0 6 5409 5410 5953
-5521 2 2 0 6 1333 7609 2664
-5522 2 2 0 6 1941 8887 3763
-5523 2 2 0 6 2743 2903 2904
-5524 2 2 0 6 2914 3235 2915
-5525 2 2 0 6 3349 8130 3350
-5526 2 2 0 6 7967 7974 9387
-5527 2 2 0 6 3941 4687 3942
-5528 2 2 0 6 4198 9974 5032
-5529 2 2 0 6 5093 6696 8725
-5530 2 2 0 6 4238 8109 5515
-5531 2 2 0 6 8151 8152 8153
-5532 2 2 0 6 3205 4029 9078
-5533 2 2 0 6 2917 4006 8233
-5534 2 2 0 6 7282 11097 9148
-5535 2 2 0 6 1339 1341 1421
-5536 2 2 0 6 1354 8504 3621
-5537 2 2 0 6 2470 3980 2640
-5538 2 2 0 6 4408 6395 8236
-5539 2 2 0 6 2567 2847 8575
-5540 2 2 0 6 8152 8154 8153
-5541 2 2 0 6 8259 8260 8263
-5542 2 2 0 6 3272 8350 3275
-5543 2 2 0 6 8776 9515 9382
-5544 2 2 0 6 1720 8513 1770
-5545 2 2 0 6 3502 3515 8947
-5546 2 2 0 6 1337 1338 1339
-5547 2 2 0 6 2640 2726 2725
-5548 2 2 0 6 6125 6801 7482
-5549 2 2 0 6 3118 8748 4142
-5550 2 2 0 6 4357 4359 4358
-5551 2 2 0 6 3609 8351 4946
-5552 2 2 0 6 2480 4357 4356
-5553 2 2 0 6 1472 8287 8286
-5554 2 2 0 6 2925 3694 9228
-5555 2 2 0 6 3086 3088 3089
-5556 2 2 0 6 5378 7004 6998
-5557 2 2 0 6 8174 8175 9459
-5558 2 2 0 6 569 571 7696
-5559 2 2 0 6 5201 7872 5282
-5560 2 2 0 6 2194 8030 2470
-5561 2 2 0 6 1590 8552 3482
-5562 2 2 0 6 4371 4373 8167
-5563 2 2 0 6 4463 6489 8408
-5564 2 2 0 6 1658 9145 1667
-5565 2 2 0 6 9681 10329 10123
-5566 2 2 0 6 2092 8203 2094
-5567 2 2 0 6 1510 8213 2448
-5568 2 2 0 6 4473 8268 4582
-5569 2 2 0 6 2384 8172 8483
-5570 2 2 0 6 1440 7942 1515
-5571 2 2 0 6 1561 1673 8241
-5572 2 2 0 6 4860 6456 9081
-5573 2 2 0 6 1184 1201 1202
-5574 2 2 0 6 2810 4323 3264
-5575 2 2 0 6 7564 7565 7566
-5576 2 2 0 6 3782 3785 9025
-5577 2 2 0 6 1997 2000 7684
-5578 2 2 0 6 1243 8594 5444
-5579 2 2 0 6 5470 8448 8603
-5580 2 2 0 6 6466 7484 10214
-5581 2 2 0 6 5684 5685 6737
-5582 2 2 0 6 2977 2996 7725
-5583 2 2 0 6 5374 7547 10537
-5584 2 2 0 6 1789 8316 5440
-5585 2 2 0 6 4764 6066 6104
-5586 2 2 0 6 5588 7606 6596
-5587 2 2 0 6 2395 2559 2561
-5588 2 2 0 6 1335 1337 4389
-5589 2 2 0 6 5171 7984 6773
-5590 2 2 0 6 2564 2917 8233
-5591 2 2 0 6 5532 6363 9048
-5592 2 2 0 6 5277 7521 7522
-5593 2 2 0 6 7565 7575 7567
-5594 2 2 0 6 4028 7891 7890
-5595 2 2 0 6 3671 3948 8058
-5596 2 2 0 6 2710 2712 8569
-5597 2 2 0 6 3372 9937 10062
-5598 2 2 0 6 4598 4600 4599
-5599 2 2 0 6 3056 3318 7982
-5600 2 2 0 6 6460 6459 8113
-5601 2 2 0 6 2470 2640 2639
-5602 2 2 0 6 5353 5355 5354
-5603 2 2 0 6 4358 4360 8543
-5604 2 2 0 6 1352 7599 3977
-5605 2 2 0 6 2299 2665 8605
-5606 2 2 0 6 1429 1428 1430
-5607 2 2 0 6 6161 6317 6318
-5608 2 2 0 6 4763 6066 4764
-5609 2 2 0 6 1424 1426 1425
-5610 2 2 0 6 4391 9079 8573
-5611 2 2 0 6 5130 7951 6842
-5612 2 2 0 6 5981 8283 7523
-5613 2 2 0 6 3457 8084 3186
-5614 2 2 0 6 7236 7855 5793
-5615 2 2 0 6 1567 1569 7862
-5616 2 2 0 6 4963 7713 5838
-5617 2 2 0 6 73 74 8144
-5618 2 2 0 6 2888 9988 3799
-5619 2 2 0 6 7561 7563 7562
-5620 2 2 0 6 386 450 8151
-5621 2 2 0 6 765 8423 4350
-5622 2 2 0 6 5654 8274 7803
-5623 2 2 0 6 4936 9745 6646
-5624 2 2 0 6 1469 1472 8286
-5625 2 2 0 6 855 8623 3522
-5626 2 2 0 6 1332 1333 1331
-5627 2 2 0 6 2442 4442 9017
-5628 2 2 0 6 526 8370 8369
-5629 2 2 0 6 616 619 8923
-5630 2 2 0 6 2031 8776 4431
-5631 2 2 0 6 1964 2253 8828
-5632 2 2 0 6 5563 8173 8174
-5633 2 2 0 6 4992 8386 8385
-5634 2 2 0 6 1988 5815 8016
-5635 2 2 0 6 4931 8068 4933
-5636 2 2 0 6 4251 5161 7708
-5637 2 2 0 6 2761 8487 8486
-5638 2 2 0 6 3769 10024 7508
-5639 2 2 0 6 3977 7552 7551
-5640 2 2 0 6 4343 8260 8259
-5641 2 2 0 6 5346 8326 8327
-5642 2 2 0 6 2920 9177 8992
-5643 2 2 0 6 2206 9433 2319
-5644 2 2 0 6 2244 8888 8456
-5645 2 2 0 6 3120 3123 8748
-5646 2 2 0 6 4811 8872 4813
-5647 2 2 0 6 2194 2470 2469
-5648 2 2 0 6 1487 4107 3358
-5649 2 2 0 6 2517 8294 8296
-5650 2 2 0 6 7623 7624 7625
-5651 2 2 0 6 8699 10336 10359
-5652 2 2 0 6 3882 4686 4684
-5653 2 2 0 6 3948 5402 5403
-5654 2 2 0 6 3248 4328 7834
-5655 2 2 0 6 3736 5518 8773
-5656 2 2 0 6 8816 9022 9013
-5657 2 2 0 6 3949 9593 8429
-5658 2 2 0 6 2537 2539 7884
-5659 2 2 0 6 2020 8723 4346
-5660 2 2 0 6 5617 6453 9609
-5661 2 2 0 6 1333 1334 1335
-5662 2 2 0 6 5730 6557 8741
-5663 2 2 0 6 4234 4664 5122
-5664 2 2 0 6 4927 8630 4929
-5665 2 2 0 6 3780 9254 3783
-5666 2 2 0 6 2585 2690 8313
-5667 2 2 0 6 4748 5561 8820
-5668 2 2 0 6 3082 3083 3084
-5669 2 2 0 6 5172 6137 7818
-5670 2 2 0 6 194 465 7828
-5671 2 2 0 6 853 3522 9865
-5672 2 2 0 6 4491 9866 6552
-5673 2 2 0 6 451 7876 7877
-5674 2 2 0 6 4140 4705 7903
-5675 2 2 0 6 3116 8910 3119
-5676 2 2 0 6 4091 9181 4095
-5677 2 2 0 6 1949 8491 6508
-5678 2 2 0 6 2738 7996 2994
-5679 2 2 0 6 4298 4299 5299
-5680 2 2 0 6 1879 1974 9475
-5681 2 2 0 6 6464 7613 10161
-5682 2 2 0 6 7735 10712 10702
-5683 2 2 0 6 2914 3832 3235
-5684 2 2 0 6 3028 8118 8420
-5685 2 2 0 6 6159 6161 6160
-5686 2 2 0 6 8701 8703 9338
-5687 2 2 0 6 2636 9738 8548
-5688 2 2 0 6 977 10101 4133
-5689 2 2 0 6 4355 9595 4890
-5690 2 2 0 6 5656 5667 8274
-5691 2 2 0 6 2990 2991 7848
-5692 2 2 0 6 6145 7925 6951
-5693 2 2 0 6 3408 9274 3409
-5694 2 2 0 6 6848 6849 7446
-5695 2 2 0 6 2434 8433 8612
-5696 2 2 0 6 4547 5779 8744
-5697 2 2 0 6 6370 8838 8576
-5698 2 2 0 6 2562 2563 2807
-5699 2 2 0 6 2794 8042 7976
-5700 2 2 0 6 410 8305 8304
-5701 2 2 0 6 2839 2842 2840
-5702 2 2 0 6 1946 6508 8158
-5703 2 2 0 6 770 8638 10699
-5704 2 2 0 6 4002 8955 8392
-5705 2 2 0 6 2642 2776 2777
-5706 2 2 0 6 7534 10237 10007
-5707 2 2 0 6 2740 3324 2742
-5708 2 2 0 6 5493 7262 7489
-5709 2 2 0 6 3838 4243 4242
-5710 2 2 0 6 7217 7218 7219
-5711 2 2 0 6 3781 8027 8867
-5712 2 2 0 6 5588 9447 7607
-5713 2 2 0 6 7587 9603 9314
-5714 2 2 0 6 5472 8603 6130
-5715 2 2 0 6 5187 5190 6163
-5716 2 2 0 6 1915 4408 8236
-5717 2 2 0 6 3043 8013 3044
-5718 2 2 0 6 2199 8669 4057
-5719 2 2 0 6 4511 4512 9263
-5720 2 2 0 6 5950 10777 10731
-5721 2 2 0 6 1052 8441 8417
-5722 2 2 0 6 1770 8513 9397
-5723 2 2 0 6 381 7771 506
-5724 2 2 0 6 1335 1336 1337
-5725 2 2 0 6 1972 2326 2211
-5726 2 2 0 6 3074 3076 3077
-5727 2 2 0 6 3092 3094 3093
-5728 2 2 0 6 2541 2543 7929
-5729 2 2 0 6 1081 4347 8488
-5730 2 2 0 6 4716 9313 4717
-5731 2 2 0 6 2090 9026 4983
-5732 2 2 0 6 2742 2903 2743
-5733 2 2 0 6 573 4273 571
-5734 2 2 0 6 4178 10376 10391
-5735 2 2 0 6 2517 2423 8294
-5736 2 2 0 6 1784 8805 1878
-5737 2 2 0 6 1708 8930 1707
-5738 2 2 0 6 2435 9140 3655
-5739 2 2 0 6 4326 5426 8093
-5740 2 2 0 6 4255 5427 5428
-5741 2 2 0 6 5180 6944 6153
-5742 2 2 0 6 2779 3337 2998
-5743 2 2 0 6 5276 8465 8464
-5744 2 2 0 6 4753 5946 9987
-5745 2 2 0 6 5304 9287 7079
-5746 2 2 0 6 4340 5966 8801
-5747 2 2 0 6 4211 9058 4413
-5748 2 2 0 6 3797 4250 9572
-5749 2 2 0 6 4108 4107 5041
-5750 2 2 0 6 6311 6723 6722
-5751 2 2 0 6 5331 7257 7256
-5752 2 2 0 6 1992 1993 1994
-5753 2 2 0 6 192 507 7875
-5754 2 2 0 6 2217 8442 2219
-5755 2 2 0 6 3498 9016 7060
-5756 2 2 0 6 3333 9160 8922
-5757 2 2 0 6 9309 9802 9924
-5758 2 2 0 6 3526 3527 9069
-5759 2 2 0 6 2024 2025 8727
-5760 2 2 0 6 1264 1508 8454
-5761 2 2 0 6 7563 7565 7564
-5762 2 2 0 6 3088 3090 3089
-5763 2 2 0 6 2624 2778 7749
-5764 2 2 0 6 3158 8173 4368
-5765 2 2 0 6 1859 3387 8606
-5766 2 2 0 6 1447 1449 1448
-5767 2 2 0 6 1451 1453 1452
-5768 2 2 0 6 5351 6123 6124
-5769 2 2 0 6 6301 6303 6304
-5770 2 2 0 6 875 4141 7859
-5771 2 2 0 6 5060 8238 5933
-5772 2 2 0 6 1430 1432 1431
-5773 2 2 0 6 4356 6341 8984
-5774 2 2 0 6 7707 9273 10141
-5775 2 2 0 6 1203 7948 1231
-5776 2 2 0 6 4767 5269 8459
-5777 2 2 0 6 2196 2495 9043
-5778 2 2 0 6 6738 7485 9301
-5779 2 2 0 6 3085 10284 7269
-5780 2 2 0 6 7499 10732 7658
-5781 2 2 0 6 4320 5164 10036
-5782 2 2 0 6 4341 8805 10420
-5783 2 2 0 6 5344 8321 7735
-5784 2 2 0 6 1970 8732 2251
-5785 2 2 0 6 5560 9806 10064
-5786 2 2 0 6 1333 2664 1331
-5787 2 2 0 6 1324 1444 1443
-5788 2 2 0 6 4506 4508 7857
-5789 2 2 0 6 2909 8005 3216
-5790 2 2 0 6 5197 7780 7053
-5791 2 2 0 6 2662 2876 7829
-5792 2 2 0 6 7240 7241 10937
-5793 2 2 0 6 5410 6564 5953
-5794 2 2 0 6 3595 4009 8656
-5795 2 2 0 6 1271 1305 9544
-5796 2 2 0 6 4664 6143 5122
-5797 2 2 0 6 3015 7825 9757
-5798 2 2 0 6 1160 1329 9885
-5799 2 2 0 6 6662 6663 6664
-5800 2 2 0 6 3838 7517 4243
-5801 2 2 0 6 3797 3829 4250
-5802 2 2 0 6 93 94 8143
-5803 2 2 0 6 2800 7927 9273
-5804 2 2 0 6 4013 4329 4103
-5805 2 2 0 6 5382 6348 7660
-5806 2 2 0 6 3236 3496 3495
-5807 2 2 0 6 1440 1538 7942
-5808 2 2 0 6 4971 4974 4973
-5809 2 2 0 6 4691 6166 6165
-5810 2 2 0 6 3483 9111 7871
-5811 2 2 0 6 3096 3098 3097
-5812 2 2 0 6 2903 4136 3724
-5813 2 2 0 6 8328 8329 10283
-5814 2 2 0 6 6317 7263 6318
-5815 2 2 0 6 640 643 8936
-5816 2 2 0 6 5134 6345 10333
-5817 2 2 0 6 4137 4697 4763
-5818 2 2 0 6 4950 8317 5009
-5819 2 2 0 6 3481 8430 8862
-5820 2 2 0 6 8898 9419 8897
-5821 2 2 0 6 3528 8767 7938
-5822 2 2 0 6 8958 9725 9735
-5823 2 2 0 6 1068 3365 8256
-5824 2 2 0 6 2333 8685 2563
-5825 2 2 0 6 8380 9161 8381
-5826 2 2 0 6 2297 2299 8605
-5827 2 2 0 6 2336 7729 2493
-5828 2 2 0 6 4463 8408 4715
-5829 2 2 0 6 4471 4582 8734
-5830 2 2 0 6 2129 2333 2130
-5831 2 2 0 6 7571 7576 7572
-5832 2 2 0 6 3422 8822 9315
-5833 2 2 0 6 367 8284 514
-5834 2 2 0 6 1788 5372 1911
-5835 2 2 0 6 1886 8494 8613
-5836 2 2 0 6 2085 7807 5421
-5837 2 2 0 6 3724 4136 4137
-5838 2 2 0 6 269 270 8561
-5839 2 2 0 6 67 68 8230
-5840 2 2 0 6 4305 7916 5118
-5841 2 2 0 6 4401 9541 8172
-5842 2 2 0 6 4358 4359 4360
-5843 2 2 0 6 4063 4992 8385
-5844 2 2 0 6 3496 3801 3497
-5845 2 2 0 6 6456 10064 9806
-5846 2 2 0 6 3969 3971 4682
-5847 2 2 0 6 8985 9906 9921
-5848 2 2 0 6 5735 10100 6477
-5849 2 2 0 6 8616 10826 8797
-5850 2 2 0 6 86 87 505
-5851 2 2 0 6 2569 8575 8654
-5852 2 2 0 6 2000 2001 5391
-5853 2 2 0 6 2476 2778 2624
-5854 2 2 0 6 3858 8186 3860
-5855 2 2 0 6 4813 8872 5318
-5856 2 2 0 6 6301 6304 8028
-5857 2 2 0 6 2201 8592 2364
-5858 2 2 0 6 2740 2742 2741
-5859 2 2 0 6 4999 6645 6644
-5860 2 2 0 6 8419 3028 8663
-5861 2 2 0 6 719 3510 8640
-5862 2 2 0 6 2052 2053 8743
-5863 2 2 0 6 7560 7561 7562
-5864 2 2 0 6 4886 8455 5555
-5865 2 2 0 6 2201 4057 8592
-5866 2 2 0 6 2712 8570 8569
-5867 2 2 0 6 8198 9129 9130
-5868 2 2 0 6 382 383 438
-5869 2 2 0 6 2671 3757 8719
-5870 2 2 0 6 6146 6299 6300
-5871 2 2 0 6 5224 6985 5226
-5872 2 2 0 6 92 448 7939
-5873 2 2 0 6 665 9201 9063
-5874 2 2 0 6 4253 4666 5469
-5875 2 2 0 6 1992 1994 2809
-5876 2 2 0 6 4595 4598 4599
-5877 2 2 0 6 4684 4686 5187
-5878 2 2 0 6 5241 6987 5242
-5879 2 2 0 6 3977 7599 7553
-5880 2 2 0 6 1876 1986 1877
-5881 2 2 0 6 5185 6980 6979
-5882 2 2 0 6 6547 10285 9715
-5883 2 2 0 6 2481 2654 8409
-5884 2 2 0 6 5436 9186 6415
-5885 2 2 0 6 1302 1324 1323
-5886 2 2 0 6 5405 6059 7681
-5887 2 2 0 6 1500 3687 7959
-5888 2 2 0 6 3232 3824 8232
-5889 2 2 0 6 2863 3332 3334
-5890 2 2 0 6 2006 2027 3339
-5891 2 2 0 6 1214 1229 8206
-5892 2 2 0 6 1395 1398 8529
-5893 2 2 0 6 1978 9363 9310
-5894 2 2 0 6 76 77 8849
-5895 2 2 0 6 4356 4357 4358
-5896 2 2 0 6 4331 9559 8082
-5897 2 2 0 6 2991 3072 3073
-5898 2 2 0 6 573 5588 4273
-5899 2 2 0 6 2332 8145 8146
-5900 2 2 0 6 5668 7804 9463
-5901 2 2 0 6 8289 9490 8772
-5902 2 2 0 6 4684 8200 4685
-5903 2 2 0 6 1857 1859 8606
-5904 2 2 0 6 1849 9958 1961
-5905 2 2 0 6 71 72 8142
-5906 2 2 0 6 8972 10325 10330
-5907 2 2 0 6 3078 3080 3081
-5908 2 2 0 6 4508 6535 7857
-5909 2 2 0 6 8172 9541 8483
-5910 2 2 0 6 2328 2480 4356
-5911 2 2 0 6 1800 10875 10860
-5912 2 2 0 6 6123 6806 6124
-5913 2 2 0 6 5448 7987 8463
-5914 2 2 0 6 4588 7920 4589
-5915 2 2 0 6 638 640 8936
-5916 2 2 0 6 3020 8389 9217
-5917 2 2 0 6 1423 1424 1425
-5918 2 2 0 6 2067 8940 2081
-5919 2 2 0 6 3965 4253 4254
-5920 2 2 0 6 3882 4684 3883
-5921 2 2 0 6 5580 8670 7373
-5922 2 2 0 6 1307 8165 1306
-5923 2 2 0 6 4392 8249 8250
-5924 2 2 0 6 5909 8148 8147
-5925 2 2 0 6 4514 8187 3864
-5926 2 2 0 6 95 96 8629
-5927 2 2 0 6 6380 9006 9418
-5928 2 2 0 6 1433 1432 1435
-5929 2 2 0 6 5380 6754 8043
-5930 2 2 0 6 2259 4901 8017
-5931 2 2 0 6 2075 9127 8205
-5932 2 2 0 6 4494 5092 6513
-5933 2 2 0 6 4004 8108 5443
-5934 2 2 0 6 979 983 988
-5935 2 2 0 6 2382 7887 2411
-5936 2 2 0 6 1391 8728 1394
-5937 2 2 0 6 4483 4485 8846
-5938 2 2 0 6 2027 5493 3339
-5939 2 2 0 6 7097 5361 7745
-5940 2 2 0 6 8511 8514 10216
-5941 2 2 0 6 6879 7432 7433
-5942 2 2 0 6 3573 11216 11219
-5943 2 2 0 6 7530 8867 8027
-5944 2 2 0 6 2258 7861 4348
-5945 2 2 0 6 5063 6662 6661
-5946 2 2 0 6 5910 6672 7144
-5947 2 2 0 6 2583 2585 8313
-5948 2 2 0 6 8281 10005 9795
-5949 2 2 0 6 3616 9409 9145
-5950 2 2 0 6 4514 8182 8183
-5951 2 2 0 6 1598 7952 9055
-5952 2 2 0 6 4410 7686 7685
-5953 2 2 0 6 5475 9373 9213
-5954 2 2 0 6 1430 1434 7900
-5955 2 2 0 6 2104 9206 9797
-5956 2 2 0 6 4360 4359 4361
-5957 2 2 0 6 3681 8231 3944
-5958 2 2 0 6 6408 8833 8227
-5959 2 2 0 6 2094 2095 2093
-5960 2 2 0 6 2506 2667 2939
-5961 2 2 0 6 4071 8535 9771
-5962 2 2 0 6 3801 4664 4234
-5963 2 2 0 6 7865 7867 7866
-5964 2 2 0 6 3021 3024 8389
-5965 2 2 0 6 2816 3028 8420
-5966 2 2 0 6 4705 5670 7903
-5967 2 2 0 6 2464 7997 9413
-5968 2 2 0 6 8478 9132 9133
-5969 2 2 0 6 3801 4234 3802
-5970 2 2 0 6 2416 4691 6165
-5971 2 2 0 6 4508 5039 6535
-5972 2 2 0 6 384 508 7856
-5973 2 2 0 6 7476 7478 7477
-5974 2 2 0 6 6012 8012 8011
-5975 2 2 0 6 1469 1471 1472
-5976 2 2 0 6 4361 4362 4680
-5977 2 2 0 6 1445 1446 1447
-5978 2 2 0 6 65 66 8234
-5979 2 2 0 6 5736 9871 8985
-5980 2 2 0 6 1421 1422 1423
-5981 2 2 0 6 6047 6049 6277
-5982 2 2 0 6 4545 5189 5321
-5983 2 2 0 6 5258 6990 5259
-5984 2 2 0 6 6341 8145 8984
-5985 2 2 0 6 9408 9936 10081
-5986 2 2 0 6 6724 6723 7170
-5987 2 2 0 6 1964 8828 5463
-5988 2 2 0 6 2255 7756 7773
-5989 2 2 0 6 4686 9757 6296
-5990 2 2 0 6 1305 1322 3381
-5991 2 2 0 6 3678 8662 3681
-5992 2 2 0 6 6373 6374 9750
-5993 2 2 0 6 4334 9311 10003
-5994 2 2 0 6 3205 9078 3698
-5995 2 2 0 6 2579 2580 8245
-5996 2 2 0 6 767 10289 10160
-5997 2 2 0 6 1685 1716 9454
-5998 2 2 0 6 3687 3688 4097
-5999 2 2 0 6 4954 8110 8777
-6000 2 2 0 6 4373 8661 8167
-6001 2 2 0 6 1708 1711 8930
-6002 2 2 0 6 63 64 8247
-6003 2 2 0 6 75 76 8489
-6004 2 2 0 6 1626 1629 8428
-6005 2 2 0 6 1494 10597 6638
-6006 2 2 0 6 2230 2509 2508
-6007 2 2 0 6 2033 2068 8854
-6008 2 2 0 6 3283 9467 4073
-6009 2 2 0 6 4329 5063 5062
-6010 2 2 0 6 5643 7915 7913
-6011 2 2 0 6 508 8151 8153
-6012 2 2 0 6 2487 10075 9011
-6013 2 2 0 6 5041 5345 6047
-6014 2 2 0 6 5103 6081 7651
-6015 2 2 0 6 4712 6137 5172
-6016 2 2 0 6 4163 5872 8020
-6017 2 2 0 6 821 9123 823
-6018 2 2 0 6 5452 6389 9691
-6019 2 2 0 6 5442 5683 5684
-6020 2 2 0 6 3649 5858 8803
-6021 2 2 0 6 573 9447 5588
-6022 2 2 0 6 3257 3880 9542
-6023 2 2 0 6 3512 9843 8940
-6024 2 2 0 6 5297 7196 7195
-6025 2 2 0 6 5010 6324 7528
-6026 2 2 0 6 4537 5319 8871
-6027 2 2 0 6 3995 4862 8830
-6028 2 2 0 6 3481 8862 8663
-6029 2 2 0 6 4136 4697 4137
-6030 2 2 0 6 5126 7986 7985
-6031 2 2 0 6 1476 1477 8539
-6032 2 2 0 6 2138 2140 2332
-6033 2 2 0 6 2994 3232 2995
-6034 2 2 0 6 4997 5917 7647
-6035 2 2 0 6 5877 8302 8303
-6036 2 2 0 6 7218 9954 7275
-6037 2 2 0 6 8203 8204 10009
-6038 2 2 0 6 2698 2980 8082
-6039 2 2 0 6 5808 6119 7758
-6040 2 2 0 6 1062 1066 8235
-6041 2 2 0 6 3408 8044 9274
-6042 2 2 0 6 4326 4746 5426
-6043 2 2 0 6 5225 6254 6983
-6044 2 2 0 6 5542 7945 7425
-6045 2 2 0 6 3232 3839 3233
-6046 2 2 0 6 90 91 511
-6047 2 2 0 6 4669 6154 8164
-6048 2 2 0 6 2318 2621 8199
-6049 2 2 0 6 2103 2104 2112
-6050 2 2 0 6 2493 2839 2838
-6051 2 2 0 6 5684 6737 6738
-6052 2 2 0 6 4479 5816 8157
-6053 2 2 0 6 179 8558 477
-6054 2 2 0 6 1240 1264 8454
-6055 2 2 0 6 4342 8360 8365
-6056 2 2 0 6 8769 8771 8770
-6057 2 2 0 6 5975 5977 9706
-6058 2 2 0 6 3076 3079 3078
-6059 2 2 0 6 7662 9391 9863
-6060 2 2 0 6 4310 9661 10923
-6061 2 2 0 6 6012 5772 10179
-6062 2 2 0 6 2043 2046 7950
-6063 2 2 0 6 4055 4506 5552
-6064 2 2 0 6 5606 6155 6156
-6065 2 2 0 6 6350 7950 8117
-6066 2 2 0 6 2807 2808 3014
-6067 2 2 0 6 5308 7198 7199
-6068 2 2 0 6 5632 9413 9336
-6069 2 2 0 6 1425 1426 1427
-6070 2 2 0 6 411 8401 8400
-6071 2 2 0 6 982 8642 993
-6072 2 2 0 6 3080 3083 3082
-6073 2 2 0 6 1444 1446 1445
-6074 2 2 0 6 6088 6089 6090
-6075 2 2 0 6 69 70 8161
-6076 2 2 0 6 6312 6315 7203
-6077 2 2 0 6 3934 4574 4575
-6078 2 2 0 6 8424 8960 9200
-6079 2 2 0 6 8178 9478 9246
-6080 2 2 0 6 1016 8679 3451
-6081 2 2 0 6 1447 1450 1449
-6082 2 2 0 6 4590 6037 8119
-6083 2 2 0 6 5063 8764 6663
-6084 2 2 0 6 2659 2658 2740
-6085 2 2 0 6 1928 8273 2249
-6086 2 2 0 6 6590 10391 10376
-6087 2 2 0 6 194 195 465
-6088 2 2 0 6 7928 9342 8412
-6089 2 2 0 6 2114 4493 2129
-6090 2 2 0 6 5180 6153 5181
-6091 2 2 0 6 380 381 506
-6092 2 2 0 6 3465 8463 3468
-6093 2 2 0 6 4580 5271 5992
-6094 2 2 0 6 1449 1450 1451
-6095 2 2 0 6 4360 4361 4363
-6096 2 2 0 6 4941 8110 4954
-6097 2 2 0 6 4978 8283 5981
-6098 2 2 0 6 2347 9321 2348
-6099 2 2 0 6 4405 8136 9686
-6100 2 2 0 6 2112 2113 2137
-6101 2 2 0 6 3864 3866 3865
-6102 2 2 0 6 4805 8450 8452
-6103 2 2 0 6 2911 9836 7667
-6104 2 2 0 6 7567 7571 7568
-6105 2 2 0 6 2998 7672 3229
-6106 2 2 0 6 7311 7762 7763
-6107 2 2 0 6 5424 5925 7821
-6108 2 2 0 6 4357 5492 8097
-6109 2 2 0 6 2219 8442 2955
-6110 2 2 0 6 839 3569 8462
-6111 2 2 0 6 3738 8318 9091
-6112 2 2 0 6 4301 4654 5283
-6113 2 2 0 6 2616 3058 2658
-6114 2 2 0 6 4587 6012 8011
-6115 2 2 0 6 4378 8770 5320
-6116 2 2 0 6 2101 2103 2099
-6117 2 2 0 6 2741 2742 2743
-6118 2 2 0 6 4154 4156 8208
-6119 2 2 0 6 4582 8270 8734
-6120 2 2 0 6 2114 2129 2115
-6121 2 2 0 6 2899 4013 3196
-6122 2 2 0 6 2842 3253 2843
-6123 2 2 0 6 3662 8108 4004
-6124 2 2 0 6 3024 8135 8389
-6125 2 2 0 6 1655 3508 8839
-6126 2 2 0 6 6287 7505 7439
-6127 2 2 0 6 4605 7838 7837
-6128 2 2 0 6 1139 1157 4131
-6129 2 2 0 6 5172 5180 5173
-6130 2 2 0 6 3778 3781 8867
-6131 2 2 0 6 2725 2726 2990
-6132 2 2 0 6 1270 8120 1284
-6133 2 2 0 6 2022 2026 8723
-6134 2 2 0 6 3452 3717 2939
-6135 2 2 0 6 5063 6663 6662
-6136 2 2 0 6 3681 8662 8231
-6137 2 2 0 6 3813 9316 3812
-6138 2 2 0 6 4238 5515 4669
-6139 2 2 0 6 4613 5606 9764
-6140 2 2 0 6 190 451 7878
-6141 2 2 0 6 969 3656 9728
-6142 2 2 0 6 8121 9995 8528
-6143 2 2 0 6 1939 8669 2199
-6144 2 2 0 6 4731 5773 8282
-6145 2 2 0 6 1455 1457 1456
-6146 2 2 0 6 8241 8439 8438
-6147 2 2 0 6 5407 9967 8560
-6148 2 2 0 6 4821 8188 8189
-6149 2 2 0 6 4376 8768 8770
-6150 2 2 0 6 1778 1874 1826
-6151 2 2 0 6 4605 8063 7838
-6152 2 2 0 6 3385 5724 9021
-6153 2 2 0 6 3465 3467 8463
-6154 2 2 0 6 3103 8102 3937
-6155 2 2 0 6 8477 9132 8478
-6156 2 2 0 6 1485 1487 1484
-6157 2 2 0 6 3014 3882 3312
-6158 2 2 0 6 4441 5701 9873
-6159 2 2 0 6 3103 3937 3936
-6160 2 2 0 6 2977 7725 2979
-6161 2 2 0 6 3068 8214 3932
-6162 2 2 0 6 1972 2211 2210
-6163 2 2 0 6 4245 6169 6168
-6164 2 2 0 6 1427 1428 1429
-6165 2 2 0 6 3871 3872 3873
-6166 2 2 0 6 6596 7606 10571
-6167 2 2 0 6 5 6 563
-6168 2 2 0 6 2137 2138 7833
-6169 2 2 0 6 192 193 507
-6170 2 2 0 6 5642 5643 7913
-6171 2 2 0 6 2766 4067 8378
-6172 2 2 0 6 2915 3235 3236
-6173 2 2 0 6 5142 5144 6126
-6174 2 2 0 6 2361 2506 7881
-6175 2 2 0 6 4514 8181 8182
-6176 2 2 0 6 6663 8764 7472
-6177 2 2 0 6 4536 4572 4537
-6178 2 2 0 6 1994 7617 2810
-6179 2 2 0 6 8270 8735 8734
-6180 2 2 0 6 1947 4438 8643
-6181 2 2 0 6 3334 3933 3934
-6182 2 2 0 6 2472 8636 7997
-6183 2 2 0 6 5217 7781 7780
-6184 2 2 0 6 5652 5654 7803
-6185 2 2 0 6 3089 3090 9678
-6186 2 2 0 6 2624 2779 2625
-6187 2 2 0 6 3671 3946 3948
-6188 2 2 0 6 2948 8861 3327
-6189 2 2 0 6 8987 8989 8988
-6190 2 2 0 6 3908 8761 9237
-6191 2 2 0 6 7838 8063 7841
-6192 2 2 0 6 5445 5885 8447
-6193 2 2 0 6 442 7218 7217
-6194 2 2 0 6 4235 8109 4238
-6195 2 2 0 6 6567 8676 7486
-6196 2 2 0 6 1072 1074 8488
-6197 2 2 0 6 4245 7548 6170
-6198 2 2 0 6 181 427 8557
-6199 2 2 0 6 6391 8812 8811
-6200 2 2 0 6 4822 5497 9185
-6201 2 2 0 6 1473 1475 1476
-6202 2 2 0 6 4689 5258 4774
-6203 2 2 0 6 5681 5943 5979
-6204 2 2 0 6 6737 6794 6738
-6205 2 2 0 6 729 8697 4417
-6206 2 2 0 6 4203 8867 7530
-6207 2 2 0 6 2081 8940 2128
-6208 2 2 0 6 1623 1725 9727
-6209 2 2 0 6 3866 3868 3867
-6210 2 2 0 6 1150 1162 7962
-6211 2 2 0 6 8616 8797 8796
-6212 2 2 0 6 7587 9314 7896
-6213 2 2 0 6 3637 7648 9794
-6214 2 2 0 6 2088 2089 2087
-6215 2 2 0 6 3086 3087 3088
-6216 2 2 0 6 1197 1214 3354
-6217 2 2 0 6 5041 6047 6048
-6218 2 2 0 6 6663 7245 6664
-6219 2 2 0 6 2094 2096 2095
-6220 2 2 0 6 3981 4853 8833
-6221 2 2 0 6 4749 7083 8461
-6222 2 2 0 6 4509 7950 6350
-6223 2 2 0 6 4380 8476 4382
-6224 2 2 0 6 6071 9337 9724
-6225 2 2 0 6 8184 10034 8183
-6226 2 2 0 6 4156 8937 8208
-6227 2 2 0 6 3812 4332 4331
-6228 2 2 0 6 4026 10245 10317
-6229 2 2 0 6 4522 5351 8078
-6230 2 2 0 6 377 378 430
-6231 2 2 0 6 1029 1036 1280
-6232 2 2 0 6 3877 3982 3983
-6233 2 2 0 6 1435 1440 1436
-6234 2 2 0 6 2085 2086 2087
-6235 2 2 0 6 2333 2562 2334
-6236 2 2 0 6 1422 3308 1424
-6237 2 2 0 6 5515 6840 6154
-6238 2 2 0 6 161 8322 403
-6239 2 2 0 6 4097 4588 4589
-6240 2 2 0 6 1105 8175 1137
-6241 2 2 0 6 3472 8515 8516
-6242 2 2 0 6 2710 8569 2713
-6243 2 2 0 6 1013 8679 1016
-6244 2 2 0 6 2946 8861 2948
-6245 2 2 0 6 5501 9277 8887
-6246 2 2 0 6 7321 7322 7312
-6247 2 2 0 6 1147 8522 5478
-6248 2 2 0 6 3512 9555 9843
-6249 2 2 0 6 2328 2329 2480
-6250 2 2 0 6 4560 8321 5344
-6251 2 2 0 6 4589 7920 7921
-6252 2 2 0 6 4099 8360 4342
-6253 2 2 0 6 1484 1487 3358
-6254 2 2 0 6 3008 3254 3255
-6255 2 2 0 6 1245 5445 8447
-6256 2 2 0 6 7445 7444 7690
-6257 2 2 0 6 1892 10118 8917
-6258 2 2 0 6 1435 1538 1440
-6259 2 2 0 6 8557 8559 8558
-6260 2 2 0 6 6170 6854 6853
-6261 2 2 0 6 3558 9187 3642
-6262 2 2 0 6 2258 2456 2632
-6263 2 2 0 6 4464 4467 8098
-6264 2 2 0 6 4911 9051 9036
-6265 2 2 0 6 5703 9780 9705
-6266 2 2 0 6 1006 1018 5397
-6267 2 2 0 6 2998 3229 2999
-6268 2 2 0 6 5077 6657 7816
-6269 2 2 0 6 1239 1263 1240
-6270 2 2 0 6 3462 3466 8398
-6271 2 2 0 6 5051 8066 9102
-6272 2 2 0 6 2427 2555 8293
-6273 2 2 0 6 2650 9253 3040
-6274 2 2 0 6 805 10527 10530
-6275 2 2 0 6 190 191 451
-6276 2 2 0 6 5485 6759 7583
-6277 2 2 0 6 613 610 8901
-6278 2 2 0 6 1656 3616 9145
-6279 2 2 0 6 6988 7366 7264
-6280 2 2 0 6 6406 9141 9267
-6281 2 2 0 6 2097 2095 2105
-6282 2 2 0 6 1820 8079 1821
-6283 2 2 0 6 3861 3860 3862
-6284 2 2 0 6 3757 4594 4595
-6285 2 2 0 6 2129 8685 2333
-6286 2 2 0 6 7322 7325 7324
-6287 2 2 0 6 1027 8665 8666
-6288 2 2 0 6 4600 5910 5909
-6289 2 2 0 6 2397 8599 2566
-6290 2 2 0 6 715 719 8640
-6291 2 2 0 6 2058 10589 10499
-6292 2 2 0 6 1440 1515 1441
-6293 2 2 0 6 2616 2658 2617
-6294 2 2 0 6 2483 8045 8015
-6295 2 2 0 6 4253 5469 7916
-6296 2 2 0 6 2364 8592 2771
-6297 2 2 0 6 2922 5509 8841
-6298 2 2 0 6 8353 8354 8355
-6299 2 2 0 6 4309 6550 8368
-6300 2 2 0 6 4804 8450 4805
-6301 2 2 0 6 171 8371 524
-6302 2 2 0 6 4243 7517 10885
-6303 2 2 0 6 1240 1263 1264
-6304 2 2 0 6 3963 3964 3965
-6305 2 2 0 6 2623 3596 8298
-6306 2 2 0 6 4175 5721 9211
-6307 2 2 0 6 4403 8139 9973
-6308 2 2 0 6 1233 10437 10282
-6309 2 2 0 6 3951 4281 4759
-6310 2 2 0 6 2840 2842 2843
-6311 2 2 0 6 3669 3833 8080
-6312 2 2 0 6 1347 1349 1350
-6313 2 2 0 6 4599 4600 5909
-6314 2 2 0 6 7907 7980 7981
-6315 2 2 0 6 5153 6815 6814
-6316 2 2 0 6 5323 10426 8397
-6317 2 2 0 6 6854 6856 6855
-6318 2 2 0 6 6302 7852 7850
-6319 2 2 0 6 4332 5142 4333
-6320 2 2 0 6 2839 5387 2842
-6321 2 2 0 6 5023 5968 7674
-6322 2 2 0 6 2256 7997 2464
-6323 2 2 0 6 5547 5549 8392
-6324 2 2 0 6 1691 1685 9454
-6325 2 2 0 6 1461 1463 1464
-6326 2 2 0 6 7553 7580 7555
-6327 2 2 0 6 2265 2267 10032
-6328 2 2 0 6 5408 7986 8857
-6329 2 2 0 6 1945 2246 1947
-6330 2 2 0 6 3840 3964 3963
-6331 2 2 0 6 3387 9223 9035
-6332 2 2 0 6 3717 4536 4537
-6333 2 2 0 6 4682 4683 5224
-6334 2 2 0 6 2648 8139 2677
-6335 2 2 0 6 5198 6181 8659
-6336 2 2 0 6 3322 6245 7536
-6337 2 2 0 6 4000 4630 8202
-6338 2 2 0 6 3062 9575 9847
-6339 2 2 0 6 2105 2114 2106
-6340 2 2 0 6 4685 5241 4844
-6341 2 2 0 6 1310 6638 8694
-6342 2 2 0 6 3505 9961 9344
-6343 2 2 0 6 1991 1993 1992
-6344 2 2 0 6 3662 4007 8108
-6345 2 2 0 6 8188 8190 8189
-6346 2 2 0 6 2754 2757 8486
-6347 2 2 0 6 1329 1330 1331
-6348 2 2 0 6 4035 5010 4536
-6349 2 2 0 6 649 8617 650
-6350 2 2 0 6 4910 8670 5580
-6351 2 2 0 6 1263 1276 1264
-6352 2 2 0 6 260 529 8458
-6353 2 2 0 6 2407 8555 3006
-6354 2 2 0 6 2342 8878 2570
-6355 2 2 0 6 7882 7884 9790
-6356 2 2 0 6 3358 4107 4108
-6357 2 2 0 6 166 526 8369
-6358 2 2 0 6 187 8022 435
-6359 2 2 0 6 5670 6697 6698
-6360 2 2 0 6 1238 1239 1240
-6361 2 2 0 6 1264 1276 1277
-6362 2 2 0 6 4593 5103 6061
-6363 2 2 0 6 5469 6846 7645
-6364 2 2 0 6 7890 7891 7892
-6365 2 2 0 6 4862 5438 8830
-6366 2 2 0 6 6411 9667 9403
-6367 2 2 0 6 3151 10104 10174
-6368 2 2 0 6 705 11199 11191
-6369 2 2 0 6 1968 2188 2258
-6370 2 2 0 6 2809 2810 3263
-6371 2 2 0 6 3312 3882 3883
-6372 2 2 0 6 3785 4112 4115
-6373 2 2 0 6 6981 6982 7003
-6374 2 2 0 6 164 454 8366
-6375 2 2 0 6 5507 9063 9201
-6376 2 2 0 6 1093 1132 9387
-6377 2 2 0 6 4916 9810 9379
-6378 2 2 0 6 8740 10043 10833
-6379 2 2 0 6 2547 7886 7885
-6380 2 2 0 6 4314 4316 4315
-6381 2 2 0 6 3461 8720 3464
-6382 2 2 0 6 1453 1454 1455
-6383 2 2 0 6 2632 2738 2994
-6384 2 2 0 6 3817 4224 8470
-6385 2 2 0 6 2783 3221 8448
-6386 2 2 0 6 6196 7516 7093
-6387 2 2 0 6 4514 3862 8181
-6388 2 2 0 6 5108 8192 8191
-6389 2 2 0 6 8338 8339 8340
-6390 2 2 0 6 1303 10603 8411
-6391 2 2 0 6 1276 1309 1277
-6392 2 2 0 6 2091 2092 2093
-6393 2 2 0 6 2980 3812 4331
-6394 2 2 0 6 4013 5374 4329
-6395 2 2 0 6 1137 8175 8277
-6396 2 2 0 6 5483 9348 7440
-6397 2 2 0 6 3872 4803 8383
-6398 2 2 0 6 3937 8395 3938
-6399 2 2 0 6 5568 10066 5571
-6400 2 2 0 6 3867 3868 3869
-6401 2 2 0 6 2084 8998 8999
-6402 2 2 0 6 4850 4851 5230
-6403 2 2 0 6 6271 7656 10010
-6404 2 2 0 6 1830 1947 8643
-6405 2 2 0 6 2583 2584 2585
-6406 2 2 0 6 4890 9595 6627
-6407 2 2 0 6 7761 7764 7762
-6408 2 2 0 6 4380 5320 8476
-6409 2 2 0 6 2582 2583 2581
-6410 2 2 0 6 2807 3014 3312
-6411 2 2 0 6 5411 7541 7545
-6412 2 2 0 6 2154 8172 2156
-6413 2 2 0 6 1613 1615 9081
-6414 2 2 0 6 1323 1324 1442
-6415 2 2 0 6 2667 3452 2939
-6416 2 2 0 6 5194 7009 7100
-6417 2 2 0 6 7396 7398 7400
-6418 2 2 0 6 4199 8349 8343
-6419 2 2 0 6 1296 1297 1298
-6420 2 2 0 6 6853 6854 6855
-6421 2 2 0 6 6159 7508 6317
-6422 2 2 0 6 6036 6103 6037
-6423 2 2 0 6 6045 6693 6046
-6424 2 2 0 6 1653 1655 8839
-6425 2 2 0 6 4782 8553 9526
-6426 2 2 0 6 2994 3824 3232
-6427 2 2 0 6 3457 4197 8300
-6428 2 2 0 6 7296 9823 7298
-6429 2 2 0 6 1800 7810 10875
-6430 2 2 0 6 4593 5102 5103
-6431 2 2 0 6 5469 6147 6846
-6432 2 2 0 6 4049 4535 8302
-6433 2 2 0 6 5450 7652 7987
-6434 2 2 0 6 3460 3462 8398
-6435 2 2 0 6 3835 4245 4132
-6436 2 2 0 6 5636 9310 6436
-6437 2 2 0 6 1992 2809 9707
-6438 2 2 0 6 1162 1183 1919
-6439 2 2 0 6 1218 9003 1234
-6440 2 2 0 6 4682 5224 5226
-6441 2 2 0 6 4590 5105 6036
-6442 2 2 0 6 608 611 8577
-6443 2 2 0 6 3439 3649 8803
-6444 2 2 0 6 2601 9386 4179
-6445 2 2 0 6 4097 4098 4588
-6446 2 2 0 6 2630 3208 8119
-6447 2 2 0 6 2924 8483 7703
-6448 2 2 0 6 973 9728 8766
-6449 2 2 0 6 6359 10052 7854
-6450 2 2 0 6 2246 2459 2247
-6451 2 2 0 6 3933 4574 3934
-6452 2 2 0 6 7226 10400 10817
-6453 2 2 0 6 4680 4681 5186
-6454 2 2 0 6 4691 6167 6166
-6455 2 2 0 6 3993 8308 8662
-6456 2 2 0 6 3983 4293 4541
-6457 2 2 0 6 1226 8594 1243
-6458 2 2 0 6 3468 8463 7987
-6459 2 2 0 6 5820 9886 9448
-6460 2 2 0 6 6288 7507 7506
-6461 2 2 0 6 4817 8023 5311
-6462 2 2 0 6 1277 1310 8694
-6463 2 2 0 6 3870 3872 3871
-6464 2 2 0 6 5215 7057 8255
-6465 2 2 0 6 5392 5705 7362
-6466 2 2 0 6 8907 9412 9600
-6467 2 2 0 6 4407 9874 8301
-6468 2 2 0 6 3837 4662 9964
-6469 2 2 0 6 3876 3982 3877
-6470 2 2 0 6 4222 5141 5349
-6471 2 2 0 6 2050 4185 9126
-6472 2 2 0 6 6393 7621 9959
-6473 2 2 0 6 2112 2137 7393
-6474 2 2 0 6 2052 8743 4186
-6475 2 2 0 6 3906 8823 4422
-6476 2 2 0 6 5820 8351 9886
-6477 2 2 0 6 3196 4013 4103
-6478 2 2 0 6 3342 7006 4287
-6479 2 2 0 6 876 10670 10744
-6480 2 2 0 6 74 475 8144
-6481 2 2 0 6 6007 8338 8337
-6482 2 2 0 6 3603 3605 8729
-6483 2 2 0 6 2039 9859 8677
-6484 2 2 0 6 4235 4238 4237
-6485 2 2 0 6 5121 6162 6768
-6486 2 2 0 6 8726 11071 8863
-6487 2 2 0 6 2211 2374 2373
-6488 2 2 0 6 1460 1461 8046
-6489 2 2 0 6 4803 8384 8383
-6490 2 2 0 6 1390 1392 8503
-6491 2 2 0 6 2459 2698 2460
-6492 2 2 0 6 2691 2850 2849
-6493 2 2 0 6 3084 3087 3086
-6494 2 2 0 6 5017 7678 5915
-6495 2 2 0 6 6389 7938 8767
-6496 2 2 0 6 3511 9406 8865
-6497 2 2 0 6 7304 8604 8581
-6498 2 2 0 6 1830 1945 1947
-6499 2 2 0 6 2374 2476 2415
-6500 2 2 0 6 2639 2640 2725
-6501 2 2 0 6 3791 4232 9261
-6502 2 2 0 6 2344 8995 5525
-6503 2 2 0 6 2090 2091 2089
-6504 2 2 0 6 2130 2333 2334
-6505 2 2 0 6 5138 6798 8527
-6506 2 2 0 6 1022 8665 1027
-6507 2 2 0 6 5495 8231 8308
-6508 2 2 0 6 5485 6731 6759
-6509 2 2 0 6 3965 4303 9275
-6510 2 2 0 6 5783 7667 5785
-6511 2 2 0 6 6519 8224 8223
-6512 2 2 0 6 4767 8459 5602
-6513 2 2 0 6 1744 1747 1742
-6514 2 2 0 6 7365 7364 7812
-6515 2 2 0 6 968 972 3925
-6516 2 2 0 6 4336 5023 5343
-6517 2 2 0 6 4758 5361 7097
-6518 2 2 0 6 4740 6197 8275
-6519 2 2 0 6 8206 8207 3354
-6520 2 2 0 6 1470 10188 10340
-6521 2 2 0 6 6281 6519 8223
-6522 2 2 0 6 6286 6879 6143
-6523 2 2 0 6 755 8479 1011
-6524 2 2 0 6 2833 9303 2892
-6525 2 2 0 6 1229 1237 1238
-6526 2 2 0 6 3862 3864 3863
-6527 2 2 0 6 3343 7962 7963
-6528 2 2 0 6 1515 1778 1777
-6529 2 2 0 6 4238 4669 4239
-6530 2 2 0 6 3313 3314 8758
-6531 2 2 0 6 1689 9150 7683
-6532 2 2 0 6 1459 1461 1460
-6533 2 2 0 6 3946 5402 3948
-6534 2 2 0 6 5258 7727 7055
-6535 2 2 0 6 5346 8327 8328
-6536 2 2 0 6 4017 4754 8758
-6537 2 2 0 6 1177 7903 9466
-6538 2 2 0 6 1164 8390 1822
-6539 2 2 0 6 4559 5025 8868
-6540 2 2 0 6 7770 8664 9300
-6541 2 2 0 6 1457 1459 1460
-6542 2 2 0 6 4897 6336 8637
-6543 2 2 0 6 1997 1999 2000
-6544 2 2 0 6 2779 2998 2780
-6545 2 2 0 6 359 8359 528
-6546 2 2 0 6 1249 9358 1250
-6547 2 2 0 6 6282 9690 8100
-6548 2 2 0 6 3869 3870 3871
-6549 2 2 0 6 4633 5153 5151
-6550 2 2 0 6 1468 1469 8286
-6551 2 2 0 6 4685 8200 5241
-6552 2 2 0 6 2119 9267 9141
-6553 2 2 0 6 1465 1467 1468
-6554 2 2 0 6 579 1988 8016
-6555 2 2 0 6 2084 2086 2085
-6556 2 2 0 6 2509 2684 2683
-6557 2 2 0 6 7568 7571 7572
-6558 2 2 0 6 78 8375 417
-6559 2 2 0 6 1735 9083 1737
-6560 2 2 0 6 1150 3343 1144
-6561 2 2 0 6 6249 9709 6250
-6562 2 2 0 6 7020 10040 9633
-6563 2 2 0 6 1934 2250 8505
-6564 2 2 0 6 5433 8526 9037
-6565 2 2 0 6 4452 5527 9084
-6566 2 2 0 6 1201 1203 1231
-6567 2 2 0 6 1036 5378 1280
-6568 2 2 0 6 1364 9967 8574
-6569 2 2 0 6 4117 4593 9977
-6570 2 2 0 6 7310 8155 8156
-6571 2 2 0 6 2372 8432 10609
-6572 2 2 0 6 4588 5307 5308
-6573 2 2 0 6 6163 7008 6986
-6574 2 2 0 6 6484 8228 6483
-6575 2 2 0 6 8360 8361 8363
-6576 2 2 0 6 4167 6370 8576
-6577 2 2 0 6 1309 1492 1310
-6578 2 2 0 6 3964 4253 3965
-6579 2 2 0 6 6496 8243 8242
-6580 2 2 0 6 4582 8268 8269
-6581 2 2 0 6 5217 5218 9157
-6582 2 2 0 6 3874 3876 3875
-6583 2 2 0 6 4891 8736 9053
-6584 2 2 0 6 2791 8042 2794
-6585 2 2 0 6 4329 5374 8764
-6586 2 2 0 6 1778 1826 1825
-6587 2 2 0 6 2006 2007 2027
-6588 2 2 0 6 5190 6296 6297
-6589 2 2 0 6 4437 8176 8177
-6590 2 2 0 6 358 528 8440
-6591 2 2 0 6 5423 7871 9111
-6592 2 2 0 6 3998 8251 8252
-6593 2 2 0 6 3440 8201 10836
-6594 2 2 0 6 1277 1309 1310
-6595 2 2 0 6 1237 1239 1238
-6596 2 2 0 6 6315 7204 7203
-6597 2 2 0 6 4170 8883 9539
-6598 2 2 0 6 1740 1741 1742
-6599 2 2 0 6 2777 2914 2915
-6600 2 2 0 6 93 8143 448
-6601 2 2 0 6 6609 10673 10681
-6602 2 2 0 6 83 84 426
-6603 2 2 0 6 2787 8246 2884
-6604 2 2 0 6 374 375 473
-6605 2 2 0 6 4746 6172 5426
-6606 2 2 0 6 365 8237 410
-6607 2 2 0 6 4888 7601 9830
-6608 2 2 0 6 1534 7457 10434
-6609 2 2 0 6 5143 6810 5386
-6610 2 2 0 6 4829 5333 9238
-6611 2 2 0 6 4599 8147 7700
-6612 2 2 0 6 3229 3835 3267
-6613 2 2 0 6 4331 4332 4333
-6614 2 2 0 6 6166 6167 6991
-6615 2 2 0 6 1298 7991 1300
-6616 2 2 0 6 1826 1914 1912
-6617 2 2 0 6 3872 3874 3873
-6618 2 2 0 6 4311 4314 4313
-6619 2 2 0 6 1393 1395 8529
-6620 2 2 0 6 1477 1479 1480
-6621 2 2 0 6 4223 5138 8527
-6622 2 2 0 6 5189 5322 5321
-6623 2 2 0 6 3983 3982 4293
-6624 2 2 0 6 1341 7779 1422
-6625 2 2 0 6 2662 2874 2876
-6626 2 2 0 6 1300 3338 1302
-6627 2 2 0 6 1875 4801 2382
-6628 2 2 0 6 5145 5147 6127
-6629 2 2 0 6 1429 1430 1431
-6630 2 2 0 6 3033 3917 3909
-6631 2 2 0 6 3316 3967 3968
-6632 2 2 0 6 1968 2258 4348
-6633 2 2 0 6 3676 8662 3678
-6634 2 2 0 6 5047 8215 8214
-6635 2 2 0 6 4475 5078 8268
-6636 2 2 0 6 188 189 512
-6637 2 2 0 6 4577 5271 4580
-6638 2 2 0 6 5271 6571 5992
-6639 2 2 0 6 3230 3837 9964
-6640 2 2 0 6 1553 1555 9723
-6641 2 2 0 6 3729 9074 3731
-6642 2 2 0 6 8178 8442 9478
-6643 2 2 0 6 3452 4035 3717
-6644 2 2 0 6 1994 1995 7617
-6645 2 2 0 6 2679 8259 3344
-6646 2 2 0 6 3171 4167 8576
-6647 2 2 0 6 2748 8750 6449
-6648 2 2 0 6 3249 4719 4231
-6649 2 2 0 6 1865 1867 1866
-6650 2 2 0 6 8106 8628 9739
-6651 2 2 0 6 76 8849 8489
-6652 2 2 0 6 4780 9628 9712
-6653 2 2 0 6 2683 2684 3055
-6654 2 2 0 6 8362 9053 8736
-6655 2 2 0 6 1666 1669 8641
-6656 2 2 0 6 3765 3505 9344
-6657 2 2 0 6 8430 8992 9177
-6658 2 2 0 6 1430 1428 1434
-6659 2 2 0 6 3222 3817 8470
-6660 2 2 0 6 4871 5410 5409
-6661 2 2 0 6 4971 7739 4974
-6662 2 2 0 6 2422 3376 8319
-6663 2 2 0 6 2104 2113 2112
-6664 2 2 0 6 2230 2508 2231
-6665 2 2 0 6 2688 2691 2690
-6666 2 2 0 6 6130 8603 9398
-6667 2 2 0 6 4229 4668 7636
-6668 2 2 0 6 3875 3876 3877
-6669 2 2 0 6 5250 5395 6989
-6670 2 2 0 6 4698 5217 7780
-6671 2 2 0 6 1666 8641 1670
-6672 2 2 0 6 290 291 518
-6673 2 2 0 6 3873 3874 3875
-6674 2 2 0 6 4673 5124 5123
-6675 2 2 0 6 1058 4199 8343
-6676 2 2 0 6 1546 8615 8796
-6677 2 2 0 6 2708 8832 2712
-6678 2 2 0 6 3332 3933 3334
-6679 2 2 0 6 4683 9513 6253
-6680 2 2 0 6 2697 3219 2696
-6681 2 2 0 6 3967 3969 3968
-6682 2 2 0 6 6282 6283 9690
-6683 2 2 0 6 3394 3396 9100
-6684 2 2 0 6 5277 7520 7521
-6685 2 2 0 6 3906 3907 8823
-6686 2 2 0 6 1742 1747 1864
-6687 2 2 0 6 2698 8082 2699
-6688 2 2 0 6 2939 3717 8871
-6689 2 2 0 6 2089 2091 8460
-6690 2 2 0 6 3233 3839 3840
-6691 2 2 0 6 1449 1451 1452
-6692 2 2 0 6 3869 3868 3870
-6693 2 2 0 6 3398 3400 7896
-6694 2 2 0 6 8193 9058 8782
-6695 2 2 0 6 185 8088 513
-6696 2 2 0 6 5184 7836 6977
-6697 2 2 0 6 687 8913 689
-6698 2 2 0 6 4352 9342 7928
-6699 2 2 0 6 1947 2246 2247
-6700 2 2 0 6 5277 7522 7646
-6701 2 2 0 6 2555 2556 10854
-6702 2 2 0 6 2981 3812 2980
-6703 2 2 0 6 3953 4871 5409
-6704 2 2 0 6 5967 10470 10481
-6705 2 2 0 6 663 9118 9137
-6706 2 2 0 6 4103 4329 5062
-6707 2 2 0 6 5171 6773 6291
-6708 2 2 0 6 7566 7567 7568
-6709 2 2 0 6 1372 4025 9158
-6710 2 2 0 6 6567 7486 6569
-6711 2 2 0 6 3562 8708 8881
-6712 2 2 0 6 5698 7855 8357
-6713 2 2 0 6 1567 7862 3384
-6714 2 2 0 6 4647 9731 5154
-6715 2 2 0 6 2003 2005 2006
-6716 2 2 0 6 3208 4590 8119
-6717 2 2 0 6 6499 8275 8276
-6718 2 2 0 6 6447 6833 6834
-6719 2 2 0 6 6257 6874 6875
-6720 2 2 0 6 5384 7660 7529
-6721 2 2 0 6 4277 8504 5564
-6722 2 2 0 6 8296 8295 9436
-6723 2 2 0 6 4115 4587 5095
-6724 2 2 0 6 2227 2385 9619
-6725 2 2 0 6 1482 9876 9246
-6726 2 2 0 6 1747 1865 1864
-6727 2 2 0 6 4655 9752 6523
-6728 2 2 0 6 8835 9627 9361
-6729 2 2 0 6 6485 9732 9098
-6730 2 2 0 6 8252 10109 10102
-6731 2 2 0 6 7616 10451 10417
-6732 2 2 0 6 2083 2084 2085
-6733 2 2 0 6 3033 3909 3034
-6734 2 2 0 6 3862 4514 3864
-6735 2 2 0 6 4793 7541 5411
-6736 2 2 0 6 6092 6093 6094
-6737 2 2 0 6 1797 8532 8859
-6738 2 2 0 6 288 289 455
-6739 2 2 0 6 1445 1447 1448
-6740 2 2 0 6 1914 1972 1971
-6741 2 2 0 6 3208 4215 4590
-6742 2 2 0 6 6983 6984 6999
-6743 2 2 0 6 2105 7808 2114
-6744 2 2 0 6 4759 8354 8353
-6745 2 2 0 6 6273 8227 8833
-6746 2 2 0 6 2814 8420 9079
-6747 2 2 0 6 3558 3920 9187
-6748 2 2 0 6 2724 9247 3226
-6749 2 2 0 6 1310 1492 1494
-6750 2 2 0 6 1481 1483 1484
-6751 2 2 0 6 2469 2470 2639
-6752 2 2 0 6 3858 3860 3859
-6753 2 2 0 6 4333 5142 5143
-6754 2 2 0 6 2575 2577 8251
-6755 2 2 0 6 6016 6730 7142
-6756 2 2 0 6 5070 9588 7800
-6757 2 2 0 6 1547 8668 1674
-6758 2 2 0 6 6175 7025 6176
-6759 2 2 0 6 979 988 7768
-6760 2 2 0 6 3359 9394 5505
-6761 2 2 0 6 4961 4962 10341
-6762 2 2 0 6 5458 5459 5745
-6763 2 2 0 6 383 384 7856
-6764 2 2 0 6 6396 8763 9425
-6765 2 2 0 6 1451 1454 1453
-6766 2 2 0 6 3856 3858 3857
-6767 2 2 0 6 3868 4821 8943
-6768 2 2 0 6 8864 9057 9583
-6769 2 2 0 6 2088 2090 2089
-6770 2 2 0 6 3269 9430 6180
-6771 2 2 0 6 5910 6034 6672
-6772 2 2 0 6 5275 5715 9880
-6773 2 2 0 6 2429 2927 8468
-6774 2 2 0 6 2585 2687 2688
-6775 2 2 0 6 3971 4683 4682
-6776 2 2 0 6 5349 5353 5354
-6777 2 2 0 6 5106 5108 8191
-6778 2 2 0 6 5153 8083 6815
-6779 2 2 0 6 2670 9408 2770
-6780 2 2 0 6 4821 8189 8943
-6781 2 2 0 6 1045 3612 9317
-6782 2 2 0 6 4002 8392 9580
-6783 2 2 0 6 3815 4631 3816
-6784 2 2 0 6 2162 8431 8432
-6785 2 2 0 6 7688 9014 9232
-6786 2 2 0 6 2982 3815 3490
-6787 2 2 0 6 169 8407 411
-6788 2 2 0 6 4719 7119 4720
-6789 2 2 0 6 5286 7451 6275
-6790 2 2 0 6 1297 1317 1298
-6791 2 2 0 6 2103 2112 4327
-6792 2 2 0 6 4665 5285 5284
-6793 2 2 0 6 5103 6080 6081
-6794 2 2 0 6 6127 6790 6885
-6795 2 2 0 6 71 8142 409
-6796 2 2 0 6 1627 9342 4352
-6797 2 2 0 6 4671 6138 5486
-6798 2 2 0 6 5013 5872 4163
-6799 2 2 0 6 1294 1295 1296
-6800 2 2 0 6 2632 2994 2995
-6801 2 2 0 6 4075 5055 5681
-6802 2 2 0 6 1350 3977 7551
-6803 2 2 0 6 8585 8646 8587
-6804 2 2 0 6 4879 8791 5408
-6805 2 2 0 6 1735 1745 9083
-6806 2 2 0 6 4264 5128 5607
-6807 2 2 0 6 6690 7641 7642
-6808 2 2 0 6 3860 8181 3862
-6809 2 2 0 6 6415 9186 6680
-6810 2 2 0 6 5944 10133 9825
-6811 2 2 0 6 1406 9629 10211
-6812 2 2 0 6 7800 10723 10827
-6813 2 2 0 6 2563 2808 2807
-6814 2 2 0 6 4590 6036 6037
-6815 2 2 0 6 7478 7479 7477
-6816 2 2 0 6 1295 1297 1296
-6817 2 2 0 6 4137 4763 4764
-6818 2 2 0 6 6083 6084 6081
-6819 2 2 0 6 3318 3320 4021
-6820 2 2 0 6 8504 9492 9029
-6821 2 2 0 6 5991 8149 8150
-6822 2 2 0 6 5571 10066 8684
-6823 2 2 0 6 347 398 9666
-6824 2 2 0 6 7971 7973 7972
-6825 2 2 0 6 2101 2104 2103
-6826 2 2 0 6 2763 9793 9140
-6827 2 2 0 6 2508 2509 2683
-6828 2 2 0 6 4712 5172 4713
-6829 2 2 0 6 1988 1990 5815
-6830 2 2 0 6 3023 8306 3026
-6831 2 2 0 6 8673 8876 9176
-6832 2 2 0 6 384 385 508
-6833 2 2 0 6 1618 1621 9093
-6834 2 2 0 6 8313 9604 9598
-6835 2 2 0 6 2962 9671 9531
-6836 2 2 0 6 2577 2579 2581
-6837 2 2 0 6 2579 2582 2581
-6838 2 2 0 6 3863 3864 3865
-6839 2 2 0 6 3293 4272 3892
-6840 2 2 0 6 6095 6096 6094
-6841 2 2 0 6 5658 7595 5667
-6842 2 2 0 6 1214 8206 3354
-6843 2 2 0 6 2748 2750 8750
-6844 2 2 0 6 2405 8008 9518
-6845 2 2 0 6 4203 6690 6689
-6846 2 2 0 6 5545 7103 8026
-6847 2 2 0 6 2580 6449 8245
-6848 2 2 0 6 2319 9433 3212
-6849 2 2 0 6 2693 2773 2774
-6850 2 2 0 6 4362 4681 4680
-6851 2 2 0 6 8478 9133 9672
-6852 2 2 0 6 3826 4230 8857
-6853 2 2 0 6 2083 2085 5421
-6854 2 2 0 6 5010 6322 6323
-6855 2 2 0 6 5062 5063 6661
-6856 2 2 0 6 6179 6496 8242
-6857 2 2 0 6 7979 8639 7980
-6858 2 2 0 6 4454 6479 9305
-6859 2 2 0 6 3512 9986 9555
-6860 2 2 0 6 1457 1458 1459
-6861 2 2 0 6 1878 4341 1973
-6862 2 2 0 6 5055 5943 5681
-6863 2 2 0 6 1610 1613 9080
-6864 2 2 0 6 2799 2798 9349
-6865 2 2 0 6 1847 1848 1849
-6866 2 2 0 6 2476 2624 2477
-6867 2 2 0 6 912 5412 4270
-6868 2 2 0 6 3098 4326 8093
-6869 2 2 0 6 3752 4116 7671
-6870 2 2 0 6 994 7960 3342
-6871 2 2 0 6 70 409 8161
-6872 2 2 0 6 2485 9253 2650
-6873 2 2 0 6 92 93 448
-6874 2 2 0 6 3400 8421 7896
-6875 2 2 0 6 2868 8664 3067
-6876 2 2 0 6 2610 8807 2813
-6877 2 2 0 6 618 8880 621
-6878 2 2 0 6 3802 4234 4235
-6879 2 2 0 6 1618 9093 1617
-6880 2 2 0 6 6511 7988 7989
-6881 2 2 0 6 6300 6301 8028
-6882 2 2 0 6 5351 6124 8078
-6883 2 2 0 6 4222 5349 8590
-6884 2 2 0 6 687 696 8913
-6885 2 2 0 6 5607 9136 9482
-6886 2 2 0 6 5442 9301 7996
-6887 2 2 0 6 1455 1458 1457
-6888 2 2 0 6 1150 7962 3343
-6889 2 2 0 6 4772 5289 8693
-6890 2 2 0 6 2946 8860 8861
-6891 2 2 0 6 3020 9217 8691
-6892 2 2 0 6 4577 9280 5271
-6893 2 2 0 6 1686 1693 9841
-6894 2 2 0 6 3852 4906 3854
-6895 2 2 0 6 2149 8599 2397
-6896 2 2 0 6 5571 10137 5900
-6897 2 2 0 6 1433 1435 1436
-6898 2 2 0 6 4599 5909 8147
-6899 2 2 0 6 8343 8349 8344
-6900 2 2 0 6 1139 1140 1157
-6901 2 2 0 6 2573 2575 3998
-6902 2 2 0 6 3856 4877 3858
-6903 2 2 0 6 991 7924 7923
-6904 2 2 0 6 5443 8108 7999
-6905 2 2 0 6 2862 9719 5761
-6906 2 2 0 6 7796 10248 10234
-6907 2 2 0 6 1849 1850 1851
-6908 2 2 0 6 4177 9061 5064
-6909 2 2 0 6 4594 4598 4595
-6910 2 2 0 6 5207 6369 6585
-6911 2 2 0 6 1867 1906 1868
-6912 2 2 0 6 1317 2572 2573
-6913 2 2 0 6 5476 5477 5852
-6914 2 2 0 6 6313 7252 6316
-6915 2 2 0 6 8176 8178 8177
-6916 2 2 0 6 2339 2564 8233
-6917 2 2 0 6 2251 8732 8733
-6918 2 2 0 6 2393 11204 11205
-6919 2 2 0 6 3629 9121 4190
-6920 2 2 0 6 4424 9802 9309
-6921 2 2 0 6 292 293 466
-6922 2 2 0 6 3785 3786 4112
-6923 2 2 0 6 6376 10005 6378
-6924 2 2 0 6 4943 8630 8070
-6925 2 2 0 6 2728 2729 9592
-6926 2 2 0 6 8182 8184 8183
-6927 2 2 0 6 4514 8183 8187
-6928 2 2 0 6 1157 1158 1184
-6929 2 2 0 6 1284 1295 1294
-6930 2 2 0 6 3055 3056 4041
-6931 2 2 0 6 5186 7377 6982
-6932 2 2 0 6 4887 5556 9146
-6933 2 2 0 6 2850 3321 5047
-6934 2 2 0 6 5124 5131 5130
-6935 2 2 0 6 5405 5817 5406
-6936 2 2 0 6 1381 9039 1384
-6937 2 2 0 6 1252 9040 1255
-6938 2 2 0 6 6381 6380 9418
-6939 2 2 0 6 1018 1019 1029
-6940 2 2 0 6 763 8423 765
-6941 2 2 0 6 2247 2459 2460
-6942 2 2 0 6 2953 8277 8173
-6943 2 2 0 6 1048 2588 8435
-6944 2 2 0 6 5198 8659 6206
-6945 2 2 0 6 1453 1455 1456
-6946 2 2 0 6 3248 3842 4229
-6947 2 2 0 6 75 8489 475
-6948 2 2 0 6 80 81 474
-6949 2 2 0 6 2701 3361 2703
-6950 2 2 0 6 4921 6347 5399
-6951 2 2 0 6 3575 3577 8495
-6952 2 2 0 6 2734 7702 8457
-6953 2 2 0 6 2944 8860 2946
-6954 2 2 0 6 8494 9811 8613
-6955 2 2 0 6 590 8449 5513
-6956 2 2 0 6 1860 2212 9196
-6957 2 2 0 6 3577 4036 8495
-6958 2 2 0 6 6456 9080 9081
-6959 2 2 0 6 5752 9121 10059
-6960 2 2 0 6 1471 1473 1472
-6961 2 2 0 6 8709 8881 8708
-6962 2 2 0 6 4527 7537 10093
-6963 2 2 0 6 7963 7965 7964
-6964 2 2 0 6 2001 2003 8131
-6965 2 2 0 6 168 411 8400
-6966 2 2 0 6 8420 8573 9079
-6967 2 2 0 6 8301 9874 9896
-6968 2 2 0 6 2808 3015 3014
-6969 2 2 0 6 3528 7938 9289
-6970 2 2 0 6 5879 6658 10623
-6971 2 2 0 6 1669 5430 8641
-6972 2 2 0 6 5095 6700 6045
-6973 2 2 0 6 4386 5433 9037
-6974 2 2 0 6 193 194 7828
-6975 2 2 0 6 3917 4758 4726
-6976 2 2 0 6 4290 4289 4778
-6977 2 2 0 6 5047 8216 8215
-6978 2 2 0 6 650 8617 653
-6979 2 2 0 6 2463 8688 3576
-6980 2 2 0 6 4190 5752 5017
-6981 2 2 0 6 5218 6032 9157
-6982 2 2 0 6 4002 9580 9100
-6983 2 2 0 6 3069 4099 4342
-6984 2 2 0 6 4705 5669 5670
-6985 2 2 0 6 5321 7450 9542
-6986 2 2 0 6 6575 10533 9088
-6987 2 2 0 6 1300 1302 1301
-6988 2 2 0 6 2582 2584 2583
-6989 2 2 0 6 4674 5375 5376
-6990 2 2 0 6 409 8162 8161
-6991 2 2 0 6 6527 6868 7509
-6992 2 2 0 6 5882 6558 7648
-6993 2 2 0 6 3694 4798 9228
-6994 2 2 0 6 2361 2362 2506
-6995 2 2 0 6 3221 9010 9398
-6996 2 2 0 6 4086 9108 4439
-6997 2 2 0 6 3969 3970 3971
-6998 2 2 0 6 6474 9982 9182
-6999 2 2 0 6 385 8151 508
-7000 2 2 0 6 3479 10472 10658
-7001 2 2 0 6 1857 1858 1859
-7002 2 2 0 6 2460 2698 2699
-7003 2 2 0 6 2995 3232 3233
-7004 2 2 0 6 6059 7682 7681
-7005 2 2 0 6 1949 1951 8491
-7006 2 2 0 6 2782 2783 8448
-7007 2 2 0 6 2614 2616 2615
-7008 2 2 0 6 4943 8070 8069
-7009 2 2 0 6 658 9137 8813
-7010 2 2 0 6 3731 9074 5031
-7011 2 2 0 6 3809 5480 5482
-7012 2 2 0 6 6129 6131 6811
-7013 2 2 0 6 7195 7196 7239
-7014 2 2 0 6 6546 7222 7717
-7015 2 2 0 6 2209 9965 5841
-7016 2 2 0 6 1513 1775 1776
-7017 2 2 0 6 3854 3856 3855
-7018 2 2 0 6 2932 4970 3800
-7019 2 2 0 6 3570 5491 8433
-7020 2 2 0 6 3473 8448 5470
-7021 2 2 0 6 2345 2666 8763
-7022 2 2 0 6 5805 6151 6524
-7023 2 2 0 6 191 192 7875
-7024 2 2 0 6 5404 7544 8058
-7025 2 2 0 6 1625 1626 8428
-7026 2 2 0 6 2090 2092 2091
-7027 2 2 0 6 1695 7888 6629
-7028 2 2 0 6 1431 1432 1433
-7029 2 2 0 6 1936 2195 1937
-7030 2 2 0 6 2836 8566 8567
-7031 2 2 0 6 2907 3738 9091
-7032 2 2 0 6 1181 1822 8497
-7033 2 2 0 6 3375 3841 3674
-7034 2 2 0 6 1736 1738 4345
-7035 2 2 0 6 4631 4632 5145
-7036 2 2 0 6 590 592 8449
-7037 2 2 0 6 4884 9598 9604
-7038 2 2 0 6 3191 8482 8954
-7039 2 2 0 6 5941 9905 10019
-7040 2 2 0 6 1906 1936 1907
-7041 2 2 0 6 2475 3596 2623
-7042 2 2 0 6 1667 5455 4553
-7043 2 2 0 6 1622 8412 9342
-7044 2 2 0 6 4701 4736 6175
-7045 2 2 0 6 5469 7645 7916
-7046 2 2 0 6 3216 8005 8133
-7047 2 2 0 6 4082 4084 8906
-7048 2 2 0 6 3854 7933 3856
-7049 2 2 0 6 5801 8545 8544
-7050 2 2 0 6 5535 9035 9223
-7051 2 2 0 6 3861 3862 3863
-7052 2 2 0 6 3650 8698 5857
-7053 2 2 0 6 3963 9275 4824
-7054 2 2 0 6 6479 9590 9305
-7055 2 2 0 6 1146 9371 3561
-7056 2 2 0 6 4854 5633 5634
-7057 2 2 0 6 5989 8149 5991
-7058 2 2 0 6 577 579 8016
-7059 2 2 0 6 6396 9577 9114
-7060 2 2 0 6 186 187 435
-7061 2 2 0 6 2556 2630 2631
-7062 2 2 0 6 3625 3896 4701
-7063 2 2 0 6 1748 1789 5440
-7064 2 2 0 6 2729 2731 8457
-7065 2 2 0 6 2379 8950 2390
-7066 2 2 0 6 6197 8276 8275
-7067 2 2 0 6 5666 6575 9088
-7068 2 2 0 6 2277 2284 8367
-7069 2 2 0 6 4587 5772 6012
-7070 2 2 0 6 6816 6884 6817
-7071 2 2 0 6 4703 8490 5287
-7072 2 2 0 6 77 78 417
-7073 2 2 0 6 2997 4077 3231
-7074 2 2 0 6 993 8642 1003
-7075 2 2 0 6 1490 8611 1763
-7076 2 2 0 6 1980 2352 8672
-7077 2 2 0 6 4431 9382 9480
-7078 2 2 0 6 3896 4736 4701
-7079 2 2 0 6 4107 5345 5041
-7080 2 2 0 6 4289 5505 8076
-7081 2 2 0 6 67 8230 453
-7082 2 2 0 6 7550 9629 10011
-7083 2 2 0 6 1916 1928 1927
-7084 2 2 0 6 5783 5785 5784
-7085 2 2 0 6 5151 5153 6814
-7086 2 2 0 6 8294 8293 8295
-7087 2 2 0 6 3461 3463 8720
-7088 2 2 0 6 4374 8768 4376
-7089 2 2 0 6 7595 7650 10492
-7090 2 2 0 6 2584 2687 2585
-7091 2 2 0 6 3859 3860 3861
-7092 2 2 0 6 2902 4029 3205
-7093 2 2 0 6 4844 5241 5242
-7094 2 2 0 6 3404 3443 8421
-7095 2 2 0 6 4970 7919 7740
-7096 2 2 0 6 769 8681 775
-7097 2 2 0 6 1844 1846 1845
-7098 2 2 0 6 5051 6647 5052
-7099 2 2 0 6 4732 5215 8255
-7100 2 2 0 6 3361 7726 7895
-7101 2 2 0 6 7969 7971 7970
-7102 2 2 0 6 74 75 475
-7103 2 2 0 6 1574 1575 1576
-7104 2 2 0 6 2864 3332 2863
-7105 2 2 0 6 1343 1345 5369
-7106 2 2 0 6 4273 6596 6597
-7107 2 2 0 6 5899 6636 7627
-7108 2 2 0 6 3455 4868 8578
-7109 2 2 0 6 1763 8611 1833
-7110 2 2 0 6 2206 3763 9433
-7111 2 2 0 6 4439 9822 9775
-7112 2 2 0 6 1567 1568 1569
-7113 2 2 0 6 4353 4354 4355
-7114 2 2 0 6 7291 7321 7312
-7115 2 2 0 6 2583 8313 5605
-7116 2 2 0 6 4089 9181 4091
-7117 2 2 0 6 4740 8275 4741
-7118 2 2 0 6 4855 5801 8544
-7119 2 2 0 6 1184 1185 1201
-7120 2 2 0 6 2422 2423 2517
-7121 2 2 0 6 4448 7020 8413
-7122 2 2 0 6 3938 3941 3940
-7123 2 2 0 6 4254 4305 4304
-7124 2 2 0 6 4293 4777 5306
-7125 2 2 0 6 5775 7022 6201
-7126 2 2 0 6 2238 5525 8499
-7127 2 2 0 6 7028 8255 9853
-7128 2 2 0 6 5812 10102 10109
-7129 2 2 0 6 2705 2982 2707
-7130 2 2 0 6 1500 2215 3687
-7131 2 2 0 6 7318 7326 8291
-7132 2 2 0 6 4043 5407 5005
-7133 2 2 0 6 5205 6369 5207
-7134 2 2 0 6 66 453 8234
-7135 2 2 0 6 1932 1934 8505
-7136 2 2 0 6 1830 1831 1945
-7137 2 2 0 6 4281 4282 4601
-7138 2 2 0 6 4621 6058 4622
-7139 2 2 0 6 2774 2773 3033
-7140 2 2 0 6 2009 2011 3538
-7141 2 2 0 6 5472 6129 6128
-7142 2 2 0 6 6176 7025 7026
-7143 2 2 0 6 6466 7610 6467
-7144 2 2 0 6 2957 8176 4437
-7145 2 2 0 6 5308 7197 7198
-7146 2 2 0 6 4099 4870 8360
-7147 2 2 0 6 6489 9770 8408
-7148 2 2 0 6 3666 3668 10098
-7149 2 2 0 6 2617 2658 2659
-7150 2 2 0 6 769 4350 8681
-7151 2 2 0 6 3299 4297 8810
-7152 2 2 0 6 3012 9121 3629
-7153 2 2 0 6 5556 8711 9146
-7154 2 2 0 6 1581 1580 1582
-7155 2 2 0 6 2684 3056 3055
-7156 2 2 0 6 4889 4890 5542
-7157 2 2 0 6 7396 7397 7398
-7158 2 2 0 6 5380 8043 6742
-7159 2 2 0 6 2423 2425 8294
-7160 2 2 0 6 3041 8551 9490
-7161 2 2 0 6 2242 7416 10572
-7162 2 2 0 6 2838 2839 2840
-7163 2 2 0 6 2849 2850 3068
-7164 2 2 0 6 1502 3180 1779
-7165 2 2 0 6 5785 5911 5784
-7166 2 2 0 6 2623 8298 4105
-7167 2 2 0 6 4343 8859 8261
-7168 2 2 0 6 4268 9644 6205
-7169 2 2 0 6 1761 1762 1830
-7170 2 2 0 6 2135 8597 2149
-7171 2 2 0 6 3866 3867 3865
-7172 2 2 0 6 3775 3777 4202
-7173 2 2 0 6 5148 6820 5332
-7174 2 2 0 6 8121 8122 8123
-7175 2 2 0 6 4036 5868 8495
-7176 2 2 0 6 3387 8609 8606
-7177 2 2 0 6 1832 8531 8532
-7178 2 2 0 6 3477 9189 9007
-7179 2 2 0 6 8037 9256 8656
-7180 2 2 0 6 8178 9246 9876
-7181 2 2 0 6 1737 1738 1736
-7182 2 2 0 6 4973 4974 6145
-7183 2 2 0 6 7312 7322 7323
-7184 2 2 0 6 5852 5853 8325
-7185 2 2 0 6 3948 5403 5404
-7186 2 2 0 6 4978 5981 5980
-7187 2 2 0 6 2286 8648 8647
-7188 2 2 0 6 2049 9557 2051
-7189 2 2 0 6 2863 3334 9762
-7190 2 2 0 6 5070 7800 6665
-7191 2 2 0 6 3229 7672 4246
-7192 2 2 0 6 5345 6049 6047
-7193 2 2 0 6 3888 8691 5466
-7194 2 2 0 6 1575 1578 1576
-7195 2 2 0 6 4560 5344 4563
-7196 2 2 0 6 5144 6787 6126
-7197 2 2 0 6 5014 5918 7835
-7198 2 2 0 6 4870 8361 8360
-7199 2 2 0 6 1070 1072 8394
-7200 2 2 0 6 682 684 8585
-7201 2 2 0 6 4062 9366 5514
-7202 2 2 0 6 886 887 889
-7203 2 2 0 6 2585 2688 2690
-7204 2 2 0 6 1727 1729 2745
-7205 2 2 0 6 2517 3377 3376
-7206 2 2 0 6 1545 8668 1547
-7207 2 2 0 6 572 573 571
-7208 2 2 0 6 1850 1852 1851
-7209 2 2 0 6 3377 3662 3378
-7210 2 2 0 6 4200 4845 5076
-7211 2 2 0 6 5205 5207 5206
-7212 2 2 0 6 5457 5459 5458
-7213 2 2 0 6 6804 6916 6805
-7214 2 2 0 6 7554 7556 7579
-7215 2 2 0 6 2817 8701 9338
-7216 2 2 0 6 1982 7460 10120
-7217 2 2 0 6 879 887 886
-7218 2 2 0 6 3068 3932 3931
-7219 2 2 0 6 2158 4338 1820
-7220 2 2 0 6 5242 5331 5330
-7221 2 2 0 6 2551 2662 7829
-7222 2 2 0 6 5399 6347 7847
-7223 2 2 0 6 2394 10099 10015
-7224 2 2 0 6 5166 6765 6725
-7225 2 2 0 6 1873 1966 1968
-7226 2 2 0 6 5354 5355 7191
-7227 2 2 0 6 8815 9022 8816
-7228 2 2 0 6 5383 6852 8791
-7229 2 2 0 6 1389 8728 1391
-7230 2 2 0 6 3045 9930 8802
-7231 2 2 0 6 5271 9280 7188
-7232 2 2 0 6 4086 4088 9108
-7233 2 2 0 6 8262 10545 10552
-7234 2 2 0 6 1463 1465 1464
-7235 2 2 0 6 4158 4629 8937
-7236 2 2 0 6 4572 4827 4573
-7237 2 2 0 6 5296 5765 5764
-7238 2 2 0 6 371 372 418
-7239 2 2 0 6 2092 2094 2093
-7240 2 2 0 6 2691 3321 2850
-7241 2 2 0 6 4239 4669 4670
-7242 2 2 0 6 5025 5718 6338
-7243 2 2 0 6 1861 1862 1863
-7244 2 2 0 6 7556 7558 7805
-7245 2 2 0 6 1065 1068 8256
-7246 2 2 0 6 1027 8666 1033
-7247 2 2 0 6 4098 4892 10223
-7248 2 2 0 6 1848 1850 1849
-7249 2 2 0 6 5781 5783 5782
-7250 2 2 0 6 8120 8121 8528
-7251 2 2 0 6 2356 8876 8675
-7252 2 2 0 6 2457 2636 9225
-7253 2 2 0 6 3015 3315 3316
-7254 2 2 0 6 4338 4339 4340
-7255 2 2 0 6 1401 1400 8932
-7256 2 2 0 6 4889 5542 5543
-7257 2 2 0 6 1695 6629 3362
-7258 2 2 0 6 7838 7841 7840
-7259 2 2 0 6 3472 8516 8517
-7260 2 2 0 6 72 73 515
-7261 2 2 0 6 2690 2691 2849
-7262 2 2 0 6 1040 1042 3453
-7263 2 2 0 6 3840 3963 3962
-7264 2 2 0 6 3248 4229 4328
-7265 2 2 0 6 5382 5384 5383
-7266 2 2 0 6 2953 8173 3158
-7267 2 2 0 6 3280 9467 3283
-7268 2 2 0 6 1866 1867 1868
-7269 2 2 0 6 1255 4908 1270
-7270 2 2 0 6 8103 8106 8104
-7271 2 2 0 6 63 8247 401
-7272 2 2 0 6 3696 4063 8385
-7273 2 2 0 6 2387 9321 7782
-7274 2 2 0 6 7539 9117 9699
-7275 2 2 0 6 2707 2982 3490
-7276 2 2 0 6 2427 2554 2555
-7277 2 2 0 6 4791 4792 4793
-7278 2 2 0 6 2581 2583 5605
-7279 2 2 0 6 6820 6821 6914
-7280 2 2 0 6 6288 7692 7507
-7281 2 2 0 6 4005 8806 8702
-7282 2 2 0 6 5587 8837 7333
-7283 2 2 0 6 1744 1748 8163
-7284 2 2 0 6 3357 7926 8759
-7285 2 2 0 6 4374 5346 8768
-7286 2 2 0 6 878 879 886
-7287 2 2 0 6 1863 1915 1916
-7288 2 2 0 6 4789 4790 4791
-7289 2 2 0 6 7934 7936 7935
-7290 2 2 0 6 5802 7999 8000
-7291 2 2 0 6 6432 9735 9725
-7292 2 2 0 6 1854 1856 1855
-7293 2 2 0 6 1973 2230 1974
-7294 2 2 0 6 3490 3815 3816
-7295 2 2 0 6 4627 5148 4629
-7296 2 2 0 6 2001 8131 5391
-7297 2 2 0 6 1394 8728 6411
-7298 2 2 0 6 4321 4621 4620
-7299 2 2 0 6 4305 5118 4665
-7300 2 2 0 6 3232 8232 3839
-7301 2 2 0 6 1364 8742 9967
-7302 2 2 0 6 4734 8026 5221
-7303 2 2 0 6 873 875 7859
-7304 2 2 0 6 7313 8582 8583
-7305 2 2 0 6 4211 5054 9058
-7306 2 2 0 6 9166 9165 9168
-7307 2 2 0 6 6383 8372 9337
-7308 2 2 0 6 707 10808 10787
-7309 2 2 0 6 1563 1564 1565
-7310 2 2 0 6 4749 7082 7083
-7311 2 2 0 6 4895 4897 8637
-7312 2 2 0 6 4343 8261 8260
-7313 2 2 0 6 6151 9698 6526
-7314 2 2 0 6 1712 1715 1711
-7315 2 2 0 6 1859 1860 1861
-7316 2 2 0 6 2652 2653 2863
-7317 2 2 0 6 1485 7959 1487
-7318 2 2 0 6 8566 8568 8567
-7319 2 2 0 6 8936 9921 9906
-7320 2 2 0 6 1475 1477 1476
-7321 2 2 0 6 1867 1942 1906
-7322 2 2 0 6 2195 2324 2196
-7323 2 2 0 6 2523 2524 2696
-7324 2 2 0 6 4672 4673 5123
-7325 2 2 0 6 6349 7484 6466
-7326 2 2 0 6 180 8557 8558
-7327 2 2 0 6 916 918 919
-7328 2 2 0 6 2046 9126 8117
-7329 2 2 0 6 5130 5131 7951
-7330 2 2 0 6 4007 4563 8108
-7331 2 2 0 6 3188 3294 3293
-7332 2 2 0 6 4535 5475 5476
-7333 2 2 0 6 5984 5985 5986
-7334 2 2 0 6 5352 6123 5351
-7335 2 2 0 6 6131 6812 6811
-7336 2 2 0 6 79 80 8374
-7337 2 2 0 6 4278 9881 5240
-7338 2 2 0 6 1846 1848 1847
-7339 2 2 0 6 2250 2251 2525
-7340 2 2 0 6 5471 5472 6128
-7341 2 2 0 6 1307 1327 8165
-7342 2 2 0 6 1951 2248 8491
-7343 2 2 0 6 2566 8599 8600
-7344 2 2 0 6 1072 8488 8394
-7345 2 2 0 6 1571 1572 1573
-7346 2 2 0 6 2087 2089 2417
-7347 2 2 0 6 3158 4368 3929
-7348 2 2 0 6 4082 8906 4916
-7349 2 2 0 6 5001 8399 5891
-7350 2 2 0 6 2788 2993 3248
-7351 2 2 0 6 4007 4008 4560
-7352 2 2 0 6 5456 5457 5458
-7353 2 2 0 6 5092 6619 6513
-7354 2 2 0 6 1497 8710 8707
-7355 2 2 0 6 4629 6295 8937
-7356 2 2 0 6 1648 9117 4915
-7357 2 2 0 6 5520 8341 10796
-7358 2 2 0 6 184 185 513
-7359 2 2 0 6 1898 1984 1899
-7360 2 2 0 6 3473 5470 3819
-7361 2 2 0 6 4944 8405 8630
-7362 2 2 0 6 865 863 9056
-7363 2 2 0 6 2113 2138 2137
-7364 2 2 0 6 4154 8208 5512
-7365 2 2 0 6 5090 9023 5640
-7366 2 2 0 6 286 287 523
-7367 2 2 0 6 1557 1558 1559
-7368 2 2 0 6 1622 1620 8412
-7369 2 2 0 6 4635 4637 5149
-7370 2 2 0 6 6092 6094 6701
-7371 2 2 0 6 4529 8066 5051
-7372 2 2 0 6 3409 9274 3414
-7373 2 2 0 6 2693 2772 2773
-7374 2 2 0 6 3662 3663 4007
-7375 2 2 0 6 5685 6782 6737
-7376 2 2 0 6 1436 1440 1441
-7377 2 2 0 6 1838 1840 1839
-7378 2 2 0 6 1928 1929 1930
-7379 2 2 0 6 8067 8830 5438
-7380 2 2 0 6 2670 2910 9408
-7381 2 2 0 6 4631 5145 5146
-7382 2 2 0 6 6093 6095 6094
-7383 2 2 0 6 1630 8136 1632
-7384 2 2 0 6 2251 8733 2526
-7385 2 2 0 6 1407 1410 9629
-7386 2 2 0 6 579 580 1035
-7387 2 2 0 6 970 977 4133
-7388 2 2 0 6 5285 6257 6256
-7389 2 2 0 6 7379 7381 7380
-7390 2 2 0 6 7318 8291 7320
-7391 2 2 0 6 1531 8787 1534
-7392 2 2 0 6 2833 3051 9303
-7393 2 2 0 6 1382 8534 9818
-7394 2 2 0 6 8039 10062 9937
-7395 2 2 0 6 2086 2088 2087
-7396 2 2 0 6 4979 9084 6426
-7397 2 2 0 6 3108 3110 3957
-7398 2 2 0 6 2352 2949 8672
-7399 2 2 0 6 7 8 491
-7400 2 2 0 6 1561 1563 1673
-7401 2 2 0 6 1733 1735 1736
-7402 2 2 0 6 1836 1838 1837
-7403 2 2 0 6 4232 5121 7449
-7404 2 2 0 6 3338 7991 7992
-7405 2 2 0 6 4908 8122 8121
-7406 2 2 0 6 1855 1856 1857
-7407 2 2 0 6 187 188 8022
-7408 2 2 0 6 1756 4860 9081
-7409 2 2 0 6 835 879 878
-7410 2 2 0 6 1074 1080 1081
-7411 2 2 0 6 5503 5502 5504
-7412 2 2 0 6 1092 1095 8618
-7413 2 2 0 6 6379 9279 8733
-7414 2 2 0 6 5525 8995 8760
-7415 2 2 0 6 3090 3091 3092
-7416 2 2 0 6 5193 5235 7430
-7417 2 2 0 6 887 890 889
-7418 2 2 0 6 1916 1929 1928
-7419 2 2 0 6 2029 2033 3353
-7420 2 2 0 6 7320 8291 7391
-7421 2 2 0 6 2575 8251 3998
-7422 2 2 0 6 4052 5539 8482
-7423 2 2 0 6 1738 1739 1740
-7424 2 2 0 6 3702 3975 3704
-7425 2 2 0 6 4230 4878 4879
-7426 2 2 0 6 1852 2340 8515
-7427 2 2 0 6 2149 8597 8599
-7428 2 2 0 6 5253 7118 8808
-7429 2 2 0 6 5498 8478 9530
-7430 2 2 0 6 70 71 409
-7431 2 2 0 6 1332 1334 1333
-7432 2 2 0 6 5344 7734 5952
-7433 2 2 0 6 2070 2073 9392
-7434 2 2 0 6 949 10183 10114
-7435 2 2 0 6 1559 1560 1561
-7436 2 2 0 6 5306 7338 7343
-7437 2 2 0 6 2715 8566 2836
-7438 2 2 0 6 3587 3981 9414
-7439 2 2 0 6 2525 2526 2782
-7440 2 2 0 6 4063 4534 4992
-7441 2 2 0 6 3019 8506 3022
-7442 2 2 0 6 3334 3934 9617
-7443 2 2 0 6 8072 10388 10280
-7444 2 2 0 6 2333 2563 2562
-7445 2 2 0 6 2647 2649 8289
-7446 2 2 0 6 2506 2507 2667
-7447 2 2 0 6 3153 4050 4051
-7448 2 2 0 6 5599 7165 8492
-7449 2 2 0 6 1009 8658 1021
-7450 2 2 0 6 3557 3641 8738
-7451 2 2 0 6 5502 9187 7994
-7452 2 2 0 6 1569 1570 1571
-7453 2 2 0 6 3412 5547 8955
-7454 2 2 0 6 2215 3688 3687
-7455 2 2 0 6 2425 2427 8293
-7456 2 2 0 6 7497 9037 8526
-7457 2 2 0 6 8706 9465 8816
-7458 2 2 0 6 3327 8861 9184
-7459 2 2 0 6 3934 4575 4576
-7460 2 2 0 6 4561 6666 6667
-7461 2 2 0 6 4044 8841 8842
-7462 2 2 0 6 1561 1562 1563
-7463 2 2 0 6 1493 1761 1492
-7464 2 2 0 6 4332 5144 5142
-7465 2 2 0 6 7782 7784 7783
-7466 2 2 0 6 6557 8742 8741
-7467 2 2 0 6 2419 2421 2422
-7468 2 2 0 6 6091 6093 6092
-7469 2 2 0 6 4351 8616 8615
-7470 2 2 0 6 2792 2793 8755
-7471 2 2 0 6 977 978 984
-7472 2 2 0 6 1843 1844 1845
-7473 2 2 0 6 3775 3776 3777
-7474 2 2 0 6 4652 5160 6068
-7475 2 2 0 6 6127 6885 6931
-7476 2 2 0 6 4711 4712 4713
-7477 2 2 0 6 2825 8278 3988
-7478 2 2 0 6 4152 5512 8888
-7479 2 2 0 6 5035 5313 8753
-7480 2 2 0 6 2068 2082 2083
-7481 2 2 0 6 1983 2238 8499
-7482 2 2 0 6 4304 4305 4306
-7483 2 2 0 6 4683 5225 5224
-7484 2 2 0 6 5458 5745 5880
-7485 2 2 0 6 6352 7597 7637
-7486 2 2 0 6 7897 7898 7899
-7487 2 2 0 6 834 835 878
-7488 2 2 0 6 1842 1844 1843
-7489 2 2 0 6 3094 3095 3096
-7490 2 2 0 6 3819 5470 5471
-7491 2 2 0 6 4670 4712 4711
-7492 2 2 0 6 1020 1040 8644
-7493 2 2 0 6 2365 2636 2457
-7494 2 2 0 6 2140 8145 2332
-7495 2 2 0 6 5987 6293 5989
-7496 2 2 0 6 1240 8454 5414
-7497 2 2 0 6 1249 8447 9180
-7498 2 2 0 6 2325 2324 2405
-7499 2 2 0 6 8067 9306 8830
-7500 2 2 0 6 5683 5685 5684
-7501 2 2 0 6 5443 5802 5801
-7502 2 2 0 6 6196 7093 7092
-7503 2 2 0 6 5378 7474 7004
-7504 2 2 0 6 1578 1580 1579
-7505 2 2 0 6 5882 5883 6558
-7506 2 2 0 6 5666 5945 6575
-7507 2 2 0 6 5084 5253 8808
-7508 2 2 0 6 2241 2393 2394
-7509 2 2 0 6 2255 2369 2523
-7510 2 2 0 6 3495 3496 3497
-7511 2 2 0 6 4154 4155 4156
-7512 2 2 0 6 6173 7066 6032
-7513 2 2 0 6 1810 8887 1941
-7514 2 2 0 6 1792 1876 1793
-7515 2 2 0 6 1068 1070 3365
-7516 2 2 0 6 373 374 8166
-7517 2 2 0 6 2925 9228 9602
-7518 2 2 0 6 5563 9615 8326
-7519 2 2 0 6 4184 8217 10936
-7520 2 2 0 6 4036 5861 5868
-7521 2 2 0 6 4203 7530 6690
-7522 2 2 0 6 5502 7994 5504
-7523 2 2 0 6 5586 6399 8718
-7524 2 2 0 6 4346 8723 8724
-7525 2 2 0 6 890 914 915
-7526 2 2 0 6 2351 9024 5516
-7527 2 2 0 6 2526 8733 2877
-7528 2 2 0 6 7748 10029 9510
-7529 2 2 0 6 2712 9153 8570
-7530 2 2 0 6 984 985 994
-7531 2 2 0 6 5305 8944 7164
-7532 2 2 0 6 908 910 909
-7533 2 2 0 6 1298 1300 1299
-7534 2 2 0 6 4368 5563 4370
-7535 2 2 0 6 6247 7961 6248
-7536 2 2 0 6 5817 7329 7095
-7537 2 2 0 6 4018 9497 4988
-7538 2 2 0 6 6587 10561 9697
-7539 2 2 0 6 6852 8792 8791
-7540 2 2 0 6 1579 1580 1581
-7541 2 2 0 6 875 881 4141
-7542 2 2 0 6 4008 4561 4560
-7543 2 2 0 6 3961 4874 7926
-7544 2 2 0 6 1392 3392 8503
-7545 2 2 0 6 5408 8791 8858
-7546 2 2 0 6 2188 2456 2258
-7547 2 2 0 6 3624 3896 3625
-7548 2 2 0 6 8327 8329 8328
-7549 2 2 0 6 5124 8547 5132
-7550 2 2 0 6 3576 8688 4039
-7551 2 2 0 6 984 994 1038
-7552 2 2 0 6 1479 1481 1480
-7553 2 2 0 6 1899 1984 1985
-7554 2 2 0 6 2106 2114 2115
-7555 2 2 0 6 1966 2188 1968
-7556 2 2 0 6 4189 4978 4977
-7557 2 2 0 6 1050 1052 8417
-7558 2 2 0 6 4316 8159 4317
-7559 2 2 0 6 6546 7717 9149
-7560 2 2 0 6 5025 5717 5718
-7561 2 2 0 6 5987 5989 5988
-7562 2 2 0 6 4720 7128 7584
-7563 2 2 0 6 8269 8271 8270
-7564 2 2 0 6 4413 9058 5108
-7565 2 2 0 6 1502 1779 1503
-7566 2 2 0 6 2425 8293 8294
-7567 2 2 0 6 6449 8750 8751
-7568 2 2 0 6 1938 2197 2327
-7569 2 2 0 6 3647 8497 8498
-7570 2 2 0 6 4244 4310 4258
-7571 2 2 0 6 5585 8837 5587
-7572 2 2 0 6 4339 5855 4340
-7573 2 2 0 6 997 4104 6472
-7574 2 2 0 6 68 69 517
-7575 2 2 0 6 2251 2526 2525
-7576 2 2 0 6 2645 9868 3012
-7577 2 2 0 6 1856 1858 1857
-7578 2 2 0 6 4373 4375 8661
-7579 2 2 0 6 5807 5808 6694
-7580 2 2 0 6 5147 6790 6127
-7581 2 2 0 6 2419 2422 8319
-7582 2 2 0 6 417 8375 8376
-7583 2 2 0 6 2961 8809 3657
-7584 2 2 0 6 3447 6391 8811
-7585 2 2 0 6 5578 9115 9577
-7586 2 2 0 6 4176 5065 9765
-7587 2 2 0 6 1334 1336 1335
-7588 2 2 0 6 1907 1936 1937
-7589 2 2 0 6 1565 1567 3384
-7590 2 2 0 6 2671 2770 3757
-7591 2 2 0 6 4158 4274 4627
-7592 2 2 0 6 4653 5119 8393
-7593 2 2 0 6 8709 9539 8883
-7594 2 2 0 6 4448 7019 7020
-7595 2 2 0 6 6379 8733 8732
-7596 2 2 0 6 1953 1955 8826
-7597 2 2 0 6 1009 9289 8658
-7598 2 2 0 6 2313 8657 9352
-7599 2 2 0 6 4170 9539 8710
-7600 2 2 0 6 1338 1340 1339
-7601 2 2 0 6 2539 2541 2547
-7602 2 2 0 6 2659 2740 2741
-7603 2 2 0 6 5187 6163 6986
-7604 2 2 0 6 2850 5047 8214
-7605 2 2 0 6 2754 8486 8484
-7606 2 2 0 6 5930 8589 6365
-7607 2 2 0 6 1245 5444 5445
-7608 2 2 0 6 5668 7803 7804
-7609 2 2 0 6 868 870 991
-7610 2 2 0 6 1029 1030 1036
-7611 2 2 0 6 1175 1174 1198
-7612 2 2 0 6 3222 3223 3817
-7613 2 2 0 6 4574 4579 5277
-7614 2 2 0 6 2175 7686 4410
-7615 2 2 0 6 4834 4918 8198
-7616 2 2 0 6 4189 8283 4978
-7617 2 2 0 6 1431 1433 10898
-7618 2 2 0 6 896 898 897
-7619 2 2 0 6 1083 1084 1081
-7620 2 2 0 6 1851 1852 1853
-7621 2 2 0 6 3375 3374 3809
-7622 2 2 0 6 4355 4890 4889
-7623 2 2 0 6 6086 6087 6088
-7624 2 2 0 6 4370 5563 8326
-7625 2 2 0 6 2230 7716 2509
-7626 2 2 0 6 8647 8649 9109
-7627 2 2 0 6 1583 1582 1585
-7628 2 2 0 6 7557 7578 7559
-7629 2 2 0 6 3702 7889 3975
-7630 2 2 0 6 885 891 892
-7631 2 2 0 6 368 476 8284
-7632 2 2 0 6 2393 2692 2394
-7633 2 2 0 6 3650 3652 8698
-7634 2 2 0 6 7737 10840 10890
-7635 2 2 0 6 870 872 873
-7636 2 2 0 6 1467 1469 1468
-7637 2 2 0 6 1580 1584 1582
-7638 2 2 0 6 2582 8245 8799
-7639 2 2 0 6 3220 3684 3814
-7640 2 2 0 6 4147 4659 4232
-7641 2 2 0 6 2641 7911 2992
-7642 2 2 0 6 4877 7934 7935
-7643 2 2 0 6 8354 8785 8786
-7644 2 2 0 6 1878 8805 4341
-7645 2 2 0 6 1930 1931 1932
-7646 2 2 0 6 3497 3801 3802
-7647 2 2 0 6 1575 4395 1578
-7648 2 2 0 6 162 525 8322
-7649 2 2 0 6 1674 8668 4418
-7650 2 2 0 6 5470 5472 5471
-7651 2 2 0 6 4902 6342 6271
-7652 2 2 0 6 4142 7061 5201
-7653 2 2 0 6 3739 10792 8341
-7654 2 2 0 6 2082 2084 2083
-7655 2 2 0 6 2115 2129 2130
-7656 2 2 0 6 4232 4659 5121
-7657 2 2 0 6 4366 5126 4615
-7658 2 2 0 6 4732 5614 5613
-7659 2 2 0 6 3794 8632 4999
-7660 2 2 0 6 4903 4904 8029
-7661 2 2 0 6 873 874 875
-7662 2 2 0 6 1214 1228 1229
-7663 2 2 0 6 4202 4203 6689
-7664 2 2 0 6 3221 8603 8448
-7665 2 2 0 6 2587 8682 8683
-7666 2 2 0 6 5468 9217 6387
-7667 2 2 0 6 2698 2717 2980
-7668 2 2 0 6 4004 5443 4855
-7669 2 2 0 6 5053 7737 7738
-7670 2 2 0 6 7970 7971 7972
-7671 2 2 0 6 2243 2244 8456
-7672 2 2 0 6 1083 1087 1084
-7673 2 2 0 6 3838 4242 4241
-7674 2 2 0 6 4193 5502 4739
-7675 2 2 0 6 5742 5743 5744
-7676 2 2 0 6 5048 6384 6386
-7677 2 2 0 6 3350 7120 4031
-7678 2 2 0 6 7966 7969 7968
-7679 2 2 0 6 728 8697 729
-7680 2 2 0 6 8704 9013 8707
-7681 2 2 0 6 892 894 893
-7682 2 2 0 6 1555 1557 1869
-7683 2 2 0 6 2526 2783 2782
-7684 2 2 0 6 2802 3374 2804
-7685 2 2 0 6 5042 6006 6007
-7686 2 2 0 6 4655 6523 6157
-7687 2 2 0 6 1620 1757 8412
-7688 2 2 0 6 307 308 9139
-7689 2 2 0 6 181 182 427
-7690 2 2 0 6 2243 2461 2245
-7691 2 2 0 6 3931 3932 4291
-7692 2 2 0 6 4223 4225 5138
-7693 2 2 0 6 4756 4757 5162
-7694 2 2 0 6 3329 3331 5748
-7695 2 2 0 6 2535 7882 2744
-7696 2 2 0 6 5274 7068 8061
-7697 2 2 0 6 4924 8550 8403
-7698 2 2 0 6 1970 2512 8732
-7699 2 2 0 6 3155 3156 9106
-7700 2 2 0 6 3256 3258 3257
-7701 2 2 0 6 5818 5817 7095
-7702 2 2 0 6 163 8366 525
-7703 2 2 0 6 7789 7799 7793
-7704 2 2 0 6 3350 8130 7120
-7705 2 2 0 6 8208 8211 8209
-7706 2 2 0 6 4557 8873 3904
-7707 2 2 0 6 6582 10557 10288
-7708 2 2 0 6 3031 9373 3709
-7709 2 2 0 6 3376 3377 3378
-7710 2 2 0 6 2479 3696 8387
-7711 2 2 0 6 3442 9314 9603
-7712 2 2 0 6 66 67 453
-7713 2 2 0 6 1925 1926 2243
-7714 2 2 0 6 1627 4352 3363
-7715 2 2 0 6 3815 4632 4631
-7716 2 2 0 6 3909 3917 4726
-7717 2 2 0 6 1924 2187 8911
-7718 2 2 0 6 902 904 905
-7719 2 2 0 6 2170 2169 2171
-7720 2 2 0 6 2445 3189 2447
-7721 2 2 0 6 4504 4505 4635
-7722 2 2 0 6 4674 9031 4676
-7723 2 2 0 6 8548 8549 9225
-7724 2 2 0 6 6453 9547 9609
-7725 2 2 0 6 1229 1236 1237
-7726 2 2 0 6 1573 1575 1574
-7727 2 2 0 6 1416 1418 9643
-7728 2 2 0 6 4575 4577 4576
-7729 2 2 0 6 4158 4627 4629
-7730 2 2 0 6 5173 5180 5181
-7731 2 2 0 6 2250 2525 9009
-7732 2 2 0 6 5105 6076 6036
-7733 2 2 0 6 4872 5286 6275
-7734 2 2 0 6 6086 6088 6699
-7735 2 2 0 6 1110 3990 8856
-7736 2 2 0 6 2361 7881 7897
-7737 2 2 0 6 3193 8139 4403
-7738 2 2 0 6 8294 8295 8296
-7739 2 2 0 6 3857 3858 3859
-7740 2 2 0 6 3672 3946 3671
-7741 2 2 0 6 3929 4368 4369
-7742 2 2 0 6 3113 3923 9589
-7743 2 2 0 6 4223 8527 4224
-7744 2 2 0 6 4856 8544 5790
-7745 2 2 0 6 4182 4183 7514
-7746 2 2 0 6 6369 7533 6585
-7747 2 2 0 6 2547 7929 7886
-7748 2 2 0 6 5631 8126 10245
-7749 2 2 0 6 1480 1481 9248
-7750 2 2 0 6 7504 8029 10367
-7751 2 2 0 6 2167 2169 2168
-7752 2 2 0 6 3940 3941 3942
-7753 2 2 0 6 176 8591 419
-7754 2 2 0 6 4340 5855 5965
-7755 2 2 0 6 4363 7421 4364
-7756 2 2 0 6 4847 8670 4910
-7757 2 2 0 6 4237 4238 4239
-7758 2 2 0 6 5404 5405 5406
-7759 2 2 0 6 4613 5179 5606
-7760 2 2 0 6 6129 6130 6131
-7761 2 2 0 6 4202 8003 3775
-7762 2 2 0 6 1206 8345 8441
-7763 2 2 0 6 364 365 410
-7764 2 2 0 6 2718 8631 3223
-7765 2 2 0 6 1160 1187 1329
-7766 2 2 0 6 2256 2257 2472
-7767 2 2 0 6 2909 3215 3214
-7768 2 2 0 6 4786 4788 4787
-7769 2 2 0 6 4787 4788 4789
-7770 2 2 0 6 5986 5987 5988
-7771 2 2 0 6 2744 7883 10896
-7772 2 2 0 6 5652 7803 5668
-7773 2 2 0 6 1559 1561 8241
-7774 2 2 0 6 2752 2754 8484
-7775 2 2 0 6 6377 10256 7481
-7776 2 2 0 6 3378 3662 4004
-7777 2 2 0 6 684 8646 8585
-7778 2 2 0 6 7558 7560 7570
-7779 2 2 0 6 865 9056 871
-7780 2 2 0 6 7282 9148 7284
-7781 2 2 0 6 64 65 521
-7782 2 2 0 6 1087 1091 1088
-7783 2 2 0 6 2557 2788 2558
-7784 2 2 0 6 3318 3319 3320
-7785 2 2 0 6 3693 9240 5568
-7786 2 2 0 6 5701 7549 10294
-7787 2 2 0 6 1062 1065 1066
-7788 2 2 0 6 1250 1259 1252
-7789 2 2 0 6 2517 3376 2422
-7790 2 2 0 6 4156 4157 4158
-7791 2 2 0 6 4503 4505 4504
-7792 2 2 0 6 4282 4602 4601
-7793 2 2 0 6 4229 4671 4328
-7794 2 2 0 6 1893 3540 9389
-7795 2 2 0 6 4808 6374 6373
-7796 2 2 0 6 1757 6352 8412
-7797 2 2 0 6 1245 8447 1246
-7798 2 2 0 6 8261 8859 8265
-7799 2 2 0 6 1920 8987 8988
-7800 2 2 0 6 8952 9200 8960
-7801 2 2 0 6 4074 5975 9392
-7802 2 2 0 6 3331 7499 5748
-7803 2 2 0 6 1197 1213 1214
-7804 2 2 0 6 4632 5147 5145
-7805 2 2 0 6 4671 5486 5481
-7806 2 2 0 6 4461 6489 4463
-7807 2 2 0 6 6383 9036 9051
-7808 2 2 0 6 5496 9153 8832
-7809 2 2 0 6 2457 9225 2637
-7810 2 2 0 6 919 918 920
-7811 2 2 0 6 1080 1083 1081
-7812 2 2 0 6 2718 3222 2719
-7813 2 2 0 6 4102 4891 9053
