diff --git a/Geo/CellComplex.cpp b/Geo/CellComplex.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7b117e1cef3cb1c8af1000b2a7edceb390625a91 --- /dev/null +++ b/Geo/CellComplex.cpp @@ -0,0 +1,520 @@ +// Gmsh - Copyright (C) 1997-2009 C. Geuzaine, J.-F. Remacle +// +// See the LICENSE.txt file for license information. Please report all +// bugs and problems to <gmsh@geuz.org>. +// +// Contributed by Matti Pellikka, 16.3.2009. + +#include "CellComplex.h" + +CellComplex::CellComplex( std::vector<GEntity*> domain, std::vector<GEntity*> subdomain ){ + + _domain = domain; + _subdomain = subdomain; + + // subdomain need to be inserted first! + insertCells(true); + insertCells(false); + + +} +void CellComplex::insertCells(bool subdomain){ + + std::vector<GEntity*> domain; + + if(subdomain) domain = _subdomain; + else domain = _domain; + + std::vector<int> vertices; + int vertex = 0; + + for(unsigned int j=0; j < domain.size(); j++) { + for(unsigned int i=0; i < domain.at(j)->getNumMeshElements(); i++){ + vertices.clear(); + for(int k=0; k < domain.at(j)->getMeshElement(i)->getNumVertices(); k++){ + MVertex* vertex = domain.at(j)->getMeshElement(i)->getVertex(k); + vertices.push_back(vertex->getNum()); + //_cells[0].insert(new ZeroSimplex(vertex->getNum(), subdomain, vertex->x(), vertex->y(), vertex->z() )); // Add vertices + _cells[0].insert(new ZeroSimplex(vertex->getNum(), subdomain)); + } + if(domain.at(j)->getMeshElement(i)->getDim() == 3){ + _cells[3].insert(new ThreeSimplex(vertices, subdomain)); // Add volumes + } + + for(int k=0; k < domain.at(j)->getMeshElement(i)->getNumFaces(); k++){ + vertices.clear(); + for(int l=0; l < domain.at(j)->getMeshElement(i)->getFace(k).getNumVertices(); l++){ + vertex = domain.at(j)->getMeshElement(i)->getFace(k).getVertex(l)->getNum(); + vertices.push_back(vertex); + } + _cells[2].insert(new TwoSimplex(vertices, subdomain)); // Add faces + } + + for(int k=0; k < domain.at(j)->getMeshElement(i)->getNumEdges(); k++){ + vertices.clear(); + for(int l=0; l < domain.at(j)->getMeshElement(i)->getEdge(k).getNumVertices(); l++){ + vertex = domain.at(j)->getMeshElement(i)->getEdge(k).getVertex(l)->getNum(); + vertices.push_back(vertex); + } + _cells[1].insert(new OneSimplex(vertices, subdomain)); // Add edges + } + + } + } + +} + +int Simplex::kappa(Cell* tau) const{ + for(int i=0; i < tau->getNumVertices(); i++){ + if( !(this->hasVertex(tau->getVertex(i))) ) return 0; + } + + if(this->getDim() - tau->getDim() != 1) return 0; + + int value=1; + for(int i=0; i < tau->getNumVertices(); i++){ + if(this->getVertex(i) != tau->getVertex(i)) return value; + value = value*-1; + } + + return 1; +} +std::set<Cell*, Less_Cell>::iterator CellComplex::findCell(int dim, std::vector<int>& vertices){ + if(dim == 0) return _cells[dim].find(new ZeroSimplex(vertices.at(0))); + if(dim == 1) return _cells[dim].find(new OneSimplex(vertices)); + if(dim == 2) return _cells[dim].find(new TwoSimplex(vertices)); + return _cells[3].find(new ThreeSimplex(vertices)); +} + +std::set<Cell*, Less_Cell>::iterator CellComplex::findCell(int dim, int vertex, int dummy){ + if(dim == 0) return _cells[dim].lower_bound(new ZeroSimplex(vertex)); + if(dim == 1) return _cells[dim].lower_bound(new OneSimplex(vertex, dummy)); + if(dim == 2) return _cells[dim].lower_bound(new TwoSimplex(vertex, dummy)); + return _cells[3].lower_bound(new ThreeSimplex(vertex, dummy)); +} + + +std::vector<Cell*> CellComplex::bd(Cell* sigma){ + std::vector<Cell*> boundary; + int dim = sigma->getDim(); + if(dim < 1) return boundary; + + + citer start = findCell(dim-1, sigma->getVertex(0), 0); + if(start == lastCell(dim-1)) return boundary; + + citer end = findCell(dim-1, sigma->getVertex(sigma->getNumVertices()-1), sigma->getVertex(sigma->getNumVertices()-1)); + if(end != lastCell(dim-1)) end++; + + //for(citer cit = firstCell(dim-1); cit != lastCell(dim-1); cit++){ + for(citer cit = start; cit != end; cit++){ + if(kappa(sigma, *cit) != 0){ + boundary.push_back(*cit); + if(boundary.size() == sigma->getBdMaxSize()){ + return boundary; + } + } + } + return boundary; +} +std::vector< std::set<Cell*, Less_Cell>::iterator > CellComplex::bdIt(Cell* sigma){ + + int dim = sigma->getDim(); + std::vector< std::set<Cell*, Less_Cell>::iterator > boundary; + if(dim < 1){ + return boundary; + } + + citer start = findCell(dim-1, sigma->getVertex(0), 0); + if(start == lastCell(dim-1)) return boundary; + + citer end = findCell(dim-1, sigma->getVertex(sigma->getNumVertices()-1), sigma->getVertex(sigma->getNumVertices()-1)); + if(end != lastCell(dim-1)) end++; + + for(citer cit = start; cit != end; cit++){ + if(kappa(sigma, *cit) != 0){ + boundary.push_back(cit); + if(boundary.size() == sigma->getBdMaxSize()){ + return boundary; + } + } + } + + return boundary; +} + + + +std::vector<Cell*> CellComplex::cbd(Cell* tau){ + std::vector<Cell*> coboundary; + int dim = tau->getDim(); + if(dim > 2){ + return coboundary; + } + + for(citer cit = firstCell(dim+1); cit != lastCell(dim+1); cit++){ + if(kappa(*cit, tau) != 0){ + coboundary.push_back(*cit); + if(coboundary.size() == tau->getCbdMaxSize()){ + return coboundary; + } + } + } + return coboundary; +} +std::vector< std::set<Cell*, Less_Cell>::iterator > CellComplex::cbdIt(Cell* tau){ + + std::vector< std::set<Cell*, Less_Cell>::iterator > coboundary; + int dim = tau->getDim(); + if(dim > 2){ + return coboundary; + } + + for(citer cit = firstCell(dim+1); cit != lastCell(dim+1); cit++){ + if(kappa(*cit, tau) != 0){ + coboundary.push_back(cit); + if(coboundary.size() == tau->getCbdMaxSize()){ + return coboundary; + } + } + } + + return coboundary; +} + + +void CellComplex::removeCell(Cell* cell){ + _cells[cell->getDim()].erase(cell); + delete cell; +} +void CellComplex::removeCellIt(std::set<Cell*, Less_Cell>::iterator cell){ + Cell* c = *cell; + int dim = c->getDim(); + _cells[dim].erase(cell); + delete c; +} + +void CellComplex::removeCellQset(Cell*& cell, std::set<Cell*, Less_Cell>& Qset){ + Qset.erase(cell); + delete cell; +} + +void CellComplex::enqueueCellsIt(std::vector< std::set<Cell*, Less_Cell>::iterator >& cells, + std::queue<Cell*>& Q, std::set<Cell*, Less_Cell>& Qset){ + for(unsigned int i=0; i < cells.size(); i++){ + Cell* cell = *cells.at(i); + citer cit = Qset.find(cell); + if(cit == Qset.end()){ + Qset.insert(cell); + Q.push(cell); + } + } +} +void CellComplex::enqueueCells(std::vector<Cell*>& cells, std::queue<Cell*>& Q, std::set<Cell*, Less_Cell>& Qset){ + for(unsigned int i=0; i < cells.size(); i++){ + citer cit = Qset.find(cells.at(i)); + if(cit == Qset.end()){ + Qset.insert(cells.at(i)); + Q.push(cells.at(i)); + } + } +} + + +int CellComplex::coreductionMrozek(Cell* generator){ + + int coreductions = 0; + + std::queue<Cell*> Q; + std::set<Cell*, Less_Cell> Qset; + + Q.push(generator); + Qset.insert(generator); + //removeCell(generator); + + std::vector<Cell*> bd_s; + //std::vector< std::set<Cell*, Less_Cell>::iterator > bd_s; + std::vector<Cell*> cbd_c; + //std::vector< std::set<Cell*, Less_Cell>::iterator > cbd_c; + Cell* s; + int round = 0; + while( !Q.empty() ){ + round++; + //printf("%d ", round); + s = Q.front(); + Q.pop(); + removeCellQset(s, Qset); + + //bd_s = bdIt(s); + bd_s = bd(s); + if( bd_s.size() == 1 && inSameDomain(s, bd_s.at(0)) ){ + removeCell(s); + //cbd_c = cbdIt(*bd_s.at(0)); + cbd_c = cbd(bd_s.at(0)); + //enqueueCellsIt(cbd_c, Q, Qset); + enqueueCells(cbd_c, Q, Qset); + //removeCellIt(bd_s.at(0)); + removeCell(bd_s.at(0)); + coreductions++; + } + else if(bd_s.empty()){ + //cbd_c = cbdIt(s); + //enqueueCellsIt(cbd_c, Q, Qset); + cbd_c = cbd(s); + enqueueCells(cbd_c, Q, Qset); + } + + + } + printf("Coreduction: %d loops with %d coreductions\n", round, coreductions); + return coreductions; +} + + +int CellComplex::coreduction(int dim){ + + if(dim < 0 || dim > 2) return 0; + + std::vector<Cell*> bd_c; + int count = 0; + + bool coreduced = true; + while (coreduced){ + coreduced = false; + for(citer cit = firstCell(dim+1); cit != lastCell(dim+1); cit++){ + Cell* cell = *cit; + + bd_c = bd(cell); + if(bd_c.size() == 1 && inSameDomain(cell, bd_c.at(0)) ){ + removeCell(cell); + //cit = firstCell(dim-1); + removeCell(bd_c.at(0)); + count++; + coreduced =true; + } + + } + } + + return count; + +} + + +int CellComplex::reduction(int dim){ + if(dim < 1 || dim > 3) return 0; + + std::vector<Cell*> cbd_c; + int count = 0; + + bool reduced = true; + while (reduced){ + reduced = false; + for(citer cit = firstCell(dim-1); cit != lastCell(dim-1); cit++){ + Cell* cell = *cit; + //if(reductionMrozek(cell) !=0) cit = firstCell(dim-1); + cbd_c = cbd(cell); + if(cbd_c.size() == 1 && inSameDomain(cell, cbd_c.at(0)) ){ + removeCell(cell); + //cit = firstCell(dim-1); + removeCell(cbd_c.at(0)); + count++; + reduced =true; + } + + } + } + return count; +} + +void CellComplex::reduceComplex(){ + printf("Cell complex before reduction: %d volumes, %d faces, %d edges and %d vertices.\n", + getSize(3), getSize(2), getSize(1), getSize(0)); + reduction(3); + reduction(2); + reduction(1); + printf("Cell complex after reduction: %d volumes, %d faces, %d edges and %d vertices.\n", + getSize(3), getSize(2), getSize(1), getSize(0)); +} +void CellComplex::coreduceComplex(){ + printf("Cell complex before coreduction: %d volumes, %d faces, %d edges and %d vertices.\n", + getSize(3), getSize(2), getSize(1), getSize(0)); + while (getSize(0) != 0){ + citer cit = firstCell(0); + Cell* cell = *cit; + removeCell(cell); + //complex.coreductionMrozek(kaka); + coreduction(0); + coreduction(1); + coreduction(2); + + } + + printf("Cell complex after coreduction: %d volumes, %d faces, %d edges and %d vertices.\n", + getSize(3), getSize(2), getSize(1), getSize(0)); +} + +void CellComplex::constructHMatrix(int dim){ + + // h: C_dim -> C_(dim-1) + + if(dim > 3 || dim < 1){ + return; + } + + if( _cells[dim].size() == 0 ){ + _HMatrix[dim] = create_gmp_matrix_zero(1, 1); + return; + } + unsigned int cols = _cells[dim].size(); + + if( _cells[dim-1].size() == 0){ + _HMatrix[dim] = create_gmp_matrix_zero(1, cols); + return; + } + unsigned int rows = _cells[dim-1].size(); + + mpz_t elems[rows*cols]; + mpz_array_init( elems[0], rows*cols, 512 ); + + citer high = firstCell(dim); + citer low = firstCell(dim-1); + + //printf("laa %d %d %d \n", rows, cols, rows*cols); + for(unsigned int i=0; i < rows*cols; i++){ + //printf("%d, ", i); + if(low == lastCell(dim-1)){ + //printf("rowfull %d", i); + high++; + low = firstCell(dim-1); + } + mpz_set_ui(elems[i], kappa(*high, *low)); + low++; + } + + _HMatrix[dim] = create_gmp_matrix(rows, cols, elems); + + return; +} + + +void CellComplex::getDomainVertices(std::set<MVertex*, Less_MVertex>& domainVertices, bool subdomain){ + + std::vector<GEntity*> domain; + if(subdomain) domain = _subdomain; + else domain = _domain; + + for(unsigned int j=0; j < domain.size(); j++) { + for(unsigned int i=0; i < domain.at(j)->getNumMeshElements(); i++){ + for(int k=0; k < domain.at(j)->getMeshElement(i)->getNumVertices(); k++){ + MVertex* vertex = domain.at(j)->getMeshElement(i)->getVertex(k); + domainVertices.insert(vertex); + } + } + } + +/* for(unsigned int j=0; j < _domain.size(); j++) { + for(unsigned int i=0; i < _domain.at(j)->getNumMeshVertices(); i++){ + MVertex* vertex = _domain.at(j)->getMeshVertex(i); + domainVertices.insert(vertex); + } + + std::list<GFace*> faces = _domain.at(j)->faces(); + for(std::list<GFace*>::iterator fit = faces.begin(); fit != faces.end(); fit++){ + GFace* face = *fit; + for(unsigned int i=0; i < face->getNumMeshVertices(); i++){ + MVertex* vertex = face->getMeshVertex(i); + domainVertices.insert(vertex); + } + } + std::list<GEdge*> edges = _domain.at(j)->edges(); + for(std::list<GEdge*>::iterator eit = edges.begin(); eit != edges.end(); eit++){ + GEdge* edge = *eit; + for(unsigned int i=0; i < edge->getNumMeshVertices(); i++){ + MVertex* vertex = edge->getMeshVertex(i); + domainVertices.insert(vertex); + } + } + std::list<GVertex*> vertices = _domain.at(j)->vertices(); + for(std::list<GVertex*>::iterator vit = vertices.begin(); vit != vertices.end(); vit++){ + GVertex* vertex = *vit; + for(unsigned int i=0; i < vertex->getNumMeshVertices(); i++){ + MVertex* mvertex = vertex->getMeshVertex(i); + domainVertices.insert(mvertex); + } + } + + } + */ + return; +} + +int CellComplex::writeComplexMSH(const std::string &name){ + + + FILE *fp = fopen(name.c_str(), "w"); + if(!fp){ + Msg::Error("Unable to open file '%s'", name.c_str()); + return 0; + } + + fprintf(fp, "$NOD\n"); + + std::set<MVertex*, Less_MVertex> domainVertices; + getDomainVertices(domainVertices, true); + getDomainVertices(domainVertices, false); + + fprintf(fp, "%d\n", domainVertices.size()); + + for(std::set<MVertex*, Less_MVertex>::iterator vit = domainVertices.begin(); vit != domainVertices.end(); vit++){ + MVertex* vertex = *vit; + fprintf(fp, "%d %.16g %.16g %.16g\n", vertex->getNum(), vertex->x(), vertex->y(), vertex->z() ); + } + + + fprintf(fp, "$ENDNOD\n"); + fprintf(fp, "$ELM\n"); + + fprintf(fp, "%d\n", _cells[0].size() + _cells[1].size() + _cells[2].size() + _cells[3].size()); + + int index = 1; + + for(citer cit = firstCell(0); cit != lastCell(0); cit++) { + Cell* vertex = *cit; + fprintf(fp, "%d %d %d %d %d %d\n", index, 15, 0, 1, 1, vertex->getVertex(0)); + index++; + } + + + for(citer cit = firstCell(1); cit != lastCell(1); cit++) { + Cell* edge = *cit; + fprintf(fp, "%d %d %d %d %d %d %d\n", index, 1, 0, 1, 2, edge->getVertex(0), edge->getVertex(1)); + index++; + } + + for(citer cit = firstCell(2); cit != lastCell(2); cit++) { + Cell* face = *cit; + fprintf(fp, "%d %d %d %d %d %d %d %d\n", index, 2, 0, 1, 3, face->getVertex(0), face->getVertex(1), face->getVertex(2)); + index++; + } + for(citer cit = firstCell(3); cit != lastCell(3); cit++) { + Cell* volume = *cit; + fprintf(fp, "%d %d %d %d %d %d %d %d %d\n", index, 4, 0, 1, 4, volume->getVertex(0), volume->getVertex(1), volume->getVertex(2), volume->getVertex(3)); + index++; + } + + fprintf(fp, "$ENDELM\n"); + + return 1; +} + + +void CellComplex::printComplex(int dim){ + for (citer cit = firstCell(dim); cit != lastCell(dim); cit++){ + Cell* cell = *cit; + for(int i = 0; i < cell->getNumVertices(); i++){ + printf("%d ", cell->getVertex(i)); + } + printf("\n"); + } +} diff --git a/Geo/CellComplex.h b/Geo/CellComplex.h new file mode 100644 index 0000000000000000000000000000000000000000..55aa4bf4f035688d281e94128a0186820c12b7e4 --- /dev/null +++ b/Geo/CellComplex.h @@ -0,0 +1,419 @@ +// Gmsh - Copyright (C) 1997-2009 C. Geuzaine, J.-F. Remacle +// +// See the LICENSE.txt file for license information. Please report all +// bugs and problems to <gmsh@geuz.org>. +// +// Contributed by Matti Pellikka, 16.3.2009. + +#ifndef _CELLCOMPLEX_H_ +#define _CELLCOMPLEX_H_ + +#include <stdio.h> +#include <string> +#include <algorithm> +#include <set> +#include <queue> +#include "MElement.h" +#include "GModel.h" +#include "GEntity.h" +#include "GRegion.h" +#include "GFace.h" +#include "GVertex.h" +#include "gmp.h" +extern "C" { + #include "gmp_normal_form.h" // perhaps make c++ headers instead? +} + +// Abstract class representing a cell of a cell complex. +class Cell +{ + protected: + + // cell dimension + int _dim; + // maximum number of lower dimensional cells on the boundary of this cell + int _bdMaxSize; + // maximum number of higher dimensional cells on the coboundary of this cell + int _cbdMaxSize; + + int _bdSize; + int _cbdSize; + + // whether this cell belongs to a subdomain + // used to in relative homology computation + bool _inSubdomain; + + public: + Cell(){} + virtual ~Cell(){} + + virtual int getDim() const { return _dim; }; + //virtual int getTag() const { return _tag; }; + + // get the number of vertices this cell has + virtual int getNumVertices() const = 0; //{return _vertices.size();} + + virtual int getVertex(int vertex) const = 0; //{return _vertices.at(vertex);} + virtual std::vector<int> getVertexVector() const = 0; + + // returns 1 or -1 if lower dimensional cell tau is on the boundary of this cell + // otherwise returns 0 + // implementation will vary depending on cell type + virtual int kappa(Cell* tau) const = 0; + + // true if this cell has given vertex + virtual bool hasVertex(int vertex) const = 0; + + virtual unsigned int getBdMaxSize() const { return _bdMaxSize; }; + virtual unsigned int getCbdMaxSize() const { return _cbdMaxSize; }; + + virtual int getBdSize() { return _bdSize; } + virtual void setBdSize(int size) { _bdSize = size; } + virtual int getCbdSize() { return _cbdSize; } + virtual void setCbdSize(int size) { _cbdSize = size; } + + virtual bool inSubdomain() const { return _inSubdomain; } + + // print cell vertices + virtual void printCell() const = 0; + + // return the coordinates of this cell (only used on zero-cells if anywhere) + virtual inline double x() const { return 0; } + virtual inline double y() const { return 0; } + virtual inline double z() const { return 0; } + + bool operator==(const Cell* c2){ + if(this->getNumVertices() != c2->getNumVertices()){ + return false; + } + for(int i=0; i < this->getNumVertices();i++){ + if(this->getVertex(i) != c2->getVertex(i)){ + return false; + } + } + return true; + } + + bool operator<(const Cell* c2) const { + if(this->getNumVertices() != c2->getNumVertices()){ + return (this->getNumVertices() < c2->getNumVertices()); + } + for(int i=0; i < this->getNumVertices();i++){ + if(this->getVertex(i) < c2->getVertex(i)){ + return true; + } + } + return false; + } + + + +}; + +// Simplicial cell type. +class Simplex : public Cell +{ + + public: + Simplex(){ + _cbdSize = 1000; // big number + _bdSize = 1000; + } + virtual ~Simplex(){} + + // kappa for simplices + // checks whether lower dimensional simplex tau is on the boundary of this cell + virtual int kappa(Cell* tau) const; + +}; + +// Zero simplex cell type. +class ZeroSimplex : public Simplex +{ + private: + // number of the vertex + // same as the corresponding vertex in the finite element mesh + int _v; + // coordinates of this zero simplex, if needed + double _x, _y, _z; + public: + + ZeroSimplex(int vertex, bool subdomain=false, double x=0, double y=0, double z=0) : Simplex(){ + _v = vertex; + _dim = 0; + _bdMaxSize = 0; + _cbdMaxSize = 1000; // big number + _x = x; + _y = y; + _z = z; + _inSubdomain = subdomain; + } + + virtual ~ZeroSimplex(){} + + virtual int getNumVertices() const { return 1; } + virtual int getVertex(int vertex) const {return _v; } + virtual bool hasVertex(int vertex) const {return (_v == vertex); } + + virtual std::vector<int> getVertexVector() const { return std::vector<int>(1,_v); } + + virtual inline double x() const { return _x; } + virtual inline double y() const { return _y; } + virtual inline double z() const { return _z; } + + virtual void printCell()const { printf("Vertices: %d\n", _v); } + +}; + +// One simplex cell type. +class OneSimplex : public Simplex +{ + private: + // numbers of the vertices of this simplex + // same as the corresponding vertices in the finite element mesh + int _v[2]; + public: + + OneSimplex(std::vector<int> vertices, bool subdomain=false) : Simplex(){ + sort(vertices.begin(), vertices.end()); + _v[0] = vertices.at(0); + _v[1] = vertices.at(1); + _dim = 1; + _bdMaxSize = 2; + _cbdMaxSize = 1000; + _inSubdomain = subdomain; + } + + // constructor for the dummy one simplex + // used to find another definite one simplex from the cell complex + // first vertex gives the lower bound from where to look + OneSimplex(int vertex, int dummy){ + _v[0] = vertex; + _v[1] = dummy; + } + + virtual ~OneSimplex(){} + + virtual int getNumVertices() const { return 2; } + virtual int getVertex(int vertex) const {return _v[vertex]; } + virtual bool hasVertex(int vertex) const {return (_v[0] == vertex || _v[1] == vertex); } + + virtual std::vector<int> getVertexVector() const { + return std::vector<int>(_v, _v + sizeof(_v)/sizeof(int) ); } + + virtual void printCell() const { printf("Vertices: %d %d\n", _v[0], _v[1]); } +}; + +// Two simplex cell type. +class TwoSimplex : public Simplex +{ + private: + // numbers of the vertices of this simplex + // same as the corresponding vertices in the finite element mesh + int _v[3]; + public: + + TwoSimplex(std::vector<int> vertices, bool subdomain=false) : Simplex(){ + sort(vertices.begin(), vertices.end()); + _v[0] = vertices.at(0); + _v[1] = vertices.at(1); + _v[2] = vertices.at(2); + _dim = 2; + _bdMaxSize = 3; + _cbdMaxSize = 2; + _inSubdomain = subdomain; + } + // constructor for the dummy one simplex + TwoSimplex(int vertex, int dummy){ + _v[0] = vertex; + _v[1] = dummy; + _v[2] = dummy; + } + + virtual ~TwoSimplex(){} + + virtual int getNumVertices() const { return 3; } + virtual int getVertex(int vertex) const {return _v[vertex]; } + virtual bool hasVertex(int vertex) const {return + (_v[0] == vertex || _v[1] == vertex || _v[2] == vertex); } + virtual std::vector<int> getVertexVector() const { + return std::vector<int>(_v, _v + sizeof(_v)/sizeof(int) ); } + + virtual void printCell() const { printf("Vertices: %d %d %d\n", _v[0], _v[1], _v[2]); } +}; + +// Three simplex cell type. +class ThreeSimplex : public Simplex +{ + private: + // numbers of the vertices of this simplex + // same as the corresponding vertices in the finite element mesh + int _v[4]; + public: + + ThreeSimplex(std::vector<int> vertices, bool subdomain=false) : Simplex(){ + sort(vertices.begin(), vertices.end()); + _v[0] = vertices.at(0); + _v[1] = vertices.at(1); + _v[2] = vertices.at(2); + _v[3] = vertices.at(3); + _dim = 3; + _bdMaxSize = 4; + _cbdMaxSize = 0; + _inSubdomain = subdomain; + } + // constructor for the dummy one simplex + ThreeSimplex(int vertex, int dummy){ + _v[0] = vertex; + _v[1] = dummy; + _v[2] = dummy; + _v[3] = dummy; + } + + virtual ~ThreeSimplex(){} + + virtual int getNumVertices() const { return 4; } + virtual int getVertex(int vertex) const {return _v[vertex]; } + virtual bool hasVertex(int vertex) const {return + (_v[0] == vertex || _v[1] == vertex || _v[2] == vertex || _v[3] == vertex); } + virtual std::vector<int> getVertexVector() const { + return std::vector<int>(_v, _v + sizeof(_v)/sizeof(int) ); } + + virtual void printCell() const { printf("Vertices: %d %d %d %d\n", _v[0], _v[1], _v[2], _v[3]); } +}; + +// Ordering for the cells. +class Less_Cell{ + public: + bool operator()(const Cell* c1, const Cell* c2) const { + if(c1->getNumVertices() != c2->getNumVertices()){ + return (c1->getNumVertices() < c2->getNumVertices()); + } + for(int i=0; i < c1->getNumVertices();i++){ + if(c1->getVertex(i) < c2->getVertex(i)){ + return true; + } + else if (c1->getVertex(i) > c2->getVertex(i)){ + return false; + } + } + return false; + } +}; + +// Ordering for the finite element mesh vertices +class Less_MVertex{ + public: + bool operator()(const MVertex* v1, const MVertex* v2) const { + return (v1->getNum() < v2->getNum()); + } +}; + +// A class representing a cell complex made out of a finite element mesh. +class CellComplex +{ + private: + + // the domain in the model which this cell complex covers + std::vector<GEntity*> _domain; + // a subdomain of the given domain + // used in relative homology computation, may be empty + std::vector<GEntity*> _subdomain; + + // sorted container of unique cells in this cell complex + // mapped according to their dimension + std::map< int, std::set<Cell*, Less_Cell> > _cells; + + // boundary operator matrices for this cell complex + // h_k: C_k -> C_(k-1) + std::map<int, gmp_matrix*> _HMatrix; + + + public: + // iterator for the cells of same dimension + typedef std::set<Cell*, Less_Cell>::iterator citer; + + protected: + // enqueue cells in queue if they are not there already + virtual void enqueueCells(std::vector<Cell*>& cells, + std::queue<Cell*>& Q, std::set<Cell*, Less_Cell>& Qset); + virtual void enqueueCellsIt(std::vector< std::set<Cell*, Less_Cell>::iterator >& cells, + std::queue<Cell*>& Q, std::set<Cell*, Less_Cell>& Qset); + + // remove cell from the queue set + virtual void removeCellQset(Cell*& cell, std::set<Cell*, Less_Cell>& Qset); + + // get all the finite element mesh vertices in the domain of this cell complex + virtual void getDomainVertices(std::set<MVertex*, Less_MVertex>& domainVertices, + bool subdomain); + + // insert cells into this cell complex + virtual void insertCells(bool subdomain); + + public: + CellComplex( std::vector<GEntity*> domain, std::vector<GEntity*> subdomain ); + virtual ~CellComplex(){} + + // get the number of certain dimensional cells + virtual int getSize(int dim){ return _cells[dim].size(); } + + // iterators to the first and last cells of certain dimension + virtual citer firstCell(int dim) {return _cells[dim].begin(); } + virtual citer lastCell(int dim) {return _cells[dim].end(); } + + // find a cell in this cell complex + virtual std::set<Cell*, Less_Cell>::iterator findCell(int dim, std::vector<int>& vertices); + virtual std::set<Cell*, Less_Cell>::iterator findCell(int dim, int vertex, int dummy=0); + + + // kappa for two cells of this cell complex + // implementation will vary depending on cell type + virtual int kappa(Cell* sigma, Cell* tau) const { return sigma->kappa(tau); } + + // cells on the boundary of a cell + virtual std::vector<Cell*> bd(Cell* sigma); + virtual std::vector< std::set<Cell*, Less_Cell>::iterator > bdIt(Cell* sigma); + // cells on the coboundary of a cell + virtual std::vector<Cell*> cbd(Cell* tau); + virtual std::vector< std::set<Cell*, Less_Cell>::iterator > cbdIt(Cell* tau); + + // remove a cell from this cell complex + virtual void removeCell(Cell* cell); + virtual void removeCellIt(std::set<Cell*, Less_Cell>::iterator cell); + + // check whether two cells both belong to subdomain or if neither one does + virtual bool inSameDomain(Cell* c1, Cell* c2) const { return + ( (!c1->inSubdomain() && !c2->inSubdomain()) || (c1->inSubdomain() && c2->inSubdomain()) ); } + + // coreduction of this cell complex + // removes corection pairs of cells of dimension dim and dim+1 + virtual int coreduction(int dim); + // reduction of this cell complex + // removes reduction pairs of cell of dimension dim and dim-1 + virtual int reduction(int dim); + + // useful functions for (co)reduction of cell complex + virtual void reduceComplex(); + virtual void coreduceComplex(); + + // queued coreduction presented in Mrozek's paper + // slower, but produces cleaner result + virtual int coreductionMrozek(Cell* generator); + + + // construct boundary operator matrix dim->dim-1 + virtual void constructHMatrix(int dim); + // get the boundary operator matrix dim->dim-1 + virtual gmp_matrix* getHMatrix(int dim) { return _HMatrix[dim]; } + + // print the vertices of cells of certain dimension + virtual void printComplex(int dim); + + // write this cell complex in legacy .msh format + virtual int writeComplexMSH(const std::string &name); + +}; + + + +#endif diff --git a/contrib/kbipack/Makefile b/contrib/kbipack/Makefile new file mode 100755 index 0000000000000000000000000000000000000000..50e6f52bae3bfea37f0d8d918ac9f2ebea24e9e5 --- /dev/null +++ b/contrib/kbipack/Makefile @@ -0,0 +1,77 @@ +## Original Makefile by Saku Suuriniemi + +#FLAGS = -O3 -funroll-all-loops -ansi -pedantic -Wall -U DEBUG +# Flags for different diagnostics: +#FLAGS = -g -ansi -pedantic -Wall -fprofile-arcs -ftest-coverage -pg +#FLAGS = -g -ansi -pedantic -Wall -pg + +# If gmp.h is not found de facto (e.g. when it is privately intalled), +# its path should be put here +#INCL = + +#LIBS = -lgmp +#LIBDIR = . +#SRC = gmp_normal_form.c gmp_matrix_io.c gmp_matrix.c gmp_blas.c + +# The compiler options are for gcc. If it is not available, +# suitable flags must be set for the compiler +#CC = gcc +#RM = rm -f +#RANLIB = ranlib + +#libkbi.a: $(SRC) +# $(RM) *.o +# $(CC) -c $(FLAGS) $(SRC) +# ar r libkbi.a *.o +# $(RM) *.o +# $(RANLIB) libkbi.a + +#compute_normal_form: libkbi compute_normal_form.c +# $(CC) $(FLAGS) -L $(LIBDIR) $(INCL) compute_normal_form.c -o compute_normal_form -lkbi $(LIBS) +#clean: +# $(RM) compute_normal_form +# $(RM) *.o + +## Makefile for Gmsh + +include ../../variables + +LIB = ../../lib/libGmshKbi${LIBEXT} + +INC = ${DASH}I. + +CFLAGS = ${OPTIM} ${FLAGS} ${INC} ${SYSINCLUDE} -lgmp + +SRC = gmp_normal_form.c gmp_matrix_io.c gmp_matrix.c gmp_blas.c + +OBJ = ${SRC:.c=${OBJEXT}} + +.SUFFIXES: ${OBJEXT} .c + +${LIB}: ${OBJ} + ${AR} ${ARFLAGS}${LIB} ${OBJ} + ${RANLIB} ${LIB} + +cpobj: ${OBJ} + cp -f ${OBJ} ../../lib/ + +.c${OBJEXT}: + ${CC} ${CFLAGS} ${DASH}c $< + +clean: + ${RM} *.o *.obj + +depend: + (sed '/^# DO NOT DELETE THIS LINE/q' Makefile && \ + ${CXX} -MM ${CFLAGS} ${SRC} | sed 's/.o:/$${OBJEXT}:/g' \ + ) > Makefile.new + cp Makefile Makefile.bak + cp Makefile.new Makefile + rm -f Makefile.new + +# DO NOT DELETE THIS LINE +gmp_normal_form${OBJEXT}: gmp_normal_form.c gmp_blas.h gmp_matrix.h \ + gmp_normal_form.h +gmp_matrix_io${OBJEXT}: gmp_matrix_io.c gmp_matrix_io.h gmp_matrix.h gmp_blas.h +gmp_matrix${OBJEXT}: gmp_matrix.c gmp_matrix.h gmp_blas.h +gmp_blas${OBJEXT}: gmp_blas.c gmp_blas.h diff --git a/contrib/kbipack/Makefile.bak b/contrib/kbipack/Makefile.bak new file mode 100755 index 0000000000000000000000000000000000000000..edcef1ca84b0499b5cd1602e7271ea3a2aa12f5c --- /dev/null +++ b/contrib/kbipack/Makefile.bak @@ -0,0 +1,77 @@ +#FLAGS = -O3 -funroll-all-loops -ansi -pedantic -Wall -U DEBUG +# Flags for different diagnostics: +#FLAGS = -g -ansi -pedantic -Wall -fprofile-arcs -ftest-coverage -pg +#FLAGS = -g -ansi -pedantic -Wall -pg + +# If gmp.h is not found de facto (e.g. when it is privately intalled), +# its path should be put here +#INCL = + +#LIBS = -lgmp +#LIBDIR = . +#SRC = gmp_normal_form.c gmp_matrix_io.c gmp_matrix.c gmp_blas.c + +# The compiler options are for gcc. If it is not available, +# suitable flags must be set for the compiler +#CC = gcc +#RM = rm -f +#RANLIB = ranlib + +#libkbi.a: $(SRC) +# $(RM) *.o +# $(CC) -c $(FLAGS) $(SRC) +# ar r libkbi.a *.o +# $(RM) *.o +# $(RANLIB) libkbi.a + +#compute_normal_form: libkbi compute_normal_form.c +# $(CC) $(FLAGS) -L $(LIBDIR) $(INCL) compute_normal_form.c -o compute_normal_form -lkbi $(LIBS) +#clean: +# $(RM) compute_normal_form +# $(RM) *.o + +## + +include ../../variables + +LIB = ../../lib/libGmshKbi${LIBEXT} + +INC = ${DASH}I. + +CFLAGS = ${OPTIM} ${FLAGS} ${INC} ${SYSINCLUDE} -lgmp + +SRC = gmp_normal_form.c\ + gmp_matrix_io.c\ + gmp_matrix.c\ + gmp_blas.c + +OBJ = ${SRC:.c=${OBJEXT}} + +.SUFFIXES: ${OBJEXT} .c + +${LIB}: ${OBJ} + ${AR} ${ARFLAGS}${LIB} ${OBJ} + ${RANLIB} ${LIB} + +cpobj: ${OBJ} + cp -f ${OBJ} ../../lib/ + +.c${OBJEXT}: + ${CC} ${CFLAGS} ${DASH}c $< + +clean: + ${RM} *.o *.obj + +depend: + (sed '/^# DO NOT DELETE THIS LINE/q' Makefile && \ + ${CXX} -MM ${CFLAGS} ${SRC} | sed 's/.o:/$${OBJEXT}:/g' \ + ) > Makefile.new + cp Makefile Makefile.bak + cp Makefile.new Makefile + rm -f Makefile.new + +# DO NOT DELETE THIS LINE +gmp_matrix${OBJEXT}: gmp_matrix.c gmp_blas.h gmp_matrix.h +gmp_blas${OBJEXT}: gmp_blas.c gmp_blas.h +gmp_matrix_io${OBJEXT}: gmp_matrix_io.c gmp_matrix_io.h +gmp_normal_form${OBJEXT}: gmp_normal_form.c gmp_blas.h gmp_matrix.h gmp_normal_form.h diff --git a/contrib/kbipack/Makefile~ b/contrib/kbipack/Makefile~ new file mode 100755 index 0000000000000000000000000000000000000000..3c361030c38340dcf7d3884a72c814f6c9f1ad52 --- /dev/null +++ b/contrib/kbipack/Makefile~ @@ -0,0 +1,75 @@ +#FLAGS = -O3 -funroll-all-loops -ansi -pedantic -Wall -U DEBUG +# Flags for different diagnostics: +#FLAGS = -g -ansi -pedantic -Wall -fprofile-arcs -ftest-coverage -pg +#FLAGS = -g -ansi -pedantic -Wall -pg + +# If gmp.h is not found de facto (e.g. when it is privately intalled), +# its path should be put here +#INCL = + +#LIBS = -lgmp +#LIBDIR = . +#SRC = gmp_normal_form.c gmp_matrix_io.c gmp_matrix.c gmp_blas.c + +# The compiler options are for gcc. If it is not available, +# suitable flags must be set for the compiler +#CC = gcc +#RM = rm -f +#RANLIB = ranlib + +#libkbi.a: $(SRC) +# $(RM) *.o +# $(CC) -c $(FLAGS) $(SRC) +# ar r libkbi.a *.o +# $(RM) *.o +# $(RANLIB) libkbi.a + +#compute_normal_form: libkbi compute_normal_form.c +# $(CC) $(FLAGS) -L $(LIBDIR) $(INCL) compute_normal_form.c -o compute_normal_form -lkbi $(LIBS) +#clean: +# $(RM) compute_normal_form +# $(RM) *.o + +## + +include ../../variables + +LIB = ../../lib/libGmshKbi${LIBEXT} + +INC = ${DASH}I. + +CFLAGS = ${OPTIM} ${FLAGS} ${INC} ${SYSINCLUDE} -lgmp + +SRC = gmp_normal_form.c gmp_matrix_io.c gmp_matrix.c gmp_blas.c + +OBJ = ${SRC:.c=${OBJEXT}} + +.SUFFIXES: ${OBJEXT} .c + +${LIB}: ${OBJ} + ${AR} ${ARFLAGS}${LIB} ${OBJ} + ${RANLIB} ${LIB} + +cpobj: ${OBJ} + cp -f ${OBJ} ../../lib/ + +.c${OBJEXT}: + ${CC} ${CFLAGS} ${DASH}c $< + +clean: + ${RM} *.o *.obj + +depend: + (sed '/^# DO NOT DELETE THIS LINE/q' Makefile && \ + ${CXX} -MM ${CFLAGS} ${SRC} | sed 's/.o:/$${OBJEXT}:/g' \ + ) > Makefile.new + cp Makefile Makefile.bak + cp Makefile.new Makefile + rm -f Makefile.new + +# DO NOT DELETE THIS LINE +gmp_normal_form${OBJEXT}: gmp_normal_form.c gmp_blas.h gmp_matrix.h \ + gmp_normal_form.h +gmp_matrix_io${OBJEXT}: gmp_matrix_io.c gmp_matrix_io.h gmp_matrix.h gmp_blas.h +gmp_matrix${OBJEXT}: gmp_matrix.c gmp_matrix.h gmp_blas.h +gmp_blas${OBJEXT}: gmp_blas.c gmp_blas.h diff --git a/contrib/kbipack/compute_normal_form.c b/contrib/kbipack/compute_normal_form.c new file mode 100755 index 0000000000000000000000000000000000000000..f86e043cc27e27144738acbffcbe7eafd6e7a6b3 --- /dev/null +++ b/contrib/kbipack/compute_normal_form.c @@ -0,0 +1,355 @@ +/* + COMPUTE_NORMAL_FORM + + Hermite and Smith normal forms of integer matrices. + + Implementation: Dense matrix with GMP-library's mpz_t elements to + hold huge integers. + + Algorithm: Kannan - Bachem algorithm with improvement by + Chou and Collins. Expects a large number of unit invariant + factors and takes advantage of them as they appear. + + References: + [1] Ravindran Kannan, Achim Bachem: + "Polynomial algorithms for computing the Smith and Hermite normal + forms of an integer matrix", + SIAM J. Comput., vol. 8, no. 5, pp. 499-507, 1979. + [2] Tsu-Wu J.Chou, George E. Collins: + "Algorithms for the solution of systems of linear Diophantine + equations", + SIAM J. Comput., vol. 11, no. 4, pp. 687-708, 1982. + [3] GMP homepage http://www.swox.com/gmp/ + [4] GNU gmp page http://www.gnu.org/software/gmp/ + + Copyright (C) 3.11.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: compute_normal_form.c,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + + +#include<stdlib.h> +#include<stdio.h> +#include<string.h> +#include"gmp_matrix_io.h" +#include"gmp_normal_form.h" + +typedef enum {HERMITE, SMITH} nf_flag; +typedef enum {NOT_WANTED, WANTED} w_flag; + +static int nf_parse_options(int arg_counter, char ** args, + char ** p_infile_name, char ** p_outfile_name, + nf_flag * p_normal_form_requested, + inverted_flag * p_left_inverted, + inverted_flag * p_right_inverted, + w_flag * p_help_wanted, + w_flag * p_verbose_wanted) +{ + size_t ind1, ind2; + size_t outfilename_length; + + /* If no infile is specified, the error is indisputable. + => Print help and exit. + Infile should be the last argument. */ + + if(strncmp(args[arg_counter-1], "-", 1) == 0) + { + *(p_help_wanted) = WANTED; + return EXIT_SUCCESS; + } + + /* Should I find arguments? */ + if(arg_counter > 2) + { + for(ind1 = 1; ind1 < arg_counter-1; ind1++) + { + /* No multiple infile names ! */ + if(strncmp(args[ind1], "-", 1) != 0) + { + *(p_help_wanted) = WANTED; + return EXIT_SUCCESS; + } + + /* Parse the option letters after '-' one by one */ + for(ind2 = 1; ind2 < strlen(args[ind1]); ind2++) + { + switch(args[ind1][ind2]) + { + case 'h': + *(p_help_wanted) = WANTED; + return EXIT_SUCCESS; + break; + case 'H': + *(p_normal_form_requested) = HERMITE; + break; + case 'S': + *(p_normal_form_requested) = SMITH; + break; + case 'l': + *(p_left_inverted) = INVERTED; + break; + case 'r': + *(p_right_inverted) = INVERTED; + break; + case 'v': + *(p_verbose_wanted) = WANTED; + break; + } + } + } + } + + /* Get the infile name */ + * p_infile_name = (char *) calloc(strlen(args[arg_counter-1]) + 1, + sizeof(char)); + if(* p_infile_name == NULL) + { + return EXIT_FAILURE; + } + + strcpy(* p_infile_name, args[arg_counter-1]); + + /* Create the outfile name */ + outfilename_length = strcspn( * p_infile_name, "."); + * p_outfile_name = (char *) calloc(outfilename_length + 1, + sizeof(char)); + if( * p_outfile_name == NULL) + { + free( * p_infile_name); + return EXIT_FAILURE; + } + + strncpy(* p_outfile_name, * p_infile_name, outfilename_length); + (* p_outfile_name)[outfilename_length] = '\0'; + + return EXIT_SUCCESS; +} + +static int nf_print_help(void) +{ + fprintf(stdout, "Usage: compute_normal_form [-hHSlrv] infile\n"); + fprintf(stdout, "\n"); + fprintf(stdout, "Description: Compute the Hermite/Smith normal form of an integer matrix.