From 77b6b3cffbdc70a4baef6526aa50d14be7b38415 Mon Sep 17 00:00:00 2001 From: Thomas Toulorge <thomas.toulorge@mines-paristech.fr> Date: Wed, 22 Aug 2012 11:46:02 +0000 Subject: [PATCH] Fixed 2D curvature calculation for "Eigendirections" mesh metric (3D still to be implemented) --- Mesh/meshMetric.cpp | 81 ++++++++++++++++++--------------------------- 1 file changed, 32 insertions(+), 49 deletions(-) diff --git a/Mesh/meshMetric.cpp b/Mesh/meshMetric.cpp index 12e9f7d006..e52fd40b5c 100644 --- a/Mesh/meshMetric.cpp +++ b/Mesh/meshMetric.cpp @@ -482,62 +482,45 @@ void meshMetric::computeMetricEigenDir() hessian(1,0) = gradudy(0); hessian(1,1) = gradudy(1); hessian(1,2) = gradudy(2); hessian(2,0) = gradudz(0); hessian(2,1) = gradudz(1); hessian(2,2) = gradudz(2); - double metric_value_hmax = 1./hmax/hmax; - SVector3 gr = grads[ver]; - double norm = gr.normalize(); + const double metric_value_hmax = 1./(hmax*hmax); + const SVector3 gVec = grads[ver]; // Gradient vector + const double norm = gVec.norm(); SMetric3 metric; if (signed_dist < _E && signed_dist > _E_moins && norm != 0.0){ - // first, compute the eigenvectors of the hessian, for a curvature-based metric - fullMatrix<double> eigvec_hessian(3,3); - fullVector<double> lambda_hessian(3); - hessian.eig(eigvec_hessian,lambda_hessian); - std::vector<SVector3> ti; - ti.push_back(SVector3(eigvec_hessian(0,0),eigvec_hessian(1,0),eigvec_hessian(2,0))); - ti.push_back(SVector3(eigvec_hessian(0,1),eigvec_hessian(1,1),eigvec_hessian(2,1))); - ti.push_back(SVector3(eigvec_hessian(0,2),eigvec_hessian(1,2),eigvec_hessian(2,2))); - - // compute the required characteristic length relative to the curvature and the distance to iso - double maxkappa = std::max(std::max(fabs(lambda_hessian(0)),fabs(lambda_hessian(1))),fabs(lambda_hessian(2))); - // epsilon is set such that the characteristic element size in the tangent direction is h = 2pi R_min/_Np = sqrt(1/metric_maxmax) = sqrt(epsilon/kappa_max) - double un_sur_epsilon = maxkappa/((2.*3.14/_Np)*(2.*3.14/_Np)); - // metric curvature-based eigenvalues - std::vector<double> eigenvals_curvature; - eigenvals_curvature.push_back(fabs(lambda_hessian(0))*un_sur_epsilon); - eigenvals_curvature.push_back(fabs(lambda_hessian(1))*un_sur_epsilon); - eigenvals_curvature.push_back(fabs(lambda_hessian(2))*un_sur_epsilon); - // metric distance-based eigenvalue, in gradient direction - double metric_value_hmin = 1./hmin/hmin; - double eigenval_direction; + const double metric_value_hmin = 1./(hmin*hmin); + const SVector3 nVec = (1./norm)*gVec; // Unit normal vector + double lambda_n; // Eigenvalues of metric for normal & tangential directions if (_technique==meshMetric::EIGENDIRECTIONS_LINEARINTERP_H){ - double h_dist = hmin + ((hmax-hmin)/_E)*dist;// the charcteristic element size in the normal direction - linear interp between hmin and hmax - eigenval_direction = 1./h_dist/h_dist; + const double h_dist = hmin + ((hmax-hmin)/_E)*dist; // Characteristic element size in the normal direction - linear interp between hmin and hmax + lambda_n = 1./(h_dist*h_dist); } else if(_technique==meshMetric::EIGENDIRECTIONS){ - // ... or linear interpolation between 1/h_min^2 and 1/h_max^2 - double maximum_distance = (signed_dist>0.) ? _E : fabs(_E_moins); - eigenval_direction = metric_value_hmin + ((metric_value_hmax-metric_value_hmin)/maximum_distance)*dist; + const double maximum_distance = (signed_dist>0.) ? _E : fabs(_E_moins); // ... or linear interpolation between 1/h_min^2 and 1/h_max^2 + lambda_n = metric_value_hmin + ((metric_value_hmax-metric_value_hmin)/maximum_distance)*dist; } - - // now, consider only three eigenvectors (i.e. (grad(LS), u1, u2) with u1 and u2 orthogonal vectors in the tangent plane to the LS) - // and imposing directly eigenvalues and directions, instead of intersecting the two metrics based on direction and curvature - // need to find out which one of ti's is the closest to gr, to known which eigenvalue to discard... - std::vector<double> grad_dot_ti; - for (int i=0;i<3;i++) - grad_dot_ti.push_back(fabs(dot(gr,ti[i]))); - std::vector<double>::iterator itbegin = grad_dot_ti.begin(); - std::vector<double>::iterator itmax = std::max_element(itbegin,grad_dot_ti.end()); - int grad_index = std::distance(itbegin,itmax); - std::vector<int> ti_index; - for (int i=0;i<3;i++) - if (i!=grad_index) ti_index.push_back(i); - // finally, creating the metric - std::vector<double> eigenvals; - eigenvals.push_back(std::min(std::max(eigenval_direction,metric_value_hmax),metric_value_hmin));// in gradient direction - eigenvals.push_back(std::min(std::max(eigenvals_curvature[ti_index[0]],metric_value_hmax),metric_value_hmin)); - eigenvals.push_back(std::min(std::max(eigenvals_curvature[ti_index[1]],metric_value_hmax),metric_value_hmin)); - metric = SMetric3(eigenvals[0],eigenvals[1],eigenvals[2],gr,ti[ti_index[0]],ti[ti_index[1]]); - setOfSizes[metricNumber].insert(std::make_pair(ver, std::min(std::min(1/sqrt(eigenvals[0]),1/sqrt(eigenvals[1])),1/sqrt(eigenvals[2])))); + SVector3 tVec0, tVec1 = SPoint3(0.,0.,1.); // Unit tangential vectors + double kappa0, kappa1 = 0.; // Curvatures + if (_dim == 2) { // Curvature formulas: cf. R. Goldman, "Curvature formulas for implicit curves and surfaces", Computer Aided Geometric Design 22 (2005), pp. 632–658 + tVec0 = SPoint3(-nVec(1),nVec(0),0.); + kappa0 = fabs(-gVec(1)*(-gVec(1)*hessian(0,0)+gVec(0)*hessian(0,1))+ + gVec(0)*(-gVec(1)*hessian(1,0)+gVec(0)*hessian(1,1)))/pow(norm,3); + } + else { + // TODO: Implement 3D curvatures + tVec0 = SPoint3(0.,0.,0.); + tVec1 = SPoint3(0.,0.,0.); + kappa0 = 0.; + kappa1 = 0.; + } + const double invh_t0 = (_Np*kappa0)/6.283185307, invh_t1 = (_Np*kappa1)/6.283185307; // Inverse of tangential size 0 + const double lambda_t0 = invh_t0*invh_t0, lambda_t1 = invh_t1*invh_t1; + const double lambdaP_n = std::min(std::max(lambda_n,metric_value_hmax),metric_value_hmin); // Truncate eigenvalues + const double lambdaP_t0 = std::min(std::max(lambda_t0,metric_value_hmax),metric_value_hmin); + const double lambdaP_t1 = (_dim == 2) ? 1. : std::min(std::max(lambda_t1,metric_value_hmax),metric_value_hmin); + metric = SMetric3(lambdaP_n,lambdaP_t0,lambdaP_t1,nVec,tVec0,tVec1); + const double h_n = 1./sqrt(lambdaP_n), h_t0 = 1./sqrt(lambdaP_t0), h_t1 = 1./sqrt(lambdaP_t1); + setOfSizes[metricNumber].insert(std::make_pair(ver,std::min(std::min(h_n,h_t0),h_t1))); } else{// isotropic metric ! SMetric3 mymetric(metric_value_hmax); -- GitLab