-7814 2 2 0 6 3951 3952 4281
-7815 2 2 0 6 4152 4154 5512
-7816 2 2 0 6 5095 6045 5390
-7817 2 2 0 6 5486 6288 6287
-7818 2 2 0 6 5444 8594 9005
-7819 2 2 0 6 2550 7932 7931
-7820 2 2 0 6 7041 8862 8430
-7821 2 2 0 6 1336 1338 1337
-7822 2 2 0 6 3688 4098 4097
-7823 2 2 0 6 5138 5139 6797
-7824 2 2 0 6 4711 5196 7695
-7825 2 2 0 6 4673 8547 5124
-7826 2 2 0 6 1151 1174 1152
-7827 2 2 0 6 2410 2412 2921
-7828 2 2 0 6 4726 5251 4727
-7829 2 2 0 6 8517 8516 8518
-7830 2 2 0 6 2666 3487 8763
-7831 2 2 0 6 1060 1062 8235
-7832 2 2 0 6 570 572 571
-7833 2 2 0 6 1790 2158 1820
-7834 2 2 0 6 4098 5307 4588
-7835 2 2 0 6 5658 5659 5660
-7836 2 2 0 6 4955 9950 9886
-7837 2 2 0 6 3813 4000 8202
-7838 2 2 0 6 900 902 901
-7839 2 2 0 6 1840 1842 1841
-7840 2 2 0 6 1937 2195 2196
-7841 2 2 0 6 2461 2718 2462
-7842 2 2 0 6 3883 4684 4685
-7843 2 2 0 6 4791 4790 4792
-7844 2 2 0 6 5444 5446 5445
-7845 2 2 0 6 3792 5683 5442
-7846 2 2 0 6 5131 5133 6739
-7847 2 2 0 6 3343 7963 7964
-7848 2 2 0 6 8260 8261 8262
-7849 2 2 0 6 4879 5383 8791
-7850 2 2 0 6 5487 9066 8810
-7851 2 2 0 6 62 63 401
-7852 2 2 0 6 881 884 885
-7853 2 2 0 6 1311 1490 1312
-7854 2 2 0 6 2728 3228 3000
-7855 2 2 0 6 5455 5457 5456
-7856 2 2 0 6 5975 5974 5976
-7857 2 2 0 6 6356 6358 6359
-7858 2 2 0 6 3384 7862 7863
-7859 2 2 0 6 366 514 8237
-7860 2 2 0 6 7048 8573 8118
-7861 2 2 0 6 362 363 522
-7862 2 2 0 6 1742 1741 1744
-7863 2 2 0 6 3266 3306 4182
-7864 2 2 0 6 5662 5664 5666
-7865 2 2 0 6 2405 2557 2406
-7866 2 2 0 6 651 9635 8952
-7867 2 2 0 6 5132 8547 6343
-7868 2 2 0 6 829 833 832
-7869 2 2 0 6 1091 1094 1092
-7870 2 2 0 6 1058 1060 4199
-7871 2 2 0 6 4369 4368 4370
-7872 2 2 0 6 8000 8002 8001
-7873 2 2 0 6 890 915 8593
-7874 2 2 0 6 4451 5737 9298
-7875 2 2 0 6 5811 10203 10185
-7876 2 2 0 6 904 906 905
-7877 2 2 0 6 1868 1906 1907
-7878 2 2 0 6 2183 2360 2361
-7879 2 2 0 6 2783 2878 3221
-7880 2 2 0 6 3320 3322 3323
-7881 2 2 0 6 3215 4124 4122
-7882 2 2 0 6 8122 8124 8123
-7883 2 2 0 6 4005 8807 8806
-7884 2 2 0 6 5512 8210 8888
-7885 2 2 0 6 6461 8551 9624
-7886 2 2 0 6 866 867 868
-7887 2 2 0 6 5035 8753 5326
-7888 2 2 0 6 2309 9105 2501
-7889 2 2 0 6 4202 3777 4203
-7890 2 2 0 6 4371 4372 4373
-7891 2 2 0 6 4563 5344 5952
-7892 2 2 0 6 2868 2870 8664
-7893 2 2 0 6 1033 8666 1101
-7894 2 2 0 6 2573 2574 2575
-7895 2 2 0 6 4577 4580 4578
-7896 2 2 0 6 2987 3792 5442
-7897 2 2 0 6 4845 7233 5076
-7898 2 2 0 6 5824 6570 8197
-7899 2 2 0 6 1024 8619 8620
-7900 2 2 0 6 8675 9805 9683
-7901 2 2 0 6 1099 8017 1100
-7902 2 2 0 6 2325 2405 2406
-7903 2 2 0 6 5930 6364 6363
-7904 2 2 0 6 1574 3364 8129
-7905 2 2 0 6 7114 8793 8794
-7906 2 2 0 6 8673 8675 8876
-7907 2 2 0 6 3519 4451 9298
-7908 2 2 0 6 178 179 477
-7909 2 2 0 6 920 922 923
-7910 2 2 0 6 1133 1151 1134
-7911 2 2 0 6 1565 1566 1567
-7912 2 2 0 6 3663 4008 4007
-7913 2 2 0 6 4375 4376 4377
-7914 2 2 0 6 2418 2419 8319
-7915 2 2 0 6 8544 8545 9647
-7916 2 2 0 6 1902 1924 3470
-7917 2 2 0 6 1238 1240 5414
-7918 2 2 0 6 4582 8269 8270
-7919 2 2 0 6 2782 8448 3473
-7920 2 2 0 6 2648 9525 8139
-7921 2 2 0 6 1884 1979 9928
-7922 2 2 0 6 1220 1265 1221
-7923 2 2 0 6 1837 1838 1839
-7924 2 2 0 6 2662 2663 2874
-7925 2 2 0 6 1643 9699 9117
-7926 2 2 0 6 8706 8816 9013
-7927 2 2 0 6 2224 2226 2494
-7928 2 2 0 6 3920 9677 7994
-7929 2 2 0 6 3848 5811 3850
-7930 2 2 0 6 5403 6059 5405
-7931 2 2 0 6 4827 6315 6312
-7932 2 2 0 6 2281 2286 8647
-7933 2 2 0 6 3235 9649 3236
-7934 2 2 0 6 5445 5446 5884
-7935 2 2 0 6 185 186 8088
-7936 2 2 0 6 2978 9197 2997
-7937 2 2 0 6 165 8369 454
-7938 2 2 0 6 5884 5969 5885
-7939 2 2 0 6 827 829 828
-7940 2 2 0 6 1490 1763 1491
-7941 2 2 0 6 1951 1953 2248
-7942 2 2 0 6 5123 5124 5130
-7943 2 2 0 6 4808 7706 6374
-7944 2 2 0 6 172 478 8371
-7945 2 2 0 6 180 181 8557
-7946 2 2 0 6 1006 1007 1018
-7947 2 2 0 6 1094 1133 1095
-7948 2 2 0 6 1611 3359 1755
-7949 2 2 0 6 4505 4637 4635
-7950 2 2 0 6 4176 5064 5065
-7951 2 2 0 6 5673 5743 5742
-7952 2 2 0 6 1284 8120 1295
-7953 2 2 0 6 360 452 8359
-7954 2 2 0 6 832 833 834
-7955 2 2 0 6 4359 4362 4361
-7956 2 2 0 6 4000 4458 4630
-7957 2 2 0 6 5197 7053 6224
-7958 2 2 0 6 167 8400 526
-7959 2 2 0 6 1285 1311 1286
-7960 2 2 0 6 1878 1973 1879
-7961 2 2 0 6 5383 6120 6852
-7962 2 2 0 6 6275 7643 6276
-7963 2 2 0 6 2788 7834 2789
-7964 2 2 0 6 5443 7999 5802
-7965 2 2 0 6 2405 9518 2557
-7966 2 2 0 6 284 285 436
-7967 2 2 0 6 2093 2095 2097
-7968 2 2 0 6 5209 5465 6177
-7969 2 2 0 6 6360 6361 6359
-7970 2 2 0 6 5148 6821 6820
-7971 2 2 0 6 2832 2891 8717
-7972 2 2 0 6 6457 8802 9930
-7973 2 2 0 6 1183 1196 1197
-7974 2 2 0 6 1244 1245 1246
-7975 2 2 0 6 1821 1836 1835
-7976 2 2 0 6 1853 1854 1855
-7977 2 2 0 6 4637 5150 5149
-7978 2 2 0 6 3331 4702 5193
-7979 2 2 0 6 4629 5148 5332
-7980 2 2 0 6 5889 5897 8411
-7981 2 2 0 6 592 595 8449
-7982 2 2 0 6 970 971 977
-7983 2 2 0 6 1570 1572 1571
-7984 2 2 0 6 1858 1860 1859
-7985 2 2 0 6 4372 4374 4373
-7986 2 2 0 6 4860 6455 6456
-7987 2 2 0 6 3044 3046 3045
-7988 2 2 0 6 5128 6014 5607
-7989 2 2 0 6 4382 8476 8472
-7990 2 2 0 6 1024 8621 8623
-7991 2 2 0 6 1109 1110 1111
-7992 2 2 0 6 1832 1833 1925
-7993 2 2 0 6 4215 5105 4590
-7994 2 2 0 6 4680 5186 5188
-7995 2 2 0 6 4496 5843 4498
-7996 2 2 0 6 6122 6330 6839
-7997 2 2 0 6 1925 2245 8531
-7998 2 2 0 6 2847 3356 8575
-7999 2 2 0 6 1103 1106 1105
-8000 2 2 0 6 1111 1112 1113
-8001 2 2 0 6 1461 1462 1463
-8002 2 2 0 6 1747 3352 1865
-8003 2 2 0 6 3817 3818 4223
-8004 2 2 0 6 5859 7363 5860
-8005 2 2 0 6 279 280 428
-8006 2 2 0 6 368 369 476
-8007 2 2 0 6 1591 1593 1592
-8008 2 2 0 6 1718 1724 1752
-8009 2 2 0 6 2145 8014 4394
-8010 2 2 0 6 4297 5487 8810
-8011 2 2 0 6 1763 1832 1764
-8012 2 2 0 6 2473 2634 2472
-8013 2 2 0 6 4007 4560 4563
-8014 2 2 0 6 5475 5477 5476
-8015 2 2 0 6 170 524 8407
-8016 2 2 0 6 2699 8840 2701
-8017 2 2 0 6 2813 8807 4005
-8018 2 2 0 6 2673 9319 2880
-8019 2 2 0 6 386 387 450
-8020 2 2 0 6 1084 1087 1088
-8021 2 2 0 6 2557 2993 2788
-8022 2 2 0 6 4265 5429 5170
-8023 2 2 0 6 1802 4406 9204
-8024 2 2 0 6 885 892 893
-8025 2 2 0 6 1845 1846 1847
-8026 2 2 0 6 1844 2341 1846
-8027 2 2 0 6 4110 5415 5088
-8028 2 2 0 6 5678 5679 5680
-8029 2 2 0 6 5664 5945 5666
-8030 2 2 0 6 2056 10677 10676
-8031 2 2 0 6 4595 4599 7700
-8032 2 2 0 6 1046 1048 8435
-8033 2 2 0 6 1088 1813 8774
-8034 2 2 0 6 2072 9127 2075
-8035 2 2 0 6 1301 1302 1323
-8036 2 2 0 6 1852 1854 1853
-8037 2 2 0 6 1752 1899 4398
-8038 2 2 0 6 1243 5444 1245
-8039 2 2 0 6 3024 9375 8135
-8040 2 2 0 6 968 969 972
-8041 2 2 0 6 1266 1265 1285
-8042 2 2 0 6 3186 3188 3187
-8043 2 2 0 6 4902 6271 6270
-8044 2 2 0 6 914 916 915
-8045 2 2 0 6 3870 4803 3872
-8046 2 2 0 6 1021 8658 1499
-8047 2 2 0 6 1487 8817 4107
-8048 2 2 0 6 1571 1573 1574
-8049 2 2 0 6 2097 2105 2106
-8050 2 2 0 6 2195 2404 2324
-8051 2 2 0 6 5003 6567 6566
-8052 2 2 0 6 6512 7988 6511
-8053 2 2 0 6 5496 7074 9153
-8054 2 2 0 6 1583 1585 1586
-8055 2 2 0 6 1999 2001 2000
-8056 2 2 0 6 4370 4372 4371
-8057 2 2 0 6 3321 5048 5047
-8058 2 2 0 6 835 8829 3370
-8059 2 2 0 6 1974 2232 9475
-8060 2 2 0 6 108 109 469
-8061 2 2 0 6 1838 2229 1840
-8062 2 2 0 6 2533 2535 2744
-8063 2 2 0 6 4152 4153 4154
-8064 2 2 0 6 3866 4821 3868
-8065 2 2 0 6 3345 6608 9101
-8066 2 2 0 6 5361 5362 5363
-8067 2 2 0 6 5383 5384 6120
-8068 2 2 0 6 4592 6686 6688
-8069 2 2 0 6 8690 9007 9189
-8070 2 2 0 6 2480 5492 4357
-8071 2 2 0 6 5149 5150 6804
-8072 2 2 0 6 8264 8266 8262
-8073 2 2 0 6 3526 9069 4118
-8074 2 2 0 6 172 173 478
-8075 2 2 0 6 2692 2693 2394
-8076 2 2 0 6 4305 4665 4306
-8077 2 2 0 6 4522 5350 5351
-8078 2 2 0 6 4606 5296 5764
-8079 2 2 0 6 4402 8289 8772
-8080 2 2 0 6 7810 10888 7811
-8081 2 2 0 6 259 260 8458
-8082 2 2 0 6 1037 1098 1139
-8083 2 2 0 6 1198 1220 1199
-8084 2 2 0 6 4376 4378 4377
-8085 2 2 0 6 4420 4465 4464
-8086 2 2 0 6 5031 5870 5572
-8087 2 2 0 6 5637 5881 5882
-8088 2 2 0 6 3641 4194 8738
-8089 2 2 0 6 869 870 868
-8090 2 2 0 6 4258 4310 4311
-8091 2 2 0 6 1645 9117 1648
-8092 2 2 0 6 1243 1245 1244
-8093 2 2 0 6 1586 1585 1589
-8094 2 2 0 6 2734 2735 2736
-8095 2 2 0 6 3874 4795 3876
-8096 2 2 0 6 2111 8205 5097
-8097 2 2 0 6 3222 8470 3224
-8098 2 2 0 6 1192 8497 3647
-8099 2 2 0 6 5065 6504 9860
-8100 2 2 0 6 1390 8503 9077
-8101 2 2 0 6 2965 3298 9252
-8102 2 2 0 6 3379 3976 9300
-8103 2 2 0 6 5712 9402 9817
-8104 2 2 0 6 2176 2177 2192
-8105 2 2 0 6 5853 6354 6355
-8106 2 2 0 6 696 8912 8913
-8107 2 2 0 6 3527 9337 9069
-8108 2 2 0 6 2089 8460 2417
-8109 2 2 0 6 6738 6794 6795
-8110 2 2 0 6 5593 8822 6433
-8111 2 2 0 6 3919 5537 9112
-8112 2 2 0 6 1590 1591 1592
-8113 2 2 0 6 1790 1820 1791
-8114 2 2 0 6 1779 1827 1780
-8115 2 2 0 6 2654 3037 3329
-8116 2 2 0 6 5143 5386 5385
-8117 2 2 0 6 7294 7310 7296
-8118 2 2 0 6 8037 8038 8040
-8119 2 2 0 6 2481 8409 2483
-8120 2 2 0 6 3265 9896 6404
-8121 2 2 0 6 160 161 403
-8122 2 2 0 6 1150 1161 1162
-8123 2 2 0 6 1054 1056 1206
-8124 2 2 0 6 2551 2552 2662
-8125 2 2 0 6 2456 2738 2632
-8126 2 2 0 6 6255 5300 7201
-8127 2 2 0 6 647 8424 8959
-8128 2 2 0 6 7811 10888 10901
-8129 2 2 0 6 2421 2423 2422
-8130 2 2 0 6 4597 6400 9174
-8131 2 2 0 6 4557 5948 8873
-8132 2 2 0 6 4624 5315 4678
-8133 2 2 0 6 7291 7312 7292
-8134 2 2 0 6 2277 8367 2280
-8135 2 2 0 6 6396 9425 9577
-8136 2 2 0 6 1970 2251 2250
-8137 2 2 0 6 2774 3033 3034
-8138 2 2 0 6 7546 7905 7612
-8139 2 2 0 6 3655 8140 4428
-8140 2 2 0 6 1220 1221 1199
-8141 2 2 0 6 1593 1596 1594
-8142 2 2 0 6 4276 4284 8337
-8143 2 2 0 6 4561 6667 8321
-8144 2 2 0 6 1181 8497 1192
-8145 2 2 0 6 3151 7618 10104
-8146 2 2 0 6 828 829 832
-8147 2 2 0 6 1496 1517 1518
-8148 2 2 0 6 1839 1840 1841
-8149 2 2 0 6 2173 2174 2176
-8150 2 2 0 6 5446 6632 5884
-8151 2 2 0 6 875 880 881
-8152 2 2 0 6 3210 9091 9173
-8153 2 2 0 6 1483 1485 1484
-8154 2 2 0 6 2545 2548 2550
-8155 2 2 0 6 3108 3109 3110
-8156 2 2 0 6 2993 3842 3248
-8157 2 2 0 6 4717 5673 5672
-8158 2 2 0 6 1946 1949 6508
-8159 2 2 0 6 3429 9519 3445
-8160 2 2 0 6 4051 4503 4504
-8161 2 2 0 6 4793 4794 4863
-8162 2 2 0 6 4974 7739 6298
-8163 2 2 0 6 7881 7898 7897
-8164 2 2 0 6 1147 1257 8522
-8165 2 2 0 6 833 835 834
-8166 2 2 0 6 994 3342 1038
-8167 2 2 0 6 5802 8000 8001
-8168 2 2 0 6 4375 4768 8661
-8169 2 2 0 6 1132 1144 9143
-8170 2 2 0 6 1306 8165 9527
-8171 2 2 0 6 5603 9551 9323
-8172 2 2 0 6 3184 3186 3187
-8173 2 2 0 6 4230 4879 5408
-8174 2 2 0 6 4791 4793 5411
-8175 2 2 0 6 6534 6559 6560
-8176 2 2 0 6 7789 7790 7792
-8177 2 2 0 6 5512 8208 8209
-8178 2 2 0 6 1341 1340 8324
-8179 2 2 0 6 997 6473 8990
-8180 2 2 0 6 276 277 479
-8181 2 2 0 6 1770 1790 1771
-8182 2 2 0 6 1985 2240 2241
-8183 2 2 0 6 3778 3780 3781
-8184 2 2 0 6 4242 4243 4244
-8185 2 2 0 6 4715 5205 5204
-8186 2 2 0 6 4925 8402 4944
-8187 2 2 0 6 8031 8496 8032
-8188 2 2 0 6 170 171 524
-8189 2 2 0 6 2634 2728 3000
-8190 2 2 0 6 4373 4374 4375
-8191 2 2 0 6 5698 8357 5696
-8192 2 2 0 6 6229 7115 7116
-8193 2 2 0 6 8181 8186 8653
-8194 2 2 0 6 357 8440 402
-8195 2 2 0 6 270 480 8561
-8196 2 2 0 6 2608 8807 2610
-8197 2 2 0 6 1916 1915 8236
-8198 2 2 0 6 3947 3950 3951
-8199 2 2 0 6 2713 8569 8566
-8200 2 2 0 6 6071 9724 9623
-8201 2 2 0 6 282 283 516
-8202 2 2 0 6 1578 1579 1576
-8203 2 2 0 6 1589 1591 1590
-8204 2 2 0 6 2256 2472 7997
-8205 2 2 0 6 3880 4545 9542
-8206 2 2 0 6 578 579 577
-8207 2 2 0 6 815 827 826
-8208 2 2 0 6 1737 1739 1738
-8209 2 2 0 6 2174 2177 2176
-8210 2 2 0 6 4778 5286 4872
-8211 2 2 0 6 5969 6427 5970
-8212 2 2 0 6 6032 7066 9157
-8213 2 2 0 6 2548 2549 2551
-8214 2 2 0 6 2702 2701 2703
-8215 2 2 0 6 2894 3042 3041
-8216 2 2 0 6 3031 3709 3161
-8217 2 2 0 6 4050 4503 4051
-8218 2 2 0 6 4823 5347 5302
-8219 2 2 0 6 4855 5443 5801
-8220 2 2 0 6 4855 8544 4856
-8221 2 2 0 6 5542 5894 7945
-8222 2 2 0 6 753 8479 755
-8223 2 2 0 6 166 167 526
-8224 2 2 0 6 607 4104 997
-8225 2 2 0 6 6087 6089 6088
-8226 2 2 0 6 7561 7577 7563
-8227 2 2 0 6 162 163 525
-8228 2 2 0 6 1134 1151 1152
-8229 2 2 0 6 802 1178 804
-8230 2 2 0 6 1752 1898 1899
-8231 2 2 0 6 2461 8631 2718
-8232 2 2 0 6 997 6472 6473
-8233 2 2 0 6 7891 7893 7892
-8234 2 2 0 6 2762 7978 2902
-8235 2 2 0 6 667 668 8601
-8236 2 2 0 6 366 367 514
-8237 2 2 0 6 2501 9105 2942
-8238 2 2 0 6 1095 1133 1134
-8239 2 2 0 6 1993 1995 1994
-8240 2 2 0 6 5344 7735 7734
-8241 2 2 0 6 3602 9469 9124
-8242 2 2 0 6 4944 8402 8404
-8243 2 2 0 6 4715 8408 5205
-8244 2 2 0 6 3581 8914 3692
-8245 2 2 0 6 3604 9124 3756
-8246 2 2 0 6 1752 9304 1718
-8247 2 2 0 6 3777 3778 8867
-8248 2 2 0 6 6049 7098 6277
-8249 2 2 0 6 5467 6178 8978
-8250 2 2 0 6 8672 8673 9176
-8251 2 2 0 6 7438 9735 10516
-8252 2 2 0 6 2165 2167 2166
-8253 2 2 0 6 1930 1932 6494
-8254 2 2 0 6 5422 7249 7113
-8255 2 2 0 6 2982 7895 9782
-8256 2 2 0 6 176 177 8591
-8257 2 2 0 6 5745 10147 6598
-8258 2 2 0 6 2015 2017 2013
-8259 2 2 0 6 4428 4962 4961
-8260 2 2 0 6 2860 2943 8946
-8261 2 2 0 6 5737 8424 9200
-8262 2 2 0 6 5818 7095 7280
-8263 2 2 0 6 5466 8691 9217
-8264 2 2 0 6 6525 8422 6524
-8265 2 2 0 6 5433 8472 8473
-8266 2 2 0 6 1246 1249 1248
-8267 2 2 0 6 2793 2796 8755
-8268 2 2 0 6 1864 1865 1866
-8269 2 2 0 6 1985 2241 2242
-8270 2 2 0 6 2902 3205 3204
-8271 2 2 0 6 5131 5132 5133
-8272 2 2 0 6 364 410 8304
-8273 2 2 0 6 3765 9344 4219
-8274 2 2 0 6 175 176 419
-8275 2 2 0 6 1162 1182 1183
-8276 2 2 0 6 1710 1712 1711
-8277 2 2 0 6 5614 6208 5615
-8278 2 2 0 6 7903 9625 9466
-8279 2 2 0 6 7322 7324 7323
-8280 2 2 0 6 1036 7743 5378
-8281 2 2 0 6 8177 8180 8179
-8282 2 2 0 6 2850 8214 3068
-8283 2 2 0 6 4729 5604 8689
-8284 2 2 0 6 2781 4105 9439
-8285 2 2 0 6 2541 2542 2543
-8286 2 2 0 6 1048 1050 2588
-8287 2 2 0 6 4435 4808 4807
-8288 2 2 0 6 5403 5405 5404
-8289 2 2 0 6 1380 9039 1381
-8290 2 2 0 6 8689 9531 9671
-8291 2 2 0 6 1510 2448 1803
-8292 2 2 0 6 1530 1532 9205
-8293 2 2 0 6 2296 9600 9412
-8294 2 2 0 6 906 908 909
-8295 2 2 0 6 1441 1515 1777
-8296 2 2 0 6 1820 4338 8079
-8297 2 2 0 6 1629 3539 8428
-8298 2 2 0 6 889 890 8593
-8299 2 2 0 6 2891 4064 8717
-8300 2 2 0 6 4014 9906 8985
-8301 2 2 0 6 168 169 411
-8302 2 2 0 6 1841 1842 1843
-8303 2 2 0 6 5024 5968 5023
-8304 2 2 0 6 4698 7780 5197
-8305 2 2 0 6 3544 3547 8315
-8306 2 2 0 6 1582 1584 8396
-8307 2 2 0 6 3427 8678 3429
-8308 2 2 0 6 1599 1602 9112
-8309 2 2 0 6 827 828 826
-8310 2 2 0 6 2828 2829 3038
-8311 2 2 0 6 4353 4355 4888
-8312 2 2 0 6 4713 5172 5173
-8313 2 2 0 6 8915 9332 9736
-8314 2 2 0 6 7964 7965 7966
-8315 2 2 0 6 94 95 532
-8316 2 2 0 6 983 986 989
-8317 2 2 0 6 4808 6373 5342
-8318 2 2 0 6 5108 8193 8192
-8319 2 2 0 6 1134 1190 8818
-8320 2 2 0 6 3298 4447 9252
-8321 2 2 0 6 1152 1174 1175
-8322 2 2 0 6 1279 1289 1306
-8323 2 2 0 6 2099 2100 2101
-8324 2 2 0 6 790 2587 792
-8325 2 2 0 6 3853 3852 3854
-8326 2 2 0 6 2175 4410 2190
-8327 2 2 0 6 7655 7657 7656
-8328 2 2 0 6 5921 10216 10506
-8329 2 2 0 6 2692 2772 2693
-8330 2 2 0 6 1581 1582 1583
-8331 2 2 0 6 1860 1862 1861
-8332 2 2 0 6 4112 4587 4115
-8333 2 2 0 6 5477 5853 5852
-8334 2 2 0 6 6688 10346 8961
-8335 2 2 0 6 164 165 454
-8336 2 2 0 6 898 899 900
-8337 2 2 0 6 2803 2802 2804
-8338 2 2 0 6 2498 2844 2846
-8339 2 2 0 6 1056 1058 8343
-8340 2 2 0 6 5081 6229 8941
-8341 2 2 0 6 3351 3350 4031
-8342 2 2 0 6 1499 4401 2154
-8343 2 2 0 6 4297 4698 5197
-8344 2 2 0 6 4467 4985 5798
-8345 2 2 0 6 5474 7155 7223
-8346 2 2 0 6 4854 5634 7588
-8347 2 2 0 6 4109 4200 7816
-8348 2 2 0 6 3318 4021 7982
-8349 2 2 0 6 259 8458 404
-8350 2 2 0 6 5346 8328 8768
-8351 2 2 0 6 2699 2701 2700
-8352 2 2 0 6 3316 3966 3967
-8353 2 2 0 6 864 865 866
-8354 2 2 0 6 3740 4845 4200
-8355 2 2 0 6 5460 6349 5461
-8356 2 2 0 6 4448 6180 7019
-8357 2 2 0 6 1534 8787 8789
-8358 2 2 0 6 7419 7426 9558
-8359 2 2 0 6 7753 9689 9973
-8360 2 2 0 6 1330 1332 1331
-8361 2 2 0 6 2554 2556 2555
-8362 2 2 0 6 2213 2375 2571
-8363 2 2 0 6 864 866 3341
-8364 2 2 0 6 3790 4214 4117
-8365 2 2 0 6 3841 4757 4756
-8366 2 2 0 6 3985 8958 4550
-8367 2 2 0 6 4911 9036 9805
-8368 2 2 0 6 5807 9611 10081
-8369 2 2 0 6 1266 1285 1286
-8370 2 2 0 6 2187 2368 2418
-8371 2 2 0 6 2801 2802 2803
-8372 2 2 0 6 3377 3663 3662
-8373 2 2 0 6 3788 3790 4117
-8374 2 2 0 6 4471 4473 4582
-8375 2 2 0 6 5642 5799 5746
-8376 2 2 0 6 4662 6141 6142
-8377 2 2 0 6 5790 7420 7419
-8378 2 2 0 6 1070 8394 3365
-8379 2 2 0 6 4447 4729 8689
-8380 2 2 0 6 2568 9587 2848
-8381 2 2 0 6 3056 3317 3318
-8382 2 2 0 6 665 9063 9000
-8383 2 2 0 6 3985 3986 8958
-8384 2 2 0 6 5523 5522 5524
-8385 2 2 0 6 5109 6707 6099
-8386 2 2 0 6 2525 2784 9009
-8387 2 2 0 6 1886 8613 1888
-8388 2 2 0 6 5108 9058 8193
-8389 2 2 0 6 1925 2243 2245
-8390 2 2 0 6 3166 4054 8595
-8391 2 2 0 6 1144 1149 1150
-8392 2 2 0 6 3000 3228 3826
-8393 2 2 0 6 3344 8259 6609
-8394 2 2 0 6 3187 3188 3293
-8395 2 2 0 6 1551 1553 4351
-8396 2 2 0 6 7862 7865 7863
-8397 2 2 0 6 8847 8848 8971
-8398 2 2 0 6 963 964 968
-8399 2 2 0 6 1092 1094 1095
-8400 2 2 0 6 1739 1741 1740
-8401 2 2 0 6 1825 1826 1912
-8402 2 2 0 6 1934 1970 2250
-8403 2 2 0 6 2431 2763 2433
-8404 2 2 0 6 2795 2798 2797
-8405 2 2 0 6 3228 4230 3826
-8406 2 2 0 6 3963 3965 9275
-8407 2 2 0 6 2575 2576 2577
-8408 2 2 0 6 5656 5658 5667
-8409 2 2 0 6 4560 4561 8321
-8410 2 2 0 6 1832 1925 8531
-8411 2 2 0 6 2920 9007 8690
-8412 2 2 0 6 894 895 896
-8413 2 2 0 6 1088 1091 1092
-8414 2 2 0 6 808 816 1519
-8415 2 2 0 6 1863 1862 1915
-8416 2 2 0 6 1927 1928 2249
-8417 2 2 0 6 2577 2578 2579
-8418 2 2 0 6 8318 9173 9091
-8419 2 2 0 6 1192 3647 1217
-8420 2 2 0 6 5989 5991 5990
-8421 2 2 0 6 6254 6984 6983
-8422 2 2 0 6 582 584 8297
-8423 2 2 0 6 7287 8434 7288
-8424 2 2 0 6 8508 8511 8512
-8425 2 2 0 6 8067 9691 3656
-8426 2 2 0 6 979 980 983
-8427 2 2 0 6 1221 1265 1266
-8428 2 2 0 6 2193 2257 2256
-8429 2 2 0 6 4479 4481 5816
-8430 2 2 0 6 5410 7540 6564
-8431 2 2 0 6 1559 8241 8438
-8432 2 2 0 6 3458 5517 8614
-8433 2 2 0 6 2306 2345 8763
-8434 2 2 0 6 902 903 904
-8435 2 2 0 6 1175 1198 1199
-8436 2 2 0 6 3953 3954 4871
-8437 2 2 0 6 4697 5195 5194
-8438 2 2 0 6 4739 5502 5503
-8439 2 2 0 6 7968 7969 7970
-8440 2 2 0 6 2245 2461 2462
-8441 2 2 0 6 2731 2733 2734
-8442 2 2 0 6 2088 2102 9026
-8443 2 2 0 6 3855 3856 3857
-8444 2 2 0 6 6445 6447 8429
-8445 2 2 0 6 790 8682 2587
-8446 2 2 0 6 1529 8787 1531
-8447 2 2 0 6 772 780 9209
-8448 2 2 0 6 5442 5684 9301
-8449 2 2 0 6 273 274 420
-8450 2 2 0 6 1132 1143 1144
-8451 2 2 0 6 1315 1495 1496
-8452 2 2 0 6 3956 4276 4571
-8453 2 2 0 6 4272 5465 5209
-8454 2 2 0 6 417 8376 8377
-8455 2 2 0 6 1248 1249 1250
-8456 2 2 0 6 1592 1593 1594
-8457 2 2 0 6 1507 1808 2603
-8458 2 2 0 6 2737 3065 2989
-8459 2 2 0 6 4306 4665 5284
-8460 2 2 0 6 4234 5122 8109
-8461 2 2 0 6 4877 7933 7934
-8462 2 2 0 6 6178 8244 8978
-8463 2 2 0 6 3766 4220 4334
-8464 2 2 0 6 2486 2651 2652
-8465 2 2 0 6 2984 3213 7998
-8466 2 2 0 6 8261 8264 8262
-8467 2 2 0 6 2724 4179 9247
-8468 2 2 0 6 2287 9297 2286
-8469 2 2 0 6 6130 9398 7525
-8470 2 2 0 6 5703 8315 9780
-8471 2 2 0 6 996 9816 5751
-8472 2 2 0 6 1296 1298 1299
-8473 2 2 0 6 2703 2705 2704
-8474 2 2 0 6 2158 4339 4338
-8475 2 2 0 6 4686 5190 5187
-8476 2 2 0 6 4309 5304 6550
-8477 2 2 0 6 7957 7958 8132
-8478 2 2 0 6 5597 8554 7165
-8479 2 2 0 6 3464 8720 3499
-8480 2 2 0 6 3589 8655 8784
-8481 2 2 0 6 7891 9078 7906
-8482 2 2 0 6 1930 1929 1931
-8483 2 2 0 6 4985 5829 8031
-8484 2 2 0 6 3069 3070 4099
-8485 2 2 0 6 3098 3099 4326
-8486 2 2 0 6 2162 2213 8431
-8487 2 2 0 6 1764 1832 8532
-8488 2 2 0 6 3637 9477 9685
-8489 2 2 0 6 1813 8775 8774
-8490 2 2 0 6 898 900 901
-8491 2 2 0 6 3646 3831 3798
-8492 2 2 0 6 4296 4698 4297
-8493 2 2 0 6 1761 1830 8643
-8494 2 2 0 6 1280 5378 6998
-8495 2 2 0 6 5280 5393 7176
-8496 2 2 0 6 5736 8985 6394
-8497 2 2 0 6 3345 9101 4286
-8498 2 2 0 6 5966 10804 8086
-8499 2 2 0 6 1226 1243 1242
-8500 2 2 0 6 1459 1462 1461
-8501 2 2 0 6 2824 2825 2826
-8502 2 2 0 6 3841 4756 4755
-8503 2 2 0 6 4782 4783 4784
-8504 2 2 0 6 3034 10026 5859
-8505 2 2 0 6 3468 7987 4078
-8506 2 2 0 6 5320 8770 8771
-8507 2 2 0 6 2545 2546 2548
-8508 2 2 0 6 4064 5028 5637
-8509 2 2 0 6 5020 5928 6337
-8510 2 2 0 6 3064 3304 7147
-8511 2 2 0 6 8034 8036 8035
-8512 2 2 0 6 1125 1135 8929
-8513 2 2 0 6 1286 1311 1312
-8514 2 2 0 6 2196 2324 2325
-8515 2 2 0 6 2572 2574 2573
-8516 2 2 0 6 2462 2718 2719
-8517 2 2 0 6 2899 3196 2933
-8518 2 2 0 6 3347 3349 3348
-8519 2 2 0 6 3851 3850 3852
-8520 2 2 0 6 3394 9100 5538
-8521 2 2 0 6 2169 8921 2171
-8522 2 2 0 6 6490 8949 10165
-8523 2 2 0 6 1355 10322 1502
-8524 2 2 0 6 906 907 908
-8525 2 2 0 6 2319 3212 2403
-8526 2 2 0 6 1755 3359 3360
-8527 2 2 0 6 1146 3561 1154
-8528 2 2 0 6 5399 5401 5400
-8529 2 2 0 6 5139 6799 6797
-8530 2 2 0 6 7297 9864 9915
-8531 2 2 0 6 360 361 452
-8532 2 2 0 6 1355 1502 1356
-8533 2 2 0 6 3797 3821 3829
-8534 2 2 0 6 4214 5102 4593
-8535 2 2 0 6 4553 5455 5456
-8536 2 2 0 6 5386 7594 7359
-8537 2 2 0 6 4064 5637 8717
-8538 2 2 0 6 1095 1134 8818
-8539 2 2 0 6 2596 9278 9596
-8540 2 2 0 6 1103 1105 1104
-8541 2 2 0 6 4345 8103 8104
-8542 2 2 0 6 8281 9795 9017
-8543 2 2 0 6 7523 9587 9929
-8544 2 2 0 6 910 911 970
-8545 2 2 0 6 1264 1277 1508
-8546 2 2 0 6 1099 1101 2259
-8547 2 2 0 6 4274 4628 4627
-8548 2 2 0 6 5484 6731 5485
-8549 2 2 0 6 5138 6797 6798
-8550 2 2 0 6 5209 6177 7030
-8551 2 2 0 6 5503 5504 7134
-8552 2 2 0 6 3900 4725 8524
-8553 2 2 0 6 1079 2314 8831
-8554 2 2 0 6 1562 9324 1564
-8555 2 2 0 6 1926 2244 2243
-8556 2 2 0 6 1234 9003 1262
-8557 2 2 0 6 3299 4296 4297
-8558 2 2 0 6 1619 4902 1757
-8559 2 2 0 6 3467 3987 8463
-8560 2 2 0 6 1490 8467 8611
-8561 2 2 0 6 1784 1878 1806
-8562 2 2 0 6 1297 2572 1317
-8563 2 2 0 6 2718 3223 3222
-8564 2 2 0 6 3205 3698 3697
-8565 2 2 0 6 4043 5005 5004
-8566 2 2 0 6 3917 5360 4758
-8567 2 2 0 6 5617 6433 6453
-8568 2 2 0 6 1206 8343 8344
-8569 2 2 0 6 1024 8620 8621
-8570 2 2 0 6 630 3736 8773
-8571 2 2 0 6 3343 7964 9143
-8572 2 2 0 6 848 9156 850
-8573 2 2 0 6 356 357 402
-8574 2 2 0 6 1113 1114 1115
-8575 2 2 0 6 1883 2151 2150
-8576 2 2 0 6 2144 2208 2328
-8577 2 2 0 6 3294 3624 3625
-8578 2 2 0 6 3831 4672 4261
-8579 2 2 0 6 8971 8972 10330
-8580 2 2 0 6 4784 4785 4786
-8581 2 2 0 6 1018 1029 9884
-8582 2 2 0 6 2823 2825 2824
-8583 2 2 0 6 3223 3818 3817
-8584 2 2 0 6 3942 4687 4689
-8585 2 2 0 6 3832 5375 4674
-8586 2 2 0 6 4219 5781 5111
-8587 2 2 0 6 6356 6357 6358
-8588 2 2 0 6 3918 9194 5560
-8589 2 2 0 6 1292 4443 9845
-8590 2 2 0 6 5415 10628 6017
-8591 2 2 0 6 1312 1490 1491
-8592 2 2 0 6 1861 9223 3387
-8593 2 2 0 6 2874 2875 3104
-8594 2 2 0 6 5008 8848 8847
-8595 2 2 0 6 1971 1972 2210
-8596 2 2 0 6 2540 2541 2539
-8597 2 2 0 6 3336 3911 3953
-8598 2 2 0 6 3976 4775 4776
-8599 2 2 0 6 5761 5763 5762
-8600 2 2 0 6 4404 5506 6379
-8601 2 2 0 6 7838 7840 7839
-8602 2 2 0 6 333 334 9122
-8603 2 2 0 6 4025 5592 9158
-8604 2 2 0 6 4487 4649 9833
-8605 2 2 0 6 1932 1933 1934
-8606 2 2 0 6 2529 2531 4001
-8607 2 2 0 6 4756 5162 6216
-8608 2 2 0 6 6711 6713 6714
-8609 2 2 0 6 4826 7488 6675
-8610 2 2 0 6 1246 8447 1249
-8611 2 2 0 6 821 824 9123
-8612 2 2 0 6 8730 9355 9918
-8613 2 2 0 6 2543 2544 2545
-8614 2 2 0 6 2791 2794 2793
-8615 2 2 0 6 4504 4635 4636
-8616 2 2 0 6 4709 5212 5213
-8617 2 2 0 6 3709 5475 4535
-8618 2 2 0 6 1829 8815 4409
-8619 2 2 0 6 2084 8999 2086
-8620 2 2 0 6 358 359 528
-8621 2 2 0 6 811 3386 815
-8622 2 2 0 6 1518 2228 2496
-8623 2 2 0 6 2375 3347 2571
-8624 2 2 0 6 3818 4225 4223
-8625 2 2 0 6 4537 4572 4573
-8626 2 2 0 6 3877 3983 4638
-8627 2 2 0 6 5207 6585 6586
-8628 2 2 0 6 7314 7327 7326
-8629 2 2 0 6 5302 8054 5497
-8630 2 2 0 6 772 9209 4400
-8631 2 2 0 6 4496 8687 5843
-8632 2 2 0 6 4177 4307 9061
-8633 2 2 0 6 4447 8689 9252
-8634 2 2 0 6 1859 1861 3387
-8635 2 2 0 6 3600 9469 3602
-8636 2 2 0 6 6309 7699 6308
-8637 2 2 0 6 8079 8801 8085
-8638 2 2 0 6 3602 9124 3604
-8639 2 2 0 6 894 896 897
-8640 2 2 0 6 1115 1116 1117
-8641 2 2 0 6 1491 1763 1764
-8642 2 2 0 6 1585 3476 1589
-8643 2 2 0 6 2193 2256 2192
-8644 2 2 0 6 3831 4673 4672
-8645 2 2 0 6 4168 4905 4904
-8646 2 2 0 6 4688 5394 5250
-8647 2 2 0 6 5567 5568 5569
-8648 2 2 0 6 4828 6312 6313
-8649 2 2 0 6 7306 7313 7308
-8650 2 2 0 6 7762 7765 7763
-8651 2 2 0 6 5485 7583 8749
-8652 2 2 0 6 8768 8769 8770
-8653 2 2 0 6 4775 5596 4776
-8654 2 2 0 6 5424 5690 5925
-8655 2 2 0 6 7300 7311 7302
-8656 2 2 0 6 1095 8818 8618
-8657 2 2 0 6 1572 1577 1573
-8658 2 2 0 6 3254 3256 3255
-8659 2 2 0 6 3053 4151 4152
-8660 2 2 0 6 3817 4223 4224
-8661 2 2 0 6 1635 4405 1637
-8662 2 2 0 6 367 368 8284
-8663 2 2 0 6 4783 4785 4784
-8664 2 2 0 6 3901 3903 9059
-8665 2 2 0 6 4592 6688 8961
-8666 2 2 0 6 2129 4493 8685
-8667 2 2 0 6 3922 5601 8890
-8668 2 2 0 6 4142 5201 4143
-8669 2 2 0 6 3400 3404 8421
-8670 2 2 0 6 9076 9418 9077
-8671 2 2 0 6 2005 2007 2006
-8672 2 2 0 6 2705 2707 2706
-8673 2 2 0 6 4698 4699 5217
-8674 2 2 0 6 3816 6223 5496
-8675 2 2 0 6 5983 5984 5982
-8676 2 2 0 6 5932 5933 6010
-8677 2 2 0 6 1496 8918 3373
-8678 2 2 0 6 5853 6355 8325
-8679 2 2 0 6 5661 8330 6133
-8680 2 2 0 6 1799 8494 1886
-8681 2 2 0 6 1553 1554 1555
-8682 2 2 0 6 1932 8505 6494
-8683 2 2 0 6 3698 4028 3700
-8684 2 2 0 6 4372 5346 4374
-8685 2 2 0 6 4754 5373 5488
-8686 2 2 0 6 1569 1571 8129
-8687 2 2 0 6 1358 3628 1489
-8688 2 2 0 6 5078 6028 6029
-8689 2 2 0 6 5307 7197 5308
-8690 2 2 0 6 7967 9387 9143
-8691 2 2 0 6 2806 3213 2984
-8692 2 2 0 6 3709 4535 4049
-8693 2 2 0 6 3749 4552 4169
-8694 2 2 0 6 4573 4827 4828
-8695 2 2 0 6 3455 4867 4868
-8696 2 2 0 6 4516 5679 5678
-8697 2 2 0 6 4535 5476 5795
-8698 2 2 0 6 6133 8330 8331
-8699 2 2 0 6 5715 8777 8778
-8700 2 2 0 6 2253 2529 8828
-8701 2 2 0 6 814 815 826
-8702 2 2 0 6 2750 2752 2756
-8703 2 2 0 6 4135 4732 5613
-8704 2 2 0 6 4408 6025 6395
-8705 2 2 0 6 1789 1873 8316
-8706 2 2 0 6 8328 8769 8768
-8707 2 2 0 6 5836 10314 8471
-8708 2 2 0 6 1105 1106 1107
-8709 2 2 0 6 3516 9174 9001
-8710 2 2 0 6 3544 3546 3547
-8711 2 2 0 6 3830 4252 4221
-8712 2 2 0 6 4827 6312 4828
-8713 2 2 0 6 7326 7327 7542
-8714 2 2 0 6 3183 9546 8469
-8715 2 2 0 6 1056 8343 1206
-8716 2 2 0 6 1785 1786 1882
-8717 2 2 0 6 5847 7689 5848
-8718 2 2 0 6 6625 10298 10381
-8719 2 2 0 6 2235 2488 2358
-8720 2 2 0 6 4159 4775 3976
-8721 2 2 0 6 3800 4970 4971
-8722 2 2 0 6 4452 5526 5527
-8723 2 2 0 6 2788 3248 7834
-8724 2 2 0 6 3186 8084 3188
-8725 2 2 0 6 1084 1088 8774
-8726 2 2 0 6 10 11 467
-8727 2 2 0 6 2210 2211 2373
-8728 2 2 0 6 1744 8163 1747
-8729 2 2 0 6 8482 9171 8954
-8730 2 2 0 6 2384 8483 2428
-8731 2 2 0 6 4725 6392 8524
-8732 2 2 0 6 8647 8648 8649
-8733 2 2 0 6 1662 9457 1665
-8734 2 2 0 6 264 265 531
-8735 2 2 0 6 1835 1836 1837
-8736 2 2 0 6 3928 9512 4519
-8737 2 2 0 6 5596 5600 7166
-8738 2 2 0 6 6355 6356 7854
-8739 2 2 0 6 4095 9181 5030
-8740 2 2 0 6 605 607 997
-8741 2 2 0 6 2406 2557 2558
-8742 2 2 0 6 1693 1695 3362
-8743 2 2 0 6 5989 6293 8149
-8744 2 2 0 6 3553 5522 3916
-8745 2 2 0 6 5736 6394 5737
-8746 2 2 0 6 5970 6427 6428
-8747 2 2 0 6 7893 7894 7892
-8748 2 2 0 6 8707 8710 9539
-8749 2 2 0 6 2505 2853 2854
-8750 2 2 0 6 2870 3379 8664
-8751 2 2 0 6 3179 3743 4172
-8752 2 2 0 6 5487 6225 9066
-8753 2 2 0 6 2596 2598 9278
-8754 2 2 0 6 357 358 8440
-8755 2 2 0 6 1597 1600 1599
-8756 2 2 0 6 1833 1926 1925
-8757 2 2 0 6 1984 2240 1985
-8758 2 2 0 6 5885 5969 5970
-8759 2 2 0 6 5285 6874 6257
-8760 2 2 0 6 5580 7373 7265
-8761 2 2 0 6 1065 8256 1066
-8762 2 2 0 6 2822 2821 2823
-8763 2 2 0 6 3936 3937 3938
-8764 2 2 0 6 3299 4295 4296
-8765 2 2 0 6 4374 4376 4375
-8766 2 2 0 6 7288 7291 7290
-8767 2 2 0 6 2899 8075 4013
-8768 2 2 0 6 5573 8784 8655
-8769 2 2 0 6 2975 9169 2978
-8770 2 2 0 6 7630 9398 9010
-8771 2 2 0 6 4379 4380 4381
-8772 2 2 0 6 3982 4777 4293
-8773 2 2 0 6 7048 9232 8573
-8774 2 2 0 6 6274 8055 8054
-8775 2 2 0 6 3688 8752 4892
-8776 2 2 0 6 2607 2900 9626
-8777 2 2 0 6 2173 2175 2172
-8778 2 2 0 6 2292 2293 2297
-8779 2 2 0 6 2878 3153 9010
-8780 2 2 0 6 2719 3222 3224
-8781 2 2 0 6 1908 9176 8876
-8782 2 2 0 6 6084 6085 6086
-8783 2 2 0 6 4666 6147 5469
-8784 2 2 0 6 3344 6609 6608
-8785 2 2 0 6 5327 7358 7356
-8786 2 2 0 6 5614 8255 7028
-8787 2 2 0 6 4923 9583 9057
-8788 2 2 0 6 3784 3786 3785
-8789 2 2 0 6 3004 3807 3806
-8790 2 2 0 6 3285 4073 5423
-8791 2 2 0 6 6484 6509 6510
-8792 2 2 0 6 3914 4730 9193
-8793 2 2 0 6 889 8593 3478
-8794 2 2 0 6 2290 2291 2292
-8795 2 2 0 6 3929 9579 9512
-8796 2 2 0 6 1764 8532 1797
-8797 2 2 0 6 4964 5646 6423
-8798 2 2 0 6 2677 8139 3193
-8799 2 2 0 6 3224 8470 8471
-8800 2 2 0 6 8705 8709 8708
-8801 2 2 0 6 1569 1568 1570
-8802 2 2 0 6 2715 2836 2830
-8803 2 2 0 6 2856 2854 2857
-8804 2 2 0 6 5124 5132 5131
-8805 2 2 0 6 5650 5652 5668
-8806 2 2 0 6 4933 8068 4939
-8807 2 2 0 6 6358 6360 6359
-8808 2 2 0 6 2756 8484 8485
-8809 2 2 0 6 2750 2756 8750
-8810 2 2 0 6 8189 8740 8943
-8811 2 2 0 6 266 267 412
-8812 2 2 0 6 811 815 814
-8813 2 2 0 6 1586 1589 1590
-8814 2 2 0 6 1591 1595 1593
-8815 2 2 0 6 2415 2476 2477
-8816 2 2 0 6 3909 4726 4727
-8817 2 2 0 6 5652 5653 5654
-8818 2 2 0 6 4904 4905 6267
-8819 2 2 0 6 8714 8881 8715
-8820 2 2 0 6 4787 4789 6351
-8821 2 2 0 6 3561 8391 8390
-8822 2 2 0 6 795 799 807
-8823 2 2 0 6 1242 1243 1244
-8824 2 2 0 6 4273 6597 7696
-8825 2 2 0 6 2243 8456 2461
-8826 2 2 0 6 4384 8472 5433
-8827 2 2 0 6 3304 3455 8578
-8828 2 2 0 6 2646 3447 8811
-8829 2 2 0 6 5835 10231 7937
-8830 2 2 0 6 2373 2374 2415
-8831 2 2 0 6 2428 2430 2429
-8832 2 2 0 6 520 7379 7380
-8833 2 2 0 6 7565 7693 7575
-8834 2 2 0 6 3944 8231 4823
-8835 2 2 0 6 1277 8694 1508
-8836 2 2 0 6 576 577 574
-8837 2 2 0 6 1315 1496 3373
-8838 2 2 0 6 2782 3473 2784
-8839 2 2 0 6 1941 3763 2206
-8840 2 2 0 6 4158 4157 4274
-8841 2 2 0 6 3347 5388 3349
-8842 2 2 0 6 1497 9013 9022
-8843 2 2 0 6 1610 1608 1611
-8844 2 2 0 6 2165 2746 2167
-8845 2 2 0 6 3111 3367 3671
-8846 2 2 0 6 3514 4037 4038
-8847 2 2 0 6 2601 4179 2724
-8848 2 2 0 6 1757 4902 6270
-8849 2 2 0 6 2580 2748 6449
-8850 2 2 0 6 5899 6635 6636
-8851 2 2 0 6 5441 10690 10693
-8852 2 2 0 6 8345 8348 8441
-8853 2 2 0 6 4194 4959 8738
-8854 2 2 0 6 1818 4390 9229
-8855 2 2 0 6 4038 4804 4805
-8856 2 2 0 6 2259 2261 4901
-8857 2 2 0 6 6512 6531 6532
-8858 2 2 0 6 4633 8290 5153
-8859 2 2 0 6 4409 8815 8816
-8860 2 2 0 6 1608 9394 1611
-8861 2 2 0 6 862 863 864
-8862 2 2 0 6 993 1003 1002
-8863 2 2 0 6 1863 1916 1927
-8864 2 2 0 6 2558 2788 2789
-8865 2 2 0 6 5289 7172 7173
-8866 2 2 0 6 3804 5379 8062
-8867 2 2 0 6 1092 8618 1813
-8868 2 2 0 6 2244 3053 8888
-8869 2 2 0 6 810 811 814
-8870 2 2 0 6 2461 8456 8631
-8871 2 2 0 6 2491 2661 2660
-8872 2 2 0 6 3379 3380 3976
-8873 2 2 0 6 2297 8605 3368
-8874 2 2 0 6 4225 5139 5138
-8875 2 2 0 6 4954 5273 5272
-8876 2 2 0 6 5284 5285 6256
-8877 2 2 0 6 1309 1493 1492
-8878 2 2 0 6 4921 5399 4922
-8879 2 2 0 6 4946 8351 5820
-8880 2 2 0 6 5268 8275 6499
-8881 2 2 0 6 4875 5687 8897
-8882 2 2 0 6 5802 8001 9502
-8883 2 2 0 6 7461 10308 10491
-8884 2 2 0 6 1564 1566 1565
-8885 2 2 0 6 2708 2712 2710
-8886 2 2 0 6 1110 8856 1112
-8887 2 2 0 6 5920 7438 6549
-8888 2 2 0 6 7476 7477 7475
-8889 2 2 0 6 7784 7786 7785
-8890 2 2 0 6 4902 8081 6342
-8891 2 2 0 6 5476 5852 8530
-8892 2 2 0 6 2815 8701 2817
-8893 2 2 0 6 8419 8862 7043
-8894 2 2 0 6 2472 2634 8636
-8895 2 2 0 6 3472 8517 8667
-8896 2 2 0 6 2857 3513 3514
-8897 2 2 0 6 3360 4289 4290
-8898 2 2 0 6 4325 4591 4592
-8899 2 2 0 6 4194 4958 4959
-8900 2 2 0 6 4272 5209 4733
-8901 2 2 0 6 2634 2635 2728
-8902 2 2 0 6 1712 8804 1715
-8903 2 2 0 6 1211 1188 4030
-8904 2 2 0 6 4944 8404 8405
-8905 2 2 0 6 5276 8466 8465
-8906 2 2 0 6 8566 8569 8568
-8907 2 2 0 6 8787 8788 8789
-8908 2 2 0 6 1763 1833 1832
-8909 2 2 0 6 4377 4378 4379
-8910 2 2 0 6 4073 5690 5424
-8911 2 2 0 6 6534 6560 6561
-8912 2 2 0 6 2344 2505 8995
-8913 2 2 0 6 5114 6711 9268
-8914 2 2 0 6 5621 9871 5736
-8915 2 2 0 6 1526 8903 4020
-8916 2 2 0 6 1517 2228 1518
-8917 2 2 0 6 307 9139 530
-8918 2 2 0 6 4169 5022 4749
-8919 2 2 0 6 2111 5097 5096
-8920 2 2 0 6 4776 5596 5597
-8921 2 2 0 6 4757 6122 5162
-8922 2 2 0 6 2731 2734 8457
-8923 2 2 0 6 5846 7186 7185
-8924 2 2 0 6 4899 10071 7904
-8925 2 2 0 6 2344 2504 2505
-8926 2 2 0 6 2780 2998 2999
-8927 2 2 0 6 4378 4380 4379
-8928 2 2 0 6 3944 4822 3945
-8929 2 2 0 6 5596 7166 8554
-8930 2 2 0 6 5149 6804 6805
-8931 2 2 0 6 1060 8235 4199
-8932 2 2 0 6 1599 1600 1601
-8933 2 2 0 6 1642 1640 1689
-8934 2 2 0 6 2171 2173 2172
-8935 2 2 0 6 3038 8810 3477
-8936 2 2 0 6 2772 2775 2773
-8937 2 2 0 6 3046 3048 3049
-8938 2 2 0 6 2512 4066 4404
-8939 2 2 0 6 4946 5820 5735
-8940 2 2 0 6 4415 5847 4881
-8941 2 2 0 6 4764 6104 6105
-8942 2 2 0 6 6160 6161 6796
-8943 2 2 0 6 4964 6423 8680
-8944 2 2 0 6 6392 8762 8524
-8945 2 2 0 6 773 776 781
-8946 2 2 0 6 1735 1737 1736
-8947 2 2 0 6 1934 1969 1970
-8948 2 2 0 6 1850 2340 1852
-8949 2 2 0 6 4782 4781 4783
-8950 2 2 0 6 4498 5843 5863
-8951 2 2 0 6 5474 7223 7224
-8952 2 2 0 6 6174 6580 8299
-8953 2 2 0 6 4503 8546 5856
-8954 2 2 0 6 890 913 914
-8955 2 2 0 6 1068 1069 1070
-8956 2 2 0 6 1117 1118 1119
-8957 2 2 0 6 782 787 1522
-8958 2 2 0 6 1594 1596 1597
-8959 2 2 0 6 881 9858 4141
-8960 2 2 0 6 1300 7991 3338
-8961 2 2 0 6 5623 8793 7114
-8962 2 2 0 6 5640 9023 5643
-8963 2 2 0 6 4420 5243 4465
-8964 2 2 0 6 5201 5282 5202
-8965 2 2 0 6 7249 7774 7775
-8966 2 2 0 6 4325 4899 8535
-8967 2 2 0 6 1488 1509 9202
-8968 2 2 0 6 5480 9348 5483
-8969 2 2 0 6 1612 1611 1755
-8970 2 2 0 6 2822 2823 2824
-8971 2 2 0 6 2505 2854 2856
-8972 2 2 0 6 3547 3548 3549
-8973 2 2 0 6 3995 4854 4861
-8974 2 2 0 6 4997 5027 5917
-8975 2 2 0 6 8500 8502 8501
-8976 2 2 0 6 4846 8838 5358
-8977 2 2 0 6 1108 1110 1109
-8978 2 2 0 6 1791 1820 1821
-8979 2 2 0 6 4577 4578 4576
-8980 2 2 0 6 4099 4100 4870
-8981 2 2 0 6 5897 5898 5899
-8982 2 2 0 6 5743 6210 5744
-8983 2 2 0 6 4038 4805 6285
-8984 2 2 0 6 5636 6436 5691
-8985 2 2 0 6 770 10720 8638
-8986 2 2 0 6 2660 2834 3371
-8987 2 2 0 6 909 910 912
-8988 2 2 0 6 916 917 918
-8989 2 2 0 6 2804 3374 3375
-8990 2 2 0 6 4822 4823 5302
-8991 2 2 0 6 5597 7165 5599
-8992 2 2 0 6 7795 7798 7796
-8993 2 2 0 6 5894 7946 7945
-8994 2 2 0 6 3481 8992 8430
-8995 2 2 0 6 1774 3710 9484
-8996 2 2 0 6 4369 4370 4371
-8997 2 2 0 6 2757 2759 2761
-8998 2 2 0 6 3009 3011 2644
-8999 2 2 0 6 5980 5981 5982
-9000 2 2 0 6 731 740 739
-9001 2 2 0 6 804 811 810
-9002 2 2 0 6 1307 1326 1327
-9003 2 2 0 6 1912 1914 1971
-9004 2 2 0 6 1689 2165 2164
-9005 2 2 0 6 2516 2897 2898
-9006 2 2 0 6 2687 2689 3069
-9007 2 2 0 6 1915 3529 4408
-9008 2 2 0 6 3849 3848 3850
-9009 2 2 0 6 2856 2857 3991
-9010 2 2 0 6 3601 3603 6200
-9011 2 2 0 6 1034 1099 1100
-9012 2 2 0 6 1566 1568 1567
-9013 2 2 0 6 1619 1757 1620
-9014 2 2 0 6 1499 2154 2153
-9015 2 2 0 6 2289 2294 2295
-9016 2 2 0 6 3158 3929 3928
-9017 2 2 0 6 3904 4555 4557
-9018 2 2 0 6 3721 4548 5530
-9019 2 2 0 6 6216 6217 7149
-9020 2 2 0 6 1123 1125 8929
-9021 2 2 0 6 5425 5424 7821
-9022 2 2 0 6 1635 8136 4405
-9023 2 2 0 6 5309 8427 7331
-9024 2 2 0 6 2713 8566 2715
-9025 2 2 0 6 1217 8594 1226
-9026 2 2 0 6 1484 3358 9248
-9027 2 2 0 6 887 913 890
-9028 2 2 0 6 2192 2256 2464
-9029 2 2 0 6 2820 2821 2822
-9030 2 2 0 6 2886 3170 3715
-9031 2 2 0 6 4946 5735 4947
-9032 2 2 0 6 5078 5079 6028
-9033 2 2 0 6 5201 7061 7872
-9034 2 2 0 6 1099 2259 8017
-9035 2 2 0 6 5228 7073 9313
-9036 2 2 0 6 4067 10148 8380
-9037 2 2 0 6 1065 1067 1068
-9038 2 2 0 6 761 1523 763
-9039 2 2 0 6 2825 2827 2826
-9040 2 2 0 6 4004 4855 4330
-9041 2 2 0 6 5020 5906 5928
-9042 2 2 0 6 6484 6510 6511
-9043 2 2 0 6 5730 6556 6557
-9044 2 2 0 6 4804 5907 8450
-9045 2 2 0 6 995 1000 1006
-9046 2 2 0 6 1329 1331 9347
-9047 2 2 0 6 2368 2419 2418
-9048 2 2 0 6 2323 2899 2468
-9049 2 2 0 6 3109 3111 3110
-9050 2 2 0 6 6482 6484 6483
-9051 2 2 0 6 1640 9150 1689
-9052 2 2 0 6 816 1751 1519
-9053 2 2 0 6 4156 4155 4157
-9054 2 2 0 6 4978 5980 5939
-9055 2 2 0 6 7964 7967 9143
-9056 2 2 0 6 6387 9217 8389
-9057 2 2 0 6 5796 10081 9936
-9058 2 2 0 6 1858 8667 2212
-9059 2 2 0 6 1696 1698 1699
-9060 2 2 0 6 2156 2227 2157
-9061 2 2 0 6 2208 2329 2328
-9062 2 2 0 6 4467 4468 4985
-9063 2 2 0 6 5003 6566 6565
-9064 2 2 0 6 4586 8725 5508
-9065 2 2 0 6 5948 8874 8873
-9066 2 2 0 6 1062 1063 1065
-9067 2 2 0 6 1112 1114 1113
-9068 2 2 0 6 2263 2265 3151
-9069 2 2 0 6 5568 5571 5569
-9070 2 2 0 6 5592 5729 5730
-9071 2 2 0 6 4307 5305 6588
-9072 2 2 0 6 7839 7840 7842
-9073 2 2 0 6 2159 1883 8909
-9074 2 2 0 6 3336 3953 9160
-9075 2 2 0 6 1299 1300 1301
-9076 2 2 0 6 4378 5320 4380
-9077 2 2 0 6 4734 5544 5545
-9078 2 2 0 6 5613 5614 5615
-9079 2 2 0 6 5445 5884 5885
-9080 2 2 0 6 6360 6362 6361
-9081 2 2 0 6 6690 7530 7641
-9082 2 2 0 6 6374 7706 7707
-9083 2 2 0 6 2684 8834 3317
-9084 2 2 0 6 4583 9014 6022
-9085 2 2 0 6 4412 9051 4911
-9086 2 2 0 6 4988 9497 9264
-9087 2 2 0 6 2297 2298 2299
-9088 2 2 0 6 3842 4668 4229
-9089 2 2 0 6 4185 4997 5479
-9090 2 2 0 6 2238 2344 5525
-9091 2 2 0 6 3376 9393 8319
-9092 2 2 0 6 8534 9972 9818
-9093 2 2 0 6 3142 3145 3144
-9094 2 2 0 6 3330 3331 3329
-9095 2 2 0 6 2957 4437 2959
-9096 2 2 0 6 5599 7347 5830
-9097 2 2 0 6 5326 7350 6294
-9098 2 2 0 6 3846 4964 8680
-9099 2 2 0 6 8703 8708 9338
-9100 2 2 0 6 8541 10090 8542
-9101 2 2 0 6 1195 1219 2389
-9102 2 2 0 6 1630 9155 8136
-9103 2 2 0 6 3322 4840 6245
-9104 2 2 0 6 6167 7492 7016
-9105 2 2 0 6 5721 5840 8033
-9106 2 2 0 6 1908 8876 2181
-9107 2 2 0 6 617 8880 618
-9108 2 2 0 6 5703 9705 9389
-9109 2 2 0 6 258 259 404
-9110 2 2 0 6 2473 2635 2634
-9111 2 2 0 6 2493 2838 2837
-9112 2 2 0 6 3414 3746 3416
-9113 2 2 0 6 5433 8473 8526
-9114 2 2 0 6 2971 4542 2973
-9115 2 2 0 6 1050 8417 2588
-9116 2 2 0 6 1896 1983 8499
-9117 2 2 0 6 1066 8256 8257
-9118 2 2 0 6 775 8681 785
-9119 2 2 0 6 4142 8748 7061
-9120 2 2 0 6 8398 9379 9810
-9121 2 2 0 6 606 609 608
-9122 2 2 0 6 4153 4155 4154
-9123 2 2 0 6 3987 4550 4551
-9124 2 2 0 6 4529 5051 4531
-9125 2 2 0 6 5394 5396 5395
-9126 2 2 0 6 1384 9039 9576
-9127 2 2 0 6 4869 5473 5474
-9128 2 2 0 6 1469 1470 1471
-9129 2 2 0 6 2156 2384 2227
-9130 2 2 0 6 2684 3317 3056
-9131 2 2 0 6 4856 5790 5541
-9132 2 2 0 6 5088 5415 6017
-9133 2 2 0 6 6354 6356 6355
-9134 2 2 0 6 8071 8073 8072
-9135 2 2 0 6 8278 8714 8715
-9136 2 2 0 6 2824 2920 8992
-9137 2 2 0 6 1654 9522 3616
-9138 2 2 0 6 1711 1715 3720
-9139 2 2 0 6 6442 8555 9907
-9140 2 2 0 6 8684 10066 10140
-9141 2 2 0 6 4348 7861 10210
-9142 2 2 0 6 727 731 730
-9143 2 2 0 6 798 802 801
-9144 2 2 0 6 2281 2282 2283
-9145 2 2 0 6 2477 2624 2625
-9146 2 2 0 6 2981 3813 3812
-9147 2 2 0 6 3359 4289 3360
-9148 2 2 0 6 5090 5640 5639
-9149 2 2 0 6 1857 8606 1960
-9150 2 2 0 6 1700 1702 1703
-9151 2 2 0 6 2155 2154 2156
-9152 2 2 0 6 2978 2997 2996
-9153 2 2 0 6 3829 4227 4251
-9154 2 2 0 6 5933 6030 6010
-9155 2 2 0 6 5464 5101 6064
-9156 2 2 0 6 4793 4863 7541
-9157 2 2 0 6 7730 7729 7732
-9158 2 2 0 6 1928 1930 8273
-9159 2 2 0 6 8181 8653 8182
-9160 2 2 0 6 693 695 694
-9161 2 2 0 6 1558 1560 1559
-9162 2 2 0 6 3182 3184 3183
-9163 2 2 0 6 912 4270 3890
-9164 2 2 0 6 2046 8117 7950
-9165 2 2 0 6 5701 9400 9873
-9166 2 2 0 6 751 3754 753
-9167 2 2 0 6 2888 3799 2985
-9168 2 2 0 6 5318 8025 8024
-9169 2 2 0 6 4159 4772 8693
-9170 2 2 0 6 1107 1108 1109
-9171 2 2 0 6 2835 3063 3062
-9172 2 2 0 6 4772 5288 5289
-9173 2 2 0 6 5549 6380 6381
-9174 2 2 0 6 8167 8169 8168
-9175 2 2 0 6 4039 8688 8687
-9176 2 2 0 6 1708 1710 1711
-9177 2 2 0 6 2279 2291 2290
-9178 2 2 0 6 2294 2308 2295
-9179 2 2 0 6 2793 2794 2795
-9180 2 2 0 6 3105 3107 3108
-9181 2 2 0 6 2736 2989 3239
-9182 2 2 0 6 5302 5347 6274
-9183 2 2 0 6 7304 7306 7305
-9184 2 2 0 6 5464 6064 7802
-9185 2 2 0 6 2588 8417 8418
-9186 2 2 0 6 268 269 519
-9187 2 2 0 6 4084 4439 8906
-9188 2 2 0 6 1752 1724 1898
-9189 2 2 0 6 8735 8737 8736
-9190 2 2 0 6 731 741 740
-9191 2 2 0 6 972 973 979
-9192 2 2 0 6 1117 1116 1118
-9193 2 2 0 6 2828 3038 3477
-9194 2 2 0 6 6568 6567 6569
-9195 2 2 0 6 5411 7545 7546
-9196 2 2 0 6 6668 8077 11088
-9197 2 2 0 6 2151 2160 2372
-9198 2 2 0 6 4018 4753 4752
-9199 2 2 0 6 5985 5987 5986
-9200 2 2 0 6 4356 4358 6341
-9201 2 2 0 6 6136 6926 6800
-9202 2 2 0 6 4329 8764 5063
-9203 2 2 0 6 4785 9265 4786
-9204 2 2 0 6 1071 1072 1070
-9205 2 2 0 6 1075 1080 1074
-9206 2 2 0 6 1166 1168 2941
-9207 2 2 0 6 2111 5096 4596
-9208 2 2 0 6 3026 9213 9373
-9209 2 2 0 6 5460 5461 5459
-9210 2 2 0 6 4881 5847 5848
-9211 2 2 0 6 4557 5936 5947
-9212 2 2 0 6 5239 6188 7089
-9213 2 2 0 6 5623 7114 7087
-9214 2 2 0 6 629 9809 4059
-9215 2 2 0 6 1257 1314 1315
-9216 2 2 0 6 966 3372 975
-9217 2 2 0 6 1354 9492 8504
-9218 2 2 0 6 3467 3499 3985
-9219 2 2 0 6 1881 4343 2679
-9220 2 2 0 6 4925 4944 4927
-9221 2 2 0 6 6333 8426 8425
-9222 2 2 0 6 6389 8767 9691
-9223 2 2 0 6 1110 1112 1111
-9224 2 2 0 6 3681 3944 3682
-9225 2 2 0 6 5297 7195 5370
-9226 2 2 0 6 6428 7453 6430
-9227 2 2 0 6 2676 5000 9899
-9228 2 2 0 6 2860 8946 3534
-9229 2 2 0 6 792 798 797
-9230 2 2 0 6 1560 1562 1561
-9231 2 2 0 6 4189 4977 4976
-9232 2 2 0 6 5204 5205 5206
-9233 2 2 0 6 5983 5985 5984
-9234 2 2 0 6 5401 7364 6063
-9235 2 2 0 6 171 172 8371
-9236 2 2 0 6 1217 3647 8594
-9237 2 2 0 6 6433 8822 9826
-9238 2 2 0 6 2762 2902 2901
-9239 2 2 0 6 1401 8932 1404
-9240 2 2 0 6 2786 3646 3798
-9241 2 2 0 6 4366 4615 4367
-9242 2 2 0 6 3749 5417 4552
-9243 2 2 0 6 5436 8044 9186
-9244 2 2 0 6 6089 6091 6090
-9245 2 2 0 6 5853 6353 6354
-9246 2 2 0 6 5599 8492 7347
-9247 2 2 0 6 8361 8362 8364
-9248 2 2 0 6 5584 5586 8718
-9249 2 2 0 6 5358 8838 8065
-9250 2 2 0 6 260 261 529
-9251 2 2 0 6 2269 2279 2290
-9252 2 2 0 6 3733 5031 5572
-9253 2 2 0 6 6609 8259 8263
-9254 2 2 0 6 1518 2497 8918
-9255 2 2 0 6 2943 3114 8946
-9256 2 2 0 6 961 9399 3973
-9257 2 2 0 6 8478 9672 9530
-9258 2 2 0 6 5781 10129 5783
-9259 2 2 0 6 797 798 801
-9260 2 2 0 6 1284 1294 1293
-9261 2 2 0 6 1519 1751 1785
-9262 2 2 0 6 1667 4553 3722
-9263 2 2 0 6 4102 4397 4891
-9264 2 2 0 6 4729 5199 5604
-9265 2 2 0 6 4759 8353 8352
-9266 2 2 0 6 2955 8442 8176
-9267 2 2 0 6 2752 8484 2756
-9268 2 2 0 6 3532 9329 7109
-9269 2 2 0 6 8651 9775 9822
-9270 2 2 0 6 6442 9927 8555
-9271 2 2 0 6 2491 2660 2490
-9272 2 2 0 6 3174 3269 4448
-9273 2 2 0 6 4052 4980 5539
-9274 2 2 0 6 5883 6607 6558
-9275 2 2 0 6 5490 6057 8536
-9276 2 2 0 6 3148 3171 8576
-9277 2 2 0 6 96 468 8629
-9278 2 2 0 6 2123 4394 8998
-9279 2 2 0 6 4069 9110 4898
-9280 2 2 0 6 3112 4487 9833
-9281 2 2 0 6 270 271 480
-9282 2 2 0 6 2459 2717 2698
-9283 2 2 0 6 3873 3875 4639
-9284 2 2 0 6 4146 6215 4147
-9285 2 2 0 6 4043 8574 5407
-9286 2 2 0 6 1530 9205 1535
-9287 2 2 0 6 3885 4267 9968
-9288 2 2 0 6 2828 2827 2829
-9289 2 2 0 6 3318 3317 3319
-9290 2 2 0 6 4904 6267 6268
-9291 2 2 0 6 3941 8395 4688
-9292 2 2 0 6 4387 4388 4445
-9293 2 2 0 6 4261 4672 5166
-9294 2 2 0 6 5796 5797 5807
-9295 2 2 0 6 4701 6175 6176
-9296 2 2 0 6 6251 7179 7253
-9297 2 2 0 6 571 4273 7696
-9298 2 2 0 6 3384 7864 8160
-9299 2 2 0 6 8344 8346 8345
-9300 2 2 0 6 5577 8973 7531
-9301 2 2 0 6 7739 7740 10392
-9302 2 2 0 6 2033 2067 2068
-9303 2 2 0 6 3048 3050 3049
-9304 2 2 0 6 3050 3181 3182
-9305 2 2 0 6 3727 5045 3729
-9306 2 2 0 6 5339 5901 5340
-9307 2 2 0 6 6283 6481 6482
-9308 2 2 0 6 5313 6043 6677
-9309 2 2 0 6 5321 5322 7248
-9310 2 2 0 6 718 722 721
-9311 2 2 0 6 1114 1116 1115
-9312 2 2 0 6 1311 8467 1490
-9313 2 2 0 6 2535 2536 2537
-9314 2 2 0 6 3128 3129 3130
-9315 2 2 0 6 3050 3182 3183
-9316 2 2 0 6 3153 3340 4050
-9317 2 2 0 6 4833 4835 4834
-9318 2 2 0 6 3951 4759 8352
-9319 2 2 0 6 5590 8945 9552
-9320 2 2 0 6 2489 2614 2613
-9321 2 2 0 6 3652 3651 3675
-9322 2 2 0 6 4860 6246 6455
-9323 2 2 0 6 4445 4894 6589
-9324 2 2 0 6 5254 5255 7136
-9325 2 2 0 6 1073 1074 1072
-9326 2 2 0 6 1106 1108 1107
-9327 2 2 0 6 1854 3472 1856
-9328 2 2 0 6 5672 5673 5742
-9329 2 2 0 6 1526 1528 8903
-9330 2 2 0 6 4609 9263 6113
-9331 2 2 0 6 742 743 744
-9332 2 2 0 6 1496 1495 1517
-9333 2 2 0 6 2293 2298 2297
-9334 2 2 0 6 1905 8669 1939
-9335 2 2 0 6 4788 4790 4789
-9336 2 2 0 6 5258 5259 4774
-9337 2 2 0 6 4476 5877 5044
-9338 2 2 0 6 2284 9448 8367
-9339 2 2 0 6 5733 7051 6218
-9340 2 2 0 6 5588 7607 7606
-9341 2 2 0 6 179 180 8558
-9342 2 2 0 6 262 263 456
-9343 2 2 0 6 1187 1330 1329
-9344 2 2 0 6 1720 1770 1769
-9345 2 2 0 6 2165 2166 2164
-9346 2 2 0 6 5090 6098 9023
-9347 2 2 0 6 3363 4352 4353
-9348 2 2 0 6 5225 6253 6254
-9349 2 2 0 6 2945 8967 3114
-9350 2 2 0 6 8069 8070 8074
-9351 2 2 0 6 7347 8492 8493
-9352 2 2 0 6 614 617 616
-9353 2 2 0 6 1604 1607 1605
-9354 2 2 0 6 2291 2293 2292
-9355 2 2 0 6 3038 3039 3299
-9356 2 2 0 6 3902 4555 3904
-9357 2 2 0 6 5150 5836 5837
-9358 2 2 0 6 3466 9379 8398
-9359 2 2 0 6 2900 8756 9626
-9360 2 2 0 6 5790 9647 7420
-9361 2 2 0 6 4371 8167 4520
-9362 2 2 0 6 803 804 810
-9363 2 2 0 6 3933 4579 4574
-9364 2 2 0 6 4119 5101 5464
-9365 2 2 0 6 5021 5506 4404
-9366 2 2 0 6 6073 6075 6074
-9367 2 2 0 6 4917 6388 6442
-9368 2 2 0 6 6482 6509 6484
-9369 2 2 0 6 7351 7590 7350
-9370 2 2 0 6 8517 8518 8520
-9371 2 2 0 6 6176 7026 7801
-9372 2 2 0 6 4678 5315 6039
-9373 2 2 0 6 5253 7117 7118
-9374 2 2 0 6 3856 7933 4877
-9375 2 2 0 6 5302 6274 8054
-9376 2 2 0 6 2812 2814 9079
-9377 2 2 0 6 2159 8909 4019
-9378 2 2 0 6 3702 3704 3703
-9379 2 2 0 6 4324 4325 4071
-9380 2 2 0 6 3964 4666 4253
-9381 2 2 0 6 3034 5859 4478
-9382 2 2 0 6 6151 6525 6524
-9383 2 2 0 6 1632 8136 1635
-9384 2 2 0 6 4044 9453 9452
-9385 2 2 0 6 3802 4236 9476
-9386 2 2 0 6 3236 3495 3494
-9387 2 2 0 6 8717 9685 9477
-9388 2 2 0 6 1081 1084 4347
-9389 2 2 0 6 3206 4921 4106
-9390 2 2 0 6 6085 6087 6086
-9391 2 2 0 6 4968 7940 5757
-9392 2 2 0 6 3302 9079 4391
-9393 2 2 0 6 2022 2024 2026
-9394 2 2 0 6 2026 2028 2029
-9395 2 2 0 6 2668 2670 2671
-9396 2 2 0 6 3011 3265 3266
-9397 2 2 0 6 3701 3700 3702
-9398 2 2 0 6 4382 4384 4383
-9399 2 2 0 6 6500 7143 6502
-9400 2 2 0 6 2042 2043 7950
-9401 2 2 0 6 3191 4052 8482
-9402 2 2 0 6 827 990 829
-9403 2 2 0 6 1056 1057 1058
-9404 2 2 0 6 2227 2384 2385
-9405 2 2 0 6 2819 2821 2820
-9406 2 2 0 6 3522 8623 8624
-9407 2 2 0 6 4352 4354 4353
-9408 2 2 0 6 3623 5526 4452
-9409 2 2 0 6 2537 2538 2539
-9410 2 2 0 6 165 166 8369
-9411 2 2 0 6 2736 2737 2989
-9412 2 2 0 6 2437 9355 2438
-9413 2 2 0 6 4475 4490 5078
-9414 2 2 0 6 5134 6344 6345
-9415 2 2 0 6 1625 8428 5510
-9416 2 2 0 6 3304 8578 7147
-9417 2 2 0 6 936 938 939
-9418 2 2 0 6 1314 1495 1315
-9419 2 2 0 6 1702 1704 1703
-9420 2 2 0 6 1771 1790 1791
-9421 2 2 0 6 3421 3432 3431
-9422 2 2 0 6 785 8681 8682
-9423 2 2 0 6 1292 1319 4443
-9424 2 2 0 6 4018 4988 4753
-9425 2 2 0 6 5078 6029 8268
-9426 2 2 0 6 3914 9193 4747
-9427 2 2 0 6 1548 1550 1551
-9428 2 2 0 6 1311 1313 8467
-9429 2 2 0 6 4585 5090 5639
-9430 2 2 0 6 4735 5254 7154
-9431 2 2 0 6 4012 9315 5593
-9432 2 2 0 6 1434 7901 7900
-9433 2 2 0 6 3872 8383 3874
-9434 2 2 0 6 833 8829 835
-9435 2 2 0 6 3053 4152 8888
-9436 2 2 0 6 4190 9121 5752
-9437 2 2 0 6 1555 1556 1557
-9438 2 2 0 6 1704 1706 1707
-9439 2 2 0 6 1778 1825 1777
-9440 2 2 0 6 3122 3124 3123
-9441 2 2 0 6 3138 3141 3140
-9442 2 2 0 6 3959 3960 3535
-9443 2 2 0 6 3791 4147 4232
-9444 2 2 0 6 4381 4382 4383
-9445 2 2 0 6 4754 5227 5373
-9446 2 2 0 6 3727 8790 5045
-9447 2 2 0 6 6116 8836 9085
-9448 2 2 0 6 1030 9586 1097
-9449 2 2 0 6 836 10996 11002
-9450 2 2 0 6 2337 2481 2483
-9451 2 2 0 6 2574 2576 2575
-9452 2 2 0 6 4380 4382 4381
-9453 2 2 0 6 4383 4384 4385
-9454 2 2 0 6 3201 4411 3203
-9455 2 2 0 6 4190 5017 4948
-9456 2 2 0 6 4197 5019 5020
-9457 2 2 0 6 5132 5134 5133
-9458 2 2 0 6 3916 5522 5523
-9459 2 2 0 6 5598 5597 5599
-9460 2 2 0 6 1945 8158 2246
-9461 2 2 0 6 8582 8584 8583
-9462 2 2 0 6 1562 1564 1563
-9463 2 2 0 6 2735 2737 2736
-9464 2 2 0 6 2870 3101 3379
-9465 2 2 0 6 4986 5829 4985
-9466 2 2 0 6 2448 6097 5501
-9467 2 2 0 6 5209 7030 9364
-9468 2 2 0 6 755 1011 757
-9469 2 2 0 6 359 360 8359
-9470 2 2 0 6 3544 3545 3546
-9471 2 2 0 6 4725 5220 6392
-9472 2 2 0 6 1310 1494 6638
-9473 2 2 0 6 5288 7172 5289
-9474 2 2 0 6 5901 7209 7210
-9475 2 2 0 6 4732 8255 5614
-9476 2 2 0 6 4338 8801 8079
-9477 2 2 0 6 2974 2976 9431
-9478 2 2 0 6 4920 9704 8860
-9479 2 2 0 6 2168 2169 2170
-9480 2 2 0 6 3650 3651 3652
-9481 2 2 0 6 2862 5761 3923
-9482 2 2 0 6 5745 6598 5880
-9483 2 2 0 6 6044 7148 6197
-9484 2 2 0 6 1327 1328 1360
-9485 2 2 0 6 1882 1883 2150
-9486 2 2 0 6 2733 2735 2734
-9487 2 2 0 6 2683 3055 3057
-9488 2 2 0 6 2435 3655 2437
-9489 2 2 0 6 5881 5883 5882
-9490 2 2 0 6 5532 5930 6363
-9491 2 2 0 6 6287 7439 6289
-9492 2 2 0 6 7788 7790 7789
-9493 2 2 0 6 3747 5755 8864
-9494 2 2 0 6 3108 3957 9207
-9495 2 2 0 6 1551 1552 1553
-9496 2 2 0 6 2138 2139 2140
-9497 2 2 0 6 2177 8652 2193
-9498 2 2 0 6 2228 2498 2496
-9499 2 2 0 6 373 8166 8335
-9500 2 2 0 6 3746 4565 4564
-9501 2 2 0 6 4874 5310 5398
-9502 2 2 0 6 5220 6393 6392
-9503 2 2 0 6 6179 6495 6496
-9504 2 2 0 6 838 9613 840
-9505 2 2 0 6 4345 8104 8105
-9506 2 2 0 6 2642 3059 8712
-9507 2 2 0 6 3327 9184 3594
-9508 2 2 0 6 2287 2296 9297
-9509 2 2 0 6 3588 8784 3660
-9510 2 2 0 6 3704 3706 3705
-9511 2 2 0 6 4093 4095 4096
-9512 2 2 0 6 5036 6043 5313
-9513 2 2 0 6 5411 7546 7612
-9514 2 2 0 6 5713 10365 7981
-9515 2 2 0 6 920 921 922
-9516 2 2 0 6 1528 1535 8903
-9517 2 2 0 6 2259 2260 2261
-9518 2 2 0 6 835 3370 879
-9519 2 2 0 6 2142 2144 8984
-9520 2 2 0 6 4509 5854 4516
-9521 2 2 0 6 5048 5432 6384
-9522 2 2 0 6 6512 6532 6533
-9523 2 2 0 6 5982 5984 6642
-9524 2 2 0 6 7286 7287 7288
-9525 2 2 0 6 2304 8596 2513
-9526 2 2 0 6 6682 7587 7586
-9527 2 2 0 6 161 162 8322
-9528 2 2 0 6 5722 6468 9779
-9529 2 2 0 6 1023 1027 1028
-9530 2 2 0 6 1060 1061 1062
-9531 2 2 0 6 1164 1822 1181
-9532 2 2 0 6 2280 2282 2281
-9533 2 2 0 6 1003 4426 1012
-9534 2 2 0 6 5482 5484 5485
-9535 2 2 0 6 5656 5657 5658
-9536 2 2 0 6 4962 8140 8141
-9537 2 2 0 6 1803 8887 1810
-9538 2 2 0 6 2929 9587 2568
-9539 2 2 0 6 618 621 620
-9540 2 2 0 6 695 699 698
-9541 2 2 0 6 699 703 702
-9542 2 2 0 6 2289 2288 2294
-9543 2 2 0 6 2816 2817 2818
-9544 2 2 0 6 3065 4146 3791
-9545 2 2 0 6 3826 4366 4365
-9546 2 2 0 6 4397 4471 8734
-9547 2 2 0 6 6510 6531 6512
-9548 2 2 0 6 5079 5081 8941
-9549 2 2 0 6 3721 5530 9047
-9550 2 2 0 6 612 610 613
-9551 2 2 0 6 722 732 728
-9552 2 2 0 6 2496 3491 2497
-9553 2 2 0 6 1694 1696 1695
-9554 2 2 0 6 2364 2771 2619
-9555 2 2 0 6 2018 2020 4346
-9556 2 2 0 6 5871 6617 5886
-9557 2 2 0 6 163 164 8366
-9558 2 2 0 6 3038 3299 8810
-9559 2 2 0 6 3777 8867 4203
-9560 2 2 0 6 2569 7905 9612
-9561 2 2 0 6 802 804 803
-9562 2 2 0 6 1054 1055 1056
-9563 2 2 0 6 1751 1786 1785
-9564 2 2 0 6 2300 2302 2301
-9565 2 2 0 6 4793 4792 4794
-9566 2 2 0 6 4490 5079 5078
-9567 2 2 0 6 5364 5366 5365
-9568 2 2 0 6 3618 4717 5672
-9569 2 2 0 6 6460 6463 6462
-9570 2 2 0 6 4491 6552 4510
-9571 2 2 0 6 924 926 927
-9572 2 2 0 6 2783 2877 2878
-9573 2 2 0 6 3131 3130 3132
-9574 2 2 0 6 3473 3819 3474
-9575 2 2 0 6 3651 4034 3675
-9576 2 2 0 6 4384 4386 4385
-9577 2 2 0 6 372 373 8335
-9578 2 2 0 6 5696 8357 6260
-9579 2 2 0 6 3358 5500 9248
-9580 2 2 0 6 3527 6383 9337
-9581 2 2 0 6 714 718 717
-9582 2 2 0 6 1616 1619 1618
-9583 2 2 0 6 1682 4349 1684
-9584 2 2 0 6 4550 5919 4551
-9585 2 2 0 6 5850 6590 5851
-9586 2 2 0 6 4777 7338 5306
-9587 2 2 0 6 2190 4410 7622
-9588 2 2 0 6 1489 8213 1510
-9589 2 2 0 6 5419 7639 9421
-9590 2 2 0 6 4207 9327 9216
-9591 2 2 0 6 1033 1099 1034
-9592 2 2 0 6 3781 3780 3782
-9593 2 2 0 6 3068 3931 3309
-9594 2 2 0 6 3312 3883 9680
-9595 2 2 0 6 5247 5336 5248
-9596 2 2 0 6 5250 5394 5395
-9597 2 2 0 6 5495 6584 6583
-9598 2 2 0 6 3427 3994 8678
-9599 2 2 0 6 4965 9605 5648
-9600 2 2 0 6 9038 9975 9039
-9601 2 2 0 6 8183 10034 8188
-9602 2 2 0 6 6536 10242 9493
-9603 2 2 0 6 948 950 951
-9604 2 2 0 6 1021 1499 1032
-9605 2 2 0 6 3609 4946 4022
-9606 2 2 0 6 4115 5095 5390
-9607 2 2 0 6 5017 5915 5914
-9608 2 2 0 6 5712 7023 6183
-9609 2 2 0 6 5698 5793 7855
-9610 2 2 0 6 2384 2428 2385
-9611 2 2 0 6 4585 5089 5090
-9612 2 2 0 6 4525 6605 6606
-9613 2 2 0 6 5287 7018 7017
-9614 2 2 0 6 5902 7352 6432
-9615 2 2 0 6 7786 7794 7788
-9616 2 2 0 6 699 1208 703
-9617 2 2 0 6 1764 1797 1796
-9618 2 2 0 6 1786 1883 1882
-9619 2 2 0 6 2531 2532 2533
-9620 2 2 0 6 2653 2864 2863
-9621 2 2 0 6 3211 4042 4848
-9622 2 2 0 6 5545 6187 7103
-9623 2 2 0 6 5793 6280 7236
-9624 2 2 0 6 2355 2356 9214
-9625 2 2 0 6 1686 1692 1693
-9626 2 2 0 6 3599 3600 3601
-9627 2 2 0 6 3258 3881 3880
-9628 2 2 0 6 3605 4111 4735
-9629 2 2 0 6 4867 4869 4868
-9630 2 2 0 6 5925 6577 6640
-9631 2 2 0 6 7045 8118 8419
-9632 2 2 0 6 1035 8445 1989
-9633 2 2 0 6 1384 9175 1385
-9634 2 2 0 6 3966 5810 9729
-9635 2 2 0 6 6208 10199 10096
-9636 2 2 0 6 1601 1604 1603
-9637 2 2 0 6 1635 1637 1636
-9638 2 2 0 6 3448 9549 4708
-9639 2 2 0 6 1263 4046 1276
-9640 2 2 0 6 5482 5483 5484
-9641 2 2 0 6 5253 5290 7117
-9642 2 2 0 6 385 386 8151
-9643 2 2 0 6 671 3533 8601
-9644 2 2 0 6 3083 8927 3084
-9645 2 2 0 6 1279 1288 1289
-9646 2 2 0 6 3464 3499 3467
-9647 2 2 0 6 3171 4045 4167
-9648 2 2 0 6 2989 9261 3239
-9649 2 2 0 6 1013 1016 1015
-9650 2 2 0 6 3146 3301 3300
-9651 2 2 0 6 4151 4153 4152
-9652 2 2 0 6 588 590 5513
-9653 2 2 0 6 6283 6482 6483
-9654 2 2 0 6 3452 2667 8101
-9655 2 2 0 6 1206 8344 8345
-9656 2 2 0 6 6462 8772 8551
-9657 2 2 0 6 4548 5032 9116
-9658 2 2 0 6 1897 10425 7455
-9659 2 2 0 6 4750 5265 5247
-9660 2 2 0 6 4340 5965 5966
-9661 2 2 0 6 2497 5749 8918
-9662 2 2 0 6 5548 8915 9645
-9663 2 2 0 6 2475 2623 2622
-9664 2 2 0 6 2498 2499 2844
-9665 2 2 0 6 3548 3550 3913
-9666 2 2 0 6 3166 3190 4054
-9667 2 2 0 6 2132 5462 9828
-9668 2 2 0 6 5077 6655 6656
-9669 2 2 0 6 5092 6660 6619
-9670 2 2 0 6 5326 7351 7350
-9671 2 2 0 6 3384 7863 7864
-9672 2 2 0 6 6173 6174 8299
-9673 2 2 0 6 5573 8655 5575
-9674 2 2 0 6 1962 8994 5835
-9675 2 2 0 6 6383 9051 8372
-9676 2 2 0 6 5639 9627 8835
-9677 2 2 0 6 956 958 959
-9678 2 2 0 6 1307 1325 1326
-9679 2 2 0 6 2799 2802 2801
-9680 2 2 0 6 765 4350 769
-9681 2 2 0 6 4561 4562 6666
-9682 2 2 0 6 609 8901 610
-9683 2 2 0 6 724 727 726
-9684 2 2 0 6 1058 1059 1060
-9685 2 2 0 6 1361 1363 1364
-9686 2 2 0 6 595 597 3456
-9687 2 2 0 6 5988 5989 5990
-9688 2 2 0 6 5315 6676 6039
-9689 2 2 0 6 5473 7155 5474
-9690 2 2 0 6 2156 8172 2384
-9691 2 2 0 6 1642 1689 2164
-9692 2 2 0 6 4878 5382 4879
-9693 2 2 0 6 4596 6050 6406
-9694 2 2 0 6 6251 7253 7270
-9695 2 2 0 6 3094 3097 8062
-9696 2 2 0 6 860 862 8619
-9697 2 2 0 6 2576 2578 2577
-9698 2 2 0 6 3306 4183 4182
-9699 2 2 0 6 3491 4750 3492
-9700 2 2 0 6 4284 4770 5042
-9701 2 2 0 6 5634 5635 6282
-9702 2 2 0 6 5537 6250 7952
-9703 2 2 0 6 3981 8833 9414
-9704 2 2 0 6 740 741 742
-9705 2 2 0 6 3130 3133 3132
-9706 2 2 0 6 3187 3293 3892
-9707 2 2 0 6 5489 6056 5490
-9708 2 2 0 6 2586 8796 8797
-9709 2 2 0 6 4916 8906 8907
-9710 2 2 0 6 1091 1795 1094
-9711 2 2 0 6 3913 4747 4748
-9712 2 2 0 6 4550 5920 5919
-9713 2 2 0 6 5103 5102 6080
-9714 2 2 0 6 4138 8893 8894
-9715 2 2 0 6 8501 8502 9068
-9716 2 2 0 6 1856 3472 8667
-9717 2 2 0 6 1016 1022 1017
-9718 2 2 0 6 1118 1120 1119
-9719 2 2 0 6 1465 1466 1467
-9720 2 2 0 6 1945 1946 8158
-9721 2 2 0 6 2878 3152 3153
-9722 2 2 0 6 3398 3402 3399
-9723 2 2 0 6 1084 8774 4347
-9724 2 2 0 6 5220 7620 6393
-9725 2 2 0 6 4550 8958 5920
-9726 2 2 0 6 3903 4722 9059
-9727 2 2 0 6 947 10128 8222
-9728 2 2 0 6 1051 1052 1050
-9729 2 2 0 6 1289 1307 1306
-9730 2 2 0 6 2292 2297 3368
-9731 2 2 0 6 5417 7613 6464
-9732 2 2 0 6 3898 4419 9976
-9733 2 2 0 6 4322 9245 5325
-9734 2 2 0 6 5896 10422 10018
-9735 2 2 0 6 801 802 803
-9736 2 2 0 6 2712 8832 9153
-9737 2 2 0 6 2818 2819 2820
-9738 2 2 0 6 1054 8441 1052
-9739 2 2 0 6 3979 4850 4849
-9740 2 2 0 6 2126 5462 2132
-9741 2 2 0 6 6083 6085 6084
-9742 2 2 0 6 5024 5114 9268
-9743 2 2 0 6 5347 5495 6583
-9744 2 2 0 6 5581 5580 7265
-9745 2 2 0 6 2949 4914 8672
-9746 2 2 0 6 1198 1200 8721
-9747 2 2 0 6 622 625 624
-9748 2 2 0 6 3088 3091 3090
-9749 2 2 0 6 3127 3126 3128
-9750 2 2 0 6 1627 3363 1628
-9751 2 2 0 6 2637 3646 2786
-9752 2 2 0 6 3706 3740 3707
-9753 2 2 0 6 5480 5483 5482
-9754 2 2 0 6 2473 7947 9850
-9755 2 2 0 6 5981 5983 5982
-9756 2 2 0 6 6245 6284 7216
-9757 2 2 0 6 7320 7391 7390
-9758 2 2 0 6 2346 9290 3579
-9759 2 2 0 6 6206 8659 8220
-9760 2 2 0 6 4422 8823 5264
-9761 2 2 0 6 2884 8246 10116
-9762 2 2 0 6 884 891 885
-9763 2 2 0 6 944 946 947
-9764 2 2 0 6 1048 1049 1050
-9765 2 2 0 6 1053 1054 1052
-9766 2 2 0 6 1363 1365 1364
-9767 2 2 0 6 5642 7913 5799
-9768 2 2 0 6 2029 2032 2033
-9769 2 2 0 6 2335 2334 2336
-9770 2 2 0 6 1674 4418 1676
-9771 2 2 0 6 2285 9829 9893
-9772 2 2 0 6 2291 8891 3627
-9773 2 2 0 6 5539 9774 8482
-9774 2 2 0 6 664 666 667
-9775 2 2 0 6 1002 1003 1004
-9776 2 2 0 6 2625 2779 2780
-9777 2 2 0 6 2408 3007 3008
-9778 2 2 0 6 3851 3852 3853
-9779 2 2 0 6 961 3973 976
-9780 2 2 0 6 5311 7207 7205
-9781 2 2 0 6 1747 8163 3352
-9782 2 2 0 6 5746 8757 8756
-9783 2 2 0 6 7302 7311 8604
-9784 2 2 0 6 2660 2661 2834
-9785 2 2 0 6 3035 4402 3448
-9786 2 2 0 6 3000 3826 4365
-9787 2 2 0 6 5564 6196 6195
-9788 2 2 0 6 6533 8292 7990
-9789 2 2 0 6 1699 1698 1700
-9790 2 2 0 6 1776 1775 1792
-9791 2 2 0 6 2177 2193 2192
-9792 2 2 0 6 2274 2275 2276
-9793 2 2 0 6 2385 2428 2429
-9794 2 2 0 6 2430 2491 2490
-9795 2 2 0 6 3743 4070 4071
-9796 2 2 0 6 3798 3831 4261
-9797 2 2 0 6 4015 5636 4446
-9798 2 2 0 6 8345 8346 8347
-9799 2 2 0 6 2246 8634 2459
-9800 2 2 0 6 3994 4441 8678
-9801 2 2 0 6 785 8682 790
-9802 2 2 0 6 5082 5084 8808
-9803 2 2 0 6 5577 5574 8973
-9804 2 2 0 6 8706 9013 8704
-9805 2 2 0 6 568 9653 3764
-9806 2 2 0 6 1285 1313 1311
-9807 2 2 0 6 1493 1762 1761
-9808 2 2 0 6 1858 2212 1860
-9809 2 2 0 6 2308 2310 2295
-9810 2 2 0 6 3135 3134 3136
-9811 2 2 0 6 5637 5882 9685
-9812 2 2 0 6 3433 3436 3435
-9813 2 2 0 6 4832 4833 4834
-9814 2 2 0 6 4531 5051 5052
-9815 2 2 0 6 5662 5663 5664
-9816 2 2 0 6 4963 5838 5723
-9817 2 2 0 6 5305 7164 7163
-9818 2 2 0 6 5339 7209 5901
-9819 2 2 0 6 6371 7234 7266
-9820 2 2 0 6 1959 7547 2204
-9821 2 2 0 6 6650 7654 7653
-9822 2 2 0 6 6484 6511 8228
-9823 2 2 0 6 480 8563 8562
-9824 2 2 0 6 4009 8035 8656
-9825 2 2 0 6 1499 8658 4401
-9826 2 2 0 6 1638 9135 5618
-9827 2 2 0 6 1015 1016 1017
-9828 2 2 0 6 877 1039 883
-9829 2 2 0 6 3499 3986 3985
-9830 2 2 0 6 2306 8763 6396
-9831 2 2 0 6 2048 5003 5002
-9832 2 2 0 6 5639 5640 5641
-9833 2 2 0 6 8118 8573 8420
-9834 2 2 0 6 1003 8642 4426
-9835 2 2 0 6 1202 11073 7478
-9836 2 2 0 6 1879 1973 1974
-9837 2 2 0 6 853 855 3522
-9838 2 2 0 6 2302 8596 2304
-9839 2 2 0 6 4254 4304 4303
-9840 2 2 0 6 8034 8039 8036
-9841 2 2 0 6 7713 8115 7714
-9842 2 2 0 6 5205 8408 6369
-9843 2 2 0 6 3814 4222 8590
-9844 2 2 0 6 5523 5524 8793
-9845 2 2 0 6 6343 9738 6344
-9846 2 2 0 6 1100 1103 1102
-9847 2 2 0 6 2238 2343 2344
-9848 2 2 0 6 2429 2490 2927
-9849 2 2 0 6 3605 3755 4111
-9850 2 2 0 6 1802 1896 4406
-9851 2 2 0 6 4117 4214 4593
-9852 2 2 0 6 4744 4746 4326
-9853 2 2 0 6 3228 4878 4230
-9854 2 2 0 6 1669 1672 5430
-9855 2 2 0 6 4519 5846 5845
-9856 2 2 0 6 5628 7677 7353
-9857 2 2 0 6 5616 9683 9036
-9858 2 2 0 6 1473 1474 1475
-9859 2 2 0 6 2615 2616 2617
-9860 2 2 0 6 4118 5099 4119
-9861 2 2 0 6 3944 4823 4822
-9862 2 2 0 6 4927 4929 4928
-9863 2 2 0 6 4775 5600 5596
-9864 2 2 0 6 6206 8219 8218
-9865 2 2 0 6 480 8562 8561
-9866 2 2 0 6 3652 3677 8698
-9867 2 2 0 6 6509 10114 10183
-9868 2 2 0 6 2250 9009 8505
-9869 2 2 0 6 1416 1417 1418
-9870 2 2 0 6 3586 8784 3588
-9871 2 2 0 6 860 8619 1024
-9872 2 2 0 6 2430 2490 2429
-9873 2 2 0 6 2147 3541 3540
-9874 2 2 0 6 4146 4147 3791
-9875 2 2 0 6 2675 2764 4501
-9876 2 2 0 6 4937 4942 4940
-9877 2 2 0 6 4337 5023 4336
-9878 2 2 0 6 4750 5247 4751
-9879 2 2 0 6 5084 5086 5253
-9880 2 2 0 6 5528 5645 5527
-9881 2 2 0 6 5602 6435 6434
-9882 2 2 0 6 5226 6985 6988
-9883 2 2 0 6 7298 7761 7300
-9884 2 2 0 6 3392 5538 8503
-9885 2 2 0 6 8705 8704 8707
-9886 2 2 0 6 2277 2280 2278
-9887 2 2 0 6 2504 2853 2505
-9888 2 2 0 6 2717 2981 2980
-9889 2 2 0 6 3042 3044 3045
-9890 2 2 0 6 1133 3390 1151
-9891 2 2 0 6 3231 3838 3837
-9892 2 2 0 6 2050 2052 4185
-9893 2 2 0 6 4212 4594 3757
-9894 2 2 0 6 4066 5021 4404
-9895 2 2 0 6 5697 5698 5696
-9896 2 2 0 6 5054 8781 8782
-9897 2 2 0 6 4912 8227 9396
-9898 2 2 0 6 2578 2580 2579
-9899 2 2 0 6 3392 3393 3394
-9900 2 2 0 6 4296 4699 4698
-9901 2 2 0 6 3927 4781 4782
-9902 2 2 0 6 4786 5270 4788
-9903 2 2 0 6 4823 5495 5347
-9904 2 2 0 6 1412 10011 1410
-9905 2 2 0 6 5472 6130 6129
-9906 2 2 0 6 4853 6272 6273
-9907 2 2 0 6 6273 7457 7458
-9908 2 2 0 6 5892 7455 9328
-9909 2 2 0 6 2857 10313 3991
-9910 2 2 0 6 1001 993 1002
-9911 2 2 0 6 2283 2287 2286
-9912 2 2 0 6 2298 2300 2299
-9913 2 2 0 6 1678 2386 1680
-9914 2 2 0 6 2754 2755 2757
-9915 2 2 0 6 2678 2894 3041
-9916 2 2 0 6 3406 3408 3407
-9917 2 2 0 6 1022 3451 8665
-9918 2 2 0 6 3039 4295 3299
-9919 2 2 0 6 2123 2145 4394
-9920 2 2 0 6 4450 4451 3519
-9921 2 2 0 6 3985 4550 3987
-9922 2 2 0 6 3736 4559 5518
-9923 2 2 0 6 5088 7676 6026
-9924 2 2 0 6 6512 6533 7988
-9925 2 2 0 6 2955 8176 2957
-9926 2 2 0 6 7063 8253 6210
-9927 2 2 0 6 8980 9293 9346
-9928 2 2 0 6 675 676 674
-9929 2 2 0 6 1855 1857 1960
-9930 2 2 0 6 5786 5787 5788
-9931 2 2 0 6 4740 6044 6197
-9932 2 2 0 6 5998 6415 6678
-9933 2 2 0 6 3417 9281 3420
-9934 2 2 0 6 3269 3270 9430
-9935 2 2 0 6 1692 1694 1693
-9936 2 2 0 6 2263 2264 2265
-9937 2 2 0 6 2302 2304 2303
-9938 2 2 0 6 1518 2496 2497
-9939 2 2 0 6 2757 2758 2759
-9940 2 2 0 6 3118 3119 3120
-9941 2 2 0 6 3965 4254 4303
-9942 2 2 0 6 4465 4468 4467
-9943 2 2 0 6 4428 4961 4429
-9944 2 2 0 6 4075 4076 5055
-9945 2 2 0 6 5572 5870 5942
-9946 2 2 0 6 6032 6033 6173
-9947 2 2 0 6 5271 7188 6571
-9948 2 2 0 6 850 9156 3567
-9949 2 2 0 6 2557 9518 2993
-9950 2 2 0 6 5975 9706 9392
-9951 2 2 0 6 2815 2817 2816
-9952 2 2 0 6 3738 4118 4119
-9953 2 2 0 6 4784 4786 4787
-9954 2 2 0 6 1129 1147 5478
-9955 2 2 0 6 4934 4936 6646
-9956 2 2 0 6 6123 6807 6806
-9957 2 2 0 6 6172 7131 7132
-9958 2 2 0 6 5106 8191 6060
-9959 2 2 0 6 1647 9406 3511
-9960 2 2 0 6 608 609 610
-9961 2 2 0 6 3124 3125 3126
-9962 2 2 0 6 1372 1373 3623
-9963 2 2 0 6 4377 8525 4768
-9964 2 2 0 6 1947 2247 4438
-9965 2 2 0 6 3913 3914 4747
-9966 2 2 0 6 5889 5890 5897
-9967 2 2 0 6 5614 7028 6208
-9968 2 2 0 6 3357 3961 7926
-9969 2 2 0 6 4559 8868 5519
-9970 2 2 0 6 2351 2520 9024
-9971 2 2 0 6 1279 1306 9607
-9972 2 2 0 6 730 731 739
-9973 2 2 0 6 918 921 920
-9974 2 2 0 6 2336 2493 2492
-9975 2 2 0 6 2454 2511 2646
-9976 2 2 0 6 2817 2819 2818
-9977 2 2 0 6 3119 3121 3120
-9978 2 2 0 6 4747 5301 5223
-9979 2 2 0 6 863 3486 9056
-9980 2 2 0 6 6271 7655 7656
-9981 2 2 0 6 5536 8952 8947
-9982 2 2 0 6 5737 9200 9298
-9983 2 2 0 6 2278 2280 2281
-9984 2 2 0 6 3506 9466 9625
-9985 2 2 0 6 1372 3623 4025
-9986 2 2 0 6 5527 5645 6451
-9987 2 2 0 6 8702 8706 8704
-9988 2 2 0 6 3262 4695 8964
-9989 2 2 0 6 5437 9925 9275
-9990 2 2 0 6 864 863 865
-9991 2 2 0 6 1022 1027 1023
-9992 2 2 0 6 1028 1027 1033
-9993 2 2 0 6 1088 1092 1813
-9994 2 2 0 6 1797 1881 1880
-9995 2 2 0 6 4753 4989 5946
-9996 2 2 0 6 4382 8472 4384
-9997 2 2 0 6 4544 4547 8744
-9998 2 2 0 6 3428 3444 8863
-9999 2 2 0 6 4386 9037 4388
-10000 2 2 0 6 709 714 710
-10001 2 2 0 6 790 792 791
-10002 2 2 0 6 4633 5151 4634
-10003 2 2 0 6 5390 6045 6046
-10004 2 2 0 6 7117 7348 7118
-10005 2 2 0 6 3369 5529 8165
-10006 2 2 0 6 3522 8624 8625
-10007 2 2 0 6 3162 3163 8595
-10008 2 2 0 6 1220 3388 1265
-10009 2 2 0 6 1369 1370 1371
-10010 2 2 0 6 1503 1779 1780
-10011 2 2 0 6 3772 3774 3775
-10012 2 2 0 6 4206 4208 4207
-10013 2 2 0 6 2520 2906 9024
-10014 2 2 0 6 3902 9249 4555
-10015 2 2 0 6 722 728 725
-10016 2 2 0 6 857 860 1024
-10017 2 2 0 6 1957 2189 2255
-10018 2 2 0 6 2283 2288 2287
-10019 2 2 0 6 2520 2905 2906
-10020 2 2 0 6 2866 2868 3067
-10021 2 2 0 6 3211 3210 4042
-10022 2 2 0 6 4879 5382 5383
-10023 2 2 0 6 5788 6325 6326
-10024 2 2 0 6 6460 6462 6461
-10025 2 2 0 6 5331 7256 7193
-10026 2 2 0 6 4734 5545 8026
-10027 2 2 0 6 4579 8922 7593
-10028 2 2 0 6 4918 4919 8948
-10029 2 2 0 6 726 727 730
-10030 2 2 0 6 741 743 742
-10031 2 2 0 6 1255 1270 1269
-10032 2 2 0 6 1626 1627 1628
-10033 2 2 0 6 1762 1831 1830
-10034 2 2 0 6 2908 2904 2909
-10035 2 2 0 6 3487 3488 3489
-10036 2 2 0 6 2961 3657 2964
-10037 2 2 0 6 5573 5575 5574
-10038 2 2 0 6 2387 7782 2431
-10039 2 2 0 6 8036 8038 8037
-10040 2 2 0 6 601 8987 1920
-10041 2 2 0 6 703 709 706
-10042 2 2 0 6 2905 3210 2906
-10043 2 2 0 6 3460 3461 3462
-10044 2 2 0 6 683 9179 685
-10045 2 2 0 6 4385 4386 4387
-10046 2 2 0 6 4919 5338 5339
-10047 2 2 0 6 4658 5380 5379
-10048 2 2 0 6 4890 5894 5542
-10049 2 2 0 6 6216 5162 6217
-10050 2 2 0 6 5593 6433 5617
-10051 2 2 0 6 7284 7287 7286
-10052 2 2 0 6 363 8304 522
-10053 2 2 0 6 3501 8550 3503
-10054 2 2 0 6 3463 9132 8477
-10055 2 2 0 6 9405 9938 9813
-10056 2 2 0 6 626 629 628
-10057 2 2 0 6 3063 3115 3116
-10058 2 2 0 6 3513 4037 3514
-10059 2 2 0 6 4933 4939 4935
-10060 2 2 0 6 3952 4650 8645
-10061 2 2 0 6 3392 3394 5538
-10062 2 2 0 6 4012 5593 4952
-10063 2 2 0 6 7590 7591 7592
-10064 2 2 0 6 7045 7048 8118
-10065 2 2 0 6 2699 8082 8840
-10066 2 2 0 6 5840 10062 8034
-10067 2 2 0 6 914 917 916
-10068 2 2 0 6 1174 1200 1198
-10069 2 2 0 6 2159 2160 2151
-10070 2 2 0 6 2261 2262 2263
-10071 2 2 0 6 3104 3105 9207
-10072 2 2 0 6 4408 5727 6025
-10073 2 2 0 6 5081 6228 6229
-10074 2 2 0 6 1114 1189 8953
-10075 2 2 0 6 6381 9418 9076
-10076 2 2 0 6 5645 9645 8915
-10077 2 2 0 6 2727 4055 9832
-10078 2 2 0 6 945 10337 10271
-10079 2 2 0 6 572 574 573
-10080 2 2 0 6 616 617 618
-10081 2 2 0 6 630 632 631
-10082 2 2 0 6 1390 1391 1392
-10083 2 2 0 6 3121 3122 3120
-10084 2 2 0 6 2953 3158 3157
-10085 2 2 0 6 3698 3700 3699
-10086 2 2 0 6 3741 5049 5726
-10087 2 2 0 6 5526 5528 5527
-10088 2 2 0 6 4924 8403 8402
-10089 2 2 0 6 4927 4944 8630
-10090 2 2 0 6 1356 1502 1503
-10091 2 2 0 6 2610 2813 2812
-10092 2 2 0 6 2646 2647 3035
-10093 2 2 0 6 3367 3672 3671
-10094 2 2 0 6 3782 3784 3785
-10095 2 2 0 6 4386 4388 4387
-10096 2 2 0 6 2027 5534 5493
-10097 2 2 0 6 3488 4846 3489
-10098 2 2 0 6 4699 5218 5217
-10099 2 2 0 6 4751 5247 5248
-10100 2 2 0 6 5274 5275 5293
-10101 2 2 0 6 4886 5555 5553
-10102 2 2 0 6 5384 6321 6120
-10103 2 2 0 6 6354 6357 6356
-10104 2 2 0 6 7282 7284 7283
-10105 2 2 0 6 4420 8056 5243
-10106 2 2 0 6 3347 8087 5388
-10107 2 2 0 6 2388 10075 2487
-10108 2 2 0 6 653 8617 6414
-10109 2 2 0 6 6552 9866 9969