\n"); + fprintf(stdout, "\n"); + fprintf(stdout, "Input: \"infile\" is an ascii file, which contains an integer matrix\n"); + fprintf(stdout, " in the sparse coordinate format:\n"); + fprintf(stdout, "\n"); + fprintf(stdout, " # All comments before the data\n"); + fprintf(stdout, " rows columns nonzeros\n"); + fprintf(stdout, " row1 col1 value1\n"); + fprintf(stdout, " row2 col2 value2\n"); + fprintf(stdout, " ...\n"); + fprintf(stdout, "\n"); + fprintf(stdout, " No multiple infiles, please.\n"); + fprintf(stdout, "\n"); + fprintf(stdout, "Options: -h This help\n"); + fprintf(stdout, " -H Compute the Hermite normal form (default)\n"); + fprintf(stdout, " -S Compute the Smith normal form\n"); + fprintf(stdout, " -l Left factor inverted (A = P^(T)LU instead of PA = LU for Hermite, \n"); + fprintf(stdout, " U^(-1)A = SV instead of A = USV for Smith)\n"); + fprintf(stdout, " -r Right factor inverted (PAU^(-1) = L instead of PA = LU for Hermite, \n"); + fprintf(stdout, " AV^(-1) = US instead of A = USV for Smith)\n"); + fprintf(stdout, " -v Verbose. Print the matrix and the decomposition to sdtout, \n"); + fprintf(stdout, " so that the user may check that the problem is read and written\n"); + fprintf(stdout, " correctly.\n"); + fprintf(stdout, "\n"); + fprintf(stdout, "Output: For inpur matrix in e.g. \"infile.coord\", writes ascii files\n"); + fprintf(stdout, " \"infile.left\", \"infile.can\", and \"infile.right\", which \n"); + fprintf(stdout, " contain the left factor, canonical form, and the right factor, \n"); + fprintf(stdout, " respectively. The matrices are written in the sparse coordinate\n"); + fprintf(stdout, " format.\n"); + fprintf(stdout, "\n"); + fprintf(stdout, "Note: The return values may be big enough to not fit the standard integer types.\n"); + fprintf(stdout, "\n"); + fprintf(stdout, "Copyright (C) 3.11.2003 Saku Suuriniemi, Tampere University of Technology/Electromagnetics\n"); + fprintf(stdout, " P.O.Box 692, FIN-33101 Tampere, Finland. saku.suuriniemi@tut.fi\n"); + fprintf(stdout, "\n"); + fprintf(stdout, "Licenced under GNU General Public Licence (GPL) version 2 or later, ABSOLUTELY NO WARRANTY.\n"); + + return EXIT_SUCCESS; +} + + +static char* append_suffix(const char * file_base_name, const char * suffix) +{ + char * filename; + + if((file_base_name == NULL) || (suffix == NULL)) + { + return NULL; + } + + filename = + (char*) calloc(strlen(file_base_name)+strlen(suffix)+2, + sizeof(char)); + + if(filename == NULL) + { + return NULL; + } + + strcpy(filename, file_base_name); + strcat(filename, "."); + strcat(filename, suffix); + + return filename; +} + + + +int main(int argc, char * argv[]) +{ + char * infile_name; + char * file_base_name; + char * outfile_name; + gmp_matrix * A; + gmp_normal_form * normal_form; + w_flag help_wanted; + w_flag verbose_wanted; + nf_flag normal_form_requested; + inverted_flag left_inverted; + inverted_flag right_inverted; + + if(argc == 1) + { + fprintf(stdout, "Please try \"compute_normal_form -h\" for help.\n"); + return EXIT_SUCCESS; + } + + /* Default settings before option parsing */ + normal_form_requested = HERMITE; + left_inverted = NOT_INVERTED; + right_inverted = NOT_INVERTED; + help_wanted = NOT_WANTED; + verbose_wanted = NOT_WANTED; + + if( nf_parse_options(argc, argv, + &infile_name, &file_base_name, + &normal_form_requested, + &left_inverted, &right_inverted, + &help_wanted, + &verbose_wanted) + == EXIT_FAILURE ) + { + return EXIT_FAILURE; + } + + /* In this case, no dynamical memory has been allocated by + nf_parse_options ! */ + if(help_wanted == WANTED) + { + return nf_print_help(); + } + + if(verbose_wanted == WANTED) + { + fprintf(stdout, "Computing "); + if(normal_form_requested == HERMITE) + { + fprintf(stdout, "Hermite"); + } + else + { + fprintf(stdout, "Smith"); + } + fprintf(stdout, " normal form\n"); + if(left_inverted == INVERTED) + { + fprintf(stdout, "The left factor will be inverted.\n"); + } + if(right_inverted == INVERTED) + { + fprintf(stdout, "The right factor will be inverted.\n"); + } + fprintf(stdout, "Matrix read from file %s\n", infile_name); + } + + /*************************************************************/ + /* We have all we need to get to the computational business: */ + /*************************************************************/ + + /* Read the matrix */ + A = gmp_matrix_read_coord(infile_name); + free(infile_name); + + if(verbose_wanted == WANTED) + { + fprintf(stdout, "Input matrix:\n"); + gmp_matrix_fprintf(stdout, A); + } + + /* Compute the requested normal form */ + switch(normal_form_requested) + { + case SMITH: + normal_form = create_gmp_Smith_normal_form(A, left_inverted, right_inverted); + break; + + default: + normal_form = create_gmp_Hermite_normal_form(A, left_inverted, right_inverted); + break; + } + + + if(verbose_wanted == WANTED) + { + fprintf(stdout, "Left factor:\n"); + gmp_matrix_fprintf(stdout, normal_form->left); + fprintf(stdout, "Canonical form:\n"); + gmp_matrix_fprintf(stdout, normal_form->canonical); + fprintf(stdout, "Right factor:\n"); + gmp_matrix_fprintf(stdout, normal_form->right); + } + + /* Save the result to the output files */ + outfile_name = append_suffix(file_base_name, "left"); + if( gmp_matrix_write_coord(outfile_name, normal_form -> left) + == EXIT_SUCCESS) + { + if(verbose_wanted == WANTED) + fprintf(stdout, "Left factor successfully writen to file %s\n", outfile_name); + } + + free(outfile_name); + + outfile_name = append_suffix(file_base_name, "can"); + if( gmp_matrix_write_coord(outfile_name, normal_form -> canonical) + == EXIT_SUCCESS) + { + if(verbose_wanted == WANTED) + fprintf(stdout, "Canonical form successfully writen to file %s\n", outfile_name); + } + free(outfile_name); + + outfile_name = append_suffix(file_base_name, "right"); + if( gmp_matrix_write_coord(outfile_name, normal_form -> right) + == EXIT_SUCCESS) + { + if(verbose_wanted == WANTED) + fprintf(stdout, "Right factor successfully writen to file %s\n", outfile_name); + } + free(outfile_name); + + free(file_base_name); + destroy_gmp_normal_form(normal_form); + + return EXIT_SUCCESS; +} diff --git a/contrib/kbipack/gmp_blas.c b/contrib/kbipack/gmp_blas.c new file mode 100755 index 0000000000000000000000000000000000000000..501c4eba543f02980b4138c039bbbb8e920913db --- /dev/null +++ b/contrib/kbipack/gmp_blas.c @@ -0,0 +1,227 @@ +/* + Source file for integer-oriented elementary versions of some + subroutines of BLAS. There routines are chosen to facilitate the + computation of Hermite and Smith normal forms of matrices of + modest size. + + Copyright (C) 28.10.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_blas.c,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + +/* #include<stdio.h> */ +#include"gmp_blas.h" + +void gmp_blas_swap(size_t n, mpz_t* x, size_t incx, mpz_t* y, size_t incy) +{ + mpz_t elbow; + size_t ind; + + mpz_init(elbow); + + for(ind = 0; ind < n; ind++) + { + mpz_set(elbow , x[ind*incx]); + mpz_set(x[ind*incx], y[ind*incy]); + mpz_set(y[ind*incy], elbow); + } + mpz_clear(elbow); + + return; +} + +void gmp_blas_scal(size_t n, mpz_t a, mpz_t* x, size_t incx) +{ + size_t ind; + + for(ind = 0; ind < n; ind++) + { + mpz_mul (x[ind*incx], x[ind*incx], a); + } + + return; +} + +void gmp_blas_copy(size_t n, const mpz_t* x, size_t incx, mpz_t* y, size_t incy) +{ + size_t ind; + + for(ind = 0; ind < n; ind++) + { + mpz_set(y[ind*incy], x[ind*incx]); + } + + return; +} + +void gmp_blas_axpy(size_t n, mpz_t a, const mpz_t* x, size_t incx, + mpz_t* y, size_t incy) +{ + size_t ind; + + for(ind = 0; ind < n; ind++) + { + mpz_addmul (y[ind*incy], a, x[ind*incx]); + } + + return; +} + +void +gmp_blas_dot(mpz_t * d, size_t n, + const mpz_t* x, size_t incx, + const mpz_t* y, size_t incy) +{ + size_t ind; + + mpz_set_si(*d,0); + + for(ind = 0; ind < n; ind++) + { + mpz_addmul (*d, x[ind*incx], y[ind*incy]); + } + + return; +} + +/* x <- ax + by + y <- cx + dy */ +void gmp_blas_rot(size_t n, + mpz_t a, mpz_t b, mpz_t* x, size_t incx, + mpz_t c, mpz_t d, mpz_t* y, size_t incy) +{ + mpz_t ax; + mpz_t by; + mpz_t cx; + mpz_t dy; + + size_t ind; + + mpz_init(ax); + mpz_init(by); + mpz_init(cx); + mpz_init(dy); + + for(ind = 0; ind < n; ind++) + { + mpz_mul (ax, a, x[ind*incx]); + mpz_mul (by, b, y[ind*incy]); + mpz_mul (cx, c, x[ind*incx]); + mpz_mul (dy, d, y[ind*incy]); + mpz_add (x[ind*incx], ax, by); + mpz_add (y[ind*incy], cx, dy); + } + + mpz_clear(ax); + mpz_clear(by); + mpz_clear(cx); + mpz_clear(dy); + + return; +} + + +/* Returns k such that x[(k-1)*incx] != 0 holds for the first time. + If none found, returns n+1. */ +size_t gmp_blas_inz (size_t n, const mpz_t* x, size_t incx) +{ + size_t ind; + + for(ind = 0; ind < n; ind++) + { + if(mpz_sgn (x[ind*incx]) != 0) + { + return ind+1; + } + } + + /* No nonzeros found */ + return n+1; +} + +size_t gmp_blas_iamax(size_t n, const mpz_t* x, size_t incx) +{ + size_t ind; + size_t ind_so_far; + mpz_t max_so_far; + + mpz_init(max_so_far); + mpz_set(max_so_far, 0); + ind_so_far = 0; + + for(ind = 0; ind < n; ind++) + { + if(mpz_cmpabs (x[ind*incx], max_so_far) > 0) + { + mpz_set(max_so_far, x[ind*incx]); + ind_so_far = ind; + } + } + + /* No nonzeros found */ + if(mpz_sgn (max_so_far) == 0) + { + mpz_clear(max_so_far); + return n + 1; + } + + /* Nonzero maximal by modulus element found */ + mpz_clear(max_so_far); + return ind_so_far + 1; +} + + +size_t gmp_blas_iamin(size_t n, const mpz_t* x, size_t incx) +{ + size_t ind; + size_t ind_so_far; + mpz_t min_so_far; + + ind_so_far = gmp_blas_inz (n, x, incx); + + /* No nonzeros found? */ + if(ind_so_far == n+1) + { + return n+1; + } + + /* OK, There is at leat one nonzero element */ + mpz_init(min_so_far); + mpz_set(min_so_far, x[(ind_so_far-1)*incx]); + + /* Scan through te rest of the elements to see if smaller + elements by modulus are found */ + for(ind = ind_so_far-1; ind < n; ind++) + { + if(mpz_sgn (x[ind*incx]) != 0) + { + if(mpz_cmpabs (x[ind*incx], min_so_far) < 0) + { + mpz_set(min_so_far, x[ind*incx]); + ind_so_far = ind + 1; + } + } + } + + /* Nonzero minimal by modulus element found */ + mpz_clear(min_so_far); + return ind_so_far; +} diff --git a/contrib/kbipack/gmp_blas.h b/contrib/kbipack/gmp_blas.h new file mode 100755 index 0000000000000000000000000000000000000000..6c9c88b2f8454539f9ba694239d52232b33e34df --- /dev/null +++ b/contrib/kbipack/gmp_blas.h @@ -0,0 +1,103 @@ +/* + Header file for integer-oriented elementary versions of some + subroutines of BLAS. There routines are chosen to facilitate the + computation of Hermite and Smith normal forms of matrices of + modest size. + + Copyright (C) 28.10.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_blas.h,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + +#ifndef __GMP_BLAS_H__ +#define __GMP_BLAS_H__ + +#include <stdio.h> +#include <gmp.h> + +/***********/ +/* Level 1 */ +/***********/ + +/* x <-> y */ +void +gmp_blas_swap(size_t n, mpz_t * x, size_t incx, mpz_t * y, size_t incy); + +/* x <- ax */ +void +gmp_blas_scal(size_t n, mpz_t a, mpz_t * x, size_t incx); + +/* y <- x */ +void +gmp_blas_copy(size_t n, const mpz_t * x, size_t incx, mpz_t * y, size_t incy); + +/* y <- ax + y */ +void +gmp_blas_axpy(size_t n, mpz_t a, + const mpz_t * x, size_t incx, + mpz_t * y, size_t incy); + +/* d <- x^T y The integer * d has to be initialized by e.g. mpz_init() ! */ +void +gmp_blas_dot(mpz_t * d, size_t n, + const mpz_t * x, size_t incx, + const mpz_t * y, size_t incy); + + +/* Givens rotations are obviously impossible. However, the extended Euclid + algorithm produces its close relative: + + g = gcd(a,b) & ka+lb = g + + E.g. in the computation of HNF, right-multipliations by the matrix + + [k -b/g] + [l a/g] + + occur frequently. Hence the name for the "Euclid rotation" function pair: */ + +/* For a,b, find k,l,g such that ka+lb = g = gcd(a,b) holds */ +void gmp_blas_rotg(mpz_t g, mpz_t k, mpz_t l, mpz_t a, mpz_t b); +#define gmp_blas_rotg mpz_gcdext + + +/* x <- ax + by + y <- cx + dy */ +void gmp_blas_rot(size_t n, + mpz_t a, mpz_t b, mpz_t * x, size_t incx, + mpz_t c, mpz_t d, mpz_t * y, size_t incy); + + +/* In integer computations, the first nonzero element, minimal nonzero element + by modulus, and maximal nonzero element by modulus come often handy: */ + +/* Returns k such that x[(k-1)*incx] != 0 holds for the first time. + In FORTRAN, this is x((k-1)*incx + 1) .NE. 0. + If none found, returns n+1. */ +size_t gmp_blas_inz (size_t n, const mpz_t * x, size_t incx); + +/* Similarly, x[(k-1)*incx] is maximal by modulus */ +size_t gmp_blas_iamax(size_t n, const mpz_t * x, size_t incx); + +/* Similarly, x[(k-1)*incx] is nonzero and minimal by modulus */ +size_t gmp_blas_iamin(size_t n, const mpz_t * x, size_t incx); + +#endif diff --git a/contrib/kbipack/gmp_blas.o b/contrib/kbipack/gmp_blas.o new file mode 100755 index 0000000000000000000000000000000000000000..02064581725915c72fb204793a3f9436e14c5cfc Binary files /dev/null and b/contrib/kbipack/gmp_blas.o differ diff --git a/contrib/kbipack/gmp_matrix.c b/contrib/kbipack/gmp_matrix.c new file mode 100755 index 0000000000000000000000000000000000000000..23d648c89eff75d10167c303d32132c6a5c9401b --- /dev/null +++ b/contrib/kbipack/gmp_matrix.c @@ -0,0 +1,673 @@ +/* + Source file for integer-oriented matrix, relying on the arbitrary + precision integers from the GNU gmp package. + + Copyright (C) 28.10.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_matrix.c,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + + +#include<stdlib.h> +#include"gmp_matrix.h" + +gmp_matrix * +create_gmp_matrix(size_t r, size_t c, + const mpz_t * e) +{ + gmp_matrix * new_matrix; + size_t ind; + + new_matrix = (gmp_matrix * ) malloc(sizeof(gmp_matrix)); + if(new_matrix == NULL) + { + return NULL; + } + + new_matrix -> storage = (mpz_t *) calloc(r*c, sizeof(mpz_t)); + if(new_matrix -> storage == NULL) + { + free(new_matrix); + return NULL; + } + + new_matrix -> rows = r; + new_matrix -> cols = c; + + for(ind = 0; ind < r*c; ind ++) + { + mpz_init (new_matrix -> storage[ind]); + mpz_set (new_matrix -> storage[ind], e[ind]); + } + + return new_matrix; +} + + +gmp_matrix * +create_gmp_matrix_identity(size_t dim) +{ + gmp_matrix * new_matrix; + size_t ind; + + new_matrix = (gmp_matrix * ) malloc(sizeof(gmp_matrix)); + if(new_matrix == NULL) + { + return NULL; + } + + new_matrix -> storage = (mpz_t *) calloc(dim*dim, sizeof(mpz_t)); + if(new_matrix -> storage == NULL) + { + free(new_matrix); + return NULL; + } + + new_matrix -> rows = dim; + new_matrix -> cols = dim; + + for(ind = 0; ind < dim*dim; ind ++) + { + mpz_init_set_si (new_matrix -> storage[ind], 0); + } + + for(ind = 0; ind < dim; ind ++) + { + mpz_set_ui(new_matrix -> storage[ind*(dim+1)], 1); + } + + return new_matrix; +} + + +gmp_matrix * +create_gmp_matrix_zero(size_t rows, size_t cols) +{ + gmp_matrix * new_matrix; + size_t ind; + + new_matrix = (gmp_matrix * ) malloc(sizeof(gmp_matrix)); + if(new_matrix == NULL) + { + return NULL; + } + + new_matrix -> storage = (mpz_t *) calloc(rows*cols, sizeof(mpz_t)); + if(new_matrix -> storage == NULL) + { + free(new_matrix); + return NULL; + } + + new_matrix -> rows = rows; + new_matrix -> cols = cols; + + for(ind = 0; ind < rows*cols; ind ++) + { + mpz_init_set_si (new_matrix -> storage[ind], 0); + } + + return new_matrix; +} + +int +destroy_gmp_matrix(gmp_matrix * m) +{ + size_t ind, nmb_storage;; + + if(m == NULL) + { + return EXIT_FAILURE; + } + + if(m -> storage == NULL) + { + free(m); + return EXIT_FAILURE; + } + + nmb_storage = (m -> rows)*(m -> cols); + + for(ind = 0; ind < nmb_storage; ind++) + { + mpz_clear(m -> storage[ind]); + } + + free(m -> storage); + free(m); + return EXIT_SUCCESS; +} + + +size_t +gmp_matrix_rows(const gmp_matrix * m) +{ + if(m == NULL) + { + return 0; + } + + return m -> rows; +} + + +size_t +gmp_matrix_cols(const gmp_matrix * m) +{ + if(m == NULL) + { + return 0; + } + + return m -> cols; +} + +/* elem <- (matrix(row, col)) */ +int +gmp_matrix_get_elem(mpz_t elem, size_t row, size_t col, + const gmp_matrix * m) +{ +#ifdef DEBUG + + if(m == NULL) + { + return EXIT_FAILURE; + } + +#endif + + mpz_set(elem, m -> storage[(col-1)*(m -> rows)+row-1]); + return EXIT_SUCCESS; +} + +int +gmp_matrix_swap_rows(size_t row1, size_t row2, gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((row1 < 1) || (row1 > m->rows) || (row2 < 1) || (row2 > m->rows)) + { + return EXIT_FAILURE; + } + + /* printf("Swapping rows %i %i\n", row1, row2); */ + gmp_blas_swap(m -> cols, + &(m -> storage[row1-1]), m -> rows, + &(m -> storage[row2-1]), m -> rows); + + return EXIT_SUCCESS; +} + +int +gmp_matrix_swap_cols(size_t col1, size_t col2, gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((col1 < 1) || (col1 > m->cols) || (col2 < 1) || (col2 > m->cols)) + { + return EXIT_FAILURE; + } + + /* printf("Swapping cols %i %i\n", col1, col2); */ + gmp_blas_swap(m -> rows, + &(m -> storage[(m->rows)*(col1-1)]), 1, + &(m -> storage[(m->rows)*(col2-1)]), 1); + + return EXIT_SUCCESS; +} + +int +gmp_matrix_negate_row(size_t row, gmp_matrix * m) +{ + mpz_t minus_one; + + if(m == NULL) + { + return EXIT_FAILURE; + } + if((row < 1) || (row > m->rows)) + { + return EXIT_FAILURE; + } + + mpz_init(minus_one); + mpz_set_si(minus_one, -1); + gmp_blas_scal(m -> cols, minus_one, (&m -> storage[row-1]), m -> rows); + mpz_clear(minus_one); + return EXIT_SUCCESS; +} + +int +gmp_matrix_negate_col(size_t col, gmp_matrix * m) +{ + mpz_t minus_one; + if(m == NULL) + { + return EXIT_FAILURE; + } + if((col < 1) || (col > m->cols)) + { + return EXIT_FAILURE; + } + + mpz_init(minus_one); + mpz_set_si(minus_one, -1); + gmp_blas_scal(m -> rows, minus_one, + &(m -> storage[(m->rows)*(col-1)]), 1); + mpz_clear(minus_one); + return EXIT_SUCCESS; +} + +/* row2 <- a*row1 + row2*/ +int +gmp_matrix_add_row(mpz_t a, size_t row1, size_t row2, + gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((row1 < 1) || (row1 > m->rows) || (row2 < 1) || (row2 > m->rows)) + { + return EXIT_FAILURE; + } + + gmp_blas_axpy(m->cols, a, + (const mpz_t *) &(m->storage[row1-1]), m->rows, + &(m->storage[row2-1]), m->rows); + + return EXIT_SUCCESS; +} + +int +gmp_matrix_add_col(mpz_t