diff --git a/tutorial/t11.geo b/tutorial/t11.geo
index 913d77f5cfee1d84acb76121db11981dd9c26b34..8cd7cb4997f675dc9bf5f055583422b68de6b2f3 100644
--- a/tutorial/t11.geo
+++ b/tutorial/t11.geo
@@ -9,7 +9,7 @@
 // We have seen in tutorials t3 and t6 that extruded and transfinite
 // meshes can be "recombined" into quads/prisms/hexahedra by using the
 // "Recombine" keyword. Unstructured meshes can be recombined in the
-// same way: let's define a simple geometry with an analytical mesh
+// same way. Let's define a simple geometry with an analytical mesh
 // size field:
 
 Point(1) = {-1.25, -.5, 0};
diff --git a/tutorial/t12.geo b/tutorial/t12.geo
index 02bfa065cf938bae1f529066e03c5dd37e3b5e8b..32cba3df32a711c3abe0e7eb665efd1e663444ce 100644
--- a/tutorial/t12.geo
+++ b/tutorial/t12.geo
@@ -46,6 +46,8 @@ Compound Line(101) = {6, 7, 8};
 // Treat surfaces 12, 14 and 16 as a single surface
 Compound Surface(200) = {12, 14, 16};
 
+// Hide the original surfaces so we only see the compound
+// (cross-patch) mesh
 Hide {Surface{12, 14, 16}; }
 
 // More details about the reparametrization technique can be found in
diff --git a/tutorial/t13.geo b/tutorial/t13.geo
index b9c2d9facd7f7c24072771a9d9a8ffed4de6c78a..1b882131ef66232bd80286832028152cb1d79c68 100644
--- a/tutorial/t13.geo
+++ b/tutorial/t13.geo
@@ -7,8 +7,8 @@
  *********************************************************************/
 
 // Since compound geometrical compute a new parametrization, one can
-// also use them to remesh STL files, even if there's only a single
-// elementary per compound.
+// also use them to remesh STL files, even if in this case there's
+// usually only a single elementary geometrical entity per compound.
 
 // Let's merge the mesh that we would like to remesh. This mesh was
 // reclassified ("colored") from an initial STL triangulation using
@@ -48,4 +48,3 @@ Background Field = 1;
 
 Mesh.RemeshAlgorithm = 1; // (0) no split (1) automatic (2) automatic only with metis
 Mesh.RemeshParametrization = 1; // (0) harmonic (1) conformal 
-
diff --git a/tutorial/t4.geo b/tutorial/t4.geo
index 66eacbb5d9ab975cb625f497630bb133db7ea800..3b9b72237c212da3b8afca725a0fb53f4129caf0 100644
--- a/tutorial/t4.geo
+++ b/tutorial/t4.geo
@@ -24,37 +24,27 @@ ssin = Sqrt(1 - ccos^2);
 
 // Then we define some points and some lines using these variables:
 
-Point(1) = { -e1-e2, 0.0  , 0.0 , Lc1};
-Point(2) = { -e1-e2, h1   , 0.0 , Lc1};
-Point(3) = { -e3-r , h1   , 0.0 , Lc2};
-Point(4) = { -e3-r , h1+r , 0.0 , Lc2};
-Point(5) = { -e3   , h1+r , 0.0 , Lc2};
-Point(6) = { -e3   , h1+h2, 0.0 , Lc1};
-Point(7) = {  e3   , h1+h2, 0.0 , Lc1};
-Point(8) = {  e3   , h1+r , 0.0 , Lc2};
-Point(9) = {  e3+r , h1+r , 0.0 , Lc2};
-Point(10)= {  e3+r , h1   , 0.0 , Lc2};
-Point(11)= {  e1+e2, h1   , 0.0 , Lc1};
-Point(12)= {  e1+e2, 0.0  , 0.0 , Lc1};
-Point(13)= {  e2   , 0.0  , 0.0 , Lc1};
-
-Point(14)= {  R1 / ssin , h5+R1*ccos, 0.0 , Lc2};
-Point(15)= {  0.0       , h5        , 0.0 , Lc2};
-Point(16)= { -R1 / ssin , h5+R1*ccos, 0.0 , Lc2};
-Point(17)= { -e2        , 0.0       , 0.0 , Lc1};
-
-Point(18)= { -R2  , h1+h3   , 0.0 , Lc2};
-Point(19)= { -R2  , h1+h3+h4, 0.0 , Lc2};
-Point(20)= {  0.0 , h1+h3+h4, 0.0 , Lc2};
-Point(21)= {  R2  , h1+h3+h4, 0.0 , Lc2};
-Point(22)= {  R2  , h1+h3   , 0.0 , Lc2};
-Point(23)= {  0.0 , h1+h3   , 0.0 , Lc2};
-
-Point(24)= {  0 , h1+h3+h4+R2, 0.0 , Lc2};
-Point(25)= {  0 , h1+h3-R2,    0.0 , Lc2};
-
-Line(1)  = {1 ,17};
-Line(2)  = {17,16};
+Point(1) = {-e1-e2, 0    , 0, Lc1}; Point(2) = {-e1-e2, h1   , 0, Lc1};
+Point(3) = {-e3-r , h1   , 0, Lc2}; Point(4) = {-e3-r , h1+r , 0, Lc2};
+Point(5) = {-e3   , h1+r , 0, Lc2}; Point(6) = {-e3   , h1+h2, 0, Lc1};
+Point(7) = { e3   , h1+h2, 0, Lc1}; Point(8) = { e3   , h1+r , 0, Lc2};
+Point(9) = { e3+r , h1+r , 0, Lc2}; Point(10)= { e3+r , h1   , 0, Lc2};
+Point(11)= { e1+e2, h1   , 0, Lc1}; Point(12)= { e1+e2, 0    , 0, Lc1};
+Point(13)= { e2   , 0    , 0, Lc1};
+
+Point(14)= { R1 / ssin, h5+R1*ccos, 0, Lc2};
+Point(15)= { 0        , h5        , 0, Lc2};
+Point(16)= {-R1 / ssin, h5+R1*ccos, 0, Lc2};
+Point(17)= {-e2       , 0.0       , 0, Lc1};
+
+Point(18)= {-R2 , h1+h3   , 0, Lc2}; Point(19)= {-R2 , h1+h3+h4, 0, Lc2};
+Point(20)= { 0  , h1+h3+h4, 0, Lc2}; Point(21)= { R2 , h1+h3+h4, 0, Lc2};
+Point(22)= { R2 , h1+h3   , 0, Lc2}; Point(23)= { 0  , h1+h3   , 0, Lc2};
+
+Point(24)= { 0, h1+h3+h4+R2, 0, Lc2}; Point(25)= { 0, h1+h3-R2,    0, Lc2};
+
+Line(1)  = {1 , 17}; 
+Line(2)  = {17, 16};
 