-10110 2 2 0 6 940 942 943
-10111 2 2 0 6 960 962 963
-10112 2 2 0 6 1270 1284 1283
-10113 2 2 0 6 2529 2530 2531
-10114 2 2 0 6 2989 3065 3791
-10115 2 2 0 6 3747 5069 5755
-10116 2 2 0 6 1489 3628 8213
-10117 2 2 0 6 2551 7829 8565
-10118 2 2 0 6 6022 9014 7688
-10119 2 2 0 6 3305 6405 9726
-10120 2 2 0 6 3075 10205 9849
-10121 2 2 0 6 595 596 597
-10122 2 2 0 6 636 639 638
-10123 2 2 0 6 792 797 791
-10124 2 2 0 6 584 586 1520
-10125 2 2 0 6 2308 2309 2500
-10126 2 2 0 6 3348 3349 3350
-10127 2 2 0 6 671 674 3533
-10128 2 2 0 6 3233 3840 3962
-10129 2 2 0 6 2766 2768 4067
-10130 2 2 0 6 4388 4894 4445
-10131 2 2 0 6 4933 4935 4934
-10132 2 2 0 6 4025 4452 4979
-10133 2 2 0 6 2951 9216 4914
-10134 2 2 0 6 2150 2151 8414
-10135 2 2 0 6 1369 1372 9158
-10136 2 2 0 6 5570 5569 9834
-10137 2 2 0 6 2265 2266 2267
-10138 2 2 0 6 2804 3375 3674
-10139 2 2 0 6 3534 3959 3535
-10140 2 2 0 6 3991 4415 3992
-10141 2 2 0 6 1154 8390 1164
-10142 2 2 0 6 1010 8970 8969
-10143 2 2 0 6 4924 8402 4925
-10144 2 2 0 6 1151 3390 8827
-10145 2 2 0 6 5687 8898 8897
-10146 2 2 0 6 603 8990 8987
-10147 2 2 0 6 1256 6038 9857
-10148 2 2 0 6 5527 6451 9084
-10149 2 2 0 6 1931 1933 1932
-10150 2 2 0 6 4727 5251 5314
-10151 2 2 0 6 6090 6091 6092
-10152 2 2 0 6 7785 7786 7787
-10153 2 2 0 6 1013 1012 8679
-10154 2 2 0 6 2418 8319 9897
-10155 2 2 0 6 2171 2174 2173
-10156 2 2 0 6 3128 3130 3131
-10157 2 2 0 6 3409 3414 3413
-10158 2 2 0 6 4037 4804 4038
-10159 2 2 0 6 4936 4937 4938
-10160 2 2 0 6 4610 5797 5796
-10161 2 2 0 6 6376 6377 7481
-10162 2 2 0 6 2053 2056 8743
-10163 2 2 0 6 3044 3047 3046
-10164 2 2 0 6 3467 3985 3987
-10165 2 2 0 6 3952 4282 4281
-10166 2 2 0 6 6833 6835 6834
-10167 2 2 0 6 2035 2038 8776
-10168 2 2 0 6 5054 8780 8781
-10169 2 2 0 6 1496 1518 8918
-10170 2 2 0 6 3160 4205 4206
-10171 2 2 0 6 4681 4864 4865
-10172 2 2 0 6 4964 4965 5646
-10173 2 2 0 6 3418 9736 9332
-10174 2 2 0 6 4144 6044 4740
-10175 2 2 0 6 8709 8882 8881
-10176 2 2 0 6 3585 9414 9509
-10177 2 2 0 6 3049 10054 9930
-10178 2 2 0 6 2376 2378 2398
-10179 2 2 0 6 2796 2795 2797
-10180 2 2 0 6 2826 2827 2828
-10181 2 2 0 6 2824 2826 2920
-10182 2 2 0 6 709 3383 714
-10183 2 2 0 6 4415 4881 4880
-10184 2 2 0 6 5340 5901 5902
-10185 2 2 0 6 5848 6333 5849
-10186 2 2 0 6 6411 8728 9667
-10187 2 2 0 6 1787 8815 1829
-10188 2 2 0 6 848 1043 9156
-10189 2 2 0 6 6381 9580 8392
-10190 2 2 0 6 1377 1379 1378
-10191 2 2 0 6 3319 3322 3320
-10192 2 2 0 6 2646 3035 3447
-10193 2 2 0 6 2310 3459 3458
-10194 2 2 0 6 2907 3526 3738
-10195 2 2 0 6 2949 2951 4914
-10196 2 2 0 6 4200 5076 5077
-10197 2 2 0 6 4564 4565 5978
-10198 2 2 0 6 4597 6053 6400
-10199 2 2 0 6 668 671 8601
-10200 2 2 0 6 1294 9424 5874
-10201 2 2 0 6 4607 9210 6107
-10202 2 2 0 6 1632 1635 1634
-10203 2 2 0 6 3744 4566 6008
-10204 2 2 0 6 595 3456 8449
-10205 2 2 0 6 2282 9131 2283
-10206 2 2 0 6 682 683 684
-10207 2 2 0 6 928 930 931
-10208 2 2 0 6 3652 3675 3676
-10209 2 2 0 6 4279 4420 4419
-10210 2 2 0 6 4834 4835 4918
-10211 2 2 0 6 4271 4734 5221
-10212 2 2 0 6 4910 5580 5579
-10213 2 2 0 6 5823 5824 5822
-10214 2 2 0 6 5028 5881 5637
-10215 2 2 0 6 8309 8312 8311
-10216 2 2 0 6 3460 8398 5517
-10217 2 2 0 6 676 677 678
-10218 2 2 0 6 775 785 784
-10219 2 2 0 6 849 851 1148
-10220 2 2 0 6 1375 1377 1378
-10221 2 2 0 6 1261 1273 1759
-10222 2 2 0 6 2666 3148 3487
-10223 2 2 0 6 2042 4509 2928
-10224 2 2 0 6 4538 4556 4539
-10225 2 2 0 6 5221 6265 5222
-10226 2 2 0 6 5268 6499 6191
-10227 2 2 0 6 5947 6620 5948
-10228 2 2 0 6 6228 7115 6229
-10229 2 2 0 6 5956 7371 5958
-10230 2 2 0 6 6006 7462 7463
-10231 2 2 0 6 2593 7772 4060
-10232 2 2 0 6 2744 7882 7883
-10233 2 2 0 6 8702 8704 8703
-10234 2 2 0 6 576 578 577
-10235 2 2 0 6 1172 1176 1193
-10236 2 2 0 6 2301 2302 2303
-10237 2 2 0 6 3124 3126 3127
-10238 2 2 0 6 2815 4005 8701
-10239 2 2 0 6 4042 5036 5035
-10240 2 2 0 6 6439 6441 6457
-10241 2 2 0 6 6272 7457 6273
-10242 2 2 0 6 8035 8036 8037
-10243 2 2 0 6 1687 9508 9086
-10244 2 2 0 6 3373 10323 8522
-10245 2 2 0 6 2533 2534 2535
-10246 2 2 0 6 5223 6230 5348
-10247 2 2 0 6 3339 5494 7649
-10248 2 2 0 6 5199 6206 8218
-10249 2 2 0 6 9283 10002 9375
-10250 2 2 0 6 578 580 579
-10251 2 2 0 6 639 641 640
-10252 2 2 0 6 1305 1321 1322
-10253 2 2 0 6 1769 1770 1771
-10254 2 2 0 6 2162 2163 2213
-10255 2 2 0 6 3464 3467 3465
-10256 2 2 0 6 3502 3503 3504
-10257 2 2 0 6 3570 3572 5491
-10258 2 2 0 6 3291 3483 8790
-10259 2 2 0 6 3226 9247 3848
-10260 2 2 0 6 1017 1022 1023
-10261 2 2 0 6 1046 1047 1048
-10262 2 2 0 6 1279 1278 1288
-10263 2 2 0 6 2753 2754 2752
-10264 2 2 0 6 5808 7758 6694
-10265 2 2 0 6 3682 3944 3945
-10266 2 2 0 6 4366 4367 4365
-10267 2 2 0 6 4929 4943 4931
-10268 2 2 0 6 4042 5035 4848
-10269 2 2 0 6 5530 5531 5532
-10270 2 2 0 6 3660 8784 5573
-10271 2 2 0 6 5570 7755 7754
-10272 2 2 0 6 4023 4479 8157
-10273 2 2 0 6 4377 4379 8525
-10274 2 2 0 6 857 859 860
-10275 2 2 0 6 2267 2268 2269
-10276 2 2 0 6 3179 3742 3743
-10277 2 2 0 6 4290 4778 4872
-10278 2 2 0 6 4883 6371 6370
-10279 2 2 0 6 5436 6415 5998
-10280 2 2 0 6 5841 6618 6563
-10281 2 2 0 6 8232 10219 10142
-10282 2 2 0 6 7783 7784 7785
-10283 2 2 0 6 5357 7388 8099
-10284 2 2 0 6 4847 5357 8670
-10285 2 2 0 6 4039 8687 4496
-10286 2 2 0 6 751 9170 3754
-10287 2 2 0 6 6570 10320 10302
-10288 2 2 0 6 3444 3752 4113
-10289 2 2 0 6 3449 4708 4709
-10290 2 2 0 6 3594 4955 3607
-10291 2 2 0 6 4829 4830 5333
-10292 2 2 0 6 740 770 8765
-10293 2 2 0 6 3642 9187 4193
-10294 2 2 0 6 3742 4044 9452
-10295 2 2 0 6 1028 1033 1034
-10296 2 2 0 6 3064 3150 3304
-10297 2 2 0 6 3655 4428 4427
-10298 2 2 0 6 3674 3841 4755
-10299 2 2 0 6 4355 4889 4888
-10300 2 2 0 6 4790 5276 4792
-10301 2 2 0 6 4846 5357 4847
-10302 2 2 0 6 5741 6448 5825
-10303 2 2 0 6 2140 2142 8145
-10304 2 2 0 6 1797 8859 1881
-10305 2 2 0 6 5572 5942 9094
-10306 2 2 0 6 2180 2351 5516
-10307 2 2 0 6 5919 5920 6549
-10308 2 2 0 6 5730 6555 6556
-10309 2 2 0 6 4523 6605 4525
-10310 2 2 0 6 5070 6665 5071
-10311 2 2 0 6 8701 8702 8703
-10312 2 2 0 6 6478 9405 9034
-10313 2 2 0 6 3120 3122 3123
-10314 2 2 0 6 1785 1882 3176
-10315 2 2 0 6 2623 4105 2781
-10316 2 2 0 6 3369 4043 5004
-10317 2 2 0 6 4062 5514 4558
-10318 2 2 0 6 6371 6372 7234
-10319 2 2 0 6 6430 8010 8009
-10320 2 2 0 6 7043 7045 8419
-10321 2 2 0 6 1387 1390 9077
-10322 2 2 0 6 2920 8690 9177
-10323 2 2 0 6 957 10050 9861
-10324 2 2 0 6 1033 1101 1099
-10325 2 2 0 6 1556 1558 1557
-10326 2 2 0 6 3126 3129 3128
-10327 2 2 0 6 3203 4538 3670
-10328 2 2 0 6 5035 5036 5313
-10329 2 2 0 6 3746 5434 4565
-10330 2 2 0 6 5598 5599 5830
-10331 2 2 0 6 2295 3458 8614
-10332 2 2 0 6 684 686 8646
-10333 2 2 0 6 2036 9377 2126
-10334 2 2 0 6 3540 5703 9389
-10335 2 2 0 6 4807 9908 4809
-10336 2 2 0 6 1379 1380 1381
-10337 2 2 0 6 1397 1400 1399
-10338 2 2 0 6 2080 2079 2109
-10339 2 2 0 6 2257 2473 2472
-10340 2 2 0 6 2447 2475 2474
-10341 2 2 0 6 3462 3464 3465
-10342 2 2 0 6 999 987 3528
-10343 2 2 0 6 3399 3403 4002
-10344 2 2 0 6 4270 5412 5413
-10345 2 2 0 6 5654 5655 5656
-10346 2 2 0 6 5888 5889 5887
-10347 2 2 0 6 6130 7525 6131
-10348 2 2 0 6 7790 7797 7795
-10349 2 2 0 6 2823 8714 8278
-10350 2 2 0 6 4486 9651 9125
-10351 2 2 0 6 105 106 492
-10352 2 2 0 6 1983 2237 2238
-10353 2 2 0 6 2571 3347 3348
-10354 2 2 0 6 4135 4707 4732
-10355 2 2 0 6 3892 4272 4733
-10356 2 2 0 6 4753 4988 4989
-10357 2 2 0 6 4441 5377 5701
-10358 2 2 0 6 4112 5772 4587
-10359 2 2 0 6 5363 5365 7054
-10360 2 2 0 6 2303 6396 9114
-10361 2 2 0 6 5715 8779 9880
-10362 2 2 0 6 2343 2504 2344
-10363 2 2 0 6 3435 3437 3438
-10364 2 2 0 6 2820 2822 3481
-10365 2 2 0 6 2854 3513 2857
-10366 2 2 0 6 4412 4911 4210
-10367 2 2 0 6 5640 5642 5641
-10368 2 2 0 6 4838 6252 6631
-10369 2 2 0 6 1546 1548 8615
-10370 2 2 0 6 2936 3767 9585
-10371 2 2 0 6 3825 9964 7720
-10372 2 2 0 6 1477 1478 1479
-10373 2 2 0 6 2460 2699 2700
-10374 2 2 0 6 719 723 3510
-10375 2 2 0 6 2339 8233 5441
-10376 2 2 0 6 1871 1964 5463
-10377 2 2 0 6 5348 5562 5561
-10378 2 2 0 6 5058 5060 5932
-10379 2 2 0 6 5635 6283 6282
-10380 2 2 0 6 3522 8625 9865
-10381 2 2 0 6 904 907 906
-10382 2 2 0 6 1597 1599 1598
-10383 2 2 0 6 2879 3171 3148
-10384 2 2 0 6 2497 3491 3492
-10385 2 2 0 6 4961 5866 4963
-10386 2 2 0 6 1881 8859 4343
-10387 2 2 0 6 3109 9288 3366
-10388 2 2 0 6 628 629 630
-10389 2 2 0 6 2275 2284 2277
-10390 2 2 0 6 2813 2814 2812
-10391 2 2 0 6 2759 2760 2865
-10392 2 2 0 6 2844 2845 3064
-10393 2 2 0 6 2834 2835 3062
-10394 2 2 0 6 3307 4144 4145
-10395 2 2 0 6 3380 4159 3976
-10396 2 2 0 6 169 170 8407
-10397 2 2 0 6 2303 2306 6396
-10398 2 2 0 6 6411 9403 6412
-10399 2 2 0 6 103 104 564
-10400 2 2 0 6 1391 1394 1393
-10401 2 2 0 6 2076 2075 2079
-10402 2 2 0 6 2096 2098 2099
-10403 2 2 0 6 1542 1544 2586
-10404 2 2 0 6 3142 3144 3143
-10405 2 2 0 6 3404 3410 3443
-10406 2 2 0 6 4089 4091 4090
-10407 2 2 0 6 6225 7031 7032
-10408 2 2 0 6 818 9224 3559
-10409 2 2 0 6 1624 1627 1626
-10410 2 2 0 6 2140 2141 2142
-10411 2 2 0 6 1101 2260 2259
-10412 2 2 0 6 2702 2703 2704
-10413 2 2 0 6 3591 3712 8814
-10414 2 2 0 6 3406 3442 3408
-10415 2 2 0 6 3492 4750 4751
-10416 2 2 0 6 4741 8275 5268
-10417 2 2 0 6 6534 8292 6533
-10418 2 2 0 6 2030 9365 3654
-10419 2 2 0 6 4431 8776 9382
-10420 2 2 0 6 3533 9407 8074
-10421 2 2 0 6 787 788 793
-10422 2 2 0 6 1115 1117 1136
-10423 2 2 0 6 1831 1946 1945
-10424 2 2 0 6 2266 2268 2267
-10425 2 2 0 6 3403 3402 3406
-10426 2 2 0 6 1016 3451 1022
-10427 2 2 0 6 6428 6430 6429
-10428 2 2 0 6 5417 6464 5418
-10429 2 2 0 6 308 309 447
-10430 2 2 0 6 808 809 816
-10431 2 2 0 6 2269 2270 2279
-10432 2 2 0 6 2635 2729 2728
-10433 2 2 0 6 2792 8755 4433
-10434 2 2 0 6 2491 3643 2661
-10435 2 2 0 6 3587 3590 3981
-10436 2 2 0 6 6624 6625 6626
-10437 2 2 0 6 5743 7063 6210
-10438 2 2 0 6 3692 9110 4069
-10439 2 2 0 6 1637 4405 9150
-10440 2 2 0 6 642 645 644
-10441 2 2 0 6 3461 3464 3462
-10442 2 2 0 6 3623 4452 4025
-10443 2 2 0 6 4685 4844 4843
-10444 2 2 0 6 4748 4747 5223
-10445 2 2 0 6 7776 7778 7777
-10446 2 2 0 6 3488 8838 4846
-10447 2 2 0 6 1692 3385 9021
-10448 2 2 0 6 965 9203 967
-10449 2 2 0 6 5596 8554 5597
-10450 2 2 0 6 1640 1642 1641
-10451 2 2 0 6 1154 3561 8390
-10452 2 2 0 6 2166 2167 2168
-10453 2 2 0 6 598 4453 8686
-10454 2 2 0 6 1851 1853 3446
-10455 2 2 0 6 1629 1631 3539
-10456 2 2 0 6 4387 4445 4820
-10457 2 2 0 6 2282 6416 9131
-10458 2 2 0 6 4708 5211 5210
-10459 2 2 0 6 5468 6387 6179
-10460 2 2 0 6 5384 7529 6321
-10461 2 2 0 6 4428 8140 4962
-10462 2 2 0 6 4875 8897 5329
-10463 2 2 0 6 2283 9131 2288
-10464 2 2 0 6 7997 8636 9336
-10465 2 2 0 6 8905 9131 9356
-10466 2 2 0 6 8529 9924 9802
-10467 2 2 0 6 388 389 543
-10468 2 2 0 6 620 621 622
-10469 2 2 0 6 723 724 726
-10470 2 2 0 6 2213 2214 2375
-10471 2 2 0 6 3199 3201 3200
-10472 2 2 0 6 3672 3947 3946
-10473 2 2 0 6 4748 5223 5348
-10474 2 2 0 6 4384 5433 4386
-10475 2 2 0 6 5429 6159 6158
-10476 2 2 0 6 5635 6481 6283
-10477 2 2 0 6 3490 5496 8832
-10478 2 2 0 6 3943 8716 9571
-10479 2 2 0 6 5319 9803 7898
-10480 2 2 0 6 1326 1328 1327
-10481 2 2 0 6 2700 2701 2702
-10482 2 2 0 6 2525 2782 2784
-10483 2 2 0 6 1028 8904 4960
-10484 2 2 0 6 4757 6330 6122
-10485 2 2 0 6 4919 5339 5340
-10486 2 2 0 6 5221 7102 6265
-10487 2 2 0 6 5906 7416 5928
-10488 2 2 0 6 6465 6464 7822
-10489 2 2 0 6 4781 8134 5867
-10490 2 2 0 6 3503 8550 3762
-10491 2 2 0 6 8648 8650 8649
-10492 2 2 0 6 8648 8651 8650
-10493 2 2 0 6 2454 2646 8811
-10494 2 2 0 6 651 8952 8960
-10495 2 2 0 6 8848 8972 8971
-10496 2 2 0 6 720 724 723
-10497 2 2 0 6 785 790 789
-10498 2 2 0 6 1134 1152 1190
-10499 2 2 0 6 2814 2815 2816
-10500 2 2 0 6 3116 3118 3117
-10501 2 2 0 6 3007 3254 3008
-10502 2 2 0 6 3709 4049 3161
-10503 2 2 0 6 4557 4555 5936
-10504 2 2 0 6 5449 6651 6649
-10505 2 2 0 6 7300 7302 7301
-10506 2 2 0 6 1393 8529 3391
-10507 2 2 0 6 4379 4762 8525
-10508 2 2 0 6 2509 8834 2684
-10509 2 2 0 6 1004 1012 1013
-10510 2 2 0 6 2086 2102 2088
-10511 2 2 0 6 2423 2424 2425
-10512 2 2 0 6 2830 2836 3563
-10513 2 2 0 6 3974 3984 4852
-10514 2 2 0 6 4717 5674 5673
-10515 2 2 0 6 4980 5931 5539
-10516 2 2 0 6 5577 7531 6615
-10517 2 2 0 6 3398 7896 3402
-10518 2 2 0 6 8472 8474 8473
-10519 2 2 0 6 4406 8501 9204
-10520 2 2 0 6 2170 2171 2172
-10521 2 2 0 6 2274 2276 2285
-10522 2 2 0 6 2240 2393 2241
-10523 2 2 0 6 3132 3133 3134
-10524 2 2 0 6 4831 5341 4833
-10525 2 2 0 6 3490 3816 5496
-10526 2 2 0 6 5194 5195 7009
-10527 2 2 0 6 739 740 8765
-10528 2 2 0 6 1268 1355 1291
-10529 2 2 0 6 3597 3598 3599
-10530 2 2 0 6 4490 5080 5079
-10531 2 2 0 6 4413 5108 5106
-10532 2 2 0 6 5650 5651 5652
-10533 2 2 0 6 3924 6402 6403
-10534 2 2 0 6 638 8936 3537
-10535 2 2 0 6 4461 9253 6489
-10536 2 2 0 6 1119 1120 1121
-10537 2 2 0 6 1969 2512 1970
-10538 2 2 0 6 2813 2815 2814
-10539 2 2 0 6 726 1010 8968
-10540 2 2 0 6 3419 3420 3421
-10541 2 2 0 6 3581 3692 3691
-10542 2 2 0 6 5406 5818 9721
-10543 2 2 0 6 4761 6278 6279
-10544 2 2 0 6 5892 5954 7455
-10545 2 2 0 6 1495 9107 5550
-10546 2 2 0 6 8705 8707 9539
-10547 2 2 0 6 96 97 468
-10548 2 2 0 6 2275 2277 2276
-10549 2 2 0 6 2287 2288 2289
-10550 2 2 0 6 2997 3231 3230
-10551 2 2 0 6 2917 3295 3296
-10552 2 2 0 6 3036 4134 4135
-10553 2 2 0 6 2158 5439 4339
-10554 2 2 0 6 5177 6136 6125
-10555 2 2 0 6 5222 6265 6266
-10556 2 2 0 6 5870 6639 5942
-10557 2 2 0 6 3948 5404 8058
-10558 2 2 0 6 376 377 8240
-10559 2 2 0 6 2187 2418 8911
-10560 2 2 0 6 1114 8953 1116
-10561 2 2 0 6 2973 9169 2975
-10562 2 2 0 6 691 693 692
-10563 2 2 0 6 900 903 902
-10564 2 2 0 6 1603 1604 1605
-10565 2 2 0 6 1694 1695 1693
-10566 2 2 0 6 1418 1420 1918
-10567 2 2 0 6 2281 2283 2286
-10568 2 2 0 6 2362 2507 2506
-10569 2 2 0 6 2706 2707 2708
-10570 2 2 0 6 3201 3203 3202
-10571 2 2 0 6 3699 3700 3701
-10572 2 2 0 6 1360 4043 3369
-10573 2 2 0 6 3963 4824 3962
-10574 2 2 0 6 4167 4882 4883
-10575 2 2 0 6 3359 5505 4289
-10576 2 2 0 6 5762 5763 6214
-10577 2 2 0 6 5214 6377 6376
-10578 2 2 0 6 5926 9883 10042
-10579 2 2 0 6 740 742 770
-10580 2 2 0 6 1219 1234 1235
-10581 2 2 0 6 1862 3529 1915
-10582 2 2 0 6 2950 3159 2951
-10583 2 2 0 6 3414 3416 3415
-10584 2 2 0 6 1856 8667 1858
-10585 2 2 0 6 4565 5434 5435
-10586 2 2 0 6 4597 5104 6053
-10587 2 2 0 6 4947 5735 6477
-10588 2 2 0 6 3416 9281 3417
-10589 2 2 0 6 1571 1574 8129
-10590 2 2 0 6 3712 5557 8814
-10591 2 2 0 6 615 616 8923
-10592 2 2 0 6 1607 1608 1605
-10593 2 2 0 6 3193 4403 4198
-10594 2 2 0 6 3211 4848 9188
-10595 2 2 0 6 5794 6280 5793
-10596 2 2 0 6 1415 8710 1417
-10597 2 2 0 6 3716 9323 9551
-10598 2 2 0 6 1732 9573 1743
-10599 2 2 0 6 684 685 686
-10600 2 2 0 6 982 993 992
-10601 2 2 0 6 1574 1576 3364
-10602 2 2 0 6 3178 3742 3179
-10603 2 2 0 6 3547 3549 4344
-10604 2 2 0 6 4333 5143 5385
-10605 2 2 0 6 7703 8483 9541
-10606 2 2 0 6 5401 6063 6035
-10607 2 2 0 6 1757 6270 6352
-10608 2 2 0 6 5446 6633 6632
-10609 2 2 0 6 5542 7425 5543
-10610 2 2 0 6 3198 3200 9120
-10611 2 2 0 6 2262 2264 2263
-10612 2 2 0 6 2666 2879 3148
-10613 2 2 0 6 3397 3398 3396
-10614 2 2 0 6 3407 3409 3412
-10615 2 2 0 6 3117 3118 4142
-10616 2 2 0 6 4475 4489 4490
-10617 2 2 0 6 4446 5636 5691
-10618 2 2 0 6 5641 5642 5746
-10619 2 2 0 6 5064 9061 6505
-10620 2 2 0 6 733 734 735
-10621 2 2 0 6 952 954 955
-10622 2 2 0 6 720 2312 724
-10623 2 2 0 6 3116 3119 3118
-10624 2 2 0 6 3304 3454 3455
-10625 2 2 0 6 2813 4005 2815
-10626 2 2 0 6 4464 4465 4467
-10627 2 2 0 6 4095 4549 4096
-10628 2 2 0 6 5857 8698 8699
-10629 2 2 0 6 2750 2751 2752
-10630 2 2 0 6 2516 2570 2897
-10631 2 2 0 6 3148 3488 3487
-10632 2 2 0 6 1045 1540 3612
-10633 2 2 0 6 3294 3311 3624
-10634 2 2 0 6 639 3739 641
-10635 2 2 0 6 5450 6650 7652
-10636 2 2 0 6 4939 8071 8072
-10637 2 2 0 6 1888 8613 2873
-10638 2 2 0 6 1551 4351 8615
-10639 2 2 0 6 1054 1206 8441
-10640 2 2 0 6 5217 9157 7781
-10641 2 2 0 6 872 874 873
-10642 2 2 0 6 966 975 974
-10643 2 2 0 6 2731 2732 2733
-10644 2 2 0 6 2758 2760 2759
-10645 2 2 0 6 680 682 3450
-10646 2 2 0 6 2246 8158 8634
-10647 2 2 0 6 4733 5733 5732
-10648 2 2 0 6 4958 5964 4959
-10649 2 2 0 6 5213 6376 6378
-10650 2 2 0 6 5626 6521 6522
-10651 2 2 0 6 4137 4764 8053
-10652 2 2 0 6 6392 8761 8762
-10653 2 2 0 6 2294 8905 2309
-10654 2 2 0 6 632 635 634
-10655 2 2 0 6 860 861 862
-10656 2 2 0 6 1093 1131 1132
-10657 2 2 0 6 2270 2271 2272
-10658 2 2 0 6 2440 2441 2442
-10659 2 2 0 6 2526 2877 2783
-10660 2 2 0 6 2877 3152 2878
-10661 2 2 0 6 3459 3461 3460
-10662 2 2 0 6 4483 4484 4485
-10663 2 2 0 6 5660 5661 5662
-10664 2 2 0 6 5197 6224 5487
-10665 2 2 0 6 3119 6292 3121
-10666 2 2 0 6 6561 6562 7158
-10667 2 2 0 6 1650 4915 7538
-10668 2 2 0 6 8309 8311 8310
-10669 2 2 0 6 1968 4348 8316
-10670 2 2 0 6 167 168 8400
-10671 2 2 0 6 4005 8702 8701
-10672 2 2 0 6 5727 8844 6025
-10673 2 2 0 6 1602 3919 9112
-10674 2 2 0 6 3753 5507 9201
-10675 2 2 0 6 1234 1260 1235
-10676 2 2 0 6 1373 1374 1375
-10677 2 2 0 6 3122 3125 3124
-10678 2 2 0 6 3101 3380 3379
-10679 2 2 0 6 4286 5609 5266
-10680 2 2 0 6 1205 1227 6240
-10681 2 2 0 6 4167 4883 6370
-10682 2 2 0 6 5357 5358 7388
-10683 2 2 0 6 6273 7458 8227
-10684 2 2 0 6 3908 8762 8761
-10685 2 2 0 6 1564 9324 9460
-10686 2 2 0 6 1425 1427 10882
-10687 2 2 0 6 1195 1218 1219
-10688 2 2 0 6 1361 1362 1363
-10689 2 2 0 6 1368 1367 1369
-10690 2 2 0 6 2898 3178 3179
-10691 2 2 0 6 3435 3436 3437
-10692 2 2 0 6 3302 4391 3894
-10693 2 2 0 6 1650 1648 4915
-10694 2 2 0 6 7786 7788 7787
-10695 2 2 0 6 3605 4735 8729
-10696 2 2 0 6 1120 8951 1224
-10697 2 2 0 6 2063 2069 9054
-10698 2 2 0 6 7302 8604 7304
-10699 2 2 0 6 2157 2227 2409
-10700 2 2 0 6 2431 2433 2432
-10701 2 2 0 6 3136 3138 3139
-10702 2 2 0 6 3394 3395 3396
-10703 2 2 0 6 3431 3432 3433
-10704 2 2 0 6 4855 4856 4330
-10705 2 2 0 6 3396 3399 9100
-10706 2 2 0 6 4848 5035 5326
-10707 2 2 0 6 4776 5597 5598
-10708 2 2 0 6 5657 5659 5658
-10709 2 2 0 6 653 6414 6413
-10710 2 2 0 6 5669 6697 5670
-10711 2 2 0 6 1462 10292 10431
-10712 2 2 0 6 1658 1667 1661
-10713 2 2 0 6 2110 2119 2118
-10714 2 2 0 6 2652 2651 2653
-10715 2 2 0 6 3959 4829 3960
-10716 2 2 0 6 2409 4569 2926
-10717 2 2 0 6 6377 7072 7747
-10718 2 2 0 6 4383 4385 4760
-10719 2 2 0 6 3753 4586 5507
-10720 2 2 0 6 4659 6162 5121
-10721 2 2 0 6 4406 8499 8500
-10722 2 2 0 6 4404 6379 8732
-10723 2 2 0 6 2308 2294 2309
-10724 2 2 0 6 2291 3627 2293
-10725 2 2 0 6 3660 5573 3997
-10726 2 2 0 6 5633 5635 5634
-10727 2 2 0 6 5732 5733 5734
-10728 2 2 0 6 5199 6641 5604
-10729 2 2 0 6 1742 1864 8628
-10730 2 2 0 6 2288 8905 2294
-10731 2 2 0 6 6475 9449 9847
-10732 2 2 0 6 728 732 733
-10733 2 2 0 6 1125 1127 1135
-10734 2 2 0 6 1369 1371 1372
-10735 2 2 0 6 2441 2449 2442
-10736 2 2 0 6 2906 3210 3211
-10737 2 2 0 6 2917 3296 4006
-10738 2 2 0 6 3961 4873 4874
-10739 2 2 0 6 4093 4886 4092
-10740 2 2 0 6 3540 3542 5703
-10741 2 2 0 6 3962 5627 9095
-10742 2 2 0 6 3311 8084 7543
-10743 2 2 0 6 2823 8278 2825
-10744 2 2 0 6 3289 9111 3483
-10745 2 2 0 6 4207 4210 9327
-10746 2 2 0 6 3022 9910 8306
-10747 2 2 0 6 592 594 595
-10748 2 2 0 6 599 601 1920
-10749 2 2 0 6 1889 1891 1977
-10750 2 2 0 6 2147 8444 3541
-10751 2 2 0 6 1327 1360 3369
-10752 2 2 0 6 3869 3871 4640
-10753 2 2 0 6 3344 6608 3345
-10754 2 2 0 6 4096 4549 8320
-10755 2 2 0 6 5357 8099 8670
-10756 2 2 0 6 5003 8676 6567
-10757 2 2 0 6 1379 1381 1382
-10758 2 2 0 6 1610 1611 1612
-10759 2 2 0 6 3458 3459 3460
-10760 2 2 0 6 4506 4507 4508
-10761 2 2 0 6 4831 4833 4832
-10762 2 2 0 6 4068 4895 4896
-10763 2 2 0 6 4708 5210 4709
-10764 2 2 0 6 4986 5237 5238
-10765 2 2 0 6 4741 5268 5267
-10766 2 2 0 6 2594 9868 2645
-10767 2 2 0 6 8706 8806 9465
-10768 2 2 0 6 612 613 614
-10769 2 2 0 6 678 679 680
-10770 2 2 0 6 680 681 682
-10771 2 2 0 6 1381 1384 1383
-10772 2 2 0 6 2082 2123 8998
-10773 2 2 0 6 1881 2679 1976
-10774 2 2 0 6 3107 3109 3108
-10775 2 2 0 6 3691 3692 4068
-10776 2 2 0 6 4847 4910 4909
-10777 2 2 0 6 4926 4925 4927
-10778 2 2 0 6 4534 5033 5034
-10779 2 2 0 6 4995 5967 5949
-10780 2 2 0 6 4558 6003 5871
-10781 2 2 0 6 2264 8866 5594
-10782 2 2 0 6 5949 5967 8896
-10783 2 2 0 6 773 774 776
-10784 2 2 0 6 1387 1389 1390
-10785 2 2 0 6 2237 2343 2238
-10786 2 2 0 6 3134 3137 3136
-10787 2 2 0 6 1108 3990 1110
-10788 2 2 0 6 3675 3993 3676
-10789 2 2 0 6 6399 7618 7619
-10790 2 2 0 6 4050 4517 8546
-10791 2 2 0 6 4895 8637 5955
-10792 2 2 0 6 2082 8998 2084
-10793 2 2 0 6 648 650 651
-10794 2 2 0 6 896 899 898
-10795 2 2 0 6 1328 1361 1360
-10796 2 2 0 6 1367 1370 1369
-10797 2 2 0 6 1847 1849 1961
-10798 2 2 0 6 2797 2798 2799
-10799 2 2 0 6 4156 4158 8937
-10800 2 2 0 6 4977 4978 5939
-10801 2 2 0 6 4883 6372 6371
-10802 2 2 0 6 6089 6702 6091
-10803 2 2 0 6 5309 7331 6507
-10804 2 2 0 6 6343 8547 8548
-10805 2 2 0 6 2892 9303 3553
-10806 2 2 0 6 1981 9027 2353
-10807 2 2 0 6 2119 2121 2120
-10808 2 2 0 6 2351 2355 2520
-10809 2 2 0 6 3396 3398 3399
-10810 2 2 0 6 2859 2860 3534
-10811 2 2 0 6 4941 4954 4953
-10812 2 2 0 6 4485 5007 5008
-10813 2 2 0 6 4707 5215 4732
-10814 2 2 0 6 4422 5264 5262
-10815 2 2 0 6 3919 4743 5537
-10816 2 2 0 6 5489 7104 6056
-10817 2 2 0 6 8182 8185 8184
-10818 2 2 0 6 3698 9078 4028
-10819 2 2 0 6 3326 9256 3972
-10820 2 2 0 6 640 641 642
-10821 2 2 0 6 2295 2310 3458
-10822 2 2 0 6 2345 2599 2666
-10823 2 2 0 6 2901 2902 3204
-10824 2 2 0 6 4055 4056 4506
-10825 2 2 0 6 4798 5821 5822
-10826 2 2 0 6 6080 6083 6081
-10827 2 2 0 6 6142 6865 7720
-10828 2 2 0 6 4852 5329 7813
-10829 2 2 0 6 4050 8546 4503
-10830 2 2 0 6 7313 8581 8582
-10831 2 2 0 6 2514 2681 8928
-10832 2 2 0 6 3763 8887 9277
-10833 2 2 0 6 589 591 590
-10834 2 2 0 6 624 625 626
-10835 2 2 0 6 2352 2604 2949
-10836 2 2 0 6 3516 3518 3517
-10837 2 2 0 6 3960 4829 4831
-10838 2 2 0 6 5366 5368 5365
-10839 2 2 0 6 4175 5720 5721
-10840 2 2 0 6 5975 5976 5977
-10841 2 2 0 6 5160 6069 6068
-10842 2 2 0 6 2177 4399 8652
-10843 2 2 0 6 3756 6474 5747
-10844 2 2 0 6 6097 6685 6684
-10845 2 2 0 6 8673 8674 8675
-10846 2 2 0 6 3836 5803 9867
-10847 2 2 0 6 99 100 493
-10848 2 2 0 6 1868 1907 9368
-10849 2 2 0 6 1393 1394 1395
-10850 2 2 0 6 1974 2230 2231
-10851 2 2 0 6 2546 2549 2548
-10852 2 2 0 6 4324 4591 4325
-10853 2 2 0 6 3378 4004 4330
-10854 2 2 0 6 4180 4190 4948
-10855 2 2 0 6 3529 5727 4408
-10856 2 2 0 6 5274 5293 7068
-10857 2 2 0 6 3035 8289 4402
-10858 2 2 0 6 2459 8634 2717
-10859 2 2 0 6 1371 1374 1373
-10860 2 2 0 6 3896 5312 4736
-10861 2 2 0 6 2928 4516 5678
-10862 2 2 0 6 4898 6424 6335
-10863 2 2 0 6 6254 7169 6984
-10864 2 2 0 6 6579 7228 7211
-10865 2 2 0 6 7572 7574 7573
-10866 2 2 0 6 3752 7671 4113
-10867 2 2 0 6 7720 7721 7724
-10868 2 2 0 6 4489 9333 4490
-10869 2 2 0 6 3451 10092 10131
-10870 2 2 0 6 3883 4843 9680
-10871 2 2 0 6 4344 9780 8315
-10872 2 2 0 6 588 589 590
-10873 2 2 0 6 1246 1248 1247
-10874 2 2 0 6 1383 1384 1385
-10875 2 2 0 6 1706 1708 1707
-10876 2 2 0 6 3437 3440 3439
-10877 2 2 0 6 4427 4428 4429
-10878 2 2 0 6 4193 4739 4195
-10879 2 2 0 6 4886 5553 4887
-10880 2 2 0 6 6053 6401 6400
-10881 2 2 0 6 5496 6223 7074
-10882 2 2 0 6 6022 7688 7052
-10883 2 2 0 6 5799 7913 7914
-10884 2 2 0 6 1896 8499 4406
-10885 2 2 0 6 4575 9280 4577
-10886 2 2 0 6 689 691 690
-10887 2 2 0 6 1250 1252 1251
-10888 2 2 0 6 1401 1404 1403
-10889 2 2 0 6 1412 1414 1760
-10890 2 2 0 6 2419 2420 2421
-10891 2 2 0 6 691 2952 693
-10892 2 2 0 6 2689 3070 3069
-10893 2 2 0 6 3171 3566 4045
-10894 2 2 0 6 4316 4317 4315
-10895 2 2 0 6 2858 3639 4392
-10896 2 2 0 6 4596 5096 6050
-10897 2 2 0 6 4467 5798 8098
-10898 2 2 0 6 4136 7515 4697
-10899 2 2 0 6 8703 8704 8705
-10900 2 2 0 6 1667 9145 5455
-10901 2 2 0 6 7037 7039 9177
-10902 2 2 0 6 2798 9348 9349
-10903 2 2 0 6 650 652 651
-10904 2 2 0 6 1385 1387 1386
-10905 2 2 0 6 2425 2426 2427
-10906 2 2 0 6 2299 2301 2665
-10907 2 2 0 6 2949 2950 2951
-10908 2 2 0 6 3395 3397 3396
-10909 2 2 0 6 3601 3602 3603
-10910 2 2 0 6 2930 3696 2479
-10911 2 2 0 6 2964 3657 9510
-10912 2 2 0 6 2606 5558 2608
-10913 2 2 0 6 4895 5955 4896
-10914 2 2 0 6 3560 8864 8928
-10915 2 2 0 6 671 672 674
-10916 2 2 0 6 2299 2300 2301
-10917 2 2 0 6 1316 1526 4020
-10918 2 2 0 6 4087 4089 4088
-10919 2 2 0 6 1286 1312 4430
-10920 2 2 0 6 3489 4846 4847
-10921 2 2 0 6 3984 5686 4875
-10922 2 2 0 6 4549 5030 5937
-10923 2 2 0 6 4733 5209 9364
-10924 2 2 0 6 5104 6703 6053
-10925 2 2 0 6 5318 8024 8023
-10926 2 2 0 6 645 646 644
-10927 2 2 0 6 795 796 799
-10928 2 2 0 6 2704 2705 2706
-10929 2 2 0 6 2630 2695 3208
-10930 2 2 0 6 2859 3534 3535
-10931 2 2 0 6 3762 4924 4217
-10932 2 2 0 6 5481 5486 6287
-10933 2 2 0 6 5064 6505 6503
-10934 2 2 0 6 5824 5862 6570
-10935 2 2 0 6 3488 8576 8838
-10936 2 2 0 6 5440 8316 9075
-10937 2 2 0 6 3631 9505 9506
-10938 2 2 0 6 2051 9557 2054
-10939 2 2 0 6 4843 10353 7731
-10940 2 2 0 6 592 593 594
-10941 2 2 0 6 662 664 663
-10942 2 2 0 6 776 777 778
-10943 2 2 0 6 782 783 787
-10944 2 2 0 6 932 934 935
-10945 2 2 0 6 1147 1156 1257
-10946 2 2 0 6 2355 2521 2520
-10947 2 2 0 6 6333 8425 7491
-10948 2 2 0 6 4213 10081 9611
-10949 2 2 0 6 2124 2134 2125
-10950 2 2 0 6 2397 2566 2565
-10951 2 2 0 6 3035 3448 3447
-10952 2 2 0 6 3776 3778 3777
-10953 2 2 0 6 3912 4734 4271
-10954 2 2 0 6 3712 5001 5557
-10955 2 2 0 6 1485 1500 7959
-10956 2 2 0 6 4585 5639 8835
-10957 2 2 0 6 1010 8969 8968
-10958 2 2 0 6 2014 10264 2108
-10959 2 2 0 6 1365 1367 1368
-10960 2 2 0 6 2080 2109 2110
-10961 2 2 0 6 2160 2161 2162
-10962 2 2 0 6 2521 2907 2905
-10963 2 2 0 6 3070 4100 4099
-10964 2 2 0 6 5990 5991 6603
-10965 2 2 0 6 3234 11168 11162
-10966 2 2 0 6 2440 9017 2656
-10967 2 2 0 6 2679 3344 2680
-10968 2 2 0 6 3348 3350 3351
-10969 2 2 0 6 1388 3530 1389
-10970 2 2 0 6 4134 4707 4135
-10971 2 2 0 6 4965 5647 5646
-10972 2 2 0 6 6533 7990 7988
-10973 2 2 0 6 682 8585 3450
-10974 2 2 0 6 2512 4404 8732
-10975 2 2 0 6 1151 8827 1174
-10976 2 2 0 6 5612 6262 9628
-10977 2 2 0 6 594 596 595
-10978 2 2 0 6 655 656 657
-10979 2 2 0 6 1032 1499 2153
-10980 2 2 0 6 2435 2436 2434
-10981 2 2 0 6 3204 3205 3697
-10982 2 2 0 6 834 878 3714
-10983 2 2 0 6 4091 4095 4093
-10984 2 2 0 6 1581 1583 1606
-10985 2 2 0 6 1079 1085 2314
-10986 2 2 0 6 2520 2521 2905
-10987 2 2 0 6 2682 3199 3198
-10988 2 2 0 6 4313 4314 4315
-10989 2 2 0 6 4379 4381 4762
-10990 2 2 0 6 5879 6144 6658
-10991 2 2 0 6 2893 9047 2894
-10992 2 2 0 6 2758 9285 2760
-10993 2 2 0 6 743 745 744
-10994 2 2 0 6 1003 1012 1004
-10995 2 2 0 6 880 884 881
-10996 2 2 0 6 1531 1534 1533
-10997 2 2 0 6 2253 2528 2529
-10998 2 2 0 6 2791 2793 2792
-10999 2 2 0 6 3752 3974 4116
-11000 2 2 0 6 4461 4463 4462
-11001 2 2 0 6 4325 4592 4899
-11002 2 2 0 6 5538 9076 8503
-11003 2 2 0 6 5553 7535 9142
-11004 2 2 0 6 798 10785 10803
-11005 2 2 0 6 1235 1260 1261
-11006 2 2 0 6 1637 1640 1638
-11007 2 2 0 6 2303 2304 2306
-11008 2 2 0 6 2737 3066 3065
-11009 2 2 0 6 2922 2923 3313
-11010 2 2 0 6 3981 4322 4853
-11011 2 2 0 6 4388 5317 4894
-11012 2 2 0 6 6580 7211 7212
-11013 2 2 0 6 2340 8519 8515
-11014 2 2 0 6 2707 3490 8832
-11015 2 2 0 6 5480 9349 9348
-11016 2 2 0 6 732 734 733
-11017 2 2 0 6 799 800 805
-11018 2 2 0 6 2271 2273 2272
-11019 2 2 0 6 2118 2131 8800
-11020 2 2 0 6 2306 2307 2345
-11021 2 2 0 6 4206 5066 8780
-11022 2 2 0 6 3397 3400 3398
-11023 2 2 0 6 3439 3440 3441
-11024 2 2 0 6 3459 3463 3461
-11025 2 2 0 6 3163 3166 8595
-11026 2 2 0 6 1326 1325 3924
-11027 2 2 0 6 3609 4022 3622
-11028 2 2 0 6 4205 5066 4206
-11029 2 2 0 6 5548 5549 5547
-11030 2 2 0 6 4657 6247 6248
-11031 2 2 0 6 5591 5696 6260
-11032 2 2 0 6 6325 7130 6326
-11033 2 2 0 6 7280 7282 7281
-11034 2 2 0 6 5549 6381 8392
-11035 2 2 0 6 780 1046 9209
-11036 2 2 0 6 3414 9274 3746
-11037 2 2 0 6 4708 9549 5211
-11038 2 2 0 6 1273 1272 1274
-11039 2 2 0 6 1376 1377 1375
-11040 2 2 0 6 2066 2071 2070
-11041 2 2 0 6 2134 2239 2135
-11042 2 2 0 6 2511 2647 2646
-11043 2 2 0 6 2552 2663 2662
-11044 2 2 0 6 3063 3116 3117
-11045 2 2 0 6 3950 3952 3951
-11046 2 2 0 6 4185 4186 4997
-11047 2 2 0 6 8176 8442 8178
-11048 2 2 0 6 3973 9399 5633
-11049 2 2 0 6 1265 3388 8795
-11050 2 2 0 6 4846 5358 5357
-11051 2 2 0 6 4637 5836 5150
-11052 2 2 0 6 4074 5974 5975
-11053 2 2 0 6 1100 8017 9759
-11054 2 2 0 6 4564 5978 7276
-11055 2 2 0 6 3326 3328 9256
-11056 2 2 0 6 4091 4093 4092
-11057 2 2 0 6 4360 4363 4364
-11058 2 2 0 6 3959 4830 4829
-11059 2 2 0 6 2789 7834 8042
-11060 2 2 0 6 4503 5856 4505
-11061 2 2 0 6 5228 6186 7073
-11062 2 2 0 6 3692 8914 9110
-11063 2 2 0 6 7966 7968 7967
-11064 2 2 0 6 5585 7279 8837
-11065 2 2 0 6 3580 3583 9380
-11066 2 2 0 6 2862 3923 3113
-11067 2 2 0 6 3582 8980 3584
-11068 2 2 0 6 4748 5348 5561
-11069 2 2 0 6 4081 4079 5053
-11070 2 2 0 6 4087 5589 4089
-11071 2 2 0 6 4853 5325 6272
-11072 2 2 0 6 5171 6291 6290
-11073 2 2 0 6 6554 7810 7811
-11074 2 2 0 6 5733 9364 7051
-11075 2 2 0 6 2278 2281 8647
-11076 2 2 0 6 1077 1079 8831
-11077 2 2 0 6 3646 9225 8549
-11078 2 2 0 6 805 806 808
-11079 2 2 0 6 1112 1189 1114
-11080 2 2 0 6 1374 1376 1375
-11081 2 2 0 6 2273 2275 2274
-11082 2 2 0 6 2309 2501 2500
-11083 2 2 0 6 3774 3776 3775
-11084 2 2 0 6 3849 3850 3851
-11085 2 2 0 6 2073 2107 4074
-11086 2 2 0 6 4168 4904 4903
-11087 2 2 0 6 4741 5267 4761
-11088 2 2 0 6 5373 5489 5488
-11089 2 2 0 6 5719 6625 6624
-11090 2 2 0 6 5497 8523 9185
-11091 2 2 0 6 8757 9445 9783
-11092 2 2 0 6 3169 8461 9917
-11093 2 2 0 6 1291 1355 1356
-11094 2 2 0 6 4358 8543 6341
-11095 2 2 0 6 2180 2181 2351
-11096 2 2 0 6 2427 2553 2554
-11097 2 2 0 6 3519 3758 4450
-11098 2 2 0 6 4977 9350 5951
-11099 2 2 0 6 2829 3039 3038
-11100 2 2 0 6 3046 3047 3048
-11101 2 2 0 6 3138 3140 3139
-11102 2 2 0 6 1175 1199 3480
-11103 2 2 0 6 3581 3691 3582
-11104 2 2 0 6 3263 3979 3978
-11105 2 2 0 6 7313 8583 8824
-11106 2 2 0 6 5457 5460 5459
-11107 2 2 0 6 3018 8506 3019
-11108 2 2 0 6 3560 3747 8864
-11109 2 2 0 6 5699 9457 9755
-11110 2 2 0 6 642 644 643
-11111 2 2 0 6 668 670 671
-11112 2 2 0 6 2379 3645 8950
-11113 2 2 0 6 1482 1483 1481
-11114 2 2 0 6 2060 2077 2062
-11115 2 2 0 6 2610 2812 2811
-11116 2 2 0 6 3160 4206 4207
-11117 2 2 0 6 5662 5661 5663
-11118 2 2 0 6 4421 4423 5869
-11119 2 2 0 6 4126 5116 6000
-11120 2 2 0 6 1981 4409 9027
-11121 2 2 0 6 5295 6528 6530
-11122 2 2 0 6 6560 6595 6562
-11123 2 2 0 6 5498 8477 8478
-11124 2 2 0 6 5855 8507 8509
-11125 2 2 0 6 591 593 592
-11126 2 2 0 6 2880 4047 3172
-11127 2 2 0 6 3417 3419 3418
-11128 2 2 0 6 4119 5099 5101
-11129 2 2 0 6 5364 5365 5363
-11130 2 2 0 6 4887 5554 5556
-11131 2 2 0 6 5101 6065 6064
-11132 2 2 0 6 4437 8177 8179
-11133 2 2 0 6 1637 9150 1640
-11134 2 2 0 6 2124 2121 2179
-11135 2 2 0 6 2354 2762 2611
-11136 2 2 0 6 2565 2918 2916
-11137 2 2 0 6 3351 4031 4032
-11138 2 2 0 6 5579 5580 5581
-11139 2 2 0 6 5030 6602 5937
-11140 2 2 0 6 4592 4591 6686
-11141 2 2 0 6 1375 1378 8850
-11142 2 2 0 6 3333 3336 9160
-11143 2 2 0 6 3746 9274 5434
-11144 2 2 0 6 689 8913 8965
-11145 2 2 0 6 1485 1486 1500
-11146 2 2 0 6 2534 2536 2535
-11147 2 2 0 6 2966 3018 3017
-11148 2 2 0 6 861 3486 863
-11149 2 2 0 6 3518 3758 3519
-11150 2 2 0 6 4869 5416 5473
-11151 2 2 0 6 5333 5334 7230
-11152 2 2 0 6 6663 7472 7245
-11153 2 2 0 6 5840 8034 8033
-11154 2 2 0 6 4891 8734 8735
-11155 2 2 0 6 2999 3229 3267
-11156 2 2 0 6 1121 1123 3509
-11157 2 2 0 6 4068 3692 4069
-11158 2 2 0 6 763 1523 8423
-11159 2 2 0 6 5640 5643 5642
-11160 2 2 0 6 1394 6411 1396
-11161 2 2 0 6 7783 7785 7791
-11162 2 2 0 6 2556 2629 2630
-11163 2 2 0 6 3019 3022 3021
-11164 2 2 0 6 2951 3159 3160
-11165 2 2 0 6 3289 3483 3291
-11166 2 2 0 6 839 841 3569
-11167 2 2 0 6 976 3973 3995
-11168 2 2 0 6 3526 4118 3738
-11169 2 2 0 6 4208 4211 4210
-11170 2 2 0 6 3693 5568 5567
-11171 2 2 0 6 4812 4814 5842
-11172 2 2 0 6 5435 5436 5998
-11173 2 2 0 6 3447 3449 6391
-11174 2 2 0 6 4963 5866 7713
-11175 2 2 0 6 3860 8186 8181
-11176 2 2 0 6 1940 2205 9887
-11177 2 2 0 6 883 966 965
-11178 2 2 0 6 2228 2499 2498
-11179 2 2 0 6 2584 2689 2687
-11180 2 2 0 6 2978 2996 2977
-11181 2 2 0 6 3426 4012 3994
-11182 2 2 0 6 3358 4108 5500
-11183 2 2 0 6 6174 6579 6580
-11184 2 2 0 6 5541 5790 7419
-11185 2 2 0 6 874 4138 9654
-11186 2 2 0 6 5488 5490 8538
-11187 2 2 0 6 3933 8922 4579
-11188 2 2 0 6 4962 8141 10321
-11189 2 2 0 6 1208 10554 7438
-11190 2 2 0 6 892 895 894
-11191 2 2 0 6 3590 3591 8814
-11192 2 2 0 6 5223 5301 8731
-11193 2 2 0 6 3600 3602 3601
-11194 2 2 0 6 3603 3604 3605
-11195 2 2 0 6 3756 5747 4114
-11196 2 2 0 6 4881 5848 5849
-11197 2 2 0 6 4583 6022 6021
-11198 2 2 0 6 5432 6385 6384
-11199 2 2 0 6 7309 7314 7318
-11200 2 2 0 6 4208 8780 5054
-11201 2 2 0 6 5786 9847 9575
-11202 2 2 0 6 6451 9688 9994
-11203 2 2 0 6 1275 1278 1279
-11204 2 2 0 6 1804 1787 1828
-11205 2 2 0 6 2032 2067 2033
-11206 2 2 0 6 1908 2181 2180
-11207 2 2 0 6 3017 3018 3019
-11208 2 2 0 6 3412 3413 3613
-11209 2 2 0 6 3226 3848 3847
-11210 2 2 0 6 2199 4057 2201
-11211 2 2 0 6 4062 4558 4518
-11212 2 2 0 6 2067 3512 8940
-11213 2 2 0 6 2565 9028 2918
-11214 2 2 0 6 5388 7422 5389
-11215 2 2 0 6 5034 5834 5887
-11216 2 2 0 6 5218 6031 6032
-11217 2 2 0 6 5358 7664 7388
-11218 2 2 0 6 7787 7788 7789
-11219 2 2 0 6 6462 6463 8239
-11220 2 2 0 6 7656 7657 8249
-11221 2 2 0 6 4908 9040 8122
-11222 2 2 0 6 3288 3290 9383
-11223 2 2 0 6 686 687 689
-11224 2 2 0 6 2649 2677 2678
-11225 2 2 0 6 3468 4078 3469
-11226 2 2 0 6 2928 4509 4516
-11227 2 2 0 6 1756 4859 4860
-11228 2 2 0 6 4208 5054 4211
-11229 2 2 0 6 5545 5546 6187
-11230 2 2 0 6 4848 5326 6294
-11231 2 2 0 6 6051 6735 6734
-11232 2 2 0 6 1312 9008 4430
-11233 2 2 0 6 3923 7374 9589
-11234 2 2 0 6 660 662 663
-11235 2 2 0 6 865 867 866
-11236 2 2 0 6 1258 1314 1257
-11237 2 2 0 6 1802 1895 1896
-11238 2 2 0 6 3043 3044 3042
-11239 2 2 0 6 3132 3134 3135
-11240 2 2 0 6 2923 3314 3313
-11241 2 2 0 6 3409 3413 3412
-11242 2 2 0 6 2819 3562 2821
-11243 2 2 0 6 3356 3926 3927
-11244 2 2 0 6 3117 4142 4143
-11245 2 2 0 6 6439 6440 6441
-11246 2 2 0 6 5264 7078 6198
-11247 2 2 0 6 5954 7456 7455
-11248 2 2 0 6 1399 1402 9547
-11249 2 2 0 6 719 720 723
-11250 2 2 0 6 794 795 793
-11251 2 2 0 6 5223 8731 6230
-11252 2 2 0 6 8945 8946 9552
-11253 2 2 0 6 4834 8198 5498
-11254 2 2 0 6 2118 8800 2117
-11255 2 2 0 6 2760 2866 2865
-11256 2 2 0 6 3136 3137 3138
-11257 2 2 0 6 3543 3544 3542
-11258 2 2 0 6 2174 4399 2177
-11259 2 2 0 6 5885 9180 8447
-11260 2 2 0 6 4721 5269 4767
-11261 2 2 0 6 326 327 9255
-11262 2 2 0 6 3458 3460 5517
-11263 2 2 0 6 3729 5045 9074
-11264 2 2 0 6 8485 10257 10230
-11265 2 2 0 6 8261 8265 8264
-11266 2 2 0 6 1585 8396 3476
-11267 2 2 0 6 3876 4795 9676
-11268 2 2 0 6 9458 10395 10399
-11269 2 2 0 6 2301 2303 9114
-11270 2 2 0 6 644 646 647
-11271 2 2 0 6 767 768 773
-11272 2 2 0 6 789 790 791
-11273 2 2 0 6 1237 1253 1239
-11274 2 2 0 6 2024 2028 2026
-11275 2 2 0 6 2875 3105 3104
-11276 2 2 0 6 3148 8576 3488
-11277 2 2 0 6 3572 3897 3898
-11278 2 2 0 6 4871 9670 5999
-11279 2 2 0 6 3677 3679 4181
-11280 2 2 0 6 4207 4208 4210
-11281 2 2 0 6 3499 5565 3986
-11282 2 2 0 6 5317 7497 7496
-11283 2 2 0 6 6255 7201 8006
-11284 2 2 0 6 8192 8193 8194
-11285 2 2 0 6 5506 8852 6379
-11286 2 2 0 6 1255 9040 4908
-11287 2 2 0 6 5526 9163 5528
-11288 2 2 0 6 5571 8684 10137
-11289 2 2 0 6 882 965 967
-11290 2 2 0 6 1798 1722 1799
-11291 2 2 0 6 2135 2149 2136
-11292 2 2 0 6 2272 2273 2274
-11293 2 2 0 6 1893 2147 3540
-11294 2 2 0 6 3393 3395 3394
-11295 2 2 0 6 3598 3600 3599
-11296 2 2 0 6 4468 4986 4985
-11297 2 2 0 6 1396 6411 6412
-11298 2 2 0 6 3597 3599 5551
-11299 2 2 0 6 5081 5082 6228
-11300 2 2 0 6 4579 7520 5277
-11301 2 2 0 6 9788 11270 11263
-11302 2 2 0 6 2816 2818 3028
-11303 2 2 0 6 3295 3907 3906
-11304 2 2 0 6 4311 4313 4312
-11305 2 2 0 6 3393 4424 3395
-11306 2 2 0 6 3412 3613 5547
-11307 2 2 0 6 5782 5783 5784
-11308 2 2 0 6 5721 5839 5840
-11309 2 2 0 6 5729 6555 5730
-11310 2 2 0 6 753 3754 8479
-11311 2 2 0 6 2541 7929 2547
-11312 2 2 0 6 8033 8034 8035
-11313 2 2 0 6 4645 9345 5521
-11314 2 2 0 6 735 736 737
-11315 2 2 0 6 869 872 870
-11316 2 2 0 6 1221 1266 1287
-11317 2 2 0 6 1554 1556 1555
-11318 2 2 0 6 1028 1034 8904
-11319 2 2 0 6 4210 4211 4412
-11320 2 2 0 6 5069 5756 5755
-11321 2 2 0 6 5039 5176 5879
-11322 2 2 0 6 4804 4806 5907
-11323 2 2 0 6 6510 6512 6511
-11324 2 2 0 6 5846 7185 6264
-11325 2 2 0 6 2681 3560 8928
-11326 2 2 0 6 5638 5960 9656
-11327 2 2 0 6 5569 5900 9834
-11328 2 2 0 6 2608 2610 2609
-11329 2 2 0 6 2707 8832 2708
-11330 2 2 0 6 4508 4625 5039
-11331 2 2 0 6 5358 8065 7664
-11332 2 2 0 6 5060 5933 5932
-11333 2 2 0 6 3121 6292 7376
-11334 2 2 0 6 4878 6348 5382
-11335 2 2 0 6 5477 6353 5853
-11336 2 2 0 6 6532 6559 6534
-11337 2 2 0 6 6174 6578 6579
-11338 2 2 0 6 6070 6704 6054
-11339 2 2 0 6 5215 7056 7057
-11340 2 2 0 6 5099 9087 5101
-11341 2 2 0 6 2452 8811 8812
-11342 2 2 0 6 8537 8842 8536
-11343 2 2 0 6 4761 6279 9269
-11344 2 2 0 6 8067 5452 9691
-11345 2 2 0 6 654 656 655
-11346 2 2 0 6 849 850 851
-11347 2 2 0 6 1252 1255 1254
-11348 2 2 0 6 1273 1274 1275
-11349 2 2 0 6 2070 2071 2072
-11350 2 2 0 6 2551 2549 2552
-11351 2 2 0 6 1083 3382 1087
-11352 2 2 0 6 3405 3410 3404
-11353 2 2 0 6 3462 3465 3466
-11354 2 2 0 6 2346 3579 2600
-11355 2 2 0 6 3283 4073 3285
-11356 2 2 0 6 1413 4170 1415
-11357 2 2 0 6 5690 6577 5925
-11358 2 2 0 6 4063 4444 4534
-11359 2 2 0 6 4835 5338 4919
-11360 2 2 0 6 3888 5466 4700
-11361 2 2 0 6 4767 5602 5601
-11362 2 2 0 6 5001 5891 5557
-11363 2 2 0 6 5592 5730 8741
-11364 2 2 0 6 2110 9267 2119
-11365 2 2 0 6 4303 5437 9275
-11366 2 2 0 6 4075 5681 9710
-11367 2 2 0 6 6638 10597 10629
-11368 2 2 0 6 1261 1272 1273
-11369 2 2 0 6 1640 1641 1638
-11370 2 2 0 6 1688 1722 1721
-11371 2 2 0 6 1933 1969 1934
-11372 2 2 0 6 818 3559 820
-11373 2 2 0 6 3945 4168 3996
-11374 2 2 0 6 4070 4324 4071
-11375 2 2 0 6 3927 4780 4781
-11376 2 2 0 6 6467 7610 7611
-11377 2 2 0 6 1327 3369 8165
-11378 2 2 0 6 4515 10501 10476
-11379 2 2 0 6 634 636 637
-11380 2 2 0 6 1260 1272 1261
-11381 2 2 0 6 1411 1412 1410
-11382 2 2 0 6 2276 2277 2278
-11383 2 2 0 6 3399 3402 3403
-11384 2 2 0 6 3602 3604 3603
-11385 2 2 0 6 4334 4335 4336
-11386 2 2 0 6 4144 4740 4145
-11387 2 2 0 6 5079 5080 5081
-11388 2 2 0 6 6335 6424 6425
-11389 2 2 0 6 2385 2429 8468
-11390 2 2 0 6 5735 5820 8739
-11391 2 2 0 6 822 9259 1749
-11392 2 2 0 6 1218 1234 1219
-11393 2 2 0 6 1387 1385 1388
-11394 2 2 0 6 2287 2289 2296
-11395 2 2 0 6 2428 2924 2430
-11396 2 2 0 6 1722 4393 8494
-11397 2 2 0 6 2897 3178 2898
-11398 2 2 0 6 3417 3420 3419
-11399 2 2 0 6 3580 3581 3582
-11400 2 2 0 6 3994 4012 4440
-11401 2 2 0 6 4159 8693 4775
-11402 2 2 0 6 5523 8793 5623
-11403 2 2 0 6 8618 8818 8819
-11404 2 2 0 6 656 658 657
-11405 2 2 0 6 874 880 875
-11406 2 2 0 6 908 911 910
-11407 2 2 0 6 1129 1138 1147
-11408 2 2 0 6 3166 3167 3190
-11409 2 2 0 6 5898 6635 5899
-11410 2 2 0 6 5371 8112 8111
-11411 2 2 0 6 5495 8308 6584
-11412 2 2 0 6 5626 6522 8865
-11413 2 2 0 6 1103 9759 1106
-11414 2 2 0 6 2604 2950 2949
-11415 2 2 0 6 729 4417 838
-11416 2 2 0 6 4905 6269 6267
-11417 2 2 0 6 5093 5094 6695
-11418 2 2 0 6 6865 7721 7720
-11419 2 2 0 6 5329 7815 7814
-11420 2 2 0 6 6430 8009 6429
-11421 2 2 0 6 5079 8941 6028
-11422 2 2 0 6 7296 7310 9823
-11423 2 2 0 6 2001 2002 2003
-11424 2 2 0 6 2028 2032 2029
-11425 2 2 0 6 2298 2305 2300
-11426 2 2 0 6 2181 2355 2351
-11427 2 2 0 6 3094 3092 3095
-11428 2 2 0 6 3400 3401 3404
-11429 2 2 0 6 2907 3525 3526
-11430 2 2 0 6 4322 5325 4853
-11431 2 2 0 6 5418 6464 6465
-11432 2 2 0 6 6271 6342 7655
-11433 2 2 0 6 1415 4170 8710
-11434 2 2 0 6 4204 9231 5094
-11435 2 2 0 6 2947 3325 3524
-11436 2 2 0 6 1377 1380 1379
-11437 2 2 0 6 2360 2362 2361
-11438 2 2 0 6 2538 2540 2539
-11439 2 2 0 6 3407 3408 3409
-11440 2 2 0 6 3967 3970 3969
-11441 2 2 0 6 3455 4866 4867
-11442 2 2 0 6 4022 4946 4947
-11443 2 2 0 6 3892 4733 5732
-11444 2 2 0 6 4513 4610 5796
-11445 2 2 0 6 5677 6485 6221
-11446 2 2 0 6 5512 8209 8210
-11447 2 2 0 6 5737 6394 8424
-11448 2 2 0 6 1621 1623 9727
-11449 2 2 0 6 1491 1764 1796
-11450 2 2 0 6 1382 1381 1383
-11451 2 2 0 6 2172 2175 2178
-11452 2 2 0 6 2304 2513 2307
-11453 2 2 0 6 3145 3146 3144
-11454 2 2 0 6 4088 4089 4090
-11455 2 2 0 6 4317 4319 4318
-11456 2 2 0 6 4084 4086 4439
-11457 2 2 0 6 4817 5311 4950
-11458 2 2 0 6 4114 6073 6074
-11459 2 2 0 6 1517 5550 8997
-11460 2 2 0 6 7763 7765 7766
-11461 2 2 0 6 2061 2063 9054
-11462 2 2 0 6 2826 9007 2920
-11463 2 2 0 6 3945 9185 4168
-11464 2 2 0 6 1249 9180 9358
-11465 2 2 0 6 1013 1015 1014
-11466 2 2 0 6 2438 2441 2440
-11467 2 2 0 6 3421 3431 3430
-11468 2 2 0 6 3433 3435 3434
-11469 2 2 0 6 3853 3854 3855
-11470 2 2 0 6 5511 5714 6421
-11471 2 2 0 6 6560 6562 6561
-11472 2 2 0 6 7302 7304 7303
-11473 2 2 0 6 5981 7523 5983
-11474 2 2 0 6 5329 7814 7813
-11475 2 2 0 6 2570 8878 2923
-11476 2 2 0 6 7784 8916 7786
-11477 2 2 0 6 5755 9057 8864
-11478 2 2 0 6 3579 9290 8914
-11479 2 2 0 6 3844 10269 10241
-11480 2 2 0 6 5812 10377 7992
-11481 2 2 0 6 1371 1373 1372
-11482 2 2 0 6 2445 2447 2446
-11483 2 2 0 6 2606 2608 2607
-11484 2 2 0 6 1586 1590 3482
-11485 2 2 0 6 1374 3498 1376
-11486 2 2 0 6 3820 4633 4011
-11487 2 2 0 6 3827 5427 4255
-11488 2 2 0 6 5537 6249 6250
-11489 2 2 0 6 6050 7157 6406
-11490 2 2 0 6 8122 9040 8125
-11491 2 2 0 6 634 635 636
-11492 2 2 0 6 3469 4079 4080
-11493 2 2 0 6 3923 5761 5762
-11494 2 2 0 6 4201 6669 4667
-11495 2 2 0 6 6713 6715 6714
-11496 2 2 0 6 3016 8691 3888
-11497 2 2 0 6 1412 1413 1414
-11498 2 2 0 6 3415 3417 3418
-11499 2 2 0 6 4068 4069 4895
-11500 2 2 0 6 631 633 6020
-11501 2 2 0 6 5601 5602 6434
-11502 2 2 0 6 5064 6503 5065
-11503 2 2 0 6 6525 6526 6527
-11504 2 2 0 6 2514 8928 8996
-11505 2 2 0 6 2983 3003 9901
-11506 2 2 0 6 1193 1194 1195
-11507 2 2 0 6 1274 1278 1275
-11508 2 2 0 6 1804 1908 2180
-11509 2 2 0 6 2661 2835 2834
-11510 2 2 0 6 2894 3043 3042
-11511 2 2 0 6 3428 3429 3444
-11512 2 2 0 6 3441 3651 3650
-11513 2 2 0 6 6566 6567 6568
-11514 2 2 0 6 5728 7138 5727
-11515 2 2 0 6 3974 7666 4116
-11516 2 2 0 6 4914 8674 8673
-11517 2 2 0 6 6225 7033 9066
-11518 2 2 0 6 7525 9398 7630
-11519 2 2 0 6 922 924 923
-11520 2 2 0 6 2264 2266 2265
-11521 2 2 0 6 2532 2534 2533
-11522 2 2 0 6 2613 2614 2615
-11523 2 2 0 6 2975 2978 2977
-11524 2 2 0 6 3391 3393 3392
-11525 2 2 0 6 3403 3406 3407
-11526 2 2 0 6 3447 3448 3449
-11527 2 2 0 6 3261 3887 3885
-11528 2 2 0 6 2856 3991 3992
-11529 2 2 0 6 3210 9173 4042
-11530 2 2 0 6 4268 6205 6204
-11531 2 2 0 6 7351 7591 7590
-11532 2 2 0 6 6358 7748 6360
-11533 2 2 0 6 3008 3255 7752
-11534 2 2 0 6 3225 3846 8680
-11535 2 2 0 6 2861 3357 8759
-11536 2 2 0 6 3754 9170 8481
-11537 2 2 0 6 675 677 676
-11538 2 2 0 6 1019 1030 1029
-11539 2 2 0 6 2244 3052 3053
-11540 2 2 0 6 3188 3311 3294
-11541 2 2 0 6 2439 2656 3570
-11542 2 2 0 6 4802 5612 4165
-11543 2 2 0 6 4897 6334 6336
-11544 2 2 0 6 4947 6477 6478
-11545 2 2 0 6 6198 7078 7168
-11546 2 2 0 6 5075 7250 7251
-11547 2 2 0 6 2439 3570 8433
-11548 2 2 0 6 5826 10150 9976
-11549 2 2 0 6 656 659 658
-11550 2 2 0 6 1278 9492 1354
-11551 2 2 0 6 3140 3141 3142
-11552 2 2 0 6 3701 3702 3703
-11553 2 2 0 6 4447 4728 4729
-11554 2 2 0 6 2994 7996 3824
-11555 2 2 0 6 5955 8637 8638
-11556 2 2 0 6 3756 9124 6474
-11557 2 2 0 6 6310 9879 6311
-11558 2 2 0 6 700 704 2152
-11559 2 2 0 6 3152 3340 3153
-11560 2 2 0 6 3579 3581 3580
-11561 2 2 0 6 3314 4016 4017
-11562 2 2 0 6 3804 4658 5379
-11563 2 2 0 6 6551 7079 7178
-11564 2 2 0 6 3579 8914 3581
-11565 2 2 0 6 1711 3720 8930
-11566 2 2 0 6 586 587 588
-11567 2 2 0 6 646 649 648
-11568 2 2 0 6 2348 2387 2350
-11569 2 2 0 6 2540 2542 2541
-11570 2 2 0 6 2670 2770 2671
-11571 2 2 0 6 2845 3150 3064
-11572 2 2 0 6 6398 7333 7334
-11573 2 2 0 6 5385 5386 7359
-11574 2 2 0 6 5434 8044 5436
-11575 2 2 0 6 3677 4181 8698
-11576 2 2 0 6 4803 8943 8740
-11577 2 2 0 6 1850 9773 2340
-11578 2 2 0 6 778 779 782
-11579 2 2 0 6 1888 2873 1890
-11580 2 2 0 6 2677 2893 2678
-11581 2 2 0 6 3543 3545 3544
-11582 2 2 0 6 3607 3609 3608
-11583 2 2 0 6 3590 4322 3981
-11584 2 2 0 6 4548 5531 5530
-11585 2 2 0 6 4175 4968 5720
-11586 2 2 0 6 6372 7235 7234
-11587 2 2 0 6 4905 8523 6269
-11588 2 2 0 6 5511 7904 5708
-11589 2 2 0 6 4870 8362 8361
-11590 2 2 0 6 3030 9154 3029
-11591 2 2 0 6 636 638 637
-11592 2 2 0 6 646 648 647
-11593 2 2 0 6 747 1281 749
-11594 2 2 0 6 1409 1411 1410
-11595 2 2 0 6 1995 1996 1997
-11596 2 2 0 6 3465 3468 3466
-11597 2 2 0 6 3202 3203 3670
-11598 2 2 0 6 3865 3867 4641
-11599 2 2 0 6 7619 10017 10192
-11600 2 2 0 6 626 628 627
-11601 2 2 0 6 649 650 648
-11602 2 2 0 6 666 668 667
-11603 2 2 0 6 784 785 789
-11604 2 2 0 6 1120 1122 1121
-11605 2 2 0 6 1226 1242 1241
-11606 2 2 0 6 1409 1498 1411
-11607 2 2 0 6 4145 4740 4741
-11608 2 2 0 6 4830 5334 5333
-11609 2 2 0 6 5956 5958 5957
-11610 2 2 0 6 2441 9355 8730
-11611 2 2 0 6 6528 7616 6530
-11612 2 2 0 6 1373 8850 3623
-11613 2 2 0 6 3904 8873 3905
-11614 2 2 0 6 1647 1649 9406
-11615 2 2 0 6 1978 2342 1979
-11616 2 2 0 6 2388 2431 2432
-11617 2 2 0 6 4412 4413 4414
-11618 2 2 0 6 4118 5100 5099
-11619 2 2 0 6 4979 5729 5592
-11620 2 2 0 6 5106 6060 5107
-11621 2 2 0 6 3269 6180 4448
-11622 2 2 0 6 4778 6241 5286
-11623 2 2 0 6 6364 6366 6367
-11624 2 2 0 6 6458 6459 6460
-11625 2 2 0 6 696 700 8912
-11626 2 2 0 6 4571 8337 8338
-11627 2 2 0 6 1215 8851 6038
-11628 2 2 0 6 6384 10943 10910
-11629 2 2 0 6 950 952 951
-11630 2 2 0 6 1392 1391 1393
-11631 2 2 0 6 2037 2038 2035
-11632 2 2 0 6 2155 2156 2157
-11633 2 2 0 6 2387 2431 2388
-11634 2 2 0 6 2747 2748 2580
-11635 2 2 0 6 5510 5714 5511
-11636 2 2 0 6 1294 5874 1293
-11637 2 2 0 6 6031 6033 6032
-11638 2 2 0 6 6179 6387 6495
-11639 2 2 0 6 5044 5877 6621
-11640 2 2 0 6 4014 8985 9871
-11641 2 2 0 6 6490 10232 6491
-11642 2 2 0 6 6028 8941 8942
-11643 2 2 0 6 3510 8968 9331
-11644 2 2 0 6 2170 2172 9990
-11645 2 2 0 6 1602 1601 1603
-11646 2 2 0 6 1980 1981 2352
-11647 2 2 0 6 3144 3146 3147
-11648 2 2 0 6 3413 3414 3415
-11649 2 2 0 6 1116 3493 1118
-11650 2 2 0 6 3705 3706 3707
-11651 2 2 0 6 2442 2450 4442
-11652 2 2 0 6 3525 5616 3527
-11653 2 2 0 6 4941 5371 8110
-11654 2 2 0 6 5907 8451 8450
-11655 2 2 0 6 855 856 857
-11656 2 2 0 6 1500 1501 2215
-11657 2 2 0 6 2268 2271 2270
-11658 2 2 0 6 655 657 3500
-11659 2 2 0 6 3570 3571 3572
-11660 2 2 0 6 3585 3586 3587
-11661 2 2 0 6 3147 3307 3921
-11662 2 2 0 6 1891 1893 9389
-11663 2 2 0 6 4451 5621 5736
-11664 2 2 0 6 6219 6440 6439
-11665 2 2 0 6 5326 8753 7351
-11666 2 2 0 6 4791 5411 7612
-11667 2 2 0 6 5715 8778 8779
-11668 2 2 0 6 1265 8795 1285
-11669 2 2 0 6 2135 2239 8597
-11670 2 2 0 6 1799 1886 1885
-11671 2 2 0 6 1423 1425 2399
-11672 2 2 0 6 2433 2435 2434
-11673 2 2 0 6 3429 3445 3444
-11674 2 2 0 6 2913 3218 4075
-11675 2 2 0 6 6257 6875 6877
-11676 2 2 0 6 5317 7496 6422
-11677 2 2 0 6 1722 8494 1799
-11678 2 2 0 6 4891 8735 8736
-11679 2 2 0 6 375 8875 473
-11680 2 2 0 6 3223 8631 8983
-11681 2 2 0 6 1517 8997 2228
-11682 2 2 0 6 4094 9146 8711
-11683 2 2 0 6 2785 9190 9784
-11684 2 2 0 6 2051 2052 2050
-11685 2 2 0 6 2118 2119 2120
-11686 2 2 0 6 2443 2445 2444
-11687 2 2 0 6 2599 2879 2666
-11688 2 2 0 6 4084 4085 4086
-11689 2 2 0 6 4832 4834 5498
-11690 2 2 0 6 6120 6321 6843
-11691 2 2 0 6 7081 7631 7080
-11692 2 2 0 6 6389 6437 7938
-11693 2 2 0 6 1529 3479 8787
-11694 2 2 0 6 2812 9079 3302
-11695 2 2 0 6 1634 1635 1636
-11696 2 2 0 6 2686 2896 3162
-11697 2 2 0 6 3740 4200 4109
-11698 2 2 0 6 5844 7187 7171
-11699 2 2 0 6 1590 1592 8552
-11700 2 2 0 6 711 715 1155
-11701 2 2 0 6 2597 2953 2871
-11702 2 2 0 6 2109 2111 4596
-11703 2 2 0 6 2438 9355 2441
-11704 2 2 0 6 6679 6680 6681
-11705 2 2 0 6 8122 8125 8124
-11706 2 2 0 6 1257 1315 8522
-11707 2 2 0 6 686 690 8646
-11708 2 2 0 6 4914 8673 8672
-11709 2 2 0 6 3407 3412 8955
-11710 2 2 0 6 5616 9036 6383
-11711 2 2 0 6 679 681 680
-11712 2 2 0 6 889 3478 1044
-11713 2 2 0 6 1418 1419 1420
-11714 2 2 0 6 2126 2132 2127
-11715 2 2 0 6 2793 2795 2796
-11716 2 2 0 6 3290 3291 3292
-11717 2 2 0 6 1392 3391 3392
-11718 2 2 0 6 2282 4173 6416
-11719 2 2 0 6 2321 2479 8387
-11720 2 2 0 6 749 9170 751
-11721 2 2 0 6 1124 1125 1123
-11722 2 2 0 6 2070 2072 2073
-11723 2 2 0 6 2304 2307 2306
-11724 2 2 0 6 2194 2469 2320
-11725 2 2 0 6 2853 2855 3191
-11726 2 2 0 6 4835 4919 4918
-11727 2 2 0 6 4898 6335 6334
-11728 2 2 0 6 5970 6428 6429
-11729 2 2 0 6 2905 2907 9091
-11730 2 2 0 6 3894 9014 4583
-11731 2 2 0 6 1980 8672 9176
-11732 2 2 0 6 610 612 611
-11733 2 2 0 6 1389 1391 1390
-11734 2 2 0 6 1419 1504 1420
-11735 2 2 0 6 1528 1530 1535
-11736 2 2 0 6 1796 1797 1880
-11737 2 2 0 6 3425 3427 3428
-11738 2 2 0 6 850 3567 852
-11739 2 2 0 6 3997 5573 5574
-11740 2 2 0 6 7288 7290 7289
-11741 2 2 0 6 2992 7910 7909
-11742 2 2 0 6 3445 9519 3984
-11743 2 2 0 6 580 581 582
-11744 2 2 0 6 938 940 939
-11745 2 2 0 6 1176 1194 1193
-11746 2 2 0 6 2076 2079 2080
-11747 2 2 0 6 3140 3142 3143
-11748 2 2 0 6 2437 3655 4427
-11749 2 2 0 6 4204 5094 5093
-11750 2 2 0 6 6502 7122 7121
-11751 2 2 0 6 6272 5325 7448
-11752 2 2 0 6 1315 3373 8522
-11753 2 2 0 6 5082 8808 6228
-11754 2 2 0 6 2245 9015 8531
-11755 2 2 0 6 632 634 633
-11756 2 2 0 6 676 678 1209
-11757 2 2 0 6 1626 1628 1629
-11758 2 2 0 6 3973 4854 3995
-11759 2 2 0 6 3992 4415 4880
-11760 2 2 0 6 1028 4960 1023
-11761 2 2 0 6 4402 8239 9549
-11762 2 2 0 6 5902 6432 6431
-11763 2 2 0 6 2653 9821 2864
-11764 2 2 0 6 1636 1637 1638
-11765 2 2 0 6 2149 2397 2339
-11766 2 2 0 6 2501 2860 2859
-11767 2 2 0 6 3146 3300 3147
-11768 2 2 0 6 4073 5424 5423
-11769 2 2 0 6 5014 5016 5918
-11770 2 2 0 6 2820 3481 8663
-11771 2 2 0 6 4206 8780 4208
-11772 2 2 0 6 4028 9078 7891
-11773 2 2 0 6 3030 3036 9154
-11774 2 2 0 6 670 672 671
-11775 2 2 0 6 1127 1128 1129
-11776 2 2 0 6 1289 1325 1307
-11777 2 2 0 6 1804 1828 1908
-11778 2 2 0 6 4419 4420 4464
-11779 2 2 0 6 4473 4474 4475
-11780 2 2 0 6 5086 5290 5253
-11781 2 2 0 6 5090 5089 6098
-11782 2 2 0 6 5214 6376 5213
-11783 2 2 0 6 2647 8289 3035
-11784 2 2 0 6 3987 5448 8463
-11785 2 2 0 6 4286 9101 5609
-11786 2 2 0 6 7037 9177 8690
-11787 2 2 0 6 8367 9448 6418
-11788 2 2 0 6 1505 1787 1804
-11789 2 2 0 6 2197 3665 2327
-11790 2 2 0 6 3405 3422 3411
-11791 2 2 0 6 3013 3635 3884
-11792 2 2 0 6 2923 4015 3314
-11793 2 2 0 6 3208 3209 4215
-11794 2 2 0 6 4937 4940 4938
-11795 2 2 0 6 5080 5082 5081
-11796 2 2 0 6 4894 5317 6422
-11797 2 2 0 6 5538 9100 9580
-11798 2 2 0 6 6503 7141 6504
-11799 2 2 0 6 5333 7230 7337
-11800 2 2 0 6 2450 2452 8812
-11801 2 2 0 6 4387 4820 8853
-11802 2 2 0 6 1504 1787 1505
-11803 2 2 0 6 2072 2075 2074
-11804 2 2 0 6 2435 2437 2436
-11805 2 2 0 6 4931 4933 4932
-11806 2 2 0 6 4278 5240 5239
-11807 2 2 0 6 5438 5451 5452
-11808 2 2 0 6 3374 5480 3809
-11809 2 2 0 6 5574 5577 5576
-11810 2 2 0 6 4401 8658 9753
-11811 2 2 0 6 5978 7370 7276
-11812 2 2 0 6 6321 7487 6843
-11813 2 2 0 6 2004 4454 9305
-11814 2 2 0 6 650 653 652
-11815 2 2 0 6 8703 8705 8708
-11816 2 2 0 6 6680 9603 6682
-11817 2 2 0 6 1889 1977 9722
-11818 2 2 0 6 751 753 752
-11819 2 2 0 6 1409 1410 1407
-11820 2 2 0 6 1414 1415 1416
-11821 2 2 0 6 3560 3735 3747
-11822 2 2 0 6 3922 3498 4721
-11823 2 2 0 6 4929 4931 4930
-11824 2 2 0 6 1123 8929 3509
-11825 2 2 0 6 1495 5550 1517
-11826 2 2 0 6 4781 5867 4783
-11827 2 2 0 6 5890 5898 5897
-11828 2 2 0 6 4629 5332 6295
-11829 2 2 0 6 5065 6503 6504
-11830 2 2 0 6 5114 6710 6711
-11831 2 2 0 6 7210 7209 7340
-11832 2 2 0 6 2280 8367 4173
-11833 2 2 0 6 3732 3900 8524
-11834 2 2 0 6 4385 8853 4760
-11835 2 2 0 6 1349 1351 1350
-11836 2 2 0 6 1405 1407 1406
-11837 2 2 0 6 2442 2449 2450
-11838 2 2 0 6 2176 9192 7686
-11839 2 2 0 6 2345 2346 2599
-11840 2 2 0 6 1527 3479 1529
-11841 2 2 0 6 3584 3589 3586
-11842 2 2 0 6 2906 3211 4003
-11843 2 2 0 6 4069 4897 4895
-11844 2 2 0 6 3670 4538 4539
-11845 2 2 0 6 4292 5297 4885
-11846 2 2 0 6 1803 2448 5501
-11847 2 2 0 6 5520 5519 5971
-11848 2 2 0 6 5586 6397 6399
-11849 2 2 0 6 5222 9403 9667
-11850 2 2 0 6 5022 7082 4749
-11851 2 2 0 6 4848 6294 9188
-11852 2 2 0 6 737 738 767
-11853 2 2 0 6 2352 2353 2604
-11854 2 2 0 6 3291 8790 3727
-11855 2 2 0 6 1392 1393 3391
-11856 2 2 0 6 3729 3731 3730
-11857 2 2 0 6 3753 4204 4586
-11858 2 2 0 6 4887 5553 5554
-11859 2 2 0 6 7953 7954 7955
-11860 2 2 0 6 7956 7958 7957
-11861 2 2 0 6 715 8640 1155
-11862 2 2 0 6 2893 3721 9047
-11863 2 2 0 6 1419 9022 1504
-11864 2 2 0 6 1821 1835 1834
-11865 2 2 0 6 659 3748 661
-11866 2 2 0 6 4015 4446 4016
-11867 2 2 0 6 4586 5508 5507
-11868 2 2 0 6 6500 6502 6501
-11869 2 2 0 6 5818 7280 7281
-11870 2 2 0 6 4352 7928 4354
-11871 2 2 0 6 3582 3691 8980
-11872 2 2 0 6 6863 6862 8626
-11873 2 2 0 6 2853 3191 8954
-11874 2 2 0 6 1888 1890 1889
-11875 2 2 0 6 1896 1982 1983
-11876 2 2 0 6 2068 2067 2081
-11877 2 2 0 6 3292 3727 3728
-11878 2 2 0 6 3734 3902 3901
-11879 2 2 0 6 3696 3737 4063
-11880 2 2 0 6 3987 4551 5448
-11881 2 2 0 6 3994 4440 4441
-11882 2 2 0 6 4217 4924 4925
-11883 2 2 0 6 4012 4952 4440
-11884 2 2 0 6 5434 5436 5435
-11885 2 2 0 6 3922 4767 5601
-11886 2 2 0 6 5532 5929 5930
-11887 2 2 0 6 4173 6418 6417
-11888 2 2 0 6 5788 6326 6475
-11889 2 2 0 6 5860 7330 6409
-11890 2 2 0 6 4898 9110 6424
-11891 2 2 0 6 606 608 607
-11892 2 2 0 6 1217 1226 1225
-11893 2 2 0 6 1866 1868 2502
-11894 2 2 0 6 2455 2929 2568
-11895 2 2 0 6 4092 4886 4887
-11896 2 2 0 6 5042 5694 6006
-11897 2 2 0 6 7032 7050 7034
-11898 2 2 0 6 6682 7586 6683
-11899 2 2 0 6 7784 9321 8916
-11900 2 2 0 6 1532 9204 9205
-11901 2 2 0 6 1664 1666 1670
-11902 2 2 0 6 1577 1726 1727
-11903 2 2 0 6 1886 1888 1887
-11904 2 2 0 6 2353 9027 2606
-11905 2 2 0 6 4651 8645 5454
-11906 2 2 0 6 791 797 3484
-11907 2 2 0 6 3327 3594 3328
-11908 2 2 0 6 2933 3196 3751
-11909 2 2 0 6 3679 3680 4178
-11910 2 2 0 6 5248 5336 5337
-11911 2 2 0 6 1105 1107 8175
-11912 2 2 0 6 8345 8347 8348
-11913 2 2 0 6 6423 9215 8680
-11914 2 2 0 6 711 712 715
-11915 2 2 0 6 1405 1408 1407
-11916 2 2 0 6 4450 3758 4456
-11917 2 2 0 6 2072 2074 2073
-11918 2 2 0 6 2307 2346 2345
-11919 2 2 0 6 2040 2042 2928
-11920 2 2 0 6 4186 5027 4997
-11921 2 2 0 6 5891 5954 5892
-11922 2 2 0 6 5691 6468 5722
-11923 2 2 0 6 5123 5130 6841
-11924 2 2 0 6 4780 8134 4781
-11925 2 2 0 6 2505 2856 8995
-11926 2 2 0 6 1328 1362 1361
-11927 2 2 0 6 1662 1663 1659
-11928 2 2 0 6 1700 1701 1702
-11929 2 2 0 6 4968 5757 5720
-11930 2 2 0 6 5849 6333 7491
-11931 2 2 0 6 5553 5555 7535
-11932 2 2 0 6 4186 8743 5620
-11933 2 2 0 6 5303 6199 9287
-11934 2 2 0 6 640 642 643
-11935 2 2 0 6 1416 1415 1417
-11936 2 2 0 6 2181 2356 2355
-11937 2 2 0 6 2187 2367 2368
-11938 2 2 0 6 2678 2893 2894
-11939 2 2 0 6 2984 3004 3003
-11940 2 2 0 6 3198 3199 3200
-11941 2 2 0 6 3147 3300 3307
-11942 2 2 0 6 3566 6407 4912
-11943 2 2 0 6 5587 7333 6398
-11944 2 2 0 6 5420 7490 5451
-11945 2 2 0 6 7863 7865 7866
-11946 2 2 0 6 3585 3587 9414
-11947 2 2 0 6 2279 8891 2291
-11948 2 2 0 6 6250 9709 7954
-11949 2 2 0 6 4401 9753 9541
-11950 2 2 0 6 867 869 868
-11951 2 2 0 6 935 934 936
-11952 2 2 0 6 1040 1041 1042
-11953 2 2 0 6 1880 1881 1976
-11954 2 2 0 6 2542 2544 2543
-11955 2 2 0 6 3287 3297 3618
-11956 2 2 0 6 1376 3498 3922
-11957 2 2 0 6 7815 7832 7831
-11958 2 2 0 6 4276 8337 4571
-11959 2 2 0 6 6387 8389 8135
-11960 2 2 0 6 5602 8459 7112
-11961 2 2 0 6 8702 8806 8706
-11962 2 2 0 6 3663 8296 9436
-11963 2 2 0 6 656 9230 659
-11964 2 2 0 6 3878 4606 9553
-11965 2 2 0 6 638 639 640
-11966 2 2 0 6 1030 1037 1036
-11967 2 2 0 6 1125 1126 1127
-11968 2 2 0 6 1363 1366 1365
-11969 2 2 0 6 1550 1552 1551
-11970 2 2 0 6 1594 1597 1598
-11971 2 2 0 6 5099 6054 9087
-11972 2 2 0 6 2081 2123 2082
-11973 2 2 0 6 1924 2186 2187
-11974 2 2 0 6 3501 3503 3502
-11975 2 2 0 6 3541 3543 3542
-11976 2 2 0 6 2600 3579 3580
-11977 2 2 0 6 3732 3731 3733
-11978 2 2 0 6 3416 3746 4564
-11979 2 2 0 6 5350 5352 5351
-11980 2 2 0 6 4722 6327 6328
-11981 2 2 0 6 3448 4402 9549
-11982 2 2 0 6 4173 6417 6416
-11983 2 2 0 6 4999 6644 6643
-11984 2 2 0 6 5412 7062 5413
-11985 2 2 0 6 5602 7112 6435
-11986 2 2 0 6 4857 6233 9284
-11987 2 2 0 6 5036 8004 6043
-11988 2 2 0 6 3754 8481 8480
-11989 2 2 0 6 1504 8815 1787
-11990 2 2 0 6 4348 9075 8316
-11991 2 2 0 6 2212 9473 9196
-11992 2 2 0 6 686 689 690
-11993 2 2 0 6 981 975 982
-11994 2 2 0 6 1383 1385 1386
-11995 2 2 0 6 3280 3283 3282
-11996 2 2 0 6 3454 4866 3455
-11997 2 2 0 6 4709 5210 5212
-11998 2 2 0 6 5612 6261 6262
-11999 2 2 0 6 5694 7462 6006
-12000 2 2 0 6 5667 7595 7596
-12001 2 2 0 6 1401 1403 1402
-12002 2 2 0 6 1411 1413 1412
-12003 2 2 0 6 3502 3504 3515
-12004 2 2 0 6 4715 5204 5203
-12005 2 2 0 6 5518 5519 5520
-12006 2 2 0 6 4912 6407 6408
-12007 2 2 0 6 4890 6627 5894
-12008 2 2 0 6 5628 7353 6331
-12009 2 2 0 6 7564 7566 7569
-12010 2 2 0 6 3022 8306 3023
-12011 2 2 0 6 976 3995 8830
-12012 2 2 0 6 2945 2947 8967
-12013 2 2 0 6 3221 9398 8603
-12014 2 2 0 6 716 720 719
-12015 2 2 0 6 1399 1400 1401
-12016 2 2 0 6 1643 1645 1644
-12017 2 2 0 6 1787 1829 1828
-12018 2 2 0 6 1798 1799 1884
-12019 2 2 0 6 2397 2565 2564
-12020 2 2 0 6 3586 3589 8784
-12021 2 2 0 6 4494 5091 5092
-12022 2 2 0 6 4264 5127 5128
-12023 2 2 0 6 2922 3313 5509
-12024 2 2 0 6 7306 7308 7307
-12025 2 2 0 6 6511 7989 8228
-12026 2 2 0 6 1916 8236 1929
-12027 2 2 0 6 4811 5323 8872
-12028 2 2 0 6 647 8960 8424
-12029 2 2 0 6 2906 4003 9024
-12030 2 2 0 6 965 974 9203
-12031 2 2 0 6 6526 9698 6869
-12032 2 2 0 6 1688 1721 1687
-12033 2 2 0 6 2079 2111 2109
-12034 2 2 0 6 2350 2387 2388
-12035 2 2 0 6 2647 2648 2649
-12036 2 2 0 6 3583 3584 3585
-12037 2 2 0 6 5275 5294 5293
-12038 2 2 0 6 5544 5546 5545
-12039 2 2 0 6 621 10381 10298
-12040 2 2 0 6 4414 5107 8372
-12041 2 2 0 6 5382 7660 5384
-12042 2 2 0 6 3548 8820 3549
-12043 2 2 0 6 872 8893 4138
-12044 2 2 0 6 753 755 754
-12045 2 2 0 6 1718 1723 1724
-12046 2 2 0 6 2019 2020 2018
-12047 2 2 0 6 2271 3521 2273
-12048 2 2 0 6 313 314 9401
-12049 2 2 0 6 4803 8740 8384
-12050 2 2 0 6 4772 4841 5288
-12051 2 2 0 6 7297 7298 7299
-12052 2 2 0 6 7397 7399 7398
-12053 2 2 0 6 5741 7504 6448
-12054 2 2 0 6 365 366 8237
-12055 2 2 0 6 5584 8718 5739
-12056 2 2 0 6 2951 3160 9216
-12057 2 2 0 6 886 889 1044
-12058 2 2 0 6 1387 1388 1389
-12059 2 2 0 6 1609 1608 1610
-12060 2 2 0 6 2121 2124 2122
-12061 2 2 0 6 3582 3584 3583
-12062 2 2 0 6 2462 2719 3664
-12063 2 2 0 6 4471 4472 4473
-12064 2 2 0 6 653 6413 654
-12065 2 2 0 6 2171 8921 2174
-12066 2 2 0 6 1121 1122 1123
-12067 2 2 0 6 1258 1316 1314
-12068 2 2 0 6 1642 1643 1641
-12069 2 2 0 6 3017 3019 3020
-12070 2 2 0 6 1388 3912 3530
-12071 2 2 0 6 4080 4079 4081
-12072 2 2 0 6 4088 4090 4094
-12073 2 2 0 6 4664 6286 6143
-12074 2 2 0 6 4008 4562 4561
-12075 2 2 0 6 4045 4882 4167
-12076 2 2 0 6 3196 4103 8314
-12077 2 2 0 6 1631 9086 3539
-12078 2 2 0 6 3938 8395 3941
-12079 2 2 0 6 2483 8409 8045
-12080 2 2 0 6 3197 3198 9119
-12081 2 2 0 6 3929 4369 9579
-12082 2 2 0 6 1420 1504 1505
-12083 2 2 0 6 2860 2942 2943
-12084 2 2 0 6 3902 3904 3903
-12085 2 2 0 6 3360 4290 4294
-12086 2 2 0 6 5334 5590 5591
-12087 2 2 0 6 2264 5594 2266
-12088 2 2 0 6 5549 5689 6380
-12089 2 2 0 6 3584 8980 3589
-12090 2 2 0 6 8947 8952 9635
-12091 2 2 0 6 7041 7043 8862
-12092 2 2 0 6 1387 9077 1386
-12093 2 2 0 6 1628 3363 9155
-12094 2 2 0 6 4914 9216 8674
-12095 2 2 0 6 664 665 666
-12096 2 2 0 6 755 757 756
-12097 2 2 0 6 1120 1224 1122
-12098 2 2 0 6 1244 1246 1247
-12099 2 2 0 6 1902 1923 1924
-12100 2 2 0 6 2094 2098 2096
-12101 2 2 0 6 2080 2110 2117
-12102 2 2 0 6 2450 2451 2452
-12103 2 2 0 6 2196 2325 2495
-12104 2 2 0 6 4205 8580 5066
-12105 2 2 0 6 3397 3401 3400
-12106 2 2 0 6 3642 4193 4192
-12107 2 2 0 6 3159 4205 3160
-12108 2 2 0 6 4896 5955 5956
-12109 2 2 0 6 6267 7242 6268
-12110 2 2 0 6 1091 8754 1795
-12111 2 2 0 6 3024 3025 9375
-12112 2 2 0 6 4261 5167 9835
-12113 2 2 0 6 5388 9890 7422
-12114 2 2 0 6 1194 1218 1195
-12115 2 2 0 6 1395 1394 1396
-12116 2 2 0 6 1531 1533 1532
-12117 2 2 0 6 2062 2065 2063
-12118 2 2 0 6 1883 2159 2151
-12119 2 2 0 6 2353 2606 2605
-12120 2 2 0 6 3200 3201 3202
-12121 2 2 0 6 3903 3904 3905
-12122 2 2 0 6 2825 3988 2827
-12123 2 2 0 6 3761 4216 4597
-12124 2 2 0 6 6575 10564 10533
-12125 2 2 0 6 5851 6590 6591
-12126 2 2 0 6 1036 1037 7743
-12127 2 2 0 6 854 858 856
-12128 2 2 0 6 1885 1886 1887
-12129 2 2 0 6 2753 2755 2754
-12130 2 2 0 6 4278 5239 4279
-12131 2 2 0 6 5554 7661 5702
-12132 2 2 0 6 6460 8113 6463
-12133 2 2 0 6 4345 8105 8107
-12134 2 2 0 6 1389 3530 8728
-12135 2 2 0 6 3605 3604 3755
-12136 2 2 0 6 3267 3835 4132
-12137 2 2 0 6 3961 4819 4873
-12138 2 2 0 6 2598 4023 9278
-12139 2 2 0 6 2982 9782 3815
-12140 2 2 0 6 1109 1111 1521
-12141 2 2 0 6 1989 3658 1991
-12142 2 2 0 6 2512 3532 4066
-12143 2 2 0 6 4090 4091 4092
-12144 2 2 0 6 1829 4409 1981
-12145 2 2 0 6 3895 4584 4585
-12146 2 2 0 6 4454 5754 6479
-12147 2 2 0 6 1087 8754 1091
-12148 2 2 0 6 2288 9131 8905
-12149 2 2 0 6 1828 9176 1908
-12150 2 2 0 6 659 9230 3748
-12151 2 2 0 6 1442 10077 1788
-12152 2 2 0 6 652 654 655
-12153 2 2 0 6 819 821 823
-12154 2 2 0 6 2843 3103 3102
-12155 2 2 0 6 2591 2593 4060
-12156 2 2 0 6 4938 4941 4953
-12157 2 2 0 6 5577 6615 5961
-12158 2 2 0 6 6286 7432 6879
-12159 2 2 0 6 3744 6008 8671
-12160 2 2 0 6 1144 3343 9143
-12161 2 2 0 6 5526 8850 9163
-12162 2 2 0 6 820 9259 822
-12163 2 2 0 6 843 845 1524
-12164 2 2 0 6 4081 4083 4082
-12165 2 2 0 6 5448 5449 5450
-12166 2 2 0 6 4297 5197 5487
-12167 2 2 0 6 5557 5891 5892
-12168 2 2 0 6 5531 5929 5532
-12169 2 2 0 6 4761 5267 6278
-12170 2 2 0 6 3527 5616 6383
-12171 2 2 0 6 7290 7291 7292
-12172 2 2 0 6 2864 9821 3335
-12173 2 2 0 6 660 661 662
-12174 2 2 0 6 3517 3518 3519
-12175 2 2 0 6 3168 3686 3169
-12176 2 2 0 6 3190 4061 4054
-12177 2 2 0 6 4080 4082 4916
-12178 2 2 0 6 2942 4920 2944
-12179 2 2 0 6 3477 8810 9066
-12180 2 2 0 6 3196 8314 3751
-12181 2 2 0 6 4181 8699 8698
-12182 2 2 0 6 1287 8920 8919
-12183 2 2 0 6 962 964 963
-12184 2 2 0 6 2068 2081 2082
-12185 2 2 0 6 2680 3344 3345
-12186 2 2 0 6 2847 3155 3356
-12187 2 2 0 6 1646 1647 3511
-12188 2 2 0 6 3291 3727 3292
-12189 2 2 0 6 3503 3762 3761
-12190 2 2 0 6 3330 4702 3331
-12191 2 2 0 6 5290 5291 5292
-12192 2 2 0 6 4897 4898 6334
-12193 2 2 0 6 6364 6365 6366
-12194 2 2 0 6 6225 7032 7033
-12195 2 2 0 6 8472 8476 8474
-12196 2 2 0 6 8353 8355 8696
-12197 2 2 0 6 5626 8865 9406
-12198 2 2 0 6 8072 8073 10388
-12199 2 2 0 6 1034 1100 1102
-12200 2 2 0 6 1395 1396 1397
-12201 2 2 0 6 1618 1619 1620
-12202 2 2 0 6 2268 2270 2269
-12203 2 2 0 6 4086 4087 4088
-12204 2 2 0 6 4375 4377 4768
-12205 2 2 0 6 5406 5817 5818
-12206 2 2 0 6 6074 6075 6572
-12207 2 2 0 6 5609 6612 5610
-12208 2 2 0 6 6281 8223 7232
-12209 2 2 0 6 5519 6659 5971
-12210 2 2 0 6 3097 3804 8062
-12211 2 2 0 6 851 852 853
-12212 2 2 0 6 1463 1466 1465
-12213 2 2 0 6 1630 1632 1631
-12214 2 2 0 6 2868 2869 2870
-12215 2 2 0 6 2943 2945 3114
-12216 2 2 0 6 872 4138 874
-12217 2 2 0 6 777 3630 8975
-12218 2 2 0 6 6014 6015 6016
-12219 2 2 0 6 6650 7653 7652
-12220 2 2 0 6 5641 5746 8756
-12221 2 2 0 6 2181 8876 2356
-12222 2 2 0 6 1474 10052 10258
-12223 2 2 0 6 877 883 882
-12224 2 2 0 6 4022 9034 4174
-12225 2 2 0 6 2221 2223 2224
-12226 2 2 0 6 3660 3997 3661
-12227 2 2 0 6 4615 5171 4616
-12228 2 2 0 6 2649 9490 8289
-12229 2 2 0 6 5099 5100 6054
-12230 2 2 0 6 5096 5097 6072
-12231 2 2 0 6 5449 6649 5450
-12232 2 2 0 6 5288 7215 7172
-12233 2 2 0 6 837 839 8462
-12234 2 2 0 6 678 9912 1209
-12235 2 2 0 6 3868 8943 3870
-12236 2 2 0 6 2500 2859 9672
-12237 2 2 0 6 1365 1366 1367
-12238 2 2 0 6 1413 1415 1414
-12239 2 2 0 6 1527 1529 1528
-12240 2 2 0 6 1889 1890 1891
-12241 2 2 0 6 1937 9043 3564
-12242 2 2 0 6 3598 4014 3600
-12243 2 2 0 6 3515 3517 5536
-12244 2 2 0 6 4875 5686 5687
-12245 2 2 0 6 4557 5947 5948
-12246 2 2 0 6 4730 6192 6193
-12247 2 2 0 6 5798 10106 8098
-12248 2 2 0 6 6265 7101 6266
-12249 2 2 0 6 6579 7211 6580
-12250 2 2 0 6 7115 7345 7116
-12251 2 2 0 6 3623 8850 5526
-12252 2 2 0 6 2894 9047 3043
-12253 2 2 0 6 3442 9603 9186
-12254 2 2 0 6 707 708 711
-12255 2 2 0 6 1417 1419 1418
-12256 2 2 0 6 1632 1634 1633
-12257 2 2 0 6 2260 2262 2261
-12258 2 2 0 6 2748 2749 2750
-12259 2 2 0 6 3525 3527 3526
-12260 2 2 0 6 4017 4018 4752
-12261 2 2 0 6 4271 5221 5222
-12262 2 2 0 6 5490 6056 6057
-12263 2 2 0 6 5268 6191 6190
-12264 2 2 0 6 5933 8238 6111
-12265 2 2 0 6 6553 6554 8060
-12266 2 2 0 6 7312 7323 8155
-12267 2 2 0 6 843 844 845
-12268 2 2 0 6 971 978 977
-12269 2 2 0 6 2346 2600 2599
-12270 2 2 0 6 2755 2758 2757
-12271 2 2 0 6 3770 3772 3771
-12272 2 2 0 6 4724 5619 5219
-12273 2 2 0 6 5650 5649 5651
-12274 2 2 0 6 5695 5697 5696
-12275 2 2 0 6 2617 9836 2911
-12276 2 2 0 6 1098 1140 1139
-12277 2 2 0 6 1138 1156 1147
-12278 2 2 0 6 2449 2451 2450
-12279 2 2 0 6 629 3736 630
-12280 2 2 0 6 3571 3899 3897
-12281 2 2 0 6 4095 5030 4549
-12282 2 2 0 6 5468 6178 5467
-12283 2 2 0 6 5985 7759 5987
-12284 2 2 0 6 4731 8282 6194
-12285 2 2 0 6 5498 8198 8477
-12286 2 2 0 6 1312 1491 9008
-12287 2 2 0 6 1051 1053 1052
-12288 2 2 0 6 1192 1217 1216
-12289 2 2 0 6 2866 2867 2868
-12290 2 2 0 6 3633 4201 4129
-12291 2 2 0 6 824 830 3708
-12292 2 2 0 6 3311 4302 3624
-12293 2 2 0 6 4450 5621 4451
-12294 2 2 0 6 3731 5031 3733
-12295 2 2 0 6 1314 9107 1495
-12296 2 2 0 6 5961 5963 5962
-12297 2 2 0 6 5129 6755 6767
-12298 2 2 0 6 7792 7795 7796
-12299 2 2 0 6 1979 2516 8018
-12300 2 2 0 6 2947 3524 8967
-12301 2 2 0 6 816 9388 1751
-12302 2 2 0 6 926 928 927
-12303 2 2 0 6 1150 1149 1161
-12304 2 2 0 6 2870 3100 3101
-12305 2 2 0 6 2896 3163 3162
-12306 2 2 0 6 1907 1937 3564
-12307 2 2 0 6 3847 3848 3849
-12308 2 2 0 6 3206 4106 3750
-12309 2 2 0 6 3489 4847 4909
-12310 2 2 0 6 5761 9989 5763
-12311 2 2 0 6 5555 7628 7535
-12312 2 2 0 6 1017 1023 9286
-12313 2 2 0 6 9451 10435 10541
-12314 2 2 0 6 672 675 674
-12315 2 2 0 6 677 679 678
-12316 2 2 0 6 1403 1404 1405
-12317 2 2 0 6 1533 1537 1536
-12318 2 2 0 6 2074 2107 2073
-12319 2 2 0 6 4422 4423 4421
-12320 2 2 0 6 3712 3713 5001
-12321 2 2 0 6 4143 5201 5202
-12322 2 2 0 6 3918 5560 4742
-12323 2 2 0 6 3649 3650 5857
-12324 2 2 0 6 5583 7279 5585
-12325 2 2 0 6 5199 8218 6641
-12326 2 2 0 6 726 730 1010
-12327 2 2 0 6 842 840 1758
-12328 2 2 0 6 3401 3405 3404
-12329 2 2 0 6 3439 3441 3649
-12330 2 2 0 6 3678 3681 3680
-12331 2 2 0 6 3218 4076 4075
-12332 2 2 0 6 4584 5089 4585
-12333 2 2 0 6 7292 7294 7293