a, size_t col1, size_t col2, + gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((col1 < 1) || (col1 > m->cols) || (col2 < 1) || (col2 > m->cols)) + { + return EXIT_FAILURE; + } + + gmp_blas_axpy(m->rows, a, + (const mpz_t *) &(m -> storage[(m->rows)*(col1-1)]), 1, + &(m -> storage[(m->rows)*(col2-1)]), 1); + + return EXIT_SUCCESS; +} + +/* row1 <- a*row1 + b*row2 + row2 <- c*row1 + d*row2 */ +int +gmp_matrix_row_rot(mpz_t a, mpz_t b, size_t row1, + mpz_t c, mpz_t d, size_t row2, + gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((row1 < 1) || (row1 > m->rows) || (row2 < 1) || (row2 > m->rows)) + { + return EXIT_FAILURE; + } + + gmp_blas_rot(m->cols, + a, b, &(m->storage[row1-1]), m->rows, + c, d, &(m->storage[row2-1]), m->rows); + + return EXIT_SUCCESS; +} +int +gmp_matrix_col_rot(mpz_t a, mpz_t b, size_t col1, + mpz_t c, mpz_t d, size_t col2, + gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((col1 < 1) || (col1 > m->cols) || (col2 < 1) || (col2 > m->cols)) + { + return EXIT_FAILURE; + } + +/* printf("a: %i b: %i c: %i d:%i col1: %i col2: %i\n", */ +/* mpz_get_si(a), */ +/* mpz_get_si(b), */ +/* mpz_get_si(c), */ +/* mpz_get_si(d), */ +/* col1, col2); */ + + gmp_blas_rot(m->rows, + a, b, &(m -> storage[(m->rows)*(col1-1)]), 1, + c, d, &(m -> storage[(m->rows)*(col2-1)]), 1); + + return EXIT_SUCCESS; +} + +size_t +gmp_matrix_col_inz (size_t r1, size_t r2, size_t c, + gmp_matrix * m) +{ + size_t result; + + if(m == NULL) + { + return 0; + } + if((r1 < 1) || (r1 > m->rows) || + (r2 < 1) || (r2 > m->rows) || + (r2 < r1) || (c < 1) || (c > m->cols)) + { + return 0; + } + + result = gmp_blas_inz(r2-r1+1, + (const mpz_t *) &(m->storage[(c-1)*(m->rows)+r1-1]), + 1); + + if(result > r2-r1+1) + { + return 0; + } + + return result; +} + +size_t +gmp_matrix_row_inz (size_t r, size_t c1, size_t c2, + gmp_matrix * m) +{ + size_t result; + + if(m == NULL) + { + return 0; + } + if((r < 1) || (r > m->rows) || + (c1 < 1) || (c1 > m->cols) || + (c2 < c1) || (c2 < 1) || (c2 > m->cols)) + { + return 0; + } + + result = gmp_blas_inz(c2-c1+1, + (const mpz_t *) &(m->storage[(c1-1)*(m->rows)+r-1]), + m->rows); + + if(result > c2-c1+1) + { + return 0; + } + + return result; +} + + +int +gmp_matrix_is_diagonal(const gmp_matrix * M) +{ + size_t i,j; + size_t rows, cols; + + if(M == NULL) + { + return 0; + } + + rows = M->rows; + cols = M->cols; + + for(j = 1; j <= cols; j ++) + { + for(i = 1; i <= rows; i ++) + { + if((mpz_cmp_si(M->storage[(i-1)+(j-1)*rows], 0) != 0) && + (i != j)) + { + return 0; + } + } + } + + return 1; +} + + +int +gmp_matrix_transp(gmp_matrix * M) +{ + mpz_t * new_storage; + size_t i,j; + size_t rows, cols; + + if(M == NULL) + { + return EXIT_FAILURE; + } + + rows = M->rows; + cols = M->cols; + + new_storage = (mpz_t *) calloc(rows*cols, sizeof(mpz_t)); + if(new_storage == NULL) + { + return EXIT_FAILURE; + } + + for(i = 1; i <= rows; i++) + { + for(j = 1; j <= cols; j++) + { + mpz_init_set(new_storage[(j-1)+(i-1)*cols], + M-> storage[(i-1)+(j-1)*rows]); + mpz_clear(M-> storage[(i-1)+(j-1)*rows]); + } + } + free(M->storage); + + M -> storage = new_storage; + M -> rows = cols; + M -> cols = rows; + + return EXIT_SUCCESS; +} + + +int +gmp_matrix_right_mult(gmp_matrix * A, const gmp_matrix * B) +{ + mpz_t * new_storage; + size_t i,j; + size_t rows_A, cols_A, rows_B, cols_B; + + if((A == NULL) || (B == NULL)) + { + return EXIT_FAILURE; + } + + rows_A = A->rows; + cols_A = A->cols; + rows_B = B->rows; + cols_B = B->cols; + + if(cols_A != rows_B) + { + return EXIT_FAILURE; + } + + /* Create new storage for the product */ + new_storage = (mpz_t *) calloc(rows_A*cols_B, sizeof(mpz_t)); + if(new_storage == NULL) + { + return EXIT_FAILURE; + } + + /* Compute the product to the storage */ + for(j = 1; j <= cols_B; j++) + { + for(i = 1; i <= rows_A; i++) + { + mpz_init (new_storage[(i-1)+(j-1)*rows_A]); + gmp_blas_dot(&(new_storage[(i-1)+(j-1)*rows_A]), + cols_A, + (const mpz_t *) &(A->storage[i-1]), rows_A, + (const mpz_t *) &(B->storage[(j-1)*rows_B]), 1); + } + } + + /* Get rid of the old storage */ + for(i = 1; i <= rows_A*cols_A; i++) + { + mpz_clear (A->storage[i-1]); + } + free(A->storage); + + /* Update A */ + A -> storage = new_storage; + A -> cols = cols_B; + + return EXIT_SUCCESS; +} + +int +gmp_matrix_left_mult(const gmp_matrix * A, gmp_matrix * B) +{ + mpz_t * new_storage; + size_t i,j; + size_t rows_A, cols_A, rows_B, cols_B; + + if((A == NULL) || (B == NULL)) + { + return EXIT_FAILURE; + } + + rows_A = A->rows; + cols_A = A->cols; + rows_B = B->rows; + cols_B = B->cols; + + if(cols_A != rows_B) + { + return EXIT_FAILURE; + } + + /* Create new storage for the product */ + new_storage = (mpz_t *) calloc(rows_A*cols_B, sizeof(mpz_t)); + if(new_storage == NULL) + { + return EXIT_FAILURE; + } + + /* Compute the product to the storage */ + for(j = 1; j <= cols_B; j++) + { + for(i = 1; i <= rows_A; i++) + { + mpz_init (new_storage[(i-1)+(j-1)*rows_A]); + gmp_blas_dot(&(new_storage[(i-1)+(j-1)*rows_A]), + cols_A, + (const mpz_t *) &(A->storage[i-1]), rows_A, + (const mpz_t *) &(B->storage[(j-1)*rows_B]), 1); + } + } + + /* Get rid of the old storage */ + for(i = 1; i <= rows_B*cols_B; i++) + { + mpz_clear (B->storage[i-1]); + } + free(B->storage); + + /* Update A */ + B -> storage = new_storage; + B -> rows = rows_A; + + return EXIT_SUCCESS; +} + + +int gmp_matrix_printf(const gmp_matrix * m) +{ + + mpz_t outz; + size_t rows, cols, i, j; + + if(m == NULL) + { + return EXIT_FAILURE; + } + + rows = m->rows; + cols = m->cols; + mpz_init(outz); + for(i = 1; i <= rows ; i++) + { + for(j = 1; j <= cols ; j++) + { + gmp_matrix_get_elem(outz, i, j, m); + mpz_out_str (stdout, 10, outz); + printf(" "); + } + printf("\n"); + } + + mpz_clear(outz); + + return EXIT_SUCCESS; +} + +int gmp_matrix_fprintf(FILE* stream, const gmp_matrix * m) +{ + mpz_t outz; + size_t rows, cols, i, j; + + if(m == NULL) + { + return EXIT_FAILURE; + } + + rows = m->rows; + cols = m->cols; + mpz_init(outz); + for(i = 1; i <= rows ; i++) + { + for(j = 1; j <= cols ; j++) + { + gmp_matrix_get_elem(outz, i, j, m); + mpz_out_str (stream, 10, outz); + printf(" "); + } + printf("\n"); + } + + mpz_clear(outz); + + return EXIT_SUCCESS; +} diff --git a/contrib/kbipack/gmp_matrix.c~ b/contrib/kbipack/gmp_matrix.c~ new file mode 100755 index 0000000000000000000000000000000000000000..2afe8d1dd2d6b34312a4859e01d672a1480bf947 --- /dev/null +++ b/contrib/kbipack/gmp_matrix.c~ @@ -0,0 +1,678 @@ +/* + Source file for integer-oriented matrix, relying on the arbitrary + precision integers from the GNU gmp package. + + Copyright (C) 28.10.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_matrix.c~,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + + +#include<stdlib.h> +#include"gmp_matrix.h" + +int gmp_kaka(int laalaa){ + printf("kissa %d", laalaa); + return laalaa; +} + +gmp_matrix * +create_gmp_matrix(size_t r, size_t c, + const mpz_t * e) +{ + gmp_matrix * new_matrix; + size_t ind; + + new_matrix = (gmp_matrix * ) malloc(sizeof(gmp_matrix)); + if(new_matrix == NULL) + { + return NULL; + } + + new_matrix -> storage = (mpz_t *) calloc(r*c, sizeof(mpz_t)); + if(new_matrix -> storage == NULL) + { + free(new_matrix); + return NULL; + } + + new_matrix -> rows = r; + new_matrix -> cols = c; + + for(ind = 0; ind < r*c; ind ++) + { + mpz_init (new_matrix -> storage[ind]); + mpz_set (new_matrix -> storage[ind], e[ind]); + } + + return new_matrix; +} + + +gmp_matrix * +create_gmp_matrix_identity(size_t dim) +{ + gmp_matrix * new_matrix; + size_t ind; + + new_matrix = (gmp_matrix * ) malloc(sizeof(gmp_matrix)); + if(new_matrix == NULL) + { + return NULL; + } + + new_matrix -> storage = (mpz_t *) calloc(dim*dim, sizeof(mpz_t)); + if(new_matrix -> storage == NULL) + { + free(new_matrix); + return NULL; + } + + new_matrix -> rows = dim; + new_matrix -> cols = dim; + + for(ind = 0; ind < dim*dim; ind ++) + { + mpz_init_set_si (new_matrix -> storage[ind], 0); + } + + for(ind = 0; ind < dim; ind ++) + { + mpz_set_ui(new_matrix -> storage[ind*(dim+1)], 1); + } + + return new_matrix; +} + + +gmp_matrix * +create_gmp_matrix_zero(size_t rows, size_t cols) +{ + gmp_matrix * new_matrix; + size_t ind; + + new_matrix = (gmp_matrix * ) malloc(sizeof(gmp_matrix)); + if(new_matrix == NULL) + { + return NULL; + } + + new_matrix -> storage = (mpz_t *) calloc(rows*cols, sizeof(mpz_t)); + if(new_matrix -> storage == NULL) + { + free(new_matrix); + return NULL; + } + + new_matrix -> rows = rows; + new_matrix -> cols = cols; + + for(ind = 0; ind < rows*cols; ind ++) + { + mpz_init_set_si (new_matrix -> storage[ind], 0); + } + + return new_matrix; +} + +int +destroy_gmp_matrix(gmp_matrix * m) +{ + size_t ind, nmb_storage;; + + if(m == NULL) + { + return EXIT_FAILURE; + } + + if(m -> storage == NULL) + { + free(m); + return EXIT_FAILURE; + } + + nmb_storage = (m -> rows)*(m -> cols); + + for(ind = 0; ind < nmb_storage; ind++) + { + mpz_clear(m -> storage[ind]); + } + + free(m -> storage); + free(m); + return EXIT_SUCCESS; +} + + +size_t +gmp_matrix_rows(const gmp_matrix * m) +{ + if(m == NULL) + { + return 0; + } + + return m -> rows; +} + + +size_t +gmp_matrix_cols(const gmp_matrix * m) +{ + if(m == NULL) + { + return 0; + } + + return m -> cols; +} + +/* elem <- (matrix(row, col)) */ +int +gmp_matrix_get_elem(mpz_t elem, size_t row, size_t col, + const gmp_matrix * m) +{ +#ifdef DEBUG + + if(m == NULL) + { + return EXIT_FAILURE; + } + +#endif + + mpz_set(elem, m -> storage[(col-1)*(m -> rows)+row-1]); + return EXIT_SUCCESS; +} + +int +gmp_matrix_swap_rows(size_t row1, size_t row2, gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((row1 < 1) || (row1 > m->rows) || (row2 < 1) || (row2 > m->rows)) + { + return EXIT_FAILURE; + } + + /* printf("Swapping rows %i %i\n", row1, row2); */ + gmp_blas_swap(m -> cols, + &(m -> storage[row1-1]), m -> rows, + &(m -> storage[row2-1]), m -> rows); + + return EXIT_SUCCESS; +} + +int +gmp_matrix_swap_cols(size_t col1, size_t col2, gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((col1 < 1) || (col1 > m->cols) || (col2 < 1) || (col2 > m->cols)) + { + return EXIT_FAILURE; + } + + /* printf("Swapping cols %i %i\n", col1, col2); */ + gmp_blas_swap(m -> rows, + &(m -> storage[(m->rows)*(col1-1)]), 1, + &(m -> storage[(m->rows)*(col2-1)]), 1); + + return EXIT_SUCCESS; +} + +int +gmp_matrix_negate_row(size_t row, gmp_matrix * m) +{ + mpz_t minus_one; + + if(m == NULL) + { + return EXIT_FAILURE; + } + if((row < 1) || (row > m->rows)) + { + return EXIT_FAILURE; + } + + mpz_init(minus_one); + mpz_set_si(minus_one, -1); + gmp_blas_scal(m -> cols, minus_one, (&m -> storage[row-1]), m -> rows); + mpz_clear(minus_one); + return EXIT_SUCCESS; +} + +int +gmp_matrix_negate_col(size_t col, gmp_matrix * m) +{ + mpz_t minus_one; + if(m == NULL) + { + return EXIT_FAILURE; + } + if((col < 1) || (col > m->cols)) + { + return EXIT_FAILURE; + } + + mpz_init(minus_one); + mpz_set_si(minus_one, -1); + gmp_blas_scal(m -> rows, minus_one, + &(m -> storage[(m->rows)*(col-1)]), 1); + mpz_clear(minus_one); + return EXIT_SUCCESS; +} + +/* row2 <- a*row1 + row2*/ +int +gmp_matrix_add_row(mpz_t a, size_t row1, size_t row2, + gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((row1 < 1) || (row1 > m->rows) || (row2 < 1) || (row2 > m->rows)) + { + return EXIT_FAILURE; + } + + gmp_blas_axpy(m->cols, a, + (const mpz_t *) &(m->storage[row1-1]), m->rows, + &(m->storage[row2-1]), m->rows); + + return EXIT_SUCCESS; +} + +int +gmp_matrix_add_col(mpz_t a, size_t col1, size_t col2, + gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((col1 < 1) || (col1 > m->cols) || (col2 < 1) || (col2 > m->cols)) + { + return EXIT_FAILURE; + } + + gmp_blas_axpy(m->rows, a, + (const mpz_t *) &(m -> storage[(m->rows)*(col1-1)]), 1, + &(m -> storage[(m->rows)*(col2-1)]), 1); + + return EXIT_SUCCESS; +} + +/* row1 <- a*row1 + b*row2 + row2 <- c*row1 + d*row2 */ +int +gmp_matrix_row_rot(mpz_t a, mpz_t b, size_t row1, + mpz_t c, mpz_t d, size_t row2, + gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((row1 < 1) || (row1 > m->rows) || (row2 < 1) || (row2 > m->rows)) + { + return EXIT_FAILURE; + } + + gmp_blas_rot(m->cols, + a, b, &(m->storage[row1-1]), m->rows, + c, d, &(m->storage[row2-1]), m->rows); + + return EXIT_SUCCESS; +} +int +gmp_matrix_col_rot(mpz_t a, mpz_t b, size_t col1, + mpz_t c, mpz_t d, size_t col2, + gmp_matrix * m) +{ + if(m == NULL) + { + return EXIT_FAILURE; + } + if((col1 < 1) || (col1 > m->cols) || (col2 < 1) || (col2 > m->cols)) + { + return EXIT_FAILURE; + } + +/* printf("a: %i b: %i c: %i d:%i col1: %i col2: %i\n", */ +/* mpz_get_si(a), */ +/* mpz_get_si(b), */ +/* mpz_get_si(c), */ +/* mpz_get_si(d), */ +/* col1, col2); */ + + gmp_blas_rot(m->rows, + a, b, &(m -> storage[(m->rows)*(col1-1)]), 1, + c, d, &(m -> storage[(m->rows)*(col2-1)]), 1); + + return EXIT_SUCCESS; +} + +size_t +gmp_matrix_col_inz (size_t r1, size_t r2, size_t c, + gmp_matrix * m) +{ + size_t result; + + if(m == NULL) + { + return 0; + } + if((r1 < 1) || (r1 > m->rows) || + (r2 < 1) || (r2 > m->rows) || + (r2 < r1) || (c < 1) || (c > m->cols)) + { + return 0; + } + + result = gmp_blas_inz(r2-r1+1, + (const mpz_t *) &(m->storage[(c-1)*(m->rows)+r1-1]), + 1); + + if(result > r2-r1+1) + { + return 0; + } + + return result; +} + +size_t +gmp_matrix_row_inz (size_t r, size_t c1, size_t c2, + gmp_matrix * m) +{ + size_t result; + + if(m == NULL) + { + return 0; + } + if((r < 1) || (r > m->rows) || + (c1 < 1) || (c1 > m->cols) || + (c2 < c1) || (c2 < 1) || (c2 > m->cols)) + { + return 0; + } + + result = gmp_blas_inz(c2-c1+1, + (const mpz_t *) &(m->storage[(c1-1)*(m->rows)+r-1]), + m->rows); + + if(result > c2-c1+1) + { + return 0; + } + + return result; +} + + +int +gmp_matrix_is_diagonal(const gmp_matrix * M) +{ + size_t i,j; + size_t rows, cols; + + if(M == NULL) + { + return 0; + } + + rows = M->rows; + cols = M->cols; + + for(j = 1; j <= cols; j ++) + { + for(i = 1; i <= rows; i ++) + { + if((mpz_cmp_si(M->storage[(i-1)+(j-1)*rows], 0) != 0) && + (i != j)) + { + return 0; + } + } + } + + return 1; +} + + +int +gmp_matrix_transp(gmp_matrix * M) +{ + mpz_t * new_storage; + size_t i,j; + size_t rows, cols; + + if(M == NULL) + { + return EXIT_FAILURE; + } + + rows = M->rows; + cols = M->cols; + + new_storage = (mpz_t *) calloc(rows*cols, sizeof(mpz_t)); + if(new_storage == NULL) + { + return EXIT_FAILURE; + } + + for(i = 1; i <= rows; i++) + { + for(j = 1; j <= cols; j++) + { + mpz_init_set(new_storage[(j-1)+(i-1)*cols], + M-> storage[(i-1)+(j-1)*rows]); + mpz_clear(M-> storage[(i-1)+(j-1)*rows]); + } + } + free(M->storage); + + M -> storage = new_storage; + M -> rows = cols; + M -> cols = rows; + + return EXIT_SUCCESS; +} + + +int +gmp_matrix_right_mult(gmp_matrix * A, const gmp_matrix * B) +{ + mpz_t * new_storage; + size_t i,j; + size_t rows_A, cols_A, rows_B, cols_B; + + if((A == NULL) || (B == NULL)) + { + return EXIT_FAILURE; + } + + rows_A = A->rows; + cols_A = A->cols; + rows_B = B->rows; + cols_B = B->cols; + + if(cols_A != rows_B) + { + return EXIT_FAILURE; + } + + /* Create new storage for the product */ + new_storage = (mpz_t *) calloc(rows_A*cols_B, sizeof(mpz_t)); + if(new_storage == NULL) + { + return EXIT_FAILURE; + } + + /* Compute the product to the storage */ + for(j = 1; j <= cols_B; j++) + { + for(i = 1; i <= rows_A; i++) + { + mpz_init (new_storage[(i-1)+(j-1)*rows_A]); + gmp_blas_dot(&(new_storage[(i-1)+(j-1)*rows_A]), + cols_A, + (const mpz_t *) &(A->storage[i-1]), rows_A, + (const mpz_t *) &(B->storage[(j-1)*rows_B]), 1); + } + } + + /* Get rid of the old storage */ + for(i = 1; i <= rows_A*cols_A; i++) + { + mpz_clear (A->storage[i-1]); + } + free(A->storage); + + /* Update A */ + A -> storage = new_storage; + A -> cols = cols_B; + + return EXIT_SUCCESS; +} + +int +gmp_matrix_left_mult(const gmp_matrix * A, gmp_matrix * B) +{ + mpz_t * new_storage; + size_t i,j; + size_t rows_A, cols_A, rows_B, cols_B; + + if((A == NULL) || (B == NULL)) + { + return EXIT_FAILURE; + } + + rows_A = A->rows; + cols_A = A->cols; + rows_B = B->rows; + cols_B = B->cols; + + if(cols_A != rows_B) + { + return EXIT_FAILURE; + } + + /* Create new storage for the product */ + new_storage = (mpz_t *) calloc(rows_A*cols_B, sizeof(mpz_t)); + if(new_storage == NULL) + { + return EXIT_FAILURE; + } + + /* Compute the product to the storage */ + for(j = 1; j <= cols_B; j++) + { + for(i = 1; i <= rows_A; i++) + { + mpz_init (new_storage[(i-1)+(j-1)*rows_A]); + gmp_blas_dot(&(new_storage[(i-1)+(j-1)*rows_A]), + cols_A, + (const mpz_t *) &(A->storage[i-1]), rows_A, + (const mpz_t *) &(B->storage[(j-1)*rows_B]), 1); + } + } + + /* Get rid of the old storage */ + for(i = 1; i <= rows_B*cols_B; i++) + { + mpz_clear (B->storage[i-1]); + } + free(B->storage); + + /* Update A */ + B -> storage = new_storage; + B -> rows = rows_A; + + return EXIT_SUCCESS; +} + + +int gmp_matrix_printf(const gmp_matrix * m) +{ + + mpz_t outz; + size_t rows, cols, i, j; + + if(m == NULL) + { + return EXIT_FAILURE; + } + + rows = m->rows; + cols = m->cols; + mpz_init(outz); + for(i = 1; i <= rows ; i++) + { + for(j = 1; j <= cols ; j++) + { + gmp_matrix_get_elem(outz, i, j, m); + mpz_out_str (stdout, 10, outz); + printf(" "); + } + printf("\n"); + } + + mpz_clear(outz); + + return EXIT_SUCCESS; +} + +int gmp_matrix_fprintf(FILE* stream, const gmp_matrix * m) +{ + mpz_t outz; + size_t rows, cols, i, j; + + if(m == NULL) + { + return EXIT_FAILURE; + } + + rows = m->rows; + cols = m->cols; + mpz_init(outz); + for(i = 1; i <= rows ; i++) + { + for(j = 1; j <= cols ; j++) + { + gmp_matrix_get_elem(outz, i, j, m); + mpz_out_str (stream, 10, outz); + printf(" "); + } + printf("\n"); + } + + mpz_clear(outz); + + return EXIT_SUCCESS; +} diff --git a/contrib/kbipack/gmp_matrix.h b/contrib/kbipack/gmp_matrix.h new file mode 100755 index 0000000000000000000000000000000000000000..6e32583db36d840637cc64d42aac9236c449e3c4 --- /dev/null +++ b/contrib/kbipack/gmp_matrix.h @@ -0,0 +1,142 @@ +/* + Header file for integer-oriented matrix, relying on the arbitrary + precision integers from the GNU gmp package. + + Copyright (C) 28.10.