diff --git a/Tetgen/LICENSE b/Tetgen/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..456b0bbe48b29e069a48c5c226c10d51e77b25da --- /dev/null +++ b/Tetgen/LICENSE @@ -0,0 +1,65 @@ +TetGen License +-------------- + +The software (TetGen) is licensed under the terms of the MIT license +with the following exceptions: + +Distribution of modified versions of this code is permissible UNDER +THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE +SAME SOURCE FILES tetgen.h AND tetgen.cxx REMAIN UNDER COPYRIGHT OF +THE ORIGINAL AUTHOR, BOTH SOURCE AND OBJECT CODE ARE MADE FREELY +AVAILABLE WITHOUT CHARGE, AND CLEAR NOTICE IS GIVEN OF THE +MODIFICATIONS. + +Distribution of this code for any commercial purpose is permissible +ONLY BY DIRECT ARRANGEMENT WITH THE COPYRIGHT OWNER. + +The full license text is reproduced below. + +This means that TetGen is no free software, but for private, research, +and educational purposes it can be used at absolutely no cost and +without further arrangements. + + +For details, see http://tetgen.berlios.de + +============================================================================== + +TetGen +A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator +Version 1.3 (Released on June 13, 2004). + +Copyright 2002, 2004 Hang Si +Rathausstr. 9, 10178 Berlin, Germany +si@wias-berlin.de + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the +"Software"), to deal in the Software without restriction, including +without limitation the rights to use, copy, modify, merge, publish, +distribute, sublicense and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to +the following conditions: + +Distribution of modified versions of this code is permissible UNDER +THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE +SAME SOURCE FILES tetgen.h AND tetgen.cxx REMAIN UNDER COPYRIGHT OF +THE ORIGINAL AUTHOR, BOTH SOURCE AND OBJECT CODE ARE MADE FREELY +AVAILABLE WITHOUT CHARGE, AND CLEAR NOTICE IS GIVEN OF THE +MODIFICATIONS. + +Distribution of this code for any commercial purpose is permissible +ONLY BY DIRECT ARRANGEMENT WITH THE COPYRIGHT OWNER. + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE +SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +============================================================================== \ No newline at end of file diff --git a/Tetgen/Makefile b/Tetgen/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..885bfc368ecb22750bc1a22fa09d97acb5457eb6 --- /dev/null +++ b/Tetgen/Makefile @@ -0,0 +1,56 @@ +# $Id: Makefile,v 1.3 2005-06-29 09:52:59 tardieu Exp $ +# +# Copyright (C) 1997-2005 C. Geuzaine, J.-F. Remacle +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program; if not, write to the Free Software +# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 +# USA. +# +# Please report all bugs and problems to <gmsh@geuz.org>. + +include ../variables + + +LIB = ../lib/libGmshTetgen.a +INCLUDE = -I../Common -I. +# Do not optimize (same as Triangle...) +#CFLAGS = ${OPTIM} ${FLAGS} ${INCLUDE} -DNO_PARALLEL_THREADS -UWIN32 +CFLAGS = ${FLAGS} ${INCLUDE} -DNO_PARALLEL_THREADS -UWIN32 + +SRC = predicates.cxx tetgen.cxx +OBJ = ${SRC:.cxx=.o} + +.SUFFIXES: .o .cxx + +${LIB}: ${OBJ} + ${AR} ${LIB} ${OBJ} + ${RANLIB} ${LIB} + +.cxx.o: + ${CXX} ${CFLAGS} -c predicates.cxx + ${CXX} ${CFLAGS} -g -DTETLIBRARY -c tetgen.cxx + +clean: + rm -f *.o + +depend: + (sed '/^# DO NOT DELETE THIS LINE/q' Makefile && \ + ${CXX} -MM ${CFLAGS} ${SRC} \ + ) >Makefile.new + cp Makefile Makefile.bak + cp Makefile.new Makefile + rm -f Makefile.new + +# DO NOT DELETE THIS LINE +tetgen.o:predicates.cxx tetgen.cxx tetgen.h diff --git a/Tetgen/predicates.cxx b/Tetgen/predicates.cxx new file mode 100644 index 0000000000000000000000000000000000000000..e3dd38ae4821433ef0abce353db023848461734f --- /dev/null +++ b/Tetgen/predicates.cxx @@ -0,0 +1,4176 @@ +/*****************************************************************************/ +/* */ +/* Routines for Arbitrary Precision Floating-point Arithmetic */ +/* and Fast Robust Geometric Predicates */ +/* (predicates.c) */ +/* */ +/* May 18, 1996 */ +/* */ +/* Placed in the public domain by */ +/* Jonathan Richard Shewchuk */ +/* School of Computer Science */ +/* Carnegie Mellon University */ +/* 5000 Forbes Avenue */ +/* Pittsburgh, Pennsylvania 15213-3891 */ +/* jrs@cs.cmu.edu */ +/* */ +/* This file contains C implementation of algorithms for exact addition */ +/* and multiplication of floating-point numbers, and predicates for */ +/* robustly performing the orientation and incircle tests used in */ +/* computational geometry. The algorithms and underlying theory are */ +/* described in Jonathan Richard Shewchuk. "Adaptive Precision Floating- */ +/* Point Arithmetic and Fast Robust Geometric Predicates." Technical */ +/* Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon */ +/* University, Pittsburgh, Pennsylvania, May 1996. (Submitted to */ +/* Discrete & Computational Geometry.) */ +/* */ +/* This file, the paper listed above, and other information are available */ +/* from the Web page http://www.cs.cmu.edu/~quake/robust.html . */ +/* */ +/*****************************************************************************/ + +/*****************************************************************************/ +/* */ +/* Using this code: */ +/* */ +/* First, read the short or long version of the paper (from the Web page */ +/* above). */ +/* */ +/* Be sure to call exactinit() once, before calling any of the arithmetic */ +/* functions or geometric predicates. Also be sure to turn on the */ +/* optimizer when compiling this file. */ +/* */ +/* */ +/* Several geometric predicates are defined. Their parameters are all */ +/* points. Each point is an array of two or three floating-point */ +/* numbers. The geometric predicates, described in the papers, are */ +/* */ +/* orient2d(pa, pb, pc) */ +/* orient2dfast(pa, pb, pc) */ +/* orient3d(pa, pb, pc, pd) */ +/* orient3dfast(pa, pb, pc, pd) */ +/* incircle(pa, pb, pc, pd) */ +/* incirclefast(pa, pb, pc, pd) */ +/* insphere(pa, pb, pc, pd, pe) */ +/* inspherefast(pa, pb, pc, pd, pe) */ +/* */ +/* Those with suffix "fast" are approximate, non-robust versions. Those */ +/* without the suffix are adaptive precision, robust versions. There */ +/* are also versions with the suffices "exact" and "slow", which are */ +/* non-adaptive, exact arithmetic versions, which I use only for timings */ +/* in my arithmetic papers. */ +/* */ +/* */ +/* An expansion is represented by an array of floating-point numbers, */ +/* sorted from smallest to largest magnitude (possibly with interspersed */ +/* zeros). The length of each expansion is stored as a separate integer, */ +/* and each arithmetic function returns an integer which is the length */ +/* of the expansion it created. */ +/* */ +/* Several arithmetic functions are defined. Their parameters are */ +/* */ +/* e, f Input expansions */ +/* elen, flen Lengths of input expansions (must be >= 1) */ +/* h Output expansion */ +/* b Input scalar */ +/* */ +/* The arithmetic functions are */ +/* */ +/* grow_expansion(elen, e, b, h) */ +/* grow_expansion_zeroelim(elen, e, b, h) */ +/* expansion_sum(elen, e, flen, f, h) */ +/* expansion_sum_zeroelim1(elen, e, flen, f, h) */ +/* expansion_sum_zeroelim2(elen, e, flen, f, h) */ +/* fast_expansion_sum(elen, e, flen, f, h) */ +/* fast_expansion_sum_zeroelim(elen, e, flen, f, h) */ +/* linear_expansion_sum(elen, e, flen, f, h) */ +/* linear_expansion_sum_zeroelim(elen, e, flen, f, h) */ +/* scale_expansion(elen, e, b, h) */ +/* scale_expansion_zeroelim(elen, e, b, h) */ +/* compress(elen, e, h) */ +/* */ +/* All of these are described in the long version of the paper; some are */ +/* described in the short version. All return an integer that is the */ +/* length of h. Those with suffix _zeroelim perform zero elimination, */ +/* and are recommended over their counterparts. The procedure */ +/* fast_expansion_sum_zeroelim() (or linear_expansion_sum_zeroelim() on */ +/* processors that do not use the round-to-even tiebreaking rule) is */ +/* recommended over expansion_sum_zeroelim(). Each procedure has a */ +/* little note next to it (in the code below) that tells you whether or */ +/* not the output expansion may be the same array as one of the input */ +/* expansions. */ +/* */ +/* */ +/* If you look around below, you'll also find macros for a bunch of */ +/* simple unrolled arithmetic operations, and procedures for printing */ +/* expansions (commented out because they don't work with all C */ +/* compilers) and for generating random floating-point numbers whose */ +/* significand bits are all random. Most of the macros have undocumented */ +/* requirements that certain of their parameters should not be the same */ +/* variable; for safety, better to make sure all the parameters are */ +/* distinct variables. Feel free to send email to jrs@cs.cmu.edu if you */ +/* have questions. */ +/* */ +/*****************************************************************************/ + +#include <stdio.h> +#include <stdlib.h> +#include <math.h> +#ifdef CPU86 +#include <float.h> +#endif /* CPU86 */ +#ifdef LINUX +#include <fpu_control.h> +#endif /* LINUX */ + +#include "tetgen.h" // Defines the symbol REAL (float or double). + +/* On some machines, the exact arithmetic routines might be defeated by the */ +/* use of internal extended precision floating-point registers. Sometimes */ +/* this problem can be fixed by defining certain values to be volatile, */ +/* thus forcing them to be stored to memory and rounded off. This isn't */ +/* a great solution, though, as it slows the arithmetic down. */ +/* */ +/* To try this out, write "#define INEXACT volatile" below. Normally, */ +/* however, INEXACT should be defined to be nothing. ("#define INEXACT".) */ + +#define INEXACT /* Nothing */ +/* #define INEXACT volatile */ + +/* #define REAL double */ /* float or double */ +#define REALPRINT doubleprint +#define REALRAND doublerand +#define NARROWRAND narrowdoublerand +#define UNIFORMRAND uniformdoublerand + +/* Which of the following two methods of finding the absolute values is */ +/* fastest is compiler-dependent. A few compilers can inline and optimize */ +/* the fabs() call; but most will incur the overhead of a function call, */ +/* which is disastrously slow. A faster way on IEEE machines might be to */ +/* mask the appropriate bit, but that's difficult to do in C. */ + +#define Absolute(a) ((a) >= 0.0 ? (a) : -(a)) +/* #define Absolute(a) fabs(a) */ + +/* Many of the operations are broken up into two pieces, a main part that */ +/* performs an approximate operation, and a "tail" that computes the */ +/* roundoff error of that operation. */ +/* */ +/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */ +/* Split(), and Two_Product() are all implemented as described in the */ +/* reference. Each of these macros requires certain variables to be */ +/* defined in the calling routine. The variables `bvirt', `c', `abig', */ +/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */ +/* they store the result of an operation that may incur roundoff error. */ +/* The input parameter `x' (or the highest numbered `x_' parameter) must */ +/* also be declared `INEXACT'. */ + +#define Fast_Two_Sum_Tail(a, b, x, y) \ + bvirt = x - a; \ + y = b - bvirt + +#define Fast_Two_Sum(a, b, x, y) \ + x = (REAL) (a + b); \ + Fast_Two_Sum_Tail(a, b, x, y) + +#define Fast_Two_Diff_Tail(a, b, x, y) \ + bvirt = a - x; \ + y = bvirt - b + +#define Fast_Two_Diff(a, b, x, y) \ + x = (REAL) (a - b); \ + Fast_Two_Diff_Tail(a, b, x, y) + +#define Two_Sum_Tail(a, b, x, y) \ + bvirt = (REAL) (x - a); \ + avirt = x - bvirt; \ + bround = b - bvirt; \ + around = a - avirt; \ + y = around + bround + +#define Two_Sum(a, b, x, y) \ + x = (REAL) (a + b); \ + Two_Sum_Tail(a, b, x, y) + +#define Two_Diff_Tail(a, b, x, y) \ + bvirt = (REAL) (a - x); \ + avirt = x + bvirt; \ + bround = bvirt - b; \ + around = a - avirt; \ + y = around + bround + +#define Two_Diff(a, b, x, y) \ + x = (REAL) (a - b); \ + Two_Diff_Tail(a, b, x, y) + +#define Split(a, ahi, alo) \ + c = (REAL) (splitter * a); \ + abig = (REAL) (c - a); \ + ahi = c - abig; \ + alo = a - ahi + +#define Two_Product_Tail(a, b, x, y) \ + Split(a, ahi, alo); \ + Split(b, bhi, blo); \ + err1 = x - (ahi * bhi); \ + err2 = err1 - (alo * bhi); \ + err3 = err2 - (ahi * blo); \ + y = (alo * blo) - err3 + +#define Two_Product(a, b, x, y) \ + x = (REAL) (a * b); \ + Two_Product_Tail(a, b, x, y) + +/* Two_Product_Presplit() is Two_Product() where one of the inputs has */ +/* already been split. Avoids redundant splitting. */ + +#define Two_Product_Presplit(a, b, bhi, blo, x, y) \ + x = (REAL) (a * b); \ + Split(a, ahi, alo); \ + err1 = x - (ahi * bhi); \ + err2 = err1 - (alo * bhi); \ + err3 = err2 - (ahi * blo); \ + y = (alo * blo) - err3 + +/* Two_Product_2Presplit() is Two_Product() where both of the inputs have */ +/* already been split. Avoids redundant splitting. */ + +#define Two_Product_2Presplit(a, ahi, alo, b, bhi, blo, x, y) \ + x = (REAL) (a * b); \ + err1 = x - (ahi * bhi); \ + err2 = err1 - (alo * bhi); \ + err3 = err2 - (ahi * blo); \ + y = (alo * blo) - err3 + +/* Square() can be done more quickly than Two_Product(). */ + +#define Square_Tail(a, x, y) \ + Split(a, ahi, alo); \ + err1 = x - (ahi * ahi); \ + err3 = err1 - ((ahi + ahi) * alo); \ + y = (alo * alo) - err3 + +#define Square(a, x, y) \ + x = (REAL) (a * a); \ + Square_Tail(a, x, y) + +/* Macros for summing expansions of various fixed lengths. These are all */ +/* unrolled versions of Expansion_Sum(). */ + +#define Two_One_Sum(a1, a0, b, x2, x1, x0) \ + Two_Sum(a0, b , _i, x0); \ + Two_Sum(a1, _i, x2, x1) + +#define Two_One_Diff(a1, a0, b, x2, x1, x0) \ + Two_Diff(a0, b , _i, x0); \ + Two_Sum( a1, _i, x2, x1) + +#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \ + Two_One_Sum(a1, a0, b0, _j, _0, x0); \ + Two_One_Sum(_j, _0, b1, x3, x2, x1) + +#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \ + Two_One_Diff(a1, a0, b0, _j, _0, x0); \ + Two_One_Diff(_j, _0, b1, x3, x2, x1) + +#define Four_One_Sum(a3, a2, a1, a0, b, x4, x3, x2, x1, x0) \ + Two_One_Sum(a1, a0, b , _j, x1, x0); \ + Two_One_Sum(a3, a2, _j, x4, x3, x2) + +#define Four_Two_Sum(a3, a2, a1, a0, b1, b0, x5, x4, x3, x2, x1, x0) \ + Four_One_Sum(a3, a2, a1, a0, b0, _k, _2, _1, _0, x0); \ + Four_One_Sum(_k, _2, _1, _0, b1, x5, x4, x3, x2, x1) + +#define Four_Four_Sum(a3, a2, a1, a0, b4, b3, b1, b0, x7, x6, x5, x4, x3, x2, \ + x1, x0) \ + Four_Two_Sum(a3, a2, a1, a0, b1, b0, _l, _2, _1, _0, x1, x0); \ + Four_Two_Sum(_l, _2, _1, _0, b4, b3, x7, x6, x5, x4, x3, x2) + +#define Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b, x8, x7, x6, x5, x4, \ + x3, x2, x1, x0) \ + Four_One_Sum(a3, a2, a1, a0, b , _j, x3, x2, x1, x0); \ + Four_One_Sum(a7, a6, a5, a4, _j, x8, x7, x6, x5, x4) + +#define Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, x9, x8, x7, \ + x6, x5, x4, x3, x2, x1, x0) \ + Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b0, _k, _6, _5, _4, _3, _2, \ + _1, _0, x0); \ + Eight_One_Sum(_k, _6, _5, _4, _3, _2, _1, _0, b1, x9, x8, x7, x6, x5, x4, \ + x3, x2, x1) + +#define Eight_Four_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b4, b3, b1, b0, x11, \ + x10, x9, x8, x7, x6, x5, x4, x3, x2, x1, x0) \ + Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, _l, _6, _5, _4, _3, \ + _2, _1, _0, x1, x0); \ + Eight_Two_Sum(_l, _6, _5, _4, _3, _2, _1, _0, b4, b3, x11, x10, x9, x8, \ + x7, x6, x5, x4, x3, x2) + +/* Macros for multiplying expansions of various fixed lengths. */ + +#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \ + Split(b, bhi, blo); \ + Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \ + Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, x1); \ + Fast_Two_Sum(_j, _k, x3, x2) + +#define Four_One_Product(a3, a2, a1, a0, b, x7, x6, x5, x4, x3, x2, x1, x0) \ + Split(b, bhi, blo); \ + Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \ + Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, x1); \ + Fast_Two_Sum(_j, _k, _i, x2); \ + Two_Product_Presplit(a2, b, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, x3); \ + Fast_Two_Sum(_j, _k, _i, x4); \ + Two_Product_Presplit(a3, b, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, x5); \ + Fast_Two_Sum(_j, _k, x7, x6) + +#define Two_Two_Product(a1, a0, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \ + Split(a0, a0hi, a0lo); \ + Split(b0, bhi, blo); \ + Two_Product_2Presplit(a0, a0hi, a0lo, b0, bhi, blo, _i, x0); \ + Split(a1, a1hi, a1lo); \ + Two_Product_2Presplit(a1, a1hi, a1lo, b0, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, _1); \ + Fast_Two_Sum(_j, _k, _l, _2); \ + Split(b1, bhi, blo); \ + Two_Product_2Presplit(a0, a0hi, a0lo, b1, bhi, blo, _i, _0); \ + Two_Sum(_1, _0, _k, x1); \ + Two_Sum(_2, _k, _j, _1); \ + Two_Sum(_l, _j, _m, _2); \ + Two_Product_2Presplit(a1, a1hi, a1lo, b1, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _n, _0); \ + Two_Sum(_1, _0, _i, x2); \ + Two_Sum(_2, _i, _k, _1); \ + Two_Sum(_m, _k, _l, _2); \ + Two_Sum(_j, _n, _k, _0); \ + Two_Sum(_1, _0, _j, x3); \ + Two_Sum(_2, _j, _i, _1); \ + Two_Sum(_l, _i, _m, _2); \ + Two_Sum(_1, _k, _i, x4); \ + Two_Sum(_2, _i, _k, x5); \ + Two_Sum(_m, _k, x7, x6) + +/* An expansion of length two can be squared more quickly than finding the */ +/* product of two different expansions of length two, and the result is */ +/* guaranteed to have no more than six (rather than eight) components. */ + +#define Two_Square(a1, a0, x5, x4, x3, x2, x1, x0) \ + Square(a0, _j, x0); \ + _0 = a0 + a0; \ + Two_Product(a1, _0, _k, _1); \ + Two_One_Sum(_k, _1, _j, _l, _2, x1); \ + Square(a1, _j, _1); \ + Two_Two_Sum(_j, _1, _l, _2, x5, x4, x3, x2) + +/* splitter = 2^ceiling(p / 2) + 1. Used to split floats in half. */ +static REAL splitter; +static REAL epsilon; /* = 2^(-p). Used to estimate roundoff errors. */ +/* A set of coefficients used to calculate maximum roundoff errors. */ +static REAL resulterrbound; +static REAL ccwerrboundA, ccwerrboundB, ccwerrboundC; +static REAL o3derrboundA, o3derrboundB, o3derrboundC; +static REAL iccerrboundA, iccerrboundB, iccerrboundC; +static REAL isperrboundA, isperrboundB, isperrboundC; + +/*****************************************************************************/ +/* */ +/* doubleprint() Print the bit representation of a double. */ +/* */ +/* Useful for debugging exact arithmetic routines. */ +/* */ +/*****************************************************************************/ + +/* +void doubleprint(number) +double number; +{ + unsigned long long no; + unsigned long long sign, expo; + int exponent; + int i, bottomi; + + no = *(unsigned long long *) &number; + sign = no & 0x8000000000000000ll; + expo = (no >> 52) & 0x7ffll; + exponent = (int) expo; + exponent = exponent - 1023; + if (sign) { + printf("-"); + } else { + printf(" "); + } + if (exponent == -1023) { + printf( + "0.0000000000000000000000000000000000000000000000000000_ ( )"); + } else { + printf("1."); + bottomi = -1; + for (i = 0; i < 52; i++) { + if (no & 0x0008000000000000ll) { + printf("1"); + bottomi = i; + } else { + printf("0"); + } + no <<= 1; + } + printf("_%d (%d)", exponent, exponent - 1 - bottomi); + } +} +*/ + +/*****************************************************************************/ +/* */ +/* floatprint() Print the bit representation of a float. */ +/* */ +/* Useful for debugging exact arithmetic routines. */ +/* */ +/*****************************************************************************/ + +/* +void floatprint(number) +float number; +{ + unsigned no; + unsigned sign, expo; + int exponent; + int i, bottomi; + + no = *(unsigned *) &number; + sign = no & 0x80000000; + expo = (no >> 23) & 0xff; + exponent = (int) expo; + exponent = exponent - 127; + if (sign) { + printf("-"); + } else { + printf(" "); + } + if (exponent == -127) { + printf("0.00000000000000000000000_ ( )"); + } else { + printf("1."); + bottomi = -1; + for (i = 0; i < 23; i++) { + if (no & 0x00400000) { + printf("1"); + bottomi = i; + } else { + printf("0"); + } + no <<= 1; + } + printf("_%3d (%3d)", exponent, exponent - 1 - bottomi); + } +} +*/ + +/*****************************************************************************/ +/* */ +/* expansion_print() Print the bit representation of an expansion. */ +/* */ +/* Useful for debugging exact arithmetic routines. */ +/* */ +/*****************************************************************************/ + +/* +void expansion_print(elen, e) +int elen; +REAL *e; +{ + int i; + + for (i = elen - 1; i >= 0; i--) { + REALPRINT(e[i]); + if (i > 0) { + printf(" +\n"); + } else { + printf("\n"); + } + } +} +*/ + +/*****************************************************************************/ +/* */ +/* doublerand() Generate a double with random 53-bit significand and a */ +/* random exponent in [0, 511]. */ +/* */ +/*****************************************************************************/ + +/* +double doublerand() +{ + double result; + double expo; + long a, b, c; + long i; + + a = random(); + b = random(); + c = random(); + result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8); + for (i = 512, expo = 2; i <= 131072; i *= 2, expo = expo * expo) { + if (c & i) { + result *= expo; + } + } + return result; +} +*/ + +/*****************************************************************************/ +/* */ +/* narrowdoublerand() Generate a double with random 53-bit significand */ +/* and a random exponent in [0, 7]. */ +/* */ +/*****************************************************************************/ + +/* +double narrowdoublerand() +{ + double result; + double expo; + long a, b, c; + long i; + + a = random(); + b = random(); + c = random(); + result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8); + for (i = 512, expo = 2; i <= 2048; i *= 2, expo = expo * expo) { + if (c & i) { + result *= expo; + } + } + return result; +} +*/ + +/*****************************************************************************/ +/* */ +/* uniformdoublerand() Generate a double with random 53-bit significand. */ +/* */ +/*****************************************************************************/ + +/* +double uniformdoublerand() +{ + double