From a6fc90faa7921eeec74f4ed2a38aadfd80665f02 Mon Sep 17 00:00:00 2001 From: Christophe Geuzaine <cgeuzaine@ulg.ac.be> Date: Tue, 16 Mar 2010 07:38:13 +0000 Subject: [PATCH] fix compile --- Geo/MElement.h | 2 +- Numeric/polynomialBasis.h | 150 +++++++++++++++++++------------------- 2 files changed, 76 insertions(+), 76 deletions(-) diff --git a/Geo/MElement.h b/Geo/MElement.h index e026ace7c6..f3a00f4b3b 100644 --- a/Geo/MElement.h +++ b/Geo/MElement.h @@ -65,7 +65,7 @@ class MElement // get/set the partition to which the element belongs virtual int getPartition() const { return _partition; } - virtual void setPartition(int num){_partition = (short)num; } + virtual void setPartition(int num){ _partition = (short)num; } // get/set the visibility flag virtual char getVisibility() const; diff --git a/Numeric/polynomialBasis.h b/Numeric/polynomialBasis.h index 8ab2429d8e..3c4acab11a 100644 --- a/Numeric/polynomialBasis.h +++ b/Numeric/polynomialBasis.h @@ -25,7 +25,7 @@ class polynomialBasis int numFaces; // for a given face/edge, with both a sign and a rotation, // give an ordered list of nodes on this face/edge - inline const std::vector<int> &getClosure (int id) const // return the closure of dimension dim + inline const std::vector<int> &getClosure(int id) const // return the closure of dimension dim { return closures[id]; } @@ -60,9 +60,9 @@ class polynomialBasis grads[i][1] = 0; grads[i][2] = 0; for(int j = 0; j < coefficients.size2(); j++){ - if ((monomials)(j, 0) > 0) - grads[i][0] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0) - 1) * (monomials)(j, 0); + if (monomials(j, 0) > 0) + grads[i][0] += coefficients(i, j) * + pow(u, monomials(j, 0) - 1) * monomials(j, 0); } } break; @@ -72,14 +72,14 @@ class polynomialBasis grads[i][1] = 0; grads[i][2] = 0; for(int j = 0; j < coefficients.size2(); j++){ - if ((monomials)(j, 0) > 0) - grads[i][0] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0) - 1) * (monomials)(j, 0) * - pow(v, (monomials)(j, 1)); - if ((monomials)(j, 1) > 0) - grads[i][1] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0)) * - pow(v, (monomials)(j, 1) - 1) * (monomials)(j, 1); + if (monomials(j, 0) > 0) + grads[i][0] += coefficients(i, j) * + pow(u, monomials(j, 0) - 1) * monomials(j, 0) * + pow(v, monomials(j, 1)); + if (monomials(j, 1) > 0) + grads[i][1] += coefficients(i, j) * + pow(u, monomials(j, 0)) * + pow(v, monomials(j, 1) - 1) * monomials(j, 1); } } break; @@ -89,21 +89,21 @@ class polynomialBasis grads[i][1] = 0; grads[i][2] = 0; for(int j = 0; j < coefficients.size2(); j++){ - if ((monomials)(j, 0) > 0) - grads[i][0] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0) - 1) * (monomials)(j, 0) * - pow(v, (monomials)(j, 1)) * - pow(w, (monomials)(j, 2)); - if ((monomials)(j, 1) > 0) - grads[i][1] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0)) * - pow(v, (monomials)(j, 1) - 1) * (monomials)(j, 1) * - pow(w, (monomials)(j, 2)); - if ((monomials)(j, 2) > 0) - grads[i][2] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0)) * - pow(v, (monomials)(j, 1)) * - pow(w, (monomials)(j, 2) - 1) * (monomials)(j, 2); + if (monomials(j, 0) > 0) + grads[i][0] += coefficients(i, j) * + pow(u, monomials(j, 0) - 1) * monomials(j, 0) * + pow(v, monomials(j, 1)) * + pow(w, monomials(j, 2)); + if (monomials(j, 1) > 0) + grads[i][1] += coefficients(i, j) * + pow(u, monomials(j, 0)) * + pow(v, monomials(j, 1) - 1) * monomials(j, 1) * + pow(w, monomials(j, 2)); + if (monomials(j, 2) > 0) + grads[i][2] += coefficients(i, j) * + pow(u, monomials(j, 0)) * + pow(v, monomials(j, 1)) * + pow(w, monomials(j, 2) - 1) * monomials(j, 2); } } break; @@ -119,8 +119,9 @@ class polynomialBasis hess[i][2][0] = hess[i][2][1] = hess[i][2][2] = 0; for(int j = 0; j < coefficients.size2(); j++){ - if ((monomials)(j, 0) > 1) // second derivative !=0 - hess[i][0][0] += (coefficients)(i, j) * pow(u, (monomials)(j, 0) - 2) * (monomials)(j, 0) * ((monomials)(j, 0)-1); + if (monomials(j, 0) > 1) // second derivative !=0 + hess[i][0][0] += coefficients(i, j) * pow(u, monomials(j, 0) - 2) * + monomials(j, 0) * (monomials(j, 0) - 1); } } break; @@ -130,20 +131,19 @@ class polynomialBasis hess[i][1][0] = hess[i][1][1] = hess[i][1][2] = 0; hess[i][2][0] = hess[i][2][1] = hess[i][2][2] = 0; for(int j = 0; j < coefficients.size2(); j++){ - if ((monomials)(j, 0) > 1) // second derivative !