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_matrix.h,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + +#ifndef __GMP_MATRIX_H__ +#define __GMP_MATRIX_H__ + +#include"gmp_blas.h" + +typedef struct +{ + size_t rows; + size_t cols; + mpz_t * storage; +} gmp_matrix; + +/* Sets the values of "elems" column by column. The user is + responsible for sufficient supply. */ +gmp_matrix * +create_gmp_matrix(size_t rows, size_t cols, + const mpz_t * elems); + +gmp_matrix * +create_gmp_matrix_identity(size_t dim); + +gmp_matrix * +create_gmp_matrix_zero(size_t rows, size_t cols); + +int +destroy_gmp_matrix(gmp_matrix *); + +size_t +gmp_matrix_rows(const gmp_matrix *); + +size_t +gmp_matrix_cols(const gmp_matrix *); + +/* elem <- (matrix(row, col)) */ +int +gmp_matrix_get_elem(mpz_t elem, size_t row, size_t col, + const gmp_matrix *); + +int +gmp_matrix_swap_rows(size_t row1, size_t row2, gmp_matrix *); + +int +gmp_matrix_swap_cols(size_t col1, size_t col2, gmp_matrix *); + +int +gmp_matrix_negate_row(size_t row, gmp_matrix *); + +int +gmp_matrix_negate_col(size_t col, gmp_matrix *); + +/* row2 <- a*row1 + row2*/ +int +gmp_matrix_add_row(mpz_t a, size_t row1, size_t row2, + gmp_matrix *); +int +gmp_matrix_add_col(mpz_t a, size_t col1, size_t col2, + gmp_matrix *); + +/* row1 <- a*row1 + b*row2 + row2 <- c*row1 + d*row2 */ +int +gmp_matrix_row_rot(mpz_t a, mpz_t b, size_t row1, + mpz_t c, mpz_t d, size_t row2, + gmp_matrix *); +int +gmp_matrix_col_rot(mpz_t a, mpz_t b, size_t col1, + mpz_t c, mpz_t d, size_t col2, + gmp_matrix *); + +/* 0 for no, 1 for yes */ +int +gmp_matrix_is_diagonal(const gmp_matrix * M); + +/* Finds a nonzero in a subcolumn M(r1:r2,c). */ +/* Returns zero if no nonzeros found. */ +size_t +gmp_matrix_col_inz (size_t r1, size_t r2, size_t c, + gmp_matrix * M); + +/* Finds a nonzero in a subrow M(r,c1:c2). */ +/* Returns zero if no nonzeros found. */ +size_t +gmp_matrix_row_inz (size_t r, size_t c1, size_t c2, + gmp_matrix * M); + +int +gmp_matrix_transp(gmp_matrix * M); + +/* A <- A*B */ +int +gmp_matrix_right_mult(gmp_matrix * A, const gmp_matrix * B); + +/* B <- A*B */ +int +gmp_matrix_left_mult(const gmp_matrix * A, gmp_matrix * B); + +/* (TBD ?)Implement the BLAS style GEMM? Place it here at all? */ +/* (T) (T) */ +/* A <- B * C */ +/* Give 1 if the transpose of the matrix is to be used, else 0 */ +/* int */ +/* gmp_matrix_mult(gmp_matrix * A, */ +/* const gmp_matrix * B, int transpose_B, */ +/* const gmp_matrix * C, int transpose_C); */ + +/* + Mainly for diagnostics ... + -------------------------- +*/ + +int gmp_matrix_printf(const gmp_matrix *); +int gmp_matrix_fprintf(FILE*, const gmp_matrix *); + + +#endif diff --git a/contrib/kbipack/gmp_matrix.h~ b/contrib/kbipack/gmp_matrix.h~ new file mode 100755 index 0000000000000000000000000000000000000000..217b5fe7e1d1279cf617579cdc2abefaedfc9c31 --- /dev/null +++ b/contrib/kbipack/gmp_matrix.h~ @@ -0,0 +1,144 @@ +/* + Header file for integer-oriented matrix, relying on the arbitrary + precision integers from the GNU gmp package. + + Copyright (C) 28.10.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_matrix.h~,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + +#ifndef __GMP_MATRIX_H__ +#define __GMP_MATRIX_H__ + +#include"gmp_blas.h" + +typedef struct +{ + size_t rows; + size_t cols; + mpz_t * storage; +} gmp_matrix; + +int gmp_kaka(int laalaa); + +/* Sets the values of "elems" column by column. The user is + responsible for sufficient supply. */ +gmp_matrix * +create_gmp_matrix(size_t rows, size_t cols, + const mpz_t * elems); + +gmp_matrix * +create_gmp_matrix_identity(size_t dim); + +gmp_matrix * +create_gmp_matrix_zero(size_t rows, size_t cols); + +int +destroy_gmp_matrix(gmp_matrix *); + +size_t +gmp_matrix_rows(const gmp_matrix *); + +size_t +gmp_matrix_cols(const gmp_matrix *); + +/* elem <- (matrix(row, col)) */ +int +gmp_matrix_get_elem(mpz_t elem, size_t row, size_t col, + const gmp_matrix *); + +int +gmp_matrix_swap_rows(size_t row1, size_t row2, gmp_matrix *); + +int +gmp_matrix_swap_cols(size_t col1, size_t col2, gmp_matrix *); + +int +gmp_matrix_negate_row(size_t row, gmp_matrix *); + +int +gmp_matrix_negate_col(size_t col, gmp_matrix *); + +/* row2 <- a*row1 + row2*/ +int +gmp_matrix_add_row(mpz_t a, size_t row1, size_t row2, + gmp_matrix *); +int +gmp_matrix_add_col(mpz_t a, size_t col1, size_t col2, + gmp_matrix *); + +/* row1 <- a*row1 + b*row2 + row2 <- c*row1 + d*row2 */ +int +gmp_matrix_row_rot(mpz_t a, mpz_t b, size_t row1, + mpz_t c, mpz_t d, size_t row2, + gmp_matrix *); +int +gmp_matrix_col_rot(mpz_t a, mpz_t b, size_t col1, + mpz_t c, mpz_t d, size_t col2, + gmp_matrix *); + +/* 0 for no, 1 for yes */ +int +gmp_matrix_is_diagonal(const gmp_matrix * M); + +/* Finds a nonzero in a subcolumn M(r1:r2,c). */ +/* Returns zero if no nonzeros found. */ +size_t +gmp_matrix_col_inz (size_t r1, size_t r2, size_t c, + gmp_matrix * M); + +/* Finds a nonzero in a subrow M(r,c1:c2). */ +/* Returns zero if no nonzeros found. */ +size_t +gmp_matrix_row_inz (size_t r, size_t c1, size_t c2, + gmp_matrix * M); + +int +gmp_matrix_transp(gmp_matrix * M); + +/* A <- A*B */ +int +gmp_matrix_right_mult(gmp_matrix * A, const gmp_matrix * B); + +/* B <- A*B */ +int +gmp_matrix_left_mult(const gmp_matrix * A, gmp_matrix * B); + +/* (TBD ?)Implement the BLAS style GEMM? Place it here at all? */ +/* (T) (T) */ +/* A <- B * C */ +/* Give 1 if the transpose of the matrix is to be used, else 0 */ +/* int */ +/* gmp_matrix_mult(gmp_matrix * A, */ +/* const gmp_matrix * B, int transpose_B, */ +/* const gmp_matrix * C, int transpose_C); */ + +/* + Mainly for diagnostics ... + -------------------------- +*/ + +int gmp_matrix_printf(const gmp_matrix *); +int gmp_matrix_fprintf(FILE*, const gmp_matrix *); + + +#endif diff --git a/contrib/kbipack/gmp_matrix.o b/contrib/kbipack/gmp_matrix.o new file mode 100755 index 0000000000000000000000000000000000000000..b151210c86fa837e700afce35afff9326bbec789 Binary files /dev/null and b/contrib/kbipack/gmp_matrix.o differ diff --git a/contrib/kbipack/gmp_matrix_io.c b/contrib/kbipack/gmp_matrix_io.c new file mode 100755 index 0000000000000000000000000000000000000000..f85639304a34e500096a2d3196a23044c8a212e8 --- /dev/null +++ b/contrib/kbipack/gmp_matrix_io.c @@ -0,0 +1,135 @@ +/* + IO-routines for gmp integer matrices in coordinate format. + + Copyright (C) 19.11.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_matrix_io.c,v 1.1 2009-03-30 14:10:57 matti Exp $ + */ + +#include<stdio.h> +#include<stdlib.h> +#include<string.h> +#include "gmp_matrix_io.h" + +gmp_matrix * gmp_matrix_read_coord(char* filename) +{ + FILE * p_file; + size_t read_values; + size_t row, col, nrows, ncols, dummy; + int val; + char buffer[1000]; + gmp_matrix * new_matrix; + + p_file = fopen(filename, "r"); + if(p_file == NULL) + return NULL; + + /* Matlab and Octave typically include comments on ascii files. */ + /* They start with # */ + fgets(buffer, 999, p_file); + while(strncmp(buffer, "#",1) == 0) + { + fgets(buffer, 999, p_file); + } + + /* First read the size of the matrix */ + read_values = sscanf(buffer, "%u %u %u", &nrows, &ncols, &dummy); + + /* Create the matrix */ + new_matrix = create_gmp_matrix_zero(nrows, ncols); + if(new_matrix == NULL) + { + fclose(p_file); + return NULL; + } + + /* Read the values to the matrix */ + while(read_values != EOF) + { + read_values = fscanf(p_file, "%u %u %i\n", &row, &col, &val); + if( (row <= nrows) && (row > 0) && (col <= ncols) && (col > 0) ) + { + mpz_set_si ( new_matrix->storage[(row-1)+(col-1)*nrows], val ); + } + } + fclose(p_file); + + return new_matrix; +} + +int gmp_matrix_write_coord(char* filename, const gmp_matrix * M) +{ + + FILE * p_file; + size_t written_values; + size_t row, col, nrows, ncols, nnz; + mpz_t outz; + + if(M == NULL) + { + return EXIT_FAILURE; + } + + nrows = M->rows; + ncols = M->cols; + + p_file = fopen(filename, "w"); + if(p_file == NULL) + return 0; + + nnz = 0; + /* Compute the number of nonzeros for coordinate format */ + mpz_init(outz); + for(col = 1; col <= ncols ; col++) + { + for(row = 1; row <= nrows ; row++) + { + gmp_matrix_get_elem(outz, row, col, M); + if( mpz_cmp_si (outz, 0) != 0) + { + nnz++; + } + } + } + + /* First write the size of the matrix */ + written_values = fprintf(p_file, "%u %u %u\n", nrows, ncols, nnz); + + /* Write the values to the matrix */ + for(col = 1; col <= ncols ; col++) + { + for(row = 1; row <= nrows ; row++) + { + gmp_matrix_get_elem(outz, row, col, M); + if( mpz_cmp_si (outz, 0) != 0) + { + fprintf(p_file, "%u %u ", row, col); + mpz_out_str (p_file, 10, outz); + fprintf(p_file, "\n"); + } + } + } + mpz_clear(outz); + + fclose(p_file); + + return EXIT_SUCCESS; +} diff --git a/contrib/kbipack/gmp_matrix_io.h b/contrib/kbipack/gmp_matrix_io.h new file mode 100755 index 0000000000000000000000000000000000000000..74df3f2ad138c63068ac277064a72875d93e0c59 --- /dev/null +++ b/contrib/kbipack/gmp_matrix_io.h @@ -0,0 +1,37 @@ +/* + IO-routines for gmp integer matrices in coordinate format. + + Copyright (C) 19.11.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_matrix_io.h,v 1.1 2009-03-30 14:10:57 matti Exp $ + */ + +#ifndef _GMP_MATRIX_IO_ +#define _GMP_MATRIX_IO_ + + +#include "gmp_matrix.h" + +gmp_matrix * gmp_matrix_read_coord(char* filename); +int gmp_matrix_write_coord(char* filename, const gmp_matrix * M); + + +#endif diff --git a/contrib/kbipack/gmp_matrix_io.o b/contrib/kbipack/gmp_matrix_io.o new file mode 100755 index 0000000000000000000000000000000000000000..c7231192ab4007c70d68c083fb81cab8a3fddd0f Binary files /dev/null and b/contrib/kbipack/gmp_matrix_io.o differ diff --git a/contrib/kbipack/gmp_normal_form.c b/contrib/kbipack/gmp_normal_form.c new file mode 100755 index 0000000000000000000000000000000000000000..42785337e7e54cf85e1bc82b1dc0ea52b14ed925 --- /dev/null +++ b/contrib/kbipack/gmp_normal_form.c @@ -0,0 +1,783 @@ +/* + Implementation for integer computation of Hermite and Smith normal + forms of matrices of modest size. + + Implementation: Dense matrix with GMP-library's mpz_t elements to + hold huge integers. + + Algorithm: Kannan - Bachem algorithm with improvement by + Chou and Collins. Expects a large number of unit invariant + factors and takes advantage of them as they appear. + + References: + [1] Ravindran Kannan, Achim Bachem: + "Polynomial algorithms for computing the Smith and Hermite normal + forms of an integer matrix", + SIAM J. Comput., vol. 8, no. 5, pp. 499-507, 1979. + [2] Tsu-Wu J.Chou, George E. Collins: + "Algorithms for the solution of systems of linear Diophantine + equations", + SIAM J. Comput., vol. 11, no. 4, pp. 687-708, 1982. + [3] GMP homepage http://www.swox.com/gmp/ + [4] GNU gmp page http://www.gnu.org/software/gmp/ + + Copyright (C) 30.10.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_normal_form.c,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + +#include<stdlib.h> +#include"gmp_blas.h" +#include"gmp_matrix.h" +#include"gmp_normal_form.h" + + +/* The unaltered matrix and identity left and right factors */ +static gmp_normal_form * +create_gmp_trivial_normal_form(gmp_matrix * A, + inverted_flag left_inverted, + inverted_flag right_inverted) +{ + size_t rows, cols; + + gmp_normal_form * new_nf; + if(A == NULL) + { + return NULL; + } + + new_nf = (gmp_normal_form *) malloc(sizeof(gmp_normal_form)); + if(new_nf == NULL) + { + destroy_gmp_matrix(A); + return NULL; + } + + rows = A -> rows; + cols = A -> cols; + + if((rows == 0) || (cols == 0)) + { + destroy_gmp_matrix(A); + return NULL; + } + + new_nf->left = create_gmp_matrix_identity(rows); + if(new_nf->left == NULL) + { + destroy_gmp_matrix(A); + free(new_nf); + return NULL; + } + + new_nf->right = create_gmp_matrix_identity(cols); + if(new_nf->right == NULL) + { + destroy_gmp_matrix(A); + destroy_gmp_matrix(new_nf->left); + free(new_nf); + return NULL; + } + + new_nf -> canonical = A; + new_nf -> left_inverted = left_inverted; + new_nf -> right_inverted = right_inverted; + + return new_nf; +} + +static int +gmp_Hermite_eliminate_step(gmp_matrix * L, gmp_matrix * U, + size_t col, inverted_flag right_inverted) +{ + size_t ind, row_limit; + mpz_t pivot, elem; + mpz_t bez1, bez2, gc_div; + mpz_t cff1, cff2; + + mpz_init(pivot); + mpz_init(elem); + mpz_init(bez1); + mpz_init(bez2); + mpz_init(cff1); + mpz_init(cff2); + mpz_init(gc_div); + + row_limit = (L->rows >= col) ? + col-1 : + L->rows; + + for(ind = 1; ind <= row_limit; ind++) + { + gmp_matrix_get_elem(elem, ind, col, L); + + /* Eliminate only if nonzero */ + if(mpz_sgn (elem) != 0) + { + gmp_matrix_get_elem(pivot, ind, ind, L); + + /* Extended Euclid's: + bez1*pivot+bez2*elem = gc_div */ + gmp_blas_rotg(gc_div, bez1, bez2, pivot, elem); + + /* Make cff1 = -elem/gc_div */ + mpz_divexact(cff1, elem, gc_div); + mpz_neg (cff1, cff1); + /* Make cff2 = pivot/gc_div */ + mpz_divexact(cff2, pivot, gc_div); + + /* Update the HNF canonical matrix */ + gmp_matrix_col_rot(bez1, bez2, ind, + cff1, cff2, col, + L); + + /* Update the unimodular factor matrix */ + if(right_inverted == INVERTED) + { + gmp_matrix_col_rot(bez1, bez2, ind, + cff1, cff2, col, + U); + } + else + { + + /* [bez1, -elem/gc_div] [pivot/gc_div, elem/gc_div] + [bez2, pivot/gc_div] [-bez2, bez1 ] = I_2 */ + mpz_neg(cff1, cff1); + mpz_neg(bez2, bez2); + gmp_matrix_row_rot(cff2, cff1, ind, + bez2, bez1, col, + U); + } + } + } + mpz_clear(pivot); + mpz_clear(elem); + mpz_clear(bez1); + mpz_clear(bez2); + mpz_clear(cff1); + mpz_clear(cff2); + mpz_clear(gc_div); + + return EXIT_SUCCESS; +} + + + +static int +gmp_Hermite_reduce_step(gmp_matrix * L, gmp_matrix * U, + size_t col, inverted_flag right_inverted) +{ + + size_t i, j; + mpz_t pivot, elem; + mpz_t cff; + + mpz_init(pivot); + mpz_init(elem); + mpz_init(cff); + + if(col > (L->rows)) + { + return EXIT_FAILURE; + } + + /* printf("Col = %i\n", col); + printf("L before\n"); + gmp_matrix_printf(L);*/ + + for(j = col-1; j >= 1; j--) + { + for(i = j+1; i <= col; i++) + { + gmp_matrix_get_elem(pivot, i, i, L); + gmp_matrix_get_elem(elem, i, j, L); + /* printf(" i %i j %i\n",i,j); */ + + if((mpz_cmpabs(elem, pivot) >= 0) || (mpz_sgn(elem) < 0)) + { + /* The objective: + 0 <= elem + k*pivot < pivot + -elem <= k*pivot < pivot - elem + -elem/pivot <= k < - elem/pivot + 1 + + Solution: + k = ceil(-elem/pivot) + */ + + /* Make cff = -elem */ + mpz_neg (cff, elem); + mpz_cdiv_q (cff, cff, pivot); + + /* printf("col %i j %i\n", i, j); + printf("elem %i k %i pivot %i\n", + mpz_get_si(elem), + mpz_get_si(cff), + mpz_get_si(pivot));*/ + + + gmp_matrix_add_col(cff, i, j, L); + + /* Update the unimodular factor matrix */ + if(right_inverted == INVERTED) + { + gmp_matrix_add_col(cff, i, j, U); + } + + /* [1 0] [ 1 0] = [1 0] + [cff 1] [-cff 1] [0 1] */ + else + { + mpz_neg (cff, cff); + gmp_matrix_add_row(cff, j, i, U); + } + + /* printf("\n"); + gmp_matrix_printf(L);*/ + + } + } + } + +/* printf("L after\n"); */ +/* gmp_matrix_printf(L); */ + + mpz_clear(pivot); + mpz_clear(elem); + mpz_clear(cff); + return EXIT_SUCCESS; +} + + +static int +gmp_normal_form_make_Hermite(gmp_normal_form * nf) +{ + size_t rows, cols; + size_t pivot_ind; + size_t schur, colind; + mpz_t pivot; + gmp_matrix * canonical; + gmp_matrix * left; + gmp_matrix * right; + + if(nf == NULL) + { + return EXIT_FAILURE; + } + + /* OK, it's safe to get to business */ + canonical = nf->canonical; + left = nf->left; + right = nf->right; + rows = canonical -> rows; + cols = canonical -> cols; + + mpz_init(pivot); + + /* "schur" denotes where the present Schur complement starts */ + schur = 1; + + while((schur <= rows) && (schur <= cols)) + { + /* Eliminate a column */ + if (schur > 1) + { + gmp_Hermite_eliminate_step(canonical, right, + schur, nf->right_inverted); + } + + /* Find a pivot */ + pivot_ind = gmp_matrix_col_inz(schur, rows, schur, canonical); + + + /* If no nonzeros was found, the column is all zero, hence + settled with. Permute it to the end and decrement cols. */ + if(pivot_ind == 0) + { + gmp_matrix_swap_cols(schur, cols, canonical); + + if(nf -> right_inverted == INVERTED) + { + gmp_matrix_swap_cols(schur, cols, right); + } + else + { + gmp_matrix_swap_rows(schur, cols, right); + } + + cols--; + + /* When the whole column was zeroed, the diagonal + elements may have got reduced. Reduce the sub- + diagonals as well*/ + + if(schur > 1) + { + gmp_Hermite_reduce_step (canonical, right, schur-1, + nf -> right_inverted); + } + } + + /* A nonzero pivot was found. Permute it to the diagonal position, + make it positive, and reduce the off-diagonals. + The schur complement now starts from the next diagonal. */ + else + { + pivot_ind = schur+pivot_ind-1; + gmp_matrix_swap_rows(schur, pivot_ind, canonical); + + if(nf->left_inverted == INVERTED) + { + gmp_matrix_swap_rows(schur, pivot_ind, left); + } + else + { + gmp_matrix_swap_cols(schur, pivot_ind, left); + } + + /* Make the pivot positive */ + gmp_matrix_get_elem(pivot, schur, schur, canonical); + + if(mpz_cmp_si(pivot, 0) < 0) + { + gmp_matrix_negate_col(schur, canonical); + + if(nf->right_inverted == INVERTED) + { + gmp_matrix_negate_col(schur, right); + } + else + { + gmp_matrix_negate_row(schur, right); + } + } + + /* Reduce off-diagonals */ + gmp_Hermite_reduce_step (canonical, right, schur, nf -> right_inverted); + + schur++; + } + } + + /* The Schur complement is now empty. There may still be uneliminated + columns left (in case of a wide matrix) */ + + colind = schur; + while (colind <= cols) + { + gmp_Hermite_eliminate_step (canonical, right, colind, nf->right_inverted); + gmp_Hermite_reduce_step (canonical, right, schur-1, nf->right_inverted); + colind++; + } + + mpz_clear(pivot); + + return EXIT_SUCCESS; +} + + + +gmp_normal_form * +create_gmp_Hermite_normal_form(gmp_matrix * A, + inverted_flag left_inverted, + inverted_flag right_inverted) +{ + gmp_normal_form * new_nf; + + if(A == NULL) + { + return NULL; + } + + new_nf = + create_gmp_trivial_normal_form(A, left_inverted, right_inverted); + + if(new_nf == NULL) + { + /* A has been destroyed already */ + return NULL; + } + + if(gmp_normal_form_make_Hermite(new_nf) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + return NULL; + } + + return new_nf; +} + + +gmp_normal_form * +create_gmp_Smith_normal_form(gmp_matrix * A, + inverted_flag left_inverted, + inverted_flag right_inverted) +{ + + gmp_normal_form * new_nf; + gmp_matrix * canonical; + gmp_matrix * elbow; + inverted_flag elbow_flag; + size_t rows, cols; + size_t i, j; + size_t subd_ind, row_undivisible; + size_t last_ready_row, first_ready_col, ind; + mpz_t