result; + long a, b; + + a = random(); + b = random(); + result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8); + return result; +} +*/ + +/*****************************************************************************/ +/* */ +/* floatrand() Generate a float with random 24-bit significand and a */ +/* random exponent in [0, 63]. */ +/* */ +/*****************************************************************************/ + +/* +float floatrand() +{ + float result; + float expo; + long a, c; + long i; + + a = random(); + c = random(); + result = (float) ((a - 1073741824) >> 6); + for (i = 512, expo = 2; i <= 16384; i *= 2, expo = expo * expo) { + if (c & i) { + result *= expo; + } + } + return result; +} +*/ + +/*****************************************************************************/ +/* */ +/* narrowfloatrand() Generate a float with random 24-bit significand and */ +/* a random exponent in [0, 7]. */ +/* */ +/*****************************************************************************/ + +/* +float narrowfloatrand() +{ + float result; + float expo; + long a, c; + long i; + + a = random(); + c = random(); + result = (float) ((a - 1073741824) >> 6); + for (i = 512, expo = 2; i <= 2048; i *= 2, expo = expo * expo) { + if (c & i) { + result *= expo; + } + } + return result; +} +*/ + +/*****************************************************************************/ +/* */ +/* uniformfloatrand() Generate a float with random 24-bit significand. */ +/* */ +/*****************************************************************************/ + +/* +float uniformfloatrand() +{ + float result; + long a; + + a = random(); + result = (float) ((a - 1073741824) >> 6); + return result; +} +*/ + +/*****************************************************************************/ +/* */ +/* exactinit() Initialize the variables used for exact arithmetic. */ +/* */ +/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */ +/* floating-point arithmetic. `epsilon' bounds the relative roundoff */ +/* error. It is used for floating-point error analysis. */ +/* */ +/* `splitter' is used to split floating-point numbers into two half- */ +/* length significands for exact multiplication. */ +/* */ +/* I imagine that a highly optimizing compiler might be too smart for its */ +/* own good, and somehow cause this routine to fail, if it pretends that */ +/* floating-point arithmetic is too much like real arithmetic. */ +/* */ +/* Don't change this routine unless you fully understand it. */ +/* */ +/*****************************************************************************/ + +REAL exactinit() +{ + REAL half; + REAL check, lastcheck; + int every_other; +#ifdef LINUX + int cword; +#endif /* LINUX */ + +#ifdef CPU86 +#ifdef SINGLE + _control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */ +#else /* not SINGLE */ + _control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */ +#endif /* not SINGLE */ +#endif /* CPU86 */ +#ifdef LINUX +#ifdef SINGLE + /* cword = 4223; */ + cword = 4210; /* set FPU control word for single precision */ +#else /* not SINGLE */ + /* cword = 4735; */ + cword = 4722; /* set FPU control word for double precision */ +#endif /* not SINGLE */ + _FPU_SETCW(cword); +#endif /* LINUX */ + + every_other = 1; + half = 0.5; + epsilon = 1.0; + splitter = 1.0; + check = 1.0; + /* Repeatedly divide `epsilon' by two until it is too small to add to */ + /* one without causing roundoff. (Also check if the sum is equal to */ + /* the previous sum, for machines that round up instead of using exact */ + /* rounding. Not that this library will work on such machines anyway. */ + do { + lastcheck = check; + epsilon *= half; + if (every_other) { + splitter *= 2.0; + } + every_other = !every_other; + check = 1.0 + epsilon; + } while ((check != 1.0) && (check != lastcheck)); + splitter += 1.0; + + /* Error bounds for orientation and incircle tests. */ + resulterrbound = (3.0 + 8.0 * epsilon) * epsilon; + ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon; + ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon; + ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon; + o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon; + o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon; + o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon; + iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon; + iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon; + iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon; + isperrboundA = (16.0 + 224.0 * epsilon) * epsilon; + isperrboundB = (5.0 + 72.0 * epsilon) * epsilon; + isperrboundC = (71.0 + 1408.0 * epsilon) * epsilon * epsilon; + + return epsilon; /* Added by H. Si 30 Juli, 2004. */ +} + +/*****************************************************************************/ +/* */ +/* grow_expansion() Add a scalar to an expansion. */ +/* */ +/* Sets h = e + b. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ +/* properties as well. (That is, if e has one of these properties, so */ +/* will h.) */ +/* */ +/*****************************************************************************/ + +int grow_expansion(int elen, REAL *e, REAL b, REAL *h) +/* e and h can be the same. */ +{ + REAL Q; + INEXACT REAL Qnew; + int eindex; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + Q = b; + for (eindex = 0; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Sum(Q, enow, Qnew, h[eindex]); + Q = Qnew; + } + h[eindex] = Q; + return eindex + 1; +} + +/*****************************************************************************/ +/* */ +/* grow_expansion_zeroelim() Add a scalar to an expansion, eliminating */ +/* zero components from the output expansion. */ +/* */ +/* Sets h = e + b. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ +/* properties as well. (That is, if e has one of these properties, so */ +/* will h.) */ +/* */ +/*****************************************************************************/ + +int grow_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h) +/* e and h can be the same. */ +{ + REAL Q, hh; + INEXACT REAL Qnew; + int eindex, hindex; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + hindex = 0; + Q = b; + for (eindex = 0; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Sum(Q, enow, Qnew, hh); + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + if ((Q != 0.0) || (hindex == 0)) { + h[hindex++] = Q; + } + return hindex; +} + +/*****************************************************************************/ +/* */ +/* expansion_sum() Sum two expansions. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the nonadjacent property as well. (That is, */ +/* if e has one of these properties, so will h.) Does NOT maintain the */ +/* strongly nonoverlapping property. */ +/* */ +/*****************************************************************************/ + +int expansion_sum(int elen, REAL *e, int flen, REAL *f, REAL *h) +/* e and h can be the same, but f and h cannot. */ +{ + REAL Q; + INEXACT REAL Qnew; + int findex, hindex, hlast; + REAL hnow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + Q = f[0]; + for (hindex = 0; hindex < elen; hindex++) { + hnow = e[hindex]; + Two_Sum(Q, hnow, Qnew, h[hindex]); + Q = Qnew; + } + h[hindex] = Q; + hlast = hindex; + for (findex = 1; findex < flen; findex++) { + Q = f[findex]; + for (hindex = findex; hindex <= hlast; hindex++) { + hnow = h[hindex]; + Two_Sum(Q, hnow, Qnew, h[hindex]); + Q = Qnew; + } + h[++hlast] = Q; + } + return hlast + 1; +} + +/*****************************************************************************/ +/* */ +/* expansion_sum_zeroelim1() Sum two expansions, eliminating zero */ +/* components from the output expansion. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the nonadjacent property as well. (That is, */ +/* if e has one of these properties, so will h.) Does NOT maintain the */ +/* strongly nonoverlapping property. */ +/* */ +/*****************************************************************************/ + +int expansion_sum_zeroelim1(int elen, REAL *e, int flen, REAL *f, REAL *h) +/* e and h can be the same, but f and h cannot. */ +{ + REAL Q; + INEXACT REAL Qnew; + int index, findex, hindex, hlast; + REAL hnow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + Q = f[0]; + for (hindex = 0; hindex < elen; hindex++) { + hnow = e[hindex]; + Two_Sum(Q, hnow, Qnew, h[hindex]); + Q = Qnew; + } + h[hindex] = Q; + hlast = hindex; + for (findex = 1; findex < flen; findex++) { + Q = f[findex]; + for (hindex = findex; hindex <= hlast; hindex++) { + hnow = h[hindex]; + Two_Sum(Q, hnow, Qnew, h[hindex]); + Q = Qnew; + } + h[++hlast] = Q; + } + hindex = -1; + for (index = 0; index <= hlast; index++) { + hnow = h[index]; + if (hnow != 0.0) { + h[++hindex] = hnow; + } + } + if (hindex == -1) { + return 1; + } else { + return hindex + 1; + } +} + +/*****************************************************************************/ +/* */ +/* expansion_sum_zeroelim2() Sum two expansions, eliminating zero */ +/* components from the output expansion. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the nonadjacent property as well. (That is, */ +/* if e has one of these properties, so will h.) Does NOT maintain the */ +/* strongly nonoverlapping property. */ +/* */ +/*****************************************************************************/ + +int expansion_sum_zeroelim2(int elen, REAL *e, int flen, REAL *f, REAL *h) +/* e and h can be the same, but f and h cannot. */ +{ + REAL Q, hh; + INEXACT REAL Qnew; + int eindex, findex, hindex, hlast; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + hindex = 0; + Q = f[0]; + for (eindex = 0; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Sum(Q, enow, Qnew, hh); + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + h[hindex] = Q; + hlast = hindex; + for (findex = 1; findex < flen; findex++) { + hindex = 0; + Q = f[findex]; + for (eindex = 0; eindex <= hlast; eindex++) { + enow = h[eindex]; + Two_Sum(Q, enow, Qnew, hh); + Q = Qnew; + if (hh != 0) { + h[hindex++] = hh; + } + } + h[hindex] = Q; + hlast = hindex; + } + return hlast + 1; +} + +/*****************************************************************************/ +/* */ +/* fast_expansion_sum() Sum two expansions. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* If round-to-even is used (as with IEEE 754), maintains the strongly */ +/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */ +/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */ +/* properties. */ +/* */ +/*****************************************************************************/ + +int fast_expansion_sum(int elen, REAL *e, int flen, REAL *f, REAL *h) +/* h cannot be e or f. */ +{ + REAL Q; + INEXACT REAL Qnew; + INEXACT REAL bvirt; + REAL avirt, bround, around; + int eindex, findex, hindex; + REAL enow, fnow; + + enow = e[0]; + fnow = f[0]; + eindex = findex = 0; + if ((fnow > enow) == (fnow > -enow)) { + Q = enow; + enow = e[++eindex]; + } else { + Q = fnow; + fnow = f[++findex]; + } + hindex = 0; + if ((eindex < elen) && (findex < flen)) { + if ((fnow > enow) == (fnow > -enow)) { + Fast_Two_Sum(enow, Q, Qnew, h[0]); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, Q, Qnew, h[0]); + fnow = f[++findex]; + } + Q = Qnew; + hindex = 1; + while ((eindex < elen) && (findex < flen)) { + if ((fnow > enow) == (fnow > -enow)) { + Two_Sum(Q, enow, Qnew, h[hindex]); + enow = e[++eindex]; + } else { + Two_Sum(Q, fnow, Qnew, h[hindex]); + fnow = f[++findex]; + } + Q = Qnew; + hindex++; + } + } + while (eindex < elen) { + Two_Sum(Q, enow, Qnew, h[hindex]); + enow = e[++eindex]; + Q = Qnew; + hindex++; + } + while (findex < flen) { + Two_Sum(Q, fnow, Qnew, h[hindex]); + fnow = f[++findex]; + Q = Qnew; + hindex++; + } + h[hindex] = Q; + return hindex + 1; +} + +/*****************************************************************************/ +/* */ +/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */ +/* components from the output expansion. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* If round-to-even is used (as with IEEE 754), maintains the strongly */ +/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */ +/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */ +/* properties. */ +/* */ +/*****************************************************************************/ + +int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h) +/* h cannot be e or f. */ +{ + REAL Q; + INEXACT REAL Qnew; + INEXACT REAL hh; + INEXACT REAL bvirt; + REAL avirt, bround, around; + int eindex, findex, hindex; + REAL enow, fnow; + + enow = e[0]; + fnow = f[0]; + eindex = findex = 0; + if ((fnow > enow) == (fnow > -enow)) { + Q = enow; + enow = e[++eindex]; + } else { + Q = fnow; + fnow = f[++findex]; + } + hindex = 0; + if ((eindex < elen) && (findex < flen)) { + if ((fnow > enow) == (fnow > -enow)) { + Fast_Two_Sum(enow, Q, Qnew, hh); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, Q, Qnew, hh); + fnow = f[++findex]; + } + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + while ((eindex < elen) && (findex < flen)) { + if ((fnow > enow) == (fnow > -enow)) { + Two_Sum(Q, enow, Qnew, hh); + enow = e[++eindex]; + } else { + Two_Sum(Q, fnow, Qnew, hh); + fnow = f[++findex]; + } + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + } + while (eindex < elen) { + Two_Sum(Q, enow, Qnew, hh); + enow = e[++eindex]; + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + while (findex < flen) { + Two_Sum(Q, fnow, Qnew, hh); + fnow = f[++findex]; + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + if ((Q != 0.0) || (hindex == 0)) { + h[hindex++] = Q; + } + return hindex; +} + +/*****************************************************************************/ +/* */ +/* linear_expansion_sum() Sum two expansions. */ +/* */ +/* Sets h = e + f. See either version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. (That is, if e is */ +/* nonoverlapping, h will be also.) */ +/* */ +/*****************************************************************************/ + +int linear_expansion_sum(int elen, REAL *e, int flen, REAL *f, REAL *h) +/* h cannot be e or f. */ +{ + REAL Q, q; + INEXACT REAL Qnew; + INEXACT REAL R; + INEXACT REAL bvirt; + REAL avirt, bround, around; + int eindex, findex, hindex; + REAL enow, fnow; + REAL g0; + + enow = e[0]; + fnow = f[0]; + eindex = findex = 0; + if ((fnow > enow) == (fnow > -enow)) { + g0 = enow; + enow = e[++eindex]; + } else { + g0 = fnow; + fnow = f[++findex]; + } + if ((eindex < elen) && ((findex >= flen) + || ((fnow > enow) == (fnow > -enow)))) { + Fast_Two_Sum(enow, g0, Qnew, q); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, g0, Qnew, q); + fnow = f[++findex]; + } + Q = Qnew; + for (hindex = 0; hindex < elen + flen - 2; hindex++) { + if ((eindex < elen) && ((findex >= flen) + || ((fnow > enow) == (fnow > -enow)))) { + Fast_Two_Sum(enow, q, R, h[hindex]); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, q, R, h[hindex]); + fnow = f[++findex]; + } + Two_Sum(Q, R, Qnew, q); + Q = Qnew; + } + h[hindex] = q; + h[hindex + 1] = Q; + return hindex + 2; +} + +/*****************************************************************************/ +/* */ +/* linear_expansion_sum_zeroelim() Sum two expansions, eliminating zero */ +/* components from the output expansion. */ +/* */ +/* Sets h = e + f. See either version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. (That is, if e is */ +/* nonoverlapping, h will be also.) */ +/* */ +/*****************************************************************************/ + +int linear_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, + REAL *h) +/* h cannot be e or f. */ +{ + REAL Q, q, hh; + INEXACT REAL Qnew; + INEXACT REAL R; + INEXACT REAL bvirt; + REAL avirt, bround, around; + int eindex, findex, hindex; + int count; + REAL enow, fnow; + REAL g0; + + enow = e[0]; + fnow = f[0]; + eindex = findex = 0; + hindex = 0; + if ((fnow > enow) == (fnow > -enow)) { + g0 = enow; + enow = e[++eindex]; + } else { + g0 = fnow; + fnow = f[++findex]; + } + if ((eindex < elen) && ((findex >= flen) + || ((fnow > enow) == (fnow > -enow)))) { + Fast_Two_Sum(enow, g0, Qnew, q); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, g0, Qnew, q); + fnow = f[++findex]; + } + Q = Qnew; + for (count = 2; count < elen + flen; count++) { + if ((eindex < elen) && ((findex >= flen) + || ((fnow > enow) == (fnow > -enow)))) { + Fast_Two_Sum(enow, q, R, hh); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, q, R, hh); + fnow = f[++findex]; + } + Two_Sum(Q, R, Qnew, q); + Q = Qnew; + if (hh != 0) { + h[hindex++] = hh; + } + } + if (q != 0) { + h[hindex++] = q; + } + if ((Q != 0.0) || (hindex == 0)) { + h[hindex++] = Q; + } + return hindex; +} + +/*****************************************************************************/ +/* */ +/* scale_expansion() Multiply an expansion by a scalar. */ +/* */ +/* Sets h = be. See either version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ +/* properties as well. (That is, if e has one of these properties, so */ +/* will h.) */ +/* */ +/*****************************************************************************/ + +int scale_expansion(int elen, REAL *e, REAL b, REAL *h) +/* e and h cannot be the same. */ +{ + INEXACT REAL Q; + INEXACT REAL sum; + INEXACT REAL product1; + REAL product0; + int eindex, hindex; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + + Split(b, bhi, blo); + Two_Product_Presplit(e[0], b, bhi, blo, Q, h[0]); + hindex = 1; + for (eindex = 1; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Product_Presplit(enow, b, bhi, blo, product1, product0); + Two_Sum(Q, product0, sum, h[hindex]); + hindex++; + Two_Sum(product1, sum, Q, h[hindex]); + hindex++; + } + h[hindex] = Q; + return elen + elen; +} + +/*****************************************************************************/ +/* */ +/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */ +/* eliminating zero components from the */ +/* output expansion. */ +/* */ +/* Sets h = be. See either version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ +/* properties as well. (That is, if e has one of these properties, so */ +/* will h.) */ +/* */ +/*****************************************************************************/ + +int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h) +/* e and h cannot be the same. */ +{ + INEXACT REAL Q, sum; + REAL hh; + INEXACT REAL product1; + REAL product0; + int eindex, hindex; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + + Split(b, bhi, blo); + Two_Product_Presplit(e[0], b, bhi, blo, Q, hh); + hindex = 0; + if (hh != 0) { + h[hindex++] = hh; + } + for (eindex = 1; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Product_Presplit(enow, b, bhi, blo, product1, product0); + Two_Sum(Q, product0, sum, hh); + if (hh != 0) { + h[hindex++] = hh; + } + Fast_Two_Sum(product1, sum, Q, hh); + if (hh != 0) { + h[hindex++] = hh; + } + } + if ((Q != 0.0) || (hindex == 0)) { + h[hindex++] = Q; + } + return hindex; +} + +/*****************************************************************************/ +/* */ +/* compress() Compress an expansion. */ +/* */ +/* See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), then any nonoverlapping expansion is converted to a */ +/* nonadjacent expansion. */ +/* */ +/*****************************************************************************/ + +int compress(int elen, REAL *e, REAL *h) +/* e and h may be the same. */ +{ + REAL Q, q; + INEXACT REAL Qnew; + int eindex, hindex; + INEXACT REAL bvirt; + REAL enow, hnow; + int top, bottom; + + bottom = elen - 1; + Q = e[bottom]; + for (eindex = elen - 2; eindex >= 0; eindex--) { + enow = e[eindex]; + Fast_Two_Sum(Q, enow, Qnew, q); + if (q != 0) { + h[bottom--] = Qnew; + Q = q; + } else { + Q = Qnew; + } + } + top = 0; + for (hindex = bottom + 1; hindex < elen; hindex++) { + hnow = h[hindex]; + Fast_Two_Sum(hnow, Q, Qnew, q); + if (q != 0) { + h[top++] = q; + } + Q = Qnew; + } + h[top] = Q; + return top + 1; +} + +/*****************************************************************************/ +/* */ +/* estimate() Produce a one-word estimate of an expansion's value. */ +/* */ +/* See either version of my paper for details. */ +/* */ +/*****************************************************************************/ + +REAL estimate(int elen, REAL *e) +{ + REAL Q; + int eindex; + + Q = e[0]; + for (eindex = 1; eindex < elen; eindex++) { + Q += e[eindex]; + } + return Q; +} + +/*****************************************************************************/ +/* */ +/* orient2dfast() Approximate 2D orientation test. Nonrobust. */ +/* orient2dexact() Exact 2D orientation test. Robust. */ +/* orient2dslow() Another exact 2D orientation test. Robust. */ +/* orient2d() Adaptive exact 2D orientation test. Robust. */ +/* */ +/* Return a positive value if the points pa, pb, and pc occur */ +/* in counterclockwise order; a negative value if they occur */ +/* in clockwise order; and zero if they are collinear. The */ +/* result is also a rough approximation of twice the signed */ +/* area of the triangle defined by the three points. */ +/* */ +/* Only the first and last routine should be used; the middle two are for */ +/* timings. */ +/* */ +/* The last three use exact arithmetic to ensure a correct answer. The */ +/* result returned is the determinant of a matrix. In orient2d() only, */ +/* this determinant is computed adaptively, in the sense that exact */ +/* arithmetic is used only to the degree it is needed to ensure that the */ +/* returned value has the correct sign. Hence, orient2d() is usually quite */ +/* fast, but will run more slowly when the input points are collinear or */ +/* nearly so. */ +/* */ +/*****************************************************************************/ + +REAL orient2dfast(REAL *pa, REAL *pb, REAL *pc) +{ + REAL acx, bcx, acy, bcy; + + acx = pa[0] - pc[0]; + bcx = pb[0] - pc[0]; + acy = pa[1] - pc[1]; + bcy = pb[1] - pc[1]; + return acx * bcy - acy * bcx; +} + +REAL orient2dexact(REAL *pa, REAL *pb, REAL *pc) +{ + INEXACT REAL axby1, axcy1, bxcy1, bxay1, cxay1, cxby1; + REAL axby0, axcy0, bxcy0, bxay0, cxay0, cxby0; + REAL aterms[4], bterms[4], cterms[4]; + INEXACT REAL aterms3, bterms3, cterms3; + REAL v[8], w[12]; + int