-12334 2 2 0 6 7822 7824 7823
-12335 2 2 0 6 8586 8585 8587
-12336 2 2 0 6 2608 5558 8807
-12337 2 2 0 6 1506 9222 3690
-12338 2 2 0 6 3292 3908 9236
-12339 2 2 0 6 4187 5603 9323
-12340 2 2 0 6 6040 6880 9734
-12341 2 2 0 6 1616 1618 1617
-12342 2 2 0 6 5001 6616 8399
-12343 2 2 0 6 2521 3525 2907
-12344 2 2 0 6 3307 4145 9269
-12345 2 2 0 6 3315 3966 3316
-12346 2 2 0 6 2727 3227 4055
-12347 2 2 0 6 3742 4070 3743
-12348 2 2 0 6 4080 4081 4082
-12349 2 2 0 6 3756 4114 3755
-12350 2 2 0 6 3530 3912 4271
-12351 2 2 0 6 3897 4278 3898
-12352 2 2 0 6 4422 5262 4423
-12353 2 2 0 6 4937 9848 4942
-12354 2 2 0 6 6060 6706 6077
-12355 2 2 0 6 3498 7060 4721
-12356 2 2 0 6 3732 8524 3730
-12357 2 2 0 6 2026 8722 8723
-12358 2 2 0 6 1296 1299 9424
-12359 2 2 0 6 3741 5726 9507
-12360 2 2 0 6 954 956 955
-12361 2 2 0 6 2124 2125 2122
-12362 2 2 0 6 2125 2134 2135
-12363 2 2 0 6 2130 2334 2335
-12364 2 2 0 6 3053 4150 4151
-12365 2 2 0 6 3984 4875 4852
-12366 2 2 0 6 3846 4646 4964
-12367 2 2 0 6 5340 5902 6431
-12368 2 2 0 6 3762 8550 4924
-12369 2 2 0 6 2468 2899 2933
-12370 2 2 0 6 2964 2966 2965
-12371 2 2 0 6 637 638 3537
-12372 2 2 0 6 6532 6534 6533
-12373 2 2 0 6 4787 6351 8553
-12374 2 2 0 6 3500 3502 8947
-12375 2 2 0 6 4412 4414 9051
-12376 2 2 0 6 3040 9253 4461
-12377 2 2 0 6 757 759 758
-12378 2 2 0 6 723 8968 3510
-12379 2 2 0 6 1997 1998 1999
-12380 2 2 0 6 2074 2075 2076
-12381 2 2 0 6 2350 2388 2487
-12382 2 2 0 6 2751 2753 2752
-12383 2 2 0 6 3405 3411 3410
-12384 2 2 0 6 2848 3718 3156
-12385 2 2 0 6 3960 4831 4832
-12386 2 2 0 6 4413 5106 4414
-12387 2 2 0 6 4874 5309 5310
-12388 2 2 0 6 5574 5575 8973
-12389 2 2 0 6 4880 4881 9272
-12390 2 2 0 6 1140 1158 1157
-12391 2 2 0 6 1629 1630 1631
-12392 2 2 0 6 1799 1885 1884
-12393 2 2 0 6 3070 9191 4101
-12394 2 2 0 6 2528 2530 2529
-12395 2 2 0 6 2544 2546 2545
-12396 2 2 0 6 814 826 3471
-12397 2 2 0 6 2879 3566 3171
-12398 2 2 0 6 3697 3698 3699
-12399 2 2 0 6 3732 3733 3734
-12400 2 2 0 6 4085 4087 4086
-12401 2 2 0 6 1688 4393 1722
-12402 2 2 0 6 3340 4517 4050
-12403 2 2 0 6 4052 4053 4980
-12404 2 2 0 6 4729 5198 5199
-12405 2 2 0 6 2309 8905 9105
-12406 2 2 0 6 8674 9216 9327
-12407 2 2 0 6 4735 7154 7159
-12408 2 2 0 6 5566 5567 7753
-12409 2 2 0 6 7039 7041 8430
-12410 2 2 0 6 717 718 721
-12411 2 2 0 6 1124 1126 1125
-12412 2 2 0 6 1536 1801 1802
-12413 2 2 0 6 2015 2014 2016
-12414 2 2 0 6 1981 2353 2352
-12415 2 2 0 6 3150 3454 3304
-12416 2 2 0 6 3580 3582 3583
-12417 2 2 0 6 3518 4120 3758
-12418 2 2 0 6 2052 4186 4185
-12419 2 2 0 6 5679 5819 5680
-12420 2 2 0 6 7308 7314 7309
-12421 2 2 0 6 5678 5680 9382
-12422 2 2 0 6 5799 10078 9941
-12423 2 2 0 6 3998 10102 7993
-12424 2 2 0 6 2153 2154 2155
-12425 2 2 0 6 911 971 970
-12426 2 2 0 6 1146 1154 1153
-12427 2 2 0 6 2053 2055 2056
-12428 2 2 0 6 3553 3916 3554
-12429 2 2 0 6 4551 5449 5448
-12430 2 2 0 6 4910 5579 5578
-12431 2 2 0 6 5049 6013 5726
-12432 2 2 0 6 4598 8094 8096
-12433 2 2 0 6 1285 8795 1313
-12434 2 2 0 6 604 606 605
-12435 2 2 0 6 745 747 746
-12436 2 2 0 6 763 765 764
-12437 2 2 0 6 2439 2440 2656
-12438 2 2 0 6 3500 3501 3502
-12439 2 2 0 6 3445 3974 3752
-12440 2 2 0 6 1816 4390 1818
-12441 2 2 0 6 4938 4940 4941
-12442 2 2 0 6 4802 6261 5612
-12443 2 2 0 6 5794 6518 6281
-12444 2 2 0 6 5556 5750 8711
-12445 2 2 0 6 1379 1382 9818
-12446 2 2 0 6 587 589 588
-12447 2 2 0 6 1122 1124 1123
-12448 2 2 0 6 1395 1397 1398
-12449 2 2 0 6 1397 1399 1398
-12450 2 2 0 6 1729 1730 1731
-12451 2 2 0 6 1884 1978 1979
-12452 2 2 0 6 1829 1981 1980
-12453 2 2 0 6 2175 2190 2178
-12454 2 2 0 6 2499 2845 2844
-12455 2 2 0 6 4896 5956 5957
-12456 2 2 0 6 7093 7516 7776
-12457 2 2 0 6 4950 5935 8317
-12458 2 2 0 6 4406 8500 8501
-12459 2 2 0 6 3597 5551 9050
-12460 2 2 0 6 3282 3284 9090
-12461 2 2 0 6 3277 3278 9198
-12462 2 2 0 6 1004 1013 1014
-12463 2 2 0 6 1401 1402 1399
-12464 2 2 0 6 1442 1788 1514
-12465 2 2 0 6 1885 1978 1884
-12466 2 2 0 6 2449 2890 2451
-12467 2 2 0 6 3556 3920 3558
-12468 2 2 0 6 3900 4724 4725
-12469 2 2 0 6 6281 6518 6519
-12470 2 2 0 6 5152 6816 6674
-12471 2 2 0 6 5946 7917 7918
-12472 2 2 0 6 2529 4001 8828
-12473 2 2 0 6 1162 1161 1182
-12474 2 2 0 6 3289 3291 3290
-12475 2 2 0 6 3586 3588 3587
-12476 2 2 0 6 5584 5585 5586
-12477 2 2 0 6 5529 5850 5851
-12478 2 2 0 6 4036 4260 5861
-12479 2 2 0 6 5872 8021 8020
-12480 2 2 0 6 637 3597 9050
-12481 2 2 0 6 1613 9081 9080
-12482 2 2 0 6 5419 9421 5420
-12483 2 2 0 6 618 620 619
-12484 2 2 0 6 1063 1067 1065
-12485 2 2 0 6 1467 1470 1469
-12486 2 2 0 6 2063 2065 2066
-12487 2 2 0 6 2260 2315 2262
-12488 2 2 0 6 2605 2606 2607
-12489 2 2 0 6 3247 3770 3771
-12490 2 2 0 6 3230 3231 3837
-12491 2 2 0 6 4277 5564 5236
-12492 2 2 0 6 5623 7087 5624
-12493 2 2 0 6 3917 7665 5360
-12494 2 2 0 6 4319 8077 4321
-12495 2 2 0 6 654 9230 656
-12496 2 2 0 6 8517 8520 9384
-12497 2 2 0 6 583 585 584
-12498 2 2 0 6 596 598 597
-12499 2 2 0 6 710 714 717
-12500 2 2 0 6 1156 1258 1257
-12501 2 2 0 6 723 726 8968
-12502 2 2 0 6 1982 2236 1983
-12503 2 2 0 6 3184 3185 3186
-12504 2 2 0 6 3444 3445 3752
-12505 2 2 0 6 4940 5371 4941
-12506 2 2 0 6 614 616 615
-12507 2 2 0 6 759 761 760
-12508 2 2 0 6 1407 1408 1409
-12509 2 2 0 6 1633 1639 1687
-12510 2 2 0 6 2008 2009 2007
-12511 2 2 0 6 2611 2762 2901
-12512 2 2 0 6 3588 3660 3591
-12513 2 2 0 6 4016 4018 4017
-12514 2 2 0 6 3192 4052 3191
-12515 2 2 0 6 4509 6350 5854
-12516 2 2 0 6 4176 4177 5064
-12517 2 2 0 6 5523 5623 5622
-12518 2 2 0 6 3905 6327 4722
-12519 2 2 0 6 5503 7134 7135
-12520 2 2 0 6 7284 7286 7285
-12521 2 2 0 6 4673 8549 8547
-12522 2 2 0 6 2801 2861 8759
-12523 2 2 0 6 3894 4391 9014
-12524 2 2 0 6 3515 3516 3517
-12525 2 2 0 6 3676 3678 3677
-12526 2 2 0 6 909 912 3890
-12527 2 2 0 6 3198 9120 9119
-12528 2 2 0 6 5718 5719 6623
-12529 2 2 0 6 5765 6978 5767
-12530 2 2 0 6 3590 8814 4322
-12531 2 2 0 6 1183 1182 1196
-12532 2 2 0 6 2451 2453 2452
-12533 2 2 0 6 2944 2946 2945
-12534 2 2 0 6 3587 3588 3590
-12535 2 2 0 6 3469 4078 4079
-12536 2 2 0 6 3748 4204 3753
-12537 2 2 0 6 4926 4927 4928
-12538 2 2 0 6 4752 5227 4754
-12539 2 2 0 6 6313 6316 6314
-12540 2 2 0 6 4952 5617 6390
-12541 2 2 0 6 641 3739 6613
-12542 2 2 0 6 4205 4209 8580
-12543 2 2 0 6 3927 4782 9526
-12544 2 2 0 6 2552 2722 9652
-12545 2 2 0 6 5742 9979 9520
-12546 2 2 0 6 1049 1051 1050
-12547 2 2 0 6 1417 1497 1419
-12548 2 2 0 6 1983 2236 2237
-12549 2 2 0 6 2358 2488 2489
-12550 2 2 0 6 697 2602 701
-12551 2 2 0 6 5084 5085 5086
-12552 2 2 0 6 5697 5792 5698
-12553 2 2 0 6 4292 8924 5297
-12554 2 2 0 6 2607 2608 2609
-12555 2 2 0 6 2729 2730 2731
-12556 2 2 0 6 3040 4461 3893
-12557 2 2 0 6 3922 4721 4767
-12558 2 2 0 6 4952 5593 5617
-12559 2 2 0 6 5582 5584 5739
-12560 2 2 0 6 7296 7298 7297
-12561 2 2 0 6 6255 8307 7231
-12562 2 2 0 6 2436 2439 8433
-12563 2 2 0 6 644 647 8959
-12564 2 2 0 6 6862 10142 10219
-12565 2 2 0 6 5645 8915 9736
-12566 2 2 0 6 882 883 965
-12567 2 2 0 6 1806 1878 1879
-12568 2 2 0 6 1829 1980 1828
-12569 2 2 0 6 2864 3333 3332
-12570 2 2 0 6 6022 7052 6222
-12571 2 2 0 6 6178 6179 8242
-12572 2 2 0 6 8709 8883 8882
-12573 2 2 0 6 2878 9010 3221
-12574 2 2 0 6 8072 10280 9848
-12575 2 2 0 6 3887 9927 9588
-12576 2 2 0 6 1645 1647 1646
-12577 2 2 0 6 1727 1728 1729
-12578 2 2 0 6 2110 2118 2117
-12579 2 2 0 6 4871 5999 5410
-12580 2 2 0 6 6309 6721 7699
-12581 2 2 0 6 5510 7956 5714
-12582 2 2 0 6 5439 8510 8508
-12583 2 2 0 6 4775 8693 5600
-12584 2 2 0 6 2460 2700 8933
-12585 2 2 0 6 1598 1599 9112
-12586 2 2 0 6 3202 3670 9242
-12587 2 2 0 6 780 786 1046
-12588 2 2 0 6 1674 1676 1675
-12589 2 2 0 6 822 1749 825
-12590 2 2 0 6 3037 3330 3329
-12591 2 2 0 6 3546 3548 3547
-12592 2 2 0 6 3566 4912 4045
-12593 2 2 0 6 6591 7719 6592
-12594 2 2 0 6 4173 8367 6418
-12595 2 2 0 6 3043 9047 9048
-12596 2 2 0 6 4383 4760 9052
-12597 2 2 0 6 652 653 654
-12598 2 2 0 6 1154 1164 1163
-12599 2 2 0 6 1196 1213 1197
-12600 2 2 0 6 1649 1651 1652
-12601 2 2 0 6 3286 3289 3288
-12602 2 2 0 6 2811 2812 3302
-12603 2 2 0 6 3193 4198 3721
-12604 2 2 0 6 2453 3693 2510
-12605 2 2 0 6 3325 3326 3972
-12606 2 2 0 6 4083 4085 4084
-12607 2 2 0 6 4934 4935 4936
-12608 2 2 0 6 4699 5252 5218
-12609 2 2 0 6 5380 6742 5381
-12610 2 2 0 6 5477 9213 6353
-12611 2 2 0 6 4322 8814 9245
-12612 2 2 0 6 3429 8678 9519
-12613 2 2 0 6 747 749 748
-12614 2 2 0 6 729 838 837
-12615 2 2 0 6 2159 2161 2160
-12616 2 2 0 6 3314 4015 4016
-12617 2 2 0 6 3098 3096 3099
-12618 2 2 0 6 3540 3541 3542
-12619 2 2 0 6 4074 5938 5974
-12620 2 2 0 6 5468 6179 6178
-12621 2 2 0 6 2247 8933 4438
-12622 2 2 0 6 4067 8380 8378
-12623 2 2 0 6 2237 8996 2343
-12624 2 2 0 6 2802 9349 3374
-12625 2 2 0 6 6423 9784 9190
-12626 2 2 0 6 7440 9348 9898
-12627 2 2 0 6 857 856 859
-12628 2 2 0 6 1128 1223 1138
-12629 2 2 0 6 1176 1177 9466
-12630 2 2 0 6 1552 1554 1553
-12631 2 2 0 6 1047 2311 1049
-12632 2 2 0 6 2789 2791 2790
-12633 2 2 0 6 3415 3416 3417
-12634 2 2 0 6 2770 4212 3757
-12635 2 2 0 6 4159 4160 4772
-12636 2 2 0 6 4932 4933 4934
-12637 2 2 0 6 3693 5567 5566
-12638 2 2 0 6 5590 5695 5591
-12639 2 2 0 6 6192 6194 7080
-12640 2 2 0 6 980 8766 987
-12641 2 2 0 6 6361 6362 8931
-12642 2 2 0 6 3996 5740 9404
-12643 2 2 0 6 3079 9493 3080
-12644 2 2 0 6 2809 3978 9707
-12645 2 2 0 6 1228 1236 1229
-12646 2 2 0 6 1525 1527 1526
-12647 2 2 0 6 1605 1608 1609
-12648 2 2 0 6 1712 1713 1714
-12649 2 2 0 6 2339 2397 2564
-12650 2 2 0 6 2400 2567 2569
-12651 2 2 0 6 2947 2948 3325
-12652 2 2 0 6 3652 3676 3677
-12653 2 2 0 6 4409 9465 9027
-12654 2 2 0 6 3768 6027 4127
-12655 2 2 0 6 6681 6682 6683
-12656 2 2 0 6 6101 7024 6184
-12657 2 2 0 6 7314 7326 7318
-12658 2 2 0 6 6394 8959 8424
-12659 2 2 0 6 3060 2837 9427
-12660 2 2 0 6 685 687 686
-12661 2 2 0 6 1007 1019 1018
-12662 2 2 0 6 1628 1630 1629
-12663 2 2 0 6 2066 2070 2069
-12664 2 2 0 6 2036 2126 2078
-12665 2 2 0 6 3728 3730 8762
-12666 2 2 0 6 3681 3682 3680
-12667 2 2 0 6 1124 4166 1126
-12668 2 2 0 6 2280 4173 2282
-12669 2 2 0 6 2689 9191 3070
-12670 2 2 0 6 4111 5254 4735
-12671 2 2 0 6 1846 2341 9144
-12672 2 2 0 6 3743 9771 4172
-12673 2 2 0 6 4058 7468 7469
-12674 2 2 0 6 7035 7037 8690
-12675 2 2 0 6 1833 8611 9233
-12676 2 2 0 6 3288 9383 3297
-12677 2 2 0 6 2296 8614 9600
-12678 2 2 0 6 1143 1149 1144
-12679 2 2 0 6 1316 1525 1526
-12680 2 2 0 6 1648 1650 1649
-12681 2 2 0 6 2125 2135 2136
-12682 2 2 0 6 4412 4211 4413
-12683 2 2 0 6 4867 5416 4869
-12684 2 2 0 6 2591 4060 9354
-12685 2 2 0 6 6206 8220 8219
-12686 2 2 0 6 850 852 851
-12687 2 2 0 6 1071 1073 1072
-12688 2 2 0 6 1528 1529 1530
-12689 2 2 0 6 735 737 2589
-12690 2 2 0 6 629 4059 3736
-12691 2 2 0 6 5100 6071 6070
-12692 2 2 0 6 4132 4245 6168
-12693 2 2 0 6 7814 7815 7831
-12694 2 2 0 6 3041 9624 8551
-12695 2 2 0 6 853 854 855
-12696 2 2 0 6 930 932 931
-12697 2 2 0 6 999 1009 1008
-12698 2 2 0 6 2098 2100 2099
-12699 2 2 0 6 2025 2031 4431
-12700 2 2 0 6 4928 4929 4930
-12701 2 2 0 6 4838 6631 10049
-12702 2 2 0 6 3285 9111 3286
-12703 2 2 0 6 628 630 631
-12704 2 2 0 6 706 709 710
-12705 2 2 0 6 839 840 841
-12706 2 2 0 6 1067 1069 1068
-12707 2 2 0 6 1623 1624 1625
-12708 2 2 0 6 2353 2605 2604
-12709 2 2 0 6 2871 2953 3157
-12710 2 2 0 6 3270 3272 3273
-12711 2 2 0 6 3466 3468 3469
-12712 2 2 0 6 5294 6528 5295
-12713 2 2 0 6 5839 7534 5840
-12714 2 2 0 6 6057 8537 8536
-12715 2 2 0 6 2986 3242 8974
-12716 2 2 0 6 8501 9068 9205
-12717 2 2 0 6 1318 9222 1506
-12718 2 2 0 6 4232 7449 9261
-12719 2 2 0 6 715 716 719
-12720 2 2 0 6 734 736 735
-12721 2 2 0 6 958 960 959
-12722 2 2 0 6 961 976 962
-12723 2 2 0 6 1069 1071 1070
-12724 2 2 0 6 1340 1342 1343
-12725 2 2 0 6 1748 1772 1789
-12726 2 2 0 6 2118 2120 2131
-12727 2 2 0 6 1911 2194 1943
-12728 2 2 0 6 3419 3421 3430
-12729 2 2 0 6 2166 2168 3485
-12730 2 2 0 6 3328 3594 3595
-12731 2 2 0 6 3762 4217 4216
-12732 2 2 0 6 2796 2797 9273
-12733 2 2 0 6 2107 5938 4074
-12734 2 2 0 6 6225 6224 7031
-12735 2 2 0 6 8192 8194 8195
-12736 2 2 0 6 1220 1198 8721
-12737 2 2 0 6 974 5608 9203
-12738 2 2 0 6 1181 1192 1191
-12739 2 2 0 6 1213 1228 1214
-12740 2 2 0 6 1529 1531 1530
-12741 2 2 0 6 2799 2801 2800
-12742 2 2 0 6 2500 2501 2859
-12743 2 2 0 6 2677 3193 2893
-12744 2 2 0 6 3584 3586 3585
-12745 2 2 0 6 3426 3994 3427
-12746 2 2 0 6 4235 4237 4236
-12747 2 2 0 6 4645 5521 5158
-12748 2 2 0 6 5651 5653 5652
-12749 2 2 0 6 4872 6275 6276
-12750 2 2 0 6 6180 7190 7019
-12751 2 2 0 6 7600 7602 7601
-12752 2 2 0 6 1417 8710 1497
-12753 2 2 0 6 601 603 8987
-12754 2 2 0 6 4085 5061 9219
-12755 2 2 0 6 6682 9603 7587
-12756 2 2 0 6 2091 9634 8460
-12757 2 2 0 6 765 769 766
-12758 2 2 0 6 974 975 981
-12759 2 2 0 6 1641 1643 1644
-12760 2 2 0 6 1617 4416 1756
-12761 2 2 0 6 4083 5061 4085
-12762 2 2 0 6 4930 4932 5261
-12763 2 2 0 6 4114 5747 6073
-12764 2 2 0 6 5093 6695 6696
-12765 2 2 0 6 7286 7288 7289
-12766 2 2 0 6 2286 9297 8648
-12767 2 2 0 6 946 948 947
-12768 2 2 0 6 1621 1620 1622
-12769 2 2 0 6 3167 3168 3169
-12770 2 2 0 6 3427 3429 3428
-12771 2 2 0 6 3302 3894 3619
-12772 2 2 0 6 1107 1109 9459
-12773 2 2 0 6 4810 4811 4812
-12774 2 2 0 6 4930 4931 4932
-12775 2 2 0 6 3912 5544 4734
-12776 2 2 0 6 5435 5998 7589
-12777 2 2 0 6 3730 8524 8762
-12778 2 2 0 6 3422 8821 8822
-12779 2 2 0 6 3895 4585 8835
-12780 2 2 0 6 6486 8949 6490
-12781 2 2 0 6 5543 9097 7603
-12782 2 2 0 6 3286 9111 3289
-12783 2 2 0 6 2781 9439 3633
-12784 2 2 0 6 6381 9076 9580
-12785 2 2 0 6 582 8297 9608
-12786 2 2 0 6 1788 1911 1824
-12787 2 2 0 6 2148 2347 2348
-12788 2 2 0 6 2749 2751 2750
-12789 2 2 0 6 3411 3423 3424
-12790 2 2 0 6 3915 5773 4731
-12791 2 2 0 6 6021 6022 6222
-12792 2 2 0 6 5461 6349 6466
-12793 2 2 0 6 3715 5940 6634
-12794 2 2 0 6 663 9070 9118
-12795 2 2 0 6 3197 9119 3735
-12796 2 2 0 6 1818 9229 1823
-12797 2 2 0 6 6680 9186 9603
-12798 2 2 0 6 5504 7994 10094
-12799 2 2 0 6 6706 11203 11213
-12800 2 2 0 6 1164 1181 1180
-12801 2 2 0 6 2634 3000 8636
-12802 2 2 0 6 1621 1622 1623
-12803 2 2 0 6 2348 2350 2349
-12804 2 2 0 6 2536 2538 2537
-12805 2 2 0 6 2835 3115 3063
-12806 2 2 0 6 2682 3198 3197
-12807 2 2 0 6 2784 3473 3474
-12808 2 2 0 6 3591 3660 3661
-12809 2 2 0 6 5420 5451 5438
-12810 2 2 0 6 4822 5302 5497
-12811 2 2 0 6 5823 5862 5824
-12812 2 2 0 6 5834 5888 5887
-12813 2 2 0 6 5400 5401 6035
-12814 2 2 0 6 5450 6649 6650
-12815 2 2 0 6 6730 6837 6838
-12816 2 2 0 6 6465 7822 7823
-12817 2 2 0 6 4397 8734 4891
-12818 2 2 0 6 1536 1802 9204
-12819 2 2 0 6 2900 9361 9627
-12820 2 2 0 6 681 683 682
-12821 2 2 0 6 762 764 771
-12822 2 2 0 6 1062 1061 1063
-12823 2 2 0 6 1708 1709 1710
-12824 2 2 0 6 4397 4470 4471
-12825 2 2 0 6 2090 4983 2092
-12826 2 2 0 6 2974 9431 3355
-12827 2 2 0 6 4414 5106 5107
-12828 2 2 0 6 6278 7106 6279
-12829 2 2 0 6 451 7877 7878
-12830 2 2 0 6 7891 7906 7893
-12831 2 2 0 6 4281 4601 8785
-12832 2 2 0 6 1104 1105 1137
-12833 2 2 0 6 2738 2739 2987
-12834 2 2 0 6 2966 3017 3016
-12835 2 2 0 6 4600 6034 5910
-12836 2 2 0 6 5155 6134 6792
-12837 2 2 0 6 15 16 7237
-12838 2 2 0 6 3062 9847 9449
-12839 2 2 0 6 600 602 601
-12840 2 2 0 6 657 3501 3500
-12841 2 2 0 6 761 763 762
-12842 2 2 0 6 2943 2944 2945
-12843 2 2 0 6 3159 4209 4205
-12844 2 2 0 6 3448 4708 3449
-12845 2 2 0 6 2237 2514 8996
-12846 2 2 0 6 5567 5569 5570
-12847 2 2 0 6 5583 5585 5584
-12848 2 2 0 6 5733 6218 5734
-12849 2 2 0 6 6486 6490 6488
-12850 2 2 0 6 5531 6628 5929
-12851 2 2 0 6 5305 7163 6588
-12852 2 2 0 6 7320 7390 7328
-12853 2 2 0 6 5161 6848 7708
-12854 2 2 0 6 2228 8997 2499
-12855 2 2 0 6 2071 9127 2072
-12856 2 2 0 6 1678 9134 2386
-12857 2 2 0 6 1691 9454 4110
-12858 2 2 0 6 2928 5678 9515
-12859 2 2 0 6 582 583 584
-12860 2 2 0 6 624 626 627
-12861 2 2 0 6 1131 1143 1132
-12862 2 2 0 6 1639 1688 1687
-12863 2 2 0 6 1744 1746 1748
-12864 2 2 0 6 1722 1798 1721
-12865 2 2 0 6 2003 2004 2005
-12866 2 2 0 6 1272 3389 1274
-12867 2 2 0 6 3537 3598 3597
-12868 2 2 0 6 2377 3645 2379
-12869 2 2 0 6 4085 9219 4087
-12870 2 2 0 6 4502 4839 4838
-12871 2 2 0 6 4935 4937 4936
-12872 2 2 0 6 4758 5360 5361
-12873 2 2 0 6 6016 6729 6730
-12874 2 2 0 6 7790 7795 7792
-12875 2 2 0 6 3044 8013 3047
-12876 2 2 0 6 4823 8231 5495
-12877 2 2 0 6 5690 9622 6577
-12878 2 2 0 6 590 591 592
-12879 2 2 0 6 1873 1965 1966
-12880 2 2 0 6 2831 3051 2833
-12881 2 2 0 6 2861 2862 3113
-12882 2 2 0 6 3793 3795 3797
-12883 2 2 0 6 3952 8645 4282
-12884 2 2 0 6 1602 1603 3918
-12885 2 2 0 6 3995 4861 4862
-12886 2 2 0 6 4485 4993 5007
-12887 2 2 0 6 3747 5067 5069
-12888 2 2 0 6 4730 4731 6192
-12889 2 2 0 6 1777 10921 10895
-12890 2 2 0 6 597 598 599
-12891 2 2 0 6 1652 1660 5626
-12892 2 2 0 6 5548 5689 5549
-12893 2 2 0 6 5267 5268 6190
-12894 2 2 0 6 3362 6629 6630
-12895 2 2 0 6 6280 6281 7232
-12896 2 2 0 6 622 624 623
-12897 2 2 0 6 659 661 660
-12898 2 2 0 6 1073 1075 1074
-12899 2 2 0 6 1704 1705 1706
-12900 2 2 0 6 2040 2041 2042
-12901 2 2 0 6 1976 2679 2680
-12902 2 2 0 6 2609 2610 2811
-12903 2 2 0 6 2607 2609 2900
-12904 2 2 0 6 2654 2655 3037
-12905 2 2 0 6 2993 4799 3842
-12906 2 2 0 6 5613 5615 9283
-12907 2 2 0 6 5888 5890 5889
-12908 2 2 0 6 6219 6439 6438
-12909 2 2 0 6 7294 7296 7295
-12910 2 2 0 6 2042 7950 4509
-12911 2 2 0 6 3313 8538 5509
-12912 2 2 0 6 1373 1375 8850
-12913 2 2 0 6 4798 5822 9228
-12914 2 2 0 6 1481 1484 9248
-12915 2 2 0 6 2892 3553 3195
-12916 2 2 0 6 736 738 737
-12917 2 2 0 6 749 751 750
-12918 2 2 0 6 1731 1732 1733
-12919 2 2 0 6 2063 2066 2069
-12920 2 2 0 6 3411 3422 3423
-12921 2 2 0 6 1798 4907 1721
-12922 2 2 0 6 1174 8827 1200
-12923 2 2 0 6 4483 8846 8845
-12924 2 2 0 6 837 838 839
-12925 2 2 0 6 1128 1138 1129
-12926 2 2 0 6 1650 1651 1649
-12927 2 2 0 6 2226 2370 2371
-12928 2 2 0 6 2337 2338 2481
-12929 2 2 0 6 1926 3052 2244
-12930 2 2 0 6 8905 9356 9105
-12931 2 2 0 6 6425 6424 9642
-12932 2 2 0 6 941 10509 10405
-12933 2 2 0 6 3706 10715 10275
-12934 2 2 0 6 2681 3197 3560
-12935 2 2 0 6 3954 9670 4871
-12936 2 2 0 6 7263 9772 10457
-12937 2 2 0 6 3901 3902 3903
-12938 2 2 0 6 3613 5548 5547
-12939 2 2 0 6 5647 5649 5650
-12940 2 2 0 6 5556 5702 5750
-12941 2 2 0 6 5100 6070 6054
-12942 2 2 0 6 3713 6616 5001
-12943 2 2 0 6 5598 5830 7770
-12944 2 2 0 6 7893 7906 7907
-12945 2 2 0 6 1930 6494 8273
-12946 2 2 0 6 6449 9984 8245
-12947 2 2 0 6 7817 9988 10116
-12948 2 2 0 6 1126 1128 1127
-12949 2 2 0 6 708 1179 712
-12950 2 2 0 6 1248 1250 1251
-12951 2 2 0 6 5101 9087 6065
-12952 2 2 0 6 2849 3068 3309
-12953 2 2 0 6 3591 3661 3712
-12954 2 2 0 6 3727 3729 3728
-12955 2 2 0 6 3735 5068 5067
-12956 2 2 0 6 1625 5510 1725
-12957 2 2 0 6 5139 7746 6799
-12958 2 2 0 6 3670 4540 9242
-12959 2 2 0 6 4606 5764 9553
-12960 2 2 0 6 5807 6694 9611
-12961 2 2 0 6 5528 9645 5645
-12962 2 2 0 6 8177 9876 8180
-12963 2 2 0 6 1057 1059 1058
-12964 2 2 0 6 1351 1353 1352
-12965 2 2 0 6 1633 1634 1639
-12966 2 2 0 6 1549 1675 9326
-12967 2 2 0 6 2011 2012 2013
-12968 2 2 0 6 2365 2457 2366
-12969 2 2 0 6 3437 3439 3438
-12970 2 2 0 6 5663 5665 5664
-12971 2 2 0 6 5237 7084 5238
-12972 2 2 0 6 698 699 702
-12973 2 2 0 6 806 809 808
-12974 2 2 0 6 1532 1533 1536
-12975 2 2 0 6 1622 1624 1623
-12976 2 2 0 6 3197 3735 3560
-12977 2 2 0 6 4481 4482 4483
-12978 2 2 0 6 4069 4898 4897
-12979 2 2 0 6 683 4449 9179
-12980 2 2 0 6 4731 6194 6192
-12981 2 2 0 6 5304 6551 6550
-12982 2 2 0 6 6680 6682 6681
-12983 2 2 0 6 3908 9237 9236
-12984 2 2 0 6 788 794 793
-12985 2 2 0 6 3594 3607 3595
-12986 2 2 0 6 1544 8796 2586
-12987 2 2 0 6 2190 2365 2191
-12988 2 2 0 6 1823 2443 1944
-12989 2 2 0 6 3577 3808 4036
-12990 2 2 0 6 3621 4177 4176
-12991 2 2 0 6 3297 4716 3618
-12992 2 2 0 6 3918 4742 3919
-12993 2 2 0 6 3351 4032 4913
-12994 2 2 0 6 4862 5419 5420
-12995 2 2 0 6 2452 2454 8811
-12996 2 2 0 6 627 628 9072
-12997 2 2 0 6 8968 8969 9331
-12998 2 2 0 6 1526 1527 1528
-12999 2 2 0 6 1624 1626 1625
-13000 2 2 0 6 4076 5056 5055
-13001 2 2 0 6 3661 9574 3713
-13002 2 2 0 6 4857 6231 6233
-13003 2 2 0 6 6236 6238 7070
-13004 2 2 0 6 4013 8075 5374
-13005 2 2 0 6 1290 9221 1318
-13006 2 2 0 6 3691 9293 8980
-13007 2 2 0 6 3767 4126 9585
-13008 2 2 0 6 1019 9586 1030
-13009 2 2 0 6 2768 2913 9710
-13010 2 2 0 6 942 944 943
-13011 2 2 0 6 2564 2916 2917
-13012 2 2 0 6 3165 3168 3167
-13013 2 2 0 6 3618 4716 4717
-13014 2 2 0 6 3818 4893 4225
-13015 2 2 0 6 5229 6419 6420
-13016 2 2 0 6 1199 8919 3480
-13017 2 2 0 6 8638 10720 10730
-13018 2 2 0 6 1582 8396 1585
-13019 2 2 0 6 838 840 839
-13020 2 2 0 6 1405 1406 1403
-13021 2 2 0 6 1691 1692 1686
-13022 2 2 0 6 1891 1892 1893
-13023 2 2 0 6 2041 2043 2042
-13024 2 2 0 6 2564 2565 2916
-13025 2 2 0 6 2219 2955 2222
-13026 2 2 0 6 3423 3425 3424
-13027 2 2 0 6 1654 3616 1656
-13028 2 2 0 6 5423 5424 5425
-13029 2 2 0 6 4909 4910 5578
-13030 2 2 0 6 1751 5595 1786
-13031 2 2 0 6 5787 6325 5788
-13032 2 2 0 6 2912 8406 3346
-13033 2 2 0 6 3463 9130 8720
-13034 2 2 0 6 2308 2500 9133
-13035 2 2 0 6 3402 9314 3406
-13036 2 2 0 6 8185 8653 10228
-13037 2 2 0 6 4661 5109 5129
-13038 2 2 0 6 4328 4671 5481
-13039 2 2 0 6 5214 7072 6377
-13040 2 2 0 6 3547 4344 8315
-13041 2 2 0 6 1504 9022 8815
-13042 2 2 0 6 4149 5644 9334
-13043 2 2 0 6 6103 11046 11036
-13044 2 2 0 6 658 659 660
-13045 2 2 0 6 1894 2347 2148
-13046 2 2 0 6 2507 2668 2667
-13047 2 2 0 6 3278 3280 3281
-13048 2 2 0 6 3608 3609 3622
-13049 2 2 0 6 3445 3984 3974
-13050 2 2 0 6 3761 3762 4216
-13051 2 2 0 6 5466 5468 5467
-13052 2 2 0 6 6756 6770 6769
-13053 2 2 0 6 7043 7044 7045
-13054 2 2 0 6 1237 8671 1253
-13055 2 2 0 6 4022 4947 9034
-13056 2 2 0 6 6020 9073 9072
-13057 2 2 0 6 608 610 611
-13058 2 2 0 6 1102 1103 1104
-13059 2 2 0 6 3426 3427 3425
-13060 2 2 0 6 3017 3020 8691
-13061 2 2 0 6 4964 4646 4965
-13062 2 2 0 6 3405 8821 3422
-13063 2 2 0 6 1413 9241 4170
-13064 2 2 0 6 584 585 586
-13065 2 2 0 6 1158 1185 1184
-13066 2 2 0 6 1278 1354 1288
-13067 2 2 0 6 1258 1525 1316
-13068 2 2 0 6 2043 2045 2046
-13069 2 2 0 6 1087 3382 8754
-13070 2 2 0 6 2601 2724 2723
-13071 2 2 0 6 3803 4263 4264
-13072 2 2 0 6 1809 4502 3711
-13073 2 2 0 6 4463 4715 4714
-13074 2 2 0 6 4303 4304 5300
-13075 2 2 0 6 1112 8856 1189
-13076 2 2 0 6 3973 5633 4854
-13077 2 2 0 6 4903 5741 5740
-13078 2 2 0 6 5327 7356 7354
-13079 2 2 0 6 5929 8589 5930
-13080 2 2 0 6 5075 7251 9330
-13081 2 2 0 6 6627 10559 10487
-13082 2 2 0 6 922 925 924
-13083 2 2 0 6 1887 1888 1889
-13084 2 2 0 6 2224 2225 2226
-13085 2 2 0 6 2915 3236 3494
-13086 2 2 0 6 3200 3202 4072
-13087 2 2 0 6 4488 5813 4648
-13088 2 2 0 6 3170 5940 3715
-13089 2 2 0 6 7308 7309 7307
-13090 2 2 0 6 630 8773 632
-13091 2 2 0 6 2905 9091 3210
-13092 2 2 0 6 1216 1225 9483
-13093 2 2 0 6 210 211 449
-13094 2 2 0 6 700 701 704
-13095 2 2 0 6 1645 1648 1647
-13096 2 2 0 6 1536 1537 1801
-13097 2 2 0 6 2454 2510 2511
-13098 2 2 0 6 2501 2942 2860
-13099 2 2 0 6 3157 3158 3928
-13100 2 2 0 6 5329 8897 7815
-13101 2 2 0 6 4518 5871 5886
-13102 2 2 0 6 2212 8667 9384
-13103 2 2 0 6 6350 7518 6599
-13104 2 2 0 6 6584 8309 8310
-13105 2 2 0 6 4735 7159 8729
-13106 2 2 0 6 2835 9499 3115
-13107 2 2 0 6 8380 10148 9161
-13108 2 2 0 6 1623 1625 1725
-13109 2 2 0 6 2120 2121 2122
-13110 2 2 0 6 2965 3016 3298
-13111 2 2 0 6 4068 4896 9293
-13112 2 2 0 6 3178 4044 3742
-13113 2 2 0 6 3300 4144 3307
-13114 2 2 0 6 3622 4174 4175
-13115 2 2 0 6 5797 5808 5807
-13116 2 2 0 6 5134 6343 6344
-13117 2 2 0 6 3754 8480 8479
-13118 2 2 0 6 5467 8978 6207
-13119 2 2 0 6 786 1047 1046
-13120 2 2 0 6 1801 1895 1802
-13121 2 2 0 6 2648 2677 2649
-13122 2 2 0 6 2558 2789 2790
-13123 2 2 0 6 3031 3161 3032
-13124 2 2 0 6 3546 3550 3548
-13125 2 2 0 6 5438 5452 8067
-13126 2 2 0 6 3676 3993 8662
-13127 2 2 0 6 905 906 9840
-13128 2 2 0 6 5957 9346 9293
-13129 2 2 0 6 2093 2097 9634
-13130 2 2 0 6 2266 5594 9067
-13131 2 2 0 6 3174 3175 3269
-13132 2 2 0 6 4082 4083 4084
-13133 2 2 0 6 1636 1638 5618
-13134 2 2 0 6 6458 6460 6461
-13135 2 2 0 6 5291 7360 5292
-13136 2 2 0 6 1122 1224 9257
-13137 2 2 0 6 5851 6592 9527
-13138 2 2 0 6 1971 10964 10941
-13139 2 2 0 6 631 632 633
-13140 2 2 0 6 769 775 772
-13141 2 2 0 6 2055 2058 2057
-13142 2 2 0 6 1894 2147 1893
-13143 2 2 0 6 2438 2440 2439
-13144 2 2 0 6 2530 2532 2531
-13145 2 2 0 6 3504 3516 3515
-13146 2 2 0 6 4496 4498 4497
-13147 2 2 0 6 4204 5093 4586
-13148 2 2 0 6 4830 5590 5334
-13149 2 2 0 6 3223 8983 3818
-13150 2 2 0 6 4538 10495 10608
-13151 2 2 0 6 1786 8909 1883
-13152 2 2 0 6 1615 1616 1617
-13153 2 2 0 6 1549 1674 1675
-13154 2 2 0 6 1895 1982 1896
-13155 2 2 0 6 2342 2570 2516
-13156 2 2 0 6 2030 3654 2034
-13157 2 2 0 6 3894 4583 3895
-13158 2 2 0 6 4216 5104 4597
-13159 2 2 0 6 2218 2221 8993
-13160 2 2 0 6 685 9179 688
-13161 2 2 0 6 5316 9018 9996
-13162 2 2 0 6 6740 10138 9756
-13163 2 2 0 6 2035 2036 2037
-13164 2 2 0 6 1984 2935 2240
-13165 2 2 0 6 3778 3779 3780
-13166 2 2 0 6 5046 4995 5949
-13167 2 2 0 6 5453 6437 6389
-13168 2 2 0 6 6270 7597 6352
-13169 2 2 0 6 9 10 11201
-13170 2 2 0 6 1055 1057 1056
-13171 2 2 0 6 1271 1304 1305
-13172 2 2 0 6 1631 1632 1633
-13173 2 2 0 6 1819 1901 1902
-13174 2 2 0 6 3661 3713 3712
-13175 2 2 0 6 4539 4995 4540
-13176 2 2 0 6 5698 5792 5793
-13177 2 2 0 6 4459 4499 6520
-13178 2 2 0 6 5849 7491 7519
-13179 2 2 0 6 728 733 8697
-13180 2 2 0 6 862 861 863
-13181 2 2 0 6 1801 1897 1895
-13182 2 2 0 6 2948 3327 3326
-13183 2 2 0 6 5082 5083 5084
-13184 2 2 0 6 3369 5004 5529
-13185 2 2 0 6 5228 5229 6186
-13186 2 2 0 6 5295 6530 7077
-13187 2 2 0 6 5702 7661 7662
-13188 2 2 0 6 4092 4887 9146
-13189 2 2 0 6 1199 1221 8919
-13190 2 2 0 6 4219 9344 5781
-13191 2 2 0 6 3568 9202 9695
-13192 2 2 0 6 3898 4279 4419
-13193 2 2 0 6 4011 4633 4634
-13194 2 2 0 6 4140 4704 4705
-13195 2 2 0 6 2497 3492 5749
-13196 2 2 0 6 5680 5819 9555
-13197 2 2 0 6 1644 1645 1646
-13198 2 2 0 6 3017 8691 3016
-13199 2 2 0 6 2142 2143 2144
-13200 2 2 0 6 3357 3958 3961
-13201 2 2 0 6 3595 3608 4009
-13202 2 2 0 6 3622 4022 4174
-13203 2 2 0 6 4979 6426 5729
-13204 2 2 0 6 6445 6446 6447
-13205 2 2 0 6 6738 6795 7485
-13206 2 2 0 6 3387 9035 8609
-13207 2 2 0 6 3305 9726 3306
-13208 2 2 0 6 2193 2503 2257
-13209 2 2 0 6 661 3748 3753
-13210 2 2 0 6 3604 3756 3755
-13211 2 2 0 6 4904 6268 8029
-13212 2 2 0 6 2818 8663 3028
-13213 2 2 0 6 4856 5541 5540
-13214 2 2 0 6 4705 4706 5669
-13215 2 2 0 6 5461 6466 6467
-13216 2 2 0 6 6166 6991 6992
-13217 2 2 0 6 6623 6624 8201
-13218 2 2 0 6 2944 4920 8860
-13219 2 2 0 6 3613 8915 5548
-13220 2 2 0 6 1116 8953 3493
-13221 2 2 0 6 5594 9933 9684
-13222 2 2 0 6 5694 9947 7464
-13223 2 2 0 6 1060 1059 1061
-13224 2 2 0 6 1541 2954 1543
-13225 2 2 0 6 3629 4190 4180
-13226 2 2 0 6 4409 8816 9465
-13227 2 2 0 6 4566 6009 6008
-13228 2 2 0 6 4939 8068 8071
-13229 2 2 0 6 3479 8788 8787
-13230 2 2 0 6 2856 3992 8995
-13231 2 2 0 6 7804 9138 9463
-13232 2 2 0 6 794 796 795
-13233 2 2 0 6 978 985 984
-13234 2 2 0 6 1714 1717 1718
-13235 2 2 0 6 1572 1726 1577
-13236 2 2 0 6 2715 2830 2716
-13237 2 2 0 6 3588 3591 3590
-13238 2 2 0 6 3503 3761 3504
-13239 2 2 0 6 3550 3914 3913
-13240 2 2 0 6 3900 3901 4724
-13241 2 2 0 6 4037 4806 4804
-13242 2 2 0 6 5153 8290 8083
-13243 2 2 0 6 4035 6322 5010
-13244 2 2 0 6 6335 6425 7459
-13245 2 2 0 6 2818 2820 8663
-13246 2 2 0 6 4385 4387 8853
-13247 2 2 0 6 4193 9187 5502
-13248 2 2 0 6 6344 9738 7526
-13249 2 2 0 6 612 614 615
-13250 2 2 0 6 809 817 816
-13251 2 2 0 6 1141 5725 9415
-13252 2 2 0 6 1053 1055 1054
-13253 2 2 0 6 1547 1674 1549
-13254 2 2 0 6 3019 3021 3020
-13255 2 2 0 6 4324 4070 4876
-13256 2 2 0 6 4559 5519 5518
-13257 2 2 0 6 5558 8806 8807
-13258 2 2 0 6 603 604 605
-13259 2 2 0 6 1676 1678 1677
-13260 2 2 0 6 2421 2424 2423
-13261 2 2 0 6 2803 2862 2861
-13262 2 2 0 6 2942 2944 2943
-13263 2 2 0 6 3192 4053 4052
-13264 2 2 0 6 3906 4422 4421
-13265 2 2 0 6 4187 4049 4476
-13266 2 2 0 6 5080 5083 5082
-13267 2 2 0 6 5416 5864 5473
-13268 2 2 0 6 5013 5873 5872
-13269 2 2 0 6 5805 6150 6151
-13270 2 2 0 6 3735 9119 5068
-13271 2 2 0 6 5594 9684 9067
-13272 2 2 0 6 1618 1620 1621
-13273 2 2 0 6 3686 3749 4169
-13274 2 2 0 6 5488 5489 5490
-13275 2 2 0 6 4025 4979 5592
-13276 2 2 0 6 1242 1244 8886
-13277 2 2 0 6 2831 9002 3051
-13278 2 2 0 6 6369 9770 7533
-13279 2 2 0 6 1047 1049 1048
-13280 2 2 0 6 5054 8782 9058
-13281 2 2 0 6 2504 2855 2853
-13282 2 2 0 6 2897 2922 8841
-13283 2 2 0 6 4725 5219 5220
-13284 2 2 0 6 4852 4875 5329
-13285 2 2 0 6 5076 6655 5077
-13286 2 2 0 6 7309 7318 7319
-13287 2 2 0 6 1118 8951 1120
-13288 2 2 0 6 1751 9388 5595
-13289 2 2 0 6 5437 7231 9925
-13290 2 2 0 6 4179 10000 9946
-13291 2 2 0 6 602 604 603
-13292 2 2 0 6 2945 2946 2947
-13293 2 2 0 6 3163 3165 3166
-13294 2 2 0 6 3292 3728 3908
-13295 2 2 0 6 3735 5067 3747
-13296 2 2 0 6 5585 5587 5586
-13297 2 2 0 6 5624 7087 7088
-13298 2 2 0 6 4888 4889 7600
-13299 2 2 0 6 4616 7995 5632
-13300 2 2 0 6 2823 2821 8714
-13301 2 2 0 6 1132 9143 9387
-13302 2 2 0 6 2760 9285 2867
-13303 2 2 0 6 6648 9571 8716
-13304 2 2 0 6 855 854 856
-13305 2 2 0 6 2436 2438 2439
-13306 2 2 0 6 3620 3621 4176
-13307 2 2 0 6 655 3500 9635
-13308 2 2 0 6 1550 5611 1552
-13309 2 2 0 6 5591 5695 5696
-13310 2 2 0 6 4981 5072 5934
-13311 2 2 0 6 5577 5961 5576
-13312 2 2 0 6 6387 8135 6495
-13313 2 2 0 6 2855 3192 3191
-13314 2 2 0 6 1661 1667 3722
-13315 2 2 0 6 3543 4466 3545
-13316 2 2 0 6 1962 5835 5359
-13317 2 2 0 6 5653 5655 5654
-13318 2 2 0 6 5963 6554 6553
-13319 2 2 0 6 4947 6478 9034
-13320 2 2 0 6 4920 9356 9704
-13321 2 2 0 6 1969 3532 2512
-13322 2 2 0 6 2663 2875 2874
-13323 2 2 0 6 2957 2959 2958
-13324 2 2 0 6 3423 3426 3425
-13325 2 2 0 6 3297 4718 4716
-13326 2 2 0 6 3914 3915 4730
-13327 2 2 0 6 5808 6115 6119
-13328 2 2 0 6 5356 8487 10290
-13329 2 2 0 6 6147 6148 6861
-13330 2 2 0 6 6268 7242 7243
-13331 2 2 0 6 381 382 7771
-13332 2 2 0 6 5476 8530 5795
-13333 2 2 0 6 5475 9213 5477
-13334 2 2 0 6 6620 10693 10690
-13335 2 2 0 6 585 587 586
-13336 2 2 0 6 800 806 805
-13337 2 2 0 6 3431 3433 3434
-13338 2 2 0 6 3721 4198 4548
-13339 2 2 0 6 4157 4836 4274
-13340 2 2 0 6 4163 4164 5013
-13341 2 2 0 6 4953 4954 5272
-13342 2 2 0 6 4632 5431 5147
-13343 2 2 0 6 7045 7046 7048
-13344 2 2 0 6 5728 7258 7138
-13345 2 2 0 6 7305 7306 7307
-13346 2 2 0 6 1053 1207 1055
-13347 2 2 0 6 2145 2146 2337
-13348 2 2 0 6 3156 3719 4165
-13349 2 2 0 6 6711 6710 6713
-13350 2 2 0 6 1236 8671 1237
-13351 2 2 0 6 7293 7317 9777
-13352 2 2 0 6 5866 10380 7713
-13353 2 2 0 6 985 995 994
-13354 2 2 0 6 2436 2437 2438
-13355 2 2 0 6 2791 2792 2790
-13356 2 2 0 6 2692 2934 2772
-13357 2 2 0 6 8004 9173 8318
-13358 2 2 0 6 4479 4480 4481
-13359 2 2 0 6 5046 5625 4540
-13360 2 2 0 6 4059 5717 5025
-13361 2 2 0 6 5034 5033 5834
-13362 2 2 0 6 7048 7049 9232
-13363 2 2 0 6 3613 9332 8915
-13364 2 2 0 6 3200 4072 9120
-13365 2 2 0 6 1833 9233 1926
-13366 2 2 0 6 5667 10277 8274
-13367 2 2 0 6 1599 1601 1602
-13368 2 2 0 6 2214 2376 2375
-13369 2 2 0 6 3571 3897 3572
-13370 2 2 0 6 4620 4621 4622
-13371 2 2 0 6 3926 4780 3927
-13372 2 2 0 6 4552 5418 6024
-13373 2 2 0 6 5255 7137 7136
-13374 2 2 0 6 5371 8111 8110
-13375 2 2 0 6 1479 1482 1481
-13376 2 2 0 6 1644 1646 3552
-13377 2 2 0 6 3719 4189 4188
-13378 2 2 0 6 3670 4539 4540
-13379 2 2 0 6 5086 5291 5290
-13380 2 2 0 6 5226 6988 7264
-13381 2 2 0 6 7787 7789 7793
-13382 2 2 0 6 2466 2642 8712
-13383 2 2 0 6 3619 3895 8835
-13384 2 2 0 6 749 1281 9170
-13385 2 2 0 6 768 774 773
-13386 2 2 0 6 1185 1203 1201
-13387 2 2 0 6 2039 2040 2038
-13388 2 2 0 6 3333 3335 3336
-13389 2 2 0 6 4474 4489 4475
-13390 2 2 0 6 3888 4700 4269
-13391 2 2 0 6 4463 4714 4462
-13392 2 2 0 6 3321 5432 5048
-13393 2 2 0 6 5007 5875 5876
-13394 2 2 0 6 8586 8587 8588
-13395 2 2 0 6 8587 8657 8588
-13396 2 2 0 6 1697 1698 1696
-13397 2 2 0 6 4062 4518 4061
-13398 2 2 0 6 1378 9163 8850
-13399 2 2 0 6 5024 9268 5968
-13400 2 2 0 6 869 9343 8893
-13401 2 2 0 6 1837 1839 3536
-13402 2 2 0 6 669 670 668
-13403 2 2 0 6 744 745 746
-13404 2 2 0 6 828 832 836
-13405 2 2 0 6 1021 1032 1031
-13406 2 2 0 6 1530 1531 1532
-13407 2 2 0 6 1660 6521 5626
-13408 2 2 0 6 4153 4570 4155
-13409 2 2 0 6 4607 6107 6052
-13410 2 2 0 6 8503 9076 9077
-13411 2 2 0 6 3025 3029 9375
-13412 2 2 0 6 8262 8266 10545
-13413 2 2 0 6 690 691 692
-13414 2 2 0 6 840 842 841
-13415 2 2 0 6 2218 2220 2221
-13416 2 2 0 6 2685 3206 2895
-13417 2 2 0 6 3688 4892 4098
-13418 2 2 0 6 4718 6419 5229
-13419 2 2 0 6 5719 6624 6623
-13420 2 2 0 6 7293 7294 7295
-13421 2 2 0 6 7242 7443 7243
-13422 2 2 0 6 2450 8812 4442
-13423 2 2 0 6 5852 10239 8530
-13424 2 2 0 6 2237 2236 2514
-13425 2 2 0 6 2713 2715 2714
-13426 2 2 0 6 2527 2723 9215
-13427 2 2 0 6 5845 5846 6264
-13428 2 2 0 6 5621 9182 9982
-13429 2 2 0 6 3931 4291 8924
-13430 2 2 0 6 2606 9027 5558
-13431 2 2 0 6 1535 9205 9068
-13432 2 2 0 6 1411 9241 1413
-13433 2 2 0 6 1017 9286 1026
-13434 2 2 0 6 598 600 599
-13435 2 2 0 6 616 618 619
-13436 2 2 0 6 696 697 700
-13437 2 2 0 6 3165 3167 3166
-13438 2 2 0 6 5452 5451 5453
-13439 2 2 0 6 8948 9129 4918
-13440 2 2 0 6 779 783 782
-13441 2 2 0 6 847 848 849
-13442 2 2 0 6 846 1043 848
-13443 2 2 0 6 1475 1478 1477
-13444 2 2 0 6 1979 2342 2516
-13445 2 2 0 6 3327 3328 3326
-13446 2 2 0 6 3595 3607 3608
-13447 2 2 0 6 5774 5775 5776
-13448 2 2 0 6 4858 6234 6232
-13449 2 2 0 6 5787 7123 6325
-13450 2 2 0 6 3416 4564 9281
-13451 2 2 0 6 3870 8943 4803
-13452 2 2 0 6 1045 1539 1540
-13453 2 2 0 6 2009 2010 2011
-13454 2 2 0 6 2136 2149 2339
-13455 2 2 0 6 2948 3326 3325
-13456 2 2 0 6 5963 7810 6554
-13457 2 2 0 6 5509 8538 8536
-13458 2 2 0 6 6249 7126 8602
-13459 2 2 0 6 907 8889 908
-13460 2 2 0 6 2247 2460 8933
-13461 2 2 0 6 662 9201 665
-13462 2 2 0 6 3290 3292 9236
-13463 2 2 0 6 3562 9338 8708
-13464 2 2 0 6 1892 1894 1893
-13465 2 2 0 6 2048 5002 2049
-13466 2 2 0 6 4648 5813 6652
-13467 2 2 0 6 5272 5273 5274
-13468 2 2 0 6 5644 6227 7189
-13469 2 2 0 6 1550 9326 5611
-13470 2 2 0 6 3188 8084 3311
-13471 2 2 0 6 2371 2485 2486
-13472 2 2 0 6 2414 2466 3610
-13473 2 2 0 6 2392 2519 4033
-13474 2 2 0 6 5501 6097 6684
-13475 2 2 0 6 2434 2436 8433
-13476 2 2 0 6 1221 1287 8919
-13477 2 2 0 6 1210 8935 1186
-13478 2 2 0 6 2565 2566 9028
-13479 2 2 0 6 2481 2482 2654
-13480 2 2 0 6 2799 2800 2797
-13481 2 2 0 6 3062 3063 9575
-13482 2 2 0 6 1096 1146 1145
-13483 2 2 0 6 3009 3265 3011
-13484 2 2 0 6 4309 5303 5304
-13485 2 2 0 6 5202 5787 5786
-13486 2 2 0 6 5195 7010 7009
-13487 2 2 0 6 8168 8169 8170
-13488 2 2 0 6 5530 5532 9048
-13489 2 2 0 6 1000 1007 1006
-13490 2 2 0 6 2020 2021 2022
-13491 2 2 0 6 4217 4925 4926
-13492 2 2 0 6 5274 5273 5275
-13493 2 2 0 6 6527 6867 6868
-13494 2 2 0 6 5252 7153 6031
-13495 2 2 0 6 2786 8246 2787
-13496 2 2 0 6 1609 1610 9080
-13497 2 2 0 6 848 850 849
-13498 2 2 0 6 2681 2682 3197
-13499 2 2 0 6 5248 5337 6576
-13500 2 2 0 6 2584 8799 2689
-13501 2 2 0 6 2157 2925 9602
-13502 2 2 0 6 575 576 574
-13503 2 2 0 6 670 673 672
-13504 2 2 0 6 796 800 799
-13505 2 2 0 6 2688 2687 9335
-13506 2 2 0 6 2960 2959 2961
-13507 2 2 0 6 3048 3181 3050
-13508 2 2 0 6 744 746 3523
-13509 2 2 0 6 5727 7138 8844
-13510 2 2 0 6 3099 4744 4326
-13511 2 2 0 6 5655 5657 5656
-13512 2 2 0 6 7273 7274 7511
-13513 2 2 0 6 7815 8897 9419
-13514 2 2 0 6 1783 1805 9462
-13515 2 2 0 6 704 705 707
-13516 2 2 0 6 1651 1653 1652
-13517 2 2 0 6 1890 1892 1891
-13518 2 2 0 6 3441 3650 3649
-13519 2 2 0 6 3730 3731 3732
-13520 2 2 0 6 3576 4039 3578
-13521 2 2 0 6 3736 4059 4559
-13522 2 2 0 6 5342 6373 6375
-13523 2 2 0 6 5439 8508 8507
-13524 2 2 0 6 1548 1551 8615
-13525 2 2 0 6 5446 9005 6633
-13526 2 2 0 6 5849 7519 9272
-13527 2 2 0 6 4824 9925 5628
-13528 2 2 0 6 7613 9713 10161
-13529 2 2 0 6 842 843 841
-13530 2 2 0 6 940 941 942
-13531 2 2 0 6 3172 3695 3173
-13532 2 2 0 6 5019 5906 5020
-13533 2 2 0 6 2800 2801 8759
-13534 2 2 0 6 2463 9489 8688
-13535 2 2 0 6 3583 3585 9509
-13536 2 2 0 6 750 752 813
-13537 2 2 0 6 1612 1614 1613
-13538 2 2 0 6 1560 1750 1562
-13539 2 2 0 6 3562 8881 8714
-13540 2 2 0 6 2376 2377 2378
-13541 2 2 0 6 3550 3915 3914
-13542 2 2 0 6 4796 6242 4797
-13543 2 2 0 6 5444 9005 5446
-13544 2 2 0 6 1652 1653 1660
-13545 2 2 0 6 2101 2100 2116
-13546 2 2 0 6 3284 3285 3286
-13547 2 2 0 6 3703 3704 3705
-13548 2 2 0 6 3422 9315 3423
-13549 2 2 0 6 4039 4496 4040
-13550 2 2 0 6 4535 5795 8302
-13551 2 2 0 6 6133 8331 8334
-13552 2 2 0 6 2024 8727 2028
-13553 2 2 0 6 809 9224 818
-13554 2 2 0 6 7794 8916 8917
-13555 2 2 0 6 683 685 684
-13556 2 2 0 6 1015 1017 1026
-13557 2 2 0 6 600 1917 602
-13558 2 2 0 6 3023 3026 3025
-13559 2 2 0 6 6195 6196 7092
-13560 2 2 0 6 5951 7670 5972
-13561 2 2 0 6 1316 4020 9107
-13562 2 2 0 6 1405 9372 1408
-13563 2 2 0 6 1680 1682 1681
-13564 2 2 0 6 2511 2648 2647
-13565 2 2 0 6 3021 3023 3024
-13566 2 2 0 6 3686 3168 3749
-13567 2 2 0 6 1038 3342 4287
-13568 2 2 0 6 4064 4065 5028
-13569 2 2 0 6 7964 7966 7967
-13570 2 2 0 6 1960 8606 8607
-13571 2 2 0 6 4881 5849 9272
-13572 2 2 0 6 687 688 696
-13573 2 2 0 6 775 784 780
-13574 2 2 0 6 738 1308 768
-13575 2 2 0 6 1694 1697 1696
-13576 2 2 0 6 1288 1354 3620
-13577 2 2 0 6 2847 2848 3155
-13578 2 2 0 6 1046 8435 9209
-13579 2 2 0 6 964 969 968
-13580 2 2 0 6 2123 2128 2145
-13581 2 2 0 6 2390 2455 2400
-13582 2 2 0 6 2578 2747 2580
-13583 2 2 0 6 2642 2777 3059
-13584 2 2 0 6 4212 5098 4594
-13585 2 2 0 6 2637 9225 3646
-13586 2 2 0 6 1662 1664 1663
-13587 2 2 0 6 2656 3571 3570
-13588 2 2 0 6 2730 2732 2731
-13589 2 2 0 6 2146 3634 2338
-13590 2 2 0 6 3734 3901 3900
-13591 2 2 0 6 3879 8063 4605
-13592 2 2 0 6 4540 4995 5046
-13593 2 2 0 6 4268 6204 4288
-13594 2 2 0 6 2049 5002 9557
-13595 2 2 0 6 6101 9700 7024
-13596 2 2 0 6 5166 9743 6765
-13597 2 2 0 6 845 846 847
-13598 2 2 0 6 1001 1045 992
-13599 2 2 0 6 1841 1843 1935
-13600 2 2 0 6 2514 2515 2681
-13601 2 2 0 6 2574 3989 2576
-13602 2 2 0 6 4174 4969 4968
-13603 2 2 0 6 5291 7361 7360
-13604 2 2 0 6 1272 8879 3389
-13605 2 2 0 6 5687 8899 8898
-13606 2 2 0 6 2858 4392 9226
-13607 2 2 0 6 310 311 539
-13608 2 2 0 6 605 606 607
-13609 2 2 0 6 738 768 767
-13610 2 2 0 6 993 1001 992
-13611 2 2 0 6 1233 1268 1267
-13612 2 2 0 6 1678 1680 1679
-13613 2 2 0 6 2236 2515 2514
-13614 2 2 0 6 2840 2843 3102
-13615 2 2 0 6 2829 3149 3039
-13616 2 2 0 6 1907 3564 9368
-13617 2 2 0 6 3898 4278 4279
-13618 2 2 0 6 3306 4692 4183
-13619 2 2 0 6 4145 4741 4761
-13620 2 2 0 6 4873 5309 4874
-13621 2 2 0 6 4584 4583 6021
-13622 2 2 0 6 3748 9230 9231
-13623 2 2 0 6 620 622 623
-13624 2 2 0 6 1128 9151 1223
-13625 2 2 0 6 3594 9184 4955
-13626 2 2 0 6 5581 5583 5582
-13627 2 2 0 6 6861 6862 6863
-13628 2 2 0 6 3818 8983 4893
-13629 2 2 0 6 1368 1369 9158
-13630 2 2 0 6 2452 2453 2454
-13631 2 2 0 6 3103 3936 3935
-13632 2 2 0 6 3313 8758 8538
-13633 2 2 0 6 5067 5973 5069
-13634 2 2 0 6 5734 6218 6219
-13635 2 2 0 6 6415 6679 6678
-13636 2 2 0 6 5649 6825 5651
-13637 2 2 0 6 7786 8916 7794
-13638 2 2 0 6 1814 8986 9291
-13639 2 2 0 6 1675 1676 1677
-13640 2 2 0 6 734 3606 736
-13641 2 2 0 6 5659 5661 5660
-13642 2 2 0 6 6191 6499 6500
-13643 2 2 0 6 6397 7618 6399
-13644 2 2 0 6 3663 9436 4008
-13645 2 2 0 6 4571 8338 9376
-13646 2 2 0 6 6659 10925 10704
-13647 2 2 0 6 599 600 601
-13648 2 2 0 6 1675 1677 3551
-13649 2 2 0 6 5083 5085 5084
-13650 2 2 0 6 3997 5574 5576
-13651 2 2 0 6 5266 5609 5610
-13652 2 2 0 6 4381 4383 9052
-13653 2 2 0 6 2239 8598 8597
-13654 2 2 0 6 3378 4330 9393
-13655 2 2 0 6 4623 6740 9756
-13656 2 2 0 6 1647 1648 1649
-13657 2 2 0 6 1789 1872 1873
-13658 2 2 0 6 2113 2139 2138
-13659 2 2 0 6 2747 2749 2748
-13660 2 2 0 6 2965 2966 3016
-13661 2 2 0 6 962 9306 964
-13662 2 2 0 6 3532 4148 4066
-13663 2 2 0 6 4102 4396 4397
-13664 2 2 0 6 4470 4472 4471
-13665 2 2 0 6 2967 4991 3640
-13666 2 2 0 6 1927 2249 5535
-13667 2 2 0 6 4149 4769 5644
-13668 2 2 0 6 5554 5702 5556
-13669 2 2 0 6 7293 7295 7317
-13670 2 2 0 6 3513 9171 4037
-13671 2 2 0 6 2687 3069 9335
-13672 2 2 0 6 822 825 824
-13673 2 2 0 6 924 925 926
-13674 2 2 0 6 2148 2348 2349
-13675 2 2 0 6 2674 2880 2881
-13676 2 2 0 6 4174 4968 4175
-13677 2 2 0 6 3349 5388 5389
-13678 2 2 0 6 5582 5583 5584
-13679 2 2 0 6 1665 5699 1668
-13680 2 2 0 6 7041 7042 7043
-13681 2 2 0 6 5222 6266 9403
-13682 2 2 0 6 4344 9779 9780
-13683 2 2 0 6 1172 1173 1176
-13684 2 2 0 6 1471 1474 1473
-13685 2 2 0 6 1894 2148 2147
-13686 2 2 0 6 2955 2957 2956
-13687 2 2 0 6 637 3537 3597
-13688 2 2 0 6 981 5608 974
-13689 2 2 0 6 2688 9485 2691
-13690 2 2 0 6 4616 5171 6290
-13691 2 2 0 6 4618 6498 5182
-13692 2 2 0 6 8948 6431 9568
-13693 2 2 0 6 7039 8430 9177
-13694 2 2 0 6 5885 5970 9180
-13695 2 2 0 6 1331 2664 9347
-13696 2 2 0 6 948 949 950
-13697 2 2 0 6 2896 3164 3163
-13698 2 2 0 6 3895 4583 4584
-13699 2 2 0 6 5107 6060 6077
-13700 2 2 0 6 6344 6346 6345
-13701 2 2 0 6 6447 6832 6833
-13702 2 2 0 6 1244 1247 8886
-13703 2 2 0 6 5503 7135 8981
-13704 2 2 0 6 3992 8760 8995
-13705 2 2 0 6 8864 9583 8928
-13706 2 2 0 6 779 1025 783
-13707 2 2 0 6 4068 9293 3691
-13708 2 2 0 6 4472 4474 4473
-13709 2 2 0 6 2774 3034 4478
-13710 2 2 0 6 3722 4553 4554
-13711 2 2 0 6 4126 6000 9585
-13712 2 2 0 6 1325 6402 3924
-13713 2 2 0 6 4526 8066 4529
-13714 2 2 0 6 4862 5420 5438
-13715 2 2 0 6 4739 5503 8981
-13716 2 2 0 6 7180 7181 9957
-13717 2 2 0 6 694 695 698
-13718 2 2 0 6 1871 1963 1964
-13719 2 2 0 6 2455 2568 2567
-13720 2 2 0 6 2598 2872 4023
-13721 2 2 0 6 3529 5728 5727
-13722 2 2 0 6 1218 3506 9003
-13723 2 2 0 6 5734 6219 6438
-13724 2 2 0 6 3812 9316 4332
-13725 2 2 0 6 688 9179 9534
-13726 2 2 0 6 1309 9536 1493
-13727 2 2 0 6 5327 10046 7358
-13728 2 2 0 6 6596 10707 6597
-13729 2 2 0 6 2942 9105 4920
-13730 2 2 0 6 4286 5266 4769
-13731 2 2 0 6 4446 5691 5722
-13732 2 2 0 6 5072 6001 5934
-13733 2 2 0 6 2174 8921 4399
-13734 2 2 0 6 825 831 830
-13735 2 2 0 6 2061 2062 2063
-13736 2 2 0 6 3182 3185 3184
-13737 2 2 0 6 3885 3887 4267
-13738 2 2 0 6 3345 4286 4149
-13739 2 2 0 6 3903 3905 4722
-13740 2 2 0 6 3454 4987 4866
-13741 2 2 0 6 4747 9193 5301
-13742 2 2 0 6 4145 4761 9269
-13743 2 2 0 6 702 703 706
-13744 2 2 0 6 746 747 748
-13745 2 2 0 6 809 818 817
-13746 2 2 0 6 876 877 882
-13747 2 2 0 6 3833 4247 4663
-13748 2 2 0 6 5052 6005 5117
-13749 2 2 0 6 1008 5499 998
-13750 2 2 0 6 5065 9860 9765
-13751 2 2 0 6 4678 6039 6040
-13752 2 2 0 6 7038 7047 7040
-13753 2 2 0 6 2723 3225 8680
-13754 2 2 0 6 1239 8843 1263
-13755 2 2 0 6 306 307 530
-13756 2 2 0 6 852 854 853
-13757 2 2 0 6 1780 1782 1781
-13758 2 2 0 6 1511 1811 1765
-13759 2 2 0 6 1086 5559 1090
-13760 2 2 0 6 5273 5715 5275
-13761 2 2 0 6 1860 9196 1862
-13762 2 2 0 6 3438 3439 8803
-13763 2 2 0 6 1405 1404 9372
-13764 2 2 0 6 1274 9492 1278
-13765 2 2 0 6 783 788 787
-13766 2 2 0 6 844 846 845
-13767 2 2 0 6 1542 1543 1544
-13768 2 2 0 6 4306 5284 5316
-13769 2 2 0 6 5204 5206 5208
-13770 2 2 0 6 7046 7064 7049
-13771 2 2 0 6 5468 5466 9217
-13772 2 2 0 6 8517 9384 8667
-13773 2 2 0 6 1725 5708 9727
-13774 2 2 0 6 2972 3355 9953
-13775 2 2 0 6 859 861 860
-13776 2 2 0 6 938 941 940
-13777 2 2 0 6 1210 1188 1211
-13778 2 2 0 6 1651 1654 1653
-13779 2 2 0 6 1791 1821 1834
-13780 2 2 0 6 2845 3154 3150
-13781 2 2 0 6 3225 3845 3846
-13782 2 2 0 6 1602 3918 3919
-13783 2 2 0 6 4815 5318 8023
-13784 2 2 0 6 1491 1796 9008
-13785 2 2 0 6 3307 9269 3921
-13786 2 2 0 6 662 665 664
-13787 2 2 0 6 712 716 715
-13788 2 2 0 6 2515 2682 2681
-13789 2 2 0 6 2916 3295 2917
-13790 2 2 0 6 3113 3958 3357
-13791 2 2 0 6 766 772 4400
-13792 2 2 0 6 5294 6529 6528
-13793 2 2 0 6 4162 9992 4164
-13794 2 2 0 6 308 447 9139
-13795 2 2 0 6 3362 8556 9841
-13796 2 2 0 6 6026 11049 10816
-13797 2 2 0 6 831 877 876
-13798 2 2 0 6 2057 2059 2064
-13799 2 2 0 6 2570 2923 2922
-13800 2 2 0 6 6561 7158 7213
-13801 2 2 0 6 1617 9093 4416
-13802 2 2 0 6 5490 8536 8538
-13803 2 2 0 6 1639 9302 9307
-13804 2 2 0 6 7416 10685 10572
-13805 2 2 0 6 2058 2060 2059
-13806 2 2 0 6 2710 2713 2711
-13807 2 2 0 6 1187 3531 1330
-13808 2 2 0 6 743 3573 745
-13809 2 2 0 6 2855 4923 3192
-13810 2 2 0 6 6433 9309 6453
-13811 2 2 0 6 4462 5200 9693
-13812 2 2 0 6 987 999 998
-13813 2 2 0 6 2570 2922 2897
-13814 2 2 0 6 3732 3734 3900
-13815 2 2 0 6 2747 5631 2749
-13816 2 2 0 6 4578 5327 5324
-13817 2 2 0 6 2047 2048 2049
-13818 2 2 0 6 2053 2054 2055
-13819 2 2 0 6 1276 4046 9536
-13820 2 2 0 6 4354 9595 4355
-13821 2 2 0 6 5377 7549 5701
-13822 2 2 0 6 596 4453 598
-13823 2 2 0 6 2432 2434 8612
-13824 2 2 0 6 1879 9475 9474
-13825 2 2 0 6 5315 9952 9548
-13826 2 2 0 6 1168 1169 1170
-13827 2 2 0 6 3272 3275 3274
-13828 2 2 0 6 3619 3894 3895
-13829 2 2 0 6 4922 5399 5400
-13830 2 2 0 6 1532 1536 9204
-13831 2 2 0 6 4236 5709 9476
-13832 2 2 0 6 3610 8713 9565
-13833 2 2 0 6 4419 4464 5826
-13834 2 2 0 6 5072 6002 6001
-13835 2 2 0 6 1643 9117 1645
-13836 2 2 0 6 3036 4135 9154
-13837 2 2 0 6 3374 9349 5480
-13838 2 2 0 6 777 779 778
-13839 2 2 0 6 1931 2383 1933
-13840 2 2 0 6 1868 9368 2502
-13841 2 2 0 6 4367 4615 4616
-13842 2 2 0 6 4429 4961 4963
-13843 2 2 0 6 4307 5236 5305
-13844 2 2 0 6 2136 2339 5441
-13845 2 2 0 6 4993 5875 5007
-13846 2 2 0 6 2509 7716 8834
-13847 2 2 0 6 4919 5340 8948
-13848 2 2 0 6 4073 9467 5690
-13849 2 2 0 6 1712 1714 8804
-13850 2 2 0 6 2253 2527 2528
-13851 2 2 0 6 774 3630 777
-13852 2 2 0 6 3788 3789 3790
-13853 2 2 0 6 1754 1815 4455
-13854 2 2 0 6 4816 4818 5893
-13855 2 2 0 6 5775 6201 5776
-13856 2 2 0 6 2437 4427 9355
-13857 2 2 0 6 7042 7058 7044
-13858 2 2 0 6 3119 8910 6292
-13859 2 2 0 6 6314 7368 9378
-13860 2 2 0 6 1384 9576 9175
-13861 2 2 0 6 601 602 603
-13862 2 2 0 6 1768 1870 1871
-13863 2 2 0 6 4381 9052 4762
-13864 2 2 0 6 3185 3457 3186
-13865 2 2 0 6 2059 8908 2064
-13866 2 2 0 6 5011 5169 6610
-13867 2 2 0 6 1126 9151 1128
-13868 2 2 0 6 2741 8934 3507
-13869 2 2 0 6 6443 9288 9833
-13870 2 2 0 6 2893 3193 3721
-13871 2 2 0 6 4100 4101 4102
-13872 2 2 0 6 1126 4166 9151
-13873 2 2 0 6 3298 4269 4447
-13874 2 2 0 6 4269 4728 4447
-13875 2 2 0 6 3915 4731 4730
-13876 2 2 0 6 5364 5367 5366
-13877 2 2 0 6 3748 9231 4204
-13878 2 2 0 6 2045 2048 2047
-13879 2 2 0 6 2049 2051 2050
-13880 2 2 0 6 2453 2510 2454
-13881 2 2 0 6 4197 5018 5019
-13882 2 2 0 6 5832 6018 6019
-13883 2 2 0 6 6041 6051 6042
-13884 2 2 0 6 5794 6281 6280
-13885 2 2 0 6 673 11130 11141
-13886 2 2 0 6 1596 8138 10654
-13887 2 2 0 6 708 712 711
-13888 2 2 0 6 721 722 725
-13889 2 2 0 6 965 966 974
-13890 2 2 0 6 980 986 983
-13891 2 2 0 6 1717 1723 1718
-13892 2 2 0 6 2022 2023 2024
-13893 2 2 0 6 690 9352 8646
-13894 2 2 0 6 2987 2988 3792
-13895 2 2 0 6 7281 7282 7283
-13896 2 2 0 6 3874 8383 4795
-13897 2 2 0 6 4502 8533 4839
-13898 2 2 0 6 1927 5535 9223
-13899 2 2 0 6 331 332 9262
-13900 2 2 0 6 1750 9324 1562
-13901 2 2 0 6 6508 8491 9533
-13902 2 2 0 6 1428 9746 1434
-13903 2 2 0 6 3402 7896 9314
-13904 2 2 0 6 2051 2054 2053
-13905 2 2 0 6 3916 5523 5622
-13906 2 2 0 6 776 8869 781
-13907 2 2 0 6 4490 9333 5080
-13908 2 2 0 6 1610 1612 1613
-13909 2 2 0 6 3025 3027 3029
-13910 2 2 0 6 4552 5417 5418
-13911 2 2 0 6 5579 5581 5582
-13912 2 2 0 6 1870 5700 1963
-13913 2 2 0 6 5089 6106 6098
-13914 2 2 0 6 5962 5963 6553
-13915 2 2 0 6 2582 8799 2584
-13916 2 2 0 6 3849 3851 9159
-13917 2 2 0 6 702 706 1222
-13918 2 2 0 6 1615 1617 1756
-13919 2 2 0 6 1429 1431 1975
-13920 2 2 0 6 2060 2062 2061
-13921 2 2 0 6 2963 2964 2965
-13922 2 2 0 6 4135 5613 9154
-13923 2 2 0 6 3851 4643 9159
-13924 2 2 0 6 1403 1406 9239
-13925 2 2 0 6 801 803 812
-13926 2 2 0 6 865 871 867
-13927 2 2 0 6 928 929 930
-13928 2 2 0 6 2161 2163 2162
-13929 2 2 0 6 2475 2622 2474
-13930 2 2 0 6 2482 2655 2654
-13931 2 2 0 6 3161 4049 4187
-13932 2 2 0 6 7756 10288 7773
-13933 2 2 0 6 1684 1720 1719
-13934 2 2 0 6 4088 4094 9108
-13935 2 2 0 6 5423 5425 7871
-13936 2 2 0 6 2828 3477 9007
-13937 2 2 0 6 1990 9707 5815
-13938 2 2 0 6 1274 3389 9492
-13939 2 2 0 6 774 777 776
-13940 2 2 0 6 820 822 821
-13941 2 2 0 6 2041 2044 2043
-13942 2 2 0 6 2133 2354 2391
-13943 2 2 0 6 2961 2964 2963
-13944 2 2 0 6 5132 6343 5134
-13945 2 2 0 6 5843 10276 5863
-13946 2 2 0 6 1420 10332 1918
-13947 2 2 0 6 1733 1734 1735
-13948 2 2 0 6 4362 4864 4681
-13949 2 2 0 6 4444 5033 4534
-13950 2 2 0 6 5422 7113 6211
-13951 2 2 0 6 5557 9245 8814
-13952 2 2 0 6 2690 9604 8313
-13953 2 2 0 6 3992 4880 8760
-13954 2 2 0 6 4100 4102 9053
-13955 2 2 0 6 5970 6429 9180
-13956 2 2 0 6 5557 5892 9245
-13957 2 2 0 6 3583 9509 9380
-13958 2 2 0 6 8467 10115 10037
-13959 2 2 0 6 2368 2420 2419
-13960 2 2 0 6 2755 3565 2758
-13961 2 2 0 6 5158 6822 6824
-13962 2 2 0 6 5453 7703 6437
-13963 2 2 0 6 2420 8892 2421
-13964 2 2 0 6 1681 1683 1690
-13965 2 2 0 6 3156 3718 3719
-13966 2 2 0 6 2891 3194 4064
-13967 2 2 0 6 3802 4235 4236
-13968 2 2 0 6 5452 5453 6389
-13969 2 2 0 6 6452 10103 10180
-13970 2 2 0 6 6218 8410 6219
-13971 2 2 0 6 4459 6520 8982
-13972 2 2 0 6 1861 1863 9223
-13973 2 2 0 6 6577 10625 6640
-13974 2 2 0 6 944 945 946
-13975 2 2 0 6 1720 1769 1768
-13976 2 2 0 6 2457 2637 2458
-13977 2 2 0 6 2708 2710 2709
-13978 2 2 0 6 2635 2730 2729
-13979 2 2 0 6 2946 2948 2947
-13980 2 2 0 6 2858 2967 3639
-13981 2 2 0 6 681 4449 683
-13982 2 2 0 6 4369 4371 4520
-13983 2 2 0 6 4647 5154 4649
-13984 2 2 0 6 2609 2811 9361
-13985 2 2 0 6 6463 8113 8114
-13986 2 2 0 6 4243 9661 4244
-13987 2 2 0 6 1880 1976 2595
-13988 2 2 0 6 6316 7392 7227
-13989 2 2 0 6 6461 6462 8551
-13990 2 2 0 6 4730 6193 9193
-13991 2 2 0 6 7791 8141 9793
-13992 2 2 0 6 7821 10710 10741
-13993 2 2 0 6 950 953 952
-13994 2 2 0 6 954 957 956
-13995 2 2 0 6 1614 1616 1615
-13996 2 2 0 6 4479 4024 4480
-13997 2 2 0 6 4149 4286 4769
-13998 2 2 0 6 5266 5610 7145
-13999 2 2 0 6 4481 4483 8845
-14000 2 2 0 6 1828 1980 9176
-14001 2 2 0 6 5687 9400 8899
-14002 2 2 0 6 1166 1167 1168
-14003 2 2 0 6 1234 1262 1260
-14004 2 2 0 6 1544 1545 1546
-14005 2 2 0 6 1682 1684 1683
-14006 2 2 0 6 2059 2060 2061
-14007 2 2 0 6 2562 2807 8041
-14008 2 2 0 6 2853 8954 2854
-14009 2 2 0 6 1546 1547 1548
-14010 2 2 0 6 1548 1549 1550
-14011 2 2 0 6 3665 3667 3666
-14012 2 2 0 6 7837 7838 7839
-14013 2 2 0 6 2411 7887 2471
-14014 2 2 0 6 3477 9066 9189
-14015 2 2 0 6 2270 2272 9391
-14016 2 2 0 6 8404 9070 9632
-14017 2 2 0 6 1269 1270 1283
-14018 2 2 0 6 1614 1615 1613
-14019 2 2 0 6 692 694 2313
-14020 2 2 0 6 2338 2482 2481
-14021 2 2 0 6 2554 2629 2556
-14022 2 2 0 6 4482 4484 4483
-14023 2 2 0 6 5569 5571 5900
-14024 2 2 0 6 666 669 668
-14025 2 2 0 6 1672 1685 1686
-14026 2 2 0 6 3887 5070 4267
-14027 2 2 0 6 4576 4578 5324
-14028 2 2 0 6 4988 6506 4989
-14029 2 2 0 6 2059 2061 8908
-14030 2 2 0 6 5729 10073 6555
-14031 2 2 0 6 3000 4365 8636
-14032 2 2 0 6 2637 2786 2638
-14033 2 2 0 6 3513 8954 9171
-14034 2 2 0 6 3625 8437 9584
-14035 2 2 0 6 820 3559 9259
-14036 2 2 0 6 4433 4435 4434
-14037 2 2 0 6 580 9608 1035
-14038 2 2 0 6 4679 7710 7711
-14039 2 2 0 6 3211 9188 4003
-14040 2 2 0 6 3466 3469 9379
-14041 2 2 0 6 956 957 958
-14042 2 2 0 6 5237 7085 7084
-14043 2 2 0 6 1436 1441 1516
-14044 2 2 0 6 4335 4337 4336
-14045 2 2 0 6 4023 4024 4479
-14046 2 2 0 6 4844 5242 5330
-14047 2 2 0 6 7040 7042 7041
-14048 2 2 0 6 5280 7176 9513
-14049 2 2 0 6 4225 4893 9046
-14050 2 2 0 6 1411 1498 9241
-14051 2 2 0 6 337 338 9292
-14052 2 2 0 6 1969 9329 3532
-14053 2 2 0 6 819 820 821
-14054 2 2 0 6 2031 2034 2035
-14055 2 2 0 6 2686 2895 2896
-14056 2 2 0 6 3682 3945 3996
-14057 2 2 0 6 4244 4258 4257
-14058 2 2 0 6 6249 8602 9709
-14059 2 2 0 6 4807 4808 5342
-14060 2 2 0 6 1263 8843 4046
-14061 2 2 0 6 4414 8372 9051
-14062 2 2 0 6 932 933 934
-14063 2 2 0 6 1712 1710 1713
-14064 2 2 0 6 2811 3302 3619
-14065 2 2 0 6 2146 2338 2337
-14066 2 2 0 6 2792 4433 4432
-14067 2 2 0 6 3280 3282 3281
-14068 2 2 0 6 4277 5236 4307
-14069 2 2 0 6 6592 7719 8572
-14070 2 2 0 6 4225 9046 5139
-14071 2 2 0 6 1863 1927 9223
-14072 2 2 0 6 936 937 938
-14073 2 2 0 6 2037 2036 2078
-14074 2 2 0 6 2803 2861 2801
-14075 2 2 0 6 2751 4026 2753
-14076 2 2 0 6 1725 5511 5708
-14077 2 2 0 6 4160 4841 4772
-14078 2 2 0 6 4981 4982 5072
-14079 2 2 0 6 4861 5419 4862
-14080 2 2 0 6 5720 5839 5721
-14081 2 2 0 6 6039 6041 6040
-14082 2 2 0 6 6157 6523 6771
-14083 2 2 0 6 4148 7109 7221
-14084 2 2 0 6 1385 9175 1388
-14085 2 2 0 6 8648 9297 8651
-14086 2 2 0 6 5457 9409 5460
-14087 2 2 0 6 803 810 11018
-14088 2 2 0 6 701 705 704
-14089 2 2 0 6 981 982 992
-14090 2 2 0 6 2828 9007 2826
-14091 2 2 0 6 2673 2880 2674
-14092 2 2 0 6 4797 4990 4798
-14093 2 2 0 6 4337 5024 5023
-14094 2 2 0 6 5218 5252 6031
-14095 2 2 0 6 3496 10074 3801
-14096 2 2 0 6 3450 8585 8586
-14097 2 2 0 6 1540 1541 1542
-14098 2 2 0 6 756 758 1800
-14099 2 2 0 6 2157 2409 2925
-14100 2 2 0 6 4948 5017 5914
-14101 2 2 0 6 2597 8277 2953
-14102 2 2 0 6 5592 8741 9158
-14103 2 2 0 6 8471 10314 10328
-14104 2 2 0 6 581 583 582
-14105 2 2 0 6 934 937 936
-14106 2 2 0 6 946 949 948
-14107 2 2 0 6 2354 2611 2391
-14108 2 2 0 6 4802 6263 6261
-14109 2 2 0 6 4806 5908 5907
-14110 2 2 0 6 5085 5814 6410
-14111 2 2 0 6 4107 8817 5345
-14112 2 2 0 6 1241 1242 8986
-14113 2 2 0 6 1628 9155 1630
-14114 2 2 0 6 2391 8939 2518
-14115 2 2 0 6 4670 4711 4710
-14116 2 2 0 6 4194 4957 4958
-14117 2 2 0 6 4440 5377 4441
-14118 2 2 0 6 1991 3658 9913
-14119 2 2 0 6 3566 9096 6407
-14120 2 2 0 6 6429 8009 9358
-14121 2 2 0 6 8907 9775 9412
-14122 2 2 0 6 1256 9857 1282
-14123 2 2 0 6 332 333 535
-14124 2 2 0 6 2013 2014 2015
-14125 2 2 0 6 2407 3006 3005
-14126 2 2 0 6 3283 3285 3284
-14127 2 2 0 6 5227 6243 5373
-14128 2 2 0 6 1796 1880 9438
-14129 2 2 0 6 821 822 824
-14130 2 2 0 6 1137 2597 2596
-14131 2 2 0 6 1160 1186 1187
-14132 2 2 0 6 677 1753 679
-14133 2 2 0 6 2023 2025 2024
-14134 2 2 0 6 4977 5939 9350
-14135 2 2 0 6 3893 4461 4462
-14136 2 2 0 6 4645 5158 4646
-14137 2 2 0 6 4724 5219 4725
-14138 2 2 0 6 5803 5804 5805
-14139 2 2 0 6 5046 5949 5950
-14140 2 2 0 6 5487 6224 6225
-14141 2 2 0 6 3930 5040 6450
-14142 2 2 0 6 5018 5778 6614
-14143 2 2 0 6 7037 7038 7039
-14144 2 2 0 6 3554 3916 9266
-14145 2 2 0 6 2513 9540 9290
-14146 2 2 0 6 6412 9403 9640
-14147 2 2 0 6 2207 4917 9907
-14148 2 2 0 6 2747 9164 5631
-14149 2 2 0 6 3061 4162 4163
-14150 2 2 0 6 2510 3693 5566
-14151 2 2 0 6 4700 5467 6207
-14152 2 2 0 6 5958 7371 7372
-14153 2 2 0 6 1220 8721 3388
-14154 2 2 0 6 3270 3271 3272
-14155 2 2 0 6 4969 9405 7941
-14156 2 2 0 6 1354 3621 3620
-14157 2 2 0 6 3457 4196 4197
-14158 2 2 0 6 3487 9425 8763
-14159 2 2 0 6 3649 5857 5858
-14160 2 2 0 6 2026 2029 8722
-14161 2 2 0 6 8834 10243 10112
-14162 2 2 0 6 4195 4739 4779
-14163 2 2 0 6 9228 9892 9602
-14164 2 2 0 6 6201 7021 6691
-14165 2 2 0 6 3105 3108 9207
-14166 2 2 0 6 6146 7925 6145
-14167 2 2 0 6 5723 5838 8684
-14168 2 2 0 6 1419 1497 9022
-14169 2 2 0 6 818 820 819
-14170 2 2 0 6 2037 2039 2038
-14171 2 2 0 6 2252 2601 2527
-14172 2 2 0 6 3728 3729 3730
-14173 2 2 0 6 3016 3888 3298
-14174 2 2 0 6 4423 5262 5263
-14175 2 2 0 6 4474 5356 4489
-14176 2 2 0 6 5262 5264 6198
-14177 2 2 0 6 1501 2216 2215
-14178 2 2 0 6 4320 4321 4619
-14179 2 2 0 6 4813 5318 4815
-14180 2 2 0 6 4416 6476 4859
-14181 2 2 0 6 1769 1771 9282
-14182 2 2 0 6 6178 8242 8244
-14183 2 2 0 6 1242 8886 8986
-14184 2 2 0 6 325 326 537
-14185 2 2 0 6 6421 9771 8535
-14186 2 2 0 6 2830 3563 9002
-14187 2 2 0 6 578 581 580
-14188 2 2 0 6 1702 1705 1704
-14189 2 2 0 6 2519 2685 2686
-14190 2 2 0 6 2881 3172 3173
-14191 2 2 0 6 2266 9067 2268
-14192 2 2 0 6 3474 3819 3820
-14193 2 2 0 6 1756 4416 4859
-14194 2 2 0 6 5294 5295 5293
-14195 2 2 0 6 1738 8103 4345
-14196 2 2 0 6 3534 8946 8945
-14197 2 2 0 6 334 457 9122
-14198 2 2 0 6 2025 2030 2031
-14199 2 2 0 6 3395 4424 9049
-14200 2 2 0 6 3380 4160 4159
-14201 2 2 0 6 4258 4311 4312
-14202 2 2 0 6 3810 4617 5011
-14203 2 2 0 6 4476 5044 5043
-14204 2 2 0 6 4711 4713 5196
-14205 2 2 0 6 4111 5255 5254
-14206 2 2 0 6 4700 5466 5467
-14207 2 2 0 6 8182 8653 8185
-14208 2 2 0 6 1239 1253 8843
-14209 2 2 0 6 7035 8690 9189
-14210 2 2 0 6 2950 9783 9445
-14211 2 2 0 6 952 953 954
-14212 2 2 0 6 969 973 972
-14213 2 2 0 6 1999 2002 2001
-14214 2 2 0 6 2869 3100 2870
-14215 2 2 0 6 5586 5587 6397
-14216 2 2 0 6 4766 7139 6244
-14217 2 2 0 6 4989 7917 5946
-14218 2 2 0 6 2399 8339 10892
-14219 2 2 0 6 8583 8825 8824
-14220 2 2 0 6 4896 5957 9293
-14221 2 2 0 6 4866 9234 4867
-14222 2 2 0 6 4210 4911 9327
-14223 2 2 0 6 2307 9290 2346
-14224 2 2 0 6 4481 8845 5816
-14225 2 2 0 6 2530 2785 2532
-14226 2 2 0 6 2732 2858 2733
-14227 2 2 0 6 3295 3906 3296
-14228 2 2 0 6 3052 4150 3053
-14229 2 2 0 6 9184 9882 9950
-14230 2 2 0 6 4042 9173 5036
-14231 2 2 0 6 4288 5191 4407
-14232 2 2 0 6 4591 6687 6686
-14233 2 2 0 6 598 8686 600
-14234 2 2 0 6 685 688 687
-14235 2 2 0 6 2045 2047 2046
-14236 2 2 0 6 2848 3156 3155
-14237 2 2 0 6 3553 9303 5522
-14238 2 2 0 6 1057 9308 3593
-14239 2 2 0 6 2960 2961 2963
-14240 2 2 0 6 3911 3954 3953
-14241 2 2 0 6 3296 3906 4421
-14242 2 2 0 6 4053 4982 4981
-14243 2 2 0 6 7303 7304 7305
-14244 2 2 0 6 2298 9250 2305
-14245 2 2 0 6 338 339 407
-14246 2 2 0 6 748 749 750
-14247 2 2 0 6 2057 2058 2059
-14248 2 2 0 6 2623 2781 2622
-14249 2 2 0 6 2680 3345 4149
-14250 2 2 0 6 4150 4857 4151
-14251 2 2 0 6 5576 5961 5962
-14252 2 2 0 6 3980 8030 9715
-14253 2 2 0 6 1374 9016 3498
-14254 2 2 0 6 1398 1399 9547
-14255 2 2 0 6 1483 1486 1485
-14256 2 2 0 6 1659 1661 1662
-14257 2 2 0 6 3163 3164 3165
-14258 2 2 0 6 3286 3288 3287
-14259 2 2 0 6 3252 4233 3879
-14260 2 2 0 6 5083 5814 5085
-14261 2 2 0 6 5309 6507 5310
-14262 2 2 0 6 1014 1015 9432
-14263 2 2 0 6 5212 9749 5214
-14264 2 2 0 6 2760 2867 2866
-14265 2 2 0 6 3027 3031 3030
-14266 2 2 0 6 3195 3553 3554
-14267 2 2 0 6 3677 3678 3679
-14268 2 2 0 6 628 631 9072
-14269 2 2 0 6 631 6020 9072
-14270 2 2 0 6 3284 3286 3287
-14271 2 2 0 6 3786 3787 3788
-14272 2 2 0 6 3851 3853 4643
-14273 2 2 0 6 4468 5237 4986
-14274 2 2 0 6 5769 6975 5771
-14275 2 2 0 6 7568 7572 7573
-14276 2 2 0 6 6408 9509 9414
-14277 2 2 0 6 3737 4444 4063
-14278 2 2 0 6 4053 4981 4980
-14279 2 2 0 6 3970 5280 3971
-14280 2 2 0 6 1962 5359 4956
-14281 2 2 0 6 4723 5775 5774
-14282 2 2 0 6 4859 6246 4860
-14283 2 2 0 6 5587 6398 6397
-14284 2 2 0 6 7044 7046 7045
-14285 2 2 0 6 6170 7548 6854
-14286 2 2 0 6 1679 1680 1681
-14287 2 2 0 6 2191 2365 2366
-14288 2 2 0 6 4965 5648 5647
-14289 2 2 0 6 7145 5610 7146
-14290 2 2 0 6 4233 10125 10240
-14291 2 2 0 6 2527 9215 2528
-14292 2 2 0 6 5575 8655 9862
-14293 2 2 0 6 692 693 694
-14294 2 2 0 6 817 818 819
-14295 2 2 0 6 1539 1541 1540
-14296 2 2 0 6 2015 2016 2018
-14297 2 2 0 6 5212 5214 5213
-14298 2 2 0 6 4819 7179 6251
-14299 2 2 0 6 6398 7334 7598
-14300 2 2 0 6 4388 9037 5317
-14301 2 2 0 6 5670 9625 7903
-14302 2 2 0 6 830 831 876
-14303 2 2 0 6 3021 3022 3023
-14304 2 2 0 6 4634 5151 5152
-14305 2 2 0 6 4200 5077 7816
-14306 2 2 0 6 7318 7320 7319
-14307 2 2 0 6 4759 8785 8354
-14308 2 2 0 6 2301 9114 2665
-14309 2 2 0 6 1386 9077 9418
-14310 2 2 0 6 973 980 979
-14311 2 2 0 6 3556 9266 3920
-14312 2 2 0 6 1260 8879 1272
-14313 2 2 0 6 2879 9096 3566
-14314 2 2 0 6 2747 2578 9164
-14315 2 2 0 6 2728 9592 3228
-14316 2 2 0 6 1057 3593 1059
-14317 2 2 0 6 2128 2146 2145
-14318 2 2 0 6 710 717 3615
-14319 2 2 0 6 3532 7109 4148
-14320 2 2 0 6 2061 9054 8908
-14321 2 2 0 6 5689 8534 6380
-14322 2 2 0 6 2033 8854 3353
-14323 2 2 0 6 707 705 708
-14324 2 2 0 6 942 945 944
-14325 2 2 0 6 4192 4193 4195
-14326 2 2 0 6 3919 4742 4743
-14327 2 2 0 6 5792 5794 5793
-14328 2 2 0 6 6173 6033 6174
-14329 2 2 0 6 6243 5227 7099
-14330 2 2 0 6 5393 7177 7176
-14331 2 2 0 6 3655 9140 8140
-14332 2 2 0 6 4027 10059 9868
-14333 2 2 0 6 1216 1217 1225
-14334 2 2 0 6 2527 2601 2723
-14335 2 2 0 6 4500 5136 5135
-14336 2 2 0 6 5136 6604 5137
-14337 2 2 0 6 4727 5314 7260
-14338 2 2 0 6 3271 8350 3272
-14339 2 2 0 6 3892 5732 8895
-14340 2 2 0 6 3281 3282 9520
-14341 2 2 0 6 4714 5203 9569
-14342 2 2 0 6 1009 1021 1020
-14343 2 2 0 6 1700 1698 1701
-14344 2 2 0 6 2996 2997 3230
-14345 2 2 0 6 3278 3279 3280
-14346 2 2 0 6 3923 5762 7374
-14347 2 2 0 6 2665 9114 9115
-14348 2 2 0 6 3160 4207 9216
-14349 2 2 0 6 1823 9229 2443
-14350 2 2 0 6 1283 1284 1293
-14351 2 2 0 6 2159 4019 2161
-14352 2 2 0 6 800 5629 806
-14353 2 2 0 6 3202 9242 4072
-14354 2 2 0 6 3884 4288 4407
-14355 2 2 0 6 6158 6159 6160
-14356 2 2 0 6 6584 8308 8309
-14357 2 2 0 6 3632 3810 9178
-14358 2 2 0 6 330 331 415
-14359 2 2 0 6 334 335 457
-14360 2 2 0 6 1225 1226 1241
-14361 2 2 0 6 3013 3629 3635
-14362 2 2 0 6 2379 2390 2380
-14363 2 2 0 6 3030 3031 3032
-14364 2 2 0 6 3070 4101 4100
-14365 2 2 0 6 3884 4268 4288
-14366 2 2 0 6 3152 4495 3340
-14367 2 2 0 6 5623 5624 5622
-14368 2 2 0 6 4451 5736 5737
-14369 2 2 0 6 2995 9095 7861
-14370 2 2 0 6 1008 8644 5499
-14371 2 2 0 6 4100 9053 4870
-14372 2 2 0 6 322 323 9218
-14373 2 2 0 6 1964 2252 2253
-14374 2 2 0 6 3309 3931 4292
-14375 2 2 0 6 1675 3551 9326
-14376 2 2 0 6 4143 5202 5786
-14377 2 2 0 6 327 481 9255
-14378 2 2 0 6 5109 6099 5129
-14379 2 2 0 6 8781 9104 8782
-14380 2 2 0 6 2723 8680 9215
-14381 2 2 0 6 733 735 9581
-14382 2 2 0 6 1042 1141 1142
-14383 2 2 0 6 1655 1657 3508
-14384 2 2 0 6 5554 9142 7661
-14385 2 2 0 6 2163 2214 2213
-14386 2 2 0 6 3845 9345 4645
-14387 2 2 0 6 1691 3385 1692
-14388 2 2 0 6 3796 3794 4999
-14389 2 2 0 6 5679 5827 5819
-14390 2 2 0 6 7474 7476 7475
-14391 2 2 0 6 2848 9587 3718
-14392 2 2 0 6 5979 9161 10148
-14393 2 2 0 6 1681 1682 1683
-14394 2 2 0 6 2881 3173 3174
-14395 2 2 0 6 4488 4648 4647
-14396 2 2 0 6 1210 1232 5688
-14397 2 2 0 6 6753 6762 6763
-14398 2 2 0 6 3079 10250 9493
-14399 2 2 0 6 327 328 481
-14400 2 2 0 6 2378 2379 2380
-14401 2 2 0 6 3622 4175 9211
-14402 2 2 0 6 3847 3849 4644
-14403 2 2 0 6 2432 2433 2434
-14404 2 2 0 6 964 3656 969
-14405 2 2 0 6 4866 4987 7273
-14406 2 2 0 6 6063 7364 7365
-14407 2 2 0 6 3362 6630 8556
-14408 2 2 0 6 1890 2873 10118
-14409 2 2 0 6 880 888 884
-14410 2 2 0 6 2732 2967 2858
-14411 2 2 0 6 2697 3220 3219
-14412 2 2 0 6 5085 6410 9099
-14413 2 2 0 6 2097 2106 4515
-14414 2 2 0 6 2694 4998 4460
-14415 2 2 0 6 3728 8762 3908
-14416 2 2 0 6 1289 9147 1325
-14417 2 2 0 6 2034 9377 2036
-14418 2 2 0 6 5617 9609 6390
-14419 2 2 0 6 930 933 932
-14420 2 2 0 6 2030 2034 2031
-14421 2 2 0 6 2808 3315 3015
-14422 2 2 0 6 5182 6498 9212
-14423 2 2 0 6 3639 3640 4469
-14424 2 2 0 6 5220 5219 6189
-14425 2 2 0 6 3403 3407 8955
-14426 2 2 0 6 1251 1252 1254
-14427 2 2 0 6 2424 2426 2425
-14428 2 2 0 6 4396 4470 4397
-14429 2 2 0 6 4815 4817 4816
-14430 2 2 0 6 2215 8752 3688
-14431 2 2 0 6 1605 1609 9194
-14432 2 2 0 6 1814 9291 1816
-14433 2 2 0 6 688 697 696
-14434 2 2 0 6 1507 1807 1808
-14435 2 2 0 6 2016 2019 2018
-14436 2 2 0 6 2518 2685 2519
-14437 2 2 0 6 2867 2869 2868
-14438 2 2 0 6 3025 3026 3027
-14439 2 2 0 6 3782 3783 3784
-14440 2 2 0 6 2421 8892 2424
-14441 2 2 0 6 4542 9166 9167
-14442 2 2 0 6 1299 3659 9424
-14443 2 2 0 6 1118 3493 8951
-14444 2 2 0 6 1001 1539 1045
-14445 2 2 0 6 3881 4544 4543
-14446 2 2 0 6 4110 5088 5087
-14447 2 2 0 6 3845 3847 9345
-14448 2 2 0 6 2193 8652 2503
-14449 2 2 0 6 2599 2600 9096
-14450 2 2 0 6 5761 9719 9989
-14451 2 2 0 6 9324 9461 9460
-14452 2 2 0 6 1170 1171 1172
-14453 2 2 0 6 1782 1784 1783
-14454 2 2 0 6 2047 2049 2050
-14455 2 2 0 6 3105 3106 3107
-14456 2 2 0 6 1376 3922 8890
-14457 2 2 0 6 5795 8303 8302
-14458 2 2 0 6 8996 9583 9227
-14459 2 2 0 6 1353 1511 1437
-14460 2 2 0 6 1503 1780 1781
-14461 2 2 0 6 4993 5921 5875
-14462 2 2 0 6 4828 6313 6314
-14463 2 2 0 6 4826 6675 5993
-14464 2 2 0 6 2963 2965 9252
-14465 2 2 0 6 6590 10389 10391
-14466 2 2 0 6 6787 6788 6789
-14467 2 2 0 6 3251 3878 9553
-14468 2 2 0 6 2110 2109 9267
-14469 2 2 0 6 3181 9720 3182
-14470 2 2 0 6 1654 1656 1655
-14471 2 2 0 6 5404 5406 7544
-14472 2 2 0 6 4661 7709 4679
-14473 2 2 0 6 3901 9059 4724
-14474 2 2 0 6 4087 9219 5589
-14475 2 2 0 6 3272 3274 3273
-14476 2 2 0 6 3641 4191 4194
-14477 2 2 0 6 3206 8336 4921
-14478 2 2 0 6 2817 9338 2819
-14479 2 2 0 6 1660 8196 6521
-14480 2 2 0 6 5014 5015 5016
-14481 2 2 0 6 4518 4558 5871
-14482 2 2 0 6 3959 3534 8945
-14483 2 2 0 6 4024 9711 4900
-14484 2 2 0 6 1849 1851 9958
-14485 2 2 0 6 2014 2108 2016
-14486 2 2 0 6 2855 9227 4923
-14487 2 2 0 6 4432 4434 6469
-14488 2 2 0 6 970 4133 8443
-14489 2 2 0 6 5509 8842 8841
-14490 2 2 0 6 8404 9118 9070
-14491 2 2 0 6 5122 6733 9486
-14492 2 2 0 6 4923 9227 9583
-14493 2 2 0 6 1097 9586 5731
-14494 2 2 0 6 846 848 847
-14495 2 2 0 6 2021 2023 2022
-14496 2 2 0 6 2055 2057 2056
-14497 2 2 0 6 4024 4900 4480
-14498 2 2 0 6 4825 5993 5994
-14499 2 2 0 6 8861 9882 9184
-14500 2 2 0 6 4807 5342 9908
-14501 2 2 0 6 725 728 729
-14502 2 2 0 6 568 3764 570
-14503 2 2 0 6 4435 4807 4436
-14504 2 2 0 6 4728 6181 5198
-14505 2 2 0 6 3848 9247 5811
-14506 2 2 0 6 5536 9298 9200
-14507 2 2 0 6 3290 9236 9383
-14508 2 2 0 6 1549 9326 1550
-14509 2 2 0 6 2132 2354 2133
-14510 2 2 0 6 2567 2568 2847
-14511 2 2 0 6 4454 5298 5754
-14512 2 2 0 6 5304 7079 6551
-14513 2 2 0 6 3773 8938 4265
-14514 2 2 0 6 688 9534 697
-14515 2 2 0 6 1990 1992 9707
-14516 2 2 0 6 1653 1654 1655
-14517 2 2 0 6 1655 1656 1657
-14518 2 2 0 6 2051 2053 2052
-14519 2 2 0 6 3276 3279 3278
-14520 2 2 0 6 2861 3113 3357
-14521 2 2 0 6 4718 5229 5228
-14522 2 2 0 6 5111 5781 5782
-14523 2 2 0 6 6033 6578 6174
-14524 2 2 0 6 1318 9221 9222
-14525 2 2 0 6 3549 10200 4344
-14526 2 2 0 6 232 233 416
-14527 2 2 0 6 1142 1159 1160
-14528 2 2 0 6 1254 1255 1269
-14529 2 2 0 6 1554 1587 1556
-14530 2 2 0 6 2445 2446 2444
-14531 2 2 0 6 4059 5025 4559
-14532 2 2 0 6 4462 4714 5200
-14533 2 2 0 6 5199 5198 6206
-14534 2 2 0 6 3618 5672 9090
-14535 2 2 0 6 2453 9240 3693
-14536 2 2 0 6 5388 8087 9890
-14537 2 2 0 6 7036 10834 7038
-14538 2 2 0 6 6430 10317 8010
-14539 2 2 0 6 697 701 700
-14540 2 2 0 6 3766 4218 4220
-14541 2 2 0 6 4321 4620 4619
-14542 2 2 0 6 5930 6365 6364
-14543 2 2 0 6 5168 6871 6870
-14544 2 2 0 6 6392 6393 8761
-14545 2 2 0 6 3435 3438 10164
-14546 2 2 0 6 6489 9253 9945
-14547 2 2 0 6 7935 7936 10228
-14548 2 2 0 6 1901 1923 1902
-14549 2 2 0 6 4249 6573 5175
-14550 2 2 0 6 6191 6500 6501
-14551 2 2 0 6 7039 7040 7041
-14552 2 2 0 6 6285 10390 9234
-14553 2 2 0 6 2854 8954 3513
-14554 2 2 0 6 643 644 8959
-14555 2 2 0 6 1486 1501 1500
-14556 2 2 0 6 1944 2443 2444
-14557 2 2 0 6 2369 2524 2523
-14558 2 2 0 6 4101 4396 4102
-14559 2 2 0 6 4603 5109 4661
-14560 2 2 0 6 5754 6480 6479