pivot; + mpz_t remainder; + + if(A == NULL) + { + return NULL; + } + + new_nf = + create_gmp_trivial_normal_form(A, left_inverted, right_inverted); + + if(new_nf == NULL) + { + /* A has been destroyed already */ + return NULL; + } + + canonical = new_nf -> canonical; + mpz_init(pivot); + mpz_init(remainder); + rows = canonical->rows; + cols = canonical->cols; + last_ready_row = 0; + first_ready_col = (cols < rows) ? (cols+1) : (rows+1); + + while(first_ready_col > last_ready_row + 1) + { + /*******/ + /* HNF */ + /*******/ + + if(gmp_normal_form_make_Hermite(new_nf) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + +#ifdef DEBUG + printf("HNF\n"); + gmp_matrix_printf (new_nf -> left); + gmp_matrix_printf (new_nf -> canonical); + gmp_matrix_printf (new_nf -> right); +#endif + + /**********************/ + /* Find ready columns */ + /**********************/ + + /* If a diagonal entry is zero, so is the corresponding + column. The zero diagonals always reside in the end. + Seek until zero diagonal encountered, but stay within the matrix! */ + ind = 1; + while ( (ind < first_ready_col) && + (mpz_cmp_si(canonical -> storage[(ind-1)+(ind-1)*rows], 0) != 0) + ) + { + ind ++; + } + first_ready_col = ind; + + /* Note: The number of ready cols is settled after the first HNF, + but the check is cheap. */ + + /**********************************************/ + /* Permute unit diagonals such that they lead */ + /**********************************************/ + + /* If the recently computed HNF has ones on the diagonal, their + corresponding rows are all zero (except the diagonal). + They are then settled, because the next LHNF kills the elements + on their columns. */ + + ind = last_ready_row+1; + + /* Stay within the nonzero cols of the matrix */ + while (ind < first_ready_col) + { + /* Unit diagonal encountered */ + if(mpz_cmp_si ( canonical->storage[(ind-1) + (ind-1)*rows], + 1) == 0) + { + /* If not in the beginning, permute to extend the leading minor + with unit diagonals */ + if(ind != last_ready_row+1) + { + gmp_matrix_swap_rows(last_ready_row+1, ind, + new_nf -> canonical); + + if(left_inverted == INVERTED) + { + gmp_matrix_swap_rows(last_ready_row+1, ind, + new_nf -> left); + } + else + { + gmp_matrix_swap_cols(last_ready_row+1, ind, + new_nf -> left); + } + + gmp_matrix_swap_cols(last_ready_row+1, ind, + new_nf -> canonical); + + if(right_inverted == INVERTED) + { + gmp_matrix_swap_cols(last_ready_row+1, ind, + new_nf -> right); + } + else + { + gmp_matrix_swap_rows(last_ready_row+1, ind, + new_nf -> right); + } + } + last_ready_row ++; + } + ind++; + } + +#ifdef DEBUG + printf("Leading units\n"); + gmp_matrix_printf (new_nf -> left); + gmp_matrix_printf (new_nf -> canonical); + gmp_matrix_printf (new_nf -> right); +#endif + + /********/ + /* LHNF */ + /********/ + + /* Extravagant strategy: Compute HNF of an explicit tranpose. */ + + /* 1. Transpose everything in the normal form */ + if(gmp_matrix_transp(canonical) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + if(gmp_matrix_transp(new_nf->left) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + if(gmp_matrix_transp(new_nf->right) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + + elbow = new_nf ->left; + new_nf ->left = new_nf ->right; + new_nf ->right = elbow; + elbow_flag = new_nf ->left_inverted; + new_nf ->left_inverted = new_nf ->right_inverted; + new_nf ->right_inverted = elbow_flag; + + /* 2. Compute HNF of the transpose */ + if(gmp_normal_form_make_Hermite(new_nf) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + + /* 3. Transpose everything back */ + if(gmp_matrix_transp(canonical) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + if(gmp_matrix_transp(new_nf->left) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + if(gmp_matrix_transp(new_nf->right) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + elbow = new_nf ->left; + new_nf ->left = new_nf ->right; + new_nf ->right = elbow; + elbow_flag = new_nf ->left_inverted; + new_nf ->left_inverted = new_nf ->right_inverted; + new_nf ->right_inverted = elbow_flag; + + +#ifdef DEBUG + printf("LHNF\n"); + gmp_matrix_printf (new_nf -> left); + gmp_matrix_printf (new_nf -> canonical); + gmp_matrix_printf (new_nf -> right); +#endif + + + /*****************************************************/ + /* Check if more of the leading normal form is ready */ + /*****************************************************/ + + /* The matrix is in LHNF, i.e. it is upper triangular. + If the row trailing the top left diagonal element is + zero, the diagonal element may be an invariant factor + on its final position, and the stage may be ready. + + The stage may not still be ready: The leading diagonal element + of D may not divide the rest of the Schur complement. */ + + subd_ind = 0; + row_undivisible = 0; + + /* Explanation of loop conditions: + 1.) No relative primes found from Schur complement + 2.) Stay within the Schur complement + 3.) If a nonzero is found from the trailing row, the stage is + definitely not ready */ + while (row_undivisible == 0 && + last_ready_row + 1 < first_ready_col && + subd_ind == 0) + { + subd_ind = + gmp_matrix_row_inz(last_ready_row+1, + last_ready_row+2, cols, + canonical); + + /* printf("subd_ind %i\n", subd_ind); + printf("last_ready_row %i\n", last_ready_row); */ + + /* No nonzeros found, the stage may be ready */ + if (subd_ind == 0) + { + mpz_set (pivot, + canonical->storage[(last_ready_row)+ + (last_ready_row)*rows]); + + /* Check whether the pivot divides all elements in the Schur + complement */ + row_undivisible = 0; + for(j = last_ready_row+2; j < first_ready_col; j++) + { + for(i = last_ready_row+2; i <= j; i++) + { + mpz_tdiv_r (remainder, + canonical->storage[(i-1)+ + (j-1)*rows], + pivot); + + if(mpz_cmp_si(remainder, 0) !=0) + { + row_undivisible = i; + /* col_undivisible = j; */ + } + } + } + + /* printf("Row undivisible %i\n", row_undivisible); */ + + /* If a relative prime was found from the Schur complement, + add that row to the first row of the Schur complement */ + if(row_undivisible != 0) + { + mpz_set_si (remainder, 1); + gmp_matrix_add_row(remainder, + row_undivisible, last_ready_row+1, + canonical); + + /* [ 1 0] [1 0] = [1 0] + [-1 1] [1 1] [0 1] */ + + if(left_inverted == INVERTED) + { + gmp_matrix_add_row(remainder, + row_undivisible, last_ready_row+1, + new_nf->left); + } + else + { + mpz_neg (remainder, remainder); + gmp_matrix_add_col(remainder, + last_ready_row+1, row_undivisible, + new_nf->left); + } + } + /* The Schur complement is smaller by one again */ + else + { + last_ready_row++; + } + } + } + } /* The main loop ends here */ + + mpz_clear(pivot); + mpz_clear(remainder); + return new_nf; +} + +int destroy_gmp_normal_form(gmp_normal_form * nf) +{ + int status; + + if(nf == NULL) + { + return EXIT_FAILURE; + } + + status = EXIT_SUCCESS; + if(destroy_gmp_matrix(nf -> left) == EXIT_FAILURE) + { + status = EXIT_FAILURE; + } + + if(destroy_gmp_matrix(nf -> canonical) == EXIT_FAILURE) + { + status = EXIT_FAILURE; + } + + if(destroy_gmp_matrix(nf -> right) == EXIT_FAILURE) + { + status = EXIT_FAILURE; + } + free(nf); + + return status; +} + + diff --git a/contrib/kbipack/gmp_normal_form.c~ b/contrib/kbipack/gmp_normal_form.c~ new file mode 100755 index 0000000000000000000000000000000000000000..5f695a53d00542bd82baea3889dcebefac08aea4 --- /dev/null +++ b/contrib/kbipack/gmp_normal_form.c~ @@ -0,0 +1,784 @@ +/* + Implementation for integer computation of Hermite and Smith normal + forms of matrices of modest size. + + Implementation: Dense matrix with GMP-library's mpz_t elements to + hold huge integers. + + Algorithm: Kannan - Bachem algorithm with improvement by + Chou and Collins. Expects a large number of unit invariant + factors and takes advantage of them as they appear. + + References: + [1] Ravindran Kannan, Achim Bachem: + "Polynomial algorithms for computing the Smith and Hermite normal + forms of an integer matrix", + SIAM J. Comput., vol. 8, no. 5, pp. 499-507, 1979. + [2] Tsu-Wu J.Chou, George E. Collins: + "Algorithms for the solution of systems of linear Diophantine + equations", + SIAM J. Comput., vol. 11, no. 4, pp. 687-708, 1982. + [3] GMP homepage http://www.swox.com/gmp/ + [4] GNU gmp page http://www.gnu.org/software/gmp/ + + Copyright (C) 30.10.2003 Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_normal_form.c~,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + +#include<stdlib.h> +#include"gmp_blas.h" +#include"gmp_matrix.h" +#include"gmp_normal_form.h" + + +/* The unaltered matrix and identity left and right factors */ +static gmp_normal_form * +create_gmp_trivial_normal_form(gmp_matrix * A, + inverted_flag left_inverted, + inverted_flag right_inverted) +{ + size_t rows, cols; + + gmp_normal_form * new_nf; + if(A == NULL) + { + return NULL; + } + + new_nf = (gmp_normal_form *) malloc(sizeof(gmp_normal_form)); + if(new_nf == NULL) + { + destroy_gmp_matrix(A); + return NULL; + } + + rows = A -> rows; + cols = A -> cols; + + if((rows == 0) || (cols == 0)) + { + destroy_gmp_matrix(A); + return NULL; + } + + new_nf->left = create_gmp_matrix_identity(rows); + if(new_nf->left == NULL) + { + destroy_gmp_matrix(A); + free(new_nf); + return NULL; + } + + new_nf->right = create_gmp_matrix_identity(cols); + if(new_nf->right == NULL) + { + destroy_gmp_matrix(A); + destroy_gmp_matrix(new_nf->left); + free(new_nf); + return NULL; + } + + new_nf -> canonical = A; + new_nf -> left_inverted = left_inverted; + new_nf -> right_inverted = right_inverted; + + return new_nf; +} + +static int +gmp_Hermite_eliminate_step(gmp_matrix * L, gmp_matrix * U, + size_t col, inverted_flag right_inverted) +{ + size_t ind, row_limit; + mpz_t pivot, elem; + mpz_t bez1, bez2, gc_div; + mpz_t cff1, cff2; + + mpz_init(pivot); + mpz_init(elem); + mpz_init(bez1); + mpz_init(bez2); + mpz_init(cff1); + mpz_init(cff2); + mpz_init(gc_div); + + row_limit = (L->rows >= col) ? + col-1 : + L->rows; + + for(ind = 1; ind <= row_limit; ind++) + { + gmp_matrix_get_elem(elem, ind, col, L); + + /* Eliminate only if nonzero */ + if(mpz_sgn (elem) != 0) + { + gmp_matrix_get_elem(pivot, ind, ind, L); + + /* Extended Euclid's: + bez1*pivot+bez2*elem = gc_div */ + gmp_blas_rotg(gc_div, bez1, bez2, pivot, elem); + + /* Make cff1 = -elem/gc_div */ + mpz_divexact(cff1, elem, gc_div); + mpz_neg (cff1, cff1); + /* Make cff2 = pivot/gc_div */ + mpz_divexact(cff2, pivot, gc_div); + + /* Update the HNF canonical matrix */ + gmp_matrix_col_rot(bez1, bez2, ind, + cff1, cff2, col, + L); + + /* Update the unimodular factor matrix */ + if(right_inverted == INVERTED) + { + gmp_matrix_col_rot(bez1, bez2, ind, + cff1, cff2, col, + U); + } + else + { + + /* [bez1, -elem/gc_div] [pivot/gc_div, elem/gc_div] + [bez2, pivot/gc_div] [-bez2, bez1 ] = I_2 */ + mpz_neg(cff1, cff1); + mpz_neg(bez2, bez2); + gmp_matrix_row_rot(cff2, cff1, ind, + bez2, bez1, col, + U); + } + } + } + mpz_clear(pivot); + mpz_clear(elem); + mpz_clear(bez1); + mpz_clear(bez2); + mpz_clear(cff1); + mpz_clear(cff2); + mpz_clear(gc_div); + + return EXIT_SUCCESS; +} + + + +static int +gmp_Hermite_reduce_step(gmp_matrix * L, gmp_matrix * U, + size_t col, inverted_flag right_inverted) +{ + + size_t i, j; + mpz_t pivot, elem; + mpz_t cff; + + mpz_init(pivot); + mpz_init(elem); + mpz_init(cff); + + if(col > (L->rows)) + { + return EXIT_FAILURE; + } + + /* printf("Col = %i\n", col); + printf("L before\n"); + gmp_matrix_printf(L);*/ + + for(j = col-1; j >= 1; j--) + { + for(i = j+1; i <= col; i++) + { + gmp_matrix_get_elem(pivot, i, i, L); + gmp_matrix_get_elem(elem, i, j, L); + /* printf(" i %i j %i\n",i,j); */ + + if((mpz_cmpabs(elem, pivot) >= 0) || (mpz_sgn(elem) < 0)) + { + /* The objective: + 0 <= elem + k*pivot < pivot + -elem <= k*pivot < pivot - elem + -elem/pivot <= k < - elem/pivot + 1 + + Solution: + k = ceil(-elem/pivot) + */ + + /* Make cff = -elem */ + mpz_neg (cff, elem); + mpz_cdiv_q (cff, cff, pivot); + + /* printf("col %i j %i\n", i, j); + printf("elem %i k %i pivot %i\n", + mpz_get_si(elem), + mpz_get_si(cff), + mpz_get_si(pivot));*/ + + + gmp_matrix_add_col(cff, i, j, L); + + /* Update the unimodular factor matrix */ + if(right_inverted == INVERTED) + { + gmp_matrix_add_col(cff, i, j, U); + } + + /* [1 0] [ 1 0] = [1 0] + [cff 1] [-cff 1] [0 1] */ + else + { + mpz_neg (cff, cff); + gmp_matrix_add_row(cff, j, i, U); + } + + /* printf("\n"); + gmp_matrix_printf(L);*/ + + } + } + } + +/* printf("L after\n"); */ +/* gmp_matrix_printf(L); */ + + mpz_clear(pivot); + mpz_clear(elem); + mpz_clear(cff); + return EXIT_SUCCESS; +} + + +static int +gmp_normal_form_make_Hermite(gmp_normal_form * nf) +{ + size_t rows, cols; + size_t pivot_ind; + size_t schur, colind; + mpz_t pivot; + gmp_matrix * canonical; + gmp_matrix * left; + gmp_matrix * right; + + if(nf == NULL) + { + return EXIT_FAILURE; + } + + /* OK, it's safe to get to business */ + canonical = nf->canonical; + left = nf->left; + right = nf->right; + rows = canonical -> rows; + cols = canonical -> cols; + + mpz_init(pivot); + + /* "schur" denotes where the present Schur complement starts */ + schur = 1; + + while((schur <= rows) && (schur <= cols)) + { + /* Eliminate a column */ + if (schur > 1) + { + gmp_Hermite_eliminate_step(canonical, right, + schur, nf->right_inverted); + } + + /* Find a pivot */ + pivot_ind = gmp_matrix_col_inz(schur, rows, schur, canonical); + + + /* If no nonzeros was found, the column is all zero, hence + settled with. Permute it to the end and decrement cols. */ + if(pivot_ind == 0) + { + gmp_matrix_swap_cols(schur, cols, canonical); + + if(nf -> right_inverted == INVERTED) + { + gmp_matrix_swap_cols(schur, cols, right); + } + else + { + gmp_matrix_swap_rows(schur, cols, right); + } + + cols--; + + /* When the whole column was zeroed, the diagonal + elements may have got reduced. Reduce the sub- + diagonals as well*/ + + if(schur > 1) + { + gmp_Hermite_reduce_step (canonical, right, schur-1, + nf -> right_inverted); + } + } + + /* A nonzero pivot was found. Permute it to the diagonal position, + make it positive, and reduce the off-diagonals. + The schur complement now starts from the next diagonal. */ + else + { + pivot_ind = schur+pivot_ind-1; + gmp_matrix_swap_rows(schur, pivot_ind, canonical); + + if(nf->left_inverted == INVERTED) + { + gmp_matrix_swap_rows(schur, pivot_ind, left); + } + else + { + gmp_matrix_swap_cols(schur, pivot_ind, left); + } + + /* Make the pivot positive */ + gmp_matrix_get_elem(pivot, schur, schur, canonical); + + if(mpz_cmp_si(pivot, 0) < 0) + { + gmp_matrix_negate_col(schur, canonical); + + if(nf->right_inverted == INVERTED) + { + gmp_matrix_negate_col(schur, right); + } + else + { + gmp_matrix_negate_row(schur, right); + } + } + + /* Reduce off-diagonals */ + gmp_Hermite_reduce_step (canonical, right, schur, nf -> right_inverted); + + schur++; + } + } + + /* The Schur complement is now empty. There may still be uneliminated + columns left (in case of a wide matrix) */ + + colind = schur; + while (colind <= cols) + { + gmp_Hermite_eliminate_step (canonical, right, colind, nf->right_inverted); + gmp_Hermite_reduce_step (canonical, right, schur-1, nf->right_inverted); + colind++; + } + + mpz_clear(pivot); + + return EXIT_SUCCESS; +} + + + +gmp_normal_form * +create_gmp_Hermite_normal_form(gmp_matrix * A, + inverted_flag left_inverted, + inverted_flag right_inverted) +{ + gmp_normal_form * new_nf; + + if(A == NULL) + { + return NULL; + } + + new_nf = + create_gmp_trivial_normal_form(A, left_inverted, right_inverted); + + if(new_nf == NULL) + { + /* A has been destroyed already */ + return NULL; + } + + if(gmp_normal_form_make_Hermite(new_nf) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + return NULL; + } + + return new_nf; +} + + +gmp_normal_form * +create_gmp_Smith_normal_form(gmp_matrix * A, + inverted_flag left_inverted, + inverted_flag right_inverted) +{ + + gmp_normal_form * new_nf; + gmp_matrix * canonical; + gmp_matrix * elbow; + inverted_flag elbow_flag; + size_t rows, cols; + size_t i, j; + size_t subd_ind, row_undivisible; + size_t last_ready_row, first_ready_col, ind; + mpz_t pivot; + mpz_t remainder; + + if(A == NULL) + { + return NULL; + } + + new_nf = + create_gmp_trivial_normal_form(A, left_inverted, right_inverted); + + if(new_nf == NULL) + { + /* A has been destroyed already */ + return NULL; + } + + canonical = new_nf -> canonical; + mpz_init(pivot); + mpz_init(remainder); + rows = canonical->rows; + cols = canonical->cols; + last_ready_row = 0; + first_ready_col = (cols < rows) ? (cols+1) : (rows+1); + + while(first_ready_col > last_ready_row + 1) + { + /*******/ + /* HNF */ + /*******/ + + if(gmp_normal_form_make_Hermite(new_nf) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + +#ifdef DEBUG + printf("HNF\n"); + gmp_matrix_printf (new_nf -> left); + gmp_matrix_printf (new_nf -> canonical); + gmp_matrix_printf (new_nf -> right); +#endif + + /**********************/ + /* Find ready columns */ + /**********************/ + + /* If a diagonal entry is zero, so is the corresponding + column. The zero diagonals always reside in the end. + Seek until zero diagonal encountered, but stay within the matrix! */ + ind = 1; + while ( (mpz_cmp_si(canonical -> storage[(ind-1)+(ind-1)*rows], 0) + != 0) + && + (ind < first_ready_col) ) + { + ind ++; + } + first_ready_col = ind; + + /* Note: The number of ready cols is settled after the first HNF, + but the check is cheap. */ + + /**********************************************/ + /* Permute unit diagonals such that they lead */ + /**********************************************/ + + /* If the recently computed HNF has ones on the diagonal, their + corresponding rows are all zero (except the diagonal). + They are then settled, because the next LHNF kills the elements + on their columns. */ + + ind = last_ready_row+1; + + /* Stay within the nonzero cols of the matrix */ + while (ind < first_ready_col) + { + /* Unit diagonal encountered */ + if(mpz_cmp_si ( canonical->storage[(ind-1) + (ind-1)*rows], + 1) == 0) + { + /* If not in the beginning, permute to extend the leading minor + with unit diagonals */ + if(ind != last_ready_row+1) + { + gmp_matrix_swap_rows(last_ready_row+1, ind, + new_nf -> canonical); + + if(left_inverted == INVERTED) + { + gmp_matrix_swap_rows(last_ready_row+1, ind, + new_nf -> left); + } + else + { + gmp_matrix_swap_cols(last_ready_row+1, ind, + new_nf -> left); + } + + gmp_matrix_swap_cols(last_ready_row+1, ind, + new_nf -> canonical); + + if(right_inverted == INVERTED) + { + gmp_matrix_swap_cols(last_ready_row+1, ind, + new_nf -> right); + } + else + { + gmp_matrix_swap_rows(last_ready_row+1, ind, + new_nf -> right); + } + } + last_ready_row ++; + } + ind++; + } + +#ifdef DEBUG + printf("Leading units\n"); + gmp_matrix_printf (new_nf -> left); + gmp_matrix_printf (new_nf -> canonical); + gmp_matrix_printf (new_nf -> right); +#endif + + /********/ + /* LHNF */ + /********/ + + /* Extravagant strategy: Compute HNF of an explicit tranpose. */ + + /* 1. Transpose everything in the normal form */ + if(gmp_matrix_transp(canonical) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + if(gmp_matrix_transp(new_nf->left) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + if(gmp_matrix_transp(new_nf->right) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + + elbow = new_nf ->left; + new_nf ->left = new_nf ->right; + new_nf ->right = elbow; + elbow_flag = new_nf ->left_inverted; + new_nf ->left_inverted = new_nf ->right_inverted; + new_nf ->right_inverted = elbow_flag; + + /* 2. Compute HNF of the transpose */ + if(gmp_normal_form_make_Hermite(new_nf) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + + /* 3. Transpose everything back */ + if(gmp_matrix_transp(canonical) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + if(gmp_matrix_transp(new_nf->left) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + if(gmp_matrix_transp(new_nf->right) != EXIT_SUCCESS) + { + destroy_gmp_normal_form(new_nf); + mpz_clear(pivot); + mpz_clear(remainder); + return NULL; + } + elbow = new_nf ->left; + new_nf ->left = new_nf ->right; + new_nf ->right = elbow; + elbow_flag = new_nf ->left_inverted; + new_nf ->left_inverted = new_nf ->right_inverted; + new_nf ->right_inverted = elbow_flag; + + +#ifdef DEBUG + printf("LHNF\n"); + gmp_matrix_printf (new_nf -> left); + gmp_matrix_printf (new_nf -> canonical); + gmp_matrix_printf (new_nf -> right); +#endif + + + /*****************************************************/ + /* Check if more of the leading normal form is ready */ + /*****************************************************/ + + /* The matrix is in LHNF, i.e. it is upper triangular. + If the row trailing the top left diagonal element is + zero, the diagonal element may be an invariant factor + on its final position, and the stage may be ready. + + The stage may not still be ready: The leading diagonal element + of D may not divide the rest of the Schur complement. */ + + subd_ind = 0; + row_undivisible = 0; + + /* Explanation of loop conditions: + 1.) No relative primes found from Schur complement + 2.) Stay within the Schur complement + 3.) If a nonzero is found from the trailing row, the stage is + definitely not ready */ + while (row_undivisible == 0 && + last_ready_row + 1 < first_ready_col && + subd_ind == 0) + { + subd_ind = + gmp_matrix_row_inz(last_ready_row+1, + last_ready_row+2, cols, + canonical); + + /* printf("subd_ind %i\n", subd_ind); + printf("last_ready_row %i\n", last_ready_row); */ + + /* No nonzeros found, the stage may be ready */ + if (subd_ind == 0) + { + mpz_set (pivot, + canonical->storage[(last_ready_row)+ + (last_ready_row)*rows]); + + /* Check whether the pivot divides all elements in the Schur + complement */ + row_undivisible = 0; + for(j = last_ready_row+2; j < first_ready_col; j++) + { + for(i = last_ready_row+2; i <= j; i++) + { + mpz_tdiv_r (remainder, + canonical->storage[(i-1)+ + (j-1)*rows], + pivot); + + if(mpz_cmp_si(remainder, 0) !=0) + { + row_undivisible = i; + /* col_undivisible = j; */ + } + } + } + + /* printf("Row undivisible %i\n", row_undivisible); */ + + /* If a relative prime was found from the Schur complement, + add that row to the first row of the Schur complement */ + if(row_undivisible != 0) + { + mpz_set_si (remainder, 1); + gmp_matrix_add_row(remainder, + row_undivisible, last_ready_row+1, + canonical); + + /* [ 1 0] [1 0] = [1 0] + [-1 1] [1 1] [0 1] */ + + if(left_inverted == INVERTED) + { + gmp_matrix_add_row(remainder, + row_undivisible, last_ready_row+1, + new_nf->left); + } + else + { + mpz_neg (remainder, remainder); + gmp_matrix_add_col(remainder, + last_ready_row+1, row_undivisible, + new_nf->left); + } + } + /* The Schur complement is smaller by one again */ + else + { + last_ready_row++; + } + } + } + } /* The main loop ends here */ + + mpz_clear(pivot); + mpz_clear(remainder); + return new_nf; +} + +int destroy_gmp_normal_form(gmp_normal_form * nf) +{ + int status; + + if(nf == NULL) + { + return EXIT_FAILURE; + } + + status = EXIT_SUCCESS; + if(destroy_gmp_matrix(nf -> left) == EXIT_FAILURE) + { + status = EXIT_FAILURE; + } + + if(destroy_gmp_matrix(nf -> canonical) == EXIT_FAILURE) + { + status = EXIT_FAILURE; + } + + if(destroy_gmp_matrix(nf -> right) == EXIT_FAILURE) + { + status = EXIT_FAILURE; + } + free(nf); + + return status; +} + + diff --git a/contrib/kbipack/gmp_normal_form.h b/contrib/kbipack/gmp_normal_form.h new file mode 100755 index 0000000000000000000000000000000000000000..3250646a6505e1cda3f0b293132ebfeb5d2afaf7 --- /dev/null +++ b/contrib/kbipack/gmp_normal_form.h @@ -0,0 +1,154 @@ +/* + Header file for integer computation of Hermite and Smith normal + forms of matrices of modest size. + + Implementation: Dense matrix with GMP-library's mpz_t elements to + hold huge integers. + + Algorithm: Kannan - Bachem algorithm with improvement by + Chou and Collins. Expects a large number of unit invariant + factors and takes advantage of them as they appear. + + References: + [1] Ravindran Kannan, Achim Bachem: + "Polynomial algorithms for computing the Smith and Hermite normal + forms of an integer matrix", + SIAM J. Comput., vol. 8, no. 5, pp. 499-507, 1979. + [2] Tsu-Wu J.Chou, George E. Collins: + "Algorithms for the solution of systems of linear Diophantine + equations", + SIAM J. Comput., vol. 11, no. 4, pp. 687-708, 1982. + [3] GMP homepage http://www.swox.com/gmp/ + [4] GNU gmp page http://www.gnu.org/software/gmp/ + + + Copyright (C) 30.10.2003Saku Suuriniemi TUT/CEM + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Saku Suuriniemi, TUT/Electromagetics + P.O.Box 692, FIN-33101 Tampere, Finland + saku.suuriniemi@tut.fi + + $Id: gmp_normal_form.h,v 1.1 2009-03-30 14:10:57 matti Exp $ +*/ + +#ifndef _GMP_NORMAL_FORM_ +#define _GMP_NORMAL_FORM_ + +#include"gmp_blas.h" +#include"gmp_matrix.h" + +typedef enum {NOT_INVERTED, INVERTED} inverted_flag; + +typedef struct +{ + gmp_matrix * left; + gmp_matrix * canonical; + gmp_matrix * right; + inverted_flag left_inverted; + inverted_flag right_inverted; +} gmp_normal_form; + +/* For efficiency, the routines assume responsibility for the input matrices. + Do *not* destroy them yourself! */ + +/***********************/ +/* Hermite normal form */ +/***********************/ +/* + PA = LU, + + left: + o P permutation matrix + - Use "left_inverted = INVERTED" for left = P, + and "left_inverted = NOT_INVERTED" for left = P^T, i.e. for the + decomposition + A = P^T L U. + canonical: + o L lower triangular, + - diagonal entries positive, + - subdiagonal entries positive + - subdiagonal entries smaller than the diagonal entry of their row + + right: + o U unimodular, + - Use "right_inverted = NOT_INVERTED" for right = U, i.e. for the + decomposition + P A = L U, + and "right_inverted = INVERTED" for right = inv(U), i.e. for the + decompositions + P A inv(U) = L and A inv(U) = P^T L. + + Algorithm: Kannan-Bachem algorithm with improved (by Chou & Collins) + reduction phase. + + References: + [1] Ravindran Kannan, Achim Bachem: + "Polynomial algorithms for computing the Smith and Hermite normal + forms of an integer matrix", + SIAM J. Comput., vol. 8, no. 5, pp. 499-507, 1979. + [2] Tsu-Wu J.Chou, George E. Collins: + "Algorithms for the solution of systems of linear Diophantine + equations", + SIAM J. Comput., vol. 11, no. 4, pp. 687-708, 1982. +*/ + +gmp_normal_form * +create_gmp_Hermite_normal_form(gmp_matrix * A, + inverted_flag left_inverted, + inverted_flag right_inverted); + + + +/*********************/ +/* Smith normal form */ +/*********************/ +/* + A = USV, + + left: + o U unimodular factor matrix + - Use "left_inverted = NOT_INVERTED" for left = U and + "left_inverted = INVERTED" for left = inv(U), i.e. for + the decomposition + inv(U) A = S V. + + canonical: + o S diagonal, + - first k diagonal entries positive (invariant factors of A), + rest zero + - each positive diagonal entry divisible by the previous one + + right: + o V unimodular, + - Use "right_inverted = NOT_INVERTED" for right = V, + and "right_inverted = INVERTED" for right = inv(V), i.e. for the + decompositions + A inv(V) = U S and inv(U) A inv(V) = S. + + Algorithm: Successive Hermite normal forms by Kannan-Bachem algorithm + with improved (by Chou & Collins) reduction phase. See + reference [1]. +*/ + +gmp_normal_form * +create_gmp_Smith_normal_form(gmp_matrix * A, + inverted_flag left_inverted, + inverted_flag right_inverted); + +int destroy_gmp_normal_form(gmp_normal_form*); + +#endif diff --git a/contrib/kbipack/gmp_normal_form.o b/contrib/kbipack/gmp_normal_form.o new file mode 100755 index 0000000000000000000000000000000000000000..f165a904233fc099325f1bb789f948c5207669de Binary files /dev/null and b/contrib/kbipack/gmp_normal_form.o differ diff --git a/contrib/kbipack/kbihnf.m b/contrib/kbipack/kbihnf.m new file mode 100755 index 0000000000000000000000000000000000000000..f04977ca950ecadde14a1a85a42e00419e717485 --- /dev/null +++ b/contrib/kbipack/kbihnf.m @@ -0,0 +1,58 @@ +function [P, L, U] = kbihnf(A) + +% [P, L, U] = kbihnf(A) +% +% Computes the integer Hermite normal form L such that +% +% P*A = L*U +% +% Uses external Kannan-Bachem implementation + +% Copyright (C) 3.11.2003 Saku Suuriniemi TUT/CEM +% +% This program is free software; you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation; either version 2 of the License, or +% any later version. +% +% This program is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with this program; if not, write to the Free Software +% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + +% Saku Suuriniemi, TUT/Electromagetics +% P.O.Box 692, FIN-33101 Tampere, Finland +% saku.suuriniemi@tut.fi + + [i,j,v] = find(A); + + fid = fopen('hnf_temp.crd', 'w'); + fprintf(fid, '%g %g %g\n', size(A,1), size(A,2), length(i)); + if ~isempty(v) + fprintf(fid, '%g %g %g\n', [i'; j'; v']); + end + fclose(fid); + + system ("./compute_normal_form -Hl hnf_temp.crd"); + + load hnf_temp.left; + P = zeros(hnf_temp(1,1), hnf_temp(1,2)); + for i = 2:size(hnf_temp,1) + P(hnf_temp(i,1), hnf_temp(i,2)) = hnf_temp(i,3); + end + + load hnf_temp.can; + L = zeros(hnf_temp(1,1), hnf_temp(1,2)); + for i = 2:size(hnf_temp,1) + L(hnf_temp(i,1), hnf_temp(i,2)) = hnf_temp(i,3); + end + + load hnf_temp.right; + U = zeros(hnf_temp(1,1), hnf_temp(1,2)); + for i = 2:size(hnf_temp,1) + U(hnf_temp(i,1), hnf_temp(i,2)) = hnf_temp(i,3); + end diff --git a/contrib/kbipack/kbisnf.m b/contrib/kbipack/kbisnf.m new file mode 100755 index 0000000000000000000000000000000000000000..066509dceb1ce1ac06c3a9c78b38a798801de212 --- /dev/null +++ b/contrib/kbipack/kbisnf.m @@ -0,0 +1,58 @@ +function [U, S, V] = kbisnf(A) + +% [U, S, V] = kbisnf(A) +% +% Computes the integer Smith normal form S such that +% +% A = U*S*V +% +% Uses external Kannan-Bachem implementation + +% Copyright (C) 4.11.2003 Saku Suuriniemi TUT/CEM +% +% This program is free software; you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation; either version 2 of the License, or +% any later version. +% +% This program is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with this program; if not, write to the Free Software +% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + +% Saku Suuriniemi, TUT/Electromagetics +% P.O.Box 692, FIN-33101 Tampere, Finland +% saku.suuriniemi@tut.fi + + [i,j,v] = find(A); + + fid = fopen('snf_temp.crd', 'w'); + fprintf(fid, '%g %g %g\n', size(A,1), size(A,2), length(i)); + if ~isempty(v) + fprintf(fid, '%g %g %g\n', [i'; j'; v']); + end + fclose(fid); + + system ('./compute_normal_form -S snf_temp.crd'); + + load snf_temp.left; + U = zeros(snf_temp(1,1), snf_temp(1,2)); + for i = 2:size(snf_temp,1) + U(snf_temp(i,1), snf_temp(i,2)) = snf_temp(i,3); + end + + load snf_temp.can; + S = zeros(snf_temp(1,1), snf_temp(1,2)); + for i = 2:size(snf_temp,1) + S(snf_temp(i,1), snf_temp(i,2)) = snf_temp(i,3); + end + + load snf_temp.right; + V = zeros(snf_temp(1,1), snf_temp(1,2)); + for i = 2:size(snf_temp,1) + V(snf_temp(i,1), snf_temp(i,2)) = snf_temp(i,3); + end diff --git a/contrib/kbipack/licence b/contrib/kbipack/licence new file mode 100755 index 0000000000000000000000000000000000000000..5b6e7c66c276e7610d4a73c70ec1a1f7c1003259 --- /dev/null +++ b/contrib/kbipack/licence @@ -0,0 +1,340 @@ + GNU GENERAL PUBLIC LICENSE + Version 2, June 1991 + + Copyright (C) 1989, 1991 Free Software Foundation, Inc. + 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The licenses for most software are designed to take away your +freedom to share and change it. By contrast, the GNU General Public +License is intended to guarantee your freedom to share and change free +software--to make sure the software is free for all its users. This +General Public License applies to most of the Free Software +Foundation's software and to any other program whose authors commit to +using it. (Some other Free Software Foundation software is covered by +the GNU Library General Public License instead.) You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +this service if you wish), that you receive source code or can get it +if you want it, that you can change the software or use pieces of it +in new free programs; and that you know you can do these things. + + To protect your rights, we need to make restrictions that forbid +anyone to deny you these rights or to ask you to surrender the rights. +These restrictions translate to certain responsibilities for you if you +distribute copies of the software, or if you modify it. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must give the recipients all the rights that +you have. You must make sure that they, too, receive or can get the +source code. And you must show them these terms so they know their +rights. + + We protect your rights with two steps: (1) copyright the software, and +(2) offer you this license which gives you legal permission to copy, +distribute and/or modify the software. + + Also, for each author's protection and ours, we want to make certain +that everyone understands that there is no warranty for this free +software. If the software is modified by someone else and passed on, we +want its recipients to know that what they have is not the original, so +that any problems introduced by others will not reflect on the original +authors' reputations. + + Finally, any free program is threatened constantly by software +patents. We wish to avoid the danger that redistributors of a free +program will individually obtain patent licenses, in effect making the +program proprietary. To prevent this, we have made it clear that any +patent must be licensed for everyone's free use or not licensed at all. + + The precise terms and conditions for copying, distribution and +modification follow. + + GNU GENERAL PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. This License applies to any program or other work which contains +a notice placed by the copyright holder saying it may be distributed +under the terms of this General Public License. The "Program", below, +refers to any such program or work, and a "work based on the Program" +means either the Program or any derivative work under copyright law: +that is to say, a work containing the Program or a portion of it, +either verbatim or with modifications and/or translated into another +language. (Hereinafter, translation is included without limitation in +the term "modification".) Each licensee is addressed as "you". + +Activities other than copying, distribution and modification are not +covered by this License; they are outside its scope. The act of +running the Program is not restricted, and the output from the Program +is covered only if its contents constitute a work based on the +Program (independent of having been made by running the Program). +Whether that is true depends on what the Program does. + + 1. You may copy and distribute verbatim copies of the Program's +source code as you receive it, in any medium, provided that you +conspicuously and appropriately publish on each copy an appropriate +copyright notice and disclaimer of warranty; keep intact all the +notices that refer to this License and to the absence of any warranty; +and give any other recipients of the Program a copy of this License +along with the Program. + +You may charge a fee for the physical act of transferring a copy, and +you may at your option offer warranty protection in exchange for a fee. + + 2. You may modify your copy or copies of the Program or any portion +of it, thus forming a work based on the Program, and copy and +distribute such modifications or work under the terms of Section 1 +above, provided that you also meet all of these conditions: + + a) You must cause the modified files to carry prominent notices + stating that you changed the files and the date of any change. + + b) You must cause any work that you distribute or publish, that in + whole or in part contains or is derived from the Program or any + part thereof, to be licensed as a whole at no charge to all third + parties under the terms of this License. + + c) If the modified program normally reads commands interactively + when run, you must cause it, when started running for such + interactive use in the most ordinary way, to print or display an + announcement including an appropriate copyright notice and a + notice that there is no warranty (or else, saying that you provide + a warranty) and that users may redistribute the program under + these conditions, and telling the user how to view a copy of this + License. (Exception: if the Program itself is interactive but + does not normally print such an announcement, your work based on + the Program is not required to print an