vlength, wlength; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + Two_Product(pa[0], pb[1], axby1, axby0); + Two_Product(pa[0], pc[1], axcy1, axcy0); + Two_Two_Diff(axby1, axby0, axcy1, axcy0, + aterms3, aterms[2], aterms[1], aterms[0]); + aterms[3] = aterms3; + + Two_Product(pb[0], pc[1], bxcy1, bxcy0); + Two_Product(pb[0], pa[1], bxay1, bxay0); + Two_Two_Diff(bxcy1, bxcy0, bxay1, bxay0, + bterms3, bterms[2], bterms[1], bterms[0]); + bterms[3] = bterms3; + + Two_Product(pc[0], pa[1], cxay1, cxay0); + Two_Product(pc[0], pb[1], cxby1, cxby0); + Two_Two_Diff(cxay1, cxay0, cxby1, cxby0, + cterms3, cterms[2], cterms[1], cterms[0]); + cterms[3] = cterms3; + + vlength = fast_expansion_sum_zeroelim(4, aterms, 4, bterms, v); + wlength = fast_expansion_sum_zeroelim(vlength, v, 4, cterms, w); + + return w[wlength - 1]; +} + +REAL orient2dslow(REAL *pa, REAL *pb, REAL *pc) +{ + INEXACT REAL acx, acy, bcx, bcy; + REAL acxtail, acytail; + REAL bcxtail, bcytail; + REAL negate, negatetail; + REAL axby[8], bxay[8]; + INEXACT REAL axby7, bxay7; + REAL deter[16]; + int deterlen; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL a0hi, a0lo, a1hi, a1lo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k, _l, _m, _n; + REAL _0, _1, _2; + + Two_Diff(pa[0], pc[0], acx, acxtail); + Two_Diff(pa[1], pc[1], acy, acytail); + Two_Diff(pb[0], pc[0], bcx, bcxtail); + Two_Diff(pb[1], pc[1], bcy, bcytail); + + Two_Two_Product(acx, acxtail, bcy, bcytail, + axby7, axby[6], axby[5], axby[4], + axby[3], axby[2], axby[1], axby[0]); + axby[7] = axby7; + negate = -acy; + negatetail = -acytail; + Two_Two_Product(bcx, bcxtail, negate, negatetail, + bxay7, bxay[6], bxay[5], bxay[4], + bxay[3], bxay[2], bxay[1], bxay[0]); + bxay[7] = bxay7; + + deterlen = fast_expansion_sum_zeroelim(8, axby, 8, bxay, deter); + + return deter[deterlen - 1]; +} + +REAL orient2dadapt(REAL *pa, REAL *pb, REAL *pc, REAL detsum) +{ + INEXACT REAL acx, acy, bcx, bcy; + REAL acxtail, acytail, bcxtail, bcytail; + INEXACT REAL detleft, detright; + REAL detlefttail, detrighttail; + REAL det, errbound; + REAL B[4], C1[8], C2[12], D[16]; + INEXACT REAL B3; + int C1length, C2length, Dlength; + REAL u[4]; + INEXACT REAL u3; + INEXACT REAL s1, t1; + REAL s0, t0; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + acx = (REAL) (pa[0] - pc[0]); + bcx = (REAL) (pb[0] - pc[0]); + acy = (REAL) (pa[1] - pc[1]); + bcy = (REAL) (pb[1] - pc[1]); + + Two_Product(acx, bcy, detleft, detlefttail); + Two_Product(acy, bcx, detright, detrighttail); + + Two_Two_Diff(detleft, detlefttail, detright, detrighttail, + B3, B[2], B[1], B[0]); + B[3] = B3; + + det = estimate(4, B); + errbound = ccwerrboundB * detsum; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Diff_Tail(pa[0], pc[0], acx, acxtail); + Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail); + Two_Diff_Tail(pa[1], pc[1], acy, acytail); + Two_Diff_Tail(pb[1], pc[1], bcy, bcytail); + + if ((acxtail == 0.0) && (acytail == 0.0) + && (bcxtail == 0.0) && (bcytail == 0.0)) { + return det; + } + + errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det); + det += (acx * bcytail + bcy * acxtail) + - (acy * bcxtail + bcx * acytail); + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Product(acxtail, bcy, s1, s0); + Two_Product(acytail, bcx, t1, t0); + Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); + u[3] = u3; + C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1); + + Two_Product(acx, bcytail, s1, s0); + Two_Product(acy, bcxtail, t1, t0); + Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); + u[3] = u3; + C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2); + + Two_Product(acxtail, bcytail, s1, s0); + Two_Product(acytail, bcxtail, t1, t0); + Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); + u[3] = u3; + Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D); + + return(D[Dlength - 1]); +} + +REAL orient2d(REAL *pa, REAL *pb, REAL *pc) +{ + REAL detleft, detright, det; + REAL detsum, errbound; + + detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]); + detright = (pa[1] - pc[1]) * (pb[0] - pc[0]); + det = detleft - detright; + + if (detleft > 0.0) { + if (detright <= 0.0) { + return det; + } else { + detsum = detleft + detright; + } + } else if (detleft < 0.0) { + if (detright >= 0.0) { + return det; + } else { + detsum = -detleft - detright; + } + } else { + return det; + } + + errbound = ccwerrboundA * detsum; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + return orient2dadapt(pa, pb, pc, detsum); +} + +/*****************************************************************************/ +/* */ +/* orient3dfast() Approximate 3D orientation test. Nonrobust. */ +/* orient3dexact() Exact 3D orientation test. Robust. */ +/* orient3dslow() Another exact 3D orientation test. Robust. */ +/* orient3d() Adaptive exact 3D orientation test. Robust. */ +/* */ +/* Return a positive value if the point pd lies below the */ +/* plane passing through pa, pb, and pc; "below" is defined so */ +/* that pa, pb, and pc appear in counterclockwise order when */ +/* viewed from above the plane. Returns a negative value if */ +/* pd lies above the plane. Returns zero if the points are */ +/* coplanar. The result is also a rough approximation of six */ +/* times the signed volume of the tetrahedron defined by the */ +/* four points. */ +/* */ +/* Only the first and last routine should be used; the middle two are for */ +/* timings. */ +/* */ +/* The last three use exact arithmetic to ensure a correct answer. The */ +/* result returned is the determinant of a matrix. In orient3d() only, */ +/* this determinant is computed adaptively, in the sense that exact */ +/* arithmetic is used only to the degree it is needed to ensure that the */ +/* returned value has the correct sign. Hence, orient3d() is usually quite */ +/* fast, but will run more slowly when the input points are coplanar or */ +/* nearly so. */ +/* */ +/*****************************************************************************/ + +REAL orient3dfast(REAL *pa, REAL *pb, REAL *pc, REAL *pd) +{ + REAL adx, bdx, cdx; + REAL ady, bdy, cdy; + REAL adz, bdz, cdz; + + adx = pa[0] - pd[0]; + bdx = pb[0] - pd[0]; + cdx = pc[0] - pd[0]; + ady = pa[1] - pd[1]; + bdy = pb[1] - pd[1]; + cdy = pc[1] - pd[1]; + adz = pa[2] - pd[2]; + bdz = pb[2] - pd[2]; + cdz = pc[2] - pd[2]; + + return adx * (bdy * cdz - bdz * cdy) + + bdx * (cdy * adz - cdz * ady) + + cdx * (ady * bdz - adz * bdy); +} + +REAL orient3dexact(REAL *pa, REAL *pb, REAL *pc, REAL *pd) +{ + INEXACT REAL axby1, bxcy1, cxdy1, dxay1, axcy1, bxdy1; + INEXACT REAL bxay1, cxby1, dxcy1, axdy1, cxay1, dxby1; + REAL axby0, bxcy0, cxdy0, dxay0, axcy0, bxdy0; + REAL bxay0, cxby0, dxcy0, axdy0, cxay0, dxby0; + REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4]; + REAL temp8[8]; + int templen; + REAL abc[12], bcd[12], cda[12], dab[12]; + int abclen, bcdlen, cdalen, dablen; + REAL adet[24], bdet[24], cdet[24], ddet[24]; + int alen, blen, clen, dlen; + REAL abdet[48], cddet[48]; + int ablen, cdlen; + REAL deter[96]; + int deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + Two_Product(pa[0], pb[1], axby1, axby0); + Two_Product(pb[0], pa[1], bxay1, bxay0); + Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]); + + Two_Product(pb[0], pc[1], bxcy1, bxcy0); + Two_Product(pc[0], pb[1], cxby1, cxby0); + Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]); + + Two_Product(pc[0], pd[1], cxdy1, cxdy0); + Two_Product(pd[0], pc[1], dxcy1, dxcy0); + Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]); + + Two_Product(pd[0], pa[1], dxay1, dxay0); + Two_Product(pa[0], pd[1], axdy1, axdy0); + Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]); + + Two_Product(pa[0], pc[1], axcy1, axcy0); + Two_Product(pc[0], pa[1], cxay1, cxay0); + Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]); + + Two_Product(pb[0], pd[1], bxdy1, bxdy0); + Two_Product(pd[0], pb[1], dxby1, dxby0); + Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]); + + templen = fast_expansion_sum_zeroelim(4, cd, 4, da, temp8); + cdalen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, cda); + templen = fast_expansion_sum_zeroelim(4, da, 4, ab, temp8); + dablen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, dab); + for (i = 0; i < 4; i++) { + bd[i] = -bd[i]; + ac[i] = -ac[i]; + } + templen = fast_expansion_sum_zeroelim(4, ab, 4, bc, temp8); + abclen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, abc); + templen = fast_expansion_sum_zeroelim(4, bc, 4, cd, temp8); + bcdlen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, bcd); + + alen = scale_expansion_zeroelim(bcdlen, bcd, pa[2], adet); + blen = scale_expansion_zeroelim(cdalen, cda, -pb[2], bdet); + clen = scale_expansion_zeroelim(dablen, dab, pc[2], cdet); + dlen = scale_expansion_zeroelim(abclen, abc, -pd[2], ddet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter); + + return deter[deterlen - 1]; +} + +REAL orient3dslow(REAL *pa, REAL *pb, REAL *pc, REAL *pd) +{ + INEXACT REAL adx, ady, adz, bdx, bdy, bdz, cdx, cdy, cdz; + REAL adxtail, adytail, adztail; + REAL bdxtail, bdytail, bdztail; + REAL cdxtail, cdytail, cdztail; + REAL negate, negatetail; + INEXACT REAL axby7, bxcy7, axcy7, bxay7, cxby7, cxay7; + REAL axby[8], bxcy[8], axcy[8], bxay[8], cxby[8], cxay[8]; + REAL temp16[16], temp32[32], temp32t[32]; + int temp16len, temp32len, temp32tlen; + REAL adet[64], bdet[64], cdet[64]; + int alen, blen, clen; + REAL abdet[128]; + int ablen; + REAL deter[192]; + int deterlen; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL a0hi, a0lo, a1hi, a1lo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k, _l, _m, _n; + REAL _0, _1, _2; + + Two_Diff(pa[0], pd[0], adx, adxtail); + Two_Diff(pa[1], pd[1], ady, adytail); + Two_Diff(pa[2], pd[2], adz, adztail); + Two_Diff(pb[0], pd[0], bdx, bdxtail); + Two_Diff(pb[1], pd[1], bdy, bdytail); + Two_Diff(pb[2], pd[2], bdz, bdztail); + Two_Diff(pc[0], pd[0], cdx, cdxtail); + Two_Diff(pc[1], pd[1], cdy, cdytail); + Two_Diff(pc[2], pd[2], cdz, cdztail); + + Two_Two_Product(adx, adxtail, bdy, bdytail, + axby7, axby[6], axby[5], axby[4], + axby[3], axby[2], axby[1], axby[0]); + axby[7] = axby7; + negate = -ady; + negatetail = -adytail; + Two_Two_Product(bdx, bdxtail, negate, negatetail, + bxay7, bxay[6], bxay[5], bxay[4], + bxay[3], bxay[2], bxay[1], bxay[0]); + bxay[7] = bxay7; + Two_Two_Product(bdx, bdxtail, cdy, cdytail, + bxcy7, bxcy[6], bxcy[5], bxcy[4], + bxcy[3], bxcy[2], bxcy[1], bxcy[0]); + bxcy[7] = bxcy7; + negate = -bdy; + negatetail = -bdytail; + Two_Two_Product(cdx, cdxtail, negate, negatetail, + cxby7, cxby[6], cxby[5], cxby[4], + cxby[3], cxby[2], cxby[1], cxby[0]); + cxby[7] = cxby7; + Two_Two_Product(cdx, cdxtail, ady, adytail, + cxay7, cxay[6], cxay[5], cxay[4], + cxay[3], cxay[2], cxay[1], cxay[0]); + cxay[7] = cxay7; + negate = -cdy; + negatetail = -cdytail; + Two_Two_Product(adx, adxtail, negate, negatetail, + axcy7, axcy[6], axcy[5], axcy[4], + axcy[3], axcy[2], axcy[1], axcy[0]); + axcy[7] = axcy7; + + temp16len = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, temp16); + temp32len = scale_expansion_zeroelim(temp16len, temp16, adz, temp32); + temp32tlen = scale_expansion_zeroelim(temp16len, temp16, adztail, temp32t); + alen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t, + adet); + + temp16len = fast_expansion_sum_zeroelim(8, cxay, 8, axcy, temp16); + temp32len = scale_expansion_zeroelim(temp16len, temp16, bdz, temp32); + temp32tlen = scale_expansion_zeroelim(temp16len, temp16, bdztail, temp32t); + blen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t, + bdet); + + temp16len = fast_expansion_sum_zeroelim(8, axby, 8, bxay, temp16); + temp32len = scale_expansion_zeroelim(temp16len, temp16, cdz, temp32); + temp32tlen = scale_expansion_zeroelim(temp16len, temp16, cdztail, temp32t); + clen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t, + cdet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, deter); + + return deter[deterlen - 1]; +} + +REAL orient3dadapt(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL permanent) +{ + INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz; + REAL det, errbound; + + INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; + REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; + REAL bc[4], ca[4], ab[4]; + INEXACT REAL bc3, ca3, ab3; + REAL adet[8], bdet[8], cdet[8]; + int alen, blen, clen; + REAL abdet[16]; + int ablen; + REAL *finnow, *finother, *finswap; + REAL fin1[192], fin2[192]; + int finlength; + + REAL adxtail, bdxtail, cdxtail; + REAL adytail, bdytail, cdytail; + REAL adztail, bdztail, cdztail; + INEXACT REAL at_blarge, at_clarge; + INEXACT REAL bt_clarge, bt_alarge; + INEXACT REAL ct_alarge, ct_blarge; + REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4]; + int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen; + INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1; + INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1; + REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0; + REAL adxt_cdy0, adxt_bdy0, bdxt_ady0; + INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1; + INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1; + REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0; + REAL adyt_cdx0, adyt_bdx0, bdyt_adx0; + REAL bct[8], cat[8], abt[8]; + int bctlen, catlen, abtlen; + INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1; + INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1; + REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0; + REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0; + REAL u[4], v[12], w[16]; + INEXACT REAL u3; + int vlength, wlength; + REAL negate; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k; + REAL _0; + + adx = (REAL) (pa[0] - pd[0]); + bdx = (REAL) (pb[0] - pd[0]); + cdx = (REAL) (pc[0] - pd[0]); + ady = (REAL) (pa[1] - pd[1]); + bdy = (REAL) (pb[1] - pd[1]); + cdy = (REAL) (pc[1] - pd[1]); + adz = (REAL) (pa[2] - pd[2]); + bdz = (REAL) (pb[2] - pd[2]); + cdz = (REAL) (pc[2] - pd[2]); + + Two_Product(bdx, cdy, bdxcdy1, bdxcdy0); + Two_Product(cdx, bdy, cdxbdy1, cdxbdy0); + Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]); + bc[3] = bc3; + alen = scale_expansion_zeroelim(4, bc, adz, adet); + + Two_Product(cdx, ady, cdxady1, cdxady0); + Two_Product(adx, cdy, adxcdy1, adxcdy0); + Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]); + ca[3] = ca3; + blen = scale_expansion_zeroelim(4, ca, bdz, bdet); + + Two_Product(adx, bdy, adxbdy1, adxbdy0); + Two_Product(bdx, ady, bdxady1, bdxady0); + Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]); + ab[3] = ab3; + clen = scale_expansion_zeroelim(4, ab, cdz, cdet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1); + + det = estimate(finlength, fin1); + errbound = o3derrboundB * permanent; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Diff_Tail(pa[0], pd[0], adx, adxtail); + Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail); + Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail); + Two_Diff_Tail(pa[1], pd[1], ady, adytail); + Two_Diff_Tail(pb[1], pd[1], bdy, bdytail); + Two_Diff_Tail(pc[1], pd[1], cdy, cdytail); + Two_Diff_Tail(pa[2], pd[2], adz, adztail); + Two_Diff_Tail(pb[2], pd[2], bdz, bdztail); + Two_Diff_Tail(pc[2], pd[2], cdz, cdztail); + + if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) + && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) + && (adztail == 0.0) && (bdztail == 0.0) && (cdztail == 0.0)) { + return det; + } + + errbound = o3derrboundC * permanent + resulterrbound * Absolute(det); + det += (adz * ((bdx * cdytail + cdy * bdxtail) + - (bdy * cdxtail + cdx * bdytail)) + + adztail * (bdx * cdy - bdy * cdx)) + + (bdz * ((cdx * adytail + ady * cdxtail) + - (cdy * adxtail + adx * cdytail)) + + bdztail * (cdx * ady - cdy * adx)) + + (cdz * ((adx * bdytail + bdy * adxtail) + - (ady * bdxtail + bdx * adytail)) + + cdztail * (adx * bdy - ady * bdx)); + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + finnow = fin1; + finother = fin2; + + if (adxtail == 0.0) { + if (adytail == 0.0) { + at_b[0] = 0.0; + at_blen = 1; + at_c[0] = 0.0; + at_clen = 1; + } else { + negate = -adytail; + Two_Product(negate, bdx, at_blarge, at_b[0]); + at_b[1] = at_blarge; + at_blen = 2; + Two_Product(adytail, cdx, at_clarge, at_c[0]); + at_c[1] = at_clarge; + at_clen = 2; + } + } else { + if (adytail == 0.0) { + Two_Product(adxtail, bdy, at_blarge, at_b[0]); + at_b[1] = at_blarge; + at_blen = 2; + negate = -adxtail; + Two_Product(negate, cdy, at_clarge, at_c[0]); + at_c[1] = at_clarge; + at_clen = 2; + } else { + Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0); + Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0); + Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0, + at_blarge, at_b[2], at_b[1], at_b[0]); + at_b[3] = at_blarge; + at_blen = 4; + Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0); + Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0); + Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0, + at_clarge, at_c[2], at_c[1], at_c[0]); + at_c[3] = at_clarge; + at_clen = 4; + } + } + if (bdxtail == 0.0) { + if (bdytail == 0.0) { + bt_c[0] = 0.0; + bt_clen = 1; + bt_a[0] = 0.0; + bt_alen = 1; + } else { + negate = -bdytail; + Two_Product(negate, cdx, bt_clarge, bt_c[0]); + bt_c[1] = bt_clarge; + bt_clen = 2; + Two_Product(bdytail, adx, bt_alarge, bt_a[0]); + bt_a[1] = bt_alarge; + bt_alen = 2; + } + } else { + if (bdytail == 0.0) { + Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]); + bt_c[1] = bt_clarge; + bt_clen = 2; + negate = -bdxtail; + Two_Product(negate, ady, bt_alarge, bt_a[0]); + bt_a[1] = bt_alarge; + bt_alen = 2; + } else { + Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0); + Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0); + Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0, + bt_clarge, bt_c[2], bt_c[1], bt_c[0]); + bt_c[3] = bt_clarge; + bt_clen = 4; + Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0); + Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0); + Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0, + bt_alarge, bt_a[2], bt_a[1], bt_a[0]); + bt_a[3] = bt_alarge; + bt_alen = 4; + } + } + if (cdxtail == 0.0) { + if (cdytail == 0.0) { + ct_a[0] = 0.0; + ct_alen = 1; + ct_b[0] = 0.0; + ct_blen = 1; + } else { + negate = -cdytail; + Two_Product(negate, adx, ct_alarge, ct_a[0]); + ct_a[1] = ct_alarge; + ct_alen = 2; + Two_Product(cdytail, bdx, ct_blarge, ct_b[0]); + ct_b[1] = ct_blarge; + ct_blen = 2; + } + } else { + if (cdytail == 0.0) { + Two_Product(cdxtail, ady, ct_alarge, ct_a[0]); + ct_a[1] = ct_alarge; + ct_alen = 2; + negate = -cdxtail; + Two_Product(negate, bdy, ct_blarge, ct_b[0]); + ct_b[1] = ct_blarge; + ct_blen = 2; + } else { + Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0); + Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0); + Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0, + ct_alarge, ct_a[2], ct_a[1], ct_a[0]); + ct_a[3] = ct_alarge; + ct_alen = 4; + Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0); + Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0); + Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0, + ct_blarge, ct_b[2], ct_b[1], ct_b[0]); + ct_b[3] = ct_blarge; + ct_blen = 4; + } + } + + bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct); + wlength = scale_expansion_zeroelim(bctlen, bct, adz, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + + catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat); + wlength = scale_expansion_zeroelim(catlen, cat, bdz, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + + abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt); + wlength = scale_expansion_zeroelim(abtlen, abt, cdz, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + + if (adztail != 0.0) { + vlength = scale_expansion_zeroelim(4, bc, adztail, v); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdztail != 0.0) { + vlength = scale_expansion_zeroelim(4, ca, bdztail, v); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdztail != 0.0) { + vlength = scale_expansion_zeroelim(4, ab, cdztail, v); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + if (adxtail != 0.0) { + if (bdytail != 0.0) { + Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0); + Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (cdztail != 0.0) { + Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if (cdytail != 0.0) { + negate = -adxtail; + Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0); + Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (bdztail != 0.0) { + Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + } + if (bdxtail != 0.0) { + if (cdytail != 0.0) { + Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0); + Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (adztail != 0.0) { + Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if (adytail != 0.0) { + negate = -bdxtail; + Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0); + Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (cdztail != 0.0) { + Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + } + if (cdxtail != 0.0) { + if (adytail != 0.0) { + Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0); + Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (bdztail != 0.0) { + Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if (bdytail != 0.0) { + negate = -cdxtail; + Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0); + Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (adztail != 0.0) { + Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + } + + if (adztail != 0.0) { + wlength = scale_expansion_zeroelim(bctlen, bct, adztail, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdztail != 0.0) { + wlength = scale_expansion_zeroelim(catlen, cat, bdztail, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdztail != 0.0) { + wlength = scale_expansion_zeroelim(abtlen, abt, cdztail, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + return finnow[finlength - 1]; +} + +REAL orient3d(REAL *pa, REAL *pb, REAL *pc, REAL *pd) +{ + REAL adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz; + REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; + REAL det; + REAL permanent, errbound; + + adx = pa[0] - pd[0]; + bdx = pb[0] - pd[0]; + cdx = pc[0] - pd[0]; + ady = pa[1] - pd[1]; + bdy = pb[1] - pd[1]; + cdy = pc[1] - pd[1]; + adz = pa[2] - pd[2]; + bdz = pb[2] - pd[2]; + cdz = pc[2] - pd[2]; + + bdxcdy = bdx * cdy; + cdxbdy = cdx * bdy; + + cdxady = cdx * ady; + adxcdy = adx * cdy; + + adxbdy = adx * bdy; + bdxady = bdx * ady; + + det = adz * (bdxcdy - cdxbdy) + + bdz * (cdxady - adxcdy) + + cdz * (adxbdy - bdxady); + + permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adz) + + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdz) + + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdz); + errbound = o3derrboundA * permanent; + if ((det > errbound) || (-det > errbound)) { + return det; + } + + return orient3dadapt(pa, pb, pc, pd, permanent); +} + +/*****************************************************************************/ +/* */ +/* incirclefast() Approximate 2D incircle test. Nonrobust. */ +/* incircleexact() Exact 2D incircle test. Robust. */ +/* incircleslow() Another exact 2D incircle test. Robust. */ +/* incircle() Adaptive exact 2D incircle test. Robust. */ +/* */ +/* Return a positive value if the point pd lies inside the */ +/* circle passing through pa, pb, and pc; a negative value if */ +/* it lies outside; and zero if the four points are cocircular.