-14561 2 2 0 6 3353 8854 8855
-14562 2 2 0 6 338 407 9292
-14563 2 2 0 6 5801 9502 8545
-14564 2 2 0 6 5528 9163 9972
-14565 2 2 0 6 390 391 470
-14566 2 2 0 6 752 753 754
-14567 2 2 0 6 2811 3619 9361
-14568 2 2 0 6 3319 4840 3322
-14569 2 2 0 6 4728 5198 4729
-14570 2 2 0 6 5203 5204 9044
-14571 2 2 0 6 8687 8688 10080
-14572 2 2 0 6 824 825 830
-14573 2 2 0 6 725 729 837
-14574 2 2 0 6 794 1921 796
-14575 2 2 0 6 2212 9384 9473
-14576 2 2 0 6 3966 5809 5810
-14577 2 2 0 6 7653 7736 7652
-14578 2 2 0 6 3499 8720 5565
-14579 2 2 0 6 4215 9136 5105
-14580 2 2 0 6 324 325 9172
-14581 2 2 0 6 3810 5011 9178
-14582 2 2 0 6 2186 2367 2187
-14583 2 2 0 6 4519 5845 5040
-14584 2 2 0 6 7034 7036 7035
-14585 2 2 0 6 5085 9099 5086
-14586 2 2 0 6 574 577 9447
-14587 2 2 0 6 3806 4603 4259
-14588 2 2 0 6 4624 4677 4623
-14589 2 2 0 6 3890 4270 4723
-14590 2 2 0 6 4017 4752 4754
-14591 2 2 0 6 3699 3701 5026
-14592 2 2 0 6 7043 7042 7044
-14593 2 2 0 6 5307 7225 7197
-14594 2 2 0 6 7299 7300 7301
-14595 2 2 0 6 5488 8538 8758
-14596 2 2 0 6 1020 1031 1040
-14597 2 2 0 6 2880 3172 2881
-14598 2 2 0 6 2742 9243 2903
-14599 2 2 0 6 4739 8981 4779
-14600 2 2 0 6 4867 9234 5416
-14601 2 2 0 6 4080 4916 9379
-14602 2 2 0 6 878 886 9437
-14603 2 2 0 6 336 337 536
-14604 2 2 0 6 3589 8980 9346
-14605 2 2 0 6 2716 2830 2831
-14606 2 2 0 6 5181 5234 5233
-14607 2 2 0 6 3504 9174 3516
-14608 2 2 0 6 5210 6185 5212
-14609 2 2 0 6 2797 2800 9273
-14610 2 2 0 6 8958 9735 5920
-14611 2 2 0 6 3282 3283 3284
-14612 2 2 0 6 3100 4048 3101
-14613 2 2 0 6 4261 5166 5167
-14614 2 2 0 6 5508 6062 5507
-14615 2 2 0 6 5239 5240 6188
-14616 2 2 0 6 3750 4106 4581
-14617 2 2 0 6 1205 6240 7948
-14618 2 2 0 6 908 8889 911
-14619 2 2 0 6 3703 3705 4568
-14620 2 2 0 6 323 324 423
-14621 2 2 0 6 750 751 752
-14622 2 2 0 6 2127 2132 2133
-14623 2 2 0 6 3036 3716 4134
-14624 2 2 0 6 3846 4645 4646
-14625 2 2 0 6 842 844 843
-14626 2 2 0 6 1808 1909 1910
-14627 2 2 0 6 4242 4244 4257
-14628 2 2 0 6 4817 4950 4818
-14629 2 2 0 6 4976 4977 5951
-14630 2 2 0 6 6415 6680 6679
-14631 2 2 0 6 7305 7307 7315
-14632 2 2 0 6 6250 7953 7952
-14633 2 2 0 6 4234 8109 4235
-14634 2 2 0 6 1544 1543 1545
-14635 2 2 0 6 1671 1716 1685
-14636 2 2 0 6 1903 2185 4494
-14637 2 2 0 6 4109 4826 4825
-14638 2 2 0 6 2676 9899 2765
-14639 2 2 0 6 5340 6431 8948
-14640 2 2 0 6 3243 3245 3246
-14641 2 2 0 6 2686 3162 8870
-14642 2 2 0 6 4811 4813 4812
-14643 2 2 0 6 2599 9096 2879
-14644 2 2 0 6 5722 9264 9497
-14645 2 2 0 6 6407 9509 6408
-14646 2 2 0 6 607 608 8577
-14647 2 2 0 6 4703 5287 5260
-14648 2 2 0 6 5139 9046 7746
-14649 2 2 0 6 1145 1146 1153
-14650 2 2 0 6 2081 2128 2123
-14651 2 2 0 6 2596 2597 2598
-14652 2 2 0 6 806 9224 809
-14653 2 2 0 6 4885 5297 5370
-14654 2 2 0 6 6188 7071 7202
-14655 2 2 0 6 7301 7302 7303
-14656 2 2 0 6 2794 9898 2795
-14657 2 2 0 6 1809 9951 4502
-14658 2 2 0 6 1192 1216 1191
-14659 2 2 0 6 1044 3478 4171
-14660 2 2 0 6 3226 3847 3845
-14661 2 2 0 6 4186 5620 5027
-14662 2 2 0 6 4686 6296 5190
-14663 2 2 0 6 5746 5799 9941
-14664 2 2 0 6 1314 1316 9107
-14665 2 2 0 6 4555 9249 9094
-14666 2 2 0 6 566 9653 568
-14667 2 2 0 6 6283 6483 9690
-14668 2 2 0 6 2019 2021 2020
-14669 2 2 0 6 3109 3366 3111
-14670 2 2 0 6 2869 3689 3100
-14671 2 2 0 6 3837 3838 4241
-14672 2 2 0 6 3112 4486 4487
-14673 2 2 0 6 5008 9458 8848
-14674 2 2 0 6 904 9357 907
-14675 2 2 0 6 2182 2184 9481
-14676 2 2 0 6 2446 2447 2474
-14677 2 2 0 6 3266 3305 3306
-14678 2 2 0 6 4926 4928 6055
-14679 2 2 0 6 4611 6116 5913
-14680 2 2 0 6 5113 6712 6709
-14681 2 2 0 6 7033 9189 9066
-14682 2 2 0 6 926 929 928
-14683 2 2 0 6 1078 2317 1082
-14684 2 2 0 6 3030 3032 3036
-14685 2 2 0 6 2724 3226 3225
-14686 2 2 0 6 3245 3247 3246
-14687 2 2 0 6 2930 3737 3696
-14688 2 2 0 6 3947 3949 3950
-14689 2 2 0 6 4010 4533 4975
-14690 2 2 0 6 5481 6287 6289
-14691 2 2 0 6 5883 7809 6607
-14692 2 2 0 6 3956 4571 9670
-14693 2 2 0 6 2133 2391 2392
-14694 2 2 0 6 626 9809 629
-14695 2 2 0 6 4716 4718 5228
-14696 2 2 0 6 2127 9244 5671
-14697 2 2 0 6 2872 4024 4023
-14698 2 2 0 6 3996 4168 4903
-14699 2 2 0 6 2767 2769 8406
-14700 2 2 0 6 5655 6132 5657
-14701 2 2 0 6 5002 5003 6565
-14702 2 2 0 6 2289 8614 2296
-14703 2 2 0 6 5492 8541 8542
-14704 2 2 0 6 2029 3353 8722
-14705 2 2 0 6 3501 8813 8550
-14706 2 2 0 6 2116 2591 9354
-14707 2 2 0 6 5572 9094 9249
-14708 2 2 0 6 2673 9318 9319
-14709 2 2 0 6 2409 2926 2925
-14710 2 2 0 6 7046 7049 7048
-14711 2 2 0 6 2245 2462 9015
-14712 2 2 0 6 6407 9096 9380
-14713 2 2 0 6 886 1044 9437
-14714 2 2 0 6 2377 2379 2378
-14715 2 2 0 6 2458 2637 2638
-14716 2 2 0 6 3589 9346 8655
-14717 2 2 0 6 2627 2806 2805
-14718 2 2 0 6 3023 3025 3024
-14719 2 2 0 6 3930 4519 5040
-14720 2 2 0 6 4830 8945 5590
-14721 2 2 0 6 2086 8999 2102
-14722 2 2 0 6 1662 1665 1664
-14723 2 2 0 6 2225 2370 2226
-14724 2 2 0 6 2400 2455 2567
-14725 2 2 0 6 3032 3716 3036
-14726 2 2 0 6 5590 9552 5695
-14727 2 2 0 6 5077 6656 6657
-14728 2 2 0 6 2039 2041 2040
-14729 2 2 0 6 1923 2186 1924
-14730 2 2 0 6 5004 5850 5529
-14731 2 2 0 6 9134 10505 10506
-14732 2 2 0 6 5851 6591 6592
-14733 2 2 0 6 7039 7038 7040
-14734 2 2 0 6 5400 6035 8962
-14735 2 2 0 6 3859 3861 4226
-14736 2 2 0 6 6232 6234 6235
-14737 2 2 0 6 6236 6237 6238
-14738 2 2 0 6 3976 4776 9300
-14739 2 2 0 6 8338 8340 9376
-14740 2 2 0 6 2967 9561 4991
-14741 2 2 0 6 2593 2594 2644
-14742 2 2 0 6 4769 6227 5644
-14743 2 2 0 6 6501 6502 7121
-14744 2 2 0 6 2272 2274 9863
-14745 2 2 0 6 3707 3740 4109
-14746 2 2 0 6 2914 7908 3832
-14747 2 2 0 6 2213 2571 8431
-14748 2 2 0 6 1368 9158 8741
-14749 2 2 0 6 4037 9171 4806
-14750 2 2 0 6 4540 5625 9242
-14751 2 2 0 6 4718 9383 6419
-14752 2 2 0 6 5639 5641 9627
-14753 2 2 0 6 4498 4660 4497
-14754 2 2 0 6 4819 6251 4873
-14755 2 2 0 6 5216 7059 7056
-14756 2 2 0 6 7290 7292 7293
-14757 2 2 0 6 2830 9002 2831
-14758 2 2 0 6 973 8766 980
-14759 2 2 0 6 2002 2004 2003
-14760 2 2 0 6 4307 6588 9061
-14761 2 2 0 6 4666 6148 6147
-14762 2 2 0 6 2576 9164 2578
-14763 2 2 0 6 1677 1678 1679
-14764 2 2 0 6 2925 2926 3694
-14765 2 2 0 6 2895 3206 3750
-14766 2 2 0 6 4956 5359 6497
-14767 2 2 0 6 4815 8023 4817
-14768 2 2 0 6 2786 3798 8246
-14769 2 2 0 6 633 634 9050
-14770 2 2 0 6 1388 9175 3912
-14771 2 2 0 6 319 320 9271
-14772 2 2 0 6 8756 8757 9626
-14773 2 2 0 6 1737 3653 1739
-14774 2 2 0 6 3667 3669 3668
-14775 2 2 0 6 1691 4110 3385
-14776 2 2 0 6 5240 7071 6188
-14777 2 2 0 6 333 9122 535
-14778 2 2 0 6 760 761 762
-14779 2 2 0 6 2714 2715 2716
-14780 2 2 0 6 2568 2848 2847
-14781 2 2 0 6 3716 4184 4134
-14782 2 2 0 6 3403 8955 4002
-14783 2 2 0 6 5360 5362 5361
-14784 2 2 0 6 1280 6998 7000
-14785 2 2 0 6 5342 6375 7272
-14786 2 2 0 6 3934 4576 9617
-14787 2 2 0 6 1186 1188 1210
-14788 2 2 0 6 2005 2008 2007
-14789 2 2 0 6 2023 2030 2025
-14790 2 2 0 6 3288 3289 3290
-14791 2 2 0 6 3155 3926 3356
-14792 2 2 0 6 3190 4062 4061
-14793 2 2 0 6 4188 4189 4976
-14794 2 2 0 6 4330 4856 5540
-14795 2 2 0 6 634 637 9050
-14796 2 2 0 6 1122 9257 1124
-14797 2 2 0 6 7829 7830 9733
-14798 2 2 0 6 982 10007 8642
-14799 2 2 0 6 1163 1164 1180
-14800 2 2 0 6 3173 3175 3174
-14801 2 2 0 6 4484 4993 4485
-14802 2 2 0 6 4826 5993 4825
-14803 2 2 0 6 3265 6404 3305
-14804 2 2 0 6 6726 6725 9374
-14805 2 2 0 6 4129 4201 4667
-14806 2 2 0 6 4953 5272 6202
-14807 2 2 0 6 6238 7094 7070
-14808 2 2 0 6 8508 8510 8511
-14809 2 2 0 6 5086 9099 5291
-14810 2 2 0 6 756 757 758
-14811 2 2 0 6 2380 2390 2400
-14812 2 2 0 6 1067 3617 1069
-14813 2 2 0 6 3521 9067 9684
-14814 2 2 0 6 1544 1546 8796
-14815 2 2 0 6 654 6413 9230
-14816 2 2 0 6 1564 9460 1566
-14817 2 2 0 6 2732 9561 2967
-14818 2 2 0 6 320 321 483
-14819 2 2 0 6 234 235 538
-14820 2 2 0 6 772 775 780
-14821 2 2 0 6 1211 1233 1232
-14822 2 2 0 6 1268 1291 1290
-14823 2 2 0 6 2183 2359 2360
-14824 2 2 0 6 2252 2527 2253
-14825 2 2 0 6 2597 2871 2598
-14826 2 2 0 6 6237 6239 6238
-14827 2 2 0 6 6261 6263 7183
-14828 2 2 0 6 1676 4418 9134
-14829 2 2 0 6 2097 4515 9634
-14830 2 2 0 6 4403 9689 9974
-14831 2 2 0 6 2426 2553 2427
-14832 2 2 0 6 3855 3857 4642
-14833 2 2 0 6 3975 10689 10309
-14834 2 2 0 6 227 228 540
-14835 2 2 0 6 1786 5595 8909
-14836 2 2 0 6 6485 8949 6486
-14837 2 2 0 6 1603 1605 9194
-14838 2 2 0 6 2871 3157 9528
-14839 2 2 0 6 6323 9978 6324
-14840 2 2 0 6 3808 4260 4036
-14841 2 2 0 6 4220 4335 4334
-14842 2 2 0 6 6291 7826 6290
-14843 2 2 0 6 6266 9640 9403
-14844 2 2 0 6 4866 7273 9234
-14845 2 2 0 6 2821 3562 8714
-14846 2 2 0 6 776 778 8869
-14847 2 2 0 6 4916 8907 9810
-14848 2 2 0 6 1154 1163 1153
-14849 2 2 0 6 7787 7793 9681
-14850 2 2 0 6 2331 10090 8541
-14851 2 2 0 6 3822 6444 6445
-14852 2 2 0 6 5129 6099 6755
-14853 2 2 0 6 806 5629 9224
-14854 2 2 0 6 1816 9291 4390
-14855 2 2 0 6 3236 9649 3496
-14856 2 2 0 6 1732 1734 1733
-14857 2 2 0 6 2189 2369 2255
-14858 2 2 0 6 3276 3278 3277
-14859 2 2 0 6 3813 3999 4000
-14860 2 2 0 6 2316 10640 10646
-14861 2 2 0 6 2758 3565 9285
-14862 2 2 0 6 2542 2721 2544
-14863 2 2 0 6 4436 4809 4810
-14864 2 2 0 6 4809 4811 4810
-14865 2 2 0 6 3899 9795 10005
-14866 2 2 0 6 2767 8406 2912
-14867 2 2 0 6 3546 9792 3550
-14868 2 2 0 6 212 213 546
-14869 2 2 0 6 2706 2708 2709
-14870 2 2 0 6 3684 3830 3814
-14871 2 2 0 6 4187 5043 5603
-14872 2 2 0 6 4870 9053 8362
-14873 2 2 0 6 758 759 760
-14874 2 2 0 6 3678 3680 3679
-14875 2 2 0 6 4622 4624 4623
-14876 2 2 0 6 5291 9099 7361
-14877 2 2 0 6 3012 3629 3013
-14878 2 2 0 6 5685 6783 6782
-14879 2 2 0 6 5521 6823 6822
-14880 2 2 0 6 5578 9808 9115
-14881 2 2 0 6 762 763 764
-14882 2 2 0 6 2486 2650 2651
-14883 2 2 0 6 2638 2786 2787
-14884 2 2 0 6 996 5751 1005
-14885 2 2 0 6 3971 5280 9513
-14886 2 2 0 6 4513 4609 4610
-14887 2 2 0 6 139 140 9456
-14888 2 2 0 6 7829 9733 8565
-14889 2 2 0 6 2403 2627 2626
-14890 2 2 0 6 4667 6669 6670
-14891 2 2 0 6 2689 8799 9191
-14892 2 2 0 6 3190 9366 4062
-14893 2 2 0 6 5575 10022 8973
-14894 2 2 0 6 1805 2675 9462
-14895 2 2 0 6 2723 2724 3225
-14896 2 2 0 6 4089 5589 9181
-14897 2 2 0 6 5508 8725 8726
-14898 2 2 0 6 2886 3715 9451
-14899 2 2 0 6 5681 10148 9710
-14900 2 2 0 6 1041 5725 1141
-14901 2 2 0 6 3376 3378 9393
-14902 2 2 0 6 4987 7274 7273
-14903 2 2 0 6 1543 2954 9560
-14904 2 2 0 6 960 961 962
-14905 2 2 0 6 2214 2377 2376
-14906 2 2 0 6 2685 2895 2686
-14907 2 2 0 6 3710 4996 5638
-14908 2 2 0 6 5519 8868 6659
-14909 2 2 0 6 2675 4501 9462
-14910 2 2 0 6 5233 7067 9694
-14911 2 2 0 6 754 755 756
-14912 2 2 0 6 1963 2252 1964
-14913 2 2 0 6 3274 3276 3277
-14914 2 2 0 6 1798 1884 9928
-14915 2 2 0 6 6723 7200 7170
-14916 2 2 0 6 2462 3664 9015
-14917 2 2 0 6 2268 9067 2271
-14918 2 2 0 6 572 575 574
-14919 2 2 0 6 1547 1549 1548
-14920 2 2 0 6 2711 2713 2714
-14921 2 2 0 6 4537 4573 5319
-14922 2 2 0 6 4470 6452 4472
-14923 2 2 0 6 8069 8074 9801
-14924 2 2 0 6 987 998 986
-14925 2 2 0 6 2012 2014 2013
-14926 2 2 0 6 2155 3574 2153
-14927 2 2 0 6 3608 9211 4009
-14928 2 2 0 6 3010 3013 8301
-14929 2 2 0 6 6207 8978 8979
-14930 2 2 0 6 2271 9067 3521
-14931 2 2 0 6 1541 1543 1542
-14932 2 2 0 6 1726 1728 1727
-14933 2 2 0 6 2629 2695 2630
-14934 2 2 0 6 2958 2960 2962
-14935 2 2 0 6 4714 4715 5203
-14936 2 2 0 6 4623 4677 6740
-14937 2 2 0 6 6755 6756 6769
-14938 2 2 0 6 6194 7081 7080
-14939 2 2 0 6 1219 1235 10444
-14940 2 2 0 6 4161 4766 4765
-14941 2 2 0 6 5317 9037 7497
-14942 2 2 0 6 1180 1181 1191
-14943 2 2 0 6 2078 2126 2127
-14944 2 2 0 6 2806 2984 2983
-14945 2 2 0 6 3621 4277 4177
-14946 2 2 0 6 4520 8167 8168
-14947 2 2 0 6 3849 9159 4644
-14948 2 2 0 6 3297 9383 4718
-14949 2 2 0 6 8967 9894 9763
-14950 2 2 0 6 958 961 960
-14951 2 2 0 6 980 987 986
-14952 2 2 0 6 1658 1659 1657
-14953 2 2 0 6 4742 5560 6203
-14954 2 2 0 6 7035 7036 7037
-14955 2 2 0 6 7782 9321 7784
-14956 2 2 0 6 3930 6450 9528
-14957 2 2 0 6 1545 1547 1546
-14958 2 2 0 6 5717 5719 5718
-14959 2 2 0 6 6284 6470 7244
-14960 2 2 0 6 3669 8080 3827
-14961 2 2 0 6 229 230 482
-14962 2 2 0 6 4160 5682 4841
-14963 2 2 0 6 3836 4675 5803
-14964 2 2 0 6 5215 5216 7056
-14965 2 2 0 6 1159 1188 1186
-14966 2 2 0 6 1996 1998 1997
-14967 2 2 0 6 2139 2141 2140
-14968 2 2 0 6 5015 5844 5335
-14969 2 2 0 6 4655 6157 5120
-14970 2 2 0 6 867 9343 869
-14971 2 2 0 6 8372 9724 9337
-14972 2 2 0 6 1104 1137 2596
-14973 2 2 0 6 3175 3271 3270
-14974 2 2 0 6 3298 3888 4269
-14975 2 2 0 6 5661 6133 5663
-14976 2 2 0 6 7032 7034 7033
-14977 2 2 0 6 4139 8490 4703
-14978 2 2 0 6 624 627 8885
-14979 2 2 0 6 7469 10331 10132
-14980 2 2 0 6 3928 4519 3930
-14981 2 2 0 6 7298 7300 7299
-14982 2 2 0 6 6150 9698 6151
-14983 2 2 0 6 851 853 9865
-14984 2 2 0 6 1719 1720 1768
-14985 2 2 0 6 2318 2319 2402
-14986 2 2 0 6 4480 4482 4481
-14987 2 2 0 6 4547 4694 5779
-14988 2 2 0 6 1819 1902 9966
-14989 2 2 0 6 2612 3520 9479
-14990 2 2 0 6 5053 7738 9742
-14991 2 2 0 6 4516 10008 5679
-14992 2 2 0 6 5553 9142 5554
-14993 2 2 0 6 3686 4169 4749
-14994 2 2 0 6 884 9471 891
-14995 2 2 0 6 4769 5266 9514
-14996 2 2 0 6 1322 1438 1439
-14997 2 2 0 6 2958 2959 2960
-14998 2 2 0 6 1291 1356 3644
-14999 2 2 0 6 3457 3185 4196
-15000 2 2 0 6 4312 4313 4655
-15001 2 2 0 6 4841 5682 5923
-15002 2 2 0 6 1188 9415 4030
-15003 2 2 0 6 1321 9673 5693
-15004 2 2 0 6 2220 2222 9570
-15005 2 2 0 6 780 784 786
-15006 2 2 0 6 1706 1709 1708
-15007 2 2 0 6 1683 1684 1719
-15008 2 2 0 6 2032 3512 2067
-15009 2 2 0 6 2702 2704 3614
-15010 2 2 0 6 4707 5216 5215
-15011 2 2 0 6 2010 2012 2011
-15012 2 2 0 6 2957 2958 2956
-15013 2 2 0 6 2926 4796 3694
-15014 2 2 0 6 1653 8839 1660
-15015 2 2 0 6 3619 8835 9361
-15016 2 2 0 6 6742 9648 6743
-15017 2 2 0 6 7036 7038 7037
-15018 2 2 0 6 3600 4014 9469
-15019 2 2 0 6 6418 9886 9950
-15020 2 2 0 6 2391 2518 2392
-15021 2 2 0 6 2787 2884 2883
-15022 2 2 0 6 3303 4308 4309
-15023 2 2 0 6 3161 4187 9323
-15024 2 2 0 6 975 3372 10007
-15025 2 2 0 6 236 237 459
-15026 2 2 0 6 2220 2223 2221
-15027 2 2 0 6 3287 3288 3297
-15028 2 2 0 6 4180 4948 4949
-15029 2 2 0 6 5740 5741 5825
-15030 2 2 0 6 1770 9397 1790
-15031 2 2 0 6 3784 3787 3786
-15032 2 2 0 6 3803 4264 9482
-15033 2 2 0 6 2832 8717 9477
-15034 2 2 0 6 3169 9917 9366
-15035 2 2 0 6 4150 4858 4857
-15036 2 2 0 6 4367 4616 5632
-15037 2 2 0 6 6556 8560 6557
-15038 2 2 0 6 999 1008 998
-15039 2 2 0 6 1768 1769 1870
-15040 2 2 0 6 2208 2330 2329
-15041 2 2 0 6 2967 3640 3639
-15042 2 2 0 6 2377 9578 3645
-15043 2 2 0 6 1926 9233 3052
-15044 2 2 0 6 1669 1671 1672
-15045 2 2 0 6 2536 2720 2538
-15046 2 2 0 6 5128 6015 6014
-15047 2 2 0 6 883 1039 9937
-15048 2 2 0 6 2600 9380 9096
-15049 2 2 0 6 1044 5707 9437
-15050 2 2 0 6 3218 4121 9789
-15051 2 2 0 6 885 893 9858
-15052 2 2 0 6 4040 4496 4497
-15053 2 2 0 6 7033 7034 7035
-15054 2 2 0 6 3311 7543 4302
-15055 2 2 0 6 3397 9049 3401
-15056 2 2 0 6 4330 5540 9393
-15057 2 2 0 6 4950 5311 5935
-15058 2 2 0 6 5298 6329 5754
-15059 2 2 0 6 1055 1207 9308
-15060 2 2 0 6 7667 9836 10158
-15061 2 2 0 6 5888 7214 5890
-15062 2 2 0 6 3175 3270 3269
-15063 2 2 0 6 4971 4973 4972
-15064 2 2 0 6 7319 7320 7328
-15065 2 2 0 6 4564 7276 9281
-15066 2 2 0 6 1034 1102 8904
-15067 2 2 0 6 2343 8996 9227
-15068 2 2 0 6 2799 9349 2802
-15069 2 2 0 6 8326 9615 8327
-15070 2 2 0 6 3931 8924 4292
-15071 2 2 0 6 1566 1588 1568
-15072 2 2 0 6 4662 5174 6141
-15073 2 2 0 6 4857 4858 6231
-15074 2 2 0 6 1225 1754 9483
-15075 2 2 0 6 3014 3015 9757
-15076 2 2 0 6 2549 2722 2552
-15077 2 2 0 6 6618 7454 6563
-15078 2 2 0 6 766 769 772
-15079 2 2 0 6 1506 3690 1807
-15080 2 2 0 6 3640 5006 4469
-15081 2 2 0 6 6232 6235 6236
-15082 2 2 0 6 6145 6951 6152
-15083 2 2 0 6 6062 9064 9063
-15084 2 2 0 6 7284 9148 7287
-15085 2 2 0 6 6461 9624 8802
-15086 2 2 0 6 2913 4075 9710
-15087 2 2 0 6 6497 9946 10000
-15088 2 2 0 6 3225 3226 3845
-15089 2 2 0 6 4165 4188 4802
-15090 2 2 0 6 2877 8733 9279
-15091 2 2 0 6 5728 9473 7258
-15092 2 2 0 6 5200 10072 9693
-15093 2 2 0 6 2319 2403 2402
-15094 2 2 0 6 3336 3910 3911
-15095 2 2 0 6 3516 9001 3518
-15096 2 2 0 6 3636 10620 10633
-15097 2 2 0 6 6698 10478 9625
-15098 2 2 0 6 3883 4685 4843
-15099 2 2 0 6 3916 5622 9266
-15100 2 2 0 6 2008 2010 2009
-15101 2 2 0 6 2593 2592 2594
-15102 2 2 0 6 1194 3506 1218
-15103 2 2 0 6 3788 3787 3789
-15104 2 2 0 6 5933 6111 6030
-15105 2 2 0 6 5345 7427 6049
-15106 2 2 0 6 3406 9314 3442
-15107 2 2 0 6 240 241 408
-15108 2 2 0 6 2695 3209 3208
-15109 2 2 0 6 4777 7339 7338
-15110 2 2 0 6 7093 7776 7777
-15111 2 2 0 6 2919 8368 9820
-15112 2 2 0 6 2912 3346 3217
-15113 2 2 0 6 3194 4065 4064
-15114 2 2 0 6 6391 8279 8280
-15115 2 2 0 6 1131 9325 1143
-15116 2 2 0 6 1728 1730 1729
-15117 2 2 0 6 2178 2190 2191
-15118 2 2 0 6 5603 6600 6601
-15119 2 2 0 6 2680 4149 9334
-15120 2 2 0 6 4526 4529 4528
-15121 2 2 0 6 1725 5510 5511
-15122 2 2 0 6 4824 5628 5627
-15123 2 2 0 6 5203 9044 9045
-15124 2 2 0 6 6429 9358 9180
-15125 2 2 0 6 3497 3802 9476
-15126 2 2 0 6 2289 2295 8614
-15127 2 2 0 6 3367 9593 3672
-15128 2 2 0 6 225 226 424
-15129 2 2 0 6 2223 2225 2224
-15130 2 2 0 6 4815 4816 4814
-15131 2 2 0 6 5102 6705 6080
-15132 2 2 0 6 5862 7428 7429
-15133 2 2 0 6 6416 9356 9131
-15134 2 2 0 6 2252 9386 2601
-15135 2 2 0 6 5517 9600 8614
-15136 2 2 0 6 1744 1741 1746
-15137 2 2 0 6 2222 2955 2956
-15138 2 2 0 6 5647 5648 5649
-15139 2 2 0 6 4609 6067 4610
-15140 2 2 0 6 3173 3695 9692
-15141 2 2 0 6 7930 7931 9902
-15142 2 2 0 6 2482 2673 2655
-15143 2 2 0 6 4280 5712 5710
-15144 2 2 0 6 6176 7801 8437
-15145 2 2 0 6 4722 6328 9495
-15146 2 2 0 6 1834 1835 1962
-15147 2 2 0 6 2805 2983 3234
-15148 2 2 0 6 4000 4457 4458
-15149 2 2 0 6 5682 5924 5923
-15150 2 2 0 6 3554 9266 3556
-15151 2 2 0 6 1870 1963 1871
-15152 2 2 0 6 2598 2871 2872
-15153 2 2 0 6 5019 5922 5906
-15154 2 2 0 6 1557 8438 1869
-15155 2 2 0 6 2191 2366 2672
-15156 2 2 0 6 1870 9282 5700
-15157 2 2 0 6 317 318 431
-15158 2 2 0 6 1666 1668 1669
-15159 2 2 0 6 5071 6226 5806
-15160 2 2 0 6 6235 6237 6236
-15161 2 2 0 6 5166 6725 5167
-15162 2 2 0 6 1377 8890 1380
-15163 2 2 0 6 2716 2831 2832
-15164 2 2 0 6 4320 4319 4321
-15165 2 2 0 6 4613 5168 5179
-15166 2 2 0 6 1097 5731 1130
-15167 2 2 0 6 6507 8138 8137
-15168 2 2 0 6 6208 7028 9353
-15169 2 2 0 6 2043 2044 2045
-15170 2 2 0 6 5995 5996 5997
-15171 2 2 0 6 2150 8414 8415
-15172 2 2 0 6 1288 9147 1289
-15173 2 2 0 6 2524 2697 2696
-15174 2 2 0 6 3789 3811 3790
-15175 2 2 0 6 4393 9811 8494
-15176 2 2 0 6 5776 6691 6692
-15177 2 2 0 6 1104 2596 9596
-15178 2 2 0 6 6508 10063 8158
-15179 2 2 0 6 5838 10137 8684
-15180 2 2 0 6 2655 2673 2674
-15181 2 2 0 6 4106 4921 4922
-15182 2 2 0 6 4101 4951 4396
-15183 2 2 0 6 6151 6526 6525
-15184 2 2 0 6 6434 6435 9889
-15185 2 2 0 6 58 9954 442
-15186 2 2 0 6 1061 1064 1063
-15187 2 2 0 6 4602 4651 4652
-15188 2 2 0 6 2392 4033 9244
-15189 2 2 0 6 1656 1658 1657
-15190 2 2 0 6 5434 9274 8044
-15191 2 2 0 6 2638 2787 2882
-15192 2 2 0 6 4315 4317 4318
-15193 2 2 0 6 987 8766 3528
-15194 2 2 0 6 2276 9109 2285
-15195 2 2 0 6 2034 3654 9377
-15196 2 2 0 6 5529 5851 9527
-15197 2 2 0 6 1976 2680 9334
-15198 2 2 0 6 5540 5541 7498
-15199 2 2 0 6 2960 2963 9671
-15200 2 2 0 6 6413 9231 9230
-15201 2 2 0 6 4769 9514 6227
-15202 2 2 0 6 764 765 766
-15203 2 2 0 6 2366 2457 2458
-15204 2 2 0 6 2790 2792 4432
-15205 2 2 0 6 5370 7195 7208
-15206 2 2 0 6 444 7415 7397
-15207 2 2 0 6 6399 7619 10181
-15208 2 2 0 6 346 9666 534
-15209 2 2 0 6 1993 1996 1995
-15210 2 2 0 6 2831 2833 2832
-15211 2 2 0 6 2004 3611 4454
-15212 2 2 0 6 2007 2009 9716
-15213 2 2 0 6 1834 1962 4956
-15214 2 2 0 6 1796 9438 9008
-15215 2 2 0 6 4746 7131 6172
-15216 2 2 0 6 5204 5208 9044
-15217 2 2 0 6 5080 9333 5083
-15218 2 2 0 6 2668 2669 2670
-15219 2 2 0 6 4196 5018 4197
-15220 2 2 0 6 4429 4963 5723
-15221 2 2 0 6 1882 2150 9872
-15222 2 2 0 6 4548 9116 5531
-15223 2 2 0 6 8914 9290 9540
-15224 2 2 0 6 6870 6871 6872
-15225 2 2 0 6 5601 6434 9038
-15226 2 2 0 6 4745 9390 5675
-15227 2 2 0 6 1294 1296 9424
-15228 2 2 0 6 1910 2182 2183
-15229 2 2 0 6 2709 2710 2711
-15230 2 2 0 6 3010 3012 3013
-15231 2 2 0 6 3776 3779 3778
-15232 2 2 0 6 1055 9308 1057
-15233 2 2 0 6 1008 1020 8644
-15234 2 2 0 6 2563 8685 9875
-15235 2 2 0 6 6505 9061 9062
-15236 2 2 0 6 3101 4048 9500
-15237 2 2 0 6 1090 5559 9371
-15238 2 2 0 6 1501 2217 2216
-15239 2 2 0 6 2644 2645 3009
-15240 2 2 0 6 2592 4027 2594
-15241 2 2 0 6 5036 9173 8004
-15242 2 2 0 6 4616 6290 7995
-15243 2 2 0 6 5300 6255 5437
-15244 2 2 0 6 2988 8632 3794
-15245 2 2 0 6 2216 2218 8993
-15246 2 2 0 6 3798 4261 9835
-15247 2 2 0 6 2217 2219 2218
-15248 2 2 0 6 2335 2336 2492
-15249 2 2 0 6 5043 6600 5603
-15250 2 2 0 6 6594 7255 7254
-15251 2 2 0 6 4710 4711 7695
-15252 2 2 0 6 6865 7722 7721
-15253 2 2 0 6 1386 9418 9006
-15254 2 2 0 6 9169 9167 9197
-15255 2 2 0 6 3554 3556 3555
-15256 2 2 0 6 4065 5029 5028
-15257 2 2 0 6 3996 4903 5740
-15258 2 2 0 6 5324 5327 7354
-15259 2 2 0 6 5310 6507 8137
-15260 2 2 0 6 2837 2838 9427
-15261 2 2 0 6 1489 1510 1509
-15262 2 2 0 6 2231 2233 2232
-15263 2 2 0 6 1153 1163 3626
-15264 2 2 0 6 5601 9038 8890
-15265 2 2 0 6 3528 8766 8767
-15266 2 2 0 6 2219 2222 2220
-15267 2 2 0 6 3780 3783 3782
-15268 2 2 0 6 2768 9710 4067
-15269 2 2 0 6 1642 9699 1643
-15270 2 2 0 6 3170 5941 5940
-15271 2 2 0 6 5659 8330 5661
-15272 2 2 0 6 1622 9342 1624
-15273 2 2 0 6 7532 10185 10203
-15274 2 2 0 6 2329 2330 2331
-15275 2 2 0 6 3575 8495 9092
-15276 2 2 0 6 3102 4425 9426
-15277 2 2 0 6 2125 2136 9630
-15278 2 2 0 6 1079 1082 1085
-15279 2 2 0 6 1149 2316 1161
-15280 2 2 0 6 3578 4039 4040
-15281 2 2 0 6 1276 9536 1309
-15282 2 2 0 6 2222 2956 4477
-15283 2 2 0 6 2019 5713 2021
-15284 2 2 0 6 3507 10158 9836
-15285 2 2 0 6 6526 6867 6527
-15286 2 2 0 6 1543 9560 1545
-15287 2 2 0 6 1075 1076 1077
-15288 2 2 0 6 1731 1730 1732
-15289 2 2 0 6 2034 2036 2035
-15290 2 2 0 6 2392 2518 2519
-15291 2 2 0 6 3027 3030 3029
-15292 2 2 0 6 3274 3275 3276
-15293 2 2 0 6 2010 3475 2012
-15294 2 2 0 6 5158 5521 6822
-15295 2 2 0 6 777 8975 779
-15296 2 2 0 6 7558 7570 7805
-15297 2 2 0 6 1382 1383 9006
-15298 2 2 0 6 2355 9214 2521
-15299 2 2 0 6 5750 9893 9829
-15300 2 2 0 6 6743 9648 6746
-15301 2 2 0 6 1180 1191 1212
-15302 2 2 0 6 1305 1304 1321
-15303 2 2 0 6 881 885 9858
-15304 2 2 0 6 3102 3103 3935
-15305 2 2 0 6 5144 6788 6787
-15306 2 2 0 6 3114 9552 8946
-15307 2 2 0 6 1282 1358 1320
-15308 2 2 0 6 3029 9154 9283
-15309 2 2 0 6 3018 10029 8506
-15310 2 2 0 6 238 239 541
-15311 2 2 0 6 4151 9284 4153
-15312 2 2 0 6 1041 1141 1042
-15313 2 2 0 6 1949 1950 1951
-15314 2 2 0 6 7283 7284 7285
-15315 2 2 0 6 7295 7296 7297
-15316 2 2 0 6 3633 9439 4201
-15317 2 2 0 6 4369 4520 9579
-15318 2 2 0 6 7305 7315 9798
-15319 2 2 0 6 3821 4227 3829
-15320 2 2 0 6 4486 4488 4487
-15321 2 2 0 6 4407 5191 5192
-15322 2 2 0 6 4153 9284 4570
-15323 2 2 0 6 7721 7722 7723
-15324 2 2 0 6 5113 9696 6712
-15325 2 2 0 6 5058 5059 5060
-15326 2 2 0 6 3413 9332 3613
-15327 2 2 0 6 4770 5694 5042
-15328 2 2 0 6 3959 8945 4830
-15329 2 2 0 6 2711 2714 3637
-15330 2 2 0 6 4624 4678 4677
-15331 2 2 0 6 5173 5181 5233
-15332 2 2 0 6 4969 9034 9405
-15333 2 2 0 6 8426 10247 10252
-15334 2 2 0 6 1810 1941 1940
-15335 2 2 0 6 5898 7226 6635
-15336 2 2 0 6 4339 5439 8507
-15337 2 2 0 6 3184 8895 3183
-15338 2 2 0 6 1545 9560 8668
-15339 2 2 0 6 3938 3940 3939
-15340 2 2 0 6 3106 4486 3112
-15341 2 2 0 6 4339 8507 5855
-15342 2 2 0 6 2764 2765 2766
-15343 2 2 0 6 1603 9194 3918
-15344 2 2 0 6 7620 7621 6393
-15345 2 2 0 6 4612 5913 9470
-15346 2 2 0 6 3444 4113 8863
-15347 2 2 0 6 824 3708 9123
-15348 2 2 0 6 1714 1713 1717
-15349 2 2 0 6 4081 5053 9742
-15350 2 2 0 6 3845 4645 3846
-15351 2 2 0 6 2278 8647 9109
-15352 2 2 0 6 1015 1026 9432
-15353 2 2 0 6 2216 2217 2218
-15354 2 2 0 6 222 223 486
-15355 2 2 0 6 3772 3773 3774
-15356 2 2 0 6 3787 3844 3789
-15357 2 2 0 6 3954 3955 3956
-15358 2 2 0 6 3745 5073 4567
-15359 2 2 0 6 600 8686 1917
-15360 2 2 0 6 1241 1814 1754
-15361 2 2 0 6 2743 2904 2908
-15362 2 2 0 6 3265 3305 3266
-15363 2 2 0 6 2972 2974 3355
-15364 2 2 0 6 2600 3580 9380
-15365 2 2 0 6 4008 9436 4562
-15366 2 2 0 6 1941 2206 2205
-15367 2 2 0 6 1332 2968 1334
-15368 2 2 0 6 4187 4476 5043
-15369 2 2 0 6 5579 9808 5578
-15370 2 2 0 6 3287 3618 9090
-15371 2 2 0 6 2119 9141 2121
-15372 2 2 0 6 3469 4080 9379
-15373 2 2 0 6 2552 9652 2663
-15374 2 2 0 6 1236 3638 3744
-15375 2 2 0 6 1096 9371 1146
-15376 2 2 0 6 1880 2595 9438
-15377 2 2 0 6 4858 9504 6234
-15378 2 2 0 6 6407 9380 9509
-15379 2 2 0 6 5647 9785 5646
-15380 2 2 0 6 5831 9796 10195
-15381 2 2 0 6 1735 1734 1745
-15382 2 2 0 6 3759 6078 3760
-15383 2 2 0 6 5074 6594 6593
-15384 2 2 0 6 7785 7787 9681
-15385 2 2 0 6 4177 4277 4307
-15386 2 2 0 6 2966 9510 3018
-15387 2 2 0 6 1292 1318 1319
-15388 2 2 0 6 3004 3806 3805
-15389 2 2 0 6 4809 5323 4811
-15390 2 2 0 6 5536 9200 8952
-15391 2 2 0 6 6546 6547 7222
-15392 2 2 0 6 6553 8060 10421
-15393 2 2 0 6 8266 8267 10452
-15394 2 2 0 6 1783 9462 5789
-15395 2 2 0 6 3419 3430 9688
-15396 2 2 0 6 1510 1803 1767
-15397 2 2 0 6 2669 4491 2910
-15398 2 2 0 6 4444 5926 5033
-15399 2 2 0 6 4798 4990 5821
-15400 2 2 0 6 5432 7673 6385
-15401 2 2 0 6 648 651 8960
-15402 2 2 0 6 2364 2619 2618
-15403 2 2 0 6 4308 5303 4309
-15404 2 2 0 6 817 9071 9388
-15405 2 2 0 6 2279 9391 8891
-15406 2 2 0 6 5802 9502 5801
-15407 2 2 0 6 2993 9518 4799
-15408 2 2 0 6 5610 6612 9420
-15409 2 2 0 6 7004 7474 7475
-15410 2 2 0 6 3912 9175 5544
-15411 2 2 0 6 1020 1021 1031
-15412 2 2 0 6 779 8975 1025
-15413 2 2 0 6 1873 1968 8316
-15414 2 2 0 6 1676 9134 1678
-15415 2 2 0 6 1023 4960 9286
-15416 2 2 0 6 2901 3204 3207
-15417 2 2 0 6 3195 3554 3555
-15418 2 2 0 6 1299 1301 3659
-15419 2 2 0 6 4264 4263 5127
-15420 2 2 0 6 6077 9623 9724
-15421 2 2 0 6 1090 1093 1089
-15422 2 2 0 6 1784 1806 1805
-15423 2 2 0 6 2628 2932 2931
-15424 2 2 0 6 2892 3195 3194
-15425 2 2 0 6 5935 7205 7206
-15426 2 2 0 6 3395 9049 3397
-15427 2 2 0 6 1664 1665 1666
-15428 2 2 0 6 4816 4817 4818
-15429 2 2 0 6 4617 5169 5011
-15430 2 2 0 6 3774 3836 9867
-15431 2 2 0 6 4090 4092 9146
-15432 2 2 0 6 5892 9328 9245
-15433 2 2 0 6 2315 9813 9938
-15434 2 2 0 6 585 1922 587
-15435 2 2 0 6 3385 5087 5724
-15436 2 2 0 6 5385 7359 7513
-15437 2 2 0 6 1176 9466 1194
-15438 2 2 0 6 2819 9338 3562
-15439 2 2 0 6 4618 9444 6498
-15440 2 2 0 6 3719 4188 4165
-15441 2 2 0 6 4506 4056 4507
-15442 2 2 0 6 3744 3745 4566
-15443 2 2 0 6 4219 5111 5110
-15444 2 2 0 6 4745 5675 5279
-15445 2 2 0 6 4858 6232 6231
-15446 2 2 0 6 5673 5674 10060
-15447 2 2 0 6 5311 7205 5935
-15448 2 2 0 6 1124 9257 4166
-15449 2 2 0 6 3113 9589 3958
-15450 2 2 0 6 6477 9933 6478
-15451 2 2 0 6 9344 9961 10129
-15452 2 2 0 6 6540 10250 9679
-15453 2 2 0 6 36 37 413
-15454 2 2 0 6 995 996 1000
-15455 2 2 0 6 1073 1076 1075
-15456 2 2 0 6 4533 5904 4975
-15457 2 2 0 6 4724 9059 5619
-15458 2 2 0 6 315 316 542
-15459 2 2 0 6 1077 1078 1079
-15460 2 2 0 6 2833 2892 2891
-15461 2 2 0 6 1978 9310 2342
-15462 2 2 0 6 3926 9106 9628
-15463 2 2 0 6 5940 5941 5995
-15464 2 2 0 6 4683 6253 5225
-15465 2 2 0 6 7893 10281 7894
-15466 2 2 0 6 3733 9249 3734
-15467 2 2 0 6 1085 1086 1089
-15468 2 2 0 6 3111 3366 3367
-15469 2 2 0 6 376 8240 8875
-15470 2 2 0 6 6342 8081 9658
-15471 2 2 0 6 2976 2977 2979
-15472 2 2 0 6 4162 4164 4163
-15473 2 2 0 6 4332 9316 5144
-15474 2 2 0 6 1225 1241 1754
-15475 2 2 0 6 6344 7526 6346
-15476 2 2 0 6 3471 8737 11003
-15477 2 2 0 6 4304 8446 5300
-15478 2 2 0 6 2798 9898 9348
-15479 2 2 0 6 1946 1948 1949
-15480 2 2 0 6 7904 6421 8535
-15481 2 2 0 6 5598 7770 9300
-15482 2 2 0 6 393 394 494
-15483 2 2 0 6 4555 9094 5936
-15484 2 2 0 6 4976 5951 5972
-15485 2 2 0 6 2233 2235 2234
-15486 2 2 0 6 3773 4265 3836
-15487 2 2 0 6 4276 4283 4284
-15488 2 2 0 6 3694 4796 4797
-15489 2 2 0 6 1944 2444 4966
-15490 2 2 0 6 6148 6862 6861
-15491 2 2 0 6 5823 7428 5862
-15492 2 2 0 6 4776 5598 9300
-15493 2 2 0 6 5325 9245 9328
-15494 2 2 0 6 3774 9867 3776
-15495 2 2 0 6 1093 1096 1131
-15496 2 2 0 6 3556 3558 3557
-15497 2 2 0 6 7218 7220 7219
-15498 2 2 0 6 1063 9341 1067
-15499 2 2 0 6 3638 9369 3745
-15500 2 2 0 6 7539 9699 9786
-15501 2 2 0 6 2605 2607 9626
-15502 2 2 0 6 3799 10193 10053
-15503 2 2 0 6 5816 10013 8157
-15504 2 2 0 6 1260 1262 8879
-15505 2 2 0 6 4055 3227 4056
-15506 2 2 0 6 4065 5706 5029
-15507 2 2 0 6 721 9564 9395
-15508 2 2 0 6 2959 8809 2961
-15509 2 2 0 6 3608 3622 9211
-15510 2 2 0 6 6408 9414 8833
-15511 2 2 0 6 1059 3593 9511
-15512 2 2 0 6 2996 3230 3825
-15513 2 2 0 6 3157 3928 3930
-15514 2 2 0 6 4023 8157 9278
-15515 2 2 0 6 1723 1766 1724
-15516 2 2 0 6 2675 2676 2764
-15517 2 2 0 6 5407 8574 9967
-15518 2 2 0 6 3335 4994 3910
-15519 2 2 0 6 4478 5859 5860
-15520 2 2 0 6 2109 4596 9267
-15521 2 2 0 6 3167 3169 9366
-15522 2 2 0 6 4492 4511 4513
-15523 2 2 0 6 5057 5753 5059
-15524 2 2 0 6 3525 9214 5616
-15525 2 2 0 6 5137 6604 6766
-15526 2 2 0 6 6134 6791 6895
-15527 2 2 0 6 689 8965 691
-15528 2 2 0 6 6442 9588 9927
-15529 2 2 0 6 1096 1145 1131
-15530 2 2 0 6 2206 2319 2318
-15531 2 2 0 6 3822 6445 9593
-15532 2 2 0 6 1037 1097 1098
-15533 2 2 0 6 4813 4815 4814
-15534 2 2 0 6 5135 5136 5137
-15535 2 2 0 6 4921 8336 6347
-15536 2 2 0 6 5300 8446 7201
-15537 2 2 0 6 2293 3627 9250
-15538 2 2 0 6 2643 3759 3001
-15539 2 2 0 6 6515 6536 6517
-15540 2 2 0 6 6674 6816 6817
-15541 2 2 0 6 2807 3312 8041
-15542 2 2 0 6 3423 9315 3426
-15543 2 2 0 6 1791 1834 9594
-15544 2 2 0 6 1082 1086 1085
-15545 2 2 0 6 3399 4002 9100
-15546 2 2 0 6 5377 7550 7549
-15547 2 2 0 6 5565 9130 9129
-15548 2 2 0 6 3734 9249 3902
-15549 2 2 0 6 4714 9569 5200
-15550 2 2 0 6 5155 6792 10130
-15551 2 2 0 6 2892 3194 2891
-15552 2 2 0 6 4194 4191 4957
-15553 2 2 0 6 1293 5874 6587
-15554 2 2 0 6 1383 1386 9006
-15555 2 2 0 6 1493 9536 5630
-15556 2 2 0 6 4549 5937 9320
-15557 2 2 0 6 4239 4670 4710
-15558 2 2 0 6 1414 1416 9030
-15559 2 2 0 6 817 9388 816
-15560 2 2 0 6 1008 1009 1020
-15561 2 2 0 6 1825 1912 1913
-15562 2 2 0 6 3101 9500 3380
-15563 2 2 0 6 2004 9305 2005
-15564 2 2 0 6 1732 1743 1734
-15565 2 2 0 6 2766 2767 2768
-15566 2 2 0 6 1090 1096 1093
-15567 2 2 0 6 2318 2402 2621
-15568 2 2 0 6 3820 4011 4010
-15569 2 2 0 6 3157 3930 9528
-15570 2 2 0 6 2650 2919 2651
-15571 2 2 0 6 2886 2887 3170
-15572 2 2 0 6 2770 4213 4212
-15573 2 2 0 6 5610 9420 7146
-15574 2 2 0 6 5044 6621 6622
-15575 2 2 0 6 6404 9162 6405
-15576 2 2 0 6 3366 3822 3367
-15577 2 2 0 6 3040 3893 3303
-15578 2 2 0 6 4285 5422 4771
-15579 2 2 0 6 985 9816 996
-15580 2 2 0 6 4237 9402 4280
-15581 2 2 0 6 2141 2143 2142
-15582 2 2 0 6 3495 3497 3891
-15583 2 2 0 6 4196 5778 5018
-15584 2 2 0 6 4439 9775 8906
-15585 2 2 0 6 700 2152 8912
-15586 2 2 0 6 2609 9361 2900
-15587 2 2 0 6 4567 5074 5075
-15588 2 2 0 6 5359 5835 7532
-15589 2 2 0 6 3284 3287 9090
-15590 2 2 0 6 2659 2741 3507
-15591 2 2 0 6 2150 8415 9872
-15592 2 2 0 6 5868 10006 8495
-15593 2 2 0 6 1658 1661 1659
-15594 2 2 0 6 4482 4837 4484
-15595 2 2 0 6 3962 4824 5627
-15596 2 2 0 6 5027 5620 5916
-15597 2 2 0 6 1769 9282 1870
-15598 2 2 0 6 2350 2487 10154
-15599 2 2 0 6 5755 5756 9991
-15600 2 2 0 6 1078 1082 1079
-15601 2 2 0 6 3956 4275 4276
-15602 2 2 0 6 4487 4647 4649
-15603 2 2 0 6 4609 6113 6067
-15604 2 2 0 6 5303 5738 6199
-15605 2 2 0 6 4996 6258 5959
-15606 2 2 0 6 3785 4115 9025
-15607 2 2 0 6 3733 5572 9249
-15608 2 2 0 6 1556 10970 1558
-15609 2 2 0 6 1815 1814 1816
-15610 2 2 0 6 2504 9227 2855
-15611 2 2 0 6 4531 5052 5117
-15612 2 2 0 6 3047 8013 9440
-15613 2 2 0 6 1398 9924 8529
-15614 2 2 0 6 1816 1818 1817
-15615 2 2 0 6 2639 2725 3002
-15616 2 2 0 6 5179 6155 5606
-15617 2 2 0 6 5236 5564 6195
-15618 2 2 0 6 7763 7766 7767
-15619 2 2 0 6 593 713 594
-15620 2 2 0 6 2222 4477 9570
-15621 2 2 0 6 1290 1291 9221
-15622 2 2 0 6 1818 1823 1819
-15623 2 2 0 6 3958 4819 3961
-15624 2 2 0 6 586 9065 1520
-15625 2 2 0 6 5454 6829 6828
-15626 2 2 0 6 2849 3309 9604
-15627 2 2 0 6 2343 9227 2504
-15628 2 2 0 6 2883 2885 2886
-15629 2 2 0 6 1251 1254 3636
-15630 2 2 0 6 3418 3419 9688
-15631 2 2 0 6 6357 8506 10029
-15632 2 2 0 6 4648 6652 6653
-15633 2 2 0 6 5400 8962 6023
-15634 2 2 0 6 1803 5501 8887
-15635 2 2 0 6 4118 9069 5100
-15636 2 2 0 6 1210 1211 1232
-15637 2 2 0 6 2832 2833 2891
-15638 2 2 0 6 4434 4435 4436
-15639 2 2 0 6 4596 6406 9267
-15640 2 2 0 6 3742 9452 4070
-15641 2 2 0 6 2132 9828 2354
-15642 2 2 0 6 3808 4618 4260
-15643 2 2 0 6 651 652 9635
-15644 2 2 0 6 2094 8203 2098
-15645 2 2 0 6 4418 10505 9134
-15646 2 2 0 6 3084 8927 3087
-15647 2 2 0 6 4786 9265 5270
-15648 2 2 0 6 5697 9763 9894
-15649 2 2 0 6 1086 1090 1089
-15650 2 2 0 6 1823 1944 1901
-15651 2 2 0 6 2225 2484 2370
-15652 2 2 0 6 4312 4655 5120
-15653 2 2 0 6 7075 10483 10707
-15654 2 2 0 6 2002 3611 2004
-15655 2 2 0 6 4282 4651 4602
-15656 2 2 0 6 4432 4433 4434
-15657 2 2 0 6 1846 9144 1848
-15658 2 2 0 6 33 34 484
-15659 2 2 0 6 4722 9495 9059
-15660 2 2 0 6 208 209 533
-15661 2 2 0 6 2218 2219 2220
-15662 2 2 0 6 2370 2485 2371
-15663 2 2 0 6 2078 2127 5671
-15664 2 2 0 6 5170 5429 6158
-15665 2 2 0 6 2789 8042 2791
-15666 2 2 0 6 3822 6443 6444
-15667 2 2 0 6 6015 6729 6016
-15668 2 2 0 6 6729 6837 6730
-15669 2 2 0 6 4717 9313 5674
-15670 2 2 0 6 3280 3279 9467
-15671 2 2 0 6 3375 9637 3841
-15672 2 2 0 6 1754 1814 1815
-15673 2 2 0 6 667 8601 9632
-15674 2 2 0 6 1215 6038 1256
-15675 2 2 0 6 5169 6611 6610
-15676 2 2 0 6 8948 9568 9129
-15677 2 2 0 6 4838 4839 6252
-15678 2 2 0 6 3366 6443 3822
-15679 2 2 0 6 2307 2513 9290
-15680 2 2 0 6 3755 9804 4111
-15681 2 2 0 6 1267 1290 1292
-15682 2 2 0 6 1819 1823 1901
-15683 2 2 0 6 4812 4813 4814
-15684 2 2 0 6 4702 5235 5193
-15685 2 2 0 6 134 135 414
-15686 2 2 0 6 1268 1290 1267
-15687 2 2 0 6 4010 4011 4533
-15688 2 2 0 6 4532 4612 4613
-15689 2 2 0 6 4425 5716 6454
-15690 2 2 0 6 6488 6490 6491
-15691 2 2 0 6 6513 9695 9202
-15692 2 2 0 6 625 9809 626
-15693 2 2 0 6 3330 4737 4702
-15694 2 2 0 6 4660 6732 5125
-15695 2 2 0 6 5362 5364 5363
-15696 2 2 0 6 4460 4998 9429
-15697 2 2 0 6 605 997 8990
-15698 2 2 0 6 4257 4258 10189
-15699 2 2 0 6 3694 4797 4798
-15700 2 2 0 6 4497 4660 5125
-15701 2 2 0 6 2576 3989 9164
-15702 2 2 0 6 5182 6779 6778
-15703 2 2 0 6 6071 9069 9337
-15704 2 2 0 6 323 423 9218
-15705 2 2 0 6 5075 6593 7250
-15706 2 2 0 6 1815 1816 1817
-15707 2 2 0 6 2463 3576 3575
-15708 2 2 0 6 3576 3578 3577
-15709 2 2 0 6 2276 2278 9109
-15710 2 2 0 6 5821 5823 5822
-15711 2 2 0 6 3926 9628 4780
-15712 2 2 0 6 2859 3535 9672
-15713 2 2 0 6 1077 1076 1078
-15714 2 2 0 6 5558 9027 9465
-15715 2 2 0 6 5029 5706 5944
-15716 2 2 0 6 1557 1559 8438
-15717 2 2 0 6 1319 1506 1507
-15718 2 2 0 6 1817 1818 1819
-15719 2 2 0 6 5022 7156 7082
-15720 2 2 0 6 8649 8650 9920
-15721 2 2 0 6 6041 6042 6040
-15722 2 2 0 6 7033 7035 9189
-15723 2 2 0 6 219 220 432
-15724 2 2 0 6 2367 2463 3575
-15725 2 2 0 6 2875 3106 3105
-15726 2 2 0 6 971 3889 978
-15727 2 2 0 6 1738 1740 8103
-15728 2 2 0 6 1872 1965 1873
-15729 2 2 0 6 4138 10480 9654
-15730 2 2 0 6 5420 9421 7490
-15731 2 2 0 6 2730 9561 2732
-15732 2 2 0 6 1671 1685 1672
-15733 2 2 0 6 4458 4521 4522
-15734 2 2 0 6 4198 5032 4548
-15735 2 2 0 6 2466 8712 3610
-15736 2 2 0 6 5773 10124 8282
-15737 2 2 0 6 4310 10940 4311
-15738 2 2 0 6 1321 1438 1322
-15739 2 2 0 6 2594 2645 2644
-15740 2 2 0 6 3797 3795 3821
-15741 2 2 0 6 4260 4618 5165
-15742 2 2 0 6 5184 6977 6976
-15743 2 2 0 6 3167 9366 3190
-15744 2 2 0 6 3430 9994 9688
-15745 2 2 0 6 5024 5113 5114
-15746 2 2 0 6 1044 4171 5707
-15747 2 2 0 6 4765 4766 6244
-15748 2 2 0 6 3761 4597 9174
-15749 2 2 0 6 4331 4333 9559
-15750 2 2 0 6 5843 8687 10152
-15751 2 2 0 6 129 130 544
-15752 2 2 0 6 1031 1041 1040
-15753 2 2 0 6 3003 3805 4262
-15754 2 2 0 6 5558 9465 8806
-15755 2 2 0 6 324 9172 423
-15756 2 2 0 6 4507 4625 4508
-15757 2 2 0 6 8168 8170 8171
-15758 2 2 0 6 2650 3040 2919
-15759 2 2 0 6 3393 9802 4424
-15760 2 2 0 6 4911 9805 9327
-15761 2 2 0 6 7980 8639 9955
-15762 2 2 0 6 6378 10005 8281
-15763 2 2 0 6 3437 10087 3440
-15764 2 2 0 6 2210 2373 2657
-15765 2 2 0 6 1493 5630 1762
-15766 2 2 0 6 5125 6732 6757
-15767 2 2 0 6 2554 2553 8982
-15768 2 2 0 6 332 535 9262
-15769 2 2 0 6 4192 4195 4945
-15770 2 2 0 6 3558 3642 3641
-15771 2 2 0 6 3261 3885 3262
-15772 2 2 0 6 3890 4723 5774
-15773 2 2 0 6 4525 6606 8066
-15774 2 2 0 6 3642 4192 4191
-15775 2 2 0 6 5675 9732 5677
-15776 2 2 0 6 8679 9895 10092
-15777 2 2 0 6 3003 3004 3805
-15778 2 2 0 6 4957 6004 4958
-15779 2 2 0 6 6221 6485 6486
-15780 2 2 0 6 1450 7240 10408
-15781 2 2 0 6 312 313 439
-15782 2 2 0 6 31 32 549
-15783 2 2 0 6 1038 4287 7011
-15784 2 2 0 6 1671 9339 1716
-15785 2 2 0 6 2186 2463 2367
-15786 2 2 0 6 2645 3012 3010
-15787 2 2 0 6 1107 9459 8175
-15788 2 2 0 6 3336 3335 3910
-15789 2 2 0 6 1746 1772 1748
-15790 2 2 0 6 3577 3578 3808
-15791 2 2 0 6 3474 3820 4010
-15792 2 2 0 6 3942 4773 8716
-15793 2 2 0 6 2489 2613 2612
-15794 2 2 0 6 4922 5400 6023
-15795 2 2 0 6 5677 6221 6220
-15796 2 2 0 6 4840 6284 6245
-15797 2 2 0 6 5354 7191 7192
-15798 2 2 0 6 632 8773 635
-15799 2 2 0 6 4828 6314 9378
-15800 2 2 0 6 4766 9919 7139
-15801 2 2 0 6 1952 1953 1951
-15802 2 2 0 6 1771 9594 9282
-15803 2 2 0 6 5641 8756 9627
-15804 2 2 0 6 2235 2358 2357
-15805 2 2 0 6 1900 5000 2676
-15806 2 2 0 6 645 10905 10939
-15807 2 2 0 6 3989 8123 10089
-15808 2 2 0 6 2805 2806 2983
-15809 2 2 0 6 4957 6011 6004
-15810 2 2 0 6 6204 6205 7007
-15811 2 2 0 6 2214 9578 2377
-15812 2 2 0 6 331 9262 415
-15813 2 2 0 6 3672 3949 3947
-15814 2 2 0 6 6357 10029 6358
-15815 2 2 0 6 3214 3215 4122
-15816 2 2 0 6 2986 3241 3242
-15817 2 2 0 6 3555 3556 3557
-15818 2 2 0 6 2964 9510 2966
-15819 2 2 0 6 2932 3800 3237
-15820 2 2 0 6 4523 4525 4524
-15821 2 2 0 6 2770 9408 4213
-15822 2 2 0 6 1131 1145 9325
-15823 2 2 0 6 996 1005 1000
-15824 2 2 0 6 3726 3725 6654
-15825 2 2 0 6 5922 10669 10428
-15826 2 2 0 6 3741 3843 5049
-15827 2 2 0 6 7285 8635 8957
-15828 2 2 0 6 2367 9092 2368
-15829 2 2 0 6 1853 9748 3446
-15830 2 2 0 6 3611 5780 5298
-15831 2 2 0 6 3114 8967 9763
-15832 2 2 0 6 4905 9185 8523
-15833 2 2 0 6 6743 6746 6745
-15834 2 2 0 6 6040 6042 6880
-15835 2 2 0 6 3278 3281 9198
-15836 2 2 0 6 5544 9175 9576
-15837 2 2 0 6 6264 7185 9646
-15838 2 2 0 6 1141 1159 1142
-15839 2 2 0 6 3847 4644 9345
-15840 2 2 0 6 8974 10019 9905
-15841 2 2 0 6 10085 10182 10124
-15842 2 2 0 6 2446 2474 2633
-15843 2 2 0 6 5087 5088 6026
-15844 2 2 0 6 6005 6118 6117
-15845 2 2 0 6 5325 9328 7448
-15846 2 2 0 6 2091 2093 9634
-15847 2 2 0 6 38 39 545
-15848 2 2 0 6 6314 6316 7227
-15849 2 2 0 6 1837 3536 8994
-15850 2 2 0 6 4533 6471 5904
-15851 2 2 0 6 1376 8890 1377
-15852 2 2 0 6 1808 1807 1909
-15853 2 2 0 6 4818 4950 5009
-15854 2 2 0 6 7283 7285 7417
-15855 2 2 0 6 4691 7704 6167
-15856 2 2 0 6 4122 4124 9210
-15857 2 2 0 6 3092 9098 3095
-15858 2 2 0 6 2293 9250 2298
-15859 2 2 0 6 5016 5335 5927
-15860 2 2 0 6 5854 6350 6599
-15861 2 2 0 6 5748 7499 7658
-15862 2 2 0 6 3517 9298 5536
-15863 2 2 0 6 7298 9823 7761
-15864 2 2 0 6 1506 1807 1507
-15865 2 2 0 6 3575 3576 3577
-15866 2 2 0 6 4320 4619 5164
-15867 2 2 0 6 1672 9841 5430
-15868 2 2 0 6 4101 9191 4951
-15869 2 2 0 6 1976 9334 2595
-15870 2 2 0 6 1685 1691 1686
-15871 2 2 0 6 2485 2650 2486
-15872 2 2 0 6 2787 2883 2882
-15873 2 2 0 6 3635 9644 4268
-15874 2 2 0 6 4566 9330 6009
-15875 2 2 0 6 2406 2558 9708
-15876 2 2 0 6 6310 7851 9879
-15877 2 2 0 6 2122 9630 9367
-15878 2 2 0 6 2323 2468 2467
-15879 2 2 0 6 6593 6594 7254
-15880 2 2 0 6 4468 9655 5237
-15881 2 2 0 6 6436 9363 9722
-15882 2 2 0 6 3380 9500 4160
-15883 2 2 0 6 4674 5376 9031
-15884 2 2 0 6 8467 10037 8611
-15885 2 2 0 6 2395 2396 2559
-15886 2 2 0 6 3629 4180 3635
-15887 2 2 0 6 4611 5913 4612
-15888 2 2 0 6 6256 9019 9018
-15889 2 2 0 6 5680 9480 9382
-15890 2 2 0 6 1909 2184 2182
-15891 2 2 0 6 4529 4531 4530
-15892 2 2 0 6 4743 6249 5537
-15893 2 2 0 6 5182 9212 6779
-15894 2 2 0 6 4230 5408 8857
-15895 2 2 0 6 697 9534 2602
-15896 2 2 0 6 1672 1686 9841
-15897 2 2 0 6 29 30 421
-15898 2 2 0 6 1338 1342 1340
-15899 2 2 0 6 2402 2403 2626
-15900 2 2 0 6 5123 6841 9743
-15901 2 2 0 6 131 132 485
-15902 2 2 0 6 5244 5245 6993
-15903 2 2 0 6 6477 9684 9933
-15904 2 2 0 6 5605 8313 9598
-15905 2 2 0 6 7309 7319 9903
-15906 2 2 0 6 5932 6010 10769
-15907 2 2 0 6 6441 6459 6458
-15908 2 2 0 6 5165 5182 6778
-15909 2 2 0 6 3682 3996 9404
-15910 2 2 0 6 2510 9525 2511
-15911 2 2 0 6 1940 1941 2205
-15912 2 2 0 6 5996 6339 5997
-15913 2 2 0 6 5772 9977 10179
-15914 2 2 0 6 2889 2986 8974
-15915 2 2 0 6 2704 2706 9362
-15916 2 2 0 6 33 484 9416
-15917 2 2 0 6 2838 2840 9426
-15918 2 2 0 6 2284 10058 8739
-15919 2 2 0 6 2591 2592 2593
-15920 2 2 0 6 5335 5844 7171
-15921 2 2 0 6 3500 8947 9635
-15922 2 2 0 6 39 40 9435
-15923 2 2 0 6 5993 7194 5994
-15924 2 2 0 6 878 9437 3714
-15925 2 2 0 6 2473 9850 2635
-15926 2 2 0 6 5790 8544 9647
-15927 2 2 0 6 2929 9929 9587
-15928 2 2 0 6 1965 2254 1966
-15929 2 2 0 6 2553 2694 4459
-15930 2 2 0 6 6431 6432 9725
-15931 2 2 0 6 2182 9481 2359
-15932 2 2 0 6 339 340 9537
-15933 2 2 0 6 2981 3999 3813
-15934 2 2 0 6 4649 5154 5155
-15935 2 2 0 6 3578 9444 3808
-15936 2 2 0 6 588 5513 9065
-15937 2 2 0 6 1241 8986 1814
-15938 2 2 0 6 2368 9092 2420
-15939 2 2 0 6 8501 9205 9204
-15940 2 2 0 6 3426 9315 4012
-15941 2 2 0 6 4500 9429 5136
-15942 2 2 0 6 5650 5668 9785
-15943 2 2 0 6 4282 8645 4651
-15944 2 2 0 6 8385 8386 9491
-15945 2 2 0 6 6481 9861 10050
-15946 2 2 0 6 1325 9147 6402
-15947 2 2 0 6 999 9289 1009
-15948 2 2 0 6 1067 9341 3617
-15949 2 2 0 6 3574 9602 9892
-15950 2 2 0 6 3805 3806 4259
-15951 2 2 0 6 2996 3825 7725
-15952 2 2 0 6 1624 9342 1627
-15953 2 2 0 6 580 582 9608
-15954 2 2 0 6 2864 3335 3333
-15955 2 2 0 6 4618 5182 5165
-15956 2 2 0 6 5621 9982 9871
-15957 2 2 0 6 3095 9390 3096
-15958 2 2 0 6 3672 9593 3949
-15959 2 2 0 6 1109 1521 9459
-15960 2 2 0 6 5675 9390 9732
-15961 2 2 0 6 1137 8277 2597
-15962 2 2 0 6 1269 1283 1303
-15963 2 2 0 6 2220 9570 2223
-15964 2 2 0 6 6726 6752 6728
-15965 2 2 0 6 5638 9656 9484
-15966 2 2 0 6 7306 8581 7313
-15967 2 2 0 6 5266 7145 9514
-15968 2 2 0 6 6419 9383 9236
-15969 2 2 0 6 5613 9283 9154
-15970 2 2 0 6 4617 6736 5169
-15971 2 2 0 6 4151 4857 9284
-15972 2 2 0 6 2612 3505 3520
-15973 2 2 0 6 733 9581 8697
-15974 2 2 0 6 3385 4110 5087
-15975 2 2 0 6 2262 2315 8866
-15976 2 2 0 6 4625 5176 5039
-15977 2 2 0 6 5330 5331 7193
-15978 2 2 0 6 3558 3641 3557
-15979 2 2 0 6 5676 5675 5677
-15980 2 2 0 6 6491 6514 6493
-15981 2 2 0 6 1717 1773 1723
-15982 2 2 0 6 2456 2739 2738
-15983 2 2 0 6 1358 1489 1488
-15984 2 2 0 6 5137 6766 6780
-15985 2 2 0 6 1039 10316 8039
-15986 2 2 0 6 3209 9482 4215
-15987 2 2 0 6 3356 3927 9526
-15988 2 2 0 6 3884 3635 4268
-15989 2 2 0 6 5175 6573 6574
-15990 2 2 0 6 5256 7065 6164
-15991 2 2 0 6 5056 5057 5058
-15992 2 2 0 6 305 306 9516
-15993 2 2 0 6 5728 9196 9473
-15994 2 2 0 6 7792 10234 7799
-15995 2 2 0 6 2765 2769 2767
-15996 2 2 0 6 2510 5566 9525
-15997 2 2 0 6 2477 2625 3054
-15998 2 2 0 6 3707 4109 4825
-15999 2 2 0 6 5645 9736 6451
-16000 2 2 0 6 217 218 547
-16001 2 2 0 6 6291 7827 7826
-16002 2 2 0 6 4696 5038 5244
-16003 2 2 0 6 575 5692 576
-16004 2 2 0 6 3240 9737 9772
-16005 2 2 0 6 6447 6446 6832
-16006 2 2 0 6 4179 9386 10000
-16007 2 2 0 6 5313 11145 8753
-16008 2 2 0 6 4612 5168 4613
-16009 2 2 0 6 6488 6491 6492
-16010 2 2 0 6 6493 6515 6516
-16011 2 2 0 6 5548 9645 5689
-16012 2 2 0 6 2976 2975 2977
-16013 2 2 0 6 6486 6488 6487
-16014 2 2 0 6 4465 9655 4468
-16015 2 2 0 6 6468 9780 9779
-16016 2 2 0 6 2908 2909 3214
-16017 2 2 0 6 2144 2207 2208
-16018 2 2 0 6 1165 5791 1167
-16019 2 2 0 6 5233 5234 7002
-16020 2 2 0 6 2205 2318 8199
-16021 2 2 0 6 2983 9901 3234
-16022 2 2 0 6 326 9255 537
-16023 2 2 0 6 4459 4460 4499
-16024 2 2 0 6 2391 2611 8939
-16025 2 2 0 6 4090 9146 4094
-16026 2 2 0 6 3745 9369 5073
-16027 2 2 0 6 2136 5441 9630
-16028 2 2 0 6 3060 9427 9799
-16029 2 2 0 6 8260 8262 10552
-16030 2 2 0 6 5432 9485 7673
-16031 2 2 0 6 8135 9375 10002
-16032 2 2 0 6 4250 10031 9572
-16033 2 2 0 6 4524 4525 4526
-16034 2 2 0 6 2325 9944 2495
-16035 2 2 0 6 2700 9417 8933
-16036 2 2 0 6 2262 8866 2264
-16037 2 2 0 6 1414 9030 1760
-16038 2 2 0 6 3745 4567 4566
-16039 2 2 0 6 4567 5073 5074
-16040 2 2 0 6 6142 6864 6865
-16041 2 2 0 6 1960 8607 8608
-16042 2 2 0 6 136 137 548
-16043 2 2 0 6 3879 4233 8063
-16044 2 2 0 6 1754 4455 9483
-16045 2 2 0 6 1160 1159 1186
-16046 2 2 0 6 2359 3725 2522
-16047 2 2 0 6 2938 3768 3767
-16048 2 2 0 6 2519 8870 4033
-16049 2 2 0 6 3545 9792 3546
-16050 2 2 0 6 25 7003 11293
-16051 2 2 0 6 40 41 461
-16052 2 2 0 6 2590 2592 2591
-16053 2 2 0 6 3106 3112 3107
-16054 2 2 0 6 2781 3633 3632
-16055 2 2 0 6 4522 4842 5350
-16056 2 2 0 6 2285 9109 9829
-16057 2 2 0 6 3518 9001 4120
-16058 2 2 0 6 3657 9842 7748
-16059 2 2 0 6 6393 9959 8761
-16060 2 2 0 6 2622 2781 3632
-16061 2 2 0 6 1772 1872 1789
-16062 2 2 0 6 2973 2975 2974
-16063 2 2 0 6 2913 3217 3218
-16064 2 2 0 6 3641 3642 4191
-16065 2 2 0 6 4251 5156 5157
-16066 2 2 0 6 1901 9488 1923
-16067 2 2 0 6 5176 6144 5879
-16068 2 2 0 6 6314 7227 7368
-16069 2 2 0 6 6259 5903 7375
-16070 2 2 0 6 3405 3401 8821
-16071 2 2 0 6 2216 8993 8752
-16072 2 2 0 6 2983 2984 3003
-16073 2 2 0 6 5804 6150 5805
-16074 2 2 0 6 2978 9169 9197
-16075 2 2 0 6 3192 4923 9819
-16076 2 2 0 6 3401 9049 8821
-16077 2 2 0 6 4110 9454 5415
-16078 2 2 0 6 6004 6011 7387
-16079 2 2 0 6 2900 9627 8756
-16080 2 2 0 6 4955 9184 9950
-16081 2 2 0 6 4281 8785 4759
-16082 2 2 0 6 679 1753 9195
-16083 2 2 0 6 9011 10075 10150
-16084 2 2 0 6 1173 1177 1176
-16085 2 2 0 6 2116 2590 2591
-16086 2 2 0 6 4303 5300 5437
-16087 2 2 0 6 5818 7281 9721
-16088 2 2 0 6 6746 9664 6747
-16089 2 2 0 6 2669 2910 2670
-16090 2 2 0 6 2495 9944 10068
-16091 2 2 0 6 623 624 8885
-16092 2 2 0 6 2822 2824 8992
-16093 2 2 0 6 5507 6062 9063
-16094 2 2 0 6 2976 3251 9431
-16095 2 2 0 6 3758 9208 4456
-16096 2 2 0 6 1553 9723 4351
-16097 2 2 0 6 4259 4603 4661
-16098 2 2 0 6 1885 9363 1978
-16099 2 2 0 6 325 537 9172
-16100 2 2 0 6 999 3528 9289
-16101 2 2 0 6 5688 7392 10587
-16102 2 2 0 6 1318 1506 1319
-16103 2 2 0 6 6413 6414 9618
-16104 2 2 0 6 4164 9992 5015
-16105 2 2 0 6 3066 7452 10911
-16106 2 2 0 6 4123 4608 5896
-16107 2 2 0 6 6674 6817 6818
-16108 2 2 0 6 5259 6990 6995
-16109 2 2 0 6 7299 7301 7316
-16110 2 2 0 6 7710 7712 7711
-16111 2 2 0 6 3487 3489 9425
-16112 2 2 0 6 2511 9525 2648
-16113 2 2 0 6 3443 11066 11052
-16114 2 2 0 6 2871 9528 2872
-16115 2 2 0 6 2867 9285 9616
-16116 2 2 0 6 6539 6541 6542
-16117 2 2 0 6 5430 9841 8556
-16118 2 2 0 6 2426 2694 2553
-16119 2 2 0 6 3955 4738 4275
-16120 2 2 0 6 4267 5070 5071
-16121 2 2 0 6 4634 5152 6673
-16122 2 2 0 6 2877 9279 3152
-16123 2 2 0 6 992 1045 9317
-16124 2 2 0 6 3886 5037 4696
-16125 2 2 0 6 2690 2849 9604
-16126 2 2 0 6 3007 9942 4130
-16127 2 2 0 6 5083 9333 5814
-16128 2 2 0 6 3632 3633 3810
-16129 2 2 0 6 3767 4125 4126
-16130 2 2 0 6 3303 3893 4308
-16131 2 2 0 6 6871 6873 6872
-16132 2 2 0 6 1728 3592 1730
-16133 2 2 0 6 32 33 9416
-16134 2 2 0 6 6537 6540 6539
-16135 2 2 0 6 5152 6674 6673
-16136 2 2 0 6 575 9796 5831
-16137 2 2 0 6 8649 9829 9109
-16138 2 2 0 6 6437 7703 9541
-16139 2 2 0 6 1203 1205 7948
-16140 2 2 0 6 5680 9555 9480
-16141 2 2 0 6 10035 10227 905
-16142 2 2 0 6 2809 3263 3978
-16143 2 2 0 6 4667 6670 6671
-16144 2 2 0 6 6588 9062 9061
-16145 2 2 0 6 8650 9822 9800
-16146 2 2 0 6 3633 4129 3810
-16147 2 2 0 6 1741 9751 1746
-16148 2 2 0 6 4220 5112 4335
-16149 2 2 0 6 6099 6756 6755
-16150 2 2 0 6 6056 7104 7105
-16151 2 2 0 6 7057 9853 8255
-16152 2 2 0 6 5847 10299 10429
-16153 2 2 0 6 5074 6593 5075
-16154 2 2 0 6 5117 6117 9085
-16155 2 2 0 6 1030 1097 1037
-16156 2 2 0 6 2479 2628 2930
-16157 2 2 0 6 1963 5700 9386
-16158 2 2 0 6 5996 6340 6339
-16159 2 2 0 6 676 1209 9407
-16160 2 2 0 6 4743 7126 6249
-16161 2 2 0 6 2706 2709 9362
-16162 2 2 0 6 2502 9740 9739
-16163 2 2 0 6 2359 2522 2360
-16164 2 2 0 6 1963 9386 2252
-16165 2 2 0 6 5531 9116 6628
-16166 2 2 0 6 2988 3793 3792
-16167 2 2 0 6 3768 4127 4125
-16168 2 2 0 6 4492 4491 4510
-16169 2 2 0 6 3810 4129 4617
-16170 2 2 0 6 4620 4622 4623
-16171 2 2 0 6 4689 4774 4773
-16172 2 2 0 6 5280 5281 5393
-16173 2 2 0 6 5059 6079 5060
-16174 2 2 0 6 6515 6517 6516
-16175 2 2 0 6 2973 4542 9169
-16176 2 2 0 6 4425 6454 9426
-16177 2 2 0 6 3661 3997 9574
-16178 2 2 0 6 1512 1809 1774
-16179 2 2 0 6 4614 5135 6139
-16180 2 2 0 6 5633 9861 5635
-16181 2 2 0 6 6438 8469 9546
-16182 2 2 0 6 127 128 422
-16183 2 2 0 6 4573 4828 9378
-16184 2 2 0 6 2590 10009 9963
-16185 2 2 0 6 3624 10143 3896
-16186 2 2 0 6 4499 4500 4614
-16187 2 2 0 6 1771 1791 9594
-16188 2 2 0 6 1170 1169 1171
-16189 2 2 0 6 1996 5905 1998
-16190 2 2 0 6 6474 9124 9982
-16191 2 2 0 6 6211 7124 6212
-16192 2 2 0 6 4923 9057 9819
-16193 2 2 0 6 4419 5826 9976
-16194 2 2 0 6 4129 4667 9360
-16195 2 2 0 6 1063 1064 9341
-16196 2 2 0 6 6409 7330 10016
-16197 2 2 0 6 1323 1442 1514
-16198 2 2 0 6 4236 4237 4280
-16199 2 2 0 6 1232 1233 1267
-16200 2 2 0 6 2182 2359 2183
-16201 2 2 0 6 1809 3711 3710
-16202 2 2 0 6 4011 4634 9532
-16203 2 2 0 6 8928 9583 8996
-16204 2 2 0 6 3535 9530 9672
-16205 2 2 0 6 4460 4500 4499
-16206 2 2 0 6 2428 8483 2924
-16207 2 2 0 6 2694 4460 4459
-16208 2 2 0 6 652 655 9635
-16209 2 2 0 6 4917 5012 6388
-16210 2 2 0 6 3897 3899 9881
-16211 2 2 0 6 1117 1119 8926
-16212 2 2 0 6 3950 4650 3952
-16213 2 2 0 6 2554 8982 2629
-16214 2 2 0 6 5603 6601 9551
-16215 2 2 0 6 1862 9196 3529
-16216 2 2 0 6 1172 1171 1173
-16217 2 2 0 6 1290 1318 1292
-16218 2 2 0 6 2217 9478 8442
-16219 2 2 0 6 2205 2206 2318
-16220 2 2 0 6 2492 2493 2837
-16221 2 2 0 6 2185 5091 4494
-16222 2 2 0 6 2471 7626 7624
-16223 2 2 0 6 2960 9671 2962
-16224 2 2 0 6 966 9937 3372
-16225 2 2 0 6 3839 9844 3840
-16226 2 2 0 6 6537 6539 6538
-16227 2 2 0 6 6146 6300 7925
-16228 2 2 0 6 3850 10185 3852
-16229 2 2 0 6 4168 9185 4905
-16230 2 2 0 6 3638 3745 3744
-16231 2 2 0 6 5175 6574 6850
-16232 2 2 0 6 2005 9305 2008
-16233 2 2 0 6 1479 10069 1482
-16234 2 2 0 6 26 27 487
-16235 2 2 0 6 1343 1344 1345
-16236 2 2 0 6 1488 1489 1509
-16237 2 2 0 6 1783 1784 1805
-16238 2 2 0 6 3911 3955 3954
-16239 2 2 0 6 2491 7663 3643
-16240 2 2 0 6 138 139 463
-16241 2 2 0 6 2784 9659 9009
-16242 2 2 0 6 1974 2231 2232
-16243 2 2 0 6 5782 5784 6108
-16244 2 2 0 6 6753 6761 6762
-16245 2 2 0 6 1228 3638 1236
-16246 2 2 0 6 4308 5738 5303
-16247 2 2 0 6 2209 5841 5012
-16248 2 2 0 6 4956 9831 9594
-16249 2 2 0 6 2919 3040 3303
-16250 2 2 0 6 3611 9251 5780
-16251 2 2 0 6 4125 4127 9714
-16252 2 2 0 6 589 3631 591
-16253 2 2 0 6 4487 4488 4647
-16254 2 2 0 6 3796 4999 6643
-16255 2 2 0 6 3808 9444 4618
-16256 2 2 0 6 1196 1230 1213
-16257 2 2 0 6 1288 3620 9147
-16258 2 2 0 6 4651 5159 4652
-16259 2 2 0 6 4437 8179 8809
-16260 2 2 0 6 3029 9283 9375
-16261 2 2 0 6 9239 6390 9609
-16262 2 2 0 6 3006 3261 3260
-16263 2 2 0 6 5012 5841 6563
-16264 2 2 0 6 6456 9806 9080
-16265 2 2 0 6 2115 2130 10045
-16266 2 2 0 6 1236 3744 8671
-16267 2 2 0 6 2532 9138 2534
-16268 2 2 0 6 4500 5135 4614
-16269 2 2 0 6 2468 2933 9220
-16270 2 2 0 6 1059 9511 1061
-16271 2 2 0 6 2694 9641 4998
-16272 2 2 0 6 5514 9366 9917
-16273 2 2 0 6 1167 1169 1168
-16274 2 2 0 6 3578 4040 9444
-16275 2 2 0 6 3836 4265 4675
-16276 2 2 0 6 3887 9588 5070
-16277 2 2 0 6 4764 6105 8053
-16278 2 2 0 6 8496 10182 4466
-16279 2 2 0 6 1939 2199 2198
-16280 2 2 0 6 643 9921 8936
-16281 2 2 0 6 1909 2182 1910
-16282 2 2 0 6 5104 9610 10033
-16283 2 2 0 6 1343 1342 1344
-16284 2 2 0 6 1513 1774 1775
-16285 2 2 0 6 5100 9069 6071
-16286 2 2 0 6 5646 9784 6423
-16287 2 2 0 6 1781 1782 1783
-16288 2 2 0 6 4318 4319 4320
-16289 2 2 0 6 5544 9576 5546
-16290 2 2 0 6 3982 9676 4777
-16291 2 2 0 6 3438 10233 10164
-16292 2 2 0 6 7285 7286 8635
-16293 2 2 0 6 5212 6185 9749
-16294 2 2 0 6 5154 6134 5155
-16295 2 2 0 6 4651 5454 5159
-16296 2 2 0 6 4706 6100 5669
-16297 2 2 0 6 2714 2716 9477
-16298 2 2 0 6 7281 7283 10030
-16299 2 2 0 6 3840 9844 3964
-16300 2 2 0 6 5810 5903 6259
-16301 2 2 0 6 6221 6486 6487
-16302 2 2 0 6 1636 5618 9302
-16303 2 2 0 6 9222 10459 10519
-16304 2 2 0 6 6141 6866 6864
-16305 2 2 0 6 4801 9932 7887
-16306 2 2 0 6 3281 9979 9198
-16307 2 2 0 6 4754 5488 8758
-16308 2 2 0 6 3091 9098 3092
-16309 2 2 0 6 1169 9807 1357
-16310 2 2 0 6 6609 8263 10673
-16311 2 2 0 6 1665 1668 1666
-16312 2 2 0 6 5324 7354 7355
-16313 2 2 0 6 7186 9512 9579
-16314 2 2 0 6 4083 9742 5061
-16315 2 2 0 6 1903 4494 9768
-16316 2 2 0 6 3574 8197 10084
-16317 2 2 0 6 3770 3773 3772
-16318 2 2 0 6 6250 7954 7953
-16319 2 2 0 6 5604 9531 8689
-16320 2 2 0 6 6463 10168 8239
-16321 2 2 0 6 2888 2985 2889
-16322 2 2 0 6 5633 9399 9861
-16323 2 2 0 6 6042 6051 6734
-16324 2 2 0 6 6494 8505 10086
-16325 2 2 0 6 2571 9758 8431
-16326 2 2 0 6 2275 10058 2284
-16327 2 2 0 6 2974 2975 2976
-16328 2 2 0 6 4612 9470 5168
-16329 2 2 0 6 1141 9415 1159
-16330 2 2 0 6 5941 5996 5995
-16331 2 2 0 6 3080 9493 3083
-16332 2 2 0 6 2930 9507 3737
-16333 2 2 0 6 1100 9759 1103
-16334 2 2 0 6 3939 3940 3943
-16335 2 2 0 6 4292 4885 4884
-16336 2 2 0 6 44 45 405
-16337 2 2 0 6 4259 4661 4679
-16338 2 2 0 6 3792 9572 5683
-16339 2 2 0 6 4634 6673 9532
-16340 2 2 0 6 4139 9767 8490
-16341 2 2 0 6 985 996 995
-16342 2 2 0 6 3003 4262 9901
-16343 2 2 0 6 1458 10382 10528
-16344 2 2 0 6 3984 9519 5686
-16345 2 2 0 6 3170 9905 5941
-16346 2 2 0 6 1345 1346 1347
-16347 2 2 0 6 1737 9083 3653
-16348 2 2 0 6 4728 9662 6181
-16349 2 2 0 6 5366 5367 6082
-16350 2 2 0 6 1607 9394 1608
-16351 2 2 0 6 1097 1130 1098
-16352 2 2 0 6 2329 2331 8541
-16353 2 2 0 6 5690 9467 9622
-16354 2 2 0 6 1090 9371 1096
-16355 2 2 0 6 1668 1671 1669
-16356 2 2 0 6 6445 6444 6446
-16357 2 2 0 6 5214 9749 7072
-16358 2 2 0 6 4652 5159 5160
-16359 2 2 0 6 1406 1407 9629
-16360 2 2 0 6 1641 9135 1638
-16361 2 2 0 6 2777 9235 3059
-16362 2 2 0 6 5238 10469 10362
-16363 2 2 0 6 3061 4161 4162
-16364 2 2 0 6 2589 9582 9581
-16365 2 2 0 6 3843 5758 5050
-16366 2 2 0 6 7954 8464 7955
-16367 2 2 0 6 2931 3237 3741
-16368 2 2 0 6 4511 4609 4513
-16369 2 2 0 6 6481 10113 6482
-16370 2 2 0 6 1169 1357 1171
-16371 2 2 0 6 4573 9378 5319
-16372 2 2 0 6 5362 7512 5364
-16373 2 2 0 6 7619 10192 10181
-16374 2 2 0 6 1903 1940 2185
-16375 2 2 0 6 2143 2207 2144
-16376 2 2 0 6 3209 3238 3803
-16377 2 2 0 6 4704 4706 4705
-16378 2 2 0 6 2530 9190 2785
-16379 2 2 0 6 5977 9468 9706
-16380 2 2 0 6 4907 10208 8132
-16381 2 2 0 6 2100 2590 2116
-16382 2 2 0 6 1831 1948 1946
-16383 2 2 0 6 1644 3552 9135
-16384 2 2 0 6 5110 6109 6114
-16385 2 2 0 6 5243 8056 8057
-16386 2 2 0 6 6343 8548 9738
-16387 2 2 0 6 4283 4285 4284
-16388 2 2 0 6 4436 4807 4809
-16389 2 2 0 6 5232 6182 7075
-16390 2 2 0 6 42 43 550
-16391 2 2 0 6 2837 3060 2841
-16392 2 2 0 6 5451 9620 5453
-16393 2 2 0 6 6255 8006 8307
-16394 2 2 0 6 1509 1510 1767
-16395 2 2 0 6 363 364 8304
-16396 2 2 0 6 4777 9676 7339
-16397 2 2 0 6 3713 9574 9888
-16398 2 2 0 6 4285 4770 4284
-16399 2 2 0 6 3999 4967 4457
-16400 2 2 0 6 1204 8851 1215
-16401 2 2 0 6 4744 4745 5278
-16402 2 2 0 6 4990 6382 5821
-16403 2 2 0 6 6543 6545 6546
-16404 2 2 0 6 6526 6869 6867
-16405 2 2 0 6 1203 1204 1205
-16406 2 2 0 6 1347 1348 1349
-16407 2 2 0 6 6517 6537 6538
-16408 2 2 0 6 3517 3519 9298
-16409 2 2 0 6 5647 5650 9785
-16410 2 2 0 6 4076 5057 5056
-16411 2 2 0 6 2952 8965 8966
-16412 2 2 0 6 9278 9824 9596
-16413 2 2 0 6 6818 6817 6819
-16414 2 2 0 6 4519 9512 5846
-16415 2 2 0 6 2940 7715 10448
-16416 2 2 0 6 581 3723 583
-16417 2 2 0 6 3152 9279 4495
-16418 2 2 0 6 2768 2912 2913
-16419 2 2 0 6 8650 8651 9822
-16420 2 2 0 6 214 215 440
-16421 2 2 0 6 1165 1167 1166
-16422 2 2 0 6 4920 9105 9356
-16423 2 2 0 6 2618 2936 2937
-16424 2 2 0 6 2619 2938 2936
-16425 2 2 0 6 4160 9500 5682
-16426 2 2 0 6 320 483 9271
-16427 2 2 0 6 4832 5498 9530
-16428 2 2 0 6 5345 8817 7427
-16429 2 2 0 6 8035 8037 8656
-16430 2 2 0 6 3076 9679 3079
-16431 2 2 0 6 1007 3648 1019
-16432 2 2 0 6 1805 1900 2675
-16433 2 2 0 6 5833 6320 6319
-16434 2 2 0 6 5530 9048 9047
-16435 2 2 0 6 1923 9489 2186
-16436 2 2 0 6 3936 3938 3939
-16437 2 2 0 6 3999 4457 4000
-16438 2 2 0 6 3309 4292 4884
-16439 2 2 0 6 8402 8403 9118
-16440 2 2 0 6 1929 8236 9351
-16441 2 2 0 6 7611 10453 10387
-16442 2 2 0 6 3245 3769 3247
-16443 2 2 0 6 2412 9565 2921
-16444 2 2 0 6 142 143 406
-16445 2 2 0 6 2912 3217 2913
-16446 2 2 0 6 3099 4745 4744
-16447 2 2 0 6 2741 2743 8934
-16448 2 2 0 6 3262 3885 3886
-16449 2 2 0 6 3910 4994 5800
-16450 2 2 0 6 6144 6781 6658
-16451 2 2 0 6 1781 1783 5789
-16452 2 2 0 6 6481 10050 10113
-16453 2 2 0 6 4365 4367 9336
-16454 2 2 0 6 4367 5632 9336
-16455 2 2 0 6 5637 9685 8717
-16456 2 2 0 6 2406 9708 9944
-16457 2 2 0 6 3834 4523 4248
-16458 2 2 0 6 5007 9458 5008
-16459 2 2 0 6 2163 9578 2214
-16460 2 2 0 6 2695 3238 3209
-16461 2 2 0 6 3773 3836 3774
-16462 2 2 0 6 4510 4512 4511
-16463 2 2 0 6 5714 7956 7957
-16464 2 2 0 6 1834 4956 9594
-16465 2 2 0 6 5451 7490 9620
-16466 2 2 0 6 5627 5628 6331
-16467 2 2 0 6 8650 9800 9920
-16468 2 2 0 6 7304 8581 7306
-16469 2 2 0 6 2822 8992 3481
-16470 2 2 0 6 3504 3761 9174
-16471 2 2 0 6 3758 4120 9208
-16472 2 2 0 6 2234 2357 4058
-16473 2 2 0 6 41 42 9422
-16474 2 2 0 6 573 574 9447
-16475 2 2 0 6 4802 9985 6263
-16476 2 2 0 6 1205 1215 1227
-16477 2 2 0 6 5538 9580 9076
-16478 2 2 0 6 6670 6851 6671
-16479 2 2 0 6 2186 9489 2463
-16480 2 2 0 6 5615 10002 9283
-16481 2 2 0 6 5380 5381 5379
-16482 2 2 0 6 3964 9844 4666
-16483 2 2 0 6 1380 9038 9039
-16484 2 2 0 6 4275 4283 4276
-16485 2 2 0 6 663 664 9070
-16486 2 2 0 6 2270 9391 2279
-16487 2 2 0 6 1402 9609 9547
-16488 2 2 0 6 124 125 488
-16489 2 2 0 6 1358 1488 1320
-16490 2 2 0 6 3803 4249 4263
-16491 2 2 0 6 5806 6226 7001
-16492 2 2 0 6 1987 7704 4691
-16493 2 2 0 6 1697 11081 11089
-16494 2 2 0 6 8689 9671 9252
-16495 2 2 0 6 23 24 425
-16496 2 2 0 6 1271 1282 1304
-16497 2 2 0 6 2444 9464 4966
-16498 2 2 0 6 4111 9804 5255
-16499 2 2 0 6 4578 4580 10046
-16500 2 2 0 6 5238 10362 10295
-16501 2 2 0 6 3765 3766 3520
-16502 2 2 0 6 3007 4130 3254
-16503 2 2 0 6 2910 9936 9408
-16504 2 2 0 6 3632 9178 9621
-16505 2 2 0 6 6394 9921 8959
-16506 2 2 0 6 1416 9643 9030
-16507 2 2 0 6 1140 3673 1158
-16508 2 2 0 6 657 658 8813
-16509 2 2 0 6 4215 9482 9136
-16510 2 2 0 6 3815 9782 4632
-16511 2 2 0 6 5710 5712 6183
-16512 2 2 0 6 1173 9767 4139
-16513 2 2 0 6 6551 7178 9675
-16514 2 2 0 6 3550 9792 3915
-16515 2 2 0 6 140 141 551
-16516 2 2 0 6 5168 6870 5179
-16517 2 2 0 6 4407 5192 9874
-16518 2 2 0 6 4885 5370 5812
-16519 2 2 0 6 6493 6514 6515
-16520 2 2 0 6 1509 9768 9202
-16521 2 2 0 6 2885 2887 2886
-16522 2 2 0 6 2714 9477 3637
-16523 2 2 0 6 3262 3886 4695
-16524 2 2 0 6 3368 8605 10194
-16525 2 2 0 6 4126 5115 5116
-16526 2 2 0 6 6252 7870 6631
-16527 2 2 0 6 5529 9527 8165
-16528 2 2 0 6 3459 9132 3463
-16529 2 2 0 6 1566 9460 1588
-16530 2 2 0 6 4241 5174 4662
-16531 2 2 0 6 5154 6791 6134
-16532 2 2 0 6 3131 3132 9446
-16533 2 2 0 6 2199 2201 2200
-16534 2 2 0 6 3217 4121 3218
-16535 2 2 0 6 3309 4884 9604
-16536 2 2 0 6 2358 2489 2612
-16537 2 2 0 6 2867 9616 2869
-16538 2 2 0 6 1185 9701 1204
-16539 2 2 0 6 6492 6491 6493
-16540 2 2 0 6 2553 4459 8982
-16541 2 2 0 6 3132 3135 9446
-16542 2 2 0 6 2767 2912 2768
-16543 2 2 0 6 6111 6716 6112
-16544 2 2 0 6 3195 3555 9521
-16545 2 2 0 6 1344 2401 1346
-16546 2 2 0 6 6728 7817 6727
-16547 2 2 0 6 4174 9034 4969
-16548 2 2 0 6 5315 9548 6676
-16549 2 2 0 6 6184 7024 7096
-16550 2 2 0 6 604 8055 10521
-16551 2 2 0 6 5394 7582 5396
-16552 2 2 0 6 1488 9202 3568
-16553 2 2 0 6 4460 9429 4500
-16554 2 2 0 6 5739 9983 9808
-16555 2 2 0 6 304 305 471
-16556 2 2 0 6 1767 1803 1810
-16557 2 2 0 6 2643 9220 3759
-16558 2 2 0 6 1960 8608 9748
-16559 2 2 0 6 6477 10100 9684
-16560 2 2 0 6 6536 9493 10250
-16561 2 2 0 6 1956 1959 1958
-16562 2 2 0 6 2330 8555 2407
-16563 2 2 0 6 1486 9246 9478
-16564 2 2 0 6 2910 4491 4492
-16565 2 2 0 6 5233 7002 7067
-16566 2 2 0 6 4122 9210 4607
-16567 2 2 0 6 4829 9238 4831
-16568 2 2 0 6 8107 8105 9312
-16569 2 2 0 6 6522 10123 10329
-16570 2 2 0 6 1872 1967 1965
-16571 2 2 0 6 4249 5175 4263
-16572 2 2 0 6 4810 9450 9754
-16573 2 2 0 6 2407 3005 2408
-16574 2 2 0 6 2932 3237 2931
-16575 2 2 0 6 4129 9360 4617
-16576 2 2 0 6 6368 9311 7468
-16577 2 2 0 6 5541 7419 9558
-16578 2 2 0 6 1940 9887 2185
-16579 2 2 0 6 2201 2364 2363
-16580 2 2 0 6 2612 2613 3505
-16581 2 2 0 6 6100 6101 6102
-16582 2 2 0 6 1649 1652 9406
-16583 2 2 0 6 2538 2720 10025
-16584 2 2 0 6 3238 4249 3803
-16585 2 2 0 6 5676 5677 6220
-16586 2 2 0 6 2626 2627 2805
-16587 2 2 0 6 5203 9045 9569
-16588 2 2 0 6 8757 9783 9626
-16589 2 2 0 6 4833 5341 10222
-16590 2 2 0 6 1035 9608 8445
-16591 2 2 0 6 2204 2323 2322
-16592 2 2 0 6 2507 2669 2668
-16593 2 2 0 6 4164 5015 5014
-16594 2 2 0 6 3611 5298 4454
-16595 2 2 0 6 6070 6071 9623
-16596 2 2 0 6 2739 2988 2987
-16597 2 2 0 6 1977 9389 9705
-16598 2 2 0 6 1165 9682 5791
-16599 2 2 0 6 8404 9632 8405
-16600 2 2 0 6 1145 1153 9455
-16601 2 2 0 6 5342 7272 9908
-16602 2 2 0 6 1145 9455 9325
-16603 2 2 0 6 1775 9484 1794
-16604 2 2 0 6 1102 1104 9596
-16605 2 2 0 6 2885 2888 2887
-16606 2 2 0 6 3315 5809 3966
-16607 2 2 0 6 6101 6184 6102
-16608 2 2 0 6 2959 4437 8809
-16609 2 2 0 6 2521 9214 3525
-16610 2 2 0 6 2930 2931 9507
-16611 2 2 0 6 4112 9744 5772
-16612 2 2 0 6 7124 7383 7125
-16613 2 2 0 6 1503 1781 9940
-16614 2 2 0 6 2777 2915 9235
-16615 2 2 0 6 5560 9194 9806
-16616 2 2 0 6 4567 9330 4566
-16617 2 2 0 6 5114 5113 6709
-16618 2 2 0 6 2717 9472 2981
-16619 2 2 0 6 2143 2209 2207
-16620 2 2 0 6 2208 2207 9907
-16621 2 2 0 6 4745 5279 5278
-16622 2 2 0 6 5183 6777 6776
-16623 2 2 0 6 6069 6830 6831
-16624 2 2 0 6 5135 9563 6139
-16625 2 2 0 6 884 888 9471
-16626 2 2 0 6 3045 8802 9624
-16627 2 2 0 6 2765 2767 2766
-16628 2 2 0 6 3243 3244 3245
-16629 2 2 0 6 2528 9190 2530
-16630 2 2 0 6 9282 9594 9831
-16631 2 2 0 6 4899 7904 8535
-16632 2 2 0 6 2444 2446 9464
-16633 2 2 0 6 1153 3626 9455
-16634 2 2 0 6 5797 6115 5808
-16635 2 2 0 6 5776 6201 6691
-16636 2 2 0 6 1835 1837 8994
-16637 2 2 0 6 958 9399 961
-16638 2 2 0 6 800 9567 5629
-16639 2 2 0 6 3095 9732 9390
-16640 2 2 0 6 2711 3637 9794
-16641 2 2 0 6 2331 2407 2408
-16642 2 2 0 6 3572 3898 9976
-16643 2 2 0 6 680 3450 9912
-16644 2 2 0 6 5144 9316 6788
-16645 2 2 0 6 2040 2928 9515
-16646 2 2 0 6 1775 1794 1792
-16647 2 2 0 6 5738 7069 6199
-16648 2 2 0 6 4059 9809 5717
-16649 2 2 0 6 3091 10165 8949
-16650 2 2 0 6 2700 2702 9417
-16651 2 2 0 6 5913 6116 6720
-16652 2 2 0 6 337 9292 536
-16653 2 2 0 6 4576 5324 9617
-16654 2 2 0 6 1900 2676 2675
-16655 2 2 0 6 6353 9910 6354
-16656 2 2 0 6 5034 5887 9697
-16657 2 2 0 6 4048 9827 9500
-16658 2 2 0 6 5275 9880 5294
-16659 2 2 0 6 649 10959 10980
-16660 2 2 0 6 2716 2832 9477
-16661 2 2 0 6 4672 5123 9743
-16662 2 2 0 6 5946 7918 10352
-16663 2 2 0 6 1959 2204 2203
-16664 2 2 0 6 3942 4689 4773
-16665 2 2 0 6 6015 6784 6729
-16666 2 2 0 6 3943 9571 7271
-16667 2 2 0 6 3247 3769 3770
-16668 2 2 0 6 5757 10092 9895
-16669 2 2 0 6 5543 7425 9097
-16670 2 2 0 6 3085 3086 10119
-16671 2 2 0 6 3879 4605 4604
-16672 2 2 0 6 3195 9521 3194
-16673 2 2 0 6 9346 5957 9862
-16674 2 2 0 6 3598 9906 4014
-16675 2 2 0 6 4457 4521 4458
-16676 2 2 0 6 2522 3725 3726
-16677 2 2 0 6 4542 9165 9166
-16678 2 2 0 6 4140 4703 4704
-16679 2 2 0 6 869 8893 872
-16680 2 2 0 6 7568 7573 9183
-16681 2 2 0 6 5135 5137 9563
-16682 2 2 0 6 3356 9526 8575
-16683 2 2 0 6 3075 9679 3076
-16684 2 2 0 6 5695 9763 5697
-16685 2 2 0 6 6478 9938 9405
-16686 2 2 0 6 3009 2645 3010
-16687 2 2 0 6 3001 3759 3760
-16688 2 2 0 6 5115 6719 6718
-16689 2 2 0 6 3878 4604 4606
-16690 2 2 0 6 4365 9336 8636
-16691 2 2 0 6 6030 6111 6112
-16692 2 2 0 6 6213 7267 6648
-16693 2 2 0 6 3233 3962 9095
-16694 2 2 0 6 1891 9389 1977
-16695 2 2 0 6 3876 9676 3982
-16696 2 2 0 6 4125 9714 5115
-16697 2 2 0 6 9993 11215 11229
-16698 2 2 0 6 6255 7231 5437
-16699 2 2 0 6 3178 8841 4044
-16700 2 2 0 6 5622 5624 9677
-16701 2 2 0 6 6448 10361 10494
-16702 2 2 0 6 2321 2478 2479
-16703 2 2 0 6 3716 9551 4184
-16704 2 2 0 6 1931 9351 2383
-16705 2 2 0 6 957 9399 958
-16706 2 2 0 6 1855 1960 9748
-16707 2 2 0 6 5117 6005 6117
-16708 2 2 0 6 3090 3093 9678
-16709 2 2 0 6 8306 9910 6353
-16710 2 2 0 6 2122 2125 9630
-16711 2 2 0 6 1256 1282 1271
-16712 2 2 0 6 4285 4771 4770
-16713 2 2 0 6 5406 9721 7544
-16714 2 2 0 6 6457 6458 8802
-16715 2 2 0 6 2133 2392 9244
-16716 2 2 0 6 2883 2884 2885
-16717 2 2 0 6 2615 2617 2911
-16718 2 2 0 6 4909 5578 9577
-16719 2 2 0 6 5826 9011 10150
-16720 2 2 0 6 1767 1810 1903
-16721 2 2 0 6 4567 5075 9330
-16722 2 2 0 6 3978 3979 4849
-16723 2 2 0 6 5789 9462 9631
-16724 2 2 0 6 2467 2468 2643
-16725 2 2 0 6 3305 6404 6405
-16726 2 2 0 6 3832 7908 5375
-16727 2 2 0 6 4909 9577 9425
-16728 2 2 0 6 3282 9090 9520
-16729 2 2 0 6 4956 6497 9831
-16730 2 2 0 6 7550 10211 9629
-16731 2 2 0 6 3083 10242 8927
-16732 2 2 0 6 5170 6158 6772
-16733 2 2 0 6 1923 9488 9489
-16734 2 2 0 6 2139 4984 2141
-16735 2 2 0 6 1807 3690 9340
-16736 2 2 0 6 3910 5800 9687
-16737 2 2 0 6 3711 4502 4838
-16738 2 2 0 6 6441 6458 6457
-16739 2 2 0 6 3955 4275 3956
-16740 2 2 0 6 5013 4164 5014
-16741 2 2 0 6 4161 4765 4162
-16742 2 2 0 6 5694 7464 7462
-16743 2 2 0 6 978 9816 985
-16744 2 2 0 6 5726 10042 9883
-16745 2 2 0 6 2467 2643 2727
-16746 2 2 0 6 1101 8666 9441
-16747 2 2 0 6 5517 8398 9810
-16748 2 2 0 6 3529 9196 5728
-16749 2 2 0 6 5846 9512 7186
-16750 2 2 0 6 1746 5760 1772
-16751 2 2 0 6 1668 5699 9339
-16752 2 2 0 6 1739 9751 1741
-16753 2 2 0 6 5440 9075 9543
-16754 2 2 0 6 4667 6671 9360
-16755 2 2 0 6 2969 9165 2971
-16756 2 2 0 6 3489 4909 9425
-16757 2 2 0 6 6518 9998 10171
-16758 2 2 0 6 2367 3575 9092
-16759 2 2 0 6 4114 6074 9804
-16760 2 2 0 6 7761 9823 7764
-16761 2 2 0 6 690 692 9352
-16762 2 2 0 6 1953 1954 1955
-16763 2 2 0 6 5541 9558 7498
-16764 2 2 0 6 1402 1403 9239
-16765 2 2 0 6 2203 2322 8900
-16766 2 2 0 6 7815 9419 7832
-16767 2 2 0 6 4521 6581 4842
-16768 2 2 0 6 2838 9426 9427
-16769 2 2 0 6 3052 9233 9504
-16770 2 2 0 6 8496 8031 10182
-16771 2 2 0 6 1216 9483 9591
-16772 2 2 0 6 2215 2216 8752
-16773 2 2 0 6 5686 9400 5687
-16774 2 2 0 6 4441 9873 8678
-16775 2 2 0 6 3705 3707 9878