 // Gmsh provides other curve primitives than stright lines: splines,
 // B-splines, circle arcs, ellipse arcs, etc. Here we define a new
@@ -67,22 +57,12 @@ Circle(3) = {14,15,16};
 // Pi. We can then define additional lines and circles, as well as a
 // new surface:
 
-Line(4)  = {14,13};
-Line(5)  = {13,12};
-Line(6)  = {12,11};
-Line(7)  = {11,10};
-Circle(8) = {8,9,10};
-Line(9)  = {8,7};
-Line(10) = {7,6};
-Line(11) = {6,5};
-Circle(12) = {3,4,5};
-Line(13) = {3,2};
-Line(14) = {2,1};
-Line(15) = {18,19};
-Circle(16) = {21,20,24};
-Circle(17) = {24,20,19};
-Circle(18) = {18,23,25};
-Circle(19) = {25,23,22};
+Line(4)  = {14,13}; Line(5)   = {13,12};  Line(6)  = {12,11}; 
+Line(7)  = {11,10}; Circle(8) = {8,9,10}; Line(9)  = {8,7};
+Line(10) = {7,6};   Line(11)  = {6,5};    Circle(12) = {3,4,5};
+Line(13) = {3,2};   Line(14)  = {2,1};    Line(15) = {18,19};
+Circle(16) = {21,20,24}; Circle(17) = {24,20,19};
+Circle(18) = {18,23,25}; Circle(19) = {25,23,22}; 
 Line(20) = {21,22};
 
 Line Loop(21) = {17,-15,18,19,-20,16};
diff --git a/tutorial/t5.geo b/tutorial/t5.geo
index 4f924457c6de140cec3280d49ca973b159acce77..635b159908c6e02663c41dc20ed6e5d3993bf548 100644
--- a/tutorial/t5.geo
+++ b/tutorial/t5.geo
@@ -79,18 +79,12 @@ Function CheeseHole
   p6 = newp; Point(p6) = {x,  y-r,z,  lcar3} ;
   p7 = newp; Point(p7) = {x,  y,  z-r,lcar3} ;
 
-  c1 = newreg; Circle(c1) = {p2,p1,p7};
-  c2 = newreg; Circle(c2) = {p7,p1,p5};
-  c3 = newreg; Circle(c3) = {p5,p1,p4};
-  c4 = newreg; Circle(c4) = {p4,p1,p2};
-  c5 = newreg; Circle(c5) = {p2,p1,p3};
-  c6 = newreg; Circle(c6) = {p3,p1,p5};
-  c7 = newreg; Circle(c7) = {p5,p1,p6};
-  c8 = newreg; Circle(c8) = {p6,p1,p2};
-  c9 = newreg; Circle(c9) = {p7,p1,p3};
-  c10 = newreg; Circle(c10) = {p3,p1,p4};
-  c11 = newreg; Circle(c11) = {p4,p1,p6};
-  c12 = newreg; Circle(c12) = {p6,p1,p7};
+  c1 = newreg; Circle(c1) = {p2,p1,p7}; c2 = newreg; Circle(c2) = {p7,p1,p5};
+  c3 = newreg; Circle(c3) = {p5,p1,p4}; c4 = newreg; Circle(c4) = {p4,p1,p2};
+  c5 = newreg; Circle(c5) = {p2,p1,p3}; c6 = newreg; Circle(c6) = {p3,p1,p5};
+  c7 = newreg; Circle(c7) = {p5,p1,p6}; c8 = newreg; Circle(c8) = {p6,p1,p2};
+  c9 = newreg; Circle(c9) = {p7,p1,p3}; c10 = newreg; Circle(c10) = {p3,p1,p4};
+  c11 = newreg; Circle(c11) = {p4,p1,p6}; c12 = newreg; Circle(c12) = {p6,p1,p7};
 