*/ +/* The points pa, pb, and pc must be in counterclockwise */ +/* order, or the sign of the result will be reversed. */ +/* */ +/* Only the first and last routine should be used; the middle two are for */ +/* timings. */ +/* */ +/* The last three use exact arithmetic to ensure a correct answer. The */ +/* result returned is the determinant of a matrix. In incircle() only, */ +/* this determinant is computed adaptively, in the sense that exact */ +/* arithmetic is used only to the degree it is needed to ensure that the */ +/* returned value has the correct sign. Hence, incircle() is usually quite */ +/* fast, but will run more slowly when the input points are cocircular or */ +/* nearly so. */ +/* */ +/*****************************************************************************/ + +REAL incirclefast(REAL *pa, REAL *pb, REAL *pc, REAL *pd) +{ + REAL adx, ady, bdx, bdy, cdx, cdy; + REAL abdet, bcdet, cadet; + REAL alift, blift, clift; + + adx = pa[0] - pd[0]; + ady = pa[1] - pd[1]; + bdx = pb[0] - pd[0]; + bdy = pb[1] - pd[1]; + cdx = pc[0] - pd[0]; + cdy = pc[1] - pd[1]; + + abdet = adx * bdy - bdx * ady; + bcdet = bdx * cdy - cdx * bdy; + cadet = cdx * ady - adx * cdy; + alift = adx * adx + ady * ady; + blift = bdx * bdx + bdy * bdy; + clift = cdx * cdx + cdy * cdy; + + return alift * bcdet + blift * cadet + clift * abdet; +} + +REAL incircleexact(REAL *pa, REAL *pb, REAL *pc, REAL *pd) +{ + INEXACT REAL axby1, bxcy1, cxdy1, dxay1, axcy1, bxdy1; + INEXACT REAL bxay1, cxby1, dxcy1, axdy1, cxay1, dxby1; + REAL axby0, bxcy0, cxdy0, dxay0, axcy0, bxdy0; + REAL bxay0, cxby0, dxcy0, axdy0, cxay0, dxby0; + REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4]; + REAL temp8[8]; + int templen; + REAL abc[12], bcd[12], cda[12], dab[12]; + int abclen, bcdlen, cdalen, dablen; + REAL det24x[24], det24y[24], det48x[48], det48y[48]; + int xlen, ylen; + REAL adet[96], bdet[96], cdet[96], ddet[96]; + int alen, blen, clen, dlen; + REAL abdet[192], cddet[192]; + int ablen, cdlen; + REAL deter[384]; + int deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + Two_Product(pa[0], pb[1], axby1, axby0); + Two_Product(pb[0], pa[1], bxay1, bxay0); + Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]); + + Two_Product(pb[0], pc[1], bxcy1, bxcy0); + Two_Product(pc[0], pb[1], cxby1, cxby0); + Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]); + + Two_Product(pc[0], pd[1], cxdy1, cxdy0); + Two_Product(pd[0], pc[1], dxcy1, dxcy0); + Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]); + + Two_Product(pd[0], pa[1], dxay1, dxay0); + Two_Product(pa[0], pd[1], axdy1, axdy0); + Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]); + + Two_Product(pa[0], pc[1], axcy1, axcy0); + Two_Product(pc[0], pa[1], cxay1, cxay0); + Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]); + + Two_Product(pb[0], pd[1], bxdy1, bxdy0); + Two_Product(pd[0], pb[1], dxby1, dxby0); + Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]); + + templen = fast_expansion_sum_zeroelim(4, cd, 4, da, temp8); + cdalen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, cda); + templen = fast_expansion_sum_zeroelim(4, da, 4, ab, temp8); + dablen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, dab); + for (i = 0; i < 4; i++) { + bd[i] = -bd[i]; + ac[i] = -ac[i]; + } + templen = fast_expansion_sum_zeroelim(4, ab, 4, bc, temp8); + abclen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, abc); + templen = fast_expansion_sum_zeroelim(4, bc, 4, cd, temp8); + bcdlen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, bcd); + + xlen = scale_expansion_zeroelim(bcdlen, bcd, pa[0], det24x); + xlen = scale_expansion_zeroelim(xlen, det24x, pa[0], det48x); + ylen = scale_expansion_zeroelim(bcdlen, bcd, pa[1], det24y); + ylen = scale_expansion_zeroelim(ylen, det24y, pa[1], det48y); + alen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, adet); + + xlen = scale_expansion_zeroelim(cdalen, cda, pb[0], det24x); + xlen = scale_expansion_zeroelim(xlen, det24x, -pb[0], det48x); + ylen = scale_expansion_zeroelim(cdalen, cda, pb[1], det24y); + ylen = scale_expansion_zeroelim(ylen, det24y, -pb[1], det48y); + blen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, bdet); + + xlen = scale_expansion_zeroelim(dablen, dab, pc[0], det24x); + xlen = scale_expansion_zeroelim(xlen, det24x, pc[0], det48x); + ylen = scale_expansion_zeroelim(dablen, dab, pc[1], det24y); + ylen = scale_expansion_zeroelim(ylen, det24y, pc[1], det48y); + clen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, cdet); + + xlen = scale_expansion_zeroelim(abclen, abc, pd[0], det24x); + xlen = scale_expansion_zeroelim(xlen, det24x, -pd[0], det48x); + ylen = scale_expansion_zeroelim(abclen, abc, pd[1], det24y); + ylen = scale_expansion_zeroelim(ylen, det24y, -pd[1], det48y); + dlen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, ddet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter); + + return deter[deterlen - 1]; +} + +REAL incircleslow(REAL *pa, REAL *pb, REAL *pc, REAL *pd) +{ + INEXACT REAL adx, bdx, cdx, ady, bdy, cdy; + REAL adxtail, bdxtail, cdxtail; + REAL adytail, bdytail, cdytail; + REAL negate, negatetail; + INEXACT REAL axby7, bxcy7, axcy7, bxay7, cxby7, cxay7; + REAL axby[8], bxcy[8], axcy[8], bxay[8], cxby[8], cxay[8]; + REAL temp16[16]; + int temp16len; + REAL detx[32], detxx[64], detxt[32], detxxt[64], detxtxt[64]; + int xlen, xxlen, xtlen, xxtlen, xtxtlen; + REAL x1[128], x2[192]; + int x1len, x2len; + REAL dety[32], detyy[64], detyt[32], detyyt[64], detytyt[64]; + int ylen, yylen, ytlen, yytlen, ytytlen; + REAL y1[128], y2[192]; + int y1len, y2len; + REAL adet[384], bdet[384], cdet[384], abdet[768], deter[1152]; + int alen, blen, clen, ablen, deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL a0hi, a0lo, a1hi, a1lo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k, _l, _m, _n; + REAL _0, _1, _2; + + Two_Diff(pa[0], pd[0], adx, adxtail); + Two_Diff(pa[1], pd[1], ady, adytail); + Two_Diff(pb[0], pd[0], bdx, bdxtail); + Two_Diff(pb[1], pd[1], bdy, bdytail); + Two_Diff(pc[0], pd[0], cdx, cdxtail); + Two_Diff(pc[1], pd[1], cdy, cdytail); + + Two_Two_Product(adx, adxtail, bdy, bdytail, + axby7, axby[6], axby[5], axby[4], + axby[3], axby[2], axby[1], axby[0]); + axby[7] = axby7; + negate = -ady; + negatetail = -adytail; + Two_Two_Product(bdx, bdxtail, negate, negatetail, + bxay7, bxay[6], bxay[5], bxay[4], + bxay[3], bxay[2], bxay[1], bxay[0]); + bxay[7] = bxay7; + Two_Two_Product(bdx, bdxtail, cdy, cdytail, + bxcy7, bxcy[6], bxcy[5], bxcy[4], + bxcy[3], bxcy[2], bxcy[1], bxcy[0]); + bxcy[7] = bxcy7; + negate = -bdy; + negatetail = -bdytail; + Two_Two_Product(cdx, cdxtail, negate, negatetail, + cxby7, cxby[6], cxby[5], cxby[4], + cxby[3], cxby[2], cxby[1], cxby[0]); + cxby[7] = cxby7; + Two_Two_Product(cdx, cdxtail, ady, adytail, + cxay7, cxay[6], cxay[5], cxay[4], + cxay[3], cxay[2], cxay[1], cxay[0]); + cxay[7] = cxay7; + negate = -cdy; + negatetail = -cdytail; + Two_Two_Product(adx, adxtail, negate, negatetail, + axcy7, axcy[6], axcy[5], axcy[4], + axcy[3], axcy[2], axcy[1], axcy[0]); + axcy[7] = axcy7; + + + temp16len = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, temp16); + + xlen = scale_expansion_zeroelim(temp16len, temp16, adx, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, adx, detxx); + xtlen = scale_expansion_zeroelim(temp16len, temp16, adxtail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, adx, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, adxtail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + + ylen = scale_expansion_zeroelim(temp16len, temp16, ady, dety); + yylen = scale_expansion_zeroelim(ylen, dety, ady, detyy); + ytlen = scale_expansion_zeroelim(temp16len, temp16, adytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, ady, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, adytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + + alen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, adet); + + + temp16len = fast_expansion_sum_zeroelim(8, cxay, 8, axcy, temp16); + + xlen = scale_expansion_zeroelim(temp16len, temp16, bdx, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, bdx, detxx); + xtlen = scale_expansion_zeroelim(temp16len, temp16, bdxtail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, bdx, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, bdxtail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + + ylen = scale_expansion_zeroelim(temp16len, temp16, bdy, dety); + yylen = scale_expansion_zeroelim(ylen, dety, bdy, detyy); + ytlen = scale_expansion_zeroelim(temp16len, temp16, bdytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, bdy, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, bdytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + + blen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, bdet); + + + temp16len = fast_expansion_sum_zeroelim(8, axby, 8, bxay, temp16); + + xlen = scale_expansion_zeroelim(temp16len, temp16, cdx, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, cdx, detxx); + xtlen = scale_expansion_zeroelim(temp16len, temp16, cdxtail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, cdx, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, cdxtail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + + ylen = scale_expansion_zeroelim(temp16len, temp16, cdy, dety); + yylen = scale_expansion_zeroelim(ylen, dety, cdy, detyy); + ytlen = scale_expansion_zeroelim(temp16len, temp16, cdytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, cdy, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, cdytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + + clen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, cdet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, deter); + + return deter[deterlen - 1]; +} + +REAL incircleadapt(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL permanent) +{ + INEXACT REAL adx, bdx, cdx, ady, bdy, cdy; + REAL det, errbound; + + INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; + REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; + REAL bc[4], ca[4], ab[4]; + INEXACT REAL bc3, ca3, ab3; + REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32]; + int axbclen, axxbclen, aybclen, ayybclen, alen; + REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32]; + int bxcalen, bxxcalen, bycalen, byycalen, blen; + REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32]; + int cxablen, cxxablen, cyablen, cyyablen, clen; + REAL abdet[64]; + int ablen; + REAL fin1[1152], fin2[1152]; + REAL *finnow, *finother, *finswap; + int finlength; + + REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail; + INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1; + REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0; + REAL aa[4], bb[4], cc[4]; + INEXACT REAL aa3, bb3, cc3; + INEXACT REAL ti1, tj1; + REAL ti0, tj0; + REAL u[4], v[4]; + INEXACT REAL u3, v3; + REAL temp8[8], temp16a[16], temp16b[16], temp16c[16]; + REAL temp32a[32], temp32b[32], temp48[48], temp64[64]; + int temp8len, temp16alen, temp16blen, temp16clen; + int temp32alen, temp32blen, temp48len, temp64len; + REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8]; + int axtbblen, axtcclen, aytbblen, aytcclen; + REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8]; + int bxtaalen, bxtcclen, bytaalen, bytcclen; + REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8]; + int cxtaalen, cxtbblen, cytaalen, cytbblen; + REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8]; + int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen; + REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16]; + int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen; + REAL axtbctt[8], aytbctt[8], bxtcatt[8]; + REAL bytcatt[8], cxtabtt[8], cytabtt[8]; + int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen; + REAL abt[8], bct[8], cat[8]; + int abtlen, bctlen, catlen; + REAL abtt[4], bctt[4], catt[4]; + int abttlen, bcttlen, cattlen; + INEXACT REAL abtt3, bctt3, catt3; + REAL negate; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + adx = (REAL) (pa[0] - pd[0]); + bdx = (REAL) (pb[0] - pd[0]); + cdx = (REAL) (pc[0] - pd[0]); + ady = (REAL) (pa[1] - pd[1]); + bdy = (REAL) (pb[1] - pd[1]); + cdy = (REAL) (pc[1] - pd[1]); + + Two_Product(bdx, cdy, bdxcdy1, bdxcdy0); + Two_Product(cdx, bdy, cdxbdy1, cdxbdy0); + Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]); + bc[3] = bc3; + axbclen = scale_expansion_zeroelim(4, bc, adx, axbc); + axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc); + aybclen = scale_expansion_zeroelim(4, bc, ady, aybc); + ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc); + alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet); + + Two_Product(cdx, ady, cdxady1, cdxady0); + Two_Product(adx, cdy, adxcdy1, adxcdy0); + Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]); + ca[3] = ca3; + bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca); + bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca); + bycalen = scale_expansion_zeroelim(4, ca, bdy, byca); + byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca); + blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet); + + Two_Product(adx, bdy, adxbdy1, adxbdy0); + Two_Product(bdx, ady, bdxady1, bdxady0); + Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]); + ab[3] = ab3; + cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab); + cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab); + cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab); + cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab); + clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1); + + det = estimate(finlength, fin1); + errbound = iccerrboundB * permanent; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Diff_Tail(pa[0], pd[0], adx, adxtail); + Two_Diff_Tail(pa[1], pd[1], ady, adytail); + Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail); + Two_Diff_Tail(pb[1], pd[1], bdy, bdytail); + Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail); + Two_Diff_Tail(pc[1], pd[1], cdy, cdytail); + if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) + && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) { + return det; + } + + errbound = iccerrboundC * permanent + resulterrbound * Absolute(det); + det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) + - (bdy * cdxtail + cdx * bdytail)) + + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) + + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) + - (cdy * adxtail + adx * cdytail)) + + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) + + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) + - (ady * bdxtail + bdx * adytail)) + + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx)); + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + finnow = fin1; + finother = fin2; + + if ((bdxtail != 0.0) || (bdytail != 0.0) + || (cdxtail != 0.0) || (cdytail != 0.0)) { + Square(adx, adxadx1, adxadx0); + Square(ady, adyady1, adyady0); + Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]); + aa[3] = aa3; + } + if ((cdxtail != 0.0) || (cdytail != 0.0) + || (adxtail != 0.0) || (adytail != 0.0)) { + Square(bdx, bdxbdx1, bdxbdx0); + Square(bdy, bdybdy1, bdybdy0); + Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]); + bb[3] = bb3; + } + if ((adxtail != 0.0) || (adytail != 0.0) + || (bdxtail != 0.0) || (bdytail != 0.0)) { + Square(cdx, cdxcdx1, cdxcdx0); + Square(cdy, cdycdy1, cdycdy0); + Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]); + cc[3] = cc3; + } + + if (adxtail != 0.0) { + axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc); + temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, + temp16a); + + axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc); + temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b); + + axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb); + temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (adytail != 0.0) { + aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc); + temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, + temp16a); + + aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb); + temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b); + + aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc); + temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdxtail != 0.0) { + bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca); + temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, + temp16a); + + bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa); + temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b); + + bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc); + temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdytail != 0.0) { + bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca); + temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, + temp16a); + + bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc); + temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b); + + bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa); + temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdxtail != 0.0) { + cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab); + temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, + temp16a); + + cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb); + temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b); + + cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa); + temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdytail != 0.0) { + cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab); + temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, + temp16a); + + cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa); + temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b); + + cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb); + temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + if ((adxtail != 0.0) || (adytail != 0.0)) { + if ((bdxtail != 0.0) || (bdytail != 0.0) + || (cdxtail != 0.0) || (cdytail != 0.0)) { + Two_Product(bdxtail, cdy, ti1, ti0); + Two_Product(bdx, cdytail, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); + u[3] = u3; + negate = -bdy; + Two_Product(cdxtail, negate, ti1, ti0); + negate = -bdytail; + Two_Product(cdx, negate, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); + v[3] = v3; + bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct); + + Two_Product(bdxtail, cdytail, ti1, ti0); + Two_Product(cdxtail, bdytail, tj1, tj0); + Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]); + bctt[3] = bctt3; + bcttlen = 4; + } else { + bct[0] = 0.0; + bctlen = 1; + bctt[0] = 0.0; + bcttlen = 1; + } + + if (adxtail != 0.0) { + temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a); + axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct); + temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + if (bdytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, + temp32a); + axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt); + temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, + temp16a); + temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (adytail != 0.0) { + temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a); + aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct); + temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + + + temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, + temp32a); + aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt); + temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, + temp16a); + temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if ((bdxtail != 0.0) || (bdytail != 0.0)) { + if ((cdxtail != 0.0) || (cdytail != 0.0) + || (adxtail != 0.0) || (adytail != 0.0)) { + Two_Product(cdxtail, ady, ti1, ti0); + Two_Product(cdx, adytail, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); + u[3] = u3; + negate = -cdy; + Two_Product(adxtail, negate, ti1, ti0); + negate = -cdytail; + Two_Product(adx, negate, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); + v[3] = v3; + catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat); + + Two_Product(cdxtail, adytail, ti1, ti0); + Two_Product(adxtail, cdytail, tj1, tj0); + Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]); + catt[3] = catt3; + cattlen = 4; + } else { + cat[0] = 0.0; + catlen = 1; + catt[0] = 0.0; + cattlen = 1; + } + + if (bdxtail != 0.0) { + temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a); + bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat); + temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + if (cdytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (adytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, + temp32a); + bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt); + temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, + temp16a); + temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdytail != 0.0) { + temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a); + bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat); + temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + + + temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, + temp32a); + bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt); + temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, + temp16a); + temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if ((cdxtail != 0.0) || (cdytail != 0.0)) { + if ((adxtail != 0.0) || (adytail != 0.0) + || (bdxtail != 0.0) || (bdytail != 0.0)) { + Two_Product(adxtail, bdy, ti1, ti0); + Two_Product(adx, bdytail, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); + u[3] = u3; + negate = -ady; + Two_Product(bdxtail, negate, ti1, ti0); + negate = -adytail; + Two_Product(bdx, negate, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); + v[3] = v3; + abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt); + + Two_Product(adxtail, bdytail, ti1, ti0); + Two_Product(bdxtail, adytail, tj1, tj0); + Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]); + abtt[3] = abtt3; + abttlen = 4; + } else { + abt[0] = 0.0; + abtlen = 1; + abtt[0] = 0.0; + abttlen = 1; + } + + if (cdxtail != 0.0) { + temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a); + cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt); + temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + if (adytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, + temp32a); + cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt); + temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, + temp16a); + temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdytail != 0.0) { + temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a); + cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt); + temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + + + temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, + temp32a); + cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt); + temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, + temp16a); + temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + + return finnow[finlength - 1]; +} + +REAL incircle(REAL *pa, REAL *pb, REAL *pc, REAL *pd) +{ + REAL adx, bdx, cdx, ady, bdy, cdy; + REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; + REAL alift, blift, clift; + REAL det; + REAL permanent, errbound; + + adx = pa[0] - pd[0]; + bdx = pb[0] - pd[0]; + cdx = pc[0] - pd[0]; + ady = pa[1] - pd[1]; + bdy = pb[1] - pd[1]; + cdy = pc[1] - pd[1]; + + bdxcdy = bdx * cdy; + cdxbdy = cdx * bdy; + alift = adx * adx + ady * ady; + + cdxady = cdx * ady; + adxcdy = adx * cdy; + blift = bdx * bdx + bdy * bdy; + + adxbdy = adx * bdy; + bdxady = bdx * ady; + clift = cdx * cdx + cdy * cdy; + + det = alift * (bdxcdy - cdxbdy) + + blift * (cdxady - adxcdy) + + clift * (adxbdy - bdxady); + + permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift + + (Absolute(cdxady) + Absolute(adxcdy)) * blift + + (Absolute(adxbdy) + Absolute(bdxady)) * clift; + errbound = iccerrboundA * permanent; + if ((det > errbound) || (-det > errbound)) { + return det; + } + + return incircleadapt(pa, pb, pc, pd, permanent); +} + +/*****************************************************************************/ +/* */ +/* inspherefast() Approximate 3D insphere test. Nonrobust. */ +/* insphereexact() Exact 3D insphere test. Robust. */ +/* insphereslow() Another exact 3D insphere test. Robust. */ +/* insphere() Adaptive exact 3D insphere test. Robust. */ +/* */ +/* Return a positive value if the point pe lies inside the */ +/* sphere passing through pa, pb, pc, and pd; a negative value */ +/* if it lies outside; and zero if the five points are */ +/* cospherical. The points pa, pb, pc, and pd must be ordered */ +/* so that they have a positive orientation (as defined by */ +/* orient3d()), or the sign of the result will be reversed. */ +/* */ +/* Only the first and last routine should be used; the middle two are for */ +/* timings. */ +/* */ +/* The last three use exact arithmetic to ensure a correct answer. The */ +/* result returned is the determinant of a matrix. In insphere() only, */ +/* this determinant is computed adaptively, in the sense that exact */ +/* arithmetic is used only to the degree it is needed to ensure that the */ +/* returned value has the correct sign. Hence, insphere() is usually quite */ +/* fast, but will run more slowly when the input points are cospherical or */ +/* nearly so. */ +/* */ +/*****************************************************************************/ + +REAL inspherefast(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe) +{ + REAL aex, bex, cex, dex; + REAL aey, bey, cey, dey; + REAL aez, bez, cez, dez; + REAL alift, blift, clift, dlift; + REAL ab, bc, cd, da, ac, bd; + REAL abc, bcd, cda, dab; + + aex = pa[0] - pe[0]; + bex = pb[0] - pe[0]; + cex = pc[0] - pe[0]; + dex = pd[0] - pe[0]; + aey = pa[1] - pe[1]; + bey = pb[1] - pe[1]; + cey = pc[1] - pe[1]; + dey = pd[1] - pe[1]; + aez = pa[2] - pe[2]; + bez = pb[2] - pe[2]; + cez = pc[2] - pe[2]; + dez = pd[2] - pe[2]; + + ab = aex * bey - bex * aey; + bc = bex * cey - cex * bey; + cd = cex * dey - dex * cey; + da = dex * aey - aex * dey; + + ac = aex * cey - cex * aey; + bd = bex * dey - dex * bey; + + abc = aez * bc - bez * ac + cez * ab; + bcd = bez * cd - cez * bd + dez * bc; + cda = cez * da + dez * ac + aez * cd; + dab = dez * ab + aez * bd + bez * da; + + alift = aex * aex + aey * aey + aez * aez; + blift = bex * bex + bey * bey + bez * bez; + clift = cex * cex + cey * cey + cez * cez; + dlift = dex * dex + dey * dey + dez * dez; + + return (dlift * abc - clift * dab) + (blift * cda - alift * bcd); +} + +REAL insphereexact(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe) +{ + INEXACT REAL axby1, bxcy1, cxdy1, dxey1, exay1; + INEXACT REAL bxay1, cxby1, dxcy1, exdy1, axey1; + INEXACT REAL axcy1, bxdy1, cxey1, dxay1, exby1; + INEXACT REAL cxay1, dxby1, excy1, axdy1, bxey1; + REAL axby0, bxcy0, cxdy0, dxey0, exay0; + REAL bxay0, cxby0, dxcy0, exdy0, axey0; + REAL axcy0, bxdy0, cxey0, dxay0, exby0; + REAL cxay0, dxby0, excy0, axdy0, bxey0; + REAL ab[4], bc[4], cd[4], de[4], ea[4]; + REAL ac[4], bd[4], ce[4], da[4], eb[4]; + REAL temp8a[8], temp8b[8], temp16[16]; + int temp8alen, temp8blen, temp16len; + REAL abc[24], bcd[24], cde[24], dea[24], eab[24]; + REAL abd[24], bce[24], cda[24], deb[24], eac[24]; + int abclen, bcdlen, cdelen, dealen, eablen; + int abdlen, bcelen, cdalen, deblen, eaclen; + REAL temp48a[48], temp48b[48]; + int temp48alen, temp48blen; + REAL abcd[96], bcde[96], cdea[96], deab[96], eabc[96]; + int abcdlen, bcdelen, cdealen, deablen, eabclen; + REAL temp192[192]; + REAL det384x[384], det384y[384], det384z[384]; + int xlen, ylen, zlen; + REAL detxy[768]; + int xylen; + REAL adet[1152], bdet[1152], cdet[1152], ddet[1152], edet[1152]; + int alen, blen, clen, dlen, elen; + REAL abdet[2304], cddet[2304], cdedet[3456]; + int ablen, cdlen; + REAL deter[5760]; + int deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + Two_Product(pa[0], pb[1], axby1, axby0); + Two_Product(pb[0], pa[1], bxay1, bxay0); + Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]); + + Two_Product(pb[0], pc[1], bxcy1, bxcy0); + Two_Product(pc[0], pb[1], cxby1, cxby0); + Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]); + + Two_Product(pc[0], pd[1], cxdy1, cxdy0); + Two_Product(pd[0], pc[1], dxcy1, dxcy0); + Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]); + + Two_Product(pd[0], pe[1], dxey1, dxey0); + Two_Product(pe[0], pd[1], exdy1, exdy0); + Two_Two_Diff(dxey1, dxey0, exdy1, exdy0, de[3], de[2], de[1], de[0]); + + Two_Product(pe[0], pa[1], exay1, exay0); + Two_Product(pa[0], pe[1], axey1, axey0); + Two_Two_Diff(exay1, exay0, axey1, axey0, ea[3], ea[2], ea[1], ea[0]); + + Two_Product(pa[0], pc[1], axcy1, axcy0); + Two_Product(pc[0], pa[1], cxay1, cxay0); + Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]); + + Two_Product(pb[0], pd[1], bxdy1, bxdy0); + Two_Product(pd[0], pb[1], dxby1, dxby0); + Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]); + + Two_Product(pc[0], pe[1], cxey1, cxey0); + Two_Product(pe[0], pc[1], excy1, excy0); + Two_Two_Diff(cxey1, cxey0, excy1, excy0, ce[3], ce[2], ce[1], ce[0]); + + Two_Product(pd[0], pa[1], dxay1, dxay0); + Two_Product(pa[0], pd[1], axdy1, axdy0); + Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]); + + Two_Product(pe[0], pb[1], exby1, exby0); + Two_Product(pb[0], pe[1], bxey1, bxey0); + Two_Two_Diff(exby1, exby0, bxey1, bxey0, eb[3], eb[2], eb[1], eb[0]); + + temp8alen = scale_expansion_zeroelim(4, bc, pa[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, ac, -pb[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, ab, pc[2], temp8a); + abclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + abc); + + temp8alen = scale_expansion_zeroelim(4, cd, pb[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, bd, -pc[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, bc, pd[2], temp8a); + bcdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + bcd); + + temp8alen = scale_expansion_zeroelim(4, de, pc[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, ce, -pd[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, cd, pe[2], temp8a); + cdelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + cde); + + temp8alen = scale_expansion_zeroelim(4, ea, pd[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, da, -pe[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, de, pa[2], temp8a); + dealen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + dea); + + temp8alen = scale_expansion_zeroelim(4, ab, pe[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, eb, -pa[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, ea, pb[2], temp8a); + eablen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + eab); + + temp8alen = scale_expansion_zeroelim(4, bd, pa[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, da, pb[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, ab, pd[2], temp8a); + abdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + abd); + + temp8alen = scale_expansion_zeroelim(4, ce, pb[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, eb, pc[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, bc, pe[2], temp8a); + bcelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + bce); + + temp8alen = scale_expansion_zeroelim(4, da, pc[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, ac, pd[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, cd, pa[2], temp8a); + cdalen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + cda); + + temp8alen = scale_expansion_zeroelim(4, eb, pd[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, bd, pe[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, de, pb[2], temp8a); + deblen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + deb); + + temp8alen = scale_expansion_zeroelim(4, ac, pe[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, ce, pa[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, ea, pc[2], temp8a); + eaclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + eac); + + temp48alen = fast_expansion_sum_zeroelim(cdelen, cde, bcelen, bce, temp48a); + temp48blen = fast_expansion_sum_zeroelim(deblen, deb, bcdlen, bcd, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + bcdelen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, bcde); + xlen = scale_expansion_zeroelim(bcdelen, bcde, pa[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pa[0], det384x); + ylen = scale_expansion_zeroelim(bcdelen, bcde, pa[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pa[1], det384y); + zlen = scale_expansion_zeroelim(bcdelen, bcde, pa[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pa[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + alen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, adet); + + temp48alen = fast_expansion_sum_zeroelim(dealen, dea, cdalen, cda, temp48a); + temp48blen = fast_expansion_sum_zeroelim(eaclen, eac, cdelen, cde, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + cdealen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, cdea); + xlen = scale_expansion_zeroelim(cdealen, cdea, pb[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pb[0], det384x); + ylen = scale_expansion_zeroelim(cdealen, cdea, pb[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pb[1], det384y); + zlen = scale_expansion_zeroelim(cdealen, cdea, pb[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pb[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + blen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, bdet); + + temp48alen = fast_expansion_sum_zeroelim(eablen, eab, deblen, deb, temp48a); + temp48blen = fast_expansion_sum_zeroelim(abdlen, abd, dealen, dea, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + deablen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, deab); + xlen = scale_expansion_zeroelim(deablen, deab, pc[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pc[0], det384x); + ylen = scale_expansion_zeroelim(deablen, deab, pc[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pc[1], det384y); + zlen = scale_expansion_zeroelim(deablen, deab, pc[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pc[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + clen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, cdet); + + temp48alen = fast_expansion_sum_zeroelim(abclen, abc, eaclen, eac, temp48a); + temp48blen = fast_expansion_sum_zeroelim(bcelen, bce, eablen, eab, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + eabclen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, eabc); + xlen = scale_expansion_zeroelim(eabclen, eabc, pd[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pd[0], det384x); + ylen = scale_expansion_zeroelim(eabclen, eabc, pd[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pd[1], det384y); + zlen = scale_expansion_zeroelim(eabclen, eabc, pd[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pd[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + dlen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, ddet); + + temp48alen = fast_expansion_sum_zeroelim(bcdlen, bcd, abdlen, abd, temp48a); + temp48blen = fast_expansion_sum_zeroelim(cdalen, cda, abclen, abc, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + abcdlen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, abcd); + xlen = scale_expansion_zeroelim(abcdlen, abcd, pe[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pe[0], det384x); + ylen = scale_expansion_zeroelim(abcdlen, abcd, pe[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pe[1], det384y); + zlen = scale_expansion_zeroelim(abcdlen, abcd, pe[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pe[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + elen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, edet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + cdelen = fast_expansion_sum_zeroelim(cdlen, cddet, elen, edet, cdedet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdelen, cdedet, deter); + + return deter[deterlen - 1]; +} + +REAL insphereslow(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe) +{ + INEXACT REAL aex, bex, cex, dex, aey, bey, cey, dey, aez, bez, cez, dez; + REAL aextail, bextail, cextail, dextail; + REAL aeytail, beytail, ceytail, deytail; + REAL aeztail, beztail, ceztail, deztail; + REAL negate, negatetail; + INEXACT REAL axby7, bxcy7, cxdy7, dxay7, axcy7, bxdy7; + INEXACT REAL bxay7, cxby7, dxcy7, axdy7, cxay7, dxby7; + REAL axby[8], bxcy[8], cxdy[8], dxay[8], axcy[8], bxdy[8]; + REAL bxay[8], cxby[8], dxcy[8], axdy[8], cxay[8], dxby[8]; + REAL ab[16], bc[16], cd[16], da[16], ac[16], bd[16]; + int ablen, bclen, cdlen, dalen, aclen, bdlen; + REAL temp32a[32], temp32b[32], temp64a[64], temp64b[64], temp64c[64]; + int temp32alen, temp32blen, temp64alen, temp64blen, temp64clen; + REAL temp128[128], temp192[192]; + int temp128len, temp192len; + REAL detx[384], detxx[768], detxt[384], detxxt[768], detxtxt[768]; + int xlen, xxlen, xtlen, xxtlen, xtxtlen; + REAL x1[1536], x2[2304]; + int x1len, x2len; + REAL dety[384], detyy[768], detyt[384], detyyt[768], detytyt[768]; + int ylen, yylen, ytlen, yytlen, ytytlen; + REAL y1[1536], y2[2304]; + int y1len, y2len; + REAL detz[384], detzz[768], detzt[384], detzzt[768], detztzt[768]; + int zlen, zzlen, ztlen, zztlen, ztztlen; + REAL z1[1536], z2[2304]; + int z1len, z2len; + REAL detxy[4608]; + int xylen; + REAL adet[6912], bdet[6912], cdet[6912], ddet[6912]; + int alen, blen, clen, dlen; + REAL abdet[13824], cddet[13824], deter[27648]; + int deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL a0hi, a0lo, a1hi, a1lo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k, _l, _m, _n; + REAL _0, _1, _2; + + Two_Diff(pa[0], pe[0], aex, aextail); + Two_Diff(pa[1], pe[1], aey, aeytail); + Two_Diff(pa[2], pe[2], aez, aeztail); + Two_Diff(pb[0], pe[0], bex, bextail); + Two_Diff(pb[1], pe[1], bey, beytail); + Two_Diff(pb[2], pe[2], bez, beztail); + Two_Diff(pc[0], pe[0], cex, cextail); + Two_Diff(pc[1], pe[1], cey, ceytail); + Two_Diff(pc[2], pe[2], cez, ceztail); + Two_Diff(pd[0], pe[0], dex, dextail); + Two_Diff(pd[1], pe[1], dey, deytail); + Two_Diff(pd[2], pe[2], dez, deztail); + + Two_Two_Product(aex, aextail, bey, beytail, + axby7, axby[6], axby[5], axby[4], + axby[3], axby[2], axby[1], axby[0]); + axby[7] = axby7; + negate = -aey; + negatetail = -aeytail; + Two_Two_Product(bex, bextail, negate, negatetail, + bxay7, bxay[6], bxay[5], bxay[4], + bxay[3], bxay[2], bxay[1], bxay[0]); + bxay[7] = bxay7; + ablen = fast_expansion_sum_zeroelim(8, axby, 8, bxay, ab); + Two_Two_Product(bex, bextail, cey, ceytail, + bxcy7, bxcy[6], bxcy[5], bxcy[4], + bxcy[3], bxcy[2], bxcy[1], bxcy[0]); + bxcy[7] = bxcy7; + negate = -bey; + negatetail = -beytail; + Two_Two_Product(cex, cextail, negate, negatetail, + cxby7, cxby[6], cxby[5], cxby[4], + cxby[3], cxby[2], cxby[1], cxby[0]); + cxby[7] = cxby7; + bclen = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, bc); + Two_Two_Product(cex, cextail, dey, deytail, + cxdy7, cxdy[6], cxdy[5], cxdy[4], + cxdy[3], cxdy[2], cxdy[1], cxdy[0]); + cxdy[7] = cxdy7; + negate = -cey; + negatetail = -ceytail; + Two_Two_Product(dex, dextail, negate, negatetail, + dxcy7, dxcy[6], dxcy[5], dxcy[4], + dxcy[3], dxcy[2], dxcy[1], dxcy[0]); + dxcy[7] = dxcy7; + cdlen = fast_expansion_sum_zeroelim(8, cxdy, 8, dxcy, cd); + Two_Two_Product(dex, dextail, aey, aeytail, + dxay7, dxay[6], dxay[5], dxay[4], + dxay[3], dxay[2], dxay[1], dxay[0]); + dxay[7] = dxay7; + negate = -dey; + negatetail = -deytail; + Two_Two_Product(aex, aextail, negate, negatetail, + axdy7, axdy[6], axdy[5], axdy[4], + axdy[3], axdy[2], axdy[1], axdy[0]); + axdy[7] = axdy7; + dalen = fast_expansion_sum_zeroelim(8, dxay, 8, axdy, da); + Two_Two_Product(aex, aextail, cey, ceytail, + axcy7, axcy[6], axcy[5], axcy[4], + axcy[3], axcy[2], axcy[1], axcy[0]); + axcy[7] = axcy7; + negate = -aey; + negatetail = -aeytail; + Two_Two_Product(cex, cextail, negate, negatetail, + cxay7, cxay[6], cxay[5], cxay[4], + cxay[3], cxay[2], cxay[1], cxay[0]); + cxay[7] = cxay7; + aclen = fast_expansion_sum_zeroelim(8, axcy, 8, cxay, ac); + Two_Two_Product(bex, bextail, dey, deytail, + bxdy7, bxdy[6], bxdy[5], bxdy[4], + bxdy[3], bxdy[2], bxdy[1], bxdy[0]); + bxdy[7] = bxdy7; + negate = -bey; + negatetail = -beytail; + Two_Two_Product(dex, dextail, negate, negatetail, + dxby7, dxby[6], dxby[5], dxby[4], + dxby[3], dxby[2], dxby[1], dxby[0]); + dxby[7] = dxby7; + bdlen = fast_expansion_sum_zeroelim(8, bxdy, 8, dxby, bd); + + temp32alen = scale_expansion_zeroelim(cdlen, cd, -bez, temp32a); + temp32blen = scale_expansion_zeroelim(cdlen, cd, -beztail, temp32b); + temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64a); + temp32alen = scale_expansion_zeroelim(bdlen, bd, cez, temp32a); + temp32blen = scale_expansion_zeroelim(bdlen, bd, ceztail, temp32b); + temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64b); + temp32alen = scale_expansion_zeroelim(bclen, bc, -dez, temp32a); + temp32blen = scale_expansion_zeroelim(bclen, bc, -deztail, temp32b); + temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64c); + temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a, + temp64blen, temp64b, temp128); + temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c, + temp128len, temp128, temp192); + xlen = scale_expansion_zeroelim(temp192len, temp192, aex, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, aex, detxx); + xtlen = scale_expansion_zeroelim(temp192len, temp192, aextail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, aex, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, aextail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + ylen = scale_expansion_zeroelim(temp192len, temp192, aey, dety); + yylen = scale_expansion_zeroelim(ylen, dety, aey, detyy); + ytlen = scale_expansion_zeroelim(temp192len, temp192, aeytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, aey, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, aeytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + zlen = scale_expansion_zeroelim(temp192len, temp192, aez, detz); + zzlen = scale_expansion_zeroelim(zlen, detz, aez, detzz); + ztlen = scale_expansion_zeroelim(temp192len, temp192, aeztail, detzt); + zztlen = scale_expansion_zeroelim(ztlen, detzt, aez, detzzt); + for (i = 0; i < zztlen; i++) { + detzzt[i] *= 2.0; + } + ztztlen = scale_expansion_zeroelim(ztlen, detzt, aeztail, detztzt); + z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1); + z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2); + xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy); + alen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, adet); + + temp32alen = scale_expansion_zeroelim(dalen, da, cez, temp32a); + temp32blen = scale_expansion_zeroelim(dalen, da, ceztail, temp32b); + temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64a); + temp32alen = scale_expansion_zeroelim(aclen, ac, dez, temp32a); + temp32blen = scale_expansion_zeroelim(aclen, ac, deztail, temp32b); + temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64b); + temp32alen = scale_expansion_zeroelim(cdlen, cd, aez, temp32a); + temp32blen = scale_expansion_zeroelim(cdlen, cd, aeztail, temp32b); + temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64c); + temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a, + temp64blen, temp64b, temp128); + temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c, + temp128len, temp128, temp192); + xlen = scale_expansion_zeroelim(temp192len, temp192, bex, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, bex, detxx); + xtlen = scale_expansion_zeroelim(temp192len, temp192, bextail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, bex, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, bextail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + ylen = scale_expansion_zeroelim(temp192len, temp192, bey, dety); + yylen = scale_expansion_zeroelim(ylen, dety, bey, detyy); + ytlen = scale_expansion_zeroelim(temp192len, temp192, beytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, bey, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, beytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + zlen = scale_expansion_zeroelim(temp192len, temp192, bez, detz); + zzlen = scale_expansion_zeroelim(zlen, detz, bez, detzz); + ztlen = scale_expansion_zeroelim(temp192len, temp192, beztail, detzt); + zztlen = scale_expansion_zeroelim(ztlen, detzt, bez, detzzt); + for (i = 0; i < zztlen; i++) { + detzzt[i] *= 2.0; + } + ztztlen = scale_expansion_zeroelim(ztlen, detzt, beztail, detztzt); + z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1); + z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2); + xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy); + blen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, bdet); + + temp32alen = scale_expansion_zeroelim(ablen, ab, -dez, temp32a); + temp32blen = scale_expansion_zeroelim(ablen, ab, -deztail, temp32b); + temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64a); + temp32alen = scale_expansion_zeroelim(bdlen, bd, -aez, temp32a); + temp32blen = scale_expansion_zeroelim(bdlen, bd, -aeztail, temp32b); + temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64b); + temp32alen = scale_expansion_zeroelim(dalen, da, -bez, temp32a); + temp32blen = scale_expansion_zeroelim(dalen, da, -beztail, temp32b); + temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64c); + temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a, + temp64blen, temp64b, temp128); + temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c, + temp128len, temp128, temp192); + xlen = scale_expansion_zeroelim(temp192len, temp192, cex, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, cex, detxx); + xtlen = scale_expansion_zeroelim(temp192len, temp192, cextail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, cex, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, cextail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + ylen = scale_expansion_zeroelim(temp192len, temp192, cey, dety); + yylen = scale_expansion_zeroelim(ylen, dety, cey, detyy); + ytlen = scale_expansion_zeroelim(temp192len, temp192, ceytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, cey, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, ceytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + zlen = scale_expansion_zeroelim(temp192len, temp192, cez, detz); + zzlen = scale_expansion_zeroelim(zlen, detz, cez, detzz); + ztlen = scale_expansion_zeroelim(temp192len, temp192, ceztail, detzt); + zztlen = scale_expansion_zeroelim(ztlen, detzt, cez, detzzt); + for (i = 0; i < zztlen; i++) { + detzzt[i] *= 2.0; + } + ztztlen = scale_expansion_zeroelim(ztlen, detzt, ceztail, detztzt); + z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1); + z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2); + xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy); + clen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, cdet); + + temp32alen = scale_expansion_zeroelim(bclen, bc, aez, temp32a); + temp32blen = scale_expansion_zeroelim(bclen, bc, aeztail, temp32b); + temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64a); + temp32alen = scale_expansion_zeroelim(aclen, ac, -bez, temp32a); + temp32blen = scale_expansion_zeroelim(aclen, ac, -beztail, temp32b); + temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64b); + temp32alen = scale_expansion_zeroelim(ablen, ab, cez, temp32a); + temp32blen = scale_expansion_zeroelim(ablen, ab, ceztail, temp32b); + temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64c); + temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a, + temp64blen, temp64b, temp128); + temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c, + temp128len, temp128, temp192); + xlen = scale_expansion_zeroelim(temp192len, temp192, dex, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, dex, detxx); + xtlen = scale_expansion_zeroelim(temp192len, temp192, dextail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, dex, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, dextail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + ylen = scale_expansion_zeroelim(temp192len, temp192, dey, dety); + yylen = scale_expansion_zeroelim(ylen, dety, dey, detyy); + ytlen = scale_expansion_zeroelim(temp192len, temp192, deytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, dey, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, deytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + zlen = scale_expansion_zeroelim(temp192len, temp192, dez, detz); + zzlen = scale_expansion_zeroelim(zlen, detz, dez, detzz); + ztlen = scale_expansion_zeroelim(temp192len, temp192, deztail, detzt); + zztlen = scale_expansion_zeroelim(ztlen, detzt, dez, detzzt); + for (i = 0; i < zztlen; i++) { + detzzt[i] *= 2.0; + } + ztztlen = scale_expansion_zeroelim(ztlen, detzt, deztail, detztzt); + z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1); + z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2); + xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy); + dlen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, ddet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter); + + return deter[deterlen - 1]; +} + +REAL insphereadapt(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe, + REAL permanent) +{ + INEXACT REAL aex, bex, cex, dex, aey, bey, cey, dey, aez, bez, cez, dez; + REAL det, errbound; + + INEXACT REAL aexbey1, bexaey1, bexcey1, cexbey1; + INEXACT REAL cexdey1, dexcey1, dexaey1, aexdey1; + INEXACT REAL aexcey1, cexaey1, bexdey1, dexbey1; + REAL aexbey0, bexaey0, bexcey0, cexbey0; + REAL cexdey0, dexcey0, dexaey0, aexdey0; + REAL aexcey0, cexaey0, bexdey0, dexbey0; + REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4]; + INEXACT REAL ab3, bc3, cd3, da3, ac3, bd3; + REAL abeps, bceps, cdeps, daeps, aceps, bdeps; + REAL temp8a[8], temp8b[8], temp8c[8], temp16[16], temp24[24], temp48[48]; + int temp8alen, temp8blen, temp8clen, temp16len, temp24len, temp48len; + REAL xdet[96], ydet[96], zdet[96], xydet[192]; + int xlen, ylen, zlen, xylen; + REAL adet[288], bdet[288], cdet[288], ddet[288]; + int alen, blen, clen, dlen; + REAL abdet[576], cddet[576]; + int ablen, cdlen; + REAL fin1[1152]; + int finlength; + + REAL aextail, bextail, cextail, dextail; + REAL aeytail, beytail, ceytail, deytail; + REAL aeztail, beztail, ceztail, deztail; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + aex = (REAL) (pa[0] - pe[0]); + bex = (REAL) (pb[0] - pe[0]); + cex = (REAL) (pc[0] - pe[0]); + dex = (REAL) (pd[0] - pe[0]); + aey = (REAL) (pa[1] - pe[1]); + bey = (REAL) (pb[1] - pe[1]); + cey = (REAL) (pc[1] - pe[1]); + dey = (REAL) (pd[1] - pe[1]); + aez = (REAL) (pa[2] - pe[2]); + bez = (REAL) (pb[2] - pe[2]); + cez = (REAL) (pc[2] - pe[2]); + dez = (REAL) (pd[2] - pe[2]); + + Two_Product(aex, bey, aexbey1, aexbey0); + Two_Product(bex, aey, bexaey1, bexaey0); + Two_Two_Diff(aexbey1, aexbey0, bexaey1, bexaey0, ab3, ab[2], ab[1], ab[0]); + ab[3] = ab3; + + Two_Product(bex, cey, bexcey1, bexcey0); + Two_Product(cex, bey, cexbey1, cexbey0); + Two_Two_Diff(bexcey1, bexcey0, cexbey1, cexbey0, bc3, bc[2], bc[1], bc[0]); + bc[3] = bc3; + + Two_Product(cex, dey, cexdey1, cexdey0); + Two_Product(dex, cey, dexcey1, dexcey0); + Two_Two_Diff(cexdey1, cexdey0, dexcey1, dexcey0, cd3, cd[2], cd[1], cd[0]); + cd[3] = cd3; + + Two_Product(dex, aey, dexaey1, dexaey0); + Two_Product(aex, dey, aexdey1, aexdey0); + Two_Two_Diff(dexaey1, dexaey0, aexdey1, aexdey0, da3, da[2], da[1], da[0]); + da[3] = da3; + + Two_Product(aex, cey, aexcey1, aexcey0); + Two_Product(cex, aey, cexaey1, cexaey0); + Two_Two_Diff(aexcey1, aexcey0, cexaey1, cexaey0, ac3, ac[2], ac[1], ac[0]); + ac[3] = ac3; + + Two_Product(bex, dey, bexdey1, bexdey0); + Two_Product(dex, bey, dexbey1, dexbey0); + Two_Two_Diff(bexdey1, bexdey0, dexbey1, dexbey0, bd3, bd[2], bd[1], bd[0]); + bd[3] = bd3; + + temp8alen = scale_expansion_zeroelim(4, cd, bez, temp8a); + temp8blen = scale_expansion_zeroelim(4, bd, -cez, temp8b); + temp8clen = scale_expansion_zeroelim(4, bc, dez, temp8c); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, + temp8blen, temp8b, temp16); + temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, + temp16len, temp16, temp24); + temp48len = scale_expansion_zeroelim(temp24len, temp24, aex, temp48); + xlen = scale_expansion_zeroelim(temp48len, temp48, -aex, xdet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, aey, temp48); + ylen = scale_expansion_zeroelim(temp48len, temp48, -aey, ydet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, aez, temp48); + zlen = scale_expansion_zeroelim(temp48len, temp48, -aez, zdet); + xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); + alen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, adet); + + temp8alen = scale_expansion_zeroelim(4, da, cez, temp8a); + temp8blen = scale_expansion_zeroelim(4, ac, dez, temp8b); + temp8clen = scale_expansion_zeroelim(4, cd, aez, temp8c); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, + temp8blen, temp8b, temp16); + temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, + temp16len, temp16, temp24); + temp48len = scale_expansion_zeroelim(temp24len, temp24, bex, temp48); + xlen = scale_expansion_zeroelim(temp48len, temp48, bex, xdet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, bey, temp48); + ylen = scale_expansion_zeroelim(temp48len, temp48, bey, ydet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, bez, temp48); + zlen = scale_expansion_zeroelim(temp48len, temp48, bez, zdet); + xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); + blen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, bdet); + + temp8alen = scale_expansion_zeroelim(4, ab, dez, temp8a); + temp8blen = scale_expansion_zeroelim(4, bd, aez, temp8b); + temp8clen = scale_expansion_zeroelim(4, da, bez, temp8c); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, + temp8blen, temp8b, temp16); + temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, + temp16len, temp16, temp24); + temp48len = scale_expansion_zeroelim(temp24len, temp24, cex, temp48); + xlen = scale_expansion_zeroelim(temp48len, temp48, -cex, xdet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, cey, temp48); + ylen = scale_expansion_zeroelim(temp48len, temp48, -cey, ydet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, cez, temp48); + zlen = scale_expansion_zeroelim(temp48len, temp48, -cez, zdet); + xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); + clen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, cdet); + + temp8alen = scale_expansion_zeroelim(4, bc, aez, temp8a); + temp8blen = scale_expansion_zeroelim(4, ac, -bez, temp8b); + temp8clen = scale_expansion_zeroelim(4, ab, cez, temp8c); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, + temp8blen, temp8b, temp16); + temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, + temp16len, temp16, temp24); + temp48len = scale_expansion_zeroelim(temp24len, temp24, dex, temp48); + xlen = scale_expansion_zeroelim(temp48len, temp48, dex, xdet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, dey, temp48); + ylen = scale_expansion_zeroelim(temp48len, temp48, dey, ydet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, dez, temp48); + zlen = scale_expansion_zeroelim(temp48len, temp48, dez, zdet); + xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); + dlen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, ddet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + finlength = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, fin1); + + det = estimate(finlength, fin1); + errbound = isperrboundB * permanent; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Diff_Tail(pa[0], pe[0], aex, aextail); + Two_Diff_Tail(pa[1], pe[1], aey, aeytail); + Two_Diff_Tail(pa[2], pe[2], aez, aeztail); + Two_Diff_Tail(pb[0], pe[0], bex, bextail); + Two_Diff_Tail(pb[1], pe[1], bey, beytail); + Two_Diff_Tail(pb[2], pe[2], bez, beztail); + Two_Diff_Tail(pc[0], pe[0], cex, cextail); + Two_Diff_Tail(pc[1], pe[1], cey, ceytail); + Two_Diff_Tail(pc[2], pe[2], cez, ceztail); + Two_Diff_Tail(pd[0], pe[0], dex, dextail); + Two_Diff_Tail(pd[1], pe[1], dey, deytail); + Two_Diff_Tail(pd[2], pe[2], dez, deztail); + if ((aextail == 0.0) && (aeytail == 0.0) && (aeztail == 0.0) + && (bextail == 0.0) && (beytail == 0.0) && (beztail == 0.0) + && (cextail == 0.0) && (ceytail == 0.0) && (ceztail == 0.0) + && (dextail == 0.0) && (deytail == 0.0) && (deztail == 0.0)) { + return det; + } + + errbound = isperrboundC * permanent + resulterrbound * Absolute(det); + abeps = (aex * beytail + bey * aextail) + - (aey * bextail + bex * aeytail); + bceps = (bex * ceytail + cey * bextail) + - (bey * cextail + cex * beytail); + cdeps = (cex * deytail + dey * cextail) + - (cey * dextail + dex * ceytail); + daeps = (dex * aeytail + aey * dextail) + - (dey * aextail + aex * deytail); + aceps = (aex * ceytail + cey * aextail) + - (aey * cextail + cex * aeytail); + bdeps = (bex * deytail + dey * bextail) + - (bey * dextail + dex * beytail); + det += (((bex * bex + bey * bey + bez * bez) + * ((cez * daeps + dez * aceps + aez * cdeps) + + (ceztail * da3 + deztail * ac3 + aeztail * cd3)) + + (dex * dex + dey * dey + dez * dez) + * ((aez * bceps - bez * aceps + cez * abeps) + + (aeztail * bc3 - beztail * ac3 + ceztail * ab3))) + - ((aex * aex + aey * aey + aez * aez) + * ((bez * cdeps - cez * bdeps + dez * bceps) + + (beztail * cd3 - ceztail * bd3 + deztail * bc3)) + + (cex * cex + cey * cey + cez * cez) + * ((dez * abeps + aez * bdeps + bez * daeps) + + (deztail * ab3 + aeztail * bd3 + beztail * da3)))) + + 2.0 * (((bex * bextail + bey * beytail + bez * beztail) + * (cez * da3 + dez * ac3 + aez * cd3) + + (dex * dextail + dey * deytail + dez * deztail) + * (aez * bc3 - bez * ac3 + cez * ab3)) + - ((aex * aextail + aey * aeytail + aez * aeztail) + * (bez * cd3 - cez * bd3 + dez * bc3) + + (cex * cextail + cey * ceytail + cez * ceztail) + * (dez * ab3 + aez * bd3 + bez * da3))); + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + return insphereexact(pa, pb, pc, pd, pe); +} + +REAL insphere(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe) +{ + REAL aex, bex, cex, dex; + REAL aey, bey, cey, dey; + REAL aez, bez, cez, dez; + REAL aexbey, bexaey, bexcey, cexbey, cexdey, dexcey, dexaey, aexdey; + REAL aexcey, cexaey, bexdey, dexbey; + REAL alift, blift, clift, dlift; + REAL ab, bc, cd, da, ac, bd; + REAL abc, bcd, cda, dab; + REAL aezplus, bezplus, cezplus, dezplus; + REAL aexbeyplus, bexaeyplus, bexceyplus, cexbeyplus; + REAL cexdeyplus, dexceyplus, dexaeyplus, aexdeyplus; + REAL aexceyplus, cexaeyplus, bexdeyplus, dexbeyplus; + REAL det; + REAL permanent, errbound; + + aex = pa[0] - pe[0]; + bex = pb[0] - pe[0]; + cex = pc[0] - pe[0]; + dex = pd[0] - pe[0]; + aey = pa[1] - pe[1]; + bey = pb[1] - pe[1]; + cey = pc[1] - pe[1]; + dey = pd[1] - pe[1]; + aez = pa[2] - pe[2]; + bez = pb[2] - pe[2]; + cez = pc[2] - pe[2]; + dez = pd[2] - pe[2]; + + aexbey = aex * bey; + bexaey = bex * aey; + ab = aexbey - bexaey; + bexcey = bex * cey; + cexbey = cex * bey; + bc = bexcey - cexbey; + cexdey = cex * dey; + dexcey = dex * cey; + cd = cexdey - dexcey; + dexaey = dex * aey; + aexdey = aex * dey; + da = dexaey - aexdey; + + aexcey = aex * cey; + cexaey = cex * aey; + ac = aexcey - cexaey; + bexdey = bex * dey; + dexbey = dex * bey; + bd = bexdey - dexbey; + + abc = aez * bc - bez * ac + cez * ab; + bcd = bez * cd - cez * bd + dez * bc; + cda = cez * da + dez * ac + aez * cd; + dab = dez * ab + aez * bd + bez * da; + + alift = aex * aex + aey * aey + aez * aez; + blift = bex * bex + bey * bey + bez * bez; + clift = cex * cex + cey * cey + cez * cez; + dlift = dex * dex + dey * dey + dez * dez; + + det = (dlift * abc - clift * dab) + (blift * cda - alift * bcd); + + aezplus = Absolute(aez); + bezplus = Absolute(bez); + cezplus = Absolute(cez); + dezplus = Absolute(dez); + aexbeyplus = Absolute(aexbey); + bexaeyplus = Absolute(bexaey); + bexceyplus = Absolute(bexcey); + cexbeyplus = Absolute(cexbey); + cexdeyplus = Absolute(cexdey); + dexceyplus = Absolute(dexcey); + dexaeyplus = Absolute(dexaey); + aexdeyplus = Absolute(aexdey); + aexceyplus = Absolute(aexcey); + cexaeyplus = Absolute(cexaey); + bexdeyplus = Absolute(bexdey); + dexbeyplus = Absolute(dexbey); + permanent = ((cexdeyplus + dexceyplus) * bezplus + + (dexbeyplus + bexdeyplus) * cezplus + + (bexceyplus + cexbeyplus) * dezplus) + * alift + + ((dexaeyplus + aexdeyplus) * cezplus + + (aexceyplus + cexaeyplus) * dezplus + + (cexdeyplus + dexceyplus) * aezplus) + * blift + + ((aexbeyplus + bexaeyplus) * dezplus + + (bexdeyplus + dexbeyplus) * aezplus + + (dexaeyplus + aexdeyplus) * bezplus) + * clift + + ((bexceyplus + cexbeyplus) * aezplus + + (cexaeyplus + aexceyplus) * bezplus + + (aexbeyplus + bexaeyplus) * cezplus) + * dlift; + errbound = isperrboundA * permanent; + if ((det > errbound) || (-det > errbound)) { + return det; + } + + return insphereadapt(pa, pb, pc, pd, pe, permanent); +} diff --git a/Tetgen/tetgen.cxx b/Tetgen/tetgen.cxx new file mode 100644 index 0000000000000000000000000000000000000000..34721f2b8356c24cea52ddccfdc96dfa2d06d1ea --- /dev/null +++ b/Tetgen/tetgen.cxx @@ -0,0 +1,22807 @@ +/////////////////////////////////////////////////////////////////////////////// +// // +// TetGen // +// // +// A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator // +// // +// Version 1.3 // +// June 13, 2004 // +// // +// Copyright 2002, 2004 // +// Hang Si // +// Rathausstr. 9, 10178 Berlin, Germany // +// si@wias-berlin.de // +// // +// You can obtain TetGen via internet: http://tetgen.berlios.de. It may be // +// freely copied, modified, and redistributed under the copyright notices // +// given in the file LICENSE. // +// // +/////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetgen.cxx // +// // +// The C++ implementation file of the TetGen library. // +// // +/////////////////////////////////////////////////////////////////////////////// + +#include "tetgen.h" + +// +// Begin of class 'tetgenio' implementation +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// initialize() Initialize all variables of 'tetgenio'. // +// // +// It is called by the only class constructor 'tetgenio()' implicitly. Thus, // +// all variables are guaranteed to be initialized. Each array is initialized // +// to be a 'NULL' pointer, and its length is equal zero. Some variables have // +// their default value, 'firstnumber' equals zero, 'mesh_dim' equals 3, and // +// 'numberofcorners' equals 4. Another possible use of this routine is to // +// call it before to re-use an object. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenio::initialize() +{ + firstnumber = 0; // Default item index is numbered from Zero. + mesh_dim = 3; // Default mesh dimension is 3. + + pointlist = (REAL *) NULL; + pointattributelist = (REAL *) NULL; + addpointlist = (REAL *) NULL; + pointmarkerlist = (int *) NULL; + numberofpoints = 0; + numberofpointattributes = 0; + numberofaddpoints = 0; + + tetrahedronlist = (int *) NULL; + tetrahedronattributelist = (REAL *) NULL; + tetrahedronvolumelist = (REAL *) NULL; + neighborlist = (int *) NULL; + numberoftetrahedra = 0; + numberofcorners = 4; // Default is 4 nodes per element. + numberoftetrahedronattributes = 0; + + trifacelist = (int *) NULL; + trifacemarkerlist = (int *) NULL; + numberoftrifaces = 0; + + facetlist = (facet *) NULL; + facetmarkerlist = (int *) NULL; + numberoffacets = 0; + + edgelist = (int *) NULL; + edgemarkerlist = (int *) NULL; + numberofedges = 0; + + holelist = (REAL *) NULL; + numberofholes = 0; + + regionlist = (REAL *) NULL; + numberofregions = 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// deinitialize() Free the memory allocated in 'tetgenio'. // +// // +// It is called by the class destructor '~tetgenio()' implicitly. Hence, the // +// occupied memory by arrays of an object will be automatically released on // +// the deletion of the object. However, this routine assumes that the memory // +// is allocated by C++ memory allocation operator 'new', thus it is freed by // +// the C++ array deletor 'delete []'. If one uses the C/C++ library function // +// 'malloc()' to allocate memory for arrays, one has to free them with the // +// 'free()' function, and call routine 'initialize()' once to disable this // +// routine on deletion of the object. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenio::deinitialize() +{ + if (pointlist != (REAL *) NULL) { + delete [] pointlist; + } + if (pointattributelist != (REAL *) NULL) { + delete [] pointattributelist; + } + if (addpointlist != (REAL *) NULL) { + delete [] addpointlist; + } + if (pointmarkerlist != (int *) NULL) { + delete [] pointmarkerlist; + } + + if (tetrahedronlist != (int *) NULL) { + delete [] tetrahedronlist; + } + if (tetrahedronattributelist != (REAL *) NULL) { + delete [] tetrahedronattributelist; + } + if (tetrahedronvolumelist != (REAL *) NULL) { + delete [] tetrahedronvolumelist; + } + if (neighborlist != (int *) NULL) { + delete [] neighborlist; + } + + if (trifacelist != (int *) NULL) { + delete [] trifacelist; + } + if (trifacemarkerlist != (int *) NULL) { + delete [] trifacemarkerlist; + } + + if (edgelist != (int *) NULL) { + delete [] edgelist; + } + if (edgemarkerlist != (int *) NULL) { + delete [] edgemarkerlist; + } + + if (facetlist != (facet *) NULL) { + facet *f; + polygon *p; + int i, j; + for (i = 0; i < numberoffacets; i++) { + f = &facetlist[i]; + for (j = 0; j < f->numberofpolygons; j++) { + p = &f->polygonlist[j]; + delete [] p->vertexlist; + } + delete [] f->polygonlist; + if (f->holelist != (REAL *) NULL) { + delete [] f->holelist; + } + } + delete [] facetlist; + } + if (facetmarkerlist != (int *) NULL) { + delete [] facetmarkerlist; + } + + if (holelist != (REAL *) NULL) { + delete [] holelist; + } + + if (regionlist != (REAL *) NULL) { + delete [] regionlist; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_node_call() Load a list of nodes. // +// // +// It is a support routine for routines: 'load_nodes()', 'load_poly()', and // +// 'load_tetmesh()'. 