-16776 2 2 0 6 5565 8720 9130
-16777 2 2 0 6 4733 9364 5733
-16778 2 2 0 6 2931 3741 9507
-16779 2 2 0 6 4549 9320 8320
-16780 2 2 0 6 3557 8738 9904
-16781 2 2 0 6 4248 4523 4524
-16782 2 2 0 6 3843 5050 5049
-16783 2 2 0 6 121 122 429
-16784 2 2 0 6 2872 9711 4024
-16785 2 2 0 6 4771 5422 6211
-16786 2 2 0 6 8908 9054 9468
-16787 2 2 0 6 2408 3008 10090
-16788 2 2 0 6 6523 10036 10149
-16789 2 2 0 6 4824 9275 9925
-16790 2 2 0 6 21 22 552
-16791 2 2 0 6 1005 7027 7029
-16792 2 2 0 6 1848 9144 9773
-16793 2 2 0 6 3096 9390 3099
-16794 2 2 0 6 3194 9521 4065
-16795 2 2 0 6 1811 1812 1904
-16796 2 2 0 6 647 648 8960
-16797 2 2 0 6 1180 1212 9524
-16798 2 2 0 6 5349 9639 8590
-16799 2 2 0 6 313 9401 439
-16800 2 2 0 6 1282 1320 1304
-16801 2 2 0 6 5811 9247 9946
-16802 2 2 0 6 4556 10421 8060
-16803 2 2 0 6 2969 10291 9165
-16804 2 2 0 6 2869 9616 3689
-16805 2 2 0 6 9115 9808 9983
-16806 2 2 0 6 5164 5183 6776
-16807 2 2 0 6 2357 6368 4058
-16808 2 2 0 6 4271 5222 9667
-16809 2 2 0 6 2704 9362 3614
-16810 2 2 0 6 3260 3262 8964
-16811 2 2 0 6 7596 10025 10277
-16812 2 2 0 6 1948 1950 1949
-16813 2 2 0 6 3060 4161 3061
-16814 2 2 0 6 5279 5676 6209
-16815 2 2 0 6 3939 3943 6637
-16816 2 2 0 6 1652 5626 9406
-16817 2 2 0 6 3535 3960 9530
-16818 2 2 0 6 6451 9994 9084
-16819 2 2 0 6 717 9395 3615
-16820 2 2 0 6 2936 2938 3767
-16821 2 2 0 6 7753 7754 9689
-16822 2 2 0 6 3099 9390 4745
-16823 2 2 0 6 3240 10053 9737
-16824 2 2 0 6 4465 5243 9655
-16825 2 2 0 6 3430 3431 9891
-16826 2 2 0 6 5709 5710 5711
-16827 2 2 0 6 5066 9411 8780
-16828 2 2 0 6 6177 7801 8564
-16829 2 2 0 6 2999 3267 3268
-16830 2 2 0 6 6102 7090 7091
-16831 2 2 0 6 340 341 554
-16832 2 2 0 6 1810 1940 1903
-16833 2 2 0 6 1163 9524 3626
-16834 2 2 0 6 6390 10211 9931
-16835 2 2 0 6 4351 10872 8616
-16836 2 2 0 6 3683 5865 3823
-16837 2 2 0 6 2532 2785 9138
-16838 2 2 0 6 2356 8675 9683
-16839 2 2 0 6 7286 7289 8635
-16840 2 2 0 6 5822 5824 9892
-16841 2 2 0 6 735 2589 9581
-16842 2 2 0 6 3767 3768 4125
-16843 2 2 0 6 3713 9888 6616
-16844 2 2 0 6 1730 9573 1732
-16845 2 2 0 6 3005 3006 3260
-16846 2 2 0 6 39 9435 545
-16847 2 2 0 6 4528 4530 4532
-16848 2 2 0 6 4706 6101 6100
-16849 2 2 0 6 4115 5390 9025
-16850 2 2 0 6 1806 1879 9474
-16851 2 2 0 6 4333 5385 9559
-16852 2 2 0 6 1805 1806 1900
-16853 2 2 0 6 4530 8836 4611
-16854 2 2 0 6 981 9317 5608
-16855 2 2 0 6 3986 5565 9568
-16856 2 2 0 6 7941 9405 9813
-16857 2 2 0 6 1812 5533 1905
-16858 2 2 0 6 3032 3161 9323
-16859 2 2 0 6 5991 10121 6603
-16860 2 2 0 6 5051 9102 6647
-16861 2 2 0 6 1809 3710 1774
-16862 2 2 0 6 4125 5115 4126
-16863 2 2 0 6 8906 9775 8907
-16864 2 2 0 6 713 1165 1166
-16865 2 2 0 6 3237 3843 3741
-16866 2 2 0 6 5788 6475 9847
-16867 2 2 0 6 1303 10567 10603
-16868 2 2 0 6 5057 5059 5058
-16869 2 2 0 6 6728 6752 6753
-16870 2 2 0 6 1159 9415 1188
-16871 2 2 0 6 5863 10276 10306
-16872 2 2 0 6 3635 4180 9644
-16873 2 2 0 6 1398 9547 9924
-16874 2 2 0 6 2727 3001 3227
-16875 2 2 0 6 678 680 9912
-16876 2 2 0 6 1901 1944 9488
-16877 2 2 0 6 5668 9463 9785
-16878 2 2 0 6 4053 9819 4982
-16879 2 2 0 6 7301 9909 7316
-16880 2 2 0 6 5622 9677 9266
-16881 2 2 0 6 5920 9735 7438
-16882 2 2 0 6 4579 7593 7520
-16883 2 2 0 6 2095 2096 10463
-16884 2 2 0 6 7724 10240 10125
-16885 2 2 0 6 2717 8634 9472
-16886 2 2 0 6 2235 2357 2234
-16887 2 2 0 6 2201 2363 2200
-16888 2 2 0 6 2330 2407 2331
-16889 2 2 0 6 4488 9125 5813
-16890 2 2 0 6 2127 2133 9244
-16891 2 2 0 6 8474 10345 8475
-16892 2 2 0 6 2482 9318 2673
-16893 2 2 0 6 8958 3986 9725
-16894 2 2 0 6 7081 9914 7631
-16895 2 2 0 6 4058 6368 7468
-16896 2 2 0 6 4532 4611 4612
-16897 2 2 0 6 2185 5878 5091
-16898 2 2 0 6 3710 3711 4996
-16899 2 2 0 6 5350 5895 5352
-16900 2 2 0 6 3367 3822 9593
-16901 2 2 0 6 6388 9588 6442
-16902 2 2 0 6 1933 9329 1969
-16903 2 2 0 6 2887 2888 2889
-16904 2 2 0 6 4010 4975 9659
-16905 2 2 0 6 2233 2234 2232
-16906 2 2 0 6 1321 5693 1438
-16907 2 2 0 6 6199 7069 7160
-16908 2 2 0 6 4988 9264 6506
-16909 2 2 0 6 2513 8596 9642
-16910 2 2 0 6 2930 2628 2931
-16911 2 2 0 6 1594 1598 9055
-16912 2 2 0 6 6423 9190 9215
-16913 2 2 0 6 1227 1256 1271
-16914 2 2 0 6 3765 4219 4218
-16915 2 2 0 6 6747 6750 6749
-16916 2 2 0 6 6557 8560 9967
-16917 2 2 0 6 2661 9499 2835
-16918 2 2 0 6 2441 8730 2449
-16919 2 2 0 6 1885 1887 9363
-16920 2 2 0 6 576 5692 9270
-16921 2 2 0 6 3228 9592 4878
-16922 2 2 0 6 1952 1950 3177
-16923 2 2 0 6 2069 2070 9392
-16924 2 2 0 6 6424 9110 9540
-16925 2 2 0 6 4337 5113 5024
-16926 2 2 0 6 1688 9307 4393
-16927 2 2 0 6 3261 9927 3887
-16928 2 2 0 6 5868 10184 10006
-16929 2 2 0 6 6558 10305 7648
-16930 2 2 0 6 2209 4917 2207
-16931 2 2 0 6 1163 1180 9524
-16932 2 2 0 6 5750 9920 8711
-16933 2 2 0 6 2676 2765 2764
-16934 2 2 0 6 3798 9835 8246
-16935 2 2 0 6 3014 9757 3882
-16936 2 2 0 6 4850 5230 5232
-16937 2 2 0 6 2469 2639 9423
-16938 2 2 0 6 1514 1788 1824
-16939 2 2 0 6 3241 3244 3243
-16940 2 2 0 6 6183 7023 7107
-16941 2 2 0 6 8687 10080 10152
-16942 2 2 0 6 1380 8890 9038
-16943 2 2 0 6 4926 6055 9610
-16944 2 2 0 6 339 9537 407
-16945 2 2 0 6 3102 3935 4425
-16946 2 2 0 6 3050 3183 8469
-16947 2 2 0 6 4265 5170 4675
-16948 2 2 0 6 1486 9478 1501
-16949 2 2 0 6 5924 10789 10522
-16950 2 2 0 6 4015 8878 5636
-16951 2 2 0 6 1438 1512 1439
-16952 2 2 0 6 2972 2973 2974
-16953 2 2 0 6 4544 8744 9295
-16954 2 2 0 6 4840 6470 6284
-16955 2 2 0 6 6402 9860 6403
-16956 2 2 0 6 1185 1204 1203
-16957 2 2 0 6 7566 7568 9183
-16958 2 2 0 6 5671 10162 10267
-16959 2 2 0 6 1346 1348 1347
-16960 2 2 0 6 903 9357 904
-16961 2 2 0 6 3052 9504 4150
-16962 2 2 0 6 3915 9792 5773
-16963 2 2 0 6 4624 9952 5315
-16964 2 2 0 6 607 8577 4104
-16965 2 2 0 6 3413 3415 9332
-16966 2 2 0 6 1466 10239 10423
-16967 2 2 0 6 5016 5015 5335
-16968 2 2 0 6 5816 8845 10139
-16969 2 2 0 6 1439 1512 1513
-16970 2 2 0 6 5702 7662 9893
-16971 2 2 0 6 1320 1488 3568
-16972 2 2 0 6 2478 9999 7919
-16973 2 2 0 6 4617 9360 6736
-16974 2 2 0 6 4192 4945 9614
-16975 2 2 0 6 8402 9118 8404
-16976 2 2 0 6 2528 9215 9190
-16977 2 2 0 6 6583 6584 9900
-16978 2 2 0 6 1979 8018 9928
-16979 2 2 0 6 2618 2619 2936
-16980 2 2 0 6 3041 3042 9624
-16981 2 2 0 6 1512 1774 1513
-16982 2 2 0 6 1301 9814 3659
-16983 2 2 0 6 2449 8730 2890
-16984 2 2 0 6 3368 10194 10181
-16985 2 2 0 6 1173 4139 1177
-16986 2 2 0 6 691 8965 2952
-16987 2 2 0 6 4065 9521 5706
-16988 2 2 0 6 5110 5111 6109
-16989 2 2 0 6 4045 9396 4882
-16990 2 2 0 6 3505 3765 3520
-16991 2 2 0 6 3897 9881 4278
-16992 2 2 0 6 2260 9441 2315
-16993 2 2 0 6 3209 3803 9482
-16994 2 2 0 6 6747 9664 6750
-16995 2 2 0 6 4936 4938 9745
-16996 2 2 0 6 2478 2628 2479
-16997 2 2 0 6 1341 8324 7779
-16998 2 2 0 6 6413 9618 9231
-16999 2 2 0 6 3415 3418 9332
-17000 2 2 0 6 589 9505 3631
-17001 2 2 0 6 9441 10038 9813
-17002 2 2 0 6 2834 3062 9449
-17003 2 2 0 6 2142 8984 8145
-17004 2 2 0 6 5038 5245 5244
-17005 2 2 0 6 7567 9702 7571
-17006 2 2 0 6 4362 8097 4864
-17007 2 2 0 6 6418 9448 9886
-17008 2 2 0 6 3909 4727 10026
-17009 2 2 0 6 1950 1952 1951
-17010 2 2 0 6 5758 6121 5759
-17011 2 2 0 6 8126 10317 10245
-17012 2 2 0 6 140 551 9456
-17013 2 2 0 6 4610 9980 5797
-17014 2 2 0 6 3779 9254 3780
-17015 2 2 0 6 3012 9868 9121
-17016 2 2 0 6 3227 4240 4056
-17017 2 2 0 6 1378 9818 9163
-17018 2 2 0 6 7618 10032 7619
-17019 2 2 0 6 3530 4271 9667
-17020 2 2 0 6 6542 6543 9149
-17021 2 2 0 6 1215 1256 1227
-17022 2 2 0 6 4478 5860 6409
-17023 2 2 0 6 8547 8549 8548
-17024 2 2 0 6 9528 6450 9711
-17025 2 2 0 6 2320 9999 2478
-17026 2 2 0 6 6160 6796 6882
-17027 2 2 0 6 5125 10048 9870
-17028 2 2 0 6 8914 9540 9110
-17029 2 2 0 6 2128 8940 9601
-17030 2 2 0 6 4439 9108 9822
-17031 2 2 0 6 2474 9621 2633
-17032 2 2 0 6 5050 5758 5759
-17033 2 2 0 6 2363 2364 2618
-17034 2 2 0 6 3449 8279 6391
-17035 2 2 0 6 5679 10008 5827
-17036 2 2 0 6 9531 10581 10595
-17037 2 2 0 6 710 3615 9939
-17038 2 2 0 6 1845 1847 10110
-17039 2 2 0 6 1909 9340 2184
-17040 2 2 0 6 5722 9779 9264
-17041 2 2 0 6 6558 6607 10350
-17042 2 2 0 6 2988 3794 3793
-17043 2 2 0 6 3770 8938 3773
-17044 2 2 0 6 5173 5233 9694
-17045 2 2 0 6 8386 10366 9491
-17046 2 2 0 6 4973 6145 6152
-17047 2 2 0 6 6752 6761 6753
-17048 2 2 0 6 4045 4912 9396
-17049 2 2 0 6 5114 6709 6710
-17050 2 2 0 6 867 871 9343
-17051 2 2 0 6 3521 10100 10058
-17052 2 2 0 6 7670 10734 10737
-17053 2 2 0 6 306 530 9516
-17054 2 2 0 6 311 312 9381
-17055 2 2 0 6 9039 9975 9576
-17056 2 2 0 6 2985 3240 2986
-17057 2 2 0 6 1641 1644 9135
-17058 2 2 0 6 1824 1911 1943
-17059 2 2 0 6 6726 6728 6727
-17060 2 2 0 6 4143 5786 9575
-17061 2 2 0 6 3685 9730 3834
-17062 2 2 0 6 6469 9944 9708
-17063 2 2 0 6 1835 8994 1962
-17064 2 2 0 6 1117 8926 1136
-17065 2 2 0 6 5804 6844 6150
-17066 2 2 0 6 1843 1845 10215
-17067 2 2 0 6 2840 3102 9426
-17068 2 2 0 6 5850 10389 6590
-17069 2 2 0 6 3940 3942 8716
-17070 2 2 0 6 5167 6727 9835
-17071 2 2 0 6 1929 9351 1931
-17072 2 2 0 6 692 2313 9352
-17073 2 2 0 6 874 9654 880
-17074 2 2 0 6 2342 9310 8878
-17075 2 2 0 6 667 9632 9070
-17076 2 2 0 6 2468 9220 2643
-17077 2 2 0 6 1071 1069 9503
-17078 2 2 0 6 4530 4611 4532
-17079 2 2 0 6 3970 5281 5280
-17080 2 2 0 6 2104 9797 2113
-17081 2 2 0 6 4011 9532 4533
-17082 2 2 0 6 1639 9307 1688
-17083 2 2 0 6 2702 3614 9417
-17084 2 2 0 6 2356 9683 9214
-17085 2 2 0 6 5750 9829 9920
-17086 2 2 0 6 4094 8711 9800
-17087 2 2 0 6 2359 9481 3725
-17088 2 2 0 6 9737 10457 9772
-17089 2 2 0 6 2322 2323 2467
-17090 2 2 0 6 2643 3001 2727
-17091 2 2 0 6 6067 6113 6717
-17092 2 2 0 6 2937 2936 9585
-17093 2 2 0 6 119 120 553
-17094 2 2 0 6 4219 5110 4218
-17095 2 2 0 6 698 10335 10021
-17096 2 2 0 6 1933 2383 9329
-17097 2 2 0 6 1943 2194 2320
-17098 2 2 0 6 2709 2711 9794
-17099 2 2 0 6 1370 9016 1371
-17100 2 2 0 6 2605 9626 9783
-17101 2 2 0 6 6311 9879 6723
-17102 2 2 0 6 6541 6544 6543
-17103 2 2 0 6 4446 5722 9497
-17104 2 2 0 6 2971 2973 2972
-17105 2 2 0 6 7837 7839 7846
-17106 2 2 0 6 6286 7436 7432
-17107 2 2 0 6 2038 2040 9515
-17108 2 2 0 6 6723 9879 7200
-17109 2 2 0 6 3363 4353 9830
-17110 2 2 0 6 2321 8387 9922
-17111 2 2 0 6 3969 4682 10047
-17112 2 2 0 6 6548 7833 10743
-17113 2 2 0 6 1621 9727 9093
-17114 2 2 0 6 5237 9655 7085
-17115 2 2 0 6 2604 9783 2950
-17116 2 2 0 6 901 902 10227
-17117 2 2 0 6 3241 3243 3242
-17118 2 2 0 6 1191 1216 9591
-17119 2 2 0 6 3042 3045 9624
-17120 2 2 0 6 8405 9632 9815
-17121 2 2 0 6 3032 9323 3716
-17122 2 2 0 6 4521 4842 4522
-17123 2 2 0 6 4523 9730 6605
-17124 2 2 0 6 1061 9511 1064
-17125 2 2 0 6 3638 9638 9369
-17126 2 2 0 6 3786 9744 4112
-17127 2 2 0 6 948 10128 947
-17128 2 2 0 6 4405 9657 9150
-17129 2 2 0 6 4713 5173 9694
-17130 2 2 0 6 2424 9641 2426
-17131 2 2 0 6 4081 9742 4083
-17132 2 2 0 6 4632 9782 5431
-17133 2 2 0 6 7303 7305 9798
-17134 2 2 0 6 4054 4061 10412
-17135 2 2 0 6 5257 6996 6997
-17136 2 2 0 6 3334 9617 9762
-17137 2 2 0 6 5682 9500 9827
-17138 2 2 0 6 3920 9266 9677
-17139 2 2 0 6 4525 8066 4526
-17140 2 2 0 6 3270 3273 9430
-17141 2 2 0 6 1746 9751 5760
-17142 2 2 0 6 4682 5226 10047
-17143 2 2 0 6 2534 9138 9766
-17144 2 2 0 6 4486 9125 4488
-17145 2 2 0 6 8157 9824 9278
-17146 2 2 0 6 5160 6830 6069
-17147 2 2 0 6 4973 6152 8902
-17148 2 2 0 6 7794 10118 9258
-17149 2 2 0 6 1568 10680 1570
-17150 2 2 0 6 2604 2605 9783
-17151 2 2 0 6 3960 4832 9530
-17152 2 2 0 6 8601 9815 9632
-17153 2 2 0 6 5957 5958 9862
-17154 2 2 0 6 4888 7600 7601
-17155 2 2 0 6 1378 1379 9818
-17156 2 2 0 6 4113 11083 8863
-17157 2 2 0 6 1344 1346 1345
-17158 2 2 0 6 5260 5287 7017
-17159 2 2 0 6 2308 9133 2310
-17160 2 2 0 6 4161 9799 4766
-17161 2 2 0 6 5646 9785 9784
-17162 2 2 0 6 2889 2985 2986
-17163 2 2 0 6 4982 9819 9991
-17164 2 2 0 6 2981 9472 3999
-17165 2 2 0 6 2901 3207 9668
-17166 2 2 0 6 6142 6141 6864
-17167 2 2 0 6 5582 5739 9808
-17168 2 2 0 6 2739 8632 2988
-17169 2 2 0 6 2895 9713 2896
-17170 2 2 0 6 8241 10922 8439
-17171 2 2 0 6 1948 10107 7701
-17172 2 2 0 6 18 19 433
-17173 2 2 0 6 6676 9548 11136
-17174 2 2 0 6 4960 8904 9824
-17175 2 2 0 6 6351 8654 8553
-17176 2 2 0 6 6426 9084 9994
-17177 2 2 0 6 2915 3494 9235
-17178 2 2 0 6 3245 10024 3769
-17179 2 2 0 6 6514 10242 6515
-17180 2 2 0 6 4543 4544 9295
-17181 2 2 0 6 42 550 9422
-17182 2 2 0 6 1955 1956 1957
-17183 2 2 0 6 6545 6547 6546
-17184 2 2 0 6 4400 10755 10739
-17185 2 2 0 6 1634 9302 1639
-17186 2 2 0 6 3312 9680 8041
-17187 2 2 0 6 5262 6198 9674
-17188 2 2 0 6 8666 10038 9441
-17189 2 2 0 6 3943 7271 6637
-17190 2 2 0 6 5094 9231 9618
-17191 2 2 0 6 2424 8892 9641
-17192 2 2 0 6 2923 8878 4015
-17193 2 2 0 6 3997 5576 9574
-17194 2 2 0 6 4542 9167 9169
-17195 2 2 0 6 3530 9667 8728
-17196 2 2 0 6 4236 4280 5709
-17197 2 2 0 6 5759 6121 6860
-17198 2 2 0 6 7785 9681 7791
-17199 2 2 0 6 2678 3041 9490
-17200 2 2 0 6 2021 5713 9365
-17201 2 2 0 6 4150 9504 4858
-17202 2 2 0 6 2446 2633 9464
-17203 2 2 0 6 6543 6546 9149
-17204 2 2 0 6 1853 1855 9748
-17205 2 2 0 6 1904 1905 1938
-17206 2 2 0 6 5619 9059 9495
-17207 2 2 0 6 4507 5163 4625
-17208 2 2 0 6 4267 5806 9968
-17209 2 2 0 6 3381 9545 9544
-17210 2 2 0 6 1848 9773 1850
-17211 2 2 0 6 2756 10180 8750
-17212 2 2 0 6 2023 9365 2030
-17213 2 2 0 6 3449 4709 8279
-17214 2 2 0 6 5774 10035 9840
-17215 2 2 0 6 3156 4165 9106
-17216 2 2 0 6 7315 7307 9903
-17217 2 2 0 6 1478 10258 8931
-17218 2 2 0 6 5385 7513 9559
-17219 2 2 0 6 1232 1267 9845
-17220 2 2 0 6 8727 9480 9986
-17221 2 2 0 6 2267 2269 10017
-17222 2 2 0 6 4773 4774 6213
-17223 2 2 0 6 6592 8572 9607
-17224 2 2 0 6 4935 9848 4937
-17225 2 2 0 6 5809 5903 5810
-17226 2 2 0 6 2208 9907 2330
-17227 2 2 0 6 5570 9834 7755
-17228 2 2 0 6 4267 5071 5806
-17229 2 2 0 6 3800 4971 4972
-17230 2 2 0 6 4679 7709 7710
-17231 2 2 0 6 6394 8985 9921
-17232 2 2 0 6 1664 1670 9443
-17233 2 2 0 6 3154 7689 10287
-17234 2 2 0 6 3520 3766 10003
-17235 2 2 0 6 5786 5788 9847
-17236 2 2 0 6 5279 5675 5676
-17237 2 2 0 6 2107 10573 10586
-17238 2 2 0 6 3837 4241 4662
-17239 2 2 0 6 4696 5037 5038
-17240 2 2 0 6 6367 6366 10170
-17241 2 2 0 6 3821 9769 4228
-17242 2 2 0 6 3006 9927 3261
-17243 2 2 0 6 3794 3796 3795
-17244 2 2 0 6 2513 9642 9540
-17245 2 2 0 6 6452 8485 10230
-17246 2 2 0 6 2209 5012 4917
-17247 2 2 0 6 575 5831 5692
-17248 2 2 0 6 2963 9252 9671
-17249 2 2 0 6 4677 6741 6740
-17250 2 2 0 6 375 376 8875
-17251 2 2 0 6 1952 1954 1953
-17252 2 2 0 6 5616 9214 9683
-17253 2 2 0 6 4996 5959 5638
-17254 2 2 0 6 2872 9528 9711
-17255 2 2 0 6 6289 7976 9854
-17256 2 2 0 6 5732 5734 9546
-17257 2 2 0 6 1905 1939 1938
-17258 2 2 0 6 3765 4218 3766
-17259 2 2 0 6 4619 5183 5164
-17260 2 2 0 6 3192 9819 4053
-17261 2 2 0 6 5381 6742 6743
-17262 2 2 0 6 7566 9183 7569
-17263 2 2 0 6 838 4417 9613
-17264 2 2 0 6 5635 9861 6481
-17265 2 2 0 6 4529 4530 4528
-17266 2 2 0 6 1005 5751 7027
-17267 2 2 0 6 5927 10660 8724
-17268 2 2 0 6 5167 6725 6726
-17269 2 2 0 6 6055 10033 9610
-17270 2 2 0 6 3533 9815 8601
-17271 2 2 0 6 1171 9767 1173
-17272 2 2 0 6 2492 2837 2841
-17273 2 2 0 6 4434 9754 6469
-17274 2 2 0 6 4016 9497 4018
-17275 2 2 0 6 1205 1204 1215
-17276 2 2 0 6 2896 9713 3164
-17277 2 2 0 6 1069 3617 9503
-17278 2 2 0 6 6431 9725 9568
-17279 2 2 0 6 1957 1958 2189
-17280 2 2 0 6 5167 6726 6727
-17281 2 2 0 6 5565 9129 9568
-17282 2 2 0 6 2451 2890 9240
-17283 2 2 0 6 981 992 9317
-17284 2 2 0 6 1191 9591 1212
-17285 2 2 0 6 4139 4703 4140
-17286 2 2 0 6 1102 9596 8904
-17287 2 2 0 6 3555 9904 9521
-17288 2 2 0 6 5576 5962 9574
-17289 2 2 0 6 6013 10621 10986
-17290 2 2 0 6 2895 3750 9713
-17291 2 2 0 6 2611 2901 9668
-17292 2 2 0 6 2261 2263 10174
-17293 2 2 0 6 2426 9641 2694
-17294 2 2 0 6 3524 9894 8967
-17295 2 2 0 6 2656 9017 9795
-17296 2 2 0 6 4416 9778 6476
-17297 2 2 0 6 2203 2204 2322
-17298 2 2 0 6 5137 6780 9563
-17299 2 2 0 6 4432 6469 9708
-17300 2 2 0 6 3788 4117 9744
-17301 2 2 0 6 1232 9845 5688
-17302 2 2 0 6 4757 9637 6330
-17303 2 2 0 6 3325 3972 10171
-17304 2 2 0 6 717 721 9395
-17305 2 2 0 6 796 1921 9567
-17306 2 2 0 6 4492 4510 4511
-17307 2 2 0 6 9108 9800 9822
-17308 2 2 0 6 5184 6976 5296
-17309 2 2 0 6 3321 9485 5432
-17310 2 2 0 6 4806 9774 5908
-17311 2 2 0 6 6506 10200 10126
-17312 2 2 0 6 5638 5959 5960
-17313 2 2 0 6 1692 9021 1694
-17314 2 2 0 6 5819 9843 9555
-17315 2 2 0 6 4425 4800 5716
-17316 2 2 0 6 6514 8927 10242
-17317 2 2 0 6 6539 6540 6541
-17318 2 2 0 6 4298 5299 7751
-17319 2 2 0 6 2784 3474 9659
-17320 2 2 0 6 586 588 9065
-17321 2 2 0 6 4677 4678 9734
-17322 2 2 0 6 5261 11114 8598
-17323 2 2 0 6 8482 9774 9171
-17324 2 2 0 6 8678 9873 9519
-17325 2 2 0 6 4703 5260 4704
-17326 2 2 0 6 665 9000 666
-17327 2 2 0 6 3242 9856 10127
-17328 2 2 0 6 9125 9651 9652
-17329 2 2 0 6 2558 2790 9708
-17330 2 2 0 6 3260 3261 3262
-17331 2 2 0 6 4280 5710 5709
-17332 2 2 0 6 5263 5262 9674
-17333 2 2 0 6 2320 2469 9999
-17334 2 2 0 6 6523 9752 10036
-17335 2 2 0 6 4533 9532 6471
-17336 2 2 0 6 5697 9894 5792
-17337 2 2 0 6 819 823 9071
-17338 2 2 0 6 679 9195 681
-17339 2 2 0 6 2613 9961 3505
-17340 2 2 0 6 341 342 9597
-17341 2 2 0 6 5682 9827 5924
-17342 2 2 0 6 4172 10169 8019
-17343 2 2 0 6 1939 2198 2197
-17344 2 2 0 6 5427 6149 5428
-17345 2 2 0 6 4864 6332 4865
-17346 2 2 0 6 1798 9928 4907
-17347 2 2 0 6 2665 9983 8605
-17348 2 2 0 6 5321 7248 7450
-17349 2 2 0 6 2897 8841 3178
-17350 2 2 0 6 6212 7124 7125
-17351 2 2 0 6 1301 1323 9814
-17352 2 2 0 6 1501 9478 2217
-17353 2 2 0 6 3520 10003 9479
-17354 2 2 0 6 3252 3879 3878
-17355 2 2 0 6 664 667 9070
-17356 2 2 0 6 5240 9881 10256
-17357 2 2 0 6 4450 9182 5621
-17358 2 2 0 6 3332 8922 3933
-17359 2 2 0 6 4842 6581 6582
-17360 2 2 0 6 2320 2478 2321
-17361 2 2 0 6 6402 9147 9765
-17362 2 2 0 6 1944 4966 9488
-17363 2 2 0 6 4959 10133 8738
-17364 2 2 0 6 2620 10349 10432
-17365 2 2 0 6 4959 5964 9825
-17366 2 2 0 6 2976 2979 3251
-17367 2 2 0 6 2956 9747 4477
-17368 2 2 0 6 6517 6536 6537
-17369 2 2 0 6 5455 9409 5457
-17370 2 2 0 6 3251 3252 3878
-17371 2 2 0 6 4957 9614 6011
-17372 2 2 0 6 2474 2622 9621
-17373 2 2 0 6 2986 3240 3241
-17374 2 2 0 6 2168 2170 10204
-17375 2 2 0 6 206 207 472
-17376 2 2 0 6 4675 5804 5803
-17377 2 2 0 6 2691 9485 3321
-17378 2 2 0 6 796 9567 800
-17379 2 2 0 6 4524 4526 4527
-17380 2 2 0 6 4192 9614 4191
-17381 2 2 0 6 5579 5582 9808
-17382 2 2 0 6 3060 3061 2841
-17383 2 2 0 6 1213 9638 1228
-17384 2 2 0 6 4831 9238 5341
-17385 2 2 0 6 3095 9098 9732
-17386 2 2 0 6 1959 2203 1958
-17387 2 2 0 6 1177 4139 4140
-17388 2 2 0 6 1905 5533 8669
-17389 2 2 0 6 4771 6211 6212
-17390 2 2 0 6 5281 6548 5393
-17391 2 2 0 6 2519 2686 8870
-17392 2 2 0 6 4217 4926 9610
-17393 2 2 0 6 5038 5246 5245
-17394 2 2 0 6 1866 2502 9739
-17395 2 2 0 6 949 10114 950
-17396 2 2 0 6 6421 10225 9771
-17397 2 2 0 6 5007 5876 9458
-17398 2 2 0 6 4773 6213 6648
-17399 2 2 0 6 2378 9550 2398
-17400 2 2 0 6 4444 9883 5926
-17401 2 2 0 6 2362 9969 9866
-17402 2 2 0 6 954 10050 957
-17403 2 2 0 6 8422 10241 10269
-17404 2 2 0 6 1514 1824 5777
-17405 2 2 0 6 6541 6543 6542
-17406 2 2 0 6 585 9562 1922
-17407 2 2 0 6 3707 4825 9878
-17408 2 2 0 6 6556 10233 10368
-17409 2 2 0 6 6437 9753 7938
-17410 2 2 0 6 3841 9637 4757
-17411 2 2 0 6 4677 9734 6741
-17412 2 2 0 6 5695 9552 9763
-17413 2 2 0 6 3878 3879 4604
-17414 2 2 0 6 5120 6774 6775
-17415 2 2 0 6 2273 3521 10058
-17416 2 2 0 6 1267 1292 9845
-17417 2 2 0 6 2408 3005 3007
-17418 2 2 0 6 4806 9171 9774
-17419 2 2 0 6 1977 9705 9837
-17420 2 2 0 6 7560 7562 9004
-17421 2 2 0 6 1943 2320 2321
-17422 2 2 0 6 2164 9786 9699
-17423 2 2 0 6 5091 5878 6668
-17424 2 2 0 6 6369 8408 9770
-17425 2 2 0 6 116 117 434
-17426 2 2 0 6 4700 6207 9662
-17427 2 2 0 6 3340 9535 4517
-17428 2 2 0 6 4672 9743 5166
-17429 2 2 0 6 5794 9998 6518
-17430 2 2 0 6 1012 9895 8679
-17431 2 2 0 6 5176 6793 6144
-17432 2 2 0 6 5159 5454 6828
-17433 2 2 0 6 3755 4114 9804
-17434 2 2 0 6 2121 9141 2179
-17435 2 2 0 6 2120 2122 9367
-17436 2 2 0 6 1187 1186 8935
-17437 2 2 0 6 3332 3333 8922
-17438 2 2 0 6 2310 9132 3459
-17439 2 2 0 6 1864 1866 9739
-17440 2 2 0 6 6434 9889 9975
-17441 2 2 0 6 3089 9678 10424
-17442 2 2 0 6 3793 3797 9572
-17443 2 2 0 6 1956 1958 1957
-17444 2 2 0 6 911 8889 9846
-17445 2 2 0 6 591 9682 593
-17446 2 2 0 6 4604 5184 4606
-17447 2 2 0 6 4666 9844 6148
-17448 2 2 0 6 5686 9519 9873
-17449 2 2 0 6 4606 5184 5296
-17450 2 2 0 6 1592 1594 9055
-17451 2 2 0 6 2639 3002 9423
-17452 2 2 0 6 40 461 9435
-17453 2 2 0 6 4710 9817 9402
-17454 2 2 0 6 593 1165 713
-17455 2 2 0 6 2315 9441 9813
-17456 2 2 0 6 2274 2285 9863
-17457 2 2 0 6 3796 6643 7182
-17458 2 2 0 6 4497 5125 9870
-17459 2 2 0 6 3251 9553 9431
-17460 2 2 0 6 2709 9794 9362
-17461 2 2 0 6 837 8462 9564
-17462 2 2 0 6 4955 9886 8351
-17463 2 2 0 6 3431 3434 9891
-17464 2 2 0 6 5330 7193 7344
-17465 2 2 0 6 5117 9085 8836
-17466 2 2 0 6 5310 8137 9750
-17467 2 2 0 6 851 9865 1148
-17468 2 2 0 6 4907 9928 10208
-17469 2 2 0 6 2651 9820 2653
-17470 2 2 0 6 2198 2200 2202
-17471 2 2 0 6 4884 4885 10109
-17472 2 2 0 6 7567 7575 9702
-17473 2 2 0 6 5909 5910 10196
-17474 2 2 0 6 2559 2560 2851
-17475 2 2 0 6 3999 9472 4967
-17476 2 2 0 6 5819 5827 10176
-17477 2 2 0 6 4825 5994 9878
-17478 2 2 0 6 5453 9620 7703
-17479 2 2 0 6 6475 10145 9449
-17480 2 2 0 6 2290 2292 10192
-17481 2 2 0 6 1349 1359 1351
-17482 2 2 0 6 1959 10151 7547
-17483 2 2 0 6 3418 9688 9736
-17484 2 2 0 6 3834 9730 4523
-17485 2 2 0 6 6424 9540 9642
-17486 2 2 0 6 5735 8739 10100
-17487 2 2 0 6 8766 9728 8767
-17488 2 2 0 6 5465 8437 7801
-17489 2 2 0 6 1000 1005 9962
-17490 2 2 0 6 5098 8095 8094
-17491 2 2 0 6 3799 7817 10193
-17492 2 2 0 6 4660 10512 10542
-17493 2 2 0 6 4972 4973 8902
-17494 2 2 0 6 1213 1230 9638
-17495 2 2 0 6 8319 9393 9897
-17496 2 2 0 6 1938 1939 2197
-17497 2 2 0 6 58 59 9954
-17498 2 2 0 6 681 9195 4449
-17499 2 2 0 6 5338 10222 7342
-17500 2 2 0 6 1954 1956 1955
-17501 2 2 0 6 2956 2958 9747
-17502 2 2 0 6 4780 9712 8134
-17503 2 2 0 6 3890 5774 9840
-17504 2 2 0 6 4482 10004 4837
-17505 2 2 0 6 5594 8866 9933
-17506 2 2 0 6 5509 8536 8842
-17507 2 2 0 6 4814 9517 5842
-17508 2 2 0 6 3220 3683 3684
-17509 2 2 0 6 3351 4913 9758
-17510 2 2 0 6 658 660 9137
-17511 2 2 0 6 4070 9452 4876
-17512 2 2 0 6 3182 9720 3185
-17513 2 2 0 6 669 666 9000
-17514 2 2 0 6 2227 9619 2409
-17515 2 2 0 6 1019 3648 9586
-17516 2 2 0 6 8177 8178 9876
-17517 2 2 0 6 1812 1905 1904
-17518 2 2 0 6 3674 9989 9719
-17519 2 2 0 6 5072 10067 6002
-17520 2 2 0 6 4216 9610 5104
-17521 2 2 0 6 8111 8112 10021
-17522 2 2 0 6 5832 5833 6018
-17523 2 2 0 6 2775 9787 9788
-17524 2 2 0 6 3063 3117 9575
-17525 2 2 0 6 4123 5896 10018
-17526 2 2 0 6 6419 9236 9237
-17527 2 2 0 6 2166 3485 9786
-17528 2 2 0 6 4227 5156 4251
-17529 2 2 0 6 9463 9784 9785
-17530 2 2 0 6 6525 6527 10241
-17531 2 2 0 6 1807 9340 1909
-17532 2 2 0 6 6422 7496 10323
-17533 2 2 0 6 5706 9521 9904
-17534 2 2 0 6 3173 9692 3175
-17535 2 2 0 6 2241 10015 2242
-17536 2 2 0 6 5115 6718 5116
-17537 2 2 0 6 3710 5638 9484
-17538 2 2 0 6 7662 9863 9893
-17539 2 2 0 6 3769 8938 3770
-17540 2 2 0 6 9318 10177 9319
-17541 2 2 0 6 1475 10258 1478
-17542 2 2 0 6 3037 9877 9633
-17543 2 2 0 6 7297 7299 9864
-17544 2 2 0 6 1228 9638 3638
-17545 2 2 0 6 4424 9826 9049
-17546 2 2 0 6 1187 8935 3531
-17547 2 2 0 6 2158 9397 5439
-17548 2 2 0 6 5168 9470 6871
-17549 2 2 0 6 5615 10096 10002
-17550 2 2 0 6 2629 8982 9855
-17551 2 2 0 6 4191 9614 4957
-17552 2 2 0 6 3954 3956 9670
-17553 2 2 0 6 737 10160 2589
-17554 2 2 0 6 6745 6746 6747
-17555 2 2 0 6 3317 8834 10112
-17556 2 2 0 6 2198 2199 2200
-17557 2 2 0 6 7601 9686 9830
-17558 2 2 0 6 2362 9866 2507
-17559 2 2 0 6 2795 9898 2798
-17560 2 2 0 6 2315 9938 8866
-17561 2 2 0 6 3497 9476 3891
-17562 2 2 0 6 3237 3800 9791
-17563 2 2 0 6 4809 9908 5323
-17564 2 2 0 6 2166 9786 2164
-17565 2 2 0 6 3885 9968 3886
-17566 2 2 0 6 3026 9373 3027
-17567 2 2 0 6 6454 9799 9427
-17568 2 2 0 6 6354 9910 6357
-17569 2 2 0 6 906 909 9840
-17570 2 2 0 6 6437 9541 9753
-17571 2 2 0 6 2979 3252 3251
-17572 2 2 0 6 2804 3674 9719
-17573 2 2 0 6 2733 9226 2735
-17574 2 2 0 6 2958 2962 9747
-17575 2 2 0 6 957 9861 9399
-17576 2 2 0 6 2785 9463 9138
-17577 2 2 0 6 8799 9984 9191
-17578 2 2 0 6 6208 9353 10199
-17579 2 2 0 6 7863 7866 10082
-17580 2 2 0 6 657 8813 3501
-17581 2 2 0 6 4252 4266 5177
-17582 2 2 0 6 4283 9949 7774
-17583 2 2 0 6 3978 10202 9707
-17584 2 2 0 6 3045 3046 9930
-17585 2 2 0 6 4675 10105 5804
-17586 2 2 0 6 2369 2620 2524
-17587 2 2 0 6 4987 10287 10429
-17588 2 2 0 6 1660 8839 8196
-17589 2 2 0 6 9346 9862 8655
-17590 2 2 0 6 8780 9411 8781
-17591 2 2 0 6 2572 8528 9995
-17592 2 2 0 6 3935 3936 9997
-17593 2 2 0 6 4524 4527 10093
-17594 2 2 0 6 1371 9016 1374
-17595 2 2 0 6 2412 2414 9565
-17596 2 2 0 6 6513 6619 9695
-17597 2 2 0 6 3886 4696 4695
-17598 2 2 0 6 4679 7711 10012
-17599 2 2 0 6 6402 9765 9860
-17600 2 2 0 6 1840 2229 10871
-17601 2 2 0 6 8110 9971 8777
-17602 2 2 0 6 4269 9662 4728
-17603 2 2 0 6 3910 9687 3911
-17604 2 2 0 6 1098 9761 1140
-17605 2 2 0 6 6494 10172 8273
-17606 2 2 0 6 2176 2192 9192
-17607 2 2 0 6 5158 6824 9605
-17608 2 2 0 6 4935 4939 9848
-17609 2 2 0 6 4209 9941 10078
-17610 2 2 0 6 5029 10692 10629
-17611 2 2 0 6 5589 10879 10802
-17612 2 2 0 6 1811 1904 7853
-17613 2 2 0 6 1305 3381 9544
-17614 2 2 0 6 661 9201 662
-17615 2 2 0 6 1634 1636 9302
-17616 2 2 0 6 6543 6544 6545
-17617 2 2 0 6 5120 6157 6774
-17618 2 2 0 6 5702 9893 5750
-17619 2 2 0 6 3674 4755 9989
-17620 2 2 0 6 4951 8751 10103
-17621 2 2 0 6 8139 9525 9973
-17622 2 2 0 6 2622 3632 9621
-17623 2 2 0 6 6181 9662 10061
-17624 2 2 0 6 5708 10071 9778
-17625 2 2 0 6 4884 10109 9598
-17626 2 2 0 6 7391 10946 8342
-17627 2 2 0 6 7550 9931 10211
-17628 2 2 0 6 6102 6184 7090
-17629 2 2 0 6 2338 3634 9318
-17630 2 2 0 6 2296 9412 9297
-17631 2 2 0 6 8751 10180 10103
-17632 2 2 0 6 3340 4495 9535
-17633 2 2 0 6 22 23 9566
-17634 2 2 0 6 1642 2164 9699
-17635 2 2 0 6 6359 6361 10052
-17636 2 2 0 6 1781 5789 9940
-17637 2 2 0 6 2656 9795 3571
-17638 2 2 0 6 4878 9592 6348
-17639 2 2 0 6 4675 5170 10105
-17640 2 2 0 6 2629 9855 2695
-17641 2 2 0 6 3027 9373 3031
-17642 2 2 0 6 2611 9668 8939
-17643 2 2 0 6 1171 1357 9767
-17644 2 2 0 6 5778 10170 6614
-17645 2 2 0 6 6618 5841 10027
-17646 2 2 0 6 2414 3610 9565
-17647 2 2 0 6 5832 6019 10108
-17648 2 2 0 6 4770 9947 5694
-17649 2 2 0 6 3764 10195 9796
-17650 2 2 0 6 1739 3653 9751
-17651 2 2 0 6 4528 4532 9764
-17652 2 2 0 6 2116 9354 9206
-17653 2 2 0 6 603 605 8990
-17654 2 2 0 6 3620 4176 9765
-17655 2 2 0 6 8665 10038 8666
-17656 2 2 0 6 1313 10115 8467
-17657 2 2 0 6 2310 9133 9132
-17658 2 2 0 6 6520 9855 8982
-17659 2 2 0 6 1098 1130 9761
-17660 2 2 0 6 2360 9969 2362
-17661 2 2 0 6 2420 9092 10006
-17662 2 2 0 6 817 819 9071
-17663 2 2 0 6 5816 10139 10013
-17664 2 2 0 6 6606 10413 9103
-17665 2 2 0 6 3279 9622 9467
-17666 2 2 0 6 6645 9741 10253
-17667 2 2 0 6 5708 9778 9727
-17668 2 2 0 6 9057 9991 9819
-17669 2 2 0 6 6455 10064 6456
-17670 2 2 0 6 5365 9296 7054
-17671 2 2 0 6 6490 10165 10232
-17672 2 2 0 6 8496 4466 10197
-17673 2 2 0 6 7994 9677 10094
-17674 2 2 0 6 3821 4228 4227
-17675 2 2 0 6 3656 9691 9728
-17676 2 2 0 6 661 3753 9201
-17677 2 2 0 6 3218 9789 4076
-17678 2 2 0 6 5528 9972 9645
-17679 2 2 0 6 1438 5693 9951
-17680 2 2 0 6 5115 9714 6719
-17681 2 2 0 6 8595 10398 10414
-17682 2 2 0 6 7884 7885 9790
-17683 2 2 0 6 3793 3794 3795
-17684 2 2 0 6 581 9270 3723
-17685 2 2 0 6 3256 4690 3258
-17686 2 2 0 6 8845 10173 10139
-17687 2 2 0 6 1851 3446 9958
-17688 2 2 0 6 7940 10131 10092
-17689 2 2 0 6 3114 9763 9552
-17690 2 2 0 6 5568 9240 10066
-17691 2 2 0 6 4526 4528 4527
-17692 2 2 0 6 1032 10084 9717
-17693 2 2 0 6 1882 9872 3176
-17694 2 2 0 6 4450 4456 9182
-17695 2 2 0 6 6419 9237 6420
-17696 2 2 0 6 3034 3909 10026
-17697 2 2 0 6 1687 1721 9508
-17698 2 2 0 6 594 713 9838
-17699 2 2 0 6 5107 6077 9724
-17700 2 2 0 6 7464 9947 10175
-17701 2 2 0 6 2009 3538 9716
-17702 2 2 0 6 2038 9515 8776
-17703 2 2 0 6 3935 4800 4425
-17704 2 2 0 6 1101 9441 2260
-17705 2 2 0 6 2205 8199 9887
-17706 2 2 0 6 2485 9945 9253
-17707 2 2 0 6 2021 9365 2023
-17708 2 2 0 6 5564 9029 6196
-17709 2 2 0 6 1839 1841 10246
-17710 2 2 0 6 6052 6107 6708
-17711 2 2 0 6 1482 9246 1483
-17712 2 2 0 6 3737 9883 4444
-17713 2 2 0 6 4220 4218 9911
-17714 2 2 0 6 3451 10131 8665
-17715 2 2 0 6 1982 10120 2236
-17716 2 2 0 6 6494 10086 10172
-17717 2 2 0 6 5349 5354 9639
-17718 2 2 0 6 8674 9805 8675
-17719 2 2 0 6 3335 9821 4994
-17720 2 2 0 6 8245 9984 8799
-17721 2 2 0 6 6745 6747 6748
-17722 2 2 0 6 6498 9870 10048
-17723 2 2 0 6 2120 9367 2131
-17724 2 2 0 6 5835 8994 10231
-17725 2 2 0 6 7026 8564 7801
-17726 2 2 0 6 3046 3049 9930
-17727 2 2 0 6 2635 9850 2730
-17728 2 2 0 6 5672 5742 9520
-17729 2 2 0 6 7469 7675 10462
-17730 2 2 0 6 311 9381 539
-17731 2 2 0 6 3071 7744 10187
-17732 2 2 0 6 7429 7428 10322
-17733 2 2 0 6 7804 9766 9138
-17734 2 2 0 6 6003 7136 11065
-17735 2 2 0 6 1707 8930 10652
-17736 2 2 0 6 4434 4436 9754
-17737 2 2 0 6 8110 8111 9971
-17738 2 2 0 6 5427 10136 6149
-17739 2 2 0 6 8781 9411 11224
-17740 2 2 0 6 4269 4700 9662
-17741 2 2 0 6 2101 9206 2104
-17742 2 2 0 6 3783 8422 10269
-17743 2 2 0 6 6375 10618 7272
-17744 2 2 0 6 2192 2464 9192
-17745 2 2 0 6 975 10007 982
-17746 2 2 0 6 1031 1032 9717
-17747 2 2 0 6 4220 9911 5112
-17748 2 2 0 6 6830 6919 6831
-17749 2 2 0 6 6644 11171 11242
-17750 2 2 0 6 3088 10165 3091
-17751 2 2 0 6 6443 9916 6444
-17752 2 2 0 6 6570 10302 8197
-17753 2 2 0 6 6361 8931 10258
-17754 2 2 0 6 909 3890 9840
-17755 2 2 0 6 5797 9980 6115
-17756 2 2 0 6 2790 4432 9708
-17757 2 2 0 6 2037 9859 2039
-17758 2 2 0 6 2651 2919 9820
-17759 2 2 0 6 2950 9445 3159
-17760 2 2 0 6 7619 10032 10017
-17761 2 2 0 6 3749 8956 5417
-17762 2 2 0 6 5782 6108 9760
-17763 2 2 0 6 6601 8215 10930
-17764 2 2 0 6 1204 9701 8851
-17765 2 2 0 6 6495 8135 10002
-17766 2 2 0 6 7721 7723 10240
-17767 2 2 0 6 4054 10398 8595
-17768 2 2 0 6 4649 5155 9916
-17769 2 2 0 6 8651 9412 9775
-17770 2 2 0 6 5540 9897 9393
-17771 2 2 0 6 1581 9113 1579
-17772 2 2 0 6 3373 8918 10270
-17773 2 2 0 6 1012 4426 9895
-17774 2 2 0 6 3293 3294 9584
-17775 2 2 0 6 2841 8020 10055
-17776 2 2 0 6 3634 9601 10176
-17777 2 2 0 6 1662 1661 9457
-17778 2 2 0 6 4266 5828 5178
-17779 2 2 0 6 6417 9950 9882
-17780 2 2 0 6 3972 8040 10238
-17781 2 2 0 6 3187 3892 8895
-17782 2 2 0 6 883 9937 966
-17783 2 2 0 6 1663 1664 9443
-17784 2 2 0 6 2969 2971 2970
-17785 2 2 0 6 5517 9810 9600
-17786 2 2 0 6 3330 9633 4737
-17787 2 2 0 6 6360 9842 6362
-17788 2 2 0 6 5294 9880 6529
-17789 2 2 0 6 6259 10265 5810
-17790 2 2 0 6 4647 4648 9731
-17791 2 2 0 6 5564 8504 9029
-17792 2 2 0 6 6762 6786 6764
-17793 2 2 0 6 2451 9240 2453
-17794 2 2 0 6 3474 4010 9659
-17795 2 2 0 6 1998 9251 1999
-17796 2 2 0 6 5111 5782 9760
-17797 2 2 0 6 5803 5805 10255
-17798 2 2 0 6 1902 3470 9966
-17799 2 2 0 6 706 9939 1222
-17800 2 2 0 6 1668 9339 1671
-17801 2 2 0 6 4196 9720 5778
-17802 2 2 0 6 962 976 9306
-17803 2 2 0 6 583 9562 585
-17804 2 2 0 6 4478 6409 10099
-17805 2 2 0 6 4773 6648 8716
-17806 2 2 0 6 8191 11225 11220
-17807 2 2 0 6 5455 9145 9409
-17808 2 2 0 6 6374 10141 9750
-17809 2 2 0 6 4594 8094 4598
-17810 2 2 0 6 6540 9849 6541
-17811 2 2 0 6 2002 9251 3611
-17812 2 2 0 6 594 9838 596
-17813 2 2 0 6 5298 5780 8963
-17814 2 2 0 6 2971 9165 4542
-17815 2 2 0 6 4216 4217 9610
-17816 2 2 0 6 1291 3644 9221
-17817 2 2 0 6 4710 7695 9817
-17818 2 2 0 6 4649 9916 9833
-17819 2 2 0 6 1268 10282 1355
-17820 2 2 0 6 1509 1767 9768
-17821 2 2 0 6 1306 9527 9607
-17822 2 2 0 6 2572 9995 2574
-17823 2 2 0 6 3936 3939 9997
-17824 2 2 0 6 4016 4446 9497
-17825 2 2 0 6 4872 6276 9718
-17826 2 2 0 6 1482 10069 9876
-17827 2 2 0 6 2785 9784 9463
-17828 2 2 0 6 5962 6553 9888
-17829 2 2 0 6 5689 9972 8534
-17830 2 2 0 6 7794 8917 10118
-17831 2 2 0 6 139 9456 463
-17832 2 2 0 6 8204 10455 10401
-17833 2 2 0 6 1356 1503 9940
-17834 2 2 0 6 4438 10441 10526
-17835 2 2 0 6 1194 9466 3506
-17836 2 2 0 6 4180 4949 9644
-17837 2 2 0 6 4501 8379 9631
-17838 2 2 0 6 660 663 9137
-17839 2 2 0 6 4696 5244 9487
-17840 2 2 0 6 5324 7355 9617
-17841 2 2 0 6 4040 4497 9870
-17842 2 2 0 6 4247 4248 4626
-17843 2 2 0 6 3620 9765 9147
-17844 2 2 0 6 4816 5893 9517
-17845 2 2 0 6 41 9422 461
-17846 2 2 0 6 8651 9297 9412
-17847 2 2 0 6 4939 8072 9848
-17848 2 2 0 6 8180 9876 10069
-17849 2 2 0 6 593 9682 1165
-17850 2 2 0 6 5924 10522 10540
-17851 2 2 0 6 1650 7538 9522
-17852 2 2 0 6 5284 6256 9018
-17853 2 2 0 6 4436 4810 9754
-17854 2 2 0 6 2153 3574 10084
-17855 2 2 0 6 4165 5612 9106
-17856 2 2 0 6 8904 9596 9824
-17857 2 2 0 6 1346 2401 9839
-17858 2 2 0 6 44 405 9660
-17859 2 2 0 6 6345 7995 10333
-17860 2 2 0 6 2155 2157 9602
-17861 2 2 0 6 6051 11183 6735
-17862 2 2 0 6 2047 2050 9126
-17863 2 2 0 6 2695 9855 3238
-17864 2 2 0 6 342 343 458
-17865 2 2 0 6 3828 4298 10098
-17866 2 2 0 6 5719 10153 6625
-17867 2 2 0 6 2697 3683 3220
-17868 2 2 0 6 32 9416 549
-17869 2 2 0 6 4516 5854 10008
-17870 2 2 0 6 3834 4248 4247
-17871 2 2 0 6 6479 6480 9703
-17872 2 2 0 6 8634 10063 9472
-17873 2 2 0 6 4162 4765 9992
-17874 2 2 0 6 5833 6319 6018
-17875 2 2 0 6 4646 9605 4965
-17876 2 2 0 6 6469 10068 9944
-17877 2 2 0 6 7307 7309 9903
-17878 2 2 0 6 4298 7751 10098
-17879 2 2 0 6 3363 9830 9155
-17880 2 2 0 6 3940 8716 3943
-17881 2 2 0 6 3050 8469 3049
-17882 2 2 0 6 3162 8595 10414
-17883 2 2 0 6 6584 8310 9900
-17884 2 2 0 6 4470 10103 6452
-17885 2 2 0 6 242 243 556
-17886 2 2 0 6 2908 8934 2743
-17887 2 2 0 6 6468 9705 9780
-17888 2 2 0 6 6743 6745 6744
-17889 2 2 0 6 2649 2678 9490
-17890 2 2 0 6 3634 10177 9318
-17891 2 2 0 6 2661 3643 9499
-17892 2 2 0 6 6207 10061 9662
-17893 2 2 0 6 4532 4613 9764
-17894 2 2 0 6 1592 9055 8552
-17895 2 2 0 6 3680 3682 9404
-17896 2 2 0 6 984 1038 10101
-17897 2 2 0 6 8132 10208 10169
-17898 2 2 0 6 4530 4531 8836
-17899 2 2 0 6 1158 9701 1185
-17900 2 2 0 6 340 554 9537
-17901 2 2 0 6 3711 4838 10049
-17902 2 2 0 6 2357 9479 6368
-17903 2 2 0 6 2992 7911 7910
-17904 2 2 0 6 3117 4143 9575
-17905 2 2 0 6 5686 9873 9400
-17906 2 2 0 6 31 549 9442
-17907 2 2 0 6 1410 10011 9629
-17908 2 2 0 6 5032 10722 10728
-17909 2 2 0 6 5962 9888 9574
-17910 2 2 0 6 7642 11089 11081
-17911 2 2 0 6 3569 10451 7616
-17912 2 2 0 6 5377 9931 7550
-17913 2 2 0 6 3106 9651 4486
-17914 2 2 0 6 3705 9878 4568
-17915 2 2 0 6 5540 7498 9897
-17916 2 2 0 6 2995 3233 9095
-17917 2 2 0 6 6478 9933 9938
-17918 2 2 0 6 129 544 9498
-17919 2 2 0 6 4244 9661 4310
-17920 2 2 0 6 2733 2858 9226
-17921 2 2 0 6 4056 9781 4507
-17922 2 2 0 6 22 9566 552
-17923 2 2 0 6 3555 3557 9904
-17924 2 2 0 6 4993 10209 5921
-17925 2 2 0 6 8761 9959 9237
-17926 2 2 0 6 2885 9988 2888
-17927 2 2 0 6 1304 9673 1321
-17928 2 2 0 6 5624 10094 9677
-17929 2 2 0 6 1998 5905 10419
-17930 2 2 0 6 8386 10456 10366
-17931 2 2 0 6 5831 5833 5832
-17932 2 2 0 6 9721 7281 10030
-17933 2 2 0 6 1358 9857 3628
-17934 2 2 0 6 8310 10612 9900
-17935 2 2 0 6 5575 9862 10022
-17936 2 2 0 6 7935 10228 8653
-17937 2 2 0 6 4427 4429 9918
-17938 2 2 0 6 3184 3187 8895
-17939 2 2 0 6 1402 9239 9609
-17940 2 2 0 6 8821 9826 8822
-17941 2 2 0 6 2354 9828 2762
-17942 2 2 0 6 8739 10058 10100
-17943 2 2 0 6 2394 2693 10099
-17944 2 2 0 6 5107 9724 8372
-17945 2 2 0 6 7030 9776 9364
-17946 2 2 0 6 3986 9568 9725
-17947 2 2 0 6 6234 10037 10115
-17948 2 2 0 6 1483 9246 1486
-17949 2 2 0 6 8171 10259 10076
-17950 2 2 0 6 4094 9800 9108
-17951 2 2 0 6 1864 9739 8628
-17952 2 2 0 6 1900 9474 5000
-17953 2 2 0 6 3723 10108 10249
-17954 2 2 0 6 3786 3788 9744
-17955 2 2 0 6 6041 11177 6051
-17956 2 2 0 6 3242 3243 9856
-17957 2 2 0 6 2386 9134 10506
-17958 2 2 0 6 3792 3793 9572
-17959 2 2 0 6 1876 10039 1986
-17960 2 2 0 6 5615 6208 10096
-17961 2 2 0 6 390 470 9494
-17962 2 2 0 6 2229 8086 10883
-17963 2 2 0 6 6156 9934 7537
-17964 2 2 0 6 1577 10774 8127
-17965 2 2 0 6 4812 5842 9450
-17966 2 2 0 6 9168 10291 10039
-17967 2 2 0 6 1336 10221 1338
-17968 2 2 0 6 6454 9427 9426
-17969 2 2 0 6 8649 9920 9829
-17970 2 2 0 6 977 984 10101
-17971 2 2 0 6 3743 4071 9771
-17972 2 2 0 6 5354 7192 9639
-17973 2 2 0 6 2229 10883 10871
-17974 2 2 0 6 4501 9631 9462
-17975 2 2 0 6 6509 10183 6510
-17976 2 2 0 6 4123 4122 4607
-17977 2 2 0 6 5746 9941 8757
-17978 2 2 0 6 312 439 9381
-17979 2 2 0 6 4975 10086 9659
-17980 2 2 0 6 1113 10283 8329
-17981 2 2 0 6 7372 10768 10771
-17982 2 2 0 6 1767 1903 9768
-17983 2 2 0 6 5756 10067 9991
-17984 2 2 0 6 727 11234 11211
-17985 2 2 0 6 5284 9018 5316
-17986 2 2 0 6 5381 6743 6744
-17987 2 2 0 6 7904 10071 5708
-17988 2 2 0 6 3571 9795 3899
-17989 2 2 0 6 3955 9687 4738
-17990 2 2 0 6 6417 6418 9950
-17991 2 2 0 6 4513 5796 9936
-17992 2 2 0 6 6726 9374 6752
-17993 2 2 0 6 142 406 9650
-17994 2 2 0 6 7051 9364 9776
-17995 2 2 0 6 1329 9347 9885
-17996 2 2 0 6 3789 3844 10274
-17997 2 2 0 6 8821 9049 9826
-17998 2 2 0 6 6358 10029 7748
-17999 2 2 0 6 2852 2970 3250
-18000 2 2 0 6 3275 9529 3276
-18001 2 2 0 6 3800 4972 9791
-18002 2 2 0 6 5967 10815 8896
-18003 2 2 0 6 5609 10163 6612
-18004 2 2 0 6 5692 5831 5832
-18005 2 2 0 6 6404 9874 9162
-18006 2 2 0 6 2161 4019 10097
-18007 2 2 0 6 4913 10144 9758
-18008 2 2 0 6 6498 9444 9870
-18009 2 2 0 6 2663 9652 9651
-18010 2 2 0 6 5691 6436 9837
-18011 2 2 0 6 2631 10886 7254
-18012 2 2 0 6 1875 7853 4801
-18013 2 2 0 6 4040 9870 9444
-18014 2 2 0 6 9071 10636 10626
-18015 2 2 0 6 5459 10028 5745
-18016 2 2 0 6 2845 10252 3154
-18017 2 2 0 6 767 773 10289
-18018 2 2 0 6 2617 2659 9836
-18019 2 2 0 6 8189 10043 8740
-18020 2 2 0 6 8019 10169 10208
-18021 2 2 0 6 8136 9155 9686
-18022 2 2 0 6 1113 1115 10283
-18023 2 2 0 6 4416 9093 9778
-18024 2 2 0 6 2185 9887 5878
-18025 2 2 0 6 949 10224 10183
-18026 2 2 0 6 4527 4528 9764
-18027 2 2 0 6 6537 6536 10250
-18028 2 2 0 6 3833 3834 4247
-18029 2 2 0 6 1041 9717 5725
-18030 2 2 0 6 1511 1812 1811
-18031 2 2 0 6 1478 10069 1479
-18032 2 2 0 6 5689 9645 9972
-18033 2 2 0 6 4396 4951 10103
-18034 2 2 0 6 3939 6637 9997
-18035 2 2 0 6 5672 9520 9090
-18036 2 2 0 6 5726 9883 9507
-18037 2 2 0 6 3683 3823 3684
-18038 2 2 0 6 4054 10412 10398
-18039 2 2 0 6 6458 6461 8802
-18040 2 2 0 6 6064 6065 11175
-18041 2 2 0 6 4967 9472 10063
-18042 2 2 0 6 2665 9115 9983
-18043 2 2 0 6 6550 6551 10338
-18044 2 2 0 6 3451 8679 10092
-18045 2 2 0 6 1511 10041 1812
-18046 2 2 0 6 5178 6760 6785
-18047 2 2 0 6 3830 4266 4252
-18048 2 2 0 6 578 576 9270
-18049 2 2 0 6 5104 10033 6703
-18050 2 2 0 6 6074 6572 10051
-18051 2 2 0 6 3843 9791 5758
-18052 2 2 0 6 3256 9669 4690
-18053 2 2 0 6 5546 9889 6187
-18054 2 2 0 6 6763 9737 10053
-18055 2 2 0 6 1323 1514 9814
-18056 2 2 0 6 2158 1790 9397
-18057 2 2 0 6 596 9838 4453
-18058 2 2 0 6 2653 9820 9821
-18059 2 2 0 6 6592 9607 9527
-18060 2 2 0 6 3067 10262 10547
-18061 2 2 0 6 2360 2522 9969
-18062 2 2 0 6 3159 9445 4209
-18063 2 2 0 6 3037 9633 3330
-18064 2 2 0 6 2594 4027 9868
-18065 2 2 0 6 8140 9793 8141
-18066 2 2 0 6 5755 9991 9057
-18067 2 2 0 6 8845 8846 10173
-18068 2 2 0 6 1140 9761 3673
-18069 2 2 0 6 3237 9791 3843
-18070 2 2 0 6 5700 9282 9831
-18071 2 2 0 6 6453 9924 9547
-18072 2 2 0 6 6497 10000 9831
-18073 2 2 0 6 6368 9479 10003
-18074 2 2 0 6 1406 10211 9239
-18075 2 2 0 6 2742 3324 9243
-18076 2 2 0 6 8674 9327 9805
-18077 2 2 0 6 3750 10161 9713
-18078 2 2 0 6 2325 2406 9944
-18079 2 2 0 6 4427 9918 9355
-18080 2 2 0 6 7283 7417 10030
-18081 2 2 0 6 3723 9270 10108
-18082 2 2 0 6 5752 10059 7679
-18083 2 2 0 6 3665 9926 3667
-18084 2 2 0 6 4953 6202 9745
-18085 2 2 0 6 6426 9994 9891
-18086 2 2 0 6 3492 10157 5749
-18087 2 2 0 6 2890 8730 10140
-18088 2 2 0 6 3523 10761 7371
-18089 2 2 0 6 2322 9832 8900
-18090 2 2 0 6 5245 6994 6993
-18091 2 2 0 6 6550 10318 8368
-18092 2 2 0 6 5636 8878 9310
-18093 2 2 0 6 8252 9598 10109
-18094 2 2 0 6 6355 10188 8325
-18095 2 2 0 6 583 3723 9562
-18096 2 2 0 6 3680 9404 4178
-18097 2 2 0 6 2467 2727 9832
-18098 2 2 0 6 8711 9920 9800
-18099 2 2 0 6 5799 7914 10078
-18100 2 2 0 6 8157 10013 9824
-18101 2 2 0 6 3949 8429 10057
-18102 2 2 0 6 2248 8826 10557
-18103 2 2 0 6 4426 10237 10191
-18104 2 2 0 6 8189 8190 10043
-18105 2 2 0 6 8685 10324 9875
-18106 2 2 0 6 4426 10191 9895
-18107 2 2 0 6 5298 8963 6329
-18108 2 2 0 6 1334 10348 1336
-18109 2 2 0 6 6763 6764 9737
-18110 2 2 0 6 978 3889 9816
-18111 2 2 0 6 9009 9659 10086
-18112 2 2 0 6 880 9654 888
-18113 2 2 0 6 1005 7029 9962
-18114 2 2 0 6 7186 10076 10259
-18115 2 2 0 6 2480 8541 5492
-18116 2 2 0 6 38 545 9359
-18117 2 2 0 6 2538 10025 2540
-18118 2 2 0 6 2225 9923 2484
-18119 2 2 0 6 5848 10247 6333
-18120 2 2 0 6 2663 9651 2875
-18121 2 2 0 6 1954 10151 1956
-18122 2 2 0 6 4056 4240 9781
-18123 2 2 0 6 3783 10269 3784
-18124 2 2 0 6 6019 10249 10108
-18125 2 2 0 6 4249 10159 6573
-18126 2 2 0 6 8930 10659 10652
-18127 2 2 0 6 2370 9945 2485
-18128 2 2 0 6 6625 10153 10298
-18129 2 2 0 6 520 7380 7465
-18130 2 2 0 6 7957 10169 10225
-18131 2 2 0 6 4531 5117 8836
-18132 2 2 0 6 3980 10285 7744
-18133 2 2 0 6 8730 9918 10140
-18134 2 2 0 6 8111 10335 9971
-18135 2 2 0 6 4713 9694 5196
-18136 2 2 0 6 8034 10062 8039
-18137 2 2 0 6 2420 10006 8892
-18138 2 2 0 6 3572 9976 5491
-18139 2 2 0 6 1824 9922 5777
-18140 2 2 0 6 4951 9191 9984
-18141 2 2 0 6 1514 5777 9814
-18142 2 2 0 6 1646 10273 3552
-18143 2 2 0 6 2232 10132 9475
-18144 2 2 0 6 8201 10767 10836
-18145 2 2 0 6 143 144 9556
-18146 2 2 0 6 5546 9576 9975
-18147 2 2 0 6 5491 9976 10150
-18148 2 2 0 6 9356 6416 9704
-18149 2 2 0 6 6374 7707 10141
-18150 2 2 0 6 2774 4478 10099
-18151 2 2 0 6 4938 4953 9745
-18152 2 2 0 6 8426 10252 8997
-18153 2 2 0 6 2762 9828 7978
-18154 2 2 0 6 721 725 9564
-18155 2 2 0 6 6747 6749 6748
-18156 2 2 0 6 1358 1282 9857
-18157 2 2 0 6 5734 6438 9546
-18158 2 2 0 6 3005 3260 9942
-18159 2 2 0 6 5886 10535 10449
-18160 2 2 0 6 6064 11172 7802
-18161 2 2 0 6 5798 8032 10106
-18162 2 2 0 6 5379 10001 8062
-18163 2 2 0 6 4290 9718 4294
-18164 2 2 0 6 5877 10382 6621
-18165 2 2 0 6 6234 9504 10037
-18166 2 2 0 6 2203 8900 9852
-18167 2 2 0 6 301 302 495
-18168 2 2 0 6 1986 2396 2395
-18169 2 2 0 6 7941 9813 10038
-18170 2 2 0 6 2380 9612 9550
-18171 2 2 0 6 6762 6764 6763
-18172 2 2 0 6 976 8830 9306
-18173 2 2 0 6 2338 9318 2482
-18174 2 2 0 6 4663 10136 8080
-18175 2 2 0 6 5398 10141 7927
-18176 2 2 0 6 2233 10858 2235
-18177 2 2 0 6 7063 5743 10060
-18178 2 2 0 6 9711 10117 4900
-18179 2 2 0 6 4248 4524 10093
-18180 2 2 0 6 4678 6040 9734
-18181 2 2 0 6 6541 9849 6544
-18182 2 2 0 6 9601 9843 10176
-18183 2 2 0 6 2267 10017 10032
-18184 2 2 0 6 2285 9893 9863
-18185 2 2 0 6 3685 3833 3669
-18186 2 2 0 6 141 142 9650
-18187 2 2 0 6 6826 6827 6905
-18188 2 2 0 6 43 44 9660
-18189 2 2 0 6 1794 9484 9656
-18190 2 2 0 6 5427 8080 10136
-18191 2 2 0 6 5018 6614 9981
-18192 2 2 0 6 3060 9799 4161
-18193 2 2 0 6 4802 4188 9985
-18194 2 2 0 6 3665 9935 9926
-18195 2 2 0 6 5671 9244 10162
-18196 2 2 0 6 305 9516 471
-18197 2 2 0 6 3185 9720 4196
-18198 2 2 0 6 8907 9600 9810
-18199 2 2 0 6 3112 9833 9288
-18200 2 2 0 6 674 9407 3533
-18201 2 2 0 6 2765 9899 2769
-18202 2 2 0 6 2400 2569 9612
-18203 2 2 0 6 1694 9021 1697
-18204 2 2 0 6 4727 7260 10026
-18205 2 2 0 6 4752 4753 9987
-18206 2 2 0 6 8438 8439 9956
-18207 2 2 0 6 4480 4900 10004
-18208 2 2 0 6 3737 9507 9883
-18209 2 2 0 6 1869 8438 9956
-18210 2 2 0 6 4989 6506 9606
-18211 2 2 0 6 8940 9843 9601
-18212 2 2 0 6 1346 9839 1348
-18213 2 2 0 6 4507 9781 5163
-18214 2 2 0 6 4510 6552 9869
-18215 2 2 0 6 5958 7372 10022
-18216 2 2 0 6 5178 5828 6760
-18217 2 2 0 6 2803 9719 2862
-18218 2 2 0 6 578 9270 581
-18219 2 2 0 6 2574 9995 3989
-18220 2 2 0 6 6558 10350 10305
-18221 2 2 0 6 3991 10299 4415
-18222 2 2 0 6 6451 9736 9688
-18223 2 2 0 6 643 8959 9921
-18224 2 2 0 6 6589 10407 10157
-18225 2 2 0 6 1313 8795 10213
-18226 2 2 0 6 4864 10134 6332
-18227 2 2 0 6 3306 9726 4692
-18228 2 2 0 6 1651 9522 1654
-18229 2 2 0 6 3978 4849 10202
-18230 2 2 0 6 2970 2971 2972
-18231 2 2 0 6 5310 9750 5398
-18232 2 2 0 6 2887 9905 3170
-18233 2 2 0 6 6360 7748 9842
-18234 2 2 0 6 4593 6061 9977
-18235 2 2 0 6 2197 9935 3665
-18236 2 2 0 6 5459 5461 10028
-18237 2 2 0 6 4810 4812 9450
-18238 2 2 0 6 2952 10700 10574
-18239 2 2 0 6 2155 9602 3574
-18240 2 2 0 6 4098 10223 5307
-18241 2 2 0 6 2322 2467 9832
-18242 2 2 0 6 2985 10053 3240
-18243 2 2 0 6 3388 8721 10643
-18244 2 2 0 6 4123 4607 4608
-18245 2 2 0 6 4704 5260 9700
-18246 2 2 0 6 2669 9866 4491
-18247 2 2 0 6 2884 9988 2885
-18248 2 2 0 6 8495 10006 9092
-18249 2 2 0 6 2370 2484 9945
-18250 2 2 0 6 1663 10404 10383
-18251 2 2 0 6 3776 9867 3779
-18252 2 2 0 6 7287 11109 8434
-18253 2 2 0 6 7460 7461 10120
-18254 2 2 0 6 7834 9854 8042
-18255 2 2 0 6 6074 10051 9804
-18256 2 2 0 6 6535 10582 10532
-18257 2 2 0 6 2358 2612 9479
-18258 2 2 0 6 5110 6114 9911
-18259 2 2 0 6 3454 10287 4987
-18260 2 2 0 6 8474 8476 10345
-18261 2 2 0 6 6409 10016 10015
-18262 2 2 0 6 2146 9601 3634
-18263 2 2 0 6 6453 9309 9924
-18264 2 2 0 6 6496 10096 10199
-18265 2 2 0 6 5810 10265 9729
-18266 2 2 0 6 9093 9727 9778
-18267 2 2 0 6 892 10315 895
-18268 2 2 0 6 1721 4907 9508
-18269 2 2 0 6 1966 2254 10253
-18270 2 2 0 6 9286 10013 10139
-18271 2 2 0 6 5785 7667 10158
-18272 2 2 0 6 4989 9606 7917
-18273 2 2 0 6 7274 10313 7511
-18274 2 2 0 6 2069 9706 9054
-18275 2 2 0 6 5811 9946 10203
-18276 2 2 0 6 4179 9946 9247
-18277 2 2 0 6 6339 10569 10874
-18278 2 2 0 6 2749 5631 10245
-18279 2 2 0 6 3697 10510 7812
-18280 2 2 0 6 2739 9741 8632
-18281 2 2 0 6 5259 6995 7384
-18282 2 2 0 6 1887 1889 9722
-18283 2 2 0 6 1762 5630 10107
-18284 2 2 0 6 3537 9906 3598
-18285 2 2 0 6 5612 9628 9106
-18286 2 2 0 6 5742 5744 9979
-18287 2 2 0 6 3071 10205 3072
-18288 2 2 0 6 2188 9741 2456
-18289 2 2 0 6 6495 10002 10096
-18290 2 2 0 6 3175 9692 3271
-18291 2 2 0 6 4960 9824 10013
-18292 2 2 0 6 2101 2116 9206
-18293 2 2 0 6 2834 9449 3371
-18294 2 2 0 6 7560 9004 7570
-18295 2 2 0 6 7355 8700 9762
-18296 2 2 0 6 1730 3592 9573
-18297 2 2 0 6 6535 10432 7857
-18298 2 2 0 6 2730 9850 9561
-18299 2 2 0 6 3886 9968 5037
-18300 2 2 0 6 4113 11093 11083
-18301 2 2 0 6 6416 6417 9704
-18302 2 2 0 6 6470 10112 10243
-18303 2 2 0 6 3720 10659 8930
-18304 2 2 0 6 4034 10764 8312
-18305 2 2 0 6 5738 9693 10072
-18306 2 2 0 6 4480 10004 4482
-18307 2 2 0 6 3244 10024 3245
-18308 2 2 0 6 5859 10026 10186
-18309 2 2 0 6 1356 9940 3644
-18310 2 2 0 6 2507 9866 2669
-18311 2 2 0 6 2032 9986 3512
-18312 2 2 0 6 6598 10147 10207
-18313 2 2 0 6 1806 9474 1900
-18314 2 2 0 6 1958 9852 2189
-18315 2 2 0 6 3434 10073 9891
-18316 2 2 0 6 9054 9706 9468
-18317 2 2 0 6 725 837 9564
-18318 2 2 0 6 4218 5110 9911
-18319 2 2 0 6 3214 4122 4123
-18320 2 2 0 6 5417 8956 7613
-18321 2 2 0 6 3294 3625 9584
-18322 2 2 0 6 3005 9942 3007
-18323 2 2 0 6 1581 1606 9113
-18324 2 2 0 6 2873 9258 10118
-18325 2 2 0 6 8795 10261 10213
-18326 2 2 0 6 8038 10316 8226
-18327 2 2 0 6 5057 9789 5753
-18328 2 2 0 6 4960 10013 9286
-18329 2 2 0 6 2456 9741 2739
-18330 2 2 0 6 8665 10131 10038
-18331 2 2 0 6 5156 6826 5157
-18332 2 2 0 6 1018 9884 5397
-18333 2 2 0 6 3009 9896 3265
-18334 2 2 0 6 6207 8979 10061
-18335 2 2 0 6 3989 10089 9164
-18336 2 2 0 6 4429 5723 9918
-18337 2 2 0 6 2875 9651 3106
-18338 2 2 0 6 4608 6052 6110
-18339 2 2 0 6 3524 10171 9998
-18340 2 2 0 6 4426 8642 10237
-18341 2 2 0 6 4594 5098 8094
-18342 2 2 0 6 2409 9619 4569
-18343 2 2 0 6 706 710 9939
-18344 2 2 0 6 1353 10041 1511
-18345 2 2 0 6 3839 8232 10142
-18346 2 2 0 6 4770 4771 9947
-18347 2 2 0 6 7803 8274 10266
-18348 2 2 0 6 9450 10068 9754
-18349 2 2 0 6 6398 7598 10104
-18350 2 2 0 6 1031 9717 1041
-18351 2 2 0 6 37 38 9359
-18352 2 2 0 6 2046 2047 9126
-18353 2 2 0 6 4466 10182 10085
-18354 2 2 0 6 5716 9919 6454
-18355 2 2 0 6 3430 9891 9994
-18356 2 2 0 6 4237 4239 9402
-18357 2 2 0 6 7602 7683 9657
-18358 2 2 0 6 3181 9599 9663
-18359 2 2 0 6 6397 10104 7618
-18360 2 2 0 6 4315 4318 9752
-18361 2 2 0 6 5773 9792 10085
-18362 2 2 0 6 3911 9687 3955
-18363 2 2 0 6 1755 3360 9299
-18364 2 2 0 6 4266 5178 5177
-18365 2 2 0 6 1167 9807 1169
-18366 2 2 0 6 4901 7598 10369
-18367 2 2 0 6 5917 10606 7647
-18368 2 2 0 6 9233 10037 9504
-18369 2 2 0 6 4290 4872 9718
-18370 2 2 0 6 3683 9948 5865
-18371 2 2 0 6 9124 9469 9982
-18372 2 2 0 6 5685 10031 6783
-18373 2 2 0 6 5255 10051 7137
-18374 2 2 0 6 2273 10058 2275
-18375 2 2 0 6 2471 7887 7626
-18376 2 2 0 6 4544 4546 4547
-18377 2 2 0 6 1958 2203 9852
-18378 2 2 0 6 1755 9299 9658
-18379 2 2 0 6 2469 9423 9999
-18380 2 2 0 6 7218 7275 7220
-18381 2 2 0 6 3511 10397 10273
-18382 2 2 0 6 3893 4462 9693
-18383 2 2 0 6 5365 5368 9296
-18384 2 2 0 6 4493 7808 10475
-18385 2 2 0 6 4619 9756 5183
-18386 2 2 0 6 8860 9704 9882
-18387 2 2 0 6 8158 10063 8634
-18388 2 2 0 6 1991 9913 1993
-18389 2 2 0 6 3254 9669 3256
-18390 2 2 0 6 4335 5112 9696
-18391 2 2 0 6 1999 9251 2002
-18392 2 2 0 6 8507 10095 8509
-18393 2 2 0 6 6640 10625 10676
-18394 2 2 0 6 4209 10078 8580
-18395 2 2 0 6 5693 10260 8533
-18396 2 2 0 6 1609 9806 9194
-18397 2 2 0 6 5111 9760 6109
-18398 2 2 0 6 2010 9590 3475
-18399 2 2 0 6 1788 10077 5372
-18400 2 2 0 6 896 10296 899
-18401 2 2 0 6 3268 11257 7132
-18402 2 2 0 6 4076 9789 5057
-18403 2 2 0 6 6290 10333 7995
-18404 2 2 0 6 4607 6052 4608
-18405 2 2 0 6 5977 10729 10742
-18406 2 2 0 6 1887 9722 9363
-18407 2 2 0 6 910 8443 912
-18408 2 2 0 6 7301 7303 9909
-18409 2 2 0 6 6476 9778 10071
-18410 2 2 0 6 9663 10170 5778
-18411 2 2 0 6 2069 9392 9706
-18412 2 2 0 6 37 9359 413
-18413 2 2 0 6 3935 9997 4800
-18414 2 2 0 6 782 1522 10304
-18415 2 2 0 6 4646 5158 9605
-18416 2 2 0 6 2803 2804 9719
-18417 2 2 0 6 3452 8101 10023
-18418 2 2 0 6 1438 9951 1512
-18419 2 2 0 6 1831 10107 1948
-18420 2 2 0 6 3685 3834 3833
-18421 2 2 0 6 5796 5807 10081
-18422 2 2 0 6 6552 10263 9869
-18423 2 2 0 6 4335 9696 4337
-18424 2 2 0 6 8779 10135 9880
-18425 2 2 0 6 5255 9804 10051
-18426 2 2 0 6 674 676 9407
-18427 2 2 0 6 9319 10177 10268
-18428 2 2 0 6 5726 6013 10042
-18429 2 2 0 6 5461 6467 10028
-18430 2 2 0 6 7186 9579 10076
-18431 2 2 0 6 1609 9080 9806
-18432 2 2 0 6 4637 10314 5836
-18433 2 2 0 6 5226 7264 10047
-18434 2 2 0 6 5421 10575 8855
-18435 2 2 0 6 2028 9986 2032
-18436 2 2 0 6 6498 10048 9212
-18437 2 2 0 6 6495 10096 6496
-18438 2 2 0 6 6152 6951 6952
-18439 2 2 0 6 3230 9964 3825
-18440 2 2 0 6 3452 10023 4035
-18441 2 2 0 6 5729 6426 10073
-18442 2 2 0 6 5927 10598 10615
-18443 2 2 0 6 6760 6927 6785
-18444 2 2 0 6 2590 9963 2592
-18445 2 2 0 6 4962 10321 10341
-18446 2 2 0 6 2380 2400 9612
-18447 2 2 0 6 2172 2178 9990
-18448 2 2 0 6 5560 10064 6203
-18449 2 2 0 6 3279 9529 9622
-18450 2 2 0 6 778 10304 8869
-18451 2 2 0 6 1824 1943 9922
-18452 2 2 0 6 2008 9305 9590
-18453 2 2 0 6 8866 9938 9933
-18454 2 2 0 6 953 10050 954
-18455 2 2 0 6 5177 9851 6136
-18456 2 2 0 6 4259 4679 10012
-18457 2 2 0 6 5758 10166 6121
-18458 2 2 0 6 675 672 9152
-18459 2 2 0 6 341 9597 554
-18460 2 2 0 6 3805 4259 10012
-18461 2 2 0 6 4986 5238 10295
-18462 2 2 0 6 5941 10019 5996
-18463 2 2 0 6 8431 9758 10144
-18464 2 2 0 6 4510 9869 4512
-18465 2 2 0 6 2911 10129 9961
-18466 2 2 0 6 5125 6757 10048
-18467 2 2 0 6 2571 3348 9758
-18468 2 2 0 6 7679 10059 10401
-18469 2 2 0 6 2378 2380 9550
-18470 2 2 0 6 7793 10329 9681
-18471 2 2 0 6 5015 9992 5844
-18472 2 2 0 6 5673 10060 5743
-18473 2 2 0 6 5183 9756 10138
-18474 2 2 0 6 2329 8541 2480
-18475 2 2 0 6 3537 8936 9906
-18476 2 2 0 6 4327 7394 10504
-18477 2 2 0 6 1943 2321 9922
-18478 2 2 0 6 8848 9458 10399
-18479 2 2 0 6 3260 8964 9942
-18480 2 2 0 6 3238 9855 10159
-18481 2 2 0 6 2357 2358 9479
-18482 2 2 0 6 4058 7469 10132
-18483 2 2 0 6 4648 6653 9731
-18484 2 2 0 6 6180 9430 10430
-18485 2 2 0 6 6268 7243 10367
-18486 2 2 0 6 8350 10617 10634
-18487 2 2 0 6 3391 8529 9802
-18488 2 2 0 6 7222 10343 7718
-18489 2 2 0 6 5764 9554 9553
-18490 2 2 0 6 3667 3685 3669
-18491 2 2 0 6 2524 9948 2697
-18492 2 2 0 6 2269 2290 10017
-18493 2 2 0 6 4578 10046 5327
-18494 2 2 0 6 4982 10067 5072
-18495 2 2 0 6 6425 10201 10146
-18496 2 2 0 6 2985 3799 10053
-18497 2 2 0 6 3998 8252 10102
-18498 2 2 0 6 4033 10415 10162
-18499 2 2 0 6 4308 9693 5738
-18500 2 2 0 6 3545 10085 9792
-18501 2 2 0 6 45 46 9538
-18502 2 2 0 6 2852 2969 2970
-18503 2 2 0 6 2889 8974 9905
-18504 2 2 0 6 702 1222 10335
-18505 2 2 0 6 1222 9971 10335
-18506 2 2 0 6 2399 10892 10884
-18507 2 2 0 6 6313 10446 7252
-18508 2 2 0 6 9302 10303 9307
-18509 2 2 0 6 2128 9601 2146
-18510 2 2 0 6 5843 10152 10276
-18511 2 2 0 6 946 10224 949
-18512 2 2 0 6 5566 9973 9525
-18513 2 2 0 6 2170 9990 10204
-18514 2 2 0 6 8484 8486 10257
-18515 2 2 0 6 4704 9700 4706
-18516 2 2 0 6 1646 3511 10273
-18517 2 2 0 6 3685 3667 9926
-18518 2 2 0 6 3972 10238 10171
-18519 2 2 0 6 1320 3568 9673
-18520 2 2 0 6 2223 9570 9923
-18521 2 2 0 6 8508 8512 10095
-18522 2 2 0 6 4610 6067 9980
-18523 2 2 0 6 4835 10222 5338
-18524 2 2 0 6 7476 7694 7478
-18525 2 2 0 6 1811 7853 1875
-18526 2 2 0 6 4622 6058 9952
-18527 2 2 0 6 4213 9408 10081
-18528 2 2 0 6 4188 4976 9985
-18529 2 2 0 6 5866 8196 10380
-18530 2 2 0 6 5700 10000 9386
-18531 2 2 0 6 5865 10532 10582
-18532 2 2 0 6 1650 9522 1651
-18533 2 2 0 6 8611 10037 9233
-18534 2 2 0 6 3970 9729 5281
-18535 2 2 0 6 2232 2234 10132
-18536 2 2 0 6 1247 10657 10757
-18537 2 2 0 6 3391 9802 3393
-18538 2 2 0 6 5192 9162 9874
-18539 2 2 0 6 4318 4320 10036
-18540 2 2 0 6 4440 9931 5377
-18541 2 2 0 6 672 673 9152
-18542 2 2 0 6 4546 5912 4693
-18543 2 2 0 6 4474 10230 5356
-18544 2 2 0 6 1847 1961 10110
-18545 2 2 0 6 2560 2969 2852
-18546 2 2 0 6 5823 10371 7428
-18547 2 2 0 6 3360 4294 9299
-18548 2 2 0 6 8860 9882 8861
-18549 2 2 0 6 3047 9440 9599
-18550 2 2 0 6 2890 10066 9240
-18551 2 2 0 6 7863 10082 7864
-18552 2 2 0 6 1812 10041 5533
-18553 2 2 0 6 2751 10245 4026
-18554 2 2 0 6 3199 10308 3201
-18555 2 2 0 6 3086 3089 10119
-18556 2 2 0 6 8757 9941 9445
-18557 2 2 0 6 5822 9892 9228
-18558 2 2 0 6 5862 7429 10402
-18559 2 2 0 6 5211 9549 10168
-18560 2 2 0 6 942 10337 945
-18561 2 2 0 6 2098 10009 2100
-18562 2 2 0 6 3107 9288 3109
-18563 2 2 0 6 5279 6209 10014
-18564 2 2 0 6 3471 11003 11017
-18565 2 2 0 6 6482 10113 6509
-18566 2 2 0 6 128 129 9498
-18567 2 2 0 6 2350 10154 2349
-18568 2 2 0 6 6417 9882 9704
-18569 2 2 0 6 799 10530 807
-18570 2 2 0 6 5867 8134 10020
-18571 2 2 0 6 7243 10546 10367
-18572 2 2 0 6 4814 4816 9517
-18573 2 2 0 6 6420 9237 9959
-18574 2 2 0 6 1714 9304 8804
-18575 2 2 0 6 3543 10197 4466
-18576 2 2 0 6 4239 4710 9402
-18577 2 2 0 6 5700 9831 10000
-18578 2 2 0 6 4248 10093 4626
-18579 2 2 0 6 5692 10108 9270
-18580 2 2 0 6 591 3631 9682
-18581 2 2 0 6 3545 4466 10085
-18582 2 2 0 6 5789 9631 10167
-18583 2 2 0 6 2330 9907 8555
-18584 2 2 0 6 5624 7088 10094
-18585 2 2 0 6 4976 5972 9985
-18586 2 2 0 6 5278 5279 10014
-18587 2 2 0 6 7976 8042 9854
-18588 2 2 0 6 2100 10009 2590
-18589 2 2 0 6 6426 9891 10073
-18590 2 2 0 6 5747 6474 9993
-18591 2 2 0 6 1661 3722 9457
-18592 2 2 0 6 6368 10003 9311
-18593 2 2 0 6 6438 6439 10054
-18594 2 2 0 6 2223 9923 2225
-18595 2 2 0 6 9469 9871 9982
-18596 2 2 0 6 3371 9449 10145
-18597 2 2 0 6 2865 10278 10498
-18598 2 2 0 6 2401 10935 10926
-18599 2 2 0 6 3243 3246 9856
-18600 2 2 0 6 3684 9960 3830
-18601 2 2 0 6 3549 8820 10126
-18602 2 2 0 6 8873 8874 10300
-18603 2 2 0 6 7295 7297 9915
-18604 2 2 0 6 2910 4492 9936
-18605 2 2 0 6 4742 10111 4743
-18606 2 2 0 6 8571 8570 10553
-18607 2 2 0 6 4952 6390 9931
-18608 2 2 0 6 5005 10359 10336
-18609 2 2 0 6 7854 10052 10340
-18610 2 2 0 6 4489 5356 10290
-18611 2 2 0 6 3348 3351 9758
-18612 2 2 0 6 1762 10107 1831
-18613 2 2 0 6 4505 5856 10314
-18614 2 2 0 6 6312 7203 10446
-18615 2 2 0 6 5789 10167 9940
-18616 2 2 0 6 8688 9489 10080
-18617 2 2 0 6 2720 9766 10266
-18618 2 2 0 6 6557 9967 8742
-18619 2 2 0 6 4337 9696 5113
-18620 2 2 0 6 1986 10039 2396
-18621 2 2 0 6 203 204 496
-18622 2 2 0 6 783 10220 788
-18623 2 2 0 6 3436 10087 3437
-18624 2 2 0 6 9155 9830 9686
-18625 2 2 0 6 5566 7753 9973
-18626 2 2 0 6 8530 10239 10431
-18627 2 2 0 6 2842 5387 10438
-18628 2 2 0 6 2674 8413 9877
-18629 2 2 0 6 6529 9880 10135
-18630 2 2 0 6 7019 10040 7020
-18631 2 2 0 6 3805 10012 4262
-18632 2 2 0 6 4706 9700 6101
-18633 2 2 0 6 5814 10290 10489
-18634 2 2 0 6 4614 10326 10244
-18635 2 2 0 6 4742 6203 10111
-18636 2 2 0 6 5164 6776 10149
-18637 2 2 0 6 3296 4421 10334
-18638 2 2 0 6 621 10298 622
-18639 2 2 0 6 6520 10159 9855
-18640 2 2 0 6 4456 9993 9182
-18641 2 2 0 6 805 808 10527
-18642 2 2 0 6 3434 3435 10164
-18643 2 2 0 6 4061 4518 9943
-18644 2 2 0 6 6728 10193 7817
-18645 2 2 0 6 948 951 10128
-18646 2 2 0 6 2028 8727 9986
-18647 2 2 0 6 5958 10022 9862
-18648 2 2 0 6 6609 10681 6608
-18649 2 2 0 6 5631 9164 10089
-18650 2 2 0 6 7957 8132 10169
-18651 2 2 0 6 8505 9009 10086
-18652 2 2 0 6 8765 10782 10856
-18653 2 2 0 6 6585 7533 10409
-18654 2 2 0 6 8397 10426 8453
-18655 2 2 0 6 5874 10456 10558
-18656 2 2 0 6 4396 10103 4470
-18657 2 2 0 6 1032 2153 10084
-18658 2 2 0 6 761 10373 1523
-18659 2 2 0 6 2722 10564 10656
-18660 2 2 0 6 7473 7472 10537
-18661 2 2 0 6 1714 1718 9304
-18662 2 2 0 6 3893 9693 4308
-18663 2 2 0 6 5738 10072 7069
-18664 2 2 0 6 2887 2889 9905
-18665 2 2 0 6 345 346 534
-18666 2 2 0 6 3684 3823 9960
-18667 2 2 0 6 5795 10292 8303
-18668 2 2 0 6 4472 6452 10230
-18669 2 2 0 6 6148 10142 6862
-18670 2 2 0 6 2524 2620 9948
-18671 2 2 0 6 5857 8699 10359
-18672 2 2 0 6 3685 9926 9730
-18673 2 2 0 6 3252 10125 4233
-18674 2 2 0 6 6603 10121 10534
-18675 2 2 0 6 23 425 9566
-18676 2 2 0 6 2130 2335 10045
-18677 2 2 0 6 6469 9754 10068
-18678 2 2 0 6 8282 10295 10362
-18679 2 2 0 6 5886 10449 9943
-18680 2 2 0 6 3668 3828 10098
-18681 2 2 0 6 910 970 8443
-18682 2 2 0 6 3388 10261 8795
-18683 2 2 0 6 2236 10120 2515
-18684 2 2 0 6 6286 10074 7436
-18685 2 2 0 6 1313 10213 10115
-18686 2 2 0 6 2396 2560 2559
-18687 2 2 0 6 5156 6827 6826
-18688 2 2 0 6 1359 10156 1351
-18689 2 2 0 6 389 9494 543
-18690 2 2 0 6 6735 11183 11188
-18691 2 2 0 6 5757 7940 10092
-18692 2 2 0 6 4752 9987 5227
-18693 2 2 0 6 5996 10019 6340
-18694 2 2 0 6 9488 10080 9489
-18695 2 2 0 6 7481 10256 9881
-18696 2 2 0 6 2487 10106 10154
-18697 2 2 0 6 3276 9529 3279
-18698 2 2 0 6 4394 8014 10566
-18699 2 2 0 6 1304 1320 9673
-18700 2 2 0 6 5725 10302 10320
-18701 2 2 0 6 4266 9960 5828
-18702 2 2 0 6 5948 10370 8874
-18703 2 2 0 6 1158 3673 9701
-18704 2 2 0 6 4014 9871 9469
-18705 2 2 0 6 4797 10485 4990
-18706 2 2 0 6 4499 4614 10244
-18707 2 2 0 6 3009 3010 9896
-18708 2 2 0 6 3881 4546 4544
-18709 2 2 0 6 6065 11181 11175
-18710 2 2 0 6 4664 10074 6286
-18711 2 2 0 6 5754 6329 10309
-18712 2 2 0 6 2349 10155 8444
-18713 2 2 0 6 4484 4837 10209
-18714 2 2 0 6 4885 5812 10109
-18715 2 2 0 6 2071 11167 11227
-18716 2 2 0 6 3240 9772 3241
-18717 2 2 0 6 6608 10682 9101
-18718 2 2 0 6 1026 9286 10139
-18719 2 2 0 6 7472 8764 10537
-18720 2 2 0 6 3722 4554 9755
-18721 2 2 0 6 2143 9965 2209
-18722 2 2 0 6 1167 5791 9807
-18723 2 2 0 6 8738 10133 9904
-18724 2 2 0 6 1539 10325 10396
-18725 2 2 0 6 3905 10300 6327
-18726 2 2 0 6 911 9846 971
-18727 2 2 0 6 7940 7941 10131
-18728 2 2 0 6 7724 10125 7725
-18729 2 2 0 6 6443 9833 9916
-18730 2 2 0 6 5979 10148 5681
-18731 2 2 0 6 5227 9987 7099
-18732 2 2 0 6 3949 10057 3950
-18733 2 2 0 6 1471 10340 1474
-18734 2 2 0 6 7299 7316 9864
-18735 2 2 0 6 5165 10518 10460
-18736 2 2 0 6 3254 4130 9669
-18737 2 2 0 6 5683 10031 5685
-18738 2 2 0 6 5838 7714 10137
-18739 2 2 0 6 5855 8509 10701
-18740 2 2 0 6 5860 7363 10212
-18741 2 2 0 6 8507 8508 10095
-18742 2 2 0 6 7429 10282 10437
-18743 2 2 0 6 5018 9981 5019
-18744 2 2 0 6 1657 10383 3508
-18745 2 2 0 6 3242 10127 8974
-18746 2 2 0 6 8790 10752 10765
-18747 2 2 0 6 6235 6234 10115
-18748 2 2 0 6 3689 10668 10427
-18749 2 2 0 6 3010 8301 9896
-18750 2 2 0 6 3801 10074 4664
-18751 2 2 0 6 3508 10383 8115
-18752 2 2 0 6 1541 10396 2954
-18753 2 2 0 6 3355 9431 9554
-18754 2 2 0 6 4518 5886 9943
-18755 2 2 0 6 1308 10351 10342
-18756 2 2 0 6 5458 5880 10583
-18757 2 2 0 6 5706 9904 10133
-18758 2 2 0 6 953 10113 10050
-18759 2 2 0 6 5833 10195 6320
-18760 2 2 0 6 3541 8444 10197
-18761 2 2 0 6 1996 9913 5905
-18762 2 2 0 6 7484 7539 10214
-18763 2 2 0 6 572 9796 575
-18764 2 2 0 6 1175 3480 10375
-18765 2 2 0 6 5170 6772 10105
-18766 2 2 0 6 7941 10038 10131
-18767 2 2 0 6 244 245 460
-18768 2 2 0 6 3241 9772 3244
-18769 2 2 0 6 2592 9963 4027
-18770 2 2 0 6 4695 4696 9487
-18771 2 2 0 6 5966 5965 10788
-18772 2 2 0 6 1073 10301 1076
-18773 2 2 0 6 3966 9729 3967
-18774 2 2 0 6 8892 10006 10184
-18775 2 2 0 6 3224 10328 8267
-18776 2 2 0 6 3524 9998 9894
-18777 2 2 0 6 6506 10126 9606
-18778 2 2 0 6 3317 10112 3319
-18779 2 2 0 6 5546 9975 9889
-18780 2 2 0 6 342 458 9597
-18781 2 2 0 6 5243 10217 9655
-18782 2 2 0 6 6596 10571 10707
-18783 2 2 0 6 8060 10481 10470
-18784 2 2 0 6 4966 10152 10080
-18785 2 2 0 6 2655 9877 3037
-18786 2 2 0 6 4771 6212 9947
-18787 2 2 0 6 2499 8997 10252
-18788 2 2 0 6 7798 9307 10303
-18789 2 2 0 6 1152 10375 1190
-18790 2 2 0 6 3827 8080 5427
-18791 2 2 0 6 6555 10073 10164
-18792 2 2 0 6 8767 9728 9691
-18793 2 2 0 6 4620 4623 9756
-18794 2 2 0 6 5491 10150 8612
-18795 2 2 0 6 43 9660 550
-18796 2 2 0 6 6427 10360 6428
-18797 2 2 0 6 2697 9948 3683
-18798 2 2 0 6 570 3764 9796
-18799 2 2 0 6 5379 5381 10001
-18800 2 2 0 6 7626 7887 9932
-18801 2 2 0 6 7303 9798 9909
-18802 2 2 0 6 5373 10461 5489
-18803 2 2 0 6 3796 7182 9769
-18804 2 2 0 6 2161 10097 2163
-18805 2 2 0 6 4047 9319 10268
-18806 2 2 0 6 7361 9099 10278
-18807 2 2 0 6 6215 10418 7503
-18808 2 2 0 6 6448 7504 10444
-18809 2 2 0 6 4106 10056 4581
-18810 2 2 0 6 5884 6632 10427
-18811 2 2 0 6 128 9498 422
-18812 2 2 0 6 30 31 9442
-18813 2 2 0 6 2008 9590 2010
-18814 2 2 0 6 8140 9140 9793
-18815 2 2 0 6 4619 4620 9756
-18816 2 2 0 6 2560 2852 2851
-18817 2 2 0 6 3492 4751 10157
-18818 2 2 0 6 8976 10342 10351
-18819 2 2 0 6 7804 10266 9766
-18820 2 2 0 6 3107 3112 9288
-18821 2 2 0 6 1993 9913 1996
-18822 2 2 0 6 5814 9333 10290
-18823 2 2 0 6 4493 10324 8685
-18824 2 2 0 6 1038 7011 10101
-18825 2 2 0 6 3521 9684 10100
-18826 2 2 0 6 6399 10181 8718
-18827 2 2 0 6 6397 6398 10104
-18828 2 2 0 6 4209 9445 9941
-18829 2 2 0 6 2115 10045 10501
-18830 2 2 0 6 4520 10076 9579
-18831 2 2 0 6 971 9846 3889
-18832 2 2 0 6 8803 10368 10233
-18833 2 2 0 6 1525 10472 1527
-18834 2 2 0 6 8920 10319 8919
-18835 2 2 0 6 3315 9875 5809
-18836 2 2 0 6 4982 9991 10067
-18837 2 2 0 6 7355 9762 9617
-18838 2 2 0 6 3150 3154 10287
-18839 2 2 0 6 7368 9803 9378
-18840 2 2 0 6 6339 10628 10569
-18841 2 2 0 6 3711 10049 4996
-18842 2 2 0 6 5398 9750 10141
-18843 2 2 0 6 4146 10226 6215
-18844 2 2 0 6 2163 10097 9578
-18845 2 2 0 6 5178 6785 9851
-18846 2 2 0 6 5829 10124 10182
-18847 2 2 0 6 9239 10211 6390
-18848 2 2 0 6 5261 11119 11114
-18849 2 2 0 6 2098 8203 10009
-18850 2 2 0 6 141 9650 551
-18851 2 2 0 6 2443 10400 2445
-18852 2 2 0 6 737 767 10160
-18853 2 2 0 6 6576 10454 10458
-18854 2 2 0 6 3830 9960 4266
-18855 2 2 0 6 4556 8060 10470
-18856 2 2 0 6 5804 10105 6844
-18857 2 2 0 6 2908 10018 8934
-18858 2 2 0 6 1809 1512 9951
-18859 2 2 0 6 5706 10133 5944
-18860 2 2 0 6 5717 10153 5719
-18861 2 2 0 6 5977 10742 9468
-18862 2 2 0 6 4035 10023 6322
-18863 2 2 0 6 6590 10376 6591
-18864 2 2 0 6 2263 3151 10174
-18865 2 2 0 6 1827 10372 7668
-18866 2 2 0 6 4966 10080 9488
-18867 2 2 0 6 8605 9983 10194
-18868 2 2 0 6 4440 4952 9931
-18869 2 2 0 6 3325 10171 3524
-18870 2 2 0 6 2659 3507 9836
-18871 2 2 0 6 5691 9837 6468
-18872 2 2 0 6 8168 8171 10076
-18873 2 2 0 6 30 9442 421
-18874 2 2 0 6 143 9556 406
-18875 2 2 0 6 8282 10124 10295
-18876 2 2 0 6 3450 10388 9912
-18877 2 2 0 6 6862 10219 8626
-18878 2 2 0 6 2012 10264 2014
-18879 2 2 0 6 6629 10728 10722
-18880 2 2 0 6 2534 9766 2536
-18881 2 2 0 6 4113 7671 11093
-18882 2 2 0 6 1026 10139 10173
-18883 2 2 0 6 5177 5178 9851
-18884 2 2 0 6 877 10439 1039
-18885 2 2 0 6 2772 9787 2775
-18886 2 2 0 6 7915 10373 11253
-18887 2 2 0 6 4922 6023 10056
-18888 2 2 0 6 5991 8150 10121
-18889 2 2 0 6 6444 9916 10130
-18890 2 2 0 6 6608 10681 10682
-18891 2 2 0 6 5829 10182 8031
-18892 2 2 0 6 4743 10111 7126
-18893 2 2 0 6 2753 4026 10344
-18894 2 2 0 6 3319 10112 4840
-18895 2 2 0 6 5868 10310 10184
-18896 2 2 0 6 5720 5757 10191
-18897 2 2 0 6 3932 8214 10924
-18898 2 2 0 6 8974 10127 10019
-18899 2 2 0 6 4520 8168 10076
-18900 2 2 0 6 1026 10173 9432
-18901 2 2 0 6 5289 10445 8693
-18902 2 2 0 6 3950 10057 4650
-18903 2 2 0 6 5155 10130 9916
-18904 2 2 0 6 8021 10476 10501
-18905 2 2 0 6 8274 10277 10266
-18906 2 2 0 6 7469 10462 10331
-18907 2 2 0 6 1083 1080 10386
-18908 2 2 0 6 45 9538 405
-18909 2 2 0 6 2113 9797 2139
-18910 2 2 0 6 2386 10216 8514
-18911 2 2 0 6 5792 9998 5794
-18912 2 2 0 6 3011 3266 10602
-18913 2 2 0 6 6425 10146 7459
-18914 2 2 0 6 5136 10410 6604
-18915 2 2 0 6 3561 10549 8391
-18916 2 2 0 6 3795 9769 3821
-18917 2 2 0 6 5243 8057 10217
-18918 2 2 0 6 389 390 9494
-18919 2 2 0 6 2078 5671 9859
-18920 2 2 0 6 2335 2492 10055
-18921 2 2 0 6 8310 10671 10612
-18922 2 2 0 6 7858 10349 9852
-18923 2 2 0 6 6531 10271 6532
-18924 2 2 0 6 7463 7680 10884
-18925 2 2 0 6 3644 9940 10167
-18926 2 2 0 6 1071 9503 10301
-18927 2 2 0 6 8038 10465 8040
-18928 2 2 0 6 1338 10221 1342
-18929 2 2 0 6 4318 10036 9752
-18930 2 2 0 6 3787 10269 3844
-18931 2 2 0 6 2197 2198 9935
-18932 2 2 0 6 768 10342 774
-18933 2 2 0 6 5886 6617 10535
-18934 2 2 0 6 7528 10932 8212
-18935 2 2 0 6 4967 9533 10293
-18936 2 2 0 6 3172 10511 3695
-18937 2 2 0 6 3679 4178 10391
-18938 2 2 0 6 3494 3495 10235
-18939 2 2 0 6 4966 9464 10152
-18940 2 2 0 6 2536 9766 2720
-18941 2 2 0 6 5781 9344 10129
-18942 2 2 0 6 2722 10190 9652
-18943 2 2 0 6 8751 8750 10180
-18944 2 2 0 6 6327 10206 6328
-18945 2 2 0 6 8239 10168 9549
-18946 2 2 0 6 2012 3475 10264
-18947 2 2 0 6 6607 10441 10350
-18948 2 2 0 6 3087 10165 3088
-18949 2 2 0 6 2241 2394 10015
-18950 2 2 0 6 9717 10084 10302
-18951 2 2 0 6 5609 9101 10163
-18952 2 2 0 6 1004 1014 10330
-18953 2 2 0 6 2970 2972 9953
-18954 2 2 0 6 4457 4967 10293
-18955 2 2 0 6 4975 10172 10086
-18956 2 2 0 6 6474 9182 9993
-18957 2 2 0 6 1450 10408 1451
-18958 2 2 0 6 4313 9752 4655
-18959 2 2 0 6 46 47 559
-18960 2 2 0 6 1659 1663 10383
-18961 2 2 0 6 6544 10205 10187
-18962 2 2 0 6 5952 10646 8000