   // We need non-plane surfaces to define the spherical holes. Here we
   // use ruled surfaces, which can have 3 or 4 sides:
diff --git a/tutorial/t8.geo b/tutorial/t8.geo
index 2f8a1c4a2c5a0e5718dc4de145a048ef900dbb6a..e4aa22df4b970ca76ede1b29480c4810b444b6f8 100644
--- a/tutorial/t8.geo
+++ b/tutorial/t8.geo
@@ -8,49 +8,43 @@
 
 // We first include `t1.geo' as well as some post-processing views:
 
-Include "t1.geo" ;
-Include "view1.pos" ;
-Include "view1.pos" ;
-Include "view4.pos" ;
+Include "t1.geo";
+Include "view1.pos";
+Include "view1.pos";
+Include "view4.pos";
 
 // We then set some general options:
 
-General.Trackball = 0 ;
-General.RotationX = 0 ;
-General.RotationY = 0 ;
-General.RotationZ = 0 ;
-General.Color.Background = White ;
-General.Color.Foreground = Black ;
-General.Color.Text = Black ;
-General.Orthographic = 0 ;
-General.Axes = 0 ;
-General.SmallAxes = 0 ;
+General.Trackball = 0; 
+General.RotationX = 0; General.RotationY = 0; General.RotationZ = 0;
+General.Color.Background = White; General.Color.Foreground = Black;
+General.Color.Text = Black;
+General.Orthographic = 0;
+General.Axes = 0; General.SmallAxes = 0;
 
 // We also set some options for each post-processing view:
 
 v0 = PostProcessing.NbViews-4;
-v1 = v0+1;
-v2 = v0+2;
-v3 = v0+3;
-
-View[v0].IntervalsType = 2 ;
-View[v0].OffsetZ = 0.05 ;
-View[v0].RaiseZ = 0 ;
-View[v0].Light = 1 ;
+v1 = v0+1; v2 = v0+2; v3 = v0+3;
+
+View[v0].IntervalsType = 2;
+View[v0].OffsetZ = 0.05;
+View[v0].RaiseZ = 0;
+View[v0].Light = 1;
 View[v0].ShowScale = 0;
 View[v0].SmoothNormals = 1;
 
-View[v1].IntervalsType = 1 ;
-View[v1].ColorTable = { Green, Blue } ;
-View[v1].NbIso = 10 ;
+View[v1].IntervalsType = 1;
+View[v1].ColorTable = { Green, Blue };
+View[v1].NbIso = 10;
 View[v1].ShowScale = 0;
 
-View[v2].Name = "Test..." ;
+View[v2].Name = "Test...";
 View[v2].Axes = 1;
 View[v2].Color.Axes = Black;
-View[v2].IntervalsType = 2 ;
+View[v2].IntervalsType = 2;
 View[v2].Type = 2;
-View[v2].IntervalsType = 2 ;
+View[v2].IntervalsType = 2;
 View[v2].AutoPosition = 0;
 View[v2].PositionX = 85;
 View[v2].PositionY = 50;
@@ -64,32 +58,32 @@ View[v3].Visible = 0;
 // In {0.5:1.5:0.1}' would increment num from 0.5 to 1.5 with a step
 // of 0.1.)
 
-t = 0 ;
+t = 0;
 
 //For num In {1:1}
 For num In {1:255}
 
-  View[v0].TimeStep = t ;
-  View[v1].TimeStep = t ;
-  View[v2].TimeStep = t ;
-  View[v3].TimeStep = t ;
+  View[v0].TimeStep = t;
+  View[v1].TimeStep = t;
+  View[v2].TimeStep = t;
+  View[v3].TimeStep = t;
 
-  t = (View[v0].TimeStep < View[v0].NbTimeStep-1) ? t+1 : 0 ;
+  t = (View[v0].TimeStep < View[v0].NbTimeStep-1) ? t+1 : 0;
   
-  View[v0].RaiseZ += 0.01/View[v0].Max * t ;
+  View[v0].RaiseZ += 0.01/View[v0].Max * t;
 
   If (num == 3)
     // We want to create 320x240 frames when num == 3:
-    General.GraphicsWidth = 320 ; 
-    General.GraphicsHeight = 240 ;
+    General.GraphicsWidth = 320; 
+    General.GraphicsHeight = 240;
   EndIf
 
   // It is possible to nest loops:
   For num2 In {1:50}
 
-    General.RotationX += 10 ;
-    General.RotationY = General.RotationX / 3 ;
-    General.RotationZ += 0.1 ;
+    General.RotationX += 10;
+    General.RotationY = General.RotationX / 3;
+    General.RotationZ += 0.1;
  
     Sleep 0.01; // sleep for 0.01 second
     Draw; // draw the scene