=0 - hess[i][0][0] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0) - 2) * (monomials)(j, 0) * ((monomials)(j, 0)-1) * - pow(v, (monomials)(j, 1)); - if (((monomials)(j,1)>0) and ((monomials)(j,0)>0)) - hess[i][0][1]+=(coefficients)(i, j) * - pow(u, (monomials)(j, 0) - 1) * (monomials)(j, 0) * - pow(v, (monomials)(j, 1)-1) * (monomials)(j, 1); - if ((monomials)(j, 1) > 1) - hess[i][1][1] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0)) * - pow(v, (monomials)(j, 1) - 2) * (monomials)(j, 1) * ((monomials)(j, 1)-1); + if (monomials(j, 0) > 1) // second derivative !=0 + hess[i][0][0] += coefficients(i, j) * pow(u, monomials(j, 0) - 2) * + monomials(j, 0) * (monomials(j, 0) - 1) * pow(v, monomials(j, 1)); + if ((monomials(j, 1) > 0) && (monomials(j, 0) > 0)) + hess[i][0][1] += coefficients(i, j) * + pow(u, monomials(j, 0) - 1) * monomials(j, 0) * + pow(v, monomials(j, 1) - 1) * monomials(j, 1); + if (monomials(j, 1) > 1) + hess[i][1][1] += coefficients(i, j) * + pow(u, monomials(j, 0)) * + pow(v, monomials(j, 1) - 2) * monomials(j, 1) * (monomials(j, 1) - 1); } - hess[i][1][0]=hess[i][0][1]; + hess[i][1][0] = hess[i][0][1]; } break; case 3: @@ -152,41 +152,41 @@ class polynomialBasis hess[i][1][0] = hess[i][1][1] = hess[i][1][2] = 0; hess[i][2][0] = hess[i][2][1] = hess[i][2][2] = 0; for(int j = 0; j < coefficients.size2(); j++){ - if ((monomials)(j, 0) > 1) - hess[i][0][0] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0) - 2) * (monomials)(j, 0) * ((monomials)(j, 0)-1) * - pow(v, (monomials)(j, 1)) * - pow(w, (monomials)(j, 2)); + if (monomials(j, 0) > 1) + hess[i][0][0] += coefficients(i, j) * + pow(u, monomials(j, 0) - 2) * monomials(j, 0) * (monomials(j, 0)-1) * + pow(v, monomials(j, 1)) * + pow(w, monomials(j, 2)); - if (((monomials)(j,0)>0) and ((monomials)(j,1)>0)) - hess[i][0][1] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0) - 1) * (monomials)(j, 0) * - pow(v, (monomials)(j, 1) - 1) * (monomials)(j, 1) * - pow(w, (monomials)(j, 2)); - if (((monomials)(j,0)>0) and ((monomials)(j,2)>0)) - hess[i][0][2] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0) - 1) * (monomials)(j, 0) * - pow(v, (monomials)(j, 1)) * - pow(w, (monomials)(j, 2) - 1) * (monomials)(j, 2); - if ((monomials)(j, 1) > 1) - hess[i][1][1] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0)) * - pow(v, (monomials)(j, 1) - 2) * (monomials)(j, 1) * ((monomials)(j, 1)-1) * - pow(w, (monomials)(j, 2)); - if (((monomials)(j,1)>0) and ((monomials)(j,2)>0)) - hess[i][1][2] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0)) * - pow(v, (monomials)(j, 1) - 1) * (monomials)(j, 1) * - pow(w, (monomials)(j, 2) - 1) * (monomials)(j, 2); - if ((monomials)(j, 2) > 1) - hess[i][2][2] += (coefficients)(i, j) * - pow(u, (monomials)(j, 0)) * - pow(v, (monomials)(j, 1)) * - pow(w, (monomials)(j, 2) - 2) * (monomials)(j, 2) * ((monomials)(j, 2)-1); + if ((monomials(j, 0) > 0) && (monomials(j, 1) > 0)) + hess[i][0][1] += coefficients(i, j) * + pow(u, monomials(j, 0) - 1) * monomials(j, 0) * + pow(v, monomials(j, 1) - 1) * monomials(j, 1) * + pow(w, monomials(j, 2)); + if ((monomials(j, 0) > 0) && (monomials(j, 2) > 0)) + hess[i][0][2] += coefficients(i, j) * + pow(u, monomials(j, 0) - 1) * monomials(j, 0) * + pow(v, monomials(j, 1)) * + pow(w, monomials(j, 2) - 1) * monomials(j, 2); + if (monomials(j, 1) > 1) + hess[i][1][1] += coefficients(i, j) * + pow(u, monomials(j, 0)) * + pow(v, monomials(j, 1) - 2) * monomials(j, 1) * (monomials(j, 1)-1) * + pow(w, monomials(j, 2)); + if ((monomials(j, 1) > 0) && (monomials(j, 2) > 0)) + hess[i][1][2] += coefficients(i, j) * + pow(u, monomials(j, 0)) * + pow(v, monomials(j, 1) - 1) * monomials(j, 1) * + pow(w, monomials(j, 2) - 1) * monomials(j, 2); + if (monomials(j, 2) > 1) + hess[i][2][2] += coefficients(i, j) * + pow(u, monomials(j, 0)) * + pow(v, monomials(j, 1)) * + pow(w, monomials(j, 2) - 2) * monomials(j, 2) * (monomials(j, 2) - 1); } - hess[i][1][0]=hess[i][0][1]; - hess[i][2][0]=hess[i][0][2]; - hess[i][2][1]=hess[i][1][2]; + hess[i][1][0] = hess[i][0][1]; + hess[i][2][0] = hess[i][0][2]; + hess[i][2][1] = hess[i][1][2]; } break; } -- GitLab