-18963 2 2 0 6 5348 6230 10378
-18964 2 2 0 6 7791 10123 8141
-18965 2 2 0 6 10299 7274 10429
-18966 2 2 0 6 5809 9875 10324
-18967 2 2 0 6 2755 10344 3565
-18968 2 2 0 6 6425 9642 10201
-18969 2 2 0 6 2542 10364 2721
-18970 2 2 0 6 1014 8971 10330
-18971 2 2 0 6 4521 10293 6581
-18972 2 2 0 6 843 1524 10451
-18973 2 2 0 6 2655 2674 9877
-18974 2 2 0 6 4840 10112 6470
-18975 2 2 0 6 144 145 560
-18976 2 2 0 6 10452 10545 8266
-18977 2 2 0 6 5359 10203 6497
-18978 2 2 0 6 5320 8771 10345
-18979 2 2 0 6 2248 10466 8491
-18980 2 2 0 6 9264 9779 10200
-18981 2 2 0 6 2693 2774 10099
-18982 2 2 0 6 5739 10194 9983
-18983 2 2 0 6 5891 8399 10484
-18984 2 2 0 6 2139 9797 4984
-18985 2 2 0 6 5381 6744 10001
-18986 2 2 0 6 1956 10151 1959
-18987 2 2 0 6 3850 5811 10185
-18988 2 2 0 6 3750 4581 10161
-18989 2 2 0 6 625 10153 9809
-18990 2 2 0 6 4178 9404 10044
-18991 2 2 0 6 1080 8877 10386
-18992 2 2 0 6 5751 9816 10236
-18993 2 2 0 6 7081 10362 10469
-18994 2 2 0 6 7683 9150 9657
-18995 2 2 0 6 3552 10248 9135
-18996 2 2 0 6 4547 4546 4693
-18997 2 2 0 6 9711 6450 10117
-18998 2 2 0 6 5806 7001 10286
-18999 2 2 0 6 5683 9572 10031
-19000 2 2 0 6 6728 6753 10193
-19001 2 2 0 6 2522 10263 9969
-19002 2 2 0 6 709 10502 3383
-19003 2 2 0 6 3238 10159 4249
-19004 2 2 0 6 1822 10522 8497
-19005 2 2 0 6 2202 2200 10517
-19006 2 2 0 6 4106 4922 10056
-19007 2 2 0 6 4622 9952 4624
-19008 2 2 0 6 3722 9755 9457
-19009 2 2 0 6 5019 9981 5922
-19010 2 2 0 6 2613 2615 9961
-19011 2 2 0 6 5723 8684 10140
-19012 2 2 0 6 9395 10503 10135
-19013 2 2 0 6 2096 2099 10504
-19014 2 2 0 6 6569 10162 10415
-19015 2 2 0 6 6612 10163 10648
-19016 2 2 0 6 2037 2078 9859
-19017 2 2 0 6 7629 10201 8596
-19018 2 2 0 6 7915 11253 11250
-19019 2 2 0 6 3889 10236 9816
-19020 2 2 0 6 5307 10223 7225
-19021 2 2 0 6 4313 4315 9752
-19022 2 2 0 6 7841 8063 10357
-19023 2 2 0 6 7714 10404 10363
-19024 2 2 0 6 4864 8097 10134
-19025 2 2 0 6 7361 10278 10547
-19026 2 2 0 6 5976 10729 5977
-19027 2 2 0 6 5815 9707 10202
-19028 2 2 0 6 2016 2108 10365
-19029 2 2 0 6 4972 10166 9791
-19030 2 2 0 6 6559 10271 10337
-19031 2 2 0 6 2447 10473 2475
-19032 2 2 0 6 4547 4693 4694
-19033 2 2 0 6 3048 9599 3181
-19034 2 2 0 6 2242 10015 10016
-19035 2 2 0 6 4996 10049 6258
-19036 2 2 0 6 5836 10198 5837
-19037 2 2 0 6 6573 10159 10244
-19038 2 2 0 6 7219 10520 9653
-19039 2 2 0 6 4492 4513 9936
-19040 2 2 0 6 6552 9969 10263
-19041 2 2 0 6 6544 10187 6545
-19042 2 2 0 6 4975 5904 10172
-19043 2 2 0 6 8618 8819 10523
-19044 2 2 0 6 1845 10110 10215
-19045 2 2 0 6 1211 10437 1233
-19046 2 2 0 6 2772 2934 9787
-19047 2 2 0 6 5430 8556 10639
-19048 2 2 0 6 7429 10322 10282
-19049 2 2 0 6 6612 10703 9420
-19050 2 2 0 6 6531 10224 10271
-19051 2 2 0 6 8855 10615 10598
-19052 2 2 0 6 8496 10155 8032
-19053 2 2 0 6 6506 9264 10200
-19054 2 2 0 6 7429 10437 10402
-19055 2 2 0 6 4258 4312 10189
-19056 2 2 0 6 5416 9234 10390
-19057 2 2 0 6 7024 9700 10065
-19058 2 2 0 6 7295 9915 7317
-19059 2 2 0 6 4774 5259 10178
-19060 2 2 0 6 1533 1534 10434
-19061 2 2 0 6 5757 9895 10191
-19062 2 2 0 6 5813 9125 10190
-19063 2 2 0 6 7331 8427 10592
-19064 2 2 0 6 3896 10143 5312
-19065 2 2 0 6 1463 10431 1466
-19066 2 2 0 6 4484 10209 4993
-19067 2 2 0 6 572 570 9796
-19068 2 2 0 6 8246 9835 10116
-19069 2 2 0 6 945 10224 946
-19070 2 2 0 6 6625 10381 6626
-19071 2 2 0 6 8018 8019 10208
-19072 2 2 0 6 3967 9729 3970
-19073 2 2 0 6 8677 9859 10267
-19074 2 2 0 6 6554 7811 10481
-19075 2 2 0 6 950 10114 953
-19076 2 2 0 6 5366 10083 5368
-19077 2 2 0 6 4766 9799 9919
-19078 2 2 0 6 5785 10616 5911
-19079 2 2 0 6 6585 10490 6586
-19080 2 2 0 6 5901 10497 5902
-19081 2 2 0 6 9821 9820 10318
-19082 2 2 0 6 8488 10579 8394
-19083 2 2 0 6 9534 11181 11186
-19084 2 2 0 6 9475 10132 10331
-19085 2 2 0 6 5995 10766 10718
-19086 2 2 0 6 2979 7725 10125
-19087 2 2 0 6 5917 10617 10606
-19088 2 2 0 6 587 9505 589
-19089 2 2 0 6 3275 10635 9529
-19090 2 2 0 6 5874 9424 10456
-19091 2 2 0 6 3071 10187 10205
-19092 2 2 0 6 1193 10546 10327
-19093 2 2 0 6 3536 10231 8994
-19094 2 2 0 6 8726 11064 11071
-19095 2 2 0 6 4445 10454 4820
-19096 2 2 0 6 4995 10470 5967
-19097 2 2 0 6 2198 2202 9935
-19098 2 2 0 6 625 10298 10153
-19099 2 2 0 6 7793 7799 10397
-19100 2 2 0 6 5011 6610 10467
-19101 2 2 0 6 5745 10028 10147
-19102 2 2 0 6 5880 10541 10435
-19103 2 2 0 6 3047 9599 3048
-19104 2 2 0 6 6497 10203 9946
-19105 2 2 0 6 6454 9919 9799
-19106 2 2 0 6 2234 4058 10132
-19107 2 2 0 6 4046 10805 10678
-19108 2 2 0 6 1918 10332 9419
-19109 2 2 0 6 7858 10432 10349
-19110 2 2 0 6 1966 10253 2188
-19111 2 2 0 6 6051 11177 11183
-19112 2 2 0 6 5907 5908 10374
-19113 2 2 0 6 6555 10164 10233
-19114 2 2 0 6 7778 9003 10478
-19115 2 2 0 6 6496 10199 8243
-19116 2 2 0 6 6237 10213 10261
-19117 2 2 0 6 1759 7719 10494
-19118 2 2 0 6 8480 8481 11230
-19119 2 2 0 6 6422 10323 10270
-19120 2 2 0 6 7455 10425 9328
-19121 2 2 0 6 3723 10249 9562
-19122 2 2 0 6 6531 10183 10224
-19123 2 2 0 6 1899 10572 4398
-19124 2 2 0 6 5183 10138 6777
-19125 2 2 0 6 8586 8588 10280
-19126 2 2 0 6 8196 8839 10380
-19127 2 2 0 6 1474 10340 10052
-19128 2 2 0 6 6605 10354 10413
-19129 2 2 0 6 6617 10499 10589
-19130 2 2 0 6 4033 10162 9244
-19131 2 2 0 6 2458 10471 10207
-19132 2 2 0 6 2388 2432 10075
-19133 2 2 0 6 4894 6422 10407
-19134 2 2 0 6 6510 10183 6531
-19135 2 2 0 6 5005 5407 10384
-19136 2 2 0 6 5720 10191 5839
-19137 2 2 0 6 5259 7384 10178
-19138 2 2 0 6 7716 10243 8834
-19139 2 2 0 6 10614 10639 8556
-19140 2 2 0 6 2492 2841 10055
-19141 2 2 0 6 5723 10140 9918
-19142 2 2 0 6 5792 9894 9998
-19143 2 2 0 6 6523 10149 6771
-19144 2 2 0 6 9206 10347 9797
-19145 2 2 0 6 983 989 10988
-19146 2 2 0 6 4774 10178 6213
-19147 2 2 0 6 4991 10496 10650
-19148 2 2 0 6 2102 10577 10585
-19149 2 2 0 6 2292 3368 10192
-19150 2 2 0 6 8612 10150 10075
-19151 2 2 0 6 8718 10181 10194
-19152 2 2 0 6 4344 10200 9779
-19153 2 2 0 6 5827 10177 10176
-19154 2 2 0 6 4833 10222 4835
-19155 2 2 0 6 6355 7854 10188
-19156 2 2 0 6 1001 10325 1539
-19157 2 2 0 6 8325 10188 10423
-19158 2 2 0 6 5627 10210 9095
-19159 2 2 0 6 4275 4738 9949
-19160 2 2 0 6 3368 10181 10192
-19161 2 2 0 6 6559 10405 6560
-19162 2 2 0 6 5844 10218 7187
-19163 2 2 0 6 2563 9875 2808
-19164 2 2 0 6 6744 10424 9678
-19165 2 2 0 6 1467 10423 1470
-19166 2 2 0 6 7394 7808 10463
-19167 2 2 0 6 4765 6244 10218
-19168 2 2 0 6 4998 9641 10184
-19169 2 2 0 6 2103 4327 10504
-19170 2 2 0 6 2188 10253 9741
-19171 2 2 0 6 6235 10213 6237
-19172 2 2 0 6 5717 9809 10153
-19173 2 2 0 6 5238 7084 10469
-19174 2 2 0 6 5693 9673 10260
-19175 2 2 0 6 5739 8718 10194
-19176 2 2 0 6 5758 9791 10166
-19177 2 2 0 6 7539 9786 10214
-19178 2 2 0 6 1841 1935 10246
-19179 2 2 0 6 4418 8668 10488
-19180 2 2 0 6 4312 5120 10189
-19181 2 2 0 6 8310 8311 10671
-19182 2 2 0 6 5319 9378 9803
-19183 2 2 0 6 8036 10316 8038
-19184 2 2 0 6 902 905 10227
-19185 2 2 0 6 8368 10318 9820
-19186 2 2 0 6 6235 10115 10213
-19187 2 2 0 6 2749 10245 2751
-19188 2 2 0 6 4998 10184 10310
-19189 2 2 0 6 5860 10212 7330
-19190 2 2 0 6 4438 8933 10441
-19191 2 2 0 6 8596 10201 9642
-19192 2 2 0 6 6148 9844 10142
-19193 2 2 0 6 938 10509 941
-19194 2 2 0 6 6525 10241 8422
-19195 2 2 0 6 1753 11159 11165
-19196 2 2 0 6 3485 10214 9786
-19197 2 2 0 6 4844 10353 4843
-19198 2 2 0 6 5256 6164 5257
-19199 2 2 0 6 4972 8902 10166
-19200 2 2 0 6 10035 6692 10227
-19201 2 2 0 6 2191 2672 10453
-19202 2 2 0 6 7290 9777 7289
-19203 2 2 0 6 7653 10840 7737
-19204 2 2 0 6 5366 6082 10083
-19205 2 2 0 6 8073 9912 10388
-19206 2 2 0 6 2682 10491 3199
-19207 2 2 0 6 2908 3214 10018
-19208 2 2 0 6 1699 10655 10661
-19209 2 2 0 6 6333 10247 8426
-19210 2 2 0 6 6556 10368 8560
-19211 2 2 0 6 5749 10407 10270
-19212 2 2 0 6 6727 7817 10116
-19213 2 2 0 6 5671 10267 9859
-19214 2 2 0 6 1000 9962 1007
-19215 2 2 0 6 6329 10715 10309
-19216 2 2 0 6 7689 10429 10287
-19217 2 2 0 6 5492 10134 8097
-19218 2 2 0 6 5852 8325 10239
-19219 2 2 0 6 2970 9953 3250
-19220 2 2 0 6 1455 10548 1458
-19221 2 2 0 6 1002 10330 10325
-19222 2 2 0 6 9431 9553 9554
-19223 2 2 0 6 3796 9769 3795
-19224 2 2 0 6 9362 9794 10305
-19225 2 2 0 6 5839 10237 7534
-19226 2 2 0 6 8892 10184 9641
-19227 2 2 0 6 3839 10142 9844
-19228 2 2 0 6 5898 10450 7226
-19229 2 2 0 6 5415 9454 10569
-19230 2 2 0 6 5861 10310 5868
-19231 2 2 0 6 5773 10085 10124
-19232 2 2 0 6 4591 10584 6687
-19233 2 2 0 6 2720 10277 10025
-19234 2 2 0 6 6444 10130 6446
-19235 2 2 0 6 7893 7907 10281
-19236 2 2 0 6 6585 10409 10490
-19237 2 2 0 6 2060 10499 2077
-19238 2 2 0 6 5839 10191 10237
-19239 2 2 0 6 2335 10055 10045
-19240 2 2 0 6 5749 10270 8918
-19241 2 2 0 6 5976 10752 10729
-19242 2 2 0 6 1492 1761 10539
-19243 2 2 0 6 7290 7293 9777
-19244 2 2 0 6 3433 10563 3436
-19245 2 2 0 6 5359 7532 10203
-19246 2 2 0 6 7792 7796 10234
-19247 2 2 0 6 3543 3541 10197
-19248 2 2 0 6 8484 10257 8485
-19249 2 2 0 6 699 10554 1208
-19250 2 2 0 6 3779 10255 9254
-19251 2 2 0 6 4274 4836 10493
-19252 2 2 0 6 7360 7361 10262
-19253 2 2 0 6 6547 10343 7222
-19254 2 2 0 6 5370 10377 5812
-19255 2 2 0 6 6340 10019 10127
-19256 2 2 0 6 722 10447 732
-19257 2 2 0 6 6744 6745 10424
-19258 2 2 0 6 945 10271 10224
-19259 2 2 0 6 4499 10244 6520
-19260 2 2 0 6 8560 10368 10384
-19261 2 2 0 6 5890 7214 10450
-19262 2 2 0 6 6581 10293 10466
-19263 2 2 0 6 9570 10409 9923
-19264 2 2 0 6 6164 7076 6996
-19265 2 2 0 6 587 1922 9505
-19266 2 2 0 6 3552 10273 10234
-19267 2 2 0 6 49 50 10229
-19268 2 2 0 6 2396 10039 10291
-19269 2 2 0 6 5120 6775 10189
-19270 2 2 0 6 6518 10238 6519
-19271 2 2 0 6 613 9900 10612
-19272 2 2 0 6 8018 10208 9928
-19273 2 2 0 6 3079 9679 10250
-19274 2 2 0 6 9178 10467 10306
-19275 2 2 0 6 7832 9419 10332
-19276 2 2 0 6 9849 10205 6544
-19277 2 2 0 6 8115 10383 10404
-19278 2 2 0 6 2366 10207 2672
-19279 2 2 0 6 6547 9715 10343
-19280 2 2 0 6 4694 5256 5257
-19281 2 2 0 6 7085 9655 10217
-19282 2 2 0 6 5900 10137 10363
-19283 2 2 0 6 3438 8803 10233
-19284 2 2 0 6 6203 10064 10468
-19285 2 2 0 6 5625 10799 10721
-19286 2 2 0 6 6212 7125 10175
-19287 2 2 0 6 8311 10736 10671
-19288 2 2 0 6 8010 10317 8126
-19289 2 2 0 6 5350 10411 5895
-19290 2 2 0 6 8774 8775 10555
-19291 2 2 0 6 6243 7099 10297
-19292 2 2 0 6 2540 10025 10364
-19293 2 2 0 6 4498 10512 4660
-19294 2 2 0 6 8148 10992 9978
-19295 2 2 0 6 4275 9949 4283
-19296 2 2 0 6 6438 10054 8469
-19297 2 2 0 6 1115 1136 10283
-19298 2 2 0 6 9443 10363 10404
-19299 2 2 0 6 4472 10230 4474
-19300 2 2 0 6 1792 1794 10482
-19301 2 2 0 6 6237 10261 6239
-19302 2 2 0 6 783 1025 10220
-19303 2 2 0 6 7334 10369 7598
-19304 2 2 0 6 714 3383 10477
-19305 2 2 0 6 3697 3699 10510
-19306 2 2 0 6 7260 10186 10026
-19307 2 2 0 6 9452 9453 10551
-19308 2 2 0 6 5819 10176 9843
-19309 2 2 0 6 7892 10645 10662
-19310 2 2 0 6 5260 7017 10065
-19311 2 2 0 6 115 9523 510
-19312 2 2 0 6 4260 5165 10460
-19313 2 2 0 6 7334 7336 10369
-19314 2 2 0 6 4694 4693 5256
-19315 2 2 0 6 3634 10176 10177
-19316 2 2 0 6 2499 10252 2845
-19317 2 2 0 6 6518 10171 10238
-19318 2 2 0 6 9178 10306 9621
-19319 2 2 0 6 4865 7248 10861
-19320 2 2 0 6 8804 9304 10428
-19321 2 2 0 6 6598 10207 10471
-19322 2 2 0 6 1474 10258 1475
-19323 2 2 0 6 2836 8567 10588
-19324 2 2 0 6 4849 10571 7606
-19325 2 2 0 6 8431 10144 8432
-19326 2 2 0 6 6212 10175 9947
-19327 2 2 0 6 3049 8469 10054
-19328 2 2 0 6 2954 10399 10395
-19329 2 2 0 6 7533 9923 10409
-19330 2 2 0 6 9221 10459 9222
-19331 2 2 0 6 7721 10240 7724
-19332 2 2 0 6 6555 10233 6556
-19333 2 2 0 6 2366 2458 10207
-19334 2 2 0 6 8800 10717 10740
-19335 2 2 0 6 5827 10268 10177
-19336 2 2 0 6 773 781 10289
-19337 2 2 0 6 5692 5832 10108
-19338 2 2 0 6 6573 10244 10326
-19339 2 2 0 6 5618 10248 10303
-19340 2 2 0 6 4539 4556 10470
-19341 2 2 0 6 1233 10282 1268
-19342 2 2 0 6 2615 2911 9961
-19343 2 2 0 6 2720 10266 10277
-19344 2 2 0 6 2019 10365 5713
-19345 2 2 0 6 6520 10244 10159
-19346 2 2 0 6 5618 9135 10248
-19347 2 2 0 6 2369 10349 2620
-19348 2 2 0 6 4841 10550 5288
-19349 2 2 0 6 5281 9729 10265
-19350 2 2 0 6 8021 10501 10045
-19351 2 2 0 6 2865 2866 10547
-19352 2 2 0 6 3087 8927 10232
-19353 2 2 0 6 1235 1261 10361
-19354 2 2 0 6 7074 10553 9153
-19355 2 2 0 6 5644 7189 10556
-19356 2 2 0 6 7861 9095 10210
-19357 2 2 0 6 2189 9852 10349
-19358 2 2 0 6 8086 10804 10883
-19359 2 2 0 6 5248 6576 10458
-19360 2 2 0 6 4489 10290 9333
-19361 2 2 0 6 10299 10313 7274
-19362 2 2 0 6 3085 10119 10284
-19363 2 2 0 6 703 1208 10502
-19364 2 2 0 6 6422 10270 10407
-19365 2 2 0 6 3495 3891 10235
-19366 2 2 0 6 2495 10068 10339
-19367 2 2 0 6 4614 6139 10326
-19368 2 2 0 6 7357 10486 8993
-19369 2 2 0 6 2808 9875 3315
-19370 2 2 0 6 6509 10113 10114
-19371 2 2 0 6 7803 10266 7804
-19372 2 2 0 6 7185 7186 10259
-19373 2 2 0 6 2759 10498 2761
-19374 2 2 0 6 6659 10704 10760
-19375 2 2 0 6 2106 10501 4515
-19376 2 2 0 6 2761 10489 8487
-19377 2 2 0 6 7170 7269 10638
-19378 2 2 0 6 8399 10608 10495
-19379 2 2 0 6 8972 10396 10325
-19380 2 2 0 6 2202 10517 10413
-19381 2 2 0 6 5257 6164 6996
-19382 2 2 0 6 1779 10372 1827
-19383 2 2 0 6 6410 10278 9099
-19384 2 2 0 6 7907 7981 10281
-19385 2 2 0 6 5946 10352 9987
-19386 2 2 0 6 5407 8560 10384
-19387 2 2 0 6 5900 10590 9834
-19388 2 2 0 6 5627 6331 10210
-19389 2 2 0 6 7648 10305 9794
-19390 2 2 0 6 5847 10429 7689
-19391 2 2 0 6 7755 10631 10639
-19392 2 2 0 6 6064 11175 11172
-19393 2 2 0 6 5004 10336 5850
-19394 2 2 0 6 3002 10392 9423
-19395 2 2 0 6 4415 10299 5847
-19396 2 2 0 6 5909 10196 8148
-19397 2 2 0 6 7799 10273 10397
-19398 2 2 0 6 2761 10498 10489
-19399 2 2 0 6 1007 9962 3648
-19400 2 2 0 6 5896 10616 10422
-19401 2 2 0 6 8752 8993 10486
-19402 2 2 0 6 1330 10531 1332
-19403 2 2 0 6 3565 10514 9285
-19404 2 2 0 6 5966 10788 10804
-19405 2 2 0 6 5539 10406 9774
-19406 2 2 0 6 6468 9837 9705
-19407 2 2 0 6 1355 10282 10322
-19408 2 2 0 6 5039 5879 10582
-19409 2 2 0 6 4030 9415 10320
-19410 2 2 0 6 5806 10286 9968
-19411 2 2 0 6 6522 10321 10123
-19412 2 2 0 6 7235 10658 10472
-19413 2 2 0 6 9464 10276 10152
-19414 2 2 0 6 3434 10164 10073
-19415 2 2 0 6 8382 10519 10459
-19416 2 2 0 6 8040 10465 10238
-19417 2 2 0 6 4019 8909 10534
-19418 2 2 0 6 3784 10269 3787
-19419 2 2 0 6 1494 7809 10597
-19420 2 2 0 6 6750 9665 10416
-19421 2 2 0 6 5725 10320 9415
-19422 2 2 0 6 5842 10433 10339
-19423 2 2 0 6 2882 9451 10541
-19424 2 2 0 6 5709 5711 10443
-19425 2 2 0 6 2495 10339 9043
-19426 2 2 0 6 5240 10256 7071
-19427 2 2 0 6 4751 10458 10157
-19428 2 2 0 6 1813 10523 8775
-19429 2 2 0 6 7723 10357 10240
-19430 2 2 0 6 5880 10435 10583
-19431 2 2 0 6 9071 10626 9388
-19432 2 2 0 6 4859 6476 10346
-19433 2 2 0 6 3636 7627 10657
-19434 2 2 0 6 3150 10287 3454
-19435 2 2 0 6 3083 9493 10242
-19436 2 2 0 6 3720 10570 10525
-19437 2 2 0 6 9206 9354 10347
-19438 2 2 0 6 1525 10122 10472
-19439 2 2 0 6 6329 8963 10275
-19440 2 2 0 6 9125 9652 10190
-19441 2 2 0 6 3258 10251 3881
-19442 2 2 0 6 5831 10195 5833
-19443 2 2 0 6 778 782 10304
-19444 2 2 0 6 6617 10589 10535
-19445 2 2 0 6 7321 8434 11111
-19446 2 2 0 6 3789 10274 3811
-19447 2 2 0 6 8197 10302 10084
-19448 2 2 0 6 6290 7826 10333
-19449 2 2 0 6 3214 4123 10018
-19450 2 2 0 6 831 8225 10439
-19451 2 2 0 6 6545 10187 10285
-19452 2 2 0 6 247 248 555
-19453 2 2 0 6 17 9428 509
-19454 2 2 0 6 7049 10813 7688
-19455 2 2 0 6 4534 5034 10561
-19456 2 2 0 6 4212 10272 5098
-19457 2 2 0 6 3654 9365 10358
-19458 2 2 0 6 604 10521 606
-19459 2 2 0 6 4869 5474 10568
-19460 2 2 0 6 841 10451 3569
-19461 2 2 0 6 4765 10218 9992
-19462 2 2 0 6 5803 10255 9867
-19463 2 2 0 6 3201 10308 4411
-19464 2 2 0 6 4842 6582 10411
-19465 2 2 0 6 6595 10405 10509
-19466 2 2 0 6 6382 7668 10372
-19467 2 2 0 6 7889 7890 10689
-19468 2 2 0 6 10339 10433 9043
-19469 2 2 0 6 3258 4690 10251
-19470 2 2 0 6 3991 10313 10299
-19471 2 2 0 6 6749 6750 10474
-19472 2 2 0 6 8348 10721 8418
-19473 2 2 0 6 693 2952 10574
-19474 2 2 0 6 4493 10475 10324
-19475 2 2 0 6 5864 8920 10878
-19476 2 2 0 6 6061 10179 9977
-19477 2 2 0 6 6848 7446 10070
-19478 2 2 0 6 2396 10291 2560
-19479 2 2 0 6 6612 10648 10703
-19480 2 2 0 6 3296 10334 4006
-19481 2 2 0 6 8032 10154 10106
-19482 2 2 0 6 5033 5926 10529
-19483 2 2 0 6 4980 4981 10536
-19484 2 2 0 6 2638 2882 10471
-19485 2 2 0 6 4155 10565 4157
-19486 2 2 0 6 7793 10397 10329
-19487 2 2 0 6 3779 9867 10255
-19488 2 2 0 6 9450 10339 10068
-19489 2 2 0 6 2141 4984 9965
-19490 2 2 0 6 1001 1002 10325
-19491 2 2 0 6 2331 2408 10090
-19492 2 2 0 6 7596 10364 10025
-19493 2 2 0 6 7791 9681 10123
-19494 2 2 0 6 7892 7894 10645
-19495 2 2 0 6 5522 10607 5524
-19496 2 2 0 6 4505 10314 4637
-19497 2 2 0 6 5937 10782 9320
-19498 2 2 0 6 3051 10607 9303
-19499 2 2 0 6 621 8880 10381
-19500 2 2 0 6 7799 10234 10273
-19501 2 2 0 6 1071 10301 1073
-19502 2 2 0 6 5611 8584 10983
-19503 2 2 0 6 6727 10116 9835
-19504 2 2 0 6 4006 10690 8233
-19505 2 2 0 6 5260 10065 9700
-19506 2 2 0 6 8487 10489 10290
-19507 2 2 0 6 5076 10464 6655
-19508 2 2 0 6 2141 9965 2143
-19509 2 2 0 6 8460 9634 10560
-19510 2 2 0 6 8226 10439 8225
-19511 2 2 0 6 6568 6569 10415
-19512 2 2 0 6 3353 10598 8722
-19513 2 2 0 6 5829 10295 10124
-19514 2 2 0 6 4394 10538 8998
-19515 2 2 0 6 2633 10276 9464
-19516 2 2 0 6 6545 10285 6547
-19517 2 2 0 6 6589 10157 10458
-19518 2 2 0 6 9354 10543 10347
-19519 2 2 0 6 9371 5559 10549
-19520 2 2 0 6 7773 10288 8826
-19521 2 2 0 6 2633 10306 10276
-19522 2 2 0 6 4181 10391 10389
-19523 2 2 0 6 2383 9351 10500
-19524 2 2 0 6 5795 8530 10292
-19525 2 2 0 6 5688 10587 8935
-19526 2 2 0 6 2979 10125 3252
-19527 2 2 0 6 2055 10589 2058
-19528 2 2 0 6 3203 4411 10495
-19529 2 2 0 6 6253 7421 10855
-19530 2 2 0 6 3373 10270 10323
-19531 2 2 0 6 5888 10515 7214
-19532 2 2 0 6 4984 10347 10027
-19533 2 2 0 6 4986 10295 5829
-19534 2 2 0 6 8586 10280 10388
-19535 2 2 0 6 3891 9476 10443
-19536 2 2 0 6 2549 10564 2722
-19537 2 2 0 6 5740 10044 9404
-19538 2 2 0 6 2202 10413 10354
-19539 2 2 0 6 6605 9730 10354
-19540 2 2 0 6 5206 10642 10724
-19541 2 2 0 6 7572 10513 7574
-19542 2 2 0 6 8934 10018 10422
-19543 2 2 0 6 1351 10156 1353
-19544 2 2 0 6 9834 10590 10631
-19545 2 2 0 6 6476 8961 10346
-19546 2 2 0 6 1570 10593 1572
-19547 2 2 0 6 1470 10423 10188
-19548 2 2 0 6 144 560 9556
-19549 2 2 0 6 4457 10293 4521
-19550 2 2 0 6 6195 10311 8944
-19551 2 2 0 6 2672 10207 10147
-19552 2 2 0 6 6532 10271 6559
-19553 2 2 0 6 622 10298 625
-19554 2 2 0 6 891 10315 892
-19555 2 2 0 6 6607 10526 10441
-19556 2 2 0 6 7144 6672 11074
-19557 2 2 0 6 46 559 9538
-19558 2 2 0 6 2522 3726 10263
-19559 2 2 0 6 1459 10528 1462
-19560 2 2 0 6 7105 10527 11158
-19561 2 2 0 6 7486 8677 10267
-19562 2 2 0 6 4057 11091 11099
-19563 2 2 0 6 6194 10362 7081
-19564 2 2 0 6 4398 10428 9304
-19565 2 2 0 6 3087 10232 10165
-19566 2 2 0 6 2721 9088 10533
-19567 2 2 0 6 953 10114 10113
-19568 2 2 0 6 5887 5889 10603
-19569 2 2 0 6 5774 5776 10035
-19570 2 2 0 6 3905 8873 10300
-19571 2 2 0 6 4984 9797 10347
-19572 2 2 0 6 3480 8919 10319
-19573 2 2 0 6 2515 10120 10491
-19574 2 2 0 6 1002 1004 10330
-19575 2 2 0 6 1779 3180 10372
-19576 2 2 0 6 6550 10338 10318
-19577 2 2 0 6 6848 10070 7708
-19578 2 2 0 6 4998 10310 9429
-19579 2 2 0 6 5821 6382 10371
-19580 2 2 0 6 7755 9834 10631
-19581 2 2 0 6 6268 10367 8029
-19582 2 2 0 6 8480 11230 11241
-19583 2 2 0 6 8384 8608 10806
-19584 2 2 0 6 2417 10665 10664
-19585 2 2 0 6 2633 9621 10306
-19586 2 2 0 6 3224 8471 10328
-19587 2 2 0 6 5897 5899 10633
-19588 2 2 0 6 3715 6634 10435
-19589 2 2 0 6 4181 10389 8699
-19590 2 2 0 6 2865 10547 10278
-19591 2 2 0 6 6603 10534 10626
-19592 2 2 0 6 6521 10321 6522
-19593 2 2 0 6 7461 10491 10120
-19594 2 2 0 6 5754 10309 6480
-19595 2 2 0 6 3614 9362 10305
-19596 2 2 0 6 4033 8870 10415
-19597 2 2 0 6 5863 10306 10467
-19598 2 2 0 6 5330 7344 10353
-19599 2 2 0 6 6604 10410 10460
-19600 2 2 0 6 7735 10735 10712
-19601 2 2 0 6 5352 10601 6123
-19602 2 2 0 6 5740 5825 10044
-19603 2 2 0 6 8999 10538 10577
-19604 2 2 0 6 2560 10291 2969
-19605 2 2 0 6 5323 9908 10426
-19606 2 2 0 6 4121 10578 10853
-19607 2 2 0 6 9663 6367 10170
-19608 2 2 0 6 9395 9564 10503
-19609 2 2 0 6 1985 2242 10572
-19610 2 2 0 6 4213 9611 10272
-19611 2 2 0 6 5935 7206 10508
-19612 2 2 0 6 6688 10594 10346
-19613 2 2 0 6 4390 9291 10800
-19614 2 2 0 6 5281 10265 6548
-19615 2 2 0 6 2432 8612 10075
-19616 2 2 0 6 5906 5922 10685
-19617 2 2 0 6 7890 7892 10662
-19618 2 2 0 6 5777 9491 10366
-19619 2 2 0 6 4390 10817 9229
-19620 2 2 0 6 2102 10585 9026
-19621 2 2 0 6 5320 10345 8476
-19622 2 2 0 6 8681 10663 8682
-19623 2 2 0 6 9697 10603 10567
-19624 2 2 0 6 4212 4213 10272
-19625 2 2 0 6 941 10337 942
-19626 2 2 0 6 7740 9423 10392
-19627 2 2 0 6 3508 10380 8839
-19628 2 2 0 6 145 146 10091
-19629 2 2 0 6 5877 8303 10382
-19630 2 2 0 6 8141 10123 10321
-19631 2 2 0 6 7811 10901 10815
-19632 2 2 0 6 4994 10338 5800
-19633 2 2 0 6 3823 5865 10623
-19634 2 2 0 6 1471 1470 10340
-19635 2 2 0 6 8036 8039 10316
-19636 2 2 0 6 5021 4066 10648
-19637 2 2 0 6 6577 9622 10600
-19638 2 2 0 6 5857 10359 5858
-19639 2 2 0 6 5776 6692 10035
-19640 2 2 0 6 3002 8373 10392
-19641 2 2 0 6 4546 10251 5912
-19642 2 2 0 6 6565 9943 10449
-19643 2 2 0 6 5858 10384 10368
-19644 2 2 0 6 768 1308 10342
-19645 2 2 0 6 6574 6573 10326
-19646 2 2 0 6 6058 11103 11135
-19647 2 2 0 6 7714 8115 10404
-19648 2 2 0 6 5618 10303 9302
-19649 2 2 0 6 3614 10305 10350
-19650 2 2 0 6 6233 10576 9284
-19651 2 2 0 6 2595 9334 10556
-19652 2 2 0 6 6586 10595 10581
-19653 2 2 0 6 5009 10809 10706
-19654 2 2 0 6 8104 10877 8105
-19655 2 2 0 6 895 10296 896
-19656 2 2 0 6 3704 3975 10715
-19657 2 2 0 6 1283 10567 1303
-19658 2 2 0 6 5751 10312 7027
-19659 2 2 0 6 3654 10358 9955
-19660 2 2 0 6 1336 10348 10221
-19661 2 2 0 6 5844 9992 10218
-19662 2 2 0 6 5854 6599 10394
-19663 2 2 0 6 6467 7611 10387
-19664 2 2 0 6 7517 10795 10885
-19665 2 2 0 6 7243 7443 10327
-19666 2 2 0 6 1466 10431 10239
-19667 2 2 0 6 2544 2721 10533
-19668 2 2 0 6 7744 10285 10187
-19669 2 2 0 6 4983 10455 8204
-19670 2 2 0 6 6654 10807 10733
-19671 2 2 0 6 1195 2389 10546
-19672 2 2 0 6 48 49 462
-19673 2 2 0 6 5000 10331 10462
-19674 2 2 0 6 7832 10332 9042
-19675 2 2 0 6 2753 10344 2755
-19676 2 2 0 6 1261 1759 10361
-19677 2 2 0 6 2540 10364 2542
-19678 2 2 0 6 1303 8411 10620
-19679 2 2 0 6 3100 3689 10596
-19680 2 2 0 6 8637 10699 8638
-19681 2 2 0 6 5701 10294 9400
-19682 2 2 0 6 4019 10534 10121
-19683 2 2 0 6 5861 10410 10310
-19684 2 2 0 6 146 147 464
-19685 2 2 0 6 3511 8865 10397
-19686 2 2 0 6 5751 10236 10312
-19687 2 2 0 6 5919 10700 10605
-19688 2 2 0 6 4201 10621 6669
-19689 2 2 0 6 2721 10364 10492
-19690 2 2 0 6 8411 10633 10620
-19691 2 2 0 6 4744 5278 10591
-19692 2 2 0 6 9533 10466 10293
-19693 2 2 0 6 4859 10346 6246
-19694 2 2 0 6 4991 9561 10496
-19695 2 2 0 6 9103 10413 10517
-19696 2 2 0 6 6559 10337 10405
-19697 2 2 0 6 759 10373 761
-19698 2 2 0 6 7453 6428 10360
-19699 2 2 0 6 5725 9717 10302
-19700 2 2 0 6 4882 10637 4883
-19701 2 2 0 6 1152 1175 10375
-19702 2 2 0 6 8899 9400 10294
-19703 2 2 0 6 2954 10396 10399
-19704 2 2 0 6 6621 10382 10548
-19705 2 2 0 6 7772 10602 10674
-19706 2 2 0 6 4288 6204 10611
-19707 2 2 0 6 5809 10324 5903
-19708 2 2 0 6 8349 10876 10869
-19709 2 2 0 6 4233 10357 8063
-19710 2 2 0 6 613 10612 614
-19711 2 2 0 6 8111 10021 10335
-19712 2 2 0 6 1269 1303 10620
-19713 2 2 0 6 8303 10292 10528
-19714 2 2 0 6 6610 10542 10512
-19715 2 2 0 6 5825 10440 10044
-19716 2 2 0 6 718 10477 10447
-19717 2 2 0 6 6194 8282 10362
-19718 2 2 0 6 3881 10251 4546
-19719 2 2 0 6 1066 10686 8235
-19720 2 2 0 6 2117 8800 10740
-19721 2 2 0 6 2316 7734 10702
-19722 2 2 0 6 5914 8015 10667
-19723 2 2 0 6 2189 10349 2369
-19724 2 2 0 6 6630 10614 8556
-19725 2 2 0 6 8912 10688 8913
-19726 2 2 0 6 6366 10659 10525
-19727 2 2 0 6 3640 10487 5006
-19728 2 2 0 6 4983 9026 10455
-19729 2 2 0 6 5856 8546 10452
-19730 2 2 0 6 891 10385 10315
-19731 2 2 0 6 7514 10827 10723
-19732 2 2 0 6 7775 9949 10750
-19733 2 2 0 6 5916 10600 10635
-19734 2 2 0 6 4994 9821 10318
-19735 2 2 0 6 5504 10797 7134
-19736 2 2 0 6 5858 10368 8803
-19737 2 2 0 6 5604 6641 10581
-19738 2 2 0 6 5883 10597 7809
-19739 2 2 0 6 6519 10238 10465
-19740 2 2 0 6 1657 1659 10383
-19741 2 2 0 6 4551 10605 5449
-19742 2 2 0 6 6627 10487 10650
-19743 2 2 0 6 8460 10560 10665
-19744 2 2 0 6 2349 10154 10155
-19745 2 2 0 6 6470 10420 7244
-19746 2 2 0 6 2074 10573 2107
-19747 2 2 0 6 47 48 10088
-19748 2 2 0 6 1353 10156 10041
-19749 2 2 0 6 4138 8894 10480
-19750 2 2 0 6 5842 10339 9450
-19751 2 2 0 6 5821 10371 5823
-19752 2 2 0 6 6587 10558 10561
-19753 2 2 0 6 5925 10710 7821
-19754 2 2 0 6 882 967 10670
-19755 2 2 0 6 6676 11136 11162
-19756 2 2 0 6 6522 10329 8865
-19757 2 2 0 6 6658 10647 10623
-19758 2 2 0 6 3614 10350 9417
-19759 2 2 0 6 5813 10790 6652
-19760 2 2 0 6 6587 9697 10567
-19761 2 2 0 6 891 9471 10385
-19762 2 2 0 6 7946 10496 7947
-19763 2 2 0 6 2962 9531 10595
-19764 2 2 0 6 6714 10578 10838
-19765 2 2 0 6 3679 10391 4181
-19766 2 2 0 6 6195 7092 10311
-19767 2 2 0 6 4047 10268 10394
-19768 2 2 0 6 4324 4876 10584
-19769 2 2 0 6 5948 6620 10370
-19770 2 2 0 6 5827 10008 10268
-19771 2 2 0 6 2502 10632 9740
-19772 2 2 0 6 6238 6239 10610
-19773 2 2 0 6 5370 7208 10377
-19774 2 2 0 6 8788 10403 8789
-19775 2 2 0 6 4849 4850 10571
-19776 2 2 0 6 5348 10378 5562
-19777 2 2 0 6 5713 10358 9365
-19778 2 2 0 6 4900 10701 10004
-19779 2 2 0 6 4746 10591 7131
-19780 2 2 0 6 6180 10430 7190
-19781 2 2 0 6 6651 10688 10745
-19782 2 2 0 6 6246 10379 6455
-19783 2 2 0 6 9926 9935 10354
-19784 2 2 0 6 6521 8196 10341
-19785 2 2 0 6 5028 5029 10629
-19786 2 2 0 6 5416 10390 5864
-19787 2 2 0 6 5907 10374 8451
-19788 2 2 0 6 3568 10260 9673
-19789 2 2 0 6 6604 10460 10518
-19790 2 2 0 6 1083 10386 3382
-19791 2 2 0 6 7946 10650 10496
-19792 2 2 0 6 6008 6009 10933
-19793 2 2 0 6 3450 8586 10388
-19794 2 2 0 6 4341 10420 10243
-19795 2 2 0 6 1293 6587 10567
-19796 2 2 0 6 4390 10800 10817
-19797 2 2 0 6 8361 11035 8363
-19798 2 2 0 6 8002 10646 10640
-19799 2 2 0 6 3659 9814 10366
-19800 2 2 0 6 2056 10676 8743
-19801 2 2 0 6 5777 10366 9814
-19802 2 2 0 6 5917 10634 10617
-19803 2 2 0 6 3421 10704 3432
-19804 2 2 0 6 6553 10421 9888
-19805 2 2 0 6 1998 10419 9251
-19806 2 2 0 6 5969 10668 6427
-19807 2 2 0 6 6492 8052 10705
-19808 2 2 0 6 115 116 9523
-19809 2 2 0 6 5362 10279 7512
-19810 2 2 0 6 5306 10975 10899
-19811 2 2 0 6 6651 8966 10688
-19812 2 2 0 6 1715 8804 10669
-19813 2 2 0 6 1143 9325 10640
-19814 2 2 0 6 3569 10436 8462
-19815 2 2 0 6 6448 10444 10361
-19816 2 2 0 6 10027 10347 10543
-19817 2 2 0 6 6602 10802 8970
-19818 2 2 0 6 5278 10865 10591
-19819 2 2 0 6 1247 1248 10657
-19820 2 2 0 6 6589 10458 10454
-19821 2 2 0 6 4949 7658 10732
-19822 2 2 0 6 8032 10155 10154
-19823 2 2 0 6 7611 9990 10453
-19824 2 2 0 6 6327 10691 10206
-19825 2 2 0 6 6432 10516 9735
-19826 2 2 0 6 5004 5005 10336
-19827 2 2 0 6 5037 9968 10286
-19828 2 2 0 6 3612 10737 10734
-19829 2 2 0 6 8848 10399 8972
-19830 2 2 0 6 2019 2016 10365
-19831 2 2 0 6 6642 5984 10738
-19832 2 2 0 6 1211 4030 10437
-19833 2 2 0 6 1451 10408 1454
-19834 2 2 0 6 3162 10414 8870
-19835 2 2 0 6 5002 6565 10449
-19836 2 2 0 6 6591 10440 7719
-19837 2 2 0 6 5360 10279 5362
-19838 2 2 0 6 2618 2937 10683
-19839 2 2 0 6 5980 10672 10759
-19840 2 2 0 6 7714 10363 10137
-19841 2 2 0 6 1149 10640 2316
-19842 2 2 0 6 7637 10559 9595
-19843 2 2 0 6 742 10720 770
-19844 2 2 0 6 8818 10909 8819
-19845 2 2 0 6 5632 7995 10307
-19846 2 2 0 6 4077 9197 10747
-19847 2 2 0 6 2389 10367 10546
-19848 2 2 0 6 6650 10763 7654
-19849 2 2 0 6 6633 8498 10789
-19850 2 2 0 6 795 807 11140
-19851 2 2 0 6 6427 10514 10360
-19852 2 2 0 6 9429 10310 10410
-19853 2 2 0 6 5780 9251 10419
-19854 2 2 0 6 2882 10541 10471
-19855 2 2 0 6 6467 10387 10028
-19856 2 2 0 6 6586 10490 10595
-19857 2 2 0 6 3217 10578 4121
-19858 2 2 0 6 4844 5330 10353
-19859 2 2 0 6 5749 10157 10407
-19860 2 2 0 6 1700 10655 1699
-19861 2 2 0 6 813 10835 7531
-19862 2 2 0 6 4178 10044 10376
-19863 2 2 0 6 6642 10744 10670
-19864 2 2 0 6 5862 10402 6570
-19865 2 2 0 6 6566 10398 10412
-19866 2 2 0 6 8386 10558 10456
-19867 2 2 0 6 8509 10004 10701
-19868 2 2 0 6 1539 10396 1541
-19869 2 2 0 6 7540 5999 10873
-19870 2 2 0 6 3483 10752 8790
-19871 2 2 0 6 5414 10814 8207
-19872 2 2 0 6 4423 5263 10691
-19873 2 2 0 6 7687 9413 10307
-19874 2 2 0 6 4842 10411 5350
-19875 2 2 0 6 5360 7665 10279
-19876 2 2 0 6 3506 10478 9003
-19877 2 2 0 6 1458 10548 10382
-19878 2 2 0 6 6560 10405 6595
-19879 2 2 0 6 7857 10432 7858
-19880 2 2 0 6 6667 10735 8321
-19881 2 2 0 6 3659 10366 10456
-19882 2 2 0 6 3568 9695 10260
-19883 2 2 0 6 4477 10409 9570
-19884 2 2 0 6 8382 10459 10167
-19885 2 2 0 6 6640 10676 10677
-19886 2 2 0 6 4030 10320 10402
-19887 2 2 0 6 6252 10599 10651
-19888 2 2 0 6 6010 10798 10769
-19889 2 2 0 6 3475 10645 10264
-19890 2 2 0 6 5953 6564 10906
-19891 2 2 0 6 5000 10462 9899
-19892 2 2 0 6 6198 10644 9674
-19893 2 2 0 6 8462 10436 10503
-19894 2 2 0 6 1251 3636 10657
-19895 2 2 0 6 3479 10658 8788
-19896 2 2 0 6 1254 10620 3636
-19897 2 2 0 6 5412 8443 10852
-19898 2 2 0 6 3612 10694 9317
-19899 2 2 0 6 6388 10723 7800
-19900 2 2 0 6 4030 10402 10437
-19901 2 2 0 6 2057 2064 10677
-19902 2 2 0 6 5915 10577 10538
-19903 2 2 0 6 5929 6628 10649
-19904 2 2 0 6 2954 10395 9560
-19905 2 2 0 6 5714 7957 10225
-19906 2 2 0 6 5842 9517 10433
-19907 2 2 0 6 2443 9229 10400
-19908 2 2 0 6 10044 10440 10376
-19909 2 2 0 6 8002 10640 9325
-19910 2 2 0 6 17 18 9428
-19911 2 2 0 6 5914 5915 10566
-19912 2 2 0 6 3764 9653 10520
-19913 2 2 0 6 6563 7514 10723
-19914 2 2 0 6 5876 10395 9458
-19915 2 2 0 6 5005 10384 10359
-19916 2 2 0 6 1876 10482 10039
-19917 2 2 0 6 116 434 9523
-19918 2 2 0 6 7454 10674 10602
-19919 2 2 0 6 4233 10240 10357
-19920 2 2 0 6 6246 10594 10379
-19921 2 2 0 6 5874 10558 6587
-19922 2 2 0 6 5936 10717 10719
-19923 2 2 0 6 4797 6242 10485
-19924 2 2 0 6 5884 10427 5969
-19925 2 2 0 6 5021 10648 10163
-19926 2 2 0 6 4121 10254 9789
-19927 2 2 0 6 718 10447 722
-19928 2 2 0 6 5940 5995 10718
-19929 2 2 0 6 5136 9429 10410
-19930 2 2 0 6 5903 10324 10475
-19931 2 2 0 6 6395 10500 9351
-19932 2 2 0 6 2248 10557 10466
-19933 2 2 0 6 2940 10448 7757
-19934 2 2 0 6 5908 9774 10406
-19935 2 2 0 6 4945 10958 7965
-19936 2 2 0 6 6188 10524 7089
-19937 2 2 0 6 5871 6003 10562
-19938 2 2 0 6 6605 10413 6606
-19939 2 2 0 6 5714 10225 6421
-19940 2 2 0 6 6017 10628 10786
-19941 2 2 0 6 8643 10526 10539
-19942 2 2 0 6 4553 10666 4554
-19943 2 2 0 6 5441 10693 9630
-19944 2 2 0 6 18 433 9428
-19945 2 2 0 6 2178 10453 9990
-19946 2 2 0 6 10028 10387 10147
-19947 2 2 0 6 3203 10495 4538
-19948 2 2 0 6 5387 7731 10438
-19949 2 2 0 6 9208 11222 11072
-19950 2 2 0 6 50 51 10393
-19951 2 2 0 6 2105 10463 7808
-19952 2 2 0 6 9730 9926 10354
-19953 2 2 0 6 6632 10596 10427
-19954 2 2 0 6 1463 1462 10431
-19955 2 2 0 6 6243 10461 5373
-19956 2 2 0 6 1533 10434 1537
-19957 2 2 0 6 7448 9328 10425
-19958 2 2 0 6 3565 10360 10514
-19959 2 2 0 6 2588 10731 8435
-19960 2 2 0 6 1462 10528 10292
-19961 2 2 0 6 1466 10423 1467
-19962 2 2 0 6 7890 10662 10689
-19963 2 2 0 6 5800 9675 10507
-19964 2 2 0 6 5016 10615 5918
-19965 2 2 0 6 3145 11077 11139
-19966 2 2 0 6 9974 10687 10722
-19967 2 2 0 6 5061 10843 10867
-19968 2 2 0 6 8105 10877 10931
-19969 2 2 0 6 6279 11246 11187
-19970 2 2 0 6 5518 10796 8773
-19971 2 2 0 6 4987 10429 7274
-19972 2 2 0 6 6068 11169 7182
-19973 2 2 0 6 3055 10684 3057
-19974 2 2 0 6 5000 9474 10331
-19975 2 2 0 6 8942 11013 11014
-19976 2 2 0 6 6530 7616 10417
-19977 2 2 0 6 6535 10532 10432
-19978 2 2 0 6 3436 10915 10087
-19979 2 2 0 6 2458 2638 10471
-19980 2 2 0 6 6009 10953 10933
-19981 2 2 0 6 6668 11088 11075
-19982 2 2 0 6 6549 10574 10700
-19983 2 2 0 6 6638 10629 10692
-19984 2 2 0 6 4046 10678 9536
-19985 2 2 0 6 6565 6566 10412
-19986 2 2 0 6 714 10477 718
-19987 2 2 0 6 5165 6778 10518
-19988 2 2 0 6 6616 9888 10421
-19989 2 2 0 6 3975 10309 10715
-19990 2 2 0 6 7272 10426 9908
-19991 2 2 0 6 6646 11137 8600
-19992 2 2 0 6 4445 6589 10454
-19993 2 2 0 6 10008 10394 10268
-19994 2 2 0 6 6568 10414 10398
-19995 2 2 0 6 7807 10664 10575
-19996 2 2 0 6 9475 10331 9474
-19997 2 2 0 6 6570 10402 10320
-19998 2 2 0 6 5632 10307 9413
-19999 2 2 0 6 5871 10562 6617
-20000 2 2 0 6 6610 10512 10467
-20001 2 2 0 6 1527 10472 3479
-20002 2 2 0 6 3659 10456 9424
-20003 2 2 0 6 8381 10622 10519
-20004 2 2 0 6 4751 5248 10458
-20005 2 2 0 6 5393 6548 10743
-20006 2 2 0 6 7099 9987 10352
-20007 2 2 0 6 5890 10450 5898
-20008 2 2 0 6 6566 6568 10398
-20009 2 2 0 6 8933 9417 10441
-20010 2 2 0 6 5089 10713 6106
-20011 2 2 0 6 6568 10415 10414
-20012 2 2 0 6 3695 10511 10613
-20013 2 2 0 6 2080 2117 10754
-20014 2 2 0 6 831 10439 877
-20015 2 2 0 6 1161 2316 10702
-20016 2 2 0 6 5850 10336 10389
-20017 2 2 0 6 766 4400 10739
-20018 2 2 0 6 5600 8693 10445
-20019 2 2 0 6 5968 10822 7674
-20020 2 2 0 6 4260 10460 5861
-20021 2 2 0 6 3420 9281 10760
-20022 2 2 0 6 597 599 10781
-20023 2 2 0 6 9268 10838 10830
-20024 2 2 0 6 8788 10658 10637
-20025 2 2 0 6 5875 10506 10505
-20026 2 2 0 6 8434 11109 11111
-20027 2 2 0 6 4538 10608 4556
-20028 2 2 0 6 3172 4047 10511
-20029 2 2 0 6 3484 11013 8942
-20030 2 2 0 6 1716 9339 10874
-20031 2 2 0 6 5872 10476 8021
-20032 2 2 0 6 7092 7093 10544
-20033 2 2 0 6 8533 10260 10630
-20034 2 2 0 6 3695 10613 10606
-20035 2 2 0 6 6745 6748 10424
-20036 2 2 0 6 4477 10490 10409
-20037 2 2 0 6 5709 10443 9476
-20038 2 2 0 6 6312 10446 6313
-20039 2 2 0 6 764 10739 771
-20040 2 2 0 6 7572 7576 10513
-20041 2 2 0 6 4892 8752 10486
-20042 2 2 0 6 4584 6021 10713
-20043 2 2 0 6 7809 10539 10526
-20044 2 2 0 6 9872 11164 11157
-20045 2 2 0 6 771 10739 8896
-20046 2 2 0 6 4418 10488 10505
-20047 2 2 0 6 9560 10395 10488
-20048 2 2 0 6 2447 3189 10473
-20049 2 2 0 6 6594 10929 7255
-20050 2 2 0 6 1523 10373 11252
-20051 2 2 0 6 830 876 10744
-20052 2 2 0 6 6554 10481 8060
-20053 2 2 0 6 1794 10624 10482
-20054 2 2 0 6 8699 10389 10336
-20055 2 2 0 6 5216 10936 11062
-20056 2 2 0 6 5876 10488 10395
-20057 2 2 0 6 4438 10526 8643
-20058 2 2 0 6 6633 10751 6632
-20059 2 2 0 6 5011 10467 9178
-20060 2 2 0 6 4034 10836 10767
-20061 2 2 0 6 6488 6492 10705
-20062 2 2 0 6 5873 10476 5872
-20063 2 2 0 6 6410 10489 10498
-20064 2 2 0 6 3271 10617 8350
-20065 2 2 0 6 9417 10350 10441
-20066 2 2 0 6 1663 9443 10404
-20067 2 2 0 6 4274 10493 4628
-20068 2 2 0 6 4839 10630 10599
-20069 2 2 0 6 841 843 10451
-20070 2 2 0 6 5711 11131 7944
-20071 2 2 0 6 5800 10507 9687
-20072 2 2 0 6 5875 5921 10506
-20073 2 2 0 6 2202 10354 9935
-20074 2 2 0 6 9557 10449 10535
-20075 2 2 0 6 5206 5207 10642
-20076 2 2 0 6 6320 10520 10811
-20077 2 2 0 6 771 8896 10815
-20078 2 2 0 6 7081 10469 9914
-20079 2 2 0 6 5854 10394 10008
-20080 2 2 0 6 5949 10755 5950
-20081 2 2 0 6 7765 10970 7766
-20082 2 2 0 6 8382 8381 10519
-20083 2 2 0 6 5032 9974 10722
-20084 2 2 0 6 8399 10495 10484
-20085 2 2 0 6 7674 10772 7675
-20086 2 2 0 6 6521 10341 10321
-20087 2 2 0 6 1792 10482 1876
-20088 2 2 0 6 5825 6448 10494
-20089 2 2 0 6 799 805 10530
-20090 2 2 0 6 6519 10465 8224
-20091 2 2 0 6 636 10792 639
-20092 2 2 0 6 6647 9102 10770
-20093 2 2 0 6 744 3523 10720
-20094 2 2 0 6 703 10502 709
-20095 2 2 0 6 6603 10626 10636
-20096 2 2 0 6 6455 10468 10064
-20097 2 2 0 6 10394 6599 10511
-20098 2 2 0 6 3592 11146 11128
-20099 2 2 0 6 6660 10651 10599
-20100 2 2 0 6 5894 10650 7946
-20101 2 2 0 6 6215 10226 10418
-20102 2 2 0 6 2672 10147 10387
-20103 2 2 0 6 6614 10525 10570
-20104 2 2 0 6 8868 6338 10925
-20105 2 2 0 6 5608 10694 10780
-20106 2 2 0 6 5814 10489 6410
-20107 2 2 0 6 6652 10790 10819
-20108 2 2 0 6 4608 6110 10641
-20109 2 2 0 6 1196 10712 1230
-20110 2 2 0 6 2064 10741 10710
-20111 2 2 0 6 9460 9461 10727
-20112 2 2 0 6 6621 10711 6622
-20113 2 2 0 6 8608 8607 10806
-20114 2 2 0 6 5002 10449 9557
-20115 2 2 0 6 5901 7210 10497
-20116 2 2 0 6 6375 8138 10618
-20117 2 2 0 6 4913 11122 10144
-20118 2 2 0 6 5891 10484 5954
-20119 2 2 0 6 10564 6575 10656
-20120 2 2 0 6 4948 5914 10667
-20121 2 2 0 6 10158 10422 10616
-20122 2 2 0 6 7595 10492 7596
-20123 2 2 0 6 4539 10470 4995
-20124 2 2 0 6 5027 5916 10634
-20125 2 2 0 6 6630 10687 10614
-20126 2 2 0 6 5903 10475 7375
-20127 2 2 0 6 6432 7352 10516
-20128 2 2 0 6 3506 9625 10478
-20129 2 2 0 6 2515 10491 2682
-20130 2 2 0 6 4660 10542 6732
-20131 2 2 0 6 6259 7393 10696
-20132 2 2 0 6 4839 8533 10630
-20133 2 2 0 6 9689 10687 9974
-20134 2 2 0 6 9368 10580 10632
-20135 2 2 0 6 2099 2103 10504
-20136 2 2 0 6 4517 10552 10545
-20137 2 2 0 6 2178 2191 10453
-20138 2 2 0 6 5955 10730 5956
-20139 2 2 0 6 808 1519 10527
-20140 2 2 0 6 3715 10435 9451
-20141 2 2 0 6 9209 8435 10777
-20142 2 2 0 6 5876 5875 10505
-20143 2 2 0 6 2095 10463 2105
-20144 2 2 0 6 8491 10466 9533
-20145 2 2 0 6 2417 8460 10665
-20146 2 2 0 6 4994 10318 10338
-20147 2 2 0 6 4047 10394 10511
-20148 2 2 0 6 7091 10783 11243
-20149 2 2 0 6 7947 10496 9850
-20150 2 2 0 6 1332 10531 2968
-20151 2 2 0 6 4477 9747 10490
-20152 2 2 0 6 707 10787 704
-20153 2 2 0 6 7682 11106 11125
-20154 2 2 0 6 5834 10529 10515
-20155 2 2 0 6 3564 9043 10433
-20156 2 2 0 6 5076 7233 10464
-20157 2 2 0 6 2200 2363 10517
-20158 2 2 0 6 7764 10848 11102
-20159 2 2 0 6 5918 10575 10664
-20160 2 2 0 6 7522 10952 7646
-20161 2 2 0 6 6507 10654 8138
-20162 2 2 0 6 8908 9468 10741
-20163 2 2 0 6 9535 10673 8263
-20164 2 2 0 6 7255 10950 10829
-20165 2 2 0 6 5753 9789 10254
-20166 2 2 0 6 941 10405 10337
-20167 2 2 0 6 9656 10726 10624
-20168 2 2 0 6 8865 10329 10397
-20169 2 2 0 6 5968 10830 10822
-20170 2 2 0 6 6011 10934 7975
-20171 2 2 0 6 4498 5863 10512
-20172 2 2 0 6 3640 4991 10487
-20173 2 2 0 6 5033 10529 5834
-20174 2 2 0 6 792 10785 798
-20175 2 2 0 6 5834 10515 5888
-20176 2 2 0 6 7778 10478 10955
-20177 2 2 0 6 6090 6092 10801
-20178 2 2 0 6 606 10521 609
-20179 2 2 0 6 746 10761 3523
-20180 2 2 0 6 8668 9560 10488
-20181 2 2 0 6 8267 10328 10452
-20182 2 2 0 6 8314 10953 10973
-20183 2 2 0 6 730 10784 1010
-20184 2 2 0 6 1813 8618 10523
-20185 2 2 0 6 8497 10522 8498
-20186 2 2 0 6 8415 11164 9872
-20187 2 2 0 6 802 10803 1178
-20188 2 2 0 6 4818 5009 10706
-20189 2 2 0 6 6615 10860 10875
-20190 2 2 0 6 823 9123 10675
-20191 2 2 0 6 8998 10538 8999
-20192 2 2 0 6 7719 10440 10494
-20193 2 2 0 6 10739 10755 8896
-20194 2 2 0 6 4006 10370 10690
-20195 2 2 0 6 1822 10540 10522
-20196 2 2 0 6 6007 10892 8339
-20197 2 2 0 6 4495 10673 9535
-20198 2 2 0 6 695 10554 699
-20199 2 2 0 6 5374 10537 8764
-20200 2 2 0 6 9371 10549 3561
-20201 2 2 0 6 937 10509 938
-20202 2 2 0 6 750 813 10768
-20203 2 2 0 6 5301 9193 10695
-20204 2 2 0 6 4992 10561 10558
-20205 2 2 0 6 3690 9222 10519
-20206 2 2 0 6 6004 10951 10870
-20207 2 2 0 6 5947 10708 6620
-20208 2 2 0 6 5861 10460 10410
-20209 2 2 0 6 5589 10802 9181
-20210 2 2 0 6 8986 10778 9291
-20211 2 2 0 6 1458 10528 1459
-20212 2 2 0 6 6604 10518 6766
-20213 2 2 0 6 3564 10580 9368
-20214 2 2 0 6 5936 9094 10717
-20215 2 2 0 6 6627 9595 10559
-20216 2 2 0 6 3176 11157 11151
-20217 2 2 0 6 5856 10452 10328
-20218 2 2 0 6 7654 10787 10808
-20219 2 2 0 6 2544 10533 2546
-20220 2 2 0 6 7235 10472 10122
-20221 2 2 0 6 786 11008 7345
-20222 2 2 0 6 150 151 10356
-20223 2 2 0 6 2555 10829 8293
-20224 2 2 0 6 1715 10570 3720
-20225 2 2 0 6 6470 10243 10420
-20226 2 2 0 6 1540 1542 10737
-20227 2 2 0 6 8965 10688 8966
-20228 2 2 0 6 5870 10758 10586
-20229 2 2 0 6 6628 10661 10655
-20230 2 2 0 6 9285 10514 9616
-20231 2 2 0 6 6607 7809 10526
-20232 2 2 0 6 2058 10499 2060
-20233 2 2 0 6 6764 10457 9737
-20234 2 2 0 6 6647 10770 10850
-20235 2 2 0 6 2546 10533 10564
-20236 2 2 0 6 5947 10719 10708
-20237 2 2 0 6 1704 1707 10653
-20238 2 2 0 6 7540 10898 6564
-20239 2 2 0 6 7627 10757 10657
-20240 2 2 0 6 145 10091 560
-20241 2 2 0 6 7116 11011 11015
-20242 2 2 0 6 8570 9153 10553
-20243 2 2 0 6 4060 10543 9354
-20244 2 2 0 6 7255 10929 10950
-20245 2 2 0 6 695 10574 10554
-20246 2 2 0 6 8966 10605 10700
-20247 2 2 0 6 5058 5932 10733
-20248 2 2 0 6 1703 10653 10649
-20249 2 2 0 6 8462 10503 9564
-20250 2 2 0 6 7678 10585 10577
-20251 2 2 0 6 9623 11207 11197
-20252 2 2 0 6 6184 10904 7090
-20253 2 2 0 6 6641 10724 10642
-20254 2 2 0 6 5980 5982 10672
-20255 2 2 0 6 5825 10494 10440
-20256 2 2 0 6 4980 10536 5931
-20257 2 2 0 6 2102 8999 10577
-20258 2 2 0 6 879 3370 10824
-20259 2 2 0 6 1716 10569 9454
-20260 2 2 0 6 151 397 10356
-20261 2 2 0 6 2054 9557 10535
-20262 2 2 0 6 7914 11248 11241
-20263 2 2 0 6 3644 10167 10459
-20264 2 2 0 6 4105 8298 10963
-20265 2 2 0 6 2620 10532 9948
-20266 2 2 0 6 3507 8934 10422
-20267 2 2 0 6 2106 2115 10501
-20268 2 2 0 6 9168 10039 10482
-20269 2 2 0 6 5595 10534 8909
-20270 2 2 0 6 2117 10740 10754
-20271 2 2 0 6 5858 10359 10384
-20272 2 2 0 6 4411 10484 10495
-20273 2 2 0 6 914 10821 917
-20274 2 2 0 6 3689 10427 10596
-20275 2 2 0 6 7596 10492 10364
-20276 2 2 0 6 5263 10206 10691
-20277 2 2 0 6 7310 8156 10793
-20278 2 2 0 6 3699 5026 10510
-20279 2 2 0 6 4949 10732 9644
-20280 2 2 0 6 6614 10570 9981
-20281 2 2 0 6 47 10088 559
-20282 2 2 0 6 4517 10545 8546
-20283 2 2 0 6 4800 10993 7489
-20284 2 2 0 6 1699 10661 7888
-20285 2 2 0 6 8104 8106 10809
-20286 2 2 0 6 7894 10264 10645
-20287 2 2 0 6 3644 10459 9221
-20288 2 2 0 6 53 399 10355
-20289 2 2 0 6 1761 8643 10539
-20290 2 2 0 6 8972 10399 10396
-20291 2 2 0 6 4882 10403 10637
-20292 2 2 0 6 1454 10548 1455
-20293 2 2 0 6 52 53 10355
-20294 2 2 0 6 5288 10550 7215
-20295 2 2 0 6 4556 10608 10421
-20296 2 2 0 6 693 10574 695
-20297 2 2 0 6 5873 10665 10560
-20298 2 2 0 6 5644 10556 9334
-20299 2 2 0 6 7156 11161 10920
-20300 2 2 0 6 7219 10811 10520
-20301 2 2 0 6 8204 10401 9963
-20302 2 2 0 6 829 990 10841
-20303 2 2 0 6 5935 10508 8317
-20304 2 2 0 6 6689 6690 10844
-20305 2 2 0 6 5046 5950 10799
-20306 2 2 0 6 3690 10519 10622
-20307 2 2 0 6 5954 10484 10619
-20308 2 2 0 6 4411 10619 10484
-20309 2 2 0 6 4347 8774 10555
-20310 2 2 0 6 9695 10630 10260
-20311 2 2 0 6 6253 10855 6254
-20312 2 2 0 6 3456 10779 11016
-20313 2 2 0 6 815 3386 10832
-20314 2 2 0 6 6320 10195 10520
-20315 2 2 0 6 7270 10592 8427
-20316 2 2 0 6 4202 10816 8003
-20317 2 2 0 6 4992 10558 8386
-20318 2 2 0 6 4534 10561 4992
-20319 2 2 0 6 6084 6086 10776
-20320 2 2 0 6 6455 10379 10468
-20321 2 2 0 6 1523 11252 11255
-20322 2 2 0 6 2077 10499 10562
-20323 2 2 0 6 2546 10564 2549
-20324 2 2 0 6 827 10832 990
-20325 2 2 0 6 6188 7202 10524
-20326 2 2 0 6 6610 6611 10542
-20327 2 2 0 6 5335 10660 5927
-20328 2 2 0 6 3764 10520 10195
-20329 2 2 0 6 6616 10421 10608
-20330 2 2 0 6 149 150 558
-20331 2 2 0 6 51 52 557
-20332 2 2 0 6 804 10818 811
-20333 2 2 0 6 10083 11249 11055
-20334 2 2 0 6 4738 10507 10750
-20335 2 2 0 6 2231 10783 2233
-20336 2 2 0 6 9561 9850 10496
-20337 2 2 0 6 6621 10548 10711
-20338 2 2 0 6 1235 10361 10444
-20339 2 2 0 6 8414 8416 11155
-20340 2 2 0 6 6672 11091 11074
-20341 2 2 0 6 5699 10842 9339
-20342 2 2 0 6 7034 10831 7036
-20343 2 2 0 6 4394 10566 10538
-20344 2 2 0 6 5936 10719 5947
-20345 2 2 0 6 918 10846 921
-20346 2 2 0 6 5911 10616 10641
-20347 2 2 0 6 7764 9823 10793
-20348 2 2 0 6 3432 10563 3433
-20349 2 2 0 6 9026 10585 10455
-20350 2 2 0 6 5968 9268 10830
-20351 2 2 0 6 4738 9687 10507
-20352 2 2 0 6 4517 9535 10552
-20353 2 2 0 6 5055 5056 10807
-20354 2 2 0 6 5951 10734 7670
-20355 2 2 0 6 7093 7777 10544
-20356 2 2 0 6 8870 10414 10415
-20357 2 2 0 6 711 1155 10808
-20358 2 2 0 6 1441 10895 1516
-20359 2 2 0 6 8344 8349 10869
-20360 2 2 0 6 2107 10586 5938
-20361 2 2 0 6 5207 6586 10642
-20362 2 2 0 6 7835 10664 10665
-20363 2 2 0 6 7888 10728 6629
-20364 2 2 0 6 5922 10428 10685
-20365 2 2 0 6 6600 10924 6601
-20366 2 2 0 6 10452 8546 10545
-20367 2 2 0 6 609 10521 10604
-20368 2 2 0 6 5664 5665 10819
-20369 2 2 0 6 887 10824 913
-20370 2 2 0 6 1800 10888 7810
-20371 2 2 0 6 1520 11020 11022
-20372 2 2 0 6 922 10828 925
-20373 2 2 0 6 6613 7589 10905
-20374 2 2 0 6 4565 5435 10866
-20375 2 2 0 6 49 10229 462
-20376 2 2 0 6 1367 10794 1370
-20377 2 2 0 6 5052 10913 6005
-20378 2 2 0 6 8488 4347 10579
-20379 2 2 0 6 752 10835 813
-20380 2 2 0 6 5865 9948 10532
-20381 2 2 0 6 3708 10738 10725
-20382 2 2 0 6 3441 10836 3651
-20383 2 2 0 6 5880 6598 10541
-20384 2 2 0 6 7040 10839 7042
-20385 2 2 0 6 4157 10565 4836
-20386 2 2 0 6 6006 7463 10892
-20387 2 2 0 6 5016 5927 10615
-20388 2 2 0 6 2657 10989 10964
-20389 2 2 0 6 1794 9656 10624
-20390 2 2 0 6 3217 3346 10578
-20391 2 2 0 6 5474 7224 10568
-20392 2 2 0 6 7044 10823 7046
-20393 2 2 0 6 5421 7807 10575
-20394 2 2 0 6 1704 10653 1703
-20395 2 2 0 6 6633 10789 10751
-20396 2 2 0 6 1670 10590 9443
-20397 2 2 0 6 5993 10779 7194
-20398 2 2 0 6 6581 10557 6582
-20399 2 2 0 6 2074 2076 10573
-20400 2 2 0 6 6634 10583 10435
-20401 2 2 0 6 5456 5458 10583
-20402 2 2 0 6 6471 9532 10775
-20403 2 2 0 6 6598 10471 10541
-20404 2 2 0 6 1230 10746 9638
-20405 2 2 0 6 6427 10668 10514
-20406 2 2 0 6 6664 10678 10805
-20407 2 2 0 6 4411 10308 10619
-20408 2 2 0 6 5865 10582 10623
-20409 2 2 0 6 8381 9161 10622
-20410 2 2 0 6 4324 10584 4591
-20411 2 2 0 6 1967 8355 11127
-20412 2 2 0 6 6642 10672 5982
-20413 2 2 0 6 4570 9284 10576
-20414 2 2 0 6 6655 10464 10820
-20415 2 2 0 6 4032 11133 4913
-20416 2 2 0 6 5045 10765 10762
-20417 2 2 0 6 3011 10602 7772
-20418 2 2 0 6 5915 7678 10577
-20419 2 2 0 6 934 10868 937
-20420 2 2 0 6 6714 10853 10578
-20421 2 2 0 6 6655 10820 10947
-20422 2 2 0 6 5039 10582 6535
-20423 2 2 0 6 5893 10632 10580
-20424 2 2 0 6 5625 10837 9242
-20425 2 2 0 6 1427 1429 10881
-20426 2 2 0 6 8340 10873 9376
-20427 2 2 0 6 4105 10963 10986
-20428 2 2 0 6 8855 10575 10615
-20429 2 2 0 6 3446 10833 10043
-20430 2 2 0 6 833 10841 8829
-20431 2 2 0 6 6472 10887 6473
-20432 2 2 0 6 4913 11133 11122
-20433 2 2 0 6 5961 10875 5963
-20434 2 2 0 6 8788 10637 10403
-20435 2 2 0 6 5873 7835 10665
-20436 2 2 0 6 4850 5232 10571
-20437 2 2 0 6 1283 1293 10567
-20438 2 2 0 6 3725 10773 6654
-20439 2 2 0 6 9166 10624 10726
-20440 2 2 0 6 5030 10802 6602
-20441 2 2 0 6 4199 8235 10891
-20442 2 2 0 6 1183 1197 10894
-20443 2 2 0 6 6620 10690 10370
-20444 2 2 0 6 5620 10625 5916
-20445 2 2 0 6 2836 10588 3563
-20446 2 2 0 6 8973 10022 10771
-20447 2 2 0 6 3695 10606 9692
-20448 2 2 0 6 6591 10376 10440
-20449 2 2 0 6 2417 10664 7807
-20450 2 2 0 6 6450 10788 10117
-20451 2 2 0 6 9324 10848 9461
-20452 2 2 0 6 6410 10498 10278
-20453 2 2 0 6 1727 2745 10774
-20454 2 2 0 6 6628 10655 10649
-20455 2 2 0 6 4744 10591 4746
-20456 2 2 0 6 3365 8394 10918
-20457 2 2 0 6 6711 10838 9268
-20458 2 2 0 6 4347 10555 10579
-20459 2 2 0 6 4105 10986 9439
-20460 2 2 0 6 1899 1985 10572
-20461 2 2 0 6 3510 9331 10851
-20462 2 2 0 6 6618 10027 10543
-20463 2 2 0 6 50 10393 10229
-20464 2 2 0 6 756 1800 10860
-20465 2 2 0 6 3353 8855 10598
-20466 2 2 0 6 6072 11229 11215
-20467 2 2 0 6 5915 10538 10566
-20468 2 2 0 6 5562 10378 10442
-20469 2 2 0 6 6620 10708 10693
-20470 2 2 0 6 9312 8105 10931
-20471 2 2 0 6 3365 10912 8256
-20472 2 2 0 6 5893 10580 9517
-20473 2 2 0 6 6619 6660 10599
-20474 2 2 0 6 5919 6549 10700
-20475 2 2 0 6 9517 10580 10433
-20476 2 2 0 6 4876 9452 10551
-20477 2 2 0 6 3708 10725 9123
-20478 2 2 0 6 6624 10767 8201
-20479 2 2 0 6 6252 10651 7870
-20480 2 2 0 6 4515 10560 9634
-20481 2 2 0 6 1572 10593 1726
-20482 2 2 0 6 7711 11202 11188
-20483 2 2 0 6 146 464 10091
-20484 2 2 0 6 823 10636 9071
-20485 2 2 0 6 9123 10725 10675
-20486 2 2 0 6 6123 10601 6807
-20487 2 2 0 6 4350 8423 11260
-20488 2 2 0 6 2054 10535 10589
-20489 2 2 0 6 7319 10896 9903
-20490 2 2 0 6 5068 9119 10859
-20491 2 2 0 6 5965 10117 10788
-20492 2 2 0 6 6632 10751 10596
-20493 2 2 0 6 48 462 10088
-20494 2 2 0 6 967 10759 10672
-20495 2 2 0 6 10706 10809 9740
-20496 2 2 0 6 6504 11221 11166
-20497 2 2 0 6 5945 10656 6575
-20498 2 2 0 6 1523 11255 8423
-20499 2 2 0 6 5473 5864 10878
-20500 2 2 0 6 3507 10422 10158
-20501 2 2 0 6 3100 10596 4048
-20502 2 2 0 6 1433 1436 10893
-20503 2 2 0 6 3531 8935 10587
-20504 2 2 0 6 4027 10401 10059
-20505 2 2 0 6 5881 10597 5883
-20506 2 2 0 6 3703 4568 10864
-20507 2 2 0 6 9747 10595 10490
-20508 2 2 0 6 7678 7679 10585
-20509 2 2 0 6 8970 10802 10879
-20510 2 2 0 6 4288 10611 5191
-20511 2 2 0 6 5595 10626 10534
-20512 2 2 0 6 5760 7682 11125
-20513 2 2 0 6 5604 10581 9531
-20514 2 2 0 6 7754 7755 10614
-20515 2 2 0 6 7102 8026 10949
-20516 2 2 0 6 642 10905 645
-20517 2 2 0 6 6005 10913 10944
-20518 2 2 0 6 2962 10595 9747
-20519 2 2 0 6 4034 10767 10764
-20520 2 2 0 6 3446 9748 10833
-20521 2 2 0 6 9166 9168 10624
-20522 2 2 0 6 2054 10589 2055
-20523 2 2 0 6 9585 6000 10850
-20524 2 2 0 6 3701 10864 5026
-20525 2 2 0 6 5972 8797 10826
-20526 2 2 0 6 3475 9703 10645
-20527 2 2 0 6 6750 10416 10474
-20528 2 2 0 6 758 10888 1800
-20529 2 2 0 6 3176 9872 11157
-20530 2 2 0 6 5828 9960 10647
-20531 2 2 0 6 8589 10649 10653
-20532 2 2 0 6 6238 10610 7094
-20533 2 2 0 6 7088 8695 10797
-20534 2 2 0 6 6581 10466 10557
-20535 2 2 0 6 5031 9074 10758
-20536 2 2 0 6 6577 10600 10625
-20537 2 2 0 6 5415 10569 10628
-20538 2 2 0 6 7361 10547 10262
-20539 2 2 0 6 5976 10765 10752
-20540 2 2 0 6 3342 7960 10928
-20541 2 2 0 6 5863 10467 10512
-20542 2 2 0 6 930 10862 933
-20543 2 2 0 6 5012 6563 10723
-20544 2 2 0 6 5887 10603 9697
-20545 2 2 0 6 5069 5973 10903
-20546 2 2 0 6 2620 10432 10532
-20547 2 2 0 6 1254 1269 10620
-20548 2 2 0 6 9350 10780 10694
-20549 2 2 0 6 7254 7255 10854
-20550 2 2 0 6 5954 10619 7456
-20551 2 2 0 6 8793 11170 8794
-20552 2 2 0 6 6246 10346 10594
-20553 2 2 0 6 3564 10433 10580
-20554 2 2 0 6 8273 10172 10748
-20555 2 2 0 6 6714 6715 10853
-20556 2 2 0 6 5522 9303 10607
-20557 2 2 0 6 8852 10681 10673
-20558 2 2 0 6 6366 10525 10170
-20559 2 2 0 6 6617 10562 10499
-20560 2 2 0 6 7245 7701 10627
-20561 2 2 0 6 5879 10623 10582
-20562 2 2 0 6 8339 10882 8340
-20563 2 2 0 6 4551 5919 10605
-20564 2 2 0 6 926 10847 929
-20565 2 2 0 6 6619 10599 10630
-20566 2 2 0 6 5979 10679 9161
-20567 2 2 0 6 5067 10876 5973
-20568 2 2 0 6 7674 10822 10772
-20569 2 2 0 6 6571 10964 10989
-20570 2 2 0 6 5990 6603 10636
-20571 2 2 0 6 5998 6678 10939
-20572 2 2 0 6 4171 10943 5707
-20573 2 2 0 6 6616 10608 8399
-20574 2 2 0 6 7883 9903 10896
-20575 2 2 0 6 8423 11255 11260
-20576 2 2 0 6 4417 8697 10919
-20577 2 2 0 6 7133 10591 10865
-20578 2 2 0 6 8790 10765 5045
-20579 2 2 0 6 1777 1825 10921
-20580 2 2 0 6 1670 8641 10631
-20581 2 2 0 6 1670 10631 10590
-20582 2 2 0 6 6642 10738 10744
-20583 2 2 0 6 4169 10948 5022
-20584 2 2 0 6 6593 7254 10886
-20585 2 2 0 6 762 771 10901
-20586 2 2 0 6 7755 10639 10614
-20587 2 2 0 6 3275 8350 10635
-20588 2 2 0 6 4554 10718 10766
-20589 2 2 0 6 5881 10629 10597
-20590 2 2 0 6 9703 10662 10645
-20591 2 2 0 6 3388 10643 10261
-20592 2 2 0 6 16 509 7237
-20593 2 2 0 6 4702 4737 10714
-20594 2 2 0 6 3690 10622 9340
-20595 2 2 0 6 609 10604 8901
-20596 2 2 0 6 4060 7772 10674
-20597 2 2 0 6 9529 10600 9622
-20598 2 2 0 6 5595 9388 10626
-20599 2 2 0 6 7738 10890 10851
-20600 2 2 0 6 2124 2179 11132
-20601 2 2 0 6 5028 10629 5881
-20602 2 2 0 6 6340 10127 10786
-20603 2 2 0 6 3066 10911 3065
-20604 2 2 0 6 1421 1423 10884
-20605 2 2 0 6 614 10612 617
-20606 2 2 0 6 5876 10505 10488
-20607 2 2 0 6 2502 9368 10632
-20608 2 2 0 6 8641 10639 10631
-20609 2 2 0 6 7243 10327 10546
-20610 2 2 0 6 6008 10900 8671
-20611 2 2 0 6 6622 8925 11012
-20612 2 2 0 6 823 10675 10636
-20613 2 2 0 6 5456 10583 10666
-20614 2 2 0 6 5430 10639 8641
-20615 2 2 0 6 9074 10762 10758
-20616 2 2 0 6 9616 10514 10668
-20617 2 2 0 6 4883 10637 6372
-20618 2 2 0 6 5897 10633 8411
-20619 2 2 0 6 6220 8288 10908
-20620 2 2 0 6 5785 10158 10616
-20621 2 2 0 6 6667 10746 10735
-20622 2 2 0 6 1454 10711 10548
-20623 2 2 0 6 5918 10615 10575
-20624 2 2 0 6 6634 10666 10583
-20625 2 2 0 6 2134 11132 11232
-20626 2 2 0 6 9443 10590 10363
-20627 2 2 0 6 4027 9963 10401
-20628 2 2 0 6 3726 6654 10769
-20629 2 2 0 6 4201 9439 10621
-20630 2 2 0 6 1143 10640 1149
-20631 2 2 0 6 6365 8589 10652
-20632 2 2 0 6 6205 10732 10749
-20633 2 2 0 6 4146 10911 10226
-20634 2 2 0 6 5908 10406 10909
-20635 2 2 0 6 6198 7168 10644
-20636 2 2 0 6 9581 9582 10919
-20637 2 2 0 6 1700 1703 10655
-20638 2 2 0 6 3271 9692 10617
-20639 2 2 0 6 7679 10455 10585
-20640 2 2 0 6 1520 11022 8297
-20641 2 2 0 6 5061 9742 10843
-20642 2 2 0 6 633 9050 10920
-20643 2 2 0 6 4134 4184 10936
-20644 2 2 0 6 6749 10474 10638
-20645 2 2 0 6 8000 10646 8002
-20646 2 2 0 6 5979 5943 10709
-20647 2 2 0 6 4066 4148 10648
-20648 2 2 0 6 1558 10938 1560
-20649 2 2 0 6 6365 10652 10659
-20650 2 2 0 6 5676 6220 10908
-20651 2 2 0 6 1155 10890 10840
-20652 2 2 0 6 5276 10954 8466
-20653 2 2 0 6 9869 10263 10798
-20654 2 2 0 6 7767 10957 8582
-20655 2 2 0 6 6626 10736 10764
-20656 2 2 0 6 5027 10634 5917
-20657 2 2 0 6 6472 11121 11057
-20658 2 2 0 6 4350 10663 8681
-20659 2 2 0 6 3365 10918 10912
-20660 2 2 0 6 5873 10560 10476
-20661 2 2 0 6 7105 11158 11151
-20662 2 2 0 6 6669 10621 10942
-20663 2 2 0 6 5074 10914 6594
-20664 2 2 0 6 1363 10985 1366
-20665 2 2 0 6 9899 10462 10772
-20666 2 2 0 6 5929 10649 8589
-20667 2 2 0 6 5926 10963 10529
-20668 2 2 0 6 3921 11187 10967
-20669 2 2 0 6 5828 10647 10927
-20670 2 2 0 6 1248 1251 10657
-20671 2 2 0 6 641 6613 10905
-20672 2 2 0 6 3551 8825 11021
-20673 2 2 0 6 967 10672 10670
-20674 2 2 0 6 8819 10909 10406
-20675 2 2 0 6 9168 10482 10624
-20676 2 2 0 6 6599 7518 10613
-20677 2 2 0 6 9692 10606 10617
-20678 2 2 0 6 5979 10709 10679
-20679 2 2 0 6 10867 8969 10879
-20680 2 2 0 6 5718 6623 10915
-20681 2 2 0 6 5943 10773 10709
-20682 2 2 0 6 7589 10939 10905
-20683 2 2 0 6 7088 10797 10094
-20684 2 2 0 6 8257 10889 10903
-20685 2 2 0 6 5951 9350 10734
-20686 2 2 0 6 1679 7542 10999
-20687 2 2 0 6 6365 10659 6366
-20688 2 2 0 6 5049 10942 6013
-20689 2 2 0 6 5630 10627 10107
-20690 2 2 0 6 6372 10658 7235
-20691 2 2 0 6 6258 10923 9661
-20692 2 2 0 6 9869 10798 10972
-20693 2 2 0 6 6628 9116 10661
-20694 2 2 0 6 6372 10637 10658
-20695 2 2 0 6 2076 10754 10573
-20696 2 2 0 6 8800 10719 10717
-20697 2 2 0 6 6669 11024 6670
-20698 2 2 0 6 6636 10757 7627
-20699 2 2 0 6 6639 10573 10754
-20700 2 2 0 6 5045 10762 9074
-20701 2 2 0 6 5630 10678 10627
-20702 2 2 0 6 3760 6078 11092
-20703 2 2 0 6 4041 7983 11206
-20704 2 2 0 6 6638 10692 8694
-20705 2 2 0 6 6693 11124 11104
-20706 2 2 0 6 8295 10950 9436
-20707 2 2 0 6 4553 5456 10666
-20708 2 2 0 6 1715 10669 10570
-20709 2 2 0 6 6619 10630 9695
-20710 2 2 0 6 5918 10664 7835
-20711 2 2 0 6 6005 10944 6118
-20712 2 2 0 6 4495 8852 10673
-20713 2 2 0 6 6259 10696 10265
-20714 2 2 0 6 6315 8212 10926
-20715 2 2 0 6 8432 10144 10609
-20716 2 2 0 6 9468 10742 10741
-20717 2 2 0 6 4839 10599 6252
-20718 2 2 0 6 6641 10642 10581
-20719 2 2 0 6 4707 10936 5216
-20720 2 2 0 6 7269 10284 10638
-20721 2 2 0 6 5960 10747 10726
-20722 2 2 0 6 4541 10899 10775
-20723 2 2 0 6 6614 10170 10525
-20724 2 2 0 6 1508 10810 10849
-20725 2 2 0 6 4608 10641 5896
-20726 2 2 0 6 4790 10954 5276
-20727 2 2 0 6 627 9072 10956
-20728 2 2 0 6 7758 11196 11184
-20729 2 2 0 6 8880 10671 10736
-20730 2 2 0 6 617 10671 8880
-20731 2 2 0 6 6601 10930 9551
-20732 2 2 0 6 7888 10661 10728
-20733 2 2 0 6 2937 10770 10683
-20734 2 2 0 6 7520 10906 7521
-20735 2 2 0 6 4423 10691 5869
-20736 2 2 0 6 5022 10948 11161
-20737 2 2 0 6 5906 10685 7416
-20738 2 2 0 6 6749 10638 10284
-20739 2 2 0 6 4948 10667 4949
-20740 2 2 0 6 2056 2057 10677
-20741 2 2 0 6 10867 10879 9219
-20742 2 2 0 6 6507 7331 10654
-20743 2 2 0 6 4398 10685 10428
-20744 2 2 0 6 6630 10722 10687
-20745 2 2 0 6 3689 9616 10668
-20746 2 2 0 6 7754 10614 10687
-20747 2 2 0 6 5232 10707 10571
-20748 2 2 0 6 5972 10826 9985
-20749 2 2 0 6 5620 10676 10625
-20750 2 2 0 6 5630 9536 10678
-20751 2 2 0 6 617 10612 10671
-20752 2 2 0 6 1570 10680 10593
-20753 2 2 0 6 5021 10682 5506
-20754 2 2 0 6 7675 10772 10462
-20755 2 2 0 6 5506 10681 8852
-20756 2 2 0 6 5608 10780 9203
-20757 2 2 0 6 3147 3921 10962
-20758 2 2 0 6 6684 6685 10716
-20759 2 2 0 6 7920 10995 7921
-20760 2 2 0 6 8297 10976 9608
-20761 2 2 0 6 1066 8257 10686
-20762 2 2 0 6 6336 10699 8637
-20763 2 2 0 6 5441 8233 10690
-20764 2 2 0 6 1913 1912 10941
-20765 2 2 0 6 876 882 10670
-20766 2 2 0 6 4103 10953 8314
-20767 2 2 0 6 4958 6004 10870
-20768 2 2 0 6 3823 10647 9960
-20769 2 2 0 6 9981 10570 10669
-20770 2 2 0 6 9065 11010 11020
-20771 2 2 0 6 2184 9340 10679
-20772 2 2 0 6 8218 10753 10724
-20773 2 2 0 6 1683 1719 10946
-20774 2 2 0 6 1719 8342 10946
-20775 2 2 0 6 1344 10935 2401
-20776 2 2 0 6 967 9203 10759
-20777 2 2 0 6 6670 11024 11032
-20778 2 2 0 6 649 646 10959
-20779 2 2 0 6 9367 9630 10693
-20780 2 2 0 6 5900 10363 10590
-20781 2 2 0 6 10632 10706 9740
-20782 2 2 0 6 5620 8743 10676
-20783 2 2 0 6 1971 2210 10964
-20784 2 2 0 6 2131 10708 10719
-20785 2 2 0 6 4515 10476 10560
-20786 2 2 0 6 6599 10613 10511
-20787 2 2 0 6 5942 10740 10717
-20788 2 2 0 6 5995 5997 10766
-20789 2 2 0 6 5905 9913 10820
-20790 2 2 0 6 5960 10726 9656
-20791 2 2 0 6 3055 4041 10684
-20792 2 2 0 6 6636 10778 10757
-20793 2 2 0 6 2363 2618 10683
-20794 2 2 0 6 1230 10735 10746
-20795 2 2 0 6 5196 9694 10902
-20796 2 2 0 6 2064 10710 10677
-20797 2 2 0 6 6017 11025 7676
-20798 2 2 0 6 6670 11032 6851
-20799 2 2 0 6 6641 8218 10724
-20800 2 2 0 6 9339 10842 10874
-20801 2 2 0 6 6618 10674 7454
-20802 2 2 0 6 3420 10704 3421
-20803 2 2 0 6 5506 10682 10681
-20804 2 2 0 6 6118 10944 10965
-20805 2 2 0 6 4148 10703 10648
-20806 2 2 0 6 8913 10688 8965
-20807 2 2 0 6 6623 10087 10915
-20808 2 2 0 6 9291 10778 10800
-20809 2 2 0 6 4048 10596 10751
-20810 2 2 0 6 4554 10666 10718
-20811 2 2 0 6 7701 10107 10627
-20812 2 2 0 6 5029 5944 10692
-20813 2 2 0 6 5974 10762 10765
-20814 2 2 0 6 6655 10947 6656
-20815 2 2 0 6 2952 8966 10700
-20816 2 2 0 6 5032 10728 9116
-20817 2 2 0 6 7651 11190 11182
-20818 2 2 0 6 5335 7171 10660
-20819 2 2 0 6 1161 10702 1182
-20820 2 2 0 6 6266 10967 9640
-20821 2 2 0 6 6480 10662 9703
-20822 2 2 0 6 4195 10958 4945
-20823 2 2 0 6 1508 8694 10810
-20824 2 2 0 6 5988 5990 10675
-20825 2 2 0 6 5986 10725 10738
-20826 2 2 0 6 3139 3140 10968
-20827 2 2 0 6 8454 10849 10814
-20828 2 2 0 6 9166 10726 9167
-20829 2 2 0 6 4148 7221 10703
-20830 2 2 0 6 1554 10983 1587
-20831 2 2 0 6 9340 10622 10679
-20832 2 2 0 6 4060 10674 10543
-20833 2 2 0 6 7737 10890 7738
-20834 2 2 0 6 1328 10997 1362
-20835 2 2 0 6 5705 9571 11069
-20836 2 2 0 6 5940 10718 6634
-20837 2 2 0 6 6205 9644 10732
-20838 2 2 0 6 6678 10980 10959
-20839 2 2 0 6 9481 10709 10773
-20840 2 2 0 6 5263 9674 10698
-20841 2 2 0 6 9167 10726 10747
-20842 2 2 0 6 2363 10683 10517
-20843 2 2 0 6 9116 10728 10661
-20844 2 2 0 6 7754 10687 9689
-20845 2 2 0 6 6694 7758 11184
-20846 2 2 0 6 2722 10656 10190
-20847 2 2 0 6 5942 10717 9094
-20848 2 2 0 6 6239 10261 10643
-20849 2 2 0 6 1182 10702 10712
-20850 2 2 0 6 4584 10713 5089
-20851 2 2 0 6 4558 5514 10961
-20852 2 2 0 6 6658 6781 10927
-20853 2 2 0 6 1182 10712 1196
-20854 2 2 0 6 3057 10684 11193
-20855 2 2 0 6 832 834 10987
-20856 2 2 0 6 5925 6640 10710
-20857 2 2 0 6 3354 10951 10894
-20858 2 2 0 6 5608 9317 10694
-20859 2 2 0 6 5425 10729 7871
-20860 2 2 0 6 742 744 10720
-20861 2 2 0 6 5984 5986 10738
-20862 2 2 0 6 5418 10966 6024
-20863 2 2 0 6 2131 10719 8800
-20864 2 2 0 6 3443 11052 7586
-20865 2 2 0 6 6487 6488 10705
-20866 2 2 0 6 5922 9981 10669
-20867 2 2 0 6 1342 10221 10935
-20868 2 2 0 6 2184 10679 10709
-20869 2 2 0 6 6618 10543 10674
-20870 2 2 0 6 5990 10636 10675
-20871 2 2 0 6 6699 11200 11198
-20872 2 2 0 6 4552 6024 10948
-20873 2 2 0 6 4818 10706 5893
-20874 2 2 0 6 3143 3144 10962
-20875 2 2 0 6 9161 10679 10622
-20876 2 2 0 6 5978 10866 10907
-20877 2 2 0 6 2131 9367 10708
-20878 2 2 0 6 4788 5270 10954
-20879 2 2 0 6 8362 10996 8364
-20880 2 2 0 6 5994 10825 9878
-20881 2 2 0 6 5425 10742 10729
-20882 2 2 0 6 6702 11043 11185
-20883 2 2 0 6 2373 10978 2657
-20884 2 2 0 6 7735 8321 10735
-20885 2 2 0 6 6011 9614 10934
-20886 2 2 0 6 6649 6651 10745
-20887 2 2 0 6 8347 10721 8348
-20888 2 2 0 6 8346 10845 8347
-20889 2 2 0 6 4900 10117 10701
-20890 2 2 0 6 5265 11000 9420
-20891 2 2 0 6 6002 10067 10889
-20892 2 2 0 6 2184 10709 9481
-20893 2 2 0 6 5942 6639 10740
-20894 2 2 0 6 1520 9065 11020
-20895 2 2 0 6 6205 10749 7007
-20896 2 2 0 6 6338 10563 10925
-20897 2 2 0 6 6229 11015 8941
-20898 2 2 0 6 6629 10722 6630
-20899 2 2 0 6 8346 10859 10845
-20900 2 2 0 6 8736 8737 10996
-20901 2 2 0 6 4865 10861 7377
-20902 2 2 0 6 6586 10581 10642
-20903 2 2 0 6 8735 11003 8737
-20904 2 2 0 6 10843 10851 9331
-20905 2 2 0 6 2588 8418 10731
-20906 2 2 0 6 5955 8638 10730
-20907 2 2 0 6 1677 1679 10999
-20908 2 2 0 6 7251 10973 9330
-20909 2 2 0 6 5208 10724 10753
-20910 2 2 0 6 6624 6626 10767
-20911 2 2 0 6 3714 9437 10974
-20912 2 2 0 6 6662 6664 10805
-20913 2 2 0 6 8311 10764 10736
-20914 2 2 0 6 6480 10689 10662
-20915 2 2 0 6 3483 7871 10752
-20916 2 2 0 6 826 828 11002
-20917 2 2 0 6 5976 5974 10765
-20918 2 2 0 6 10843 9331 10867
-20919 2 2 0 6 7642 11098 11089
-20920 2 2 0 6 5938 10762 5974
-20921 2 2 0 6 9167 10747 9197
-20922 2 2 0 6 5267 10994 6278
-20923 2 2 0 6 5988 10675 10725
-20924 2 2 0 6 9203 10780 10759
-20925 2 2 0 6 9103 10517 10683
-20926 2 2 0 6 3648 10916 9586
-20927 2 2 0 6 8270 8271 11003
-20928 2 2 0 6 6658 10927 10647
-20929 2 2 0 6 5425 7821 10742
-20930 2 2 0 6 5986 5988 10725
-20931 2 2 0 6 1396 10977 1397
-20932 2 2 0 6 5916 10635 10634
-20933 2 2 0 6 1540 10737 3612
-20934 2 2 0 6 5938 10758 10762
-20935 2 2 0 6 5206 10724 5208
-20936 2 2 0 6 1606 10981 9113
-20937 2 2 0 6 6502 7143 11006
-20938 2 2 0 6 7204 10926 10935
-20939 2 2 0 6 5068 10859 10869
-20940 2 2 0 6 6499 8276 11040
-20941 2 2 0 6 4077 10747 10795
-20942 2 2 0 6 1348 9978 10992
-20943 2 2 0 6 1326 3924 10997
-20944 2 2 0 6 4702 10714 5235
-20945 2 2 0 6 8218 8219 10753
-20946 2 2 0 6 5916 10625 10600
-20947 2 2 0 6 748 10768 10761
-20948 2 2 0 6 764 766 10739
-20949 2 2 0 6 2477 3054 10984
-20950 2 2 0 6 8439 10922 9712
-20951 2 2 0 6 6329 10275 10715
-20952 2 2 0 6 2064 8908 10741
-20953 2 2 0 6 5973 10876 10891
-20954 2 2 0 6 5232 7075 10707
-20955 2 2 0 6 5056 5058 10733
-20956 2 2 0 6 1588 9460 10727
-20957 2 2 0 6 5393 10743 7177
-20958 2 2 0 6 830 10744 3708
-20959 2 2 0 6 2080 10754 2076
-20960 2 2 0 6 6701 11208 11205
-20961 2 2 0 6 5043 11012 6600
-20962 2 2 0 6 6626 10381 10736
-20963 2 2 0 6 2254 8786 11171
-20964 2 2 0 6 5949 8896 10755
-20965 2 2 0 6 8311 8312 10764
-20966 2 2 0 6 1707 10652 10653
-20967 2 2 0 6 791 3484 11011
-20968 2 2 0 6 9369 9638 10746
-20969 2 2 0 6 8347 10845 10837
-20970 2 2 0 6 5950 10755 10777
-20971 2 2 0 6 2587 8683 11266
-20972 2 2 0 6 5939 5980 10759
-20973 2 2 0 6 2152 10745 8912
-20974 2 2 0 6 1247 10757 8886
-20975 2 2 0 6 797 11013 3484
-20976 2 2 0 6 7871 10729 10752
-20977 2 2 0 6 1703 10649 10655
-20978 2 2 0 6 9367 10693 10708
-20979 2 2 0 6 810 814 11017
-20980 2 2 0 6 6336 9320 10782
-20981 2 2 0 6 6340 10786 10628
-20982 2 2 0 6 4820 10990 8844
-20983 2 2 0 6 6000 10913 10850
-20984 2 2 0 6 8134 9712 10922
-20985 2 2 0 6 3932 10917 4291
-20986 2 2 0 6 746 748 10761
-20987 2 2 0 6 6028 11014 6029
-20988 2 2 0 6 7228 11139 11077
-20989 2 2 0 6 3612 10734 10694
-20990 2 2 0 6 6047 11042 6048
-20991 2 2 0 6 6661 6662 10857
-20992 2 2 0 6 6700 11144 11134
-20993 2 2 0 6 784 11008 786
-20994 2 2 0 6 6642 10670 10672
-20995 2 2 0 6 6649 10745 10763
-20996 2 2 0 6 7654 10763 10787
-20997 2 2 0 6 5964 10814 10849
-20998 2 2 0 6 5306 7343 10975
-20999 2 2 0 6 6654 10773 10807
-21000 2 2 0 6 7676 11025 11045
-21001 2 2 0 6 5068 10869 10876
-21002 2 2 0 6 7206 8127 10774
-21003 2 2 0 6 801 812 11013
-21004 2 2 0 6 5513 11016 11010
-21005 2 2 0 6 2490 2660 11047
-21006 2 2 0 6 6500 11040 7143
-21007 2 2 0 6 597 10781 3456
-21008 2 2 0 6 9856 10786 10127
-21009 2 2 0 6 748 750 10768
-21010 2 2 0 6 4048 10751 9827
-21011 2 2 0 6 9102 9103 10770
-21012 2 2 0 6 51 557 10393
-21013 2 2 0 6 6649 10763 6650
-21014 2 2 0 6 10947 10976 6656
-21015 2 2 0 6 8207 10870 10951
-21016 2 2 0 6 6258 10049 10923
-21017 2 2 0 6 6666 10897 6667
-21018 2 2 0 6 5012 10723 6388
-21019 2 2 0 6 5504 10094 10797
-21020 2 2 0 6 4293 5306 10899
-21021 2 2 0 6 6086 6699 10776
-21022 2 2 0 6 5950 10731 10799
-21023 2 2 0 6 6190 6191 11009
-21024 2 2 0 6 4991 10650 10487
-21025 2 2 0 6 5094 11038 6695
-21026 2 2 0 6 5905 10820 10464
-21027 2 2 0 6 3771 11049 11045
-21028 2 2 0 6 3983 11034 4638
-21029 2 2 0 6 7188 9280 10952
-21030 2 2 0 6 8886 10757 10778
-21031 2 2 0 6 6674 6818 11023
-21032 2 2 0 6 7204 10935 10221
-21033 2 2 0 6 3432 10925 10563
-21034 2 2 0 6 1349 1348 10992
-21035 2 2 0 6 5993 6675 10779
-21036 2 2 0 6 6669 10942 11024
-21037 2 2 0 6 6673 10775 9532
-21038 2 2 0 6 9209 10777 4400
-21039 2 2 0 6 1552 5611 10983
-21040 2 2 0 6 8969 8970 10879
-21041 2 2 0 6 5061 10867 9219
-21042 2 2 0 6 6480 10309 10689
-21043 2 2 0 6 4738 10750 9949
-21044 2 2 0 6 8886 10778 8986
-21045 2 2 0 6 5896 10641 10616
-21046 2 2 0 6 6639 10754 10740
-21047 2 2 0 6 8104 10809 10877
-21048 2 2 0 6 2827 11027 2829
-21049 2 2 0 6 730 739 10784
-21050 2 2 0 6 5967 10481 10815
-21051 2 2 0 6 6475 11001 10145
-21052 2 2 0 6 3039 3149 11050
-21053 2 2 0 6 635 10792 636
-21054 2 2 0 6 5932 10769 10733
-21055 2 2 0 6 8298 10529 10963
-21056 2 2 0 6 6036 6076 11046
-21057 2 2 0 6 2152 10763 10745
-21058 2 2 0 6 5904 10748 10172
-21059 2 2 0 6 6662 10805 10857
-21060 2 2 0 6 792 2587 10785
-21061 2 2 0 6 6548 10265 10696
-21062 2 2 0 6 6183 7107 10791
-21063 2 2 0 6 6187 9889 10969
-21064 2 2 0 6 3057 11193 11223
-21065 2 2 0 6 704 10787 2152
-21066 2 2 0 6 5092 11075 6660
-21067 2 2 0 6 5997 10842 10766
-21068 2 2 0 6 7372 10771 10022
-21069 2 2 0 6 1717 11041 1773
-21070 2 2 0 6 5937 6602 10856
-21071 2 2 0 6 5625 10721 10837
-21072 2 2 0 6 2625 11019 3054
-21073 2 2 0 6 3653 7329 11107
-21074 2 2 0 6 6095 11113 11087
-21075 2 2 0 6 3551 11021 9326
-21076 2 2 0 6 6661 10857 10900
-21077 2 2 0 6 5939 10780 9350
-21078 2 2 0 6 5513 8449 11016
-21079 2 2 0 6 3725 9481 10773
-21080 2 2 0 6 5040 10788 6450
-21081 2 2 0 6 4554 10766 9755
-21082 2 2 0 6 5044 6622 11012
-21083 2 2 0 6 1454 10408 10711
-21084 2 2 0 6 6010 10972 10798
-21085 2 2 0 6 8880 10736 10381
-21086 2 2 0 6 9825 10849 10810