'infile' is the file handle contains the node list. It // +// may point to a .node, or .poly or .smesh file. 'markers' indicates each // +// node contains an additional marker (integer) or not. 'infilename' is the // +// name of the file being read, it is only appeared in error message. // +// // +// The 'firstnumber' (0 or 1) is automatically determined by the number of // +// the first index of the first point. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_node_call(FILE* infile, int markers, char* infilename) +{ + char inputline[INPUTLINESIZE]; + char *stringptr; + REAL x, y, z, attrib; + int firstnode, currentmarker; + int index, attribindex; + int i, j; + + // Initialize 'pointlist', 'pointattributelist', and 'pointmarkerlist'. + pointlist = new REAL[numberofpoints * mesh_dim]; + if (pointlist == (REAL *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + if (numberofpointattributes > 0) { + pointattributelist = new REAL[numberofpoints * numberofpointattributes]; + if (pointattributelist == (REAL *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + if (markers) { + pointmarkerlist = new int[numberofpoints]; + if (pointmarkerlist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + + // Read the point section. + index = 0; + attribindex = 0; + for (i = 0; i < numberofpoints; i++) { + stringptr = readnumberline(inputline, infile, infilename); + if (i == 0) { + firstnode = (int) strtol (stringptr, &stringptr, 0); + if ((firstnode == 0) || (firstnode == 1)) { + firstnumber = firstnode; + } + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Point %d has no x coordinate.\n", firstnumber + i); + break; + } + x = (REAL) strtod(stringptr, &stringptr); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Point %d has no y coordinate.\n", firstnumber + i); + break; + } + y = (REAL) strtod(stringptr, &stringptr); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Point %d has no z coordinate.\n", firstnumber + i); + break; + } + z = (REAL) strtod(stringptr, &stringptr); + pointlist[index++] = x; + pointlist[index++] = y; + pointlist[index++] = z; + // Read the point attributes. + for (j = 0; j < numberofpointattributes; j++) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + attrib = 0.0; + } else { + attrib = (REAL) strtod(stringptr, &stringptr); + } + pointattributelist[attribindex++] = attrib; + } + if (markers) { + // Read a point marker. + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + currentmarker = 0; + } else { + currentmarker = (int) strtol (stringptr, &stringptr, 0); + } + pointmarkerlist[i] = currentmarker; + } + } + if (i < numberofpoints) { + // Failed to read points due to some error. + delete [] pointlist; + pointlist = (REAL *) NULL; + if (markers) { + delete [] pointmarkerlist; + pointmarkerlist = (int *) NULL; + } + if (numberofpointattributes > 0) { + delete [] pointattributelist; + pointattributelist = (REAL *) NULL; + } + numberofpoints = 0; + return false; + } + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_node() Load a list of nodes from a .node file. // +// // +// 'filename' is the inputfile without suffix. The node list is in 'filename.// +// node'. On completion, the node list is returned in 'pointlist'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_node(char* filename) +{ + FILE *infile; + char innodefilename[FILENAMESIZE]; + char inputline[INPUTLINESIZE]; + char *stringptr; + int markers; + + // Assembling the actual file names we want to open. + strcpy(innodefilename, filename); + strcat(innodefilename, ".node"); + + // Try to open a .node file. + infile = fopen(innodefilename, "r"); + if (infile == (FILE *) NULL) { + printf("File I/O Error: Cannot access file %s.\n", innodefilename); + return false; + } + printf("Opening %s.\n", innodefilename); + // Read number of points, number of dimensions, number of point + // attributes, and number of boundary markers. + stringptr = readnumberline(inputline, infile, innodefilename); + numberofpoints = (int) strtol (stringptr, &stringptr, 0); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + mesh_dim = 3; + } else { + mesh_dim = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + numberofpointattributes = 0; + } else { + numberofpointattributes = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + markers = 0; + } else { + markers = (int) strtol (stringptr, &stringptr, 0); + } + + if (mesh_dim != 3) { + printf("Error: load_node() only works for 3D points.\n"); + fclose(infile); + return false; + } + if (numberofpoints < 4) { + printf("File I/O error: There should have at least 4 points.\n"); + fclose(infile); + return false; + } + + // Load the list of nodes. + if (!load_node_call(infile, markers, innodefilename)) { + fclose(infile); + return false; + } + fclose(infile); + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_addnodes() Load a list of additional nodes into 'addpointlists'. // +// // +// 'filename' is the filename of the original inputfile without suffix. The // +// additional nodes are found in file 'filename-a.node'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_addnodes(char* filename) +{ + FILE *infile; + char addnodefilename[FILENAMESIZE]; + char inputline[INPUTLINESIZE]; + char *stringptr; + REAL x, y, z; + int index; + int i; + + // Additional nodes are saved in file "filename-a.node". + strcpy(addnodefilename, filename); + strcat(addnodefilename, "-a.node"); + infile = fopen(addnodefilename, "r"); + if (infile != (FILE *) NULL) { + printf("Opening %s.\n", addnodefilename); + } else { + // Strange! However, it is not a fatal error. + printf("Warning: Can't opening %s. Skipped.\n", addnodefilename); + numberofaddpoints = 0; + return false; + } + + // Read the number of additional points. + stringptr = readnumberline(inputline, infile, addnodefilename); + numberofaddpoints = (int) strtol (stringptr, &stringptr, 0); + if (numberofaddpoints == 0) { + // It looks this file contains no point. + fclose(infile); + return false; + } + // Initialize 'addpointlist'; + addpointlist = new REAL[numberofaddpoints * mesh_dim]; + if (addpointlist == (REAL *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + + // Read the list of additional points. + index = 0; + for (i = 0; i < numberofaddpoints; i++) { + stringptr = readnumberline(inputline, infile, addnodefilename); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Point %d has no x coordinate.\n", firstnumber + i); + break; + } + x = (REAL) strtod(stringptr, &stringptr); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Point %d has no y coordinate.\n", firstnumber + i); + break; + } + y = (REAL) strtod(stringptr, &stringptr); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Point %d has no z coordinate.\n", firstnumber + i); + break; + } + z = (REAL) strtod(stringptr, &stringptr); + addpointlist[index++] = x; + addpointlist[index++] = y; + addpointlist[index++] = z; + } + fclose(infile); + + if (i < numberofaddpoints) { + // Failed to read to additional points due to some error. + delete [] addpointlist; + addpointlist = (REAL *) NULL; + numberofaddpoints = 0; + return false; + } + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_poly() Load a piecewise linear complex described in a .poly or // +// .smesh file. // +// // +// 'filename' is the inputfile without suffix. The PLC is in 'filename.poly' // +// or 'filename.smesh', and possibly plus 'filename.node' (when the first // +// line of the file starts with a zero). On completion, the PLC is returned // +// in 'pointlist', 'facetlist', 'holelist' and 'regionlist'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_poly(char* filename) +{ + FILE *infile, *polyfile; + char innodefilename[FILENAMESIZE]; + char inpolyfilename[FILENAMESIZE]; + char insmeshfilename[FILENAMESIZE]; + char inputline[INPUTLINESIZE]; + char *stringptr, *infilename; + int smesh, markers, currentmarker; + int readnodefile, index; + int i, j, k; + + // Assembling the actual file names we want to open. + strcpy(innodefilename, filename); + strcpy(inpolyfilename, filename); + strcpy(insmeshfilename, filename); + strcat(innodefilename, ".node"); + strcat(inpolyfilename, ".poly"); + strcat(insmeshfilename, ".smesh"); + + // First assume it is a .poly file. + smesh = 0; + // Try to open a .poly file. + polyfile = fopen(inpolyfilename, "r"); + if (polyfile == (FILE *) NULL) { + // .poly doesn't exist! Try to open a .smesh file. + polyfile = fopen(insmeshfilename, "r"); + if (polyfile == (FILE *) NULL) { + printf("File I/O Error: Cannot access file %s and %s.\n", + inpolyfilename, insmeshfilename); + return false; + } else { + printf("Opening %s.\n", insmeshfilename); + } + smesh = 1; + } else { + printf("Opening %s.\n", inpolyfilename); + } + // Read number of points, number of dimensions, number of point + // attributes, and number of boundary markers. + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + numberofpoints = (int) strtol (stringptr, &stringptr, 0); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + mesh_dim = 3; // If it is not provided, set the default value. + } else { + mesh_dim = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + numberofpointattributes = 0; // The default value. + } else { + numberofpointattributes = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + markers = 0; // If it is not provided, set the default value. + } else { + markers = (int) strtol (stringptr, &stringptr, 0); + } + if (numberofpoints > 0) { + readnodefile = 0; + if (smesh) { + infilename = insmeshfilename; + } else { + infilename = inpolyfilename; + } + infile = polyfile; + } else { + // If the .poly or .smesh file claims there are zero points, that + // means the points should be read from a separate .node file. + readnodefile = 1; + infilename = innodefilename; + } + + if (readnodefile) { + // Read the points from the .node file. + printf("Opening %s.\n", innodefilename); + infile = fopen(innodefilename, "r"); + if (infile == (FILE *) NULL) { + printf("File I/O Error: Cannot access file %s.\n", innodefilename); + return false; + } + // Read number of points, number of dimensions, number of point + // attributes, and number of boundary markers. + stringptr = readnumberline(inputline, infile, innodefilename); + numberofpoints = (int) strtol (stringptr, &stringptr, 0); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + mesh_dim = 3; + } else { + mesh_dim = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + numberofpointattributes = 0; + } else { + numberofpointattributes = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + markers = 0; + } else { + markers = (int) strtol (stringptr, &stringptr, 0); + } + } + + if (mesh_dim != 3) { + printf("Error: load_poly() only works for 3D points.\n"); + fclose(infile); + return false; + } + if (numberofpoints < 4) { + printf("File I/O error: There should have at least 4 points.\n"); + fclose(infile); + return false; + } + + // Load the list of nodes. + if (!load_node_call(infile, markers, infilename)) { + fclose(infile); + return false; + } + + if (readnodefile) { + fclose(infile); + } + + // Read number of facets and number of boundary markers. + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + numberoffacets = (int) strtol (stringptr, &stringptr, 0); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + markers = 0; + } else { + markers = (int) strtol (stringptr, &stringptr, 0); + } + + if (numberoffacets <= 0) { + // This input file is trivial, return anyway. + fclose(polyfile); + return true; + } + + // Initialize the 'facetlist', 'facetmarkerlist'. + facetlist = new facet[numberoffacets]; + if (markers == 1) { + facetmarkerlist = new int[numberoffacets]; + } + + facet *f; + polygon *p; + + // Read data into 'facetlist', 'facetmarkerlist'. + if (smesh == 0) { + // Facets are in .poly file format. + for (i = 1; i <= numberoffacets; i++) { + f = &(facetlist[i - 1]); + init(f); + f->numberofholes = 0; + currentmarker = 0; + // Read number of polygons, number of holes, and a boundary marker. + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + f->numberofpolygons = (int) strtol (stringptr, &stringptr, 0); + stringptr = findnextnumber(stringptr); + if (*stringptr != '\0') { + f->numberofholes = (int) strtol (stringptr, &stringptr, 0); + if (markers == 1) { + stringptr = findnextnumber(stringptr); + if (*stringptr != '\0') { + currentmarker = (int) strtol(stringptr, &stringptr, 0); + } + } + } + // Initialize facetmarker if it needs. + if (markers == 1) { + facetmarkerlist[i - 1] = currentmarker; + } + // Each facet should has at least one polygon. + if (f->numberofpolygons <= 0) { + printf("Error: Wrong number of polygon in %d facet.\n", i); + break; + } + // Initialize the 'f->polygonlist'. + f->polygonlist = new polygon[f->numberofpolygons]; + // Go through all polygons, read in their vertices. + for (j = 1; j <= f->numberofpolygons; j++) { + p = &(f->polygonlist[j - 1]); + init(p); + // Read number of vertices of this polygon. + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + p->numberofvertices = (int) strtol(stringptr, &stringptr, 0); + if (p->numberofvertices < 1) { + printf("Error: Wrong polygon %d in facet %d\n", j, i); + break; + } + // Initialize 'p->vertexlist'. + p->vertexlist = new int[p->numberofvertices]; + // Read all vertices of this polygon. + for (k = 1; k <= p->numberofvertices; k++) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + // Try to load another non-empty line and continue to read the + // rest of vertices. + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + if (*stringptr == '\0') { + printf("Error: Missing %d endpoints of polygon %d in facet %d", + p->numberofvertices - k, j, i); + break; + } + } + p->vertexlist[k - 1] = (int) strtol (stringptr, &stringptr, 0); + } + } + if (j <= f->numberofpolygons) { + // This must be caused by an error. However, there're j - 1 polygons + // have been read. Reset the 'f->numberofpolygon'. + if (j == 1) { + // This is the first polygon. + delete [] f->polygonlist; + } + f->numberofpolygons = j - 1; + // No hole will be read even it exists. + f->numberofholes = 0; + break; + } + // If this facet has holes pints defined, read them. + if (f->numberofholes > 0) { + // Initialize 'f->holelist'. + f->holelist = new REAL[f->numberofholes * 3]; + // Read the holes' coordinates. + index = 0; + for (j = 1; j <= f->numberofholes; j++) { + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + for (k = 1; k <= 3; k++) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Hole %d in facet %d has no coordinates", j, i); + break; + } + f->holelist[index++] = (REAL) strtod (stringptr, &stringptr); + } + if (k <= 3) { + // This must be caused by an error. + break; + } + } + if (j <= f->numberofholes) { + // This must be caused by an error. + break; + } + } + } + if (i <= numberoffacets) { + // This must be caused by an error. + numberoffacets = i - 1; + fclose(polyfile); + return false; + } + } else { // poly == 0 + // Read the facets from a .smesh file. + for (i = 1; i <= numberoffacets; i++) { + f = &(facetlist[i - 1]); + init(f); + // Initialize 'f->facetlist'. In a .smesh file, each facetlist only + // contains exactly one polygon, no hole. + f->numberofpolygons = 1; + f->polygonlist = new polygon[f->numberofpolygons]; + p = &(f->polygonlist[0]); + init(p); + // Read number of vertices of this polygon. + stringptr = readnumberline(inputline, polyfile, insmeshfilename); + p->numberofvertices = (int) strtol (stringptr, &stringptr, 0); + if (p->numberofvertices < 1) { + printf("Error: Wrong number of vertex in facet %d\n", i); + break; + } + // Initialize 'p->vertexlist'. + p->vertexlist = new int[p->numberofvertices]; + for (k = 1; k <= p->numberofvertices; k++) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + // Try to load another non-empty line and continue to read the + // rest of vertices. + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + if (*stringptr == '\0') { + printf("Error: Missing %d endpoints in facet %d", + p->numberofvertices - k, i); + break; + } + } + p->vertexlist[k - 1] = (int) strtol (stringptr, &stringptr, 0); + } + if (k <= p->numberofvertices) { + // This must be caused by an error. + break; + } + // Read facet's boundary marker at last. + if (markers == 1) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + currentmarker = 0; + } else { + currentmarker = (int) strtol(stringptr, &stringptr, 0); + } + facetmarkerlist[i - 1] = currentmarker; + } + } + if (i <= numberoffacets) { + // This must be caused by an error. + numberoffacets = i - 1; + fclose(polyfile); + return false; + } + } + + // Read the hole section. + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + if (*stringptr != '\0') { + numberofholes = (int) strtol (stringptr, &stringptr, 0); + } else { + numberofholes = 0; + } + if (numberofholes > 0) { + // Initialize 'holelist'. + holelist = new REAL[numberofholes * 3]; + for (i = 0; i < 3 * numberofholes; i += 3) { + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Hole %d has no x coord.\n", firstnumber + (i / 3)); + break; + } else { + holelist[i] = (REAL) strtod(stringptr, &stringptr); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Hole %d has no y coord.\n", firstnumber + (i / 3)); + break; + } else { + holelist[i + 1] = (REAL) strtod(stringptr, &stringptr); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Hole %d has no z coord.\n", firstnumber + (i / 3)); + break; + } else { + holelist[i + 2] = (REAL) strtod(stringptr, &stringptr); + } + } + if (i < 3 * numberofholes) { + // This must be caused by an error. + fclose(polyfile); + return false; + } + } + + // Read the region section. The 'region' section is optional, if we don't + // reach the end of the file, try read it in. + do { + stringptr = fgets(inputline, INPUTLINESIZE, polyfile); + if (stringptr == (char *) NULL) { + break; + } + // Skip anything that doesn't look like a number, a comment, + // or the end of a line. + while ((*stringptr != '\0') && (*stringptr != '#') + && (*stringptr != '.') && (*stringptr != '+') && (*stringptr != '-') + && ((*stringptr < '0') || (*stringptr > '9'))) { + stringptr++; + } + // If it's a comment or end of line, read another line and try again. + } while ((*stringptr == '#') || (*stringptr == '\0')); + + if (stringptr != (char *) NULL && *stringptr != '\0') { + numberofregions = (int) strtol (stringptr, &stringptr, 0); + } else { + numberofregions = 0; + } + if (numberofregions > 0) { + // Initialize 'regionlist'. + regionlist = new REAL[numberofregions * 5]; + index = 0; + for (i = 0; i < numberofregions; i++) { + stringptr = readnumberline(inputline, polyfile, inpolyfilename); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Region %d has no x coordinate.\n", firstnumber + i); + break; + } else { + regionlist[index++] = (REAL) strtod(stringptr, &stringptr); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Region %d has no y coordinate.\n", firstnumber + i); + break; + } else { + regionlist[index++] = (REAL) strtod(stringptr, &stringptr); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Region %d has no z coordinate.\n", firstnumber + i); + break; + } else { + regionlist[index++] = (REAL) strtod(stringptr, &stringptr); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Region %d has no region attrib.\n", firstnumber + i); + break; + } else { + regionlist[index++] = (REAL) strtod(stringptr, &stringptr); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + regionlist[index] = regionlist[index - 1]; + } else { + regionlist[index] = (REAL) strtod(stringptr, &stringptr); + } + index++; + } + if (i < numberofregions) { + // This must be caused by an error. + fclose(polyfile); + return false; + } + } + + // End of reading poly/smesh file. + fclose(polyfile); + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_off() Load a polyhedron described in a .off file. // +// // +// The .off format is one of file formats of the Geomview, an interactive // +// program for viewing and manipulating geometric objects. More information // +// is available form: http://www.geomview.org. // +// // +// 'filename' is a input filename with extension .off or without extension ( // +// the .off will be added in this case). On completion, the polyhedron is // +// returned in 'pointlist' and 'facetlist'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_off(char* filename) +{ + FILE *fp; + tetgenio::facet *f; + tetgenio::polygon *p; + char infilename[FILENAMESIZE]; + char buffer[INPUTLINESIZE]; + char *bufferp; + double *coord; + int nverts = 0, iverts = 0; + int nfaces = 0, ifaces = 0; + int nedges = 0; + int line_count = 0, i; + + strncpy(infilename, filename, 1024 - 1); + infilename[FILENAMESIZE - 1] = '\0'; + if (infilename[0] == '\0') { + printf("Error: No filename.\n"); + return false; + } + if (strcmp(&infilename[strlen(infilename) - 4], ".off") != 0) { + strcat(infilename, ".off"); + } + + if (!(fp = fopen(infilename, "r"))) { + printf("File I/O Error: Unable to open file %s\n", infilename); + return false; + } + printf("Opening %s.