announcement.) + +These requirements apply to the modified work as a whole. If +identifiable sections of that work are not derived from the Program, +and can be reasonably considered independent and separate works in +themselves, then this License, and its terms, do not apply to those +sections when you distribute them as separate works. But when you +distribute the same sections as part of a whole which is a work based +on the Program, the distribution of the whole must be on the terms of +this License, whose permissions for other licensees extend to the +entire whole, and thus to each and every part regardless of who wrote it. + +Thus, it is not the intent of this section to claim rights or contest +your rights to work written entirely by you; rather, the intent is to +exercise the right to control the distribution of derivative or +collective works based on the Program. + +In addition, mere aggregation of another work not based on the Program +with the Program (or with a work based on the Program) on a volume of +a storage or distribution medium does not bring the other work under +the scope of this License. + + 3. You may copy and distribute the Program (or a work based on it, +under Section 2) in object code or executable form under the terms of +Sections 1 and 2 above provided that you also do one of the following: + + a) Accompany it with the complete corresponding machine-readable + source code, which must be distributed under the terms of Sections + 1 and 2 above on a medium customarily used for software interchange; or, + + b) Accompany it with a written offer, valid for at least three + years, to give any third party, for a charge no more than your + cost of physically performing source distribution, a complete + machine-readable copy of the corresponding source code, to be + distributed under the terms of Sections 1 and 2 above on a medium + customarily used for software interchange; or, + + c) Accompany it with the information you received as to the offer + to distribute corresponding source code. (This alternative is + allowed only for noncommercial distribution and only if you + received the program in object code or executable form with such + an offer, in accord with Subsection b above.) + +The source code for a work means the preferred form of the work for +making modifications to it. For an executable work, complete source +code means all the source code for all modules it contains, plus any +associated interface definition files, plus the scripts used to +control compilation and installation of the executable. However, as a +special exception, the source code distributed need not include +anything that is normally distributed (in either source or binary +form) with the major components (compiler, kernel, and so on) of the +operating system on which the executable runs, unless that component +itself accompanies the executable. + +If distribution of executable or object code is made by offering +access to copy from a designated place, then offering equivalent +access to copy the source code from the same place counts as +distribution of the source code, even though third parties are not +compelled to copy the source along with the object code. + + 4. You may not copy, modify, sublicense, or distribute the Program +except as expressly provided under this License. Any attempt +otherwise to copy, modify, sublicense or distribute the Program is +void, and will automatically terminate your rights under this License. +However, parties who have received copies, or rights, from you under +this License will not have their licenses terminated so long as such +parties remain in full compliance. + + 5. You are not required to accept this License, since you have not +signed it. However, nothing else grants you permission to modify or +distribute the Program or its derivative works. These actions are +prohibited by law if you do not accept this License. Therefore, by +modifying or distributing the Program (or any work based on the +Program), you indicate your acceptance of this License to do so, and +all its terms and conditions for copying, distributing or modifying +the Program or works based on it. + + 6. Each time you redistribute the Program (or any work based on the +Program), the recipient automatically receives a license from the +original licensor to copy, distribute or modify the Program subject to +these terms and conditions. You may not impose any further +restrictions on the recipients' exercise of the rights granted herein. +You are not responsible for enforcing compliance by third parties to +this License. + + 7. If, as a consequence of a court judgment or allegation of patent +infringement or for any other reason (not limited to patent issues), +conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot +distribute so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you +may not distribute the Program at all. For example, if a patent +license would not permit royalty-free redistribution of the Program by +all those who receive copies directly or indirectly through you, then +the only way you could satisfy both it and this License would be to +refrain entirely from distribution of the Program. + +If any portion of this section is held invalid or unenforceable under +any particular circumstance, the balance of the section is intended to +apply and the section as a whole is intended to apply in other +circumstances. + +It is not the purpose of this section to induce you to infringe any +patents or other property right claims or to contest validity of any +such claims; this section has the sole purpose of protecting the +integrity of the free software distribution system, which is +implemented by public license practices. Many people have made +generous contributions to the wide range of software distributed +through that system in reliance on consistent application of that +system; it is up to the author/donor to decide if he or she is willing +to distribute software through any other system and a licensee cannot +impose that choice. + +This section is intended to make thoroughly clear what is believed to +be a consequence of the rest of this License. + + 8. If the distribution and/or use of the Program is restricted in +certain countries either by patents or by copyrighted interfaces, the +original copyright holder who places the Program under this License +may add an explicit geographical distribution limitation excluding +those countries, so that distribution is permitted only in or among +countries not thus excluded. In such case, this License incorporates +the limitation as if written in the body of this License. + + 9. The Free Software Foundation may publish revised and/or new versions +of the General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + +Each version is given a distinguishing version number. If the Program +specifies a version number of this License which applies to it and "any +later version", you have the option of following the terms and conditions +either of that version or of any later version published by the Free +Software Foundation. If the Program does not specify a version number of +this License, you may choose any version ever published by the Free Software +Foundation. + + 10. If you wish to incorporate parts of the Program into other free +programs whose distribution conditions are different, write to the author +to ask for permission. For software which is copyrighted by the Free +Software Foundation, write to the Free Software Foundation; we sometimes +make exceptions for this. Our decision will be guided by the two goals +of preserving the free status of all derivatives of our free software and +of promoting the sharing and reuse of software generally. + + NO WARRANTY + + 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY +FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN +OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES +PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED +OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS +TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE +PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, +REPAIR OR CORRECTION. + + 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR +REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, +INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING +OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED +TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY +YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER +PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE +POSSIBILITY OF SUCH DAMAGES. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +convey the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + <one line to give the program's name and a brief idea of what it does.> + Copyright (C) <year> <name of author> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + +Also add information on how to contact you by electronic and paper mail. + +If the program is interactive, make it output a short notice like this +when it starts in an interactive mode: + + Gnomovision version 69, Copyright (C) year name of author + Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, the commands you use may +be called something other than `show w' and `show c'; they could even be +mouse-clicks or menu items--whatever suits your program. + +You should also get your employer (if you work as a programmer) or your +school, if any, to sign a "copyright disclaimer" for the program, if +necessary. Here is a sample; alter the names: + + Yoyodyne, Inc., hereby disclaims all copyright interest in the program + `Gnomovision' (which makes passes at compilers) written by James Hacker. + + <signature of Ty Coon>, 1 April 1989 + Ty Coon, President of Vice + +This General Public License does not permit incorporating your program into +proprietary programs. If your program is a subroutine library, you may +consider it more useful to permit linking proprietary applications with the +library. If this is what you want to do, use the GNU Library General +Public License instead of this License. diff --git a/contrib/kbipack/readme b/contrib/kbipack/readme new file mode 100755 index 0000000000000000000000000000000000000000..3fbf20be8b076ec4289724b3646d011d0412cda7 --- /dev/null +++ b/contrib/kbipack/readme @@ -0,0 +1,106 @@ +----------- +KBIPack 1.0 +----------- + +This is an ANSI C-implementation of Kannan-Bachem algorithms for Hermite +and Smith normal forms for integer matrices. I wrote it to be the core of +an integer homology group solver. You are welcome to improve this package, +but I am unfortunately unable to invest much more time to it myself. The +license is GNU GPL (see below). + +The algorithms are Kannan - Bachem algorithms with improvement by Chou and +Collins. The Smith normal form routine expects a large number of unit +invariant factors (this occurs in my application) and takes advantage of +them as they appear. + +References: +----------- +[1] Ravindran Kannan, Achim Bachem: + "Polynomial algorithms for computing the Smith and Hermite normal + forms of an integer matrix", + SIAM J. Comput., vol. 8, no. 5, pp. 499-507, 1979. +[2] Tsu-Wu J.Chou, George E. Collins: + "Algorithms for the solution of systems of linear Diophantine equations", + SIAM J. Comput., vol. 11, no. 4, pp. 687-708, 1982. +[3] GMP homepage http://www.swox.com/gmp/ +[4] GNU gmp page http://www.gnu.org/software/gmp/ + +Technicalities: +--------------- +The package relies on GNU multiple precision library gmp to represent large +integers. You must have gmp installed before you compile. + +It should run smoothly on UNIX systems with working standard I/O, and +in Cygwin (http://www.cygwin.com/). + +You can use this package in at least three ways: +1) You can call the functions bkihnf and bkisnf in respective .m-files + from MatLab or Octave. Note that the numbers in the results may be too + large to be exactly read back by them. +2) You can use the executable "compute normal form" just like any command. + Use the -h flag to get info. +3) You can use just the core routines from your own application. + +Contents: +--------- +bkihnf.m Integer Hermite normal form for Octave/MatLab +bkisnf.m Integer Smith normal form for Octave/MatLab +compute_normal_form.c A main program for a comand-line version +gmp_blas.c Low-level routines for integer arrays +gmp_blas.h +gmp_matrix.c Integer matrix type +gmp_matrix.h +gmp_matrix_io.c I/O for integer matrices +gmp_matrix_io.h +gmp_normal_form.c The core computation routine +gmp_normal_form.h +LICENCE The GNU General Public License version 2 +Makefile A rudimentary Makefile (just type "make") +README This file + +Installation: +------------- +First install gmp (http://www.swox.com/gmp/ or a binary package). +If you use gcc, just type "make". If not, alter the Makefile as necessary. + +Licensing: +---------- +Copyright (C) 2005 Saku Suuriniemi + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + +Saku Suuriniemi, TUT/Electromagetics +P.O.Box 692, FIN-33101 Tampere, Finland +saku.suuriniemi@tut.fi +http://www.em.tut.fi/Eng/ + +Background: +----------- +The package is a part of my PhD project, so if you find this package useful +and wish to refer to my thesis (also available on my homepage), here is the +BiBTeX entry: + +@phdthesis{Suuriniemi:PhD2004, +author="Saku Suuriniemi", +school="Tampere University of Technology", +title="Homological computations in electromagnetic modeling", +address="Tampere", +year=2004, +isbn="952-15-1237-7" +} + +Thanks: +------- +Thanks are due to Chistophe Geuzaine for testing and comments. diff --git a/utils/misc/celldriver.cpp b/utils/misc/celldriver.cpp new file mode 100755 index 0000000000000000000000000000000000000000..c8b91e03a96f84cd6470f3f13df467e9ddb7dc36 --- /dev/null +++ b/utils/misc/celldriver.cpp @@ -0,0 +1,63 @@ +// configure, compile and install Gmsh as a library with +// +// ./configure --disable-gui --disable-netgen --disable-chaco +// --disable-metis --disable-tetgen --prefix=/usr/local/ +// make install-lib +// +// Then compile this driver with "g++ kaka.cpp -lGmsh -llapack -lblas -lgmp" + +#include <stdio.h> +#include <gmsh/Gmsh.h> +#include <gmsh/GModel.h> +#include <gmsh/MElement.h> +#include <gmsh/CellComplex.h> + + +int main(int argc, char **argv) +{ + GmshInitialize(argc, argv); + GModel *m = new GModel(); + m->readGEO("transformer.geo"); + m->mesh(3); + m->writeMSH("transformer.msh"); + + printf("This model has: %d GRegions, %d GFaces, %d GEdges and %d GVertices. \n" , m->getNumRegions(), m->getNumFaces(), m->getNumEdges(), m->getNumVertices()); + + std::vector<GEntity*> domain; + std::vector<GEntity*> subdomain; + + // whole model + for(GModel::riter rit = m->firstRegion(); rit != m->lastRegion(); rit++){ + GEntity *r = *rit; + domain.push_back(r); + } + + // the ports + GModel::fiter sub = m->firstFace(); + GEntity *s = *sub; + subdomain.push_back(s); + s = *(++sub); + subdomain.push_back(s); + s =*(++sub); + subdomain.push_back(s); + s= *(++sub); + subdomain.push_back(s); + + CellComplex complex = CellComplex(domain, subdomain); + + printf("Cell complex of this model has: %d volumes, %d faces, %d edges and %d vertices\n", + complex.getSize(3), complex.getSize(2), complex.getSize(1), complex.getSize(0)); + + complex.reduceComplex(); + complex.writeComplexMSH("reduced_complex.msh"); + complex.coreduceComplex(); + complex.writeComplexMSH("coreduced_complex.msh"); + + delete m; + GmshFinalize(); + +} + + + + diff --git a/utils/misc/transformer.geo b/utils/misc/transformer.geo new file mode 100755 index 0000000000000000000000000000000000000000..9021d10d66be327e345dc8d8fec4347d35a15fbc --- /dev/null +++ b/utils/misc/transformer.geo @@ -0,0 +1,99 @@ +// Gmsh project created on Thu Mar 26 10:01:45 2009 + +m=0.5; + +Point(newp) = {0, 0, 0, m}; +Point(newp) = {10, 0, 0, m}; +Point(newp) = {10, 10, 0, m}; +Point(newp) = {0, 10, 0, m}; +Point(newp) = {4, 4, 0, m}; +Point(newp) = {6, 4, 0, m}; +Point(newp) = {6, 6, 0, m}; +Point(newp) = {4, 6, 0, m}; + +Point(newp) = {2, 0, 0, m}; +Point(newp) = {8, 0, 0, m}; +Point(newp) = {2, 10, 0, m}; +Point(newp) = {8, 10, 0, m}; + +Point(newp) = {0, 0, 1, m}; +Point(newp) = {10, 0, 1, m}; +Point(newp) = {10, 10, 1, m}; +Point(newp) = {0, 10, 1, m}; +Point(newp) = {4, 4, 1, m}; +Point(newp) = {6, 4, 1, m}; +Point(newp) = {6, 6, 1, m}; +Point(newp) = {4, 6, 1, m}; + +Point(newp) = {2, 0, 1, m}; +Point(newp) = {8, 0, 1, m}; +Point(newp) = {2, 10, 1, m}; +Point(newp) = {8, 10, 1, m}; +Line(1) = {16, 23}; +Line(2) = {23, 11}; +Line(3) = {11, 4}; +Line(4) = {4, 16}; +Line(5) = {24, 12}; +Line(6) = {12, 3}; +Line(7) = {3, 15}; +Line(8) = {15, 24}; +Line(9) = {10, 2}; +Line(10) = {2, 14}; +Line(11) = {14, 22}; +Line(12) = {22, 10}; +Line(13) = {21, 9}; +Line(14) = {9, 1}; +Line(15) = {1, 13}; +Line(16) = {13, 21}; +Line Loop(17) = {3, 4, 1, 2}; +Ruled Surface(18) = {17}; +Line Loop(19) = {6, 7, 8, 5}; +Ruled Surface(20) = {19}; +Line Loop(21) = {9, 10, 11, 12}; +Ruled Surface(22) = {21}; +Line Loop(23) = {14, 15, 16, 13}; +Ruled Surface(24) = {23}; +Line(25) = {16, 13}; +Line(26) = {1, 4}; +Line(27) = {11, 12}; +Line(28) = {24, 23}; +Line(29) = {21, 22}; +Line(30) = {10, 9}; +Line(31) = {2, 3}; +Line(32) = {15, 14}; +Line(33) = {20, 19}; +Line(34) = {19, 18}; +Line(35) = {18, 17}; +Line(36) = {17, 20}; +Line(37) = {8, 7}; +Line(38) = {7, 6}; +Line(39) = {6, 18}; +Line(40) = {5, 6}; +Line(41) = {5, 8}; +Line(42) = {20, 8}; +Line(43) = {17, 5}; +Line(44) = {19, 7}; +Line Loop(45) = {27, -5, 28, 2}; +Ruled Surface(46) = {45}; +Line Loop(47) = {25, -15, 26, 4}; +Ruled Surface(48) = {47}; +Line Loop(49) = {29, 12, 30, -13}; +Ruled Surface(50) = {49}; +Line Loop(51) = {32, -10, 31, 7}; +Ruled Surface(52) = {51}; +Line Loop(53) = {41, -42, -36, 43}; +Ruled Surface(54) = {53}; +Line Loop(55) = {35, 43, 40, 39}; +Ruled Surface(56) = {55}; +Line Loop(57) = {34, -39, -38, -44}; +Ruled Surface(58) = {57}; +Line Loop(59) = {33, 44, -37, -42}; +Ruled Surface(60) = {59}; +Line Loop(61) = {28, -1, 25, 16, 29, -11, -32, 8}; +Line Loop(62) = {33, 34, 35, 36}; +Ruled Surface(63) = {61, 62}; +Line Loop(64) = {3, -26, -14, -30, 9, 31, -6, -27}; +Line Loop(65) = {37, 38, -40, 41}; +Ruled Surface(66) = {64, 65}; +Surface Loop(67) = {63, 46, 66, 18, 48, 24, 50, 22, 52, 20, 54, 60, 58, 56}; +Volume(68) = {67};