-21087 2 2 0 6 6666 10914 10897
-21088 2 2 0 6 5707 11037 10974
-21089 2 2 0 6 2999 3268 11030
-21090 2 2 0 6 5513 11010 9065
-21091 2 2 0 6 6660 11075 8159
-21092 2 2 0 6 9827 10751 10789
-21093 2 2 0 6 635 8773 10796
-21094 2 2 0 6 1508 10849 8454
-21095 2 2 0 6 4296 11054 4699
-21096 2 2 0 6 6263 10826 10872
-21097 2 2 0 6 8106 9740 10809
-21098 2 2 0 6 6002 10889 10912
-21099 2 2 0 6 2937 10850 10770
-21100 2 2 0 6 3346 10830 10838
-21101 2 2 0 6 6635 10800 6636
-21102 2 2 0 6 6818 11034 11023
-21103 2 2 0 6 5924 9827 10789
-21104 2 2 0 6 7310 10793 9823
-21105 2 2 0 6 5939 10759 10780
-21106 2 2 0 6 5046 10799 5625
-21107 2 2 0 6 2231 2508 10783
-21108 2 2 0 6 1366 10794 1367
-21109 2 2 0 6 7824 10056 10945
-21110 2 2 0 6 6395 10991 10500
-21111 2 2 0 6 8607 8610 10806
-21112 2 2 0 6 5973 10686 10903
-21113 2 2 0 6 6471 10899 10975
-21114 2 2 0 6 707 711 10808
-21115 2 2 0 6 1773 11048 11176
-21116 2 2 0 6 635 10796 10792
-21117 2 2 0 6 150 10356 558
-21118 2 2 0 6 4958 10870 5964
-21119 2 2 0 6 52 10355 557
-21120 2 2 0 6 798 10803 802
-21121 2 2 0 6 6013 10942 10621
-21122 2 2 0 6 6092 6701 10801
-21123 2 2 0 6 2769 9899 10772
-21124 2 2 0 6 3658 10820 9913
-21125 2 2 0 6 5055 10807 5943
-21126 2 2 0 6 5030 9181 10802
-21127 2 2 0 6 3823 10623 10647
-21128 2 2 0 6 6572 11227 11167
-21129 2 2 0 6 6665 7800 10827
-21130 2 2 0 6 4240 11143 9781
-21131 2 2 0 6 6012 11048 8012
-21132 2 2 0 6 4046 8843 10805
-21133 2 2 0 6 4032 10594 11133
-21134 2 2 0 6 6613 10907 10866
-21135 2 2 0 6 8363 10974 11037
-21136 2 2 0 6 8341 10792 10796
-21137 2 2 0 6 6654 10733 10769
-21138 2 2 0 6 6594 10914 10929
-21139 2 2 0 6 6385 11037 10943
-21140 2 2 0 6 2806 11043 3213
-21141 2 2 0 6 3411 3424 11051
-21142 2 2 0 6 5959 10795 5960
-21143 2 2 0 6 8297 11022 10976
-21144 2 2 0 6 6095 11087 6096
-21145 2 2 0 6 3771 8003 11049
-21146 2 2 0 6 4800 9997 10993
-21147 2 2 0 6 7811 10815 10481
-21148 2 2 0 6 739 10856 10784
-21149 2 2 0 6 5040 5845 10804
-21150 2 2 0 6 6263 9985 10826
-21151 2 2 0 6 6031 7153 11060
-21152 2 2 0 6 8694 10692 10810
-21153 2 2 0 6 3673 10998 9701
-21154 2 2 0 6 3247 3771 11045
-21155 2 2 0 6 8271 8272 11018
-21156 2 2 0 6 6276 10880 8250
-21157 2 2 0 6 913 10821 914
-21158 2 2 0 6 804 1178 10818
-21159 2 2 0 6 5978 10907 7370
-21160 2 2 0 6 7049 7064 10813
-21161 2 2 0 6 8640 10851 10890
-21162 2 2 0 6 6602 10784 10856
-21163 2 2 0 6 4183 10827 7514
-21164 2 2 0 6 5414 8454 10814
-21165 2 2 0 6 922 921 10828
-21166 2 2 0 6 5944 9825 10810
-21167 2 2 0 6 6336 10782 10699
-21168 2 2 0 6 9369 10746 10897
-21169 2 2 0 6 7387 10894 10951
-21170 2 2 0 6 5040 10804 10788
-21171 2 2 0 6 8589 10653 10652
-21172 2 2 0 6 7219 7220 10811
-21173 2 2 0 6 6635 10817 10800
-21174 2 2 0 6 3714 11035 10987
-21175 2 2 0 6 5813 10190 10790
-21176 2 2 0 6 4202 6689 10816
-21177 2 2 0 6 7034 7050 10831
-21178 2 2 0 6 7044 7058 10823
-21179 2 2 0 6 5699 9755 10842
-21180 2 2 0 6 5944 10810 10692
-21181 2 2 0 6 5607 6014 11084
-21182 2 2 0 6 8350 10634 10635
-21183 2 2 0 6 8293 10829 8295
-21184 2 2 0 6 6634 10718 10666
-21185 2 2 0 6 879 10824 887
-21186 2 2 0 6 6045 11124 6693
-21187 2 2 0 6 6503 11053 7141
-21188 2 2 0 6 6635 7226 10817
-21189 2 2 0 6 2062 11059 2065
-21190 2 2 0 6 7036 10831 10834
-21191 2 2 0 6 815 10832 827
-21192 2 2 0 6 3145 11068 3146
-21193 2 2 0 6 5664 10819 5945
-21194 2 2 0 6 6667 10897 10746
-21195 2 2 0 6 3300 11058 4144
-21196 2 2 0 6 9755 10766 10842
-21197 2 2 0 6 3651 10836 4034
-21198 2 2 0 6 8640 3510 10851
-21199 2 2 0 6 5071 11063 6226
-21200 2 2 0 6 6665 10827 10863
-21201 2 2 0 6 3658 10947 10820
-21202 2 2 0 6 3346 8406 10830
-21203 2 2 0 6 5945 10819 10790
-21204 2 2 0 6 8608 10833 9748
-21205 2 2 0 6 4072 9242 10837
-21206 2 2 0 6 4317 11088 4319
-21207 2 2 0 6 5945 10790 10656
-21208 2 2 0 6 7040 7047 10839
-21209 2 2 0 6 615 10960 11100
-21210 2 2 0 6 9350 10694 10734
-21211 2 2 0 6 829 10841 833
-21212 2 2 0 6 6420 7924 11149
-21213 2 2 0 6 752 754 10835
-21214 2 2 0 6 7641 11098 7642
-21215 2 2 0 6 6564 10898 10893
-21216 2 2 0 6 5999 9376 10873
-21217 2 2 0 6 8364 10987 11035
-21218 2 2 0 6 5893 10706 10632
-21219 2 2 0 6 2769 10772 10822
-21220 2 2 0 6 5845 10883 10804
-21221 2 2 0 6 1155 10840 10808
-21222 2 2 0 6 7821 10741 10742
-21223 2 2 0 6 917 10846 918
-21224 2 2 0 6 3628 9857 11055
-21225 2 2 0 6 2555 10854 10829
-21226 2 2 0 6 8843 10857 10805
-21227 2 2 0 6 8217 11062 10936
-21228 2 2 0 6 6254 10855 7169
-21229 2 2 0 6 8406 10822 10830
-21230 2 2 0 6 4291 10917 8925
-21231 2 2 0 6 623 10979 11152
-21232 2 2 0 6 8207 10814 10870
-21233 2 2 0 6 9120 10845 10859
-21234 2 2 0 6 3141 11077 3142
-21235 2 2 0 6 6008 10933 10900
-21236 2 2 0 6 7765 10938 10970
-21237 2 2 0 6 5953 10906 7520
-21238 2 2 0 6 7738 10843 9742
-21239 2 2 0 6 739 8765 10856
-21240 2 2 0 6 6690 7642 10844
-21241 2 2 0 6 8257 10903 10686
-21242 2 2 0 6 3708 10744 10738
-21243 2 2 0 6 4072 10845 9120
-21244 2 2 0 6 7078 11148 10417
-21245 2 2 0 6 4183 10863 10827
-21246 2 2 0 6 2769 10822 8406
-21247 2 2 0 6 6010 6030 10972
-21248 2 2 0 6 6263 10872 7183
-21249 2 2 0 6 6640 10677 10710
-21250 2 2 0 6 4072 10837 10845
-21251 2 2 0 6 9103 10683 10770
-21252 2 2 0 6 754 10860 10835
-21253 2 2 0 6 5938 10586 10758
-21254 2 2 0 6 5009 8317 10877
-21255 2 2 0 6 3425 3428 11071
-21256 2 2 0 6 6400 11076 9001
-21257 2 2 0 6 5724 11081 9021
-21258 2 2 0 6 6033 11060 6578
-21259 2 2 0 6 1253 10857 8843
-21260 2 2 0 6 11078 11138 8095
-21261 2 2 0 6 6588 11070 9062
-21262 2 2 0 6 933 10868 934
-21263 2 2 0 6 6648 11069 9571
-21264 2 2 0 6 9119 9120 10859
-21265 2 2 0 6 5195 7515 11086
-21266 2 2 0 6 4057 8669 11091
-21267 2 2 0 6 3726 10798 10263
-21268 2 2 0 6 3701 3703 10864
-21269 2 2 0 6 6053 6703 11085
-21270 2 2 0 6 4565 10866 5978
-21271 2 2 0 6 7255 10829 10854
-21272 2 2 0 6 3424 11071 11064
-21273 2 2 0 6 926 925 10847
-21274 2 2 0 6 1441 1777 10895
-21275 2 2 0 6 8344 10869 8346
-21276 2 2 0 6 6695 11052 11066
-21277 2 2 0 6 930 929 10862
-21278 2 2 0 6 7653 7654 10840
-21279 2 2 0 6 6199 11031 9287
-21280 2 2 0 6 4820 10454 10990
-21281 2 2 0 6 754 756 10860
-21282 2 2 0 6 2937 9585 10850
-21283 2 2 0 6 4183 4692 10863
-21284 2 2 0 6 8969 10867 9331
-21285 2 2 0 6 7062 5412 10852
-21286 2 2 0 6 7762 11102 7765
-21287 2 2 0 6 4568 9878 10825
-21288 2 2 0 6 6264 10871 10883
-21289 2 2 0 6 5961 6615 10875
-21290 2 2 0 6 8599 11114 8600
-21291 2 2 0 6 1429 1975 10881
-21292 2 2 0 6 5964 10849 9825
-21293 2 2 0 6 6006 10892 6007
-21294 2 2 0 6 6264 9646 10871
-21295 2 2 0 6 6473 10887 8991
-21296 2 2 0 6 6600 10917 10924
-21297 2 2 0 6 5067 5068 10876
-21298 2 2 0 6 5473 10878 7155
-21299 2 2 0 6 1734 1743 11097
-21300 2 2 0 6 2233 10783 10858
-21301 2 2 0 6 5756 10903 10889
-21302 2 2 0 6 7091 11243 11223
-21303 2 2 0 6 5845 6264 10883
-21304 2 2 0 6 1750 10848 9324
-21305 2 2 0 6 6184 7096 10904
-21306 2 2 0 6 5997 6339 10874
-21307 2 2 0 6 1253 10900 10857
-21308 2 2 0 6 3354 8207 10951
-21309 2 2 0 6 2179 9141 11082
-21310 2 2 0 6 6009 10973 10953
-21311 2 2 0 6 6089 11096 6702
-21312 2 2 0 6 760 10901 10888
-21313 2 2 0 6 10190 10656 10790
-21314 2 2 0 6 7824 10945 11160
-21315 2 2 0 6 8726 8863 11083
-21316 2 2 0 6 4199 10891 8349
-21317 2 2 0 6 6593 10886 7250
-21318 2 2 0 6 1423 2399 10884
-21319 2 2 0 6 6636 10800 10778
-21320 2 2 0 6 5589 9219 10879
-21321 2 2 0 6 5096 11072 6050
-21322 2 2 0 6 758 760 10888
-21323 2 2 0 6 6017 10786 11025
-21324 2 2 0 6 1197 3354 10894
-21325 2 2 0 6 7153 11218 11058
-21326 2 2 0 6 5278 10014 10865
-21327 2 2 0 6 1697 11089 1698
-21328 2 2 0 6 1743 9148 11097
-21329 2 2 0 6 8725 11064 8726
-21330 2 2 0 6 6406 7157 11082
-21331 2 2 0 6 1436 1516 10893
-21332 2 2 0 6 7592 11117 9064
-21333 2 2 0 6 6112 11028 11005
-21334 2 2 0 6 1427 10881 10882
-21335 2 2 0 6 8347 10837 10721
-21336 2 2 0 6 6732 10542 10812
-21337 2 2 0 6 4928 4930 11101
-21338 2 2 0 6 1433 10893 10898
-21339 2 2 0 6 5109 11116 6707
-21340 2 2 0 6 5904 10975 10748
-21341 2 2 0 6 5959 6258 10885
-21342 2 2 0 6 5508 8726 11083
-21343 2 2 0 6 760 762 10901
-21344 2 2 0 6 6631 10940 10923
-21345 2 2 0 6 1701 11104 1702
-21346 2 2 0 6 1253 8671 10900
-21347 2 2 0 6 10551 9453 11164
-21348 2 2 0 6 7118 11007 8627
-21349 2 2 0 6 5878 11103 8633
-21350 2 2 0 6 6403 11166 11001
-21351 2 2 0 6 6472 11057 10887
-21352 2 2 0 6 2311 8627 11007
-21353 2 2 0 6 5069 10903 5756
-21354 2 2 0 6 6319 11173 11279
-21355 2 2 0 6 8640 10890 1155
-21356 2 2 0 6 7644 10880 7643
-21357 2 2 0 6 5943 10807 10773
-21358 2 2 0 6 7319 7328 10896
-21359 2 2 0 6 8418 10799 10731
-21360 2 2 0 6 5073 9369 10897
-21361 2 2 0 6 6626 10764 10767
-21362 2 2 0 6 3420 10760 10704
-21363 2 2 0 6 3065 10911 4146
-21364 2 2 0 6 641 10905 642
-21365 2 2 0 6 3726 10769 10798
-21366 2 2 0 6 7067 10902 9694
-21367 2 2 0 6 6276 7643 10880
-21368 2 2 0 6 3739 10907 6613
-21369 2 2 0 6 6688 11133 10594
-21370 2 2 0 6 7343 10748 10975
-21371 2 2 0 6 5756 10889 10067
-21372 2 2 0 6 5676 10908 6209
-21373 2 2 0 6 5073 10897 10914
-21374 2 2 0 6 5052 6647 10913
-21375 2 2 0 6 3631 9506 11115
-21376 2 2 0 6 6078 11244 11084
-21377 2 2 0 6 4121 10853 10254
-21378 2 2 0 6 11116 11251 6705
-21379 2 2 0 6 7839 11079 7846
-21380 2 2 0 6 3768 11078 6027
-21381 2 2 0 6 8257 8256 10912
-21382 2 2 0 6 6471 10775 10899
-21383 2 2 0 6 5959 10885 10795
-21384 2 2 0 6 5878 9887 11103
-21385 2 2 0 6 8597 8598 11114
-21386 2 2 0 6 1825 1913 10921
-21387 2 2 0 6 5908 10909 10374
-21388 2 2 0 6 6631 10923 10049
-21389 2 2 0 6 8317 10931 10877
-21390 2 2 0 6 6611 10812 10542
-21391 2 2 0 6 9000 9064 11117
-21392 2 2 0 6 5087 6026 11067
-21393 2 2 0 6 6977 7836 11179
-21394 2 2 0 6 8159 11075 11088
-21395 2 2 0 6 6090 10801 11200
-21396 2 2 0 6 6386 11062 8217
-21397 2 2 0 6 6030 11005 10972
-21398 2 2 0 6 6001 6002 10918
-21399 2 2 0 6 6103 11036 7251
-21400 2 2 0 6 8340 10882 10881
-21401 2 2 0 6 7321 11128 7322
-21402 2 2 0 6 6730 6838 11123
-21403 2 2 0 6 10041 10156 11074
-21404 2 2 0 6 5718 10915 6338
-21405 2 2 0 6 5073 10914 5074
-21406 2 2 0 6 6644 6645 11171
-21407 2 2 0 6 6572 11056 10051
-21408 2 2 0 6 6030 6112 11005
-21409 2 2 0 6 6700 8011 11144
-21410 2 2 0 6 8212 10932 10926
-21411 2 2 0 6 3342 10928 7006
-21412 2 2 0 6 5960 10795 10747
-21413 2 2 0 6 4400 10777 10755
-21414 2 2 0 6 2621 11136 9548
-21415 2 2 0 6 1772 5760 11125
-21416 2 2 0 6 4876 11155 10584
-21417 2 2 0 6 7144 11074 10156
-21418 2 2 0 6 7869 9113 10981
-21419 2 2 0 6 6002 10912 10918
-21420 2 2 0 6 6677 11159 9152
-21421 2 2 0 6 633 10920 6020
-21422 2 2 0 6 8697 9581 10919
-21423 2 2 0 6 3227 11110 4240
-21424 2 2 0 6 3001 3760 11110
-21425 2 2 0 6 6043 7802 11165
-21426 2 2 0 6 6084 10776 11190
-21427 2 2 0 6 7591 11141 11130
-21428 2 2 0 6 5997 10874 10842
-21429 2 2 0 6 3658 8445 10947
-21430 2 2 0 6 7777 7778 10955
-21431 2 2 0 6 6631 7870 10940
-21432 2 2 0 6 3346 10838 10578
-21433 2 2 0 6 1705 11134 1706
-21434 2 2 0 6 6578 11139 6579
-21435 2 2 0 6 4932 4934 11119
-21436 2 2 0 6 6020 11161 9073
-21437 2 2 0 6 6698 11206 10955
-21438 2 2 0 6 1342 10935 1344
-21439 2 2 0 6 2402 11136 2621
-21440 2 2 0 6 4562 10929 6666
-21441 2 2 0 6 7738 10851 10843
-21442 2 2 0 6 675 9152 11159
-21443 2 2 0 6 8868 10925 6659
-21444 2 2 0 6 670 11130 673
-21445 2 2 0 6 5062 6661 10933
-21446 2 2 0 6 2401 10932 9839
-21447 2 2 0 6 4134 10936 4707
-21448 2 2 0 6 6315 10926 7204
-21449 2 2 0 6 4763 5194 11095
-21450 2 2 0 6 1872 11125 1967
-21451 2 2 0 6 1519 1785 11158
-21452 2 2 0 6 1912 1971 10941
-21453 2 2 0 6 2805 3234 11162
-21454 2 2 0 6 8257 10912 10889
-21455 2 2 0 6 1965 1967 11127
-21456 2 2 0 6 6 7 11126
-21457 2 2 0 6 5998 10939 7589
-21458 2 2 0 6 2933 3751 11142
-21459 2 2 0 6 4184 9551 10930
-21460 2 2 0 6 6000 10944 10913
-21461 2 2 0 6 6059 8696 11106
-21462 2 2 0 6 5731 9586 10916
-21463 2 2 0 6 5091 6668 11075
-21464 2 2 0 6 6673 11023 10775
-21465 2 2 0 6 6678 10959 10939
-21466 2 2 0 6 4945 10934 9614
-21467 2 2 0 6 5828 10927 6760
-21468 2 2 0 6 1683 10946 1690
-21469 2 2 0 6 2152 10787 10763
-21470 2 2 0 6 8346 10869 10859
-21471 2 2 0 6 7351 8753 11141
-21472 2 2 0 6 7103 10949 8026
-21473 2 2 0 6 1709 11147 1710
-21474 2 2 0 6 4169 4552 10948
-21475 2 2 0 6 5049 5050 10942
-21476 2 2 0 6 1701 11098 11104
-21477 2 2 0 6 8363 11035 10974
-21478 2 2 0 6 6647 10850 10913
-21479 2 2 0 6 627 10956 8885
-21480 2 2 0 6 2065 11167 2066
-21481 2 2 0 6 4562 10950 10929
-21482 2 2 0 6 5229 6420 11149
-21483 2 2 0 6 8349 10891 10876
-21484 2 2 0 6 6622 10711 10937
-21485 2 2 0 6 5062 10933 10953
-21486 2 2 0 6 8134 10922 10020
-21487 2 2 0 6 3215 11173 4124
-21488 2 2 0 6 8582 10957 8584
-21489 2 2 0 6 9856 11025 10786
-21490 2 2 0 6 4541 10775 11023
-21491 2 2 0 6 1750 1560 10938
-21492 2 2 0 6 5116 10965 10944
-21493 2 2 0 6 1728 11146 3592
-21494 2 2 0 6 4562 9436 10950
-21495 2 2 0 6 5009 10877 10809
-21496 2 2 0 6 2566 8600 11137
-21497 2 2 0 6 9505 11108 9506
-21498 2 2 0 6 6699 11189 10776
-21499 2 2 0 6 5116 10944 6000
-21500 2 2 0 6 4103 5062 10953
-21501 2 2 0 6 6676 11162 11168
-21502 2 2 0 6 6701 11204 10801
-21503 2 2 0 6 5038 11154 5246
-21504 2 2 0 6 6004 7387 10951
-21505 2 2 0 6 7365 11057 11121
-21506 2 2 0 6 3653 11107 9751
-21507 2 2 0 6 3763 11113 9433
-21508 2 2 0 6 2619 11138 2938
-21509 2 2 0 6 8415 10551 11164
-21510 2 2 0 6 8363 11037 8365
-21511 2 2 0 6 8923 11160 10945
-21512 2 2 0 6 4195 4779 10958
-21513 2 2 0 6 1558 10970 10938
-21514 2 2 0 6 7646 10952 9280
-21515 2 2 0 6 4788 10954 4790
-21516 2 2 0 6 6056 7105 11151
-21517 2 2 0 6 5791 9682 11115
-21518 2 2 0 6 645 10959 646
-21519 2 2 0 6 6023 10960 10945
-21520 2 2 0 6 677 11159 1753
-21521 2 2 0 6 6039 11168 6041
-21522 2 2 0 6 6240 11163 7948
-21523 2 2 0 6 6694 11180 9611
-21524 2 2 0 6 2210 2657 10964
-21525 2 2 0 6 6435 10982 10969
-21526 2 2 0 6 5710 11131 5711
-21527 2 2 0 6 6266 7101 10967
-21528 2 2 0 6 6081 11190 7651
-21529 2 2 0 6 6435 10969 9889
-21530 2 2 0 6 4558 10961 6003
-21531 2 2 0 6 5964 10870 10814
-21532 2 2 0 6 6023 10945 10056
-21533 2 2 0 6 9073 11161 10948
-21534 2 2 0 6 6023 8962 10960
-21535 2 2 0 6 5116 6718 10965
-21536 2 2 0 6 6672 11099 11091
-21537 2 2 0 6 7251 11036 10973
-21538 2 2 0 6 3381 11285 11194
-21539 2 2 0 6 6243 11140 10461
-21540 2 2 0 6 3144 3147 10962
-21541 2 2 0 6 6088 11200 6699
-21542 2 2 0 6 8416 10584 11155
-21543 2 2 0 6 3140 3143 10968
-21544 2 2 0 6 619 11152 11160
-21545 2 2 0 6 9562 10249 11112
-21546 2 2 0 6 6279 11187 9269
-21547 2 2 0 6 6091 6702 11174
-21548 2 2 0 6 6279 7106 11246
-21549 2 2 0 6 612 11100 611
-21550 2 2 0 6 3212 9433 11156
-21551 2 2 0 6 5926 10042 10963
-21552 2 2 0 6 7240 10937 10408
-21553 2 2 0 6 6689 11067 10816
-21554 2 2 0 6 5707 10974 9437
-21555 2 2 0 6 8095 11120 8094
-21556 2 2 0 6 807 10461 11140
-21557 2 2 0 6 5418 6465 10966
-21558 2 2 0 6 6684 10716 11087
-21559 2 2 0 6 7146 9420 11000
-21560 2 2 0 6 5102 11178 6705
-21561 2 2 0 6 6009 9330 10973
-21562 2 2 0 6 3932 10924 10917
-21563 2 2 0 6 5904 6471 10975
-21564 2 2 0 6 10963 10042 10986
-21565 2 2 0 6 6239 10643 11170
-21566 2 2 0 6 6465 10979 10966
-21567 2 2 0 6 2373 2415 10978
-21568 2 2 0 6 649 10980 8617
-21569 2 2 0 6 6678 6679 10980
-21570 2 2 0 6 6465 7823 10979
-21571 2 2 0 6 9179 11181 9534
-21572 2 2 0 6 6186 11149 8064
-21573 2 2 0 6 8 9 11192
-21574 2 2 0 6 8794 11170 10643
-21575 2 2 0 6 11105 11118 8577
-21576 2 2 0 6 6679 11004 10980
-21577 2 2 0 6 9433 11113 11156
-21578 2 2 0 6 1362 10985 1363
-21579 2 2 0 6 6072 11233 11229
-21580 2 2 0 6 3410 11051 11066
-21581 2 2 0 6 8361 8364 11035
-21582 2 2 0 6 6435 7112 10982
-21583 2 2 0 6 6657 11020 7488
-21584 2 2 0 6 1898 11198 1984
-21585 2 2 0 6 6677 11165 11159
-21586 2 2 0 6 1723 1773 11182
-21587 2 2 0 6 2415 2477 10984
-21588 2 2 0 6 6657 11022 11020
-21589 2 2 0 6 3212 11156 11174
-21590 2 2 0 6 2403 11185 2627
-21591 2 2 0 6 10947 8445 10976
-21592 2 2 0 6 1396 6412 10977
-21593 2 2 0 6 834 3714 10987
-21594 2 2 0 6 10980 11004 8617
-21595 2 2 0 6 619 11160 8923
-21596 2 2 0 6 6704 11191 11199
-21597 2 2 0 6 4512 9869 10972
-21598 2 2 0 6 6666 10929 10914
-21599 2 2 0 6 8445 9608 10976
-21600 2 2 0 6 6025 10991 6395
-21601 2 2 0 6 7654 10808 10840
-21602 2 2 0 6 7199 10995 7920
-21603 2 2 0 6 10272 11180 11094
-21604 2 2 0 6 5992 6571 10989
-21605 2 2 0 6 2415 10984 10978
-21606 2 2 0 6 1326 10997 1328
-21607 2 2 0 6 8317 10508 10931
-21608 2 2 0 6 7365 10510 11057
-21609 2 2 0 6 6054 6704 11195
-21610 2 2 0 6 8362 8736 10996
-21611 2 2 0 6 5050 11024 10942
-21612 2 2 0 6 5674 11029 10060
-21613 2 2 0 6 5097 11233 6072
-21614 2 2 0 6 1552 10983 1554
-21615 2 2 0 6 6096 11087 10716
-21616 2 2 0 6 7182 11169 9769
-21617 2 2 0 6 708 11191 1179
-21618 2 2 0 6 1677 10999 3551
-21619 2 2 0 6 619 620 11152
-21620 2 2 0 6 7146 11000 8388
-21621 2 2 0 6 5245 5246 11194
-21622 2 2 0 6 611 11105 8577
-21623 2 2 0 6 5037 10286 11154
-21624 2 2 0 6 5267 6190 10994
-21625 2 2 0 6 6661 10900 10933
-21626 2 2 0 6 6675 11010 11016
-21627 2 2 0 6 6679 6681 11004
-21628 2 2 0 6 3751 8314 11036
-21629 2 2 0 6 6013 10986 10042
-21630 2 2 0 6 11005 11028 9263
-21631 2 2 0 6 1359 1349 10992
-21632 2 2 0 6 5098 10272 11094
-21633 2 2 0 6 7842 11080 11079
-21634 2 2 0 6 7837 7846 11179
-21635 2 2 0 6 6326 11001 6475
-21636 2 2 0 6 6681 11026 11004
-21637 2 2 0 6 1766 11190 10776
-21638 2 2 0 6 6504 11166 9860
-21639 2 2 0 6 6414 8617 11004
-21640 2 2 0 6 8270 11003 8735
-21641 2 2 0 6 6637 10993 9997
-21642 2 2 0 6 6061 11176 10179
-21643 2 2 0 6 701 11199 705
-21644 2 2 0 6 3924 6403 11212
-21645 2 2 0 6 828 836 11002
-21646 2 2 0 6 3573 11217 8194
-21647 2 2 0 6 8254 10060 11029
-21648 2 2 0 6 4512 11005 9263
-21649 2 2 0 6 4512 10972 11005
-21650 2 2 0 6 1726 10593 11146
-21651 2 2 0 6 2312 11220 11225
-21652 2 2 0 6 6094 11208 6701
-21653 2 2 0 6 6685 11259 11263
-21654 2 2 0 6 8786 11242 11171
-21655 2 2 0 6 6414 11004 11026
-21656 2 2 0 6 6502 11006 7122
-21657 2 2 0 6 716 11203 720
-21658 2 2 0 6 7325 11146 10593
-21659 2 2 0 6 1724 1766 11189
-21660 2 2 0 6 7118 7348 11007
-21661 2 2 0 6 6530 10417 11148
-21662 2 2 0 6 5724 10844 11081
-21663 2 2 0 6 784 789 11008
-21664 2 2 0 6 611 11100 11105
-21665 2 2 0 6 789 791 11011
-21666 2 2 0 6 10408 10937 10711
-21667 2 2 0 6 6026 10816 11067
-21668 2 2 0 6 5026 11057 10510
-21669 2 2 0 6 7642 11081 10844
-21670 2 2 0 6 6229 7116 11015
-21671 2 2 0 6 7325 11128 11146
-21672 2 2 0 6 789 11011 11008
-21673 2 2 0 6 797 801 11013
-21674 2 2 0 6 2935 11200 10801
-21675 2 2 0 6 4104 8577 11118
-21676 2 2 0 6 7488 11020 11010
-21677 2 2 0 6 6028 8942 11014
-21678 2 2 0 6 5296 11214 5765
-21679 2 2 0 6 810 11017 11018
-21680 2 2 0 6 2692 2393 11205
-21681 2 2 0 6 814 3471 11017
-21682 2 2 0 6 5669 11193 6697
-21683 2 2 0 6 5043 5044 11012
-21684 2 2 0 6 6191 6501 11009
-21685 2 2 0 6 6681 6683 11026
-21686 2 2 0 6 6097 11259 6685
-21687 2 2 0 6 6675 7488 11010
-21688 2 2 0 6 5707 10943 11037
-21689 2 2 0 6 6065 11186 11181
-21690 2 2 0 6 9104 11219 11216
-21691 2 2 0 6 8193 8782 11216
-21692 2 2 0 6 2625 2780 11019
-21693 2 2 0 6 7676 11045 11049
-21694 2 2 0 6 1705 11124 11134
-21695 2 2 0 6 8851 9701 10998
-21696 2 2 0 6 6077 6706 11207
-21697 2 2 0 6 5767 11236 5769
-21698 2 2 0 6 727 11211 731
-21699 2 2 0 6 6414 11026 9618
-21700 2 2 0 6 5611 9326 11021
-21701 2 2 0 6 6673 6674 11023
-21702 2 2 0 6 2829 11027 3149
-21703 2 2 0 6 1709 11144 11147
-21704 2 2 0 6 2780 2999 11030
-21705 2 2 0 6 5050 5759 11024
-21706 2 2 0 6 11 12 11226
-21707 2 2 0 6 6576 10990 10454
-21708 2 2 0 6 712 11213 716
-21709 2 2 0 6 4541 11034 3983
-21710 2 2 0 6 6656 11022 6657
-21711 2 2 0 6 6078 11084 11092
-21712 2 2 0 6 6696 11066 11051
-21713 2 2 0 6 4456 9208 11215
-21714 2 2 0 6 6501 11033 11009
-21715 2 2 0 6 6656 10976 11022
-21716 2 2 0 6 2780 11030 11019
-21717 2 2 0 6 5759 11032 11024
-21718 2 2 0 6 5066 11230 9411
-21719 2 2 0 6 6501 7121 11033
-21720 2 2 0 6 4541 11023 11034
-21721 2 2 0 6 1713 11041 1717
-21722 2 2 0 6 2077 11065 11059
-21723 2 2 0 6 5098 11094 8095
-21724 2 2 0 6 747 11219 1281
-21725 2 2 0 6 1281 11219 9104
-21726 2 2 0 6 6504 7141 11221
-21727 2 2 0 6 745 3573 11219
-21728 2 2 0 6 743 11217 3573
-21729 2 2 0 6 2401 10926 10932
-21730 2 2 0 6 5759 6860 11032
-21731 2 2 0 6 6060 11220 6706
-21732 2 2 0 6 4104 11121 6472
-21733 2 2 0 6 6702 11185 11174
-21734 2 2 0 6 6113 9263 11028
-21735 2 2 0 6 6183 10791 11131
-21736 2 2 0 6 3246 11025 9856
-21737 2 2 0 6 8481 9170 11224
-21738 2 2 0 6 6499 11040 6500
-21739 2 2 0 6 2771 11129 11120
-21740 2 2 0 6 3410 11066 3443
-21741 2 2 0 6 6070 9623 11197
-21742 2 2 0 6 7711 11188 10012
-21743 2 2 0 6 13 14 11245
-21744 2 2 0 6 6047 6277 11042
-21745 2 2 0 6 6696 11064 8725
-21746 2 2 0 6 3714 10974 11035
-21747 2 2 0 6 8195 11211 11234
-21748 2 2 0 6 5094 9618 11038
-21749 2 2 0 6 1202 11090 11073
-21750 2 2 0 6 6199 7160 11031
-21751 2 2 0 6 8481 9411 11230
-21752 2 2 0 6 3246 11045 11025
-21753 2 2 0 6 6695 11038 11052
-21754 2 2 0 6 6038 11044 11055
-21755 2 2 0 6 3759 11237 6078
-21756 2 2 0 6 6036 11046 6103
-21757 2 2 0 6 724 2312 11234
-21758 2 2 0 6 9618 11026 11038
-21759 2 2 0 6 2240 2935 11204
-21760 2 2 0 6 2254 11171 10253
-21761 2 2 0 6 8481 11224 9411
-21762 2 2 0 6 8191 8192 11225
-21763 2 2 0 6 2508 2683 11243
-21764 2 2 0 6 3039 11050 4295
-21765 2 2 0 6 1773 11041 11048
-21766 2 2 0 6 5747 9993 11229
-21767 2 2 0 6 6683 11038 11026
-21768 2 2 0 6 1179 11197 11207
-21769 2 2 0 6 6038 8851 11044
-21770 2 2 0 6 2660 3371 11047
-21771 2 2 0 6 1011 8479 11248
-21772 2 2 0 6 2627 11043 2806
-21773 2 2 0 6 6735 11188 11202
-21774 2 2 0 6 3246 3247 11045
-21775 2 2 0 6 6505 11061 11053
-21776 2 2 0 6 3176 11151 11158
-21777 2 2 0 6 20 7013 11297
-21778 2 2 0 6 6637 11039 10993
-21779 2 2 0 6 6026 7676 11049
-21780 2 2 0 6 6076 11142 11046
-21781 2 2 0 6 6637 7271 11039
-21782 2 2 0 6 8271 11018 11017
-21783 2 2 0 6 6038 11055 9857
-21784 2 2 0 6 5105 9136 11244
-21785 2 2 0 6 5244 11256 9487
-21786 2 2 0 6 3410 3411 11051
-21787 2 2 0 6 6003 11065 10562
-21788 2 2 0 6 8012 11048 11041
-21789 2 2 0 6 6021 11266 10713
-21790 2 2 0 6 4699 11054 5252
-21791 2 2 0 6 4171 10910 10943
-21792 2 2 0 6 6503 6505 11053
-21793 2 2 0 6 5026 10887 11057
-21794 2 2 0 6 3806 11251 4603
-21795 2 2 0 6 7913 7915 11250
-21796 2 2 0 6 6683 7586 11052
-21797 2 2 0 6 9127 11227 11240
-21798 2 2 0 6 1773 11176 11182
-21799 2 2 0 6 6044 11218 7148
-21800 2 2 0 6 8851 10998 11044
-21801 2 2 0 6 6012 10179 11048
-21802 2 2 0 6 4144 11058 6044
-21803 2 2 0 6 6505 9062 11061
-21804 2 2 0 6 6697 11193 10684
-21805 2 2 0 6 6031 11060 6033
-21806 2 2 0 6 7765 11102 10938
-21807 2 2 0 6 6080 6705 11247
-21808 2 2 0 6 6702 11096 11043
-21809 2 2 0 6 2062 2077 11059
-21810 2 2 0 6 2448 11254 6097
-21811 2 2 0 6 7137 10051 11056
-21812 2 2 0 6 6102 7091 11223
-21813 2 2 0 6 5643 11252 7915
-21814 2 2 0 6 645 10939 10959
-21815 2 2 0 6 6665 10863 11063
-21816 2 2 0 6 4104 11118 11121
-21817 2 2 0 6 6078 11237 11244
-21818 2 2 0 6 5071 6665 11063
-21819 2 2 0 6 6703 11232 11132
-21820 2 2 0 6 3213 11043 11096
-21821 2 2 0 6 5216 11062 7059
-21822 2 2 0 6 2179 11085 11132
-21823 2 2 0 6 3424 11064 11051
-21824 2 2 0 6 757 11253 759
-21825 2 2 0 6 4057 11099 8592
-21826 2 2 0 6 6695 11066 6696
-21827 2 2 0 6 2771 8592 11129
-21828 2 2 0 6 1750 10938 11102
-21829 2 2 0 6 6648 7267 11069
-21830 2 2 0 6 7914 11241 10078
-21831 2 2 0 6 1701 11089 11098
-21832 2 2 0 6 8205 9127 11240
-21833 2 2 0 6 1705 11104 11124
-21834 2 2 0 6 2071 11227 9127
-21835 2 2 0 6 6756 11267 11269
-21836 2 2 0 6 10249 11276 11112
-21837 2 2 0 6 901 11235 8253
-21838 2 2 0 6 3146 11068 3301
-21839 2 2 0 6 6675 11016 10779
-21840 2 2 0 6 901 10227 11235
-21841 2 2 0 6 1709 11134 11144
-21842 2 2 0 6 3145 11139 11068
-21843 2 2 0 6 3424 3425 11071
-21844 2 2 0 6 1766 10776 11189
-21845 2 2 0 6 6588 7163 11070
-21846 2 2 0 6 3790 3811 11264
-21847 2 2 0 6 8314 10973 11036
-21848 2 2 0 6 5096 6072 11072
-21849 2 2 0 6 5087 11067 5724
-21850 2 2 0 6 5091 11075 5092
-21851 2 2 0 6 61 62 11261
-21852 2 2 0 6 7983 10955 11206
-21853 2 2 0 6 11087 11113 9277
-21854 2 2 0 6 3213 11210 7998
-21855 2 2 0 6 7321 11111 11128
-21856 2 2 0 6 6050 11222 7157
-21857 2 2 0 6 4120 9001 11076
-21858 2 2 0 6 7512 9788 11263
-21859 2 2 0 6 3142 11077 3145
-21860 2 2 0 6 7478 11073 7479
-21861 2 2 0 6 4240 11123 11143
-21862 2 2 0 6 6684 11087 9277
-21863 2 2 0 6 1011 11250 11253
-21864 2 2 0 6 11241 11248 8480
-21865 2 2 0 6 7915 11252 10373
-21866 2 2 0 6 1713 11147 11041
-21867 2 2 0 6 3807 7998 11228
-21868 2 2 0 6 6406 11082 9141
-21869 2 2 0 6 2938 11078 3768
-21870 2 2 0 6 7839 7842 11079
-21871 2 2 0 6 5533 10041 11074
-21872 2 2 0 6 6014 11092 11084
-21873 2 2 0 6 3267 11257 3268
-21874 2 2 0 6 6053 11085 6401
-21875 2 2 0 6 1697 9021 11081
-21876 2 2 0 6 4317 8159 11088
-21877 2 2 0 6 5508 11083 6062
-21878 2 2 0 6 2935 10801 11204
-21879 2 2 0 6 3751 11046 11142
-21880 2 2 0 6 5607 11084 9136
-21881 2 2 0 6 2124 11132 2134
-21882 2 2 0 6 2134 11232 2239
-21883 2 2 0 6 6572 11167 11056
-21884 2 2 0 6 1698 11089 1701
-21885 2 2 0 6 8592 11099 11129
-21886 2 2 0 6 6694 11184 11180
-21887 2 2 0 6 2077 10562 11065
-21888 2 2 0 6 6693 11098 7641
-21889 2 2 0 6 4695 11258 8964
-21890 2 2 0 6 8096 11120 11129
-21891 2 2 0 6 6062 11083 11093
-21892 2 2 0 6 5195 11086 7010
-21893 2 2 0 6 8683 10713 11266
-21894 2 2 0 6 4601 11153 11242
-21895 2 2 0 6 1734 11097 1745
-21896 2 2 0 6 3807 11228 11247
-21897 2 2 0 6 6062 11093 9064
-21898 2 2 0 6 6035 11118 11105
-21899 2 2 0 6 8012 11041 11147
-21900 2 2 0 6 6578 11068 11139
-21901 2 2 0 6 2065 11056 11167
-21902 2 2 0 6 6087 11096 6089
-21903 2 2 0 6 1922 11112 11108
-21904 2 2 0 6 2239 11231 8598
-21905 2 2 0 6 10145 11166 11221
-21906 2 2 0 6 6034 11099 6672
-21907 2 2 0 6 5194 7100 11095
-21908 2 2 0 6 7998 11210 11228
-21909 2 2 0 6 6868 11275 7509
-21910 2 2 0 6 6035 11105 8962
-21911 2 2 0 6 1702 11104 1705
-21912 2 2 0 6 5533 11091 8669
-21913 2 2 0 6 6027 11094 11180
-21914 2 2 0 6 5533 11074 11091
-21915 2 2 0 6 1766 11182 11190
-21916 2 2 0 6 4928 11101 6055
-21917 2 2 0 6 2239 11232 11231
-21918 2 2 0 6 3628 11249 8213
-21919 2 2 0 6 8095 11138 11120
-21920 2 2 0 6 6099 11267 6756
-21921 2 2 0 6 1922 9562 11112
-21922 2 2 0 6 6027 11078 11094
-21923 2 2 0 6 8597 11114 8599
-21924 2 2 0 6 6059 11106 7682
-21925 2 2 0 6 5256 11271 7065
-21926 2 2 0 6 1743 9573 11109
-21927 2 2 0 6 8199 11103 9887
-21928 2 2 0 6 3001 11110 3227
-21929 2 2 0 6 1922 11108 9505
-21930 2 2 0 6 6034 8096 11129
-21931 2 2 0 6 669 11117 11130
-21932 2 2 0 6 5760 9751 11107
-21933 2 2 0 6 3763 9277 11113
-21934 2 2 0 6 8962 11105 11100
-21935 2 2 0 6 1772 11125 1872
-21936 2 2 0 6 6326 11212 11001
-21937 2 2 0 6 401 11289 11294
-21938 2 2 0 6 7322 11128 7325
-21939 2 2 0 6 6035 6063 11118
-21940 2 2 0 6 4932 11119 5261
-21941 2 2 0 6 6063 7365 11121
-21942 2 2 0 6 3592 11111 9573
-21943 2 2 0 6 6730 11123 7142
-21944 2 2 0 6 669 9000 11117
-21945 2 2 0 6 6 11126 563
-21946 2 2 0 6 1706 11134 1709
-21947 2 2 0 6 6403 11001 11212
-21948 2 2 0 6 4603 11116 5109
-21949 2 2 0 6 2935 11198 11200
-21950 2 2 0 6 6104 11276 6105
-21951 2 2 0 6 8096 8094 11120
-21952 2 2 0 6 6076 11237 11142
-21953 2 2 0 6 6034 11129 11099
-21954 2 2 0 6 6703 11132 11085
-21955 2 2 0 6 6045 6700 11124
-21956 2 2 0 6 1965 11127 2254
-21957 2 2 0 6 669 11130 670
-21958 2 2 0 6 2621 11135 8199
-21959 2 2 0 6 6686 11133 6688
-21960 2 2 0 6 3631 11115 9682
-21961 2 2 0 6 6686 6687 11122
-21962 2 2 0 6 9573 11111 11109
-21963 2 2 0 6 98 99 11272
-21964 2 2 0 6 2402 2626 11136
-21965 2 2 0 6 2934 11205 11208
-21966 2 2 0 6 7823 11160 11152
-21967 2 2 0 6 2566 11137 9028
-21968 2 2 0 6 2619 2771 11138
-21969 2 2 0 6 6705 11251 11247
-21970 2 2 0 6 6579 11139 7228
-21971 2 2 0 6 2934 11209 9787
-21972 2 2 0 6 6105 11277 8133
-21973 2 2 0 6 3213 11096 11210
-21974 2 2 0 6 6057 11151 11157
-21975 2 2 0 6 6838 11143 11123
-21976 2 2 0 6 6105 11276 11277
-21977 2 2 0 6 11116 11178 6707
-21978 2 2 0 6 5710 6183 11131
-21979 2 2 0 6 8753 11145 11141
-21980 2 2 0 6 6686 11122 11133
-21981 2 2 0 6 7351 11141 7591
-21982 2 2 0 6 2933 11142 9220
-21983 2 2 0 6 1710 11147 1713
-21984 2 2 0 6 6693 11104 11098
-21985 2 2 0 6 2559 11274 2561
-21986 2 2 0 6 6095 11156 11113
-21987 2 2 0 6 7802 11172 11165
-21988 2 2 0 6 8011 8012 11144
-21989 2 2 0 6 673 11145 9152
-21990 2 2 0 6 1726 11146 1728
-21991 2 2 0 6 7106 10977 11246
-21992 2 2 0 6 8786 8785 11242
-21993 2 2 0 6 6056 11151 6057
-21994 2 2 0 6 8248 11268 11289
-21995 2 2 0 6 5229 11149 6186
-21996 2 2 0 6 6057 11157 8537
-21997 2 2 0 6 6097 11254 11259
-21998 2 2 0 6 3057 11223 11243
-21999 2 2 0 6 6530 11148 7077
-22000 2 2 0 6 675 11159 677
-22001 2 2 0 6 6243 10297 11140
-22002 2 2 0 6 9640 11187 11246
-22003 2 2 0 6 1785 3176 11158
-22004 2 2 0 6 6643 11150 7182
-22005 2 2 0 6 6412 11246 10977
-22006 2 2 0 6 11116 6705 11178
-22007 2 2 0 6 8199 11135 11103
-22008 2 2 0 6 6095 6093 11156
-22009 2 2 0 6 5037 11154 5038
-22010 2 2 0 6 8537 11157 11164
-22011 2 2 0 6 5022 11161 7156
-22012 2 2 0 6 7823 7824 11160
-22013 2 2 0 6 6643 6644 11153
-22014 2 2 0 6 8489 11298 11308
-22015 2 2 0 6 6039 6676 11168
-22016 2 2 0 6 6093 11174 11156
-22017 2 2 0 6 6063 11121 11118
-22018 2 2 0 6 3216 8133 11279
-22019 2 2 0 6 3811 11267 11264
-22020 2 2 0 6 6696 11051 11064
-22021 2 2 0 6 8537 11164 9453
-22022 2 2 0 6 2066 11167 2071
-22023 2 2 0 6 6043 11165 6677
-22024 2 2 0 6 4690 11265 10251
-22025 2 2 0 6 5252 11054 11218
-22026 2 2 0 6 11001 11166 10145
-22027 2 2 0 6 6683 11052 11038
-22028 2 2 0 6 7948 11163 7949
-22029 2 2 0 6 2626 2805 11162
-22030 2 2 0 6 6643 11153 11150
-22031 2 2 0 6 9208 11072 11215
-22032 2 2 0 6 4228 9769 11169
-22033 2 2 0 6 7148 11218 11054
-22034 2 2 0 6 1753 11172 9195
-22035 2 2 0 6 8133 11277 11279
-22036 2 2 0 6 4120 11076 11222
-22037 2 2 0 6 2626 11162 11136
-22038 2 2 0 6 6239 11170 10610
-22039 2 2 0 6 4693 5912 11271
-22040 2 2 0 6 11078 8095 11094
-22041 2 2 0 6 7157 11222 11076
-22042 2 2 0 6 6091 11174 6093
-22043 2 2 0 6 7141 11047 11221
-22044 2 2 0 6 3215 3216 11173
-22045 2 2 0 6 7836 7837 11179
-22046 2 2 0 6 6061 7651 11176
-22047 2 2 0 6 517 8161 11280
-22048 2 2 0 6 6041 11168 11177
-22049 2 2 0 6 4124 11173 11273
-22050 2 2 0 6 6087 11210 11096
-22051 2 2 0 6 4127 11184 11196
-22052 2 2 0 6 3371 11221 11047
-22053 2 2 0 6 4449 9195 11175
-22054 2 2 0 6 4214 11178 5102
-22055 2 2 0 6 4449 11175 11181
-22056 2 2 0 6 2602 9534 11186
-22057 2 2 0 6 9195 11172 11175
-22058 2 2 0 6 4876 10551 11155
-22059 2 2 0 6 2602 11186 11195
-22060 2 2 0 6 4449 11181 9179
-22061 2 2 0 6 1750 11102 10848
-22062 2 2 0 6 3234 9901 11177
-22063 2 2 0 6 4262 11188 11183
-22064 2 2 0 6 6645 10253 11171
-22065 2 2 0 6 1723 11182 1766
-22066 2 2 0 6 6700 11134 11124
-22067 2 2 0 6 6704 11199 11195
-22068 2 2 0 6 9640 10967 11187
-22069 2 2 0 6 6070 11197 6704
-22070 2 2 0 6 6164 7065 11278
-22071 2 2 0 6 4127 6027 11184
-22072 2 2 0 6 1724 11189 1898
-22073 2 2 0 6 9901 11183 11177
-22074 2 2 0 6 6065 9087 11186
-22075 2 2 0 6 8012 11147 11144
-22076 2 2 0 6 6685 11270 10716
-22077 2 2 0 6 4262 10012 11188
-22078 2 2 0 6 9611 11180 10272
-22079 2 2 0 6 6081 6084 11190
-22080 2 2 0 6 4127 11196 9714
-22081 2 2 0 6 9087 11195 11186
-22082 2 2 0 6 4262 11183 9901
-22083 2 2 0 6 705 11191 708
-22084 2 2 0 6 6756 11269 6770
-22085 2 2 0 6 6055 11101 11231
-22086 2 2 0 6 2403 3212 11185
-22087 2 2 0 6 8962 11100 10960
-22088 2 2 0 6 8598 11231 11101
-22089 2 2 0 6 6054 11195 9087
-22090 2 2 0 6 5245 11194 6994
-22091 2 2 0 6 5669 6100 11193
-22092 2 2 0 6 8 11192 491
-22093 2 2 0 6 1179 11191 11197
-22094 2 2 0 6 6104 11112 11276
-22095 2 2 0 6 1984 11198 2935
-22096 2 2 0 6 9 11201 11192
-22097 2 2 0 6 9220 11142 11237
-22098 2 2 0 6 701 2602 11199
-22099 2 2 0 6 6072 11215 11072
-22100 2 2 0 6 3212 11174 11185
-22101 2 2 0 6 6706 11213 11207
-22102 2 2 0 6 6088 6090 11200
-22103 2 2 0 6 2312 11225 11234
-22104 2 2 0 6 7711 7712 11202
-22105 2 2 0 6 720 11203 2312
-22106 2 2 0 6 6100 11223 11193
-22107 2 2 0 6 2692 11205 2934
-22108 2 2 0 6 6320 11273 6319
-22109 2 2 0 6 85 86 11282
-22110 2 2 0 6 6697 11206 6698
-22111 2 2 0 6 4124 11286 9210
-22112 2 2 0 6 6077 11207 9623
-22113 2 2 0 6 2240 11204 2393
-22114 2 2 0 6 7823 11152 10979
-22115 2 2 0 6 2771 11120 11138
-22116 2 2 0 6 3592 11128 11111
-22117 2 2 0 6 5097 8205 11240
-22118 2 2 0 6 6706 11220 11203
-22119 2 2 0 6 6326 7130 11212
-22120 2 2 0 6 731 11211 741
-22121 2 2 0 6 712 1179 11213
-22122 2 2 0 6 6094 6096 11208
-22123 2 2 0 6 6085 11210 6087
-22124 2 2 0 6 82 83 11283
-22125 2 2 0 6 437 7741 11284
-22126 2 2 0 6 5765 11214 6978
-22127 2 2 0 6 741 11211 11217
-22128 2 2 0 6 8782 9104 11216
-22129 2 2 0 6 741 11217 743
-22130 2 2 0 6 6110 11268 10641
-22131 2 2 0 6 6707 11178 11264
-22132 2 2 0 6 4456 11215 9993
-22133 2 2 0 6 5252 11218 7153
-22134 2 2 0 6 745 11219 747
-22135 2 2 0 6 7651 11182 11176
-22136 2 2 0 6 6075 11240 11227
-22137 2 2 0 6 6060 8191 11220
-22138 2 2 0 6 9210 11286 11288
-22139 2 2 0 6 6075 11227 6572
-22140 2 2 0 6 8192 8195 11225
-22141 2 2 0 6 6073 11229 11233
-22142 2 2 0 6 4120 11222 9208
-22143 2 2 0 6 1281 11224 9170
-22144 2 2 0 6 11 11226 467
-22145 2 2 0 6 5747 11229 6073
-22146 2 2 0 6 6073 11233 6075
-22147 2 2 0 6 6100 6102 11223
-22148 2 2 0 6 5066 8580 11230
-22149 2 2 0 6 6692 11238 11235
-22150 2 2 0 6 6085 11228 11210
-22151 2 2 0 6 6083 11228 6085
-22152 2 2 0 6 3371 10145 11221
-22153 2 2 0 6 6083 11247 11228
-22154 2 2 0 6 6692 6691 11238
-22155 2 2 0 6 724 11234 727
-22156 2 2 0 6 5769 11236 6975
-22157 2 2 0 6 6055 11231 10033
-22158 2 2 0 6 6703 10033 11232
-22159 2 2 0 6 3759 9220 11237
-22160 2 2 0 6 8580 11241 11230
-22161 2 2 0 6 11231 11232 10033
-22162 2 2 0 6 6691 7021 11239
-22163 2 2 0 6 6708 11291 11292
-22164 2 2 0 6 13 11245 527
-22165 2 2 0 6 2683 3057 11243
-22166 2 2 0 6 5105 11244 6076
-22167 2 2 0 6 1011 11248 11250
-22168 2 2 0 6 4214 11264 11178
-22169 2 2 0 6 8580 10078 11241
-22170 2 2 0 6 6692 11235 10227
-22171 2 2 0 6 6083 6080 11247
-22172 2 2 0 6 6027 11180 11184
-22173 2 2 0 6 673 11141 11145
-22174 2 2 0 6 6412 9640 11246
-22175 2 2 0 6 8479 8480 11248
-22176 2 2 0 6 6076 11244 11237
-22177 2 2 0 6 6691 11239 11238
-22178 2 2 0 6 6107 9210 11288
-22179 2 2 0 6 6770 11269 11275
-22180 2 2 0 6 6082 11249 10083
-22181 2 2 0 6 6096 10716 11209
-22182 2 2 0 6 7913 11250 7914
-22183 2 2 0 6 34 35 11287
-22184 2 2 0 6 3806 3807 11251
-22185 2 2 0 6 5643 9023 11252
-22186 2 2 0 6 1753 11165 11172
-22187 2 2 0 6 757 1011 11253
-22188 2 2 0 6 9023 11255 11252
-22189 2 2 0 6 2448 8213 11254
-22190 2 2 0 6 6715 11281 10853
-22191 2 2 0 6 5244 6993 11256
-22192 2 2 0 6 5367 11263 11259
-22193 2 2 0 6 5367 7512 11263
-22194 2 2 0 6 6098 11255 9023
-22195 2 2 0 6 8377 11281 11298
-22196 2 2 0 6 3267 4132 11257
-22197 2 2 0 6 6098 11260 11255
-22198 2 2 0 6 5367 11259 6082
-22199 2 2 0 6 3811 11269 11267
-22200 2 2 0 6 3234 11177 11168
-22201 2 2 0 6 2934 11208 11209
-22202 2 2 0 6 6098 6106 11260
-22203 2 2 0 6 6107 11291 6708
-22204 2 2 0 6 62 401 11261
-22205 2 2 0 6 4132 6168 11262
-22206 2 2 0 6 3807 11247 11251
-22207 2 2 0 6 3790 11264 4214
-22208 2 2 0 6 4132 11262 11257
-22209 2 2 0 6 4695 9487 11258
-22210 2 2 0 6 532 11326 8143
-22211 2 2 0 6 6021 6222 11266
-22212 2 2 0 6 6704 11197 11191
-22213 2 2 0 6 5912 10251 11265
-22214 2 2 0 6 6099 6707 11267
-22215 2 2 0 6 2602 11195 11199
-22216 2 2 0 6 532 8629 11327
-22217 2 2 0 6 6082 11259 11254
-22218 2 2 0 6 27 28 11290
-22219 2 2 0 6 6107 11288 11291
-22220 2 2 0 6 6319 11273 11173
-22221 2 2 0 6 532 11327 11326
-22222 2 2 0 6 60 61 11292
-22223 2 2 0 6 468 11328 8629
-22224 2 2 0 6 8629 11328 11327
-22225 2 2 0 6 4124 11273 11286
-22226 2 2 0 6 1179 11207 11213
-22227 2 2 0 6 401 8247 11289
-22228 2 2 0 6 9787 11270 9788
-22229 2 2 0 6 2312 11203 11220
-22230 2 2 0 6 3811 10274 11269
-22231 2 2 0 6 6720 11329 11330
-22232 2 2 0 6 24 25 11293
-22233 2 2 0 6 468 11329 11328
-22234 2 2 0 6 448 11324 7939
-22235 2 2 0 6 6707 11264 11267
-22236 2 2 0 6 5911 10641 11268
-22237 2 2 0 6 8195 11234 11225
-22238 2 2 0 6 6644 11242 11153
-22239 2 2 0 6 448 11325 11324
-22240 2 2 0 6 4693 11271 5256
-22241 2 2 0 6 99 493 11272
-22242 2 2 0 6 9787 11209 11270
-22243 2 2 0 6 448 8143 11325
-22244 2 2 0 6 5097 11240 11233
-22245 2 2 0 6 6719 11322 11323
-22246 2 2 0 6 6052 6708 11294
-22247 2 2 0 6 2561 11274 7705
-22248 2 2 0 6 6096 11209 11208
-22249 2 2 0 6 10716 11270 11209
-22250 2 2 0 6 493 11332 11331
-22251 2 2 0 6 6082 11254 11249
-22252 2 2 0 6 6108 11295 11296
-22253 2 2 0 6 8213 11249 11254
-22254 2 2 0 6 6075 11233 11240
-22255 2 2 0 6 453 11299 8234
-22256 2 2 0 6 7509 11275 10274
-22257 2 2 0 6 6873 11332 11333
-22258 2 2 0 6 6019 11277 11276
-22259 2 2 0 6 10274 11275 11269
-22260 2 2 0 6 453 11300 11299
-22261 2 2 0 6 6019 11276 10249
-22262 2 2 0 6 6018 11277 6019
-22263 2 2 0 6 7914 11250 11248
-22264 2 2 0 6 453 8230 11300
-22265 2 2 0 6 517 11301 8230
-22266 2 2 0 6 6320 10811 11273
-22267 2 2 0 6 6164 11278 7076
-22268 2 2 0 6 6018 11279 11277
-22269 2 2 0 6 5784 11295 6108
-22270 2 2 0 6 6018 6319 11279
-22271 2 2 0 6 8230 11301 11300
-22272 2 2 0 6 8161 8162 11280
-22273 2 2 0 6 521 8234 11296
-22274 2 2 0 6 19 20 11297
-22275 2 2 0 6 8162 11303 11302
-22276 2 2 0 6 515 11305 8142
-22277 2 2 0 6 515 8144 11306
-22278 2 2 0 6 8376 11309 8377
-22279 2 2 0 6 8376 11310 11309
-22280 2 2 0 6 6712 11303 11304
-22281 2 2 0 6 515 11306 11305
-22282 2 2 0 6 475 11308 11307
-22283 2 2 0 6 475 11307 8144
-22284 2 2 0 6 86 505 11282
-22285 2 2 0 6 8144 11307 11306
-22286 2 2 0 6 474 11313 11312
-22287 2 2 0 6 474 11312 8374
-22288 2 2 0 6 505 7733 11320
-22289 2 2 0 6 6114 11302 9911
-22290 2 2 0 6 6712 9696 11303
-22291 2 2 0 6 401 11294 11261
-22292 2 2 0 6 6994 11285 7470
-22293 2 2 0 6 6717 11316 11317
-22294 2 2 0 6 409 8142 11304
-22295 2 2 0 6 475 8489 11308
-22296 2 2 0 6 83 426 11283
-22297 2 2 0 6 8234 11299 11296
-22298 2 2 0 6 437 11321 7733
-22299 2 2 0 6 6079 11310 11311
-22300 2 2 0 6 8849 11298 8489
-22301 2 2 0 6 7733 11321 11320
-22302 2 2 0 6 7742 11284 7741
-22303 2 2 0 6 10254 10853 11281
-22304 2 2 0 6 8143 11326 11325
-22305 2 2 0 6 6716 11313 11314
-22306 2 2 0 6 505 11320 11319
-22307 2 2 0 6 10811 11286 11273
-22308 2 2 0 6 6708 11261 11294
-22309 2 2 0 6 8142 11305 11304
-22310 2 2 0 6 493 11331 11272
-22311 2 2 0 6 5911 11268 11295
-22312 2 2 0 6 34 11287 484
-22313 2 2 0 6 7220 11288 11286
-22314 2 2 0 6 8374 11311 8375
-22315 2 2 0 6 6110 11294 11289
-22316 2 2 0 6 8248 11295 11268
-22317 2 2 0 6 5059 11310 6079
-22318 2 2 0 6 7220 11286 10811
-22319 2 2 0 6 7220 7275 11288
-22320 2 2 0 6 81 82 11314
-22321 2 2 0 6 6111 11313 6716
-22322 2 2 0 6 6994 11194 11285
-22323 2 2 0 6 500 11292 11291
-22324 2 2 0 6 6119 11318 7758
-22325 2 2 0 6 500 11291 7275
-22326 2 2 0 6 426 11316 11315
-22327 2 2 0 6 11280 8162 11302
-22328 2 2 0 6 7275 11291 11288
-22329 2 2 0 6 6112 6716 11315
-22330 2 2 0 6 27 11290 487
-22331 2 2 0 6 84 85 11317
-22332 2 2 0 6 6113 11316 6717
-22333 2 2 0 6 6067 6717 11319
-22334 2 2 0 6 8374 11312 11311
-22335 2 2 0 6 60 11292 500
-22336 2 2 0 6 6114 11280 11302
-22337 2 2 0 6 6110 11289 11268
-22338 2 2 0 6 24 11293 425
-22339 2 2 0 6 6052 11294 6110
-22340 2 2 0 6 511 7939 11323
-22341 2 2 0 6 505 11319 11282
-22342 2 2 0 6 6719 9714 11322
-22343 2 2 0 6 6715 11308 11298
-22344 2 2 0 6 426 11315 11283
-22345 2 2 0 6 7742 11318 11284
-22346 2 2 0 6 8248 11296 11295
-22347 2 2 0 6 6116 11329 6720
-22348 2 2 0 6 97 98 11330
-22349 2 2 0 6 5913 6720 11331
-22350 2 2 0 6 100 101 11333
-22351 2 2 0 6 5784 5911 11295
-22352 2 2 0 6 6871 11332 6873
-22353 2 2 0 6 10254 11281 11309
-22354 2 2 0 6 11318 7742 11322
-22355 2 2 0 6 8377 11309 11281
-22356 2 2 0 6 521 11296 8248
-22357 2 2 0 6 19 11297 433
-22358 2 2 0 6 6108 11299 9760
-22359 2 2 0 6 6119 11284 11318
-22360 2 2 0 6 9760 11299 11300
-22361 2 2 0 6 6109 9760 11300
-22362 2 2 0 6 6716 11283 11315
-22363 2 2 0 6 6109 11300 11301
-22364 2 2 0 6 6109 11301 6114
-22365 2 2 0 6 6715 11298 11281
-22366 2 2 0 6 6717 11282 11319
-22367 2 2 0 6 6108 11296 11299
-22368 2 2 0 6 8162 11304 11303
-22369 2 2 0 6 5112 9911 11302
-22370 2 2 0 6 5112 11302 11303
-22371 2 2 0 6 5112 11303 9696
-22372 2 2 0 6 409 11304 8162
-22373 2 2 0 6 6709 6712 11305
-22374 2 2 0 6 6720 11272 11331
-22375 2 2 0 6 6709 11305 11306
-22376 2 2 0 6 6709 11306 6710
-22377 2 2 0 6 6713 11307 11308
-22378 2 2 0 6 6710 11306 11307
-22379 2 2 0 6 6712 11304 11305
-22380 2 2 0 6 6710 11307 6713
-22381 2 2 0 6 6713 11308 6715
-22382 2 2 0 6 8376 11311 11310
-22383 2 2 0 6 11322 7742 11323
-22384 2 2 0 6 474 11314 11313
-22385 2 2 0 6 5753 11309 11310
-22386 2 2 0 6 7939 11324 11323
-22387 2 2 0 6 5753 10254 11309
-22388 2 2 0 6 5059 5753 11310
-22389 2 2 0 6 426 11317 11316
-22390 2 2 0 6 8375 11311 8376
-22391 2 2 0 6 8238 11312 11313
-22392 2 2 0 6 6079 11312 8238
-22393 2 2 0 6 468 11330 11329
-22394 2 2 0 6 6111 8238 11313
-22395 2 2 0 6 81 11314 474
-22396 2 2 0 6 493 11333 11332
-22397 2 2 0 6 6079 11311 11312
-22398 2 2 0 6 6112 11315 11028
-22399 2 2 0 6 84 11317 426
-22400 2 2 0 6 6067 11319 9980
-22401 2 2 0 6 6115 9980 11320
-22402 2 2 0 6 9980 11319 11320
-22403 2 2 0 6 6115 11320 11321
-22404 2 2 0 6 6115 11321 6119
-22405 2 2 0 6 11315 11316 11028
-22406 2 2 0 6 6113 11028 11316
-22407 2 2 0 6 7758 11318 11196
-22408 2 2 0 6 511 11323 7742
-22409 2 2 0 6 6718 6719 11324
-22410 2 2 0 6 6718 11324 11325
-22411 2 2 0 6 6718 11325 10965
-22412 2 2 0 6 9714 11196 11322
-22413 2 2 0 6 6118 11326 11327
-22414 2 2 0 6 6117 6118 11327
-22415 2 2 0 6 6117 11327 11328
-22416 2 2 0 6 6117 11328 9085
-22417 2 2 0 6 9085 11328 11329
-22418 2 2 0 6 6116 9085 11329
-22419 2 2 0 6 6118 10965 11326
-22420 2 2 0 6 97 11330 468
-22421 2 2 0 6 10965 11325 11326
-22422 2 2 0 6 5913 11331 9470
-22423 2 2 0 6 9470 11331 11332
-22424 2 2 0 6 6871 9470 11332
-22425 2 2 0 6 11318 11322 11196
-22426 2 2 0 6 100 11333 493
-22427 2 2 0 6 6719 11323 11324
-22428 2 2 0 6 4665 5118 11334
-22429 2 2 0 6 5285 11334 6874
-22430 2 2 0 6 278 6946 11338
-22431 2 2 0 6 9159 11487 11503
-22432 2 2 0 6 4665 11334 5285
-22433 2 2 0 6 6786 7424 11383
-22434 2 2 0 6 6915 6924 11357
-22435 2 2 0 6 6856 11347 6858
-22436 2 2 0 6 6304 7247 11421
-22437 2 2 0 6 6811 6897 11376
-22438 2 2 0 6 5837 10198 11339
-22439 2 2 0 6 4224 8527 11339
-22440 2 2 0 6 473 8875 11455
-22441 2 2 0 6 6784 11438 8089
-22442 2 2 0 6 277 11338 479
-22443 2 2 0 6 329 7152 11464
-22444 2 2 0 6 6937 11345 6939
-22445 2 2 0 6 4636 11341 6964
-22446 2 2 0 6 4650 6966 11342
-22447 2 2 0 6 4630 6959 11343
-22448 2 2 0 6 5376 11352 11365
-22449 2 2 0 6 11349 11363 7636
-22450 2 2 0 6 6133 8334 11340
-22451 2 2 0 6 5663 11340 5665
-22452 2 2 0 6 4635 11341 4636
-22453 2 2 0 6 5149 6805 11341
-22454 2 2 0 6 5454 11342 6829
-22455 2 2 0 6 4650 11342 8645
-22456 2 2 0 6 4630 11343 8202
-22457 2 2 0 6 6788 11343 6789
-22458 2 2 0 6 6946 6947 11338
-22459 2 2 0 6 277 278 11338
-22460 2 2 0 6 4228 6921 11379
-22461 2 2 0 6 5118 11348 11334
-22462 2 2 0 6 4246 11347 7548
-22463 2 2 0 6 6854 11347 6856
-22464 2 2 0 6 11334 11348 6876
-22465 2 2 0 6 4224 11339 10198
-22466 2 2 0 6 402 11444 6882
-22467 2 2 0 6 6902 11503 11487
-22468 2 2 0 6 11339 8527 11354
-22469 2 2 0 6 6923 11502 11346
-22470 2 2 0 6 6798 6930 11354
-22471 2 2 0 6 5663 6133 11340
-22472 2 2 0 6 4635 5149 11341
-22473 2 2 0 6 5454 8645 11342
-22474 2 2 0 6 6788 8202 11343
-22475 2 2 0 6 6877 11349 9020
-22476 2 2 0 6 4668 11349 7636
-22477 2 2 0 6 7407 7414 11344
-22478 2 2 0 6 379 380 11350
-22479 2 2 0 6 6939 11345 6941
-22480 2 2 0 6 4242 4257 11351
-22481 2 2 0 6 4241 11351 5174
-22482 2 2 0 6 5376 7961 11352
-22483 2 2 0 6 7697 11352 6247
-22484 2 2 0 6 5181 11353 5234
-22485 2 2 0 6 6918 11339 11354
-22486 2 2 0 6 6923 11346 6924
-22487 2 2 0 6 343 344 11355
-22488 2 2 0 6 4631 5146 11356
-22489 2 2 0 6 3816 11356 6223
-22490 2 2 0 6 7412 7413 11508
-22491 2 2 0 6 6854 7548 11347
-22492 2 2 0 6 224 225 11357
-22493 2 2 0 6 355 6882 11465
-22494 2 2 0 6 369 370 11358
-22495 2 2 0 6 5118 7645 11348
-22496 2 2 0 6 10138 11403 11510
-22497 2 2 0 6 403 8323 11381
-22498 2 2 0 6 4246 7672 11362
-22499 2 2 0 6 503 11371 11491
-22500 2 2 0 6 7379 11359 7381
-22501 2 2 0 6 4663 11359 10136
-22502 2 2 0 6 6878 11363 11349
-22503 2 2 0 6 9781 11143 11360
-22504 2 2 0 6 544 7820 11420
-22505 2 2 0 6 7698 11365 11352
-22506 2 2 0 6 101 102 11361
-22507 2 2 0 6 6873 11333 11361
-22508 2 2 0 6 6574 8559 11423
-22509 2 2 0 6 5234 6953 11366
-22510 2 2 0 6 514 8284 11447
-22511 2 2 0 6 415 11449 7152
-22512 2 2 0 6 5234 11366 7002
-22513 2 2 0 6 3337 11366 7672
-22514 2 2 0 6 174 175 11367
-22515 2 2 0 6 7507 11453 9218
-22516 2 2 0 6 6780 8591 11454
-22517 2 2 0 6 223 224 11369
-22518 2 2 0 6 553 11413 7698
-22519 2 2 0 6 148 149 11370
-22520 2 2 0 6 431 11414 6878
-22521 2 2 0 6 201 202 11364
-22522 2 2 0 6 370 11422 11358
-22523 2 2 0 6 406 9556 11443
-22524 2 2 0 6 4668 9020 11349
-22525 2 2 0 6 380 506 11350
-22526 2 2 0 6 6841 11512 11405
-22527 2 2 0 6 4241 4242 11351
-22528 2 2 0 6 6247 11352 7961
-22529 2 2 0 6 548 6857 11425
-22530 2 2 0 6 554 9597 11442
-22531 2 2 0 6 503 7395 11371
-22532 2 2 0 6 7396 7400 11371
-22533 2 2 0 6 4257 11415 11351
-22534 2 2 0 6 118 11467 6881
-22535 2 2 0 6 344 11426 11355
-22536 2 2 0 6 5181 6153 11353
-22537 2 2 0 6 6798 11354 8527
-22538 2 2 0 6 4642 7411 11372
-22539 2 2 0 6 343 11355 458
-22540 2 2 0 6 4639 6940 11374
-22541 2 2 0 6 3855 4642 11372
-22542 2 2 0 6 3853 11372 4643
-22543 2 2 0 6 471 11451 7447
-22544 2 2 0 6 465 6927 11452
-22545 2 2 0 6 3871 11374 4640
-22546 2 2 0 6 3873 4639 11374
-22547 2 2 0 6 3816 4631 11356
-22548 2 2 0 6 379 11350 11429
-22549 2 2 0 6 542 6876 11445
-22550 2 2 0 6 271 272 11375
-22551 2 2 0 6 480 11375 8563
-22552 2 2 0 6 6128 6129 11376
-22553 2 2 0 6 11373 11493 11482
-22554 2 2 0 6 438 11441 7771
-22555 2 2 0 6 512 7879 11377
-22556 2 2 0 6 446 11378 7382
-22557 2 2 0 6 4227 4228 11379
-22558 2 2 0 6 5156 11379 6827
-22559 2 2 0 6 456 6901 11380
-22560 2 2 0 6 262 456 11380
-22561 2 2 0 6 261 11380 529
-22562 2 2 0 6 6859 11353 11384
-22563 2 2 0 6 6152 6952 11381
-22564 2 2 0 6 225 424 11357
-22565 2 2 0 6 5176 11382 6793
-22566 2 2 0 6 4625 5163 11382
-22567 2 2 0 6 4246 11362 11347
-22568 2 2 0 6 369 11358 476
-22569 2 2 0 6 6318 10457 11383
-22570 2 2 0 6 6764 6786 11383
-22571 2 2 0 6 11143 11499 11360
-22572 2 2 0 6 6135 6907 11516
-22573 2 2 0 6 539 9381 11437
-22574 2 2 0 6 5175 6850 11385
-22575 2 2 0 6 4263 11385 5127
-22576 2 2 0 6 10136 11359 11500
-22577 2 2 0 6 6153 6950 11384
-22578 2 2 0 6 7877 11360 7879
-22579 2 2 0 6 469 7466 11386
-22580 2 2 0 6 526 11387 8370
-22581 2 2 0 6 8400 8401 11387
-22582 2 2 0 6 410 11389 8305
-22583 2 2 0 6 508 8153 11395
-22584 2 2 0 6 6737 11398 6794
-22585 2 2 0 6 6144 6793 11399
-22586 2 2 0 6 11202 11514 11408
-22587 2 2 0 6 7379 7382 11359
-22588 2 2 0 6 7722 11390 7723
-22589 2 2 0 6 9033 9032 11402
-22590 2 2 0 6 6740 11403 10138
-22591 2 2 0 6 5163 9781 11360
-22592 2 2 0 6 488 11492 7434
-22593 2 2 0 6 6841 11405 9743
-22594 2 2 0 6 6762 11406 6786
-22595 2 2 0 6 485 7819 11494
-22596 2 2 0 6 8153 11507 11395
-22597 2 2 0 6 101 11361 11333
-22598 2 2 0 6 6840 9486 11407
-22599 2 2 0 6 6735 11202 11408
-22600 2 2 0 6 6858 11362 6953
-22601 2 2 0 6 6161 6318 11409
-22602 2 2 0 6 11351 11415 8154
-22603 2 2 0 6 6839 7583 11410
-22604 2 2 0 6 6138 7636 11363
-22605 2 2 0 6 147 148 11411
-22606 2 2 0 6 6136 11412 6926
-22607 2 2 0 6 120 11413 553
-22608 2 2 0 6 121 429 11413
-22609 2 2 0 6 430 11510 11403
-22610 2 2 0 6 7712 11358 11422
-22611 2 2 0 6 318 11414 431
-22612 2 2 0 6 319 9271 11414
-22613 2 2 0 6 6775 11415 10189
-22614 2 2 0 6 6907 6971 11368
-22615 2 2 0 6 494 7843 11486
-22616 2 2 0 6 9212 10048 11416
-22617 2 2 0 6 6122 6839 11417
-22618 2 2 0 6 6671 11430 8370
-22619 2 2 0 6 5376 11365 9031
-22620 2 2 0 6 6155 6945 11386
-22621 2 2 0 6 173 174 11418
-22622 2 2 0 6 536 9292 11435
-22623 2 2 0 6 6942 11491 11371
-22624 2 2 0 6 6843 7487 11388
-22625 2 2 0 6 6842 11355 11426
-22626 2 2 0 6 6746 11419 9664
-22627 2 2 0 6 488 7433 11485
-22628 2 2 0 6 6858 11347 11362
-22629 2 2 0 6 3337 7002 11366
-22630 2 2 0 6 8558 8559 11400
-22631 2 2 0 6 463 9456 11433
-22632 2 2 0 6 452 11434 8359
-22633 2 2 0 6 175 419 11367
-22634 2 2 0 6 371 418 11422
-22635 2 2 0 6 6777 11429 11350
-22636 2 2 0 6 6794 11424 6795
-22637 2 2 0 6 136 548 11425
-22638 2 2 0 6 135 11425 414
-22639 2 2 0 6 345 534 11426
-22640 2 2 0 6 7380 11427 7466
-22641 2 2 0 6 6865 11428 7722
-22642 2 2 0 6 378 11429 430
-22643 2 2 0 6 6120 6843 11431
-22644 2 2 0 6 6733 7435 11407
-22645 2 2 0 6 6868 11432 8305
-22646 2 2 0 6 6171 11433 7129
-22647 2 2 0 6 6150 6844 11434
-22648 2 2 0 6 7985 7986 11435
-22649 2 2 0 6 525 11436 8322
-22650 2 2 0 6 6147 11437 6846
-22651 2 2 0 6 223 11369 486
-22652 2 2 0 6 5127 11438 5128
-22653 2 2 0 6 6015 11438 6784
-22654 2 2 0 6 6758 11440 6881
-22655 2 2 0 6 7615 11440 8393
-22656 2 2 0 6 6157 11441 6774
-22657 2 2 0 6 6785 6927 11459
-22658 2 2 0 6 6849 11458 7447
-22659 2 2 0 6 7844 11390 7845
-22660 2 2 0 6 522 8304 11432
-22661 2 2 0 6 6291 6773 11442
-22662 2 2 0 6 6754 7585 11443
-22663 2 2 0 6 6160 6882 11444
-22664 2 2 0 6 6158 11444 6772
-22665 2 2 0 6 314 11445 9401
-22666 2 2 0 6 315 542 11445
-22667 2 2 0 6 6755 6769 11447
-22668 2 2 0 6 7150 7152 11449
-22669 2 2 0 6 6162 11449 6768
-22670 2 2 0 6 149 558 11370
-22671 2 2 0 6 5174 11450 6141
-22672 2 2 0 6 7446 7447 11451
-22673 2 2 0 6 6783 11451 6782
-22674 2 2 0 6 6760 11452 6927
-22675 2 2 0 6 6781 11452 10927
-22676 2 2 0 6 321 11453 483
-22677 2 2 0 6 322 9218 11453
-22678 2 2 0 6 177 11454 8591
-22679 2 2 0 6 178 477 11454
-22680 2 2 0 6 454 8369 11430
-22681 2 2 0 6 457 11431 9122
-22682 2 2 0 6 6741 9734 11455
-22683 2 2 0 6 6721 11456 7699
-22684 2 2 0 6 6725 6765 11457
-22685 2 2 0 6 302 11458 495
-22686 2 2 0 6 197 489 11459
-22687 2 2 0 6 6751 10416 11460
-22688 2 2 0 6 6752 11461 6761
-22689 2 2 0 6 105 492 11462
-22690 2 2 0 6 104 11462 564
-22691 2 2 0 6 394 11463 494
-22692 2 2 0 6 6154 6840 11420
-22693 2 2 0 6 328 11464 481
-22694 2 2 0 6 354 11465 502
-22695 2 2 0 6 6042 6734 11466
-22696 2 2 0 6 119 553 11467
-22697 2 2 0 6 317 431 11468
-22698 2 2 0 6 316 11468 542
-22699 2 2 0 6 6731 11469 6759
-22700 2 2 0 6 6778 11470 10518
-22701 2 2 0 6 309 11471 447
-22702 2 2 0 6 310 539 11471
-22703 2 2 0 6 388 543 11472
-22704 2 2 0 6 387 11472 450
-22705 2 2 0 6 336 536 11473
-22706 2 2 0 6 335 11473 457
-22707 2 2 0 6 137 11474 548
-22708 2 2 0 6 138 463 11474
-22709 2 2 0 6 361 11475 452
-22710 2 2 0 6 362 522 11475
-22711 2 2 0 6 6859 11384 11506
-22712 2 2 0 6 7128 7129 11391
-22713 2 2 0 6 6844 10105 11392
-22714 2 2 0 6 6732 11476 6757
-22715 2 2 0 6 7709 11477 7710
-22716 2 2 0 6 11363 11511 11401
-22717 2 2 0 6 6742 11478 9648
-22718 2 2 0 6 6300 8028 11479
-22719 2 2 0 6 6739 11480 7951
-22720 2 2 0 6 133 11520 6950
-22721 2 2 0 6 6776 11481 10149
-22722 2 2 0 6 11365 11509 11402
-22723 2 2 0 6 7879 11360 11499
-22724 2 2 0 6 11032 11483 6851
-22725 2 2 0 6 7382 11500 11359
-22726 2 2 0 6 411 8407 11484
-22727 2 2 0 6 7984 7985 11393
-22728 2 2 0 6 498 7247 11404
-22729 2 2 0 6 4626 9934 11427
-22730 2 2 0 6 543 9494 11428
-22731 2 2 0 6 159 11515 6952
-22732 2 2 0 6 534 11405 11512
-22733 2 2 0 6 6903 11373 11482
-22734 2 2 0 6 447 11424 9139
-22735 2 2 0 6 492 11488 6928
-22736 2 2 0 6 125 11492 488
-22737 2 2 0 6 7151 11464 7152
-22738 2 2 0 6 131 485 11494
-22739 2 2 0 6 130 11494 544
-22740 2 2 0 6 427 11423 8557
-22741 2 2 0 6 563 11080 11497
-22742 2 2 0 6 1 11495 200
-22743 2 2 0 6 1 201 11495
-22744 2 2 0 6 4 11496 298
-22745 2 2 0 6 4 299 11496
-22746 2 2 0 6 3 5 11497
-22747 2 2 0 6 3 11497 396
-22748 2 2 0 6 2 103 11498
-22749 2 2 0 6 2 11498 102
-22750 2 2 0 6 133 134 11520
-22751 2 2 0 6 6121 8323 11436
-22752 2 2 0 6 159 160 11515
-22753 2 2 0 6 6845 11394 7259
-22754 2 2 0 6 301 495 11513
-22755 2 2 0 6 7395 7396 11371
-22756 2 2 0 6 4247 4626 11501
-22757 2 2 0 6 393 494 11486
-22758 2 2 0 6 6846 11396 7645
-22759 2 2 0 6 6729 11397 6837
-22760 2 2 0 6 441 11421 7246
-22761 2 2 0 6 6138 11363 11401
-22762 2 2 0 6 464 11419 10091
-22763 2 2 0 6 544 11420 9498
-22764 2 2 0 6 9031 11365 11402
-22765 2 2 0 6 6729 6784 11397
-22766 2 2 0 6 106 11488 492
-22767 2 2 0 6 6796 11465 6882
-22768 2 2 0 6 6774 11395 6775
-22769 2 2 0 6 7259 11394 7615
-22770 2 2 0 6 400 11519 6973
-22771 2 2 0 6 7411 7412 11373
-22772 2 2 0 6 3853 3855 11372
-22773 2 2 0 6 3871 3873 11374
-22774 2 2 0 6 481 11417 9255
-22775 2 2 0 6 478 11416 8371
-22776 2 2 0 6 562 11496 6971
-22777 2 2 0 6 6154 11420 7820
-22778 2 2 0 6 271 11375 480
-22779 2 2 0 6 6129 6811 11376
-22780 2 2 0 6 418 11408 11514
-22781 2 2 0 6 400 11345 11519
-22782 2 2 0 6 6773 7984 11393
-22783 2 2 0 6 512 11377 8022
-22784 2 2 0 6 489 7483 11412
-22785 2 2 0 6 446 7386 11378
-22786 2 2 0 6 4227 11379 5156
-22787 2 2 0 6 6775 11395 11507
-22788 2 2 0 6 7128 11391 7585
-22789 2 2 0 6 6772 11392 10105
-22790 2 2 0 6 537 11410 9172
-22791 2 2 0 6 6836 6881 11467
-22792 2 2 0 6 11348 7645 11396
-22793 2 2 0 6 418 8335 11408
-22794 2 2 0 6 261 262 11380
-22795 2 2 0 6 6907 11368 11516
-22796 2 2 0 6 124 488 11485
-22797 2 2 0 6 6152 11381 8902
-22798 2 2 0 6 485 11489 6944
-22799 2 2 0 6 4625 11382 5176
-22800 2 2 0 6 443 11406 7332
-22801 2 2 0 6 6769 6770 11389
-22802 2 2 0 6 495 11368 11513
-22803 2 2 0 6 498 11404 7335
-22804 2 2 0 6 534 9666 11405
-22805 2 2 0 6 6768 11388 7487
-22806 2 2 0 6 6764 11383 10457
-22807 2 2 0 6 430 11403 8240
-22808 2 2 0 6 483 11401 9271
-22809 2 2 0 6 477 8558 11400
-22810 2 2 0 6 7877 11504 11360
-22811 2 2 0 6 4263 5175 11385
-22812 2 2 0 6 7723 11390 7844
-22813 2 2 0 6 507 7828 11399
-22814 2 2 0 6 530 11398 9516
-22815 2 2 0 6 5163 11360 11504
-22816 2 2 0 6 6155 11386 6156
-22817 2 2 0 6 526 8400 11387
-22818 2 2 0 6 535 11388 9262
-22819 2 2 0 6 410 8237 11389
-22820 2 2 0 6 551 9650 11391
-22821 2 2 0 6 528 11392 8440
-22822 2 2 0 6 407 9537 11393
-22823 2 2 0 6 9271 11401 11511
-22824 2 2 0 6 510 9523 11394
-22825 2 2 0 6 508 11395 7856
-22826 2 2 0 6 439 9401 11396
-22827 2 2 0 6 435 11397 8088
-22828 2 2 0 6 6737 6782 11398
-22829 2 2 0 6 6144 11399 6781
-22830 2 2 0 6 429 11402 11509
-22831 2 2 0 6 7381 11359 11501
-22832 2 2 0 6 6139 9563 11400
-22833 2 2 0 6 6138 11401 7692
-22834 2 2 0 6 7246 11421 7247
-22835 2 2 0 6 9031 11402 9032
-22836 2 2 0 6 6741 11403 6740
-22837 2 2 0 6 6903 11487 11446
-22838 2 2 0 6 4640 11374 11448
-22839 2 2 0 6 4643 11372 11446
-22840 2 2 0 6 495 11516 11368
-22841 2 2 0 6 6308 7699 11404
-22842 2 2 0 6 6765 9743 11405
-22843 2 2 0 6 6761 11406 6762
-22844 2 2 0 6 6733 11407 9486
-22845 2 2 0 6 6734 6735 11408
-22846 2 2 0 6 6924 11346 11439
-22847 2 2 0 6 499 11490 6951
-22848 2 2 0 6 6161 11409 6796
-22849 2 2 0 6 132 11489 485
-22850 2 2 0 6 6611 8401 11484
-22851 2 2 0 6 6759 11410 7583
-22852 2 2 0 6 486 11439 6932
-22853 2 2 0 6 8557 11423 8559
-22854 2 2 0 6 147 11411 464
-22855 2 2 0 6 9851 11412 6136
-22856 2 2 0 6 120 121 11413
-22857 2 2 0 6 529 11380 11482
-22858 2 2 0 6 159 6952 11490
-22859 2 2 0 6 318 319 11414
-22860 2 2 0 6 4257 10189 11415
-22861 2 2 0 6 6153 11384 11353
-22862 2 2 0 6 133 6950 11489
-22863 2 2 0 6 6757 11416 10048
-22864 2 2 0 6 6122 11417 7167
-22865 2 2 0 6 173 11418 478
-22866 2 2 0 6 6935 11519 6937
-22867 2 2 0 6 395 11080 11463
-22868 2 2 0 6 123 11485 9033
-22869 2 2 0 6 6746 9648 11419
-22870 2 2 0 6 404 11508 7413
-22871 2 2 0 6 158 11490 499
-22872 2 2 0 6 6304 11421 8028
-22873 2 2 0 6 126 7435 11492
-22874 2 2 0 6 158 159 11490
-22875 2 2 0 6 370 371 11422
-22876 2 2 0 6 6574 11423 6850
-22877 2 2 0 6 8369 8370 11430
-22878 2 2 0 6 6795 11424 8626
-22879 2 2 0 6 135 136 11425
-22880 2 2 0 6 414 11506 11384
-22881 2 2 0 6 344 345 11426
-22882 2 2 0 6 7380 7381 11427
-22883 2 2 0 6 6864 11428 6865
-22884 2 2 0 6 8305 11432 8304
-22885 2 2 0 6 132 133 11489
-22886 2 2 0 6 4663 11501 11359
-22887 2 2 0 6 378 379 11429
-22888 2 2 0 6 6671 6851 11430
-22889 2 2 0 6 6120 11431 6852
-22890 2 2 0 6 6867 11432 6868
-22891 2 2 0 6 6937 11519 11345
-22892 2 2 0 6 6903 11446 11373
-22893 2 2 0 6 6121 11436 6860
-22894 2 2 0 6 6171 6853 11433
-22895 2 2 0 6 6150 11434 9698
-22896 2 2 0 6 7986 8858 11435
-22897 2 2 0 6 6611 11484 10812
-22898 2 2 0 6 8323 8322 11436
-22899 2 2 0 6 6924 11439 11369
-22900 2 2 0 6 6147 6861 11437
-22901 2 2 0 6 5128 11438 6015
-22902 2 2 0 6 7434 11492 7435
-22903 2 2 0 6 123 124 11485
-22904 2 2 0 6 6758 8393 11440
-22905 2 2 0 6 6157 6771 11441
-22906 2 2 0 6 107 6945 11488
-22907 2 2 0 6 392 11486 7845
-22908 2 2 0 6 6291 11442 7827
-22909 2 2 0 6 6754 11443 8043
-22910 2 2 0 6 6158 6160 11444
-22911 2 2 0 6 314 315 11445
-22912 2 2 0 6 6755 11447 6767
-22913 2 2 0 6 6940 6942 11448
-22914 2 2 0 6 6162 7150 11449
-22915 2 2 0 6 6141 11450 6866
-22916 2 2 0 6 6783 7446 11451
-22917 2 2 0 6 6760 10927 11452
-22918 2 2 0 6 321 322 11453
-22919 2 2 0 6 177 178 11454
-22920 2 2 0 6 6950 11520 11384
-22921 2 2 0 6 6880 11455 9734
-22922 2 2 0 6 6952 11515 11381
-22923 2 2 0 6 6721 7640 11456
-22924 2 2 0 6 6725 11457 9374
-22925 2 2 0 6 302 303 11458
-22926 2 2 0 6 196 197 11459
-22927 2 2 0 6 6751 11460 7640
-22928 2 2 0 6 6752 9374 11461
-22929 2 2 0 6 104 105 11462
-22930 2 2 0 6 394 395 11463
-22931 2 2 0 6 7842 11463 11080
-22932 2 2 0 6 328 329 11464
-22933 2 2 0 6 354 355 11465
-22934 2 2 0 6 6042 11466 6880
-22935 2 2 0 6 118 119 11467
-22936 2 2 0 6 316 317 11468
-22937 2 2 0 6 6731 7506 11469
-22938 2 2 0 6 6766 10518 11470
-22939 2 2 0 6 309 310 11471
-22940 2 2 0 6 387 388 11472
-22941 2 2 0 6 335 336 11473
-22942 2 2 0 6 137 138 11474
-22943 2 2 0 6 361 362 11475
-22944 2 2 0 6 6732 10812 11476
-22945 2 2 0 6 6767 11477 7709
-22946 2 2 0 6 6742 8043 11478
-22947 2 2 0 6 6941 11491 6942
-22948 2 2 0 6 6300 11479 7925
-22949 2 2 0 6 6739 7827 11480
-22950 2 2 0 6 4643 11487 9159
-22951 2 2 0 6 106 107 11488
-22952 2 2 0 6 6771 10149 11481
-22953 2 2 0 6 6901 6903 11482
-22954 2 2 0 6 300 11513 6971
-22955 2 2 0 6 4644 9159 11503
-22956 2 2 0 6 11032 6860 11483
-22957 2 2 0 6 392 393 11486
-22958 2 2 0 6 486 11369 11439
-22959 2 2 0 6 411 11484 8401
-22960 2 2 0 6 7433 9033 11485
-22961 2 2 0 6 6945 6928 11488
-22962 2 2 0 6 6940 11448 11374
-22963 2 2 0 6 7411 11446 11372
-22964 2 2 0 6 7843 7845 11486
-22965 2 2 0 6 6902 11487 6903
-22966 2 2 0 6 4644 11503 6904
-22967 2 2 0 6 4643 11446 11487
-22968 2 2 0 6 529 11482 11493
-22969 2 2 0 6 6944 11489 6950
-22970 2 2 0 6 414 11425 11506
-22971 2 2 0 6 6951 11490 6952
-22972 2 2 0 6 5146 11502 11356
-22973 2 2 0 6 503 11491 7480
-22974 2 2 0 6 102 11498 11361
-22975 2 2 0 6 7412 11508 11493
-22976 2 2 0 6 125 126 11492
-22977 2 2 0 6 529 11493 8458
-22978 2 2 0 6 6941 11505 11491
-22979 2 2 0 6 5163 11504 11382
-22980 2 2 0 6 6776 11521 11481
-22981 2 2 0 6 6901 11482 11380
-22982 2 2 0 6 130 131 11494
-22983 2 2 0 6 201 11364 11495
-22984 2 2 0 6 5174 11517 11450
-22985 2 2 0 6 5146 11346 11502
-22986 2 2 0 6 6850 11518 11385
-22987 2 2 0 6 200 11495 561
-22988 2 2 0 6 298 11496 562
-22989 2 2 0 6 5 563 11497
-22990 2 2 0 6 103 564 11498
-22991 2 2 0 6 7382 11378 11500
-22992 2 2 0 6 11377 7879 11499
-22993 2 2 0 6 7480 11491 11505
-22994 2 2 0 6 8458 11493 11508
-22995 2 2 0 6 9271 11511 11414
-22996 2 2 0 6 430 11429 11510
-22997 2 2 0 6 429 11509 11413
-22998 2 2 0 6 534 11512 11426
-22999 2 2 0 6 418 11514 11422
-23000 2 2 0 6 6775 11507 11415
-23001 2 2 0 6 8153 8154 11507
-23002 2 2 0 6 7712 11514 11202
-23003 2 2 0 6 6838 11499 11143
-23004 2 2 0 6 6149 10136 11500
-23005 2 2 0 6 7411 11373 11446
-23006 2 2 0 6 6841 6842 11512
-23007 2 2 0 6 4247 11501 4663
-23008 2 2 0 6 6971 11513 11368
-23009 2 2 0 6 6777 10138 11510
-23010 2 2 0 6 7876 11504 7877
-23011 2 2 0 6 6857 6859 11506
-23012 2 2 0 6 400 7480 11505
-23013 2 2 0 6 8091 11518 8092
-23014 2 2 0 6 404 8458 11508
-23015 2 2 0 6 300 301 11513
-23016 2 2 0 6 6935 6973 11519
-23017 2 2 0 6 160 403 11515
-23018 2 2 0 6 6135 11516 6847
-23019 2 2 0 6 8152 11517 8154
-23020 2 2 0 6 134 414 11520
-23021 2 2 0 6 400 11505 11345
-23022 2 2 0 6 7412 11493 11373
-23023 2 2 0 6 564 11361 11498
-23024 2 2 0 6 6941 11345 11505
-23025 2 2 0 6 414 11384 11520
-23026 2 2 0 6 561 11495 11364
-23027 2 2 0 6 403 11381 11515
-23028 2 2 0 6 6925 11356 11502
-23029 2 2 0 6 506 11521 11350
-23030 2 2 0 6 6878 11511 11363
-23031 2 2 0 6 7876 11382 11504
-23032 2 2 0 6 7698 11509 11365
-23033 2 2 0 6 6149 11500 11378
-23034 2 2 0 6 6838 11377 11499
-23035 2 2 0 6 6857 11506 11425
-23036 2 2 0 6 8091 11385 11518
-23037 2 2 0 6 8154 11415 11507
-23038 2 2 0 6 7712 11422 11514
-23039 2 2 0 6 7698 11413 11509
-23040 2 2 0 6 6878 11414 11511
-23041 2 2 0 6 6842 11426 11512
-23042 2 2 0 6 6777 11510 11429
-23043 2 2 0 6 8152 11450 11517
-23044 2 2 0 6 506 11481 11521
+216
+1 1 2 1 1 2 5
+2 1 2 1 1 5 6
+3 1 2 1 1 6 7
+4 1 2 1 1 7 8
+5 1 2 1 1 8 9
+6 1 2 1 1 9 10
+7 1 2 1 1 10 11
+8 1 2 1 1 11 3
+9 1 2 1 2 3 12
+10 1 2 1 2 12 13
+11 1 2 1 2 13 14
+12 1 2 1 2 14 15
+13 1 2 1 2 15 16
+14 1 2 1 2 16 17
+15 1 2 1 2 17 18
+16 1 2 1 2 18 4
+17 1 2 1 3 4 19
+18 1 2 1 3 19 20
+19 1 2 1 3 20 21
+20 1 2 1 3 21 22
+21 1 2 1 3 22 23
+22 1 2 1 3 23 24
+23 1 2 1 3 24 25
+24 1 2 1 3 25 1
+25 1 2 1 4 1 26
+26 1 2 1 4 26 27
+27 1 2 1 4 27 28
+28 1 2 1 4 28 29
+29 1 2 1 4 29 30
+30 1 2 1 4 30 31
+31 1 2 1 4 31 32
+32 1 2 1 4 32 2
+33 2 2 2 10 39 59 46
+34 2 2 2 10 38 58 48
+35 2 2 2 10 40 61 49
+36 2 2 2 10 37 49 60
+37 2 2 2 10 30 72 54
+38 2 2 2 10 23 68 52
+39 2 2 2 10 9 73 57
+40 2 2 2 10 28 50 66
+41 2 2 2 10 21 53 69
+42 2 2 2 10 16 70 55
+43 2 2 2 10 7 51 67
+44 2 2 2 10 14 56 71
+45 2 2 2 10 39 50 78
+46 2 2 2 10 41 51 79
+47 2 2 2 10 38 53 80
+48 2 2 2 10 40 56 81
+49 2 2 2 10 23 52 63
+50 2 2 2 10 16 55 65
+51 2 2 2 10 30 54 62
+52 2 2 2 10 9 57 64
+53 2 2 2 10 37 60 85
+54 2 2 2 10 34 46 58
+55 2 2 2 10 35 47 59
+56 2 2 2 10 36 48 61
+57 2 2 2 10 41 60 47
+58 2 2 2 10 48 58 82
+59 2 2 2 10 46 59 83
+60 2 2 2 10 49 61 84
+61 2 2 2 10 30 31 72
+62 2 2 2 10 9 10 73
+63 2 2 2 10 23 24 68
+64 2 2 2 10 16 17 70
+65 2 2 2 10 20 21 69
+66 2 2 2 10 13 14 71
+67 2 2 2 10 27 28 66
+68 2 2 2 10 6 7 67
+69 2 2 2 10 33 49 84
+70 2 2 2 10 98 49 33
+71 2 2 2 10 28 78 50
+72 2 2 2 10 7 79 51
+73 2 2 2 10 21 80 53
+74 2 2 2 10 14 81 56
+75 2 2 2 10 34 74 46
+76 2 2 2 10 35 75 47
+77 2 2 2 10 38 48 76
+78 2 2 2 10 40 49 77
+79 2 2 2 10 39 46 74
+80 2 2 2 10 41 47 75
+81 2 2 2 10 36 76 48
+82 2 2 2 10 37 77 49
+83 2 2 2 10 38 52 99
+84 2 2 2 10 39 54 100
+85 2 2 2 10 40 55 101
+86 2 2 2 10 38 63 52
+87 2 2 2 10 39 62 54
+88 2 2 2 10 40 65 55
+89 2 2 2 10 41 64 57
+90 2 2 2 10 41 57 85
+91 2 2 2 10 39 74 50
+92 2 2 2 10 41 75 51
+93 2 2 2 10 38 76 53
+94 2 2 2 10 40 77 56
+95 2 2 2 10 39 78 62
+96 2 2 2 10 41 79 64
+97 2 2 2 10 38 80 63
+98 2 2 2 10 40 81 65
+99 2 2 2 10 56 77 93
+100 2 2 2 10 37 93 77
+101 2 2 2 10 50 74 90
+102 2 2 2 10 51 75 91
+103 2 2 2 10 22 23 63
+104 2 2 2 10 15 16 65
+105 2 2 2 10 29 30 62
+106 2 2 2 10 8 9 64
+107 2 2 2 10 34 90 74
+108 2 2 2 10 35 91 75
+109 2 2 2 10 46 83 82
+110 2 2 2 10 48 82 84
+111 2 2 2 10 33 82 83
+112 2 2 2 10 33 84 82
+113 2 2 2 10 1 26 86
+114 2 2 2 10 2 5 87
+115 2 2 2 10 1 86 25
+116 2 2 2 10 2 87 32
+117 2 2 2 10 4 88 18
+118 2 2 2 10 4 19 88
+119 2 2 2 10 3 12 89
+120 2 2 2 10 3 89 11
+121 2 2 2 10 38 99 58
+122 2 2 2 10 39 100 59
+123 2 2 2 10 40 101 61
+124 2 2 2 10 49 98 60
+125 2 2 2 10 41 85 60
+126 2 2 2 10 46 82 58
+127 2 2 2 10 47 83 59
+128 2 2 2 10 48 84 61
+129 2 2 2 10 36 96 76
+130 2 2 2 10 53 76 96
+131 2 2 2 10 47 98 83
+132 2 2 2 10 28 29 78
+133 2 2 2 10 7 8 79
+134 2 2 2 10 21 22 80
+135 2 2 2 10 14 15 81
+136 2 2 2 10 34 58 99
+137 2 2 2 10 35 59 100
+138 2 2 2 10 36 61 101
+139 2 2 2 10 47 60 98
+140 2 2 2 10 55 92 101
+141 2 2 2 10 33 83 98
+142 2 2 2 10 31 32 108
+143 2 2 2 10 24 25 104
+144 2 2 2 10 10 11 109
+145 2 2 2 10 19 20 105
+146 2 2 2 10 17 18 106
+147 2 2 2 10 12 13 107
+148 2 2 2 10 26 27 102
+149 2 2 2 10 5 6 103
+150 2 2 2 10 22 63 80
+151 2 2 2 10 15 65 81
+152 2 2 2 10 29 62 78
+153 2 2 2 10 8 64 79
+154 2 2 2 10 50 90 66
+155 2 2 2 10 51 91 67
+156 2 2 2 10 55 70 92
+157 2 2 2 10 56 93 71
+158 2 2 2 10 42 94 68
+159 2 2 2 10 44 69 96
+160 2 2 2 10 43 95 72
+161 2 2 2 10 45 97 73
+162 2 2 2 10 37 85 97
+163 2 2 2 10 57 97 85
+164 2 2 2 10 42 90 94
+165 2 2 2 10 44 96 92
+166 2 2 2 10 43 91 95
+167 2 2 2 10 45 93 97
+168 2 2 2 10 36 101 92
+169 2 2 2 10 42 102 66
+170 2 2 2 10 43 103 67
+171 2 2 2 10 42 68 104
+172 2 2 2 10 44 105 69
+173 2 2 2 10 44 70 106
+174 2 2 2 10 45 107 71
+175 2 2 2 10 43 72 108
+176 2 2 2 10 45 73 109
+177 2 2 2 10 42 66 90
+178 2 2 2 10 43 67 91
+179 2 2 2 10 44 92 70
+180 2 2 2 10 45 71 93
+181 2 2 2 10 27 66 102
+182 2 2 2 10 6 67 103
+183 2 2 2 10 24 104 68
+184 2 2 2 10 20 69 105
+185 2 2 2 10 17 106 70
+186 2 2 2 10 13 71 107
+187 2 2 2 10 31 108 72
+188 2 2 2 10 10 109 73
+189 2 2 2 10 52 68 94
+190 2 2 2 10 53 96 69
+191 2 2 2 10 54 72 95
+192 2 2 2 10 57 73 97
+193 2 2 2 10 42 86 102
+194 2 2 2 10 43 87 103
+195 2 2 2 10 42 104 86
+196 2 2 2 10 44 88 105
+197 2 2 2 10 44 106 88
+198 2 2 2 10 43 108 87
+199 2 2 2 10 45 89 107
+200 2 2 2 10 45 109 89
+201 2 2 2 10 34 94 90
+202 2 2 2 10 35 95 91
+203 2 2 2 10 36 92 96
+204 2 2 2 10 37 97 93
+205 2 2 2 10 26 102 86
+206 2 2 2 10 5 103 87
+207 2 2 2 10 25 86 104
+208 2 2 2 10 19 105 88
+209 2 2 2 10 18 88 106
+210 2 2 2 10 12 107 89
+211 2 2 2 10 32 87 108
+212 2 2 2 10 11 89 109
+213 2 2 2 10 34 99 94
+214 2 2 2 10 52 94 99
+215 2 2 2 10 35 100 95
+216 2 2 2 10 54 95 100
 $EndElements
diff --git a/wrappers/gmshpy/gmshGeo.i b/wrappers/gmshpy/gmshGeo.i
index d195c204bf5a99ef5a1ff26ff2c77405bf632713..0266507840572b229f429ca18201bc70c0123cc1 100644
--- a/wrappers/gmshpy/gmshGeo.i
+++ b/wrappers/gmshpy/gmshGeo.i
@@ -19,6 +19,7 @@
   #include "GFace.h"
   #include "GFaceCompound.h"
   #include "GRegion.h"
+  #include "discreteDiskFace.h"
   #include "discreteFace.h"
   #include "discreteEdge.h"
   #include "discreteRegion.h"
@@ -113,6 +114,7 @@ namespace std {
 %include "GFace.h"
 %include "GFaceCompound.h"
 %include "GRegion.h"
+%include "discreteDiskFace.h"
 %include "discreteFace.h"
 %include "discreteEdge.h"
 %include "discreteVertex.h"