\n", infilename); + + // OFF requires the index starts from '0'. + firstnumber = 0; + + while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { + // Check section + if (nverts == 0) { + // Read header + bufferp = strstr(bufferp, "OFF"); + if (bufferp != NULL) { + // Read mesh counts + bufferp = findnextnumber(bufferp); // Skip field "OFF". + if (*bufferp == '\0') { + // Read a non-empty line. + bufferp = readline(buffer, fp, &line_count); + } + if ((sscanf(bufferp, "%d%d%d", &nverts, &nfaces, &nedges) != 3) + || (nverts == 0)) { + printf("Syntax error reading header on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + // Allocate memory for 'tetgenio' + if (nverts > 0) { + numberofpoints = nverts; + pointlist = new REAL[nverts * 3]; + assert(pointlist != NULL); + } + if (nfaces > 0) { + numberoffacets = nfaces; + facetlist = new tetgenio::facet[nfaces]; + assert(facetlist); + } + } + } else if (iverts < nverts) { + // Read vertex coordinates + coord = &pointlist[iverts * 3]; + for (i = 0; i < 3; i++) { + if (*bufferp == '\0') { + printf("Syntax error reading vertex coords on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + coord[i] = (REAL) strtod(bufferp, &bufferp); + bufferp = findnextnumber(bufferp); + } + iverts++; + } else if (ifaces < nfaces) { + // Get next face + f = &facetlist[ifaces]; + init(f); + // In .off format, each facet has one polygon, no hole. + f->numberofpolygons = 1; + f->polygonlist = new tetgenio::polygon[1]; + p = &f->polygonlist[0]; + init(p); + // Read the number of vertices, it should be greater than 0. + p->numberofvertices = (int) strtol(bufferp, &bufferp, 0); + if (p->numberofvertices == 0) { + printf("Syntax error reading polygon on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + // Allocate memory for face vertices + p->vertexlist = new int[p->numberofvertices]; + for (i = 0; i < p->numberofvertices; i++) { + bufferp = findnextnumber(bufferp); + if (*bufferp == '\0') { + printf("Syntax error reading polygon on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + p->vertexlist[i] = (int) strtol(bufferp, &bufferp, 0); + } + ifaces++; + } else { + // Should never get here + printf("Found extra text starting at line %d in file %s\n", line_count, + infilename); + break; + } + } + + // Close file + fclose(fp); + + // Check whether read all points + if (iverts != nverts) { + printf("Expected %d vertices, but read only %d vertices in file %s\n", + nverts, iverts, infilename); + return false; + } + + // Check whether read all faces + if (ifaces != nfaces) { + printf("Expected %d faces, but read only %d faces in file %s\n", + nfaces, ifaces, infilename); + return false; + } + + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_ply() Load a polyhedron described in a .ply file. // +// // +// 'filename' is the file name with extension .ply or without extension (the // +// .ply will be added in this case). // +// // +// This is a simplified version of reading .ply files, which only reads the // +// set of vertices and the set of faces. Other informations (such as color, // +// material, texture, etc) in .ply file are ignored. Complete routines for // +// reading and writing ,ply files are available from: http://www.cc.gatech. // +// edu/projects/large_models/ply.html. Except the header section, ply file // +// format has exactly the same format for listing vertices and polygons as // +// off file format. // +// // +// On completion, 'pointlist' and 'facetlist' together return the polyhedron.// +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_ply(char* filename) +{ + FILE *fp; + tetgenio::facet *f; + tetgenio::polygon *p; + char infilename[FILENAMESIZE]; + char buffer[INPUTLINESIZE]; + char *bufferp, *str; + double *coord; + int endheader = 0, format = 0; + int nverts = 0, iverts = 0; + int nfaces = 0, ifaces = 0; + int line_count = 0, i; + + strncpy(infilename, filename, FILENAMESIZE - 1); + infilename[FILENAMESIZE - 1] = '\0'; + if (infilename[0] == '\0') { + printf("Error: No filename.\n"); + return false; + } + if (strcmp(&infilename[strlen(infilename) - 4], ".ply") != 0) { + strcat(infilename, ".ply"); + } + + if (!(fp = fopen(infilename, "r"))) { + printf("Error: Unable to open file %s\n", infilename); + return false; + } + printf("Opening %s.\n", infilename); + + // PLY requires the index starts from '0'. + firstnumber = 0; + + while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { + if (!endheader) { + // Find if it is the keyword "end_header". + str = strstr(bufferp, "end_header"); + // strstr() is case sensitive. + if (!str) str = strstr(bufferp, "End_header"); + if (!str) str = strstr(bufferp, "End_Header"); + if (str) { + // This is the end of the header section. + endheader = 1; + continue; + } + // Parse the number of vertices and the number of faces. + if (nverts == 0 || nfaces == 0) { + // Find if it si the keyword "element". + str = strstr(bufferp, "element"); + if (!str) str = strstr(bufferp, "Element"); + if (str) { + bufferp = findnextfield(str); + if (*bufferp == '\0') { + printf("Syntax error reading element type on line%d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + if (nverts == 0) { + // Find if it is the keyword "vertex". + str = strstr(bufferp, "vertex"); + if (!str) str = strstr(bufferp, "Vertex"); + if (str) { + bufferp = findnextnumber(str); + if (*bufferp == '\0') { + printf("Syntax error reading vertex number on line"); + printf(" %d in file %s\n", line_count, infilename); + fclose(fp); + return false; + } + nverts = (int) strtol(bufferp, &bufferp, 0); + // Allocate memory for 'tetgenio' + if (nverts > 0) { + numberofpoints = nverts; + pointlist = new REAL[nverts * 3]; + assert(pointlist != NULL); + } + } + } + if (nfaces == 0) { + // Find if it is the keyword "face". + str = strstr(bufferp, "face"); + if (!str) str = strstr(bufferp, "Face"); + if (str) { + bufferp = findnextnumber(str); + if (*bufferp == '\0') { + printf("Syntax error reading face number on line"); + printf(" %d in file %s\n", line_count, infilename); + fclose(fp); + return false; + } + nfaces = (int) strtol(bufferp, &bufferp, 0); + // Allocate memory for 'tetgenio' + if (nfaces > 0) { + numberoffacets = nfaces; + facetlist = new tetgenio::facet[nfaces]; + assert(facetlist); + } + } + } + } // It is not the string "element". + } + if (format == 0) { + // Find the keyword "format". + str = strstr(bufferp, "format"); + if (!str) str = strstr(bufferp, "Format"); + if (str) { + format = 1; + bufferp = findnextfield(str); + // Find if it is the string "ascii". + str = strstr(bufferp, "ascii"); + if (!str) str = strstr(bufferp, "ASCII"); + if (!str) { + printf("This routine only reads ascii format of ply files.\n"); + printf("Hint: You can convert the binary to ascii format by\n"); + printf(" using the provided ply tools:\n"); + printf(" ply2ascii < %s > ascii_%s\n", infilename, infilename); + fclose(fp); + return false; + } + } + } + } else if (iverts < nverts) { + // Read vertex coordinates + coord = &pointlist[iverts * 3]; + for (i = 0; i < 3; i++) { + if (*bufferp == '\0') { + printf("Syntax error reading vertex coords on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + coord[i] = (REAL) strtod(bufferp, &bufferp); + bufferp = findnextnumber(bufferp); + } + iverts++; + } else if (ifaces < nfaces) { + // Get next face + f = &facetlist[ifaces]; + init(f); + // In .off format, each facet has one polygon, no hole. + f->numberofpolygons = 1; + f->polygonlist = new tetgenio::polygon[1]; + p = &f->polygonlist[0]; + init(p); + // Read the number of vertices, it should be greater than 0. + p->numberofvertices = (int) strtol(bufferp, &bufferp, 0); + if (p->numberofvertices == 0) { + printf("Syntax error reading polygon on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + // Allocate memory for face vertices + p->vertexlist = new int[p->numberofvertices]; + for (i = 0; i < p->numberofvertices; i++) { + bufferp = findnextnumber(bufferp); + if (*bufferp == '\0') { + printf("Syntax error reading polygon on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + p->vertexlist[i] = (int) strtol(bufferp, &bufferp, 0); + } + ifaces++; + } else { + // Should never get here + printf("Found extra text starting at line %d in file %s\n", line_count, + infilename); + break; + } + } + + // Close file + fclose(fp); + + // Check whether read all points + if (iverts != nverts) { + printf("Expected %d vertices, but read only %d vertices in file %s\n", + nverts, iverts, infilename); + return false; + } + + // Check whether read all faces + if (ifaces != nfaces) { + printf("Expected %d faces, but read only %d faces in file %s\n", + nfaces, ifaces, infilename); + return false; + } + + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_stl() Load a surface mesh described in a .stl file. // +// // +// 'filename' is the file name with extension .stl or without extension (the // +// .stl will be added in this case). // +// // +// The .stl or stereolithography format is an ASCII or binary file used in // +// manufacturing. It is a list of the triangular surfaces that describe a // +// computer generated solid model. This is the standard input for most rapid // +// prototyping machines. // +// // +// On completion, 'pointlist' and 'facetlist' together return the polyhedron.// +// Note: After load_stl(), there exist many duplicated points in 'pointlist'.// +// They will be unified during the Delaunay tetrahedralization process. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_stl(char* filename) +{ + FILE *fp; + tetgenmesh::list *plist; + tetgenio::facet *f; + tetgenio::polygon *p; + char infilename[FILENAMESIZE]; + char buffer[INPUTLINESIZE]; + char *bufferp, *str; + double *coord; + int solid = 0; + int nverts = 0, iverts = 0; + int nfaces = 0; + int line_count = 0, i; + + strncpy(infilename, filename, FILENAMESIZE - 1); + infilename[FILENAMESIZE - 1] = '\0'; + if (infilename[0] == '\0') { + printf("Error: No filename.\n"); + return false; + } + if (strcmp(&infilename[strlen(infilename) - 4], ".stl") != 0) { + strcat(infilename, ".stl"); + } + + if (!(fp = fopen(infilename, "r"))) { + printf("Error: Unable to open file %s\n", infilename); + return false; + } + printf("Opening %s.\n", infilename); + + // STL file has no number of points available. Use a list to read points. + plist = new tetgenmesh::list(sizeof(double) * 3, NULL, 1024); + + while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { + // The ASCII .stl file must start with the lower case keyword solid and + // end with endsolid. + if (solid == 0) { + // Read header + bufferp = strstr(bufferp, "solid"); + if (bufferp != NULL) { + solid = 1; + } + } else { + // We're inside the block of the solid. + str = bufferp; + // Is this the end of the solid. + bufferp = strstr(bufferp, "endsolid"); + if (bufferp != NULL) { + solid = 0; + } else { + // Read the XYZ coordinates if it is a vertex. + bufferp = str; + bufferp = strstr(bufferp, "vertex"); + if (bufferp != NULL) { + coord = (double *) plist->append(NULL); + for (i = 0; i < 3; i++) { + bufferp = findnextnumber(bufferp); + if (*bufferp == '\0') { + printf("Syntax error reading vertex coords on line %d\n", + line_count); + delete plist; + fclose(fp); + return false; + } + coord[i] = (REAL) strtod(bufferp, &bufferp); + } + } + } + } + } + fclose(fp); + + nverts = plist->len(); + // nverts should be an integer times 3 (every 3 vertices denote a face). + if (nverts == 0 || (nverts % 3 != 0)) { + printf("Error: Wrong number of vertices in file %s.\n", infilename); + delete plist; + return false; + } + numberofpoints = nverts; + pointlist = new REAL[nverts * 3]; + assert(pointlist != NULL); + for (i = 0; i < nverts; i++) { + coord = (double *) (* plist)[i]; + iverts = i * 3; + pointlist[iverts] = (REAL) coord[0]; + pointlist[iverts + 1] = (REAL) coord[1]; + pointlist[iverts + 2] = (REAL) coord[2]; + } + + nfaces = (int) (nverts / 3); + numberoffacets = nfaces; + facetlist = new tetgenio::facet[nfaces]; + assert(facetlist != NULL); + + // Default use '1' as the array starting index. + firstnumber = 1; + iverts = firstnumber; + for (i = 0; i < nfaces; i++) { + f = &facetlist[i]; + init(f); + // In .stl format, each facet has one polygon, no hole. + f->numberofpolygons = 1; + f->polygonlist = new tetgenio::polygon[1]; + p = &f->polygonlist[0]; + init(p); + // Each polygon has three vertices. + p->numberofvertices = 3; + p->vertexlist = new int[p->numberofvertices]; + p->vertexlist[0] = iverts; + p->vertexlist[1] = iverts + 1; + p->vertexlist[2] = iverts + 2; + iverts += 3; + } + + delete plist; + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_medit() Load a surface mesh described in .mesh file. // +// // +// 'filename' is the file name with extension .mesh or without entension ( // +// the .mesh will be added in this case). .mesh is the file format of Medit, // +// a user-friendly interactive mesh viewing program. // +// // +// This routine ONLY reads the sections containing vertices and triangles, // +// other sections (such as tetrahedra, edges, ...) are ignored. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_medit(char* filename) +{ + FILE *fp; + tetgenio::facet *f; + tetgenio::polygon *p; + char infilename[FILENAMESIZE]; + char buffer[INPUTLINESIZE]; + char *bufferp, *str; + double *coord; + int nverts = 0; + int nfaces = 0; + int line_count = 0; + int corners = 0; // 3 (triangle) or 4 (quad). + int i, j; + + strncpy(infilename, filename, FILENAMESIZE - 1); + infilename[FILENAMESIZE - 1] = '\0'; + if (infilename[0] == '\0') { + printf("Error: No filename.\n"); + return false; + } + if (strcmp(&infilename[strlen(infilename) - 5], ".mesh") != 0) { + strcat(infilename, ".mesh"); + } + + if (!(fp = fopen(infilename, "r"))) { + printf("Error: Unable to open file %s\n", infilename); + return false; + } + printf("Opening %s.\n", infilename); + + // Default uses the index starts from '1'. + firstnumber = 1; + + while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { + if (*bufferp == '#') continue; // A comment line is skipped. + if (nverts == 0) { + // Find if it is the keyword "Vertices". + str = strstr(bufferp, "Vertices"); + if (!str) str = strstr(bufferp, "vertices"); + if (!str) str = strstr(bufferp, "VERTICES"); + if (str) { + // Read the number of vertices. + bufferp = findnextnumber(str); // Skip field "Vertices". + if (*bufferp == '\0') { + // Read a non-empty line. + bufferp = readline(buffer, fp, &line_count); + } + nverts = (int) strtol(bufferp, &bufferp, 0); + // Allocate memory for 'tetgenio' + if (nverts > 0) { + numberofpoints = nverts; + pointlist = new REAL[nverts * 3]; + assert(pointlist != NULL); + } + // Read the follwoing node list. + for (i = 0; i < nverts; i++) { + bufferp = readline(buffer, fp, &line_count); + if (bufferp == NULL) { + printf("Unexpected end of file on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + // Read vertex coordinates + coord = &pointlist[i * 3]; + for (j = 0; j < 3; j++) { + if (*bufferp == '\0') { + printf("Syntax error reading vertex coords on line"); + printf(" %d in file %s\n", line_count, infilename); + fclose(fp); + return false; + } + coord[j] = (REAL) strtod(bufferp, &bufferp); + bufferp = findnextnumber(bufferp); + } + } + continue; + } + } + if (nfaces == 0) { + // Find if it is the keyword "Triangles" or "Quadrilaterals". + str = strstr(bufferp, "Triangles"); + if (!str) str = strstr(bufferp, "triangles"); + if (!str) str = strstr(bufferp, "TRIANGLES"); + if (str) { + corners = 3; + } else { + str = strstr(bufferp, "Quadrilaterals"); + if (!str) str = strstr(bufferp, "quadrilaterals"); + if (!str) str = strstr(bufferp, "QUADRILATERALS"); + if (str) { + corners = 4; + } + } + if (corners == 3 || corners == 4) { + // Read the number of triangles (or quadrilaterals). + bufferp = findnextnumber(str); // Skip field "Triangles". + if (*bufferp == '\0') { + // Read a non-empty line. + bufferp = readline(buffer, fp, &line_count); + } + nfaces = strtol(bufferp, &bufferp, 0); + // Allocate memory for 'tetgenio' + if (nfaces > 0) { + numberoffacets = nfaces; + facetlist = new tetgenio::facet[nfaces]; + assert(facetlist != NULL); + facetmarkerlist = new int[nfaces]; + assert(facetmarkerlist != NULL); + } + // Read the following list of faces. + for (i = 0; i < nfaces; i++) { + bufferp = readline(buffer, fp, &line_count); + if (bufferp == NULL) { + printf("Unexpected end of file on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + f = &facetlist[i]; + tetgenio::init(f); + // In .mesh format, each facet has one polygon, no hole. + f->numberofpolygons = 1; + f->polygonlist = new tetgenio::polygon[1]; + p = &f->polygonlist[0]; + tetgenio::init(p); + p->numberofvertices = corners; + // Allocate memory for face vertices + p->vertexlist = new int[p->numberofvertices]; + assert(p->vertexlist != NULL); + // Read the vertices of the face. + for (j = 0; j < corners; j++) { + if (*bufferp == '\0') { + printf("Syntax error reading face on line %d in file %s\n", + line_count, infilename); + fclose(fp); + return false; + } + p->vertexlist[j] = (int) strtol(bufferp, &bufferp, 0); + if (firstnumber == 1) { + // Check if a '0' index appears. + if (p->vertexlist[j] == 0) { + // The first index is set to be 0. + firstnumber = 0; + } + } + bufferp = findnextnumber(bufferp); + } + // Read the marker of the face if it exists. + facetmarkerlist[i] = 0; + if (*bufferp != '\0') { + facetmarkerlist[i] = (int) strtol(bufferp, &bufferp, 0); + } + } + continue; + } + } + if (nverts > 0 && nfaces > 0) break; // Ignore other data. + } + + // Close file + fclose(fp); + + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_plc() Load a piecewise linear complex from file. // +// // +// This is main entrance for loading plcs from different file formats into // +// tetgenio. 'filename' is the input file name without extention. 'object' // +// indicates which file format is used to describ the plc. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_plc(char* filename, int object) +{ + enum tetgenbehavior::objecttype type; + + type = (enum tetgenbehavior::objecttype) object; + switch (type) { + case tetgenbehavior::NODES: + return load_node(filename); + case tetgenbehavior::POLY: + return load_poly(filename); + case tetgenbehavior::OFF: + return load_off(filename); + case tetgenbehavior::PLY: + return load_ply(filename); + case tetgenbehavior::STL: + return load_stl(filename); + case tetgenbehavior::MEDIT: + return load_medit(filename); + default: + return load_poly(filename); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// load_tetmesh() Load a tetrahedral mesh from files. // +// // +// 'filename' is the inputfile without suffix. The nodes of the tetrahedral // +// mesh is in "filename.node", the elements is in "filename.ele", if the // +// "filename.face" and "filename.vol" exists, they will also be read. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenio::load_tetmesh(char* filename) +{ + FILE *infile; + char innodefilename[FILENAMESIZE]; + char inelefilename[FILENAMESIZE]; + char infacefilename[FILENAMESIZE]; + char inedgefilename[FILENAMESIZE]; + char involfilename[FILENAMESIZE]; + char inputline[INPUTLINESIZE]; + char *stringptr, *infilename; + REAL attrib, volume; + int volelements; + int markers, corner; + int index, attribindex; + int i, j; + + // Assembling the actual file names we want to open. + strcpy(innodefilename, filename); + strcpy(inelefilename, filename); + strcpy(infacefilename, filename); + strcpy(inedgefilename, filename); + strcpy(involfilename, filename); + strcat(innodefilename, ".node"); + strcat(inelefilename, ".ele"); + strcat(infacefilename, ".face"); + strcat(inedgefilename, ".edge"); + strcat(involfilename, ".vol"); + + // Read the points from a .node file. + infilename = innodefilename; + printf("Opening %s.\n", infilename); + infile = fopen(infilename, "r"); + if (infile == (FILE *) NULL) { + printf("File I/O Error: Cannot access file %s.\n", infilename); + return false; + } + // Read number of points, number of dimensions, number of point + // attributes, and number of boundary markers. + stringptr = readnumberline(inputline, infile, infilename); + numberofpoints = (int) strtol (stringptr, &stringptr, 0); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + mesh_dim = 3; + } else { + mesh_dim = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + numberofpointattributes = 0; + } else { + numberofpointattributes = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + markers = 0; // Default value. + } else { + markers = (int) strtol (stringptr, &stringptr, 0); + } + + if (mesh_dim != 3) { + printf("Error: load_tetmesh() only works for 3D points.\n"); + fclose(infile); + return false; + } + if (numberofpoints < 4) { + printf("File I/O error: Input should has at least 4 points.\n"); + fclose(infile); + return false; + } + + // Load the list of nodes. + if (!load_node_call(infile, markers, infilename)) { + fclose(infile); + return false; + } + + // Read the elements from a .ele file. + infilename = inelefilename; + printf("Opening %s.\n", infilename); + infile = fopen(infilename, "r"); + if (infile != (FILE *) NULL) { + // Read number of elements, number of corners (4 or 10), number of + // element attributes. + stringptr = readnumberline(inputline, infile, infilename); + numberoftetrahedra = (int) strtol (stringptr, &stringptr, 0); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + numberofcorners = 4; // Default read 4 nodes per element. + } else { + numberofcorners = (int) strtol (stringptr, &stringptr, 0); + } + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + numberoftetrahedronattributes = 0; // Default no attribute. + } else { + numberoftetrahedronattributes = (int) strtol (stringptr, &stringptr, 0); + } + if (numberofcorners != 4 && numberofcorners != 10) { + printf("Error: Wrong number of corners %d (should be 4 or 10).\n", + numberofcorners); + fclose(infile); + return false; + } + // Allocate memory for tetrahedra. + if (numberoftetrahedra > 0) { + tetrahedronlist = new int[numberoftetrahedra * numberofcorners]; + if (tetrahedronlist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + // Allocate memory for output tetrahedron attributes if necessary. + if (numberoftetrahedronattributes > 0) { + tetrahedronattributelist = new REAL[numberoftetrahedra * + numberoftetrahedronattributes]; + if (tetrahedronattributelist == (REAL *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + } + // Read the list of tetrahedra. + index = 0; + attribindex = 0; + for (i = 0; i < numberoftetrahedra; i++) { + // Read tetrahedron index and the tetrahedron's corners. + stringptr = readnumberline(inputline, infile, infilename); + for (j = 0; j < numberofcorners; j++) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Tetrahedron %d is missing vertex %d in %s.\n", + i + firstnumber, j + 1, infilename); + exit(1); + } + corner = (int) strtol(stringptr, &stringptr, 0); + if (corner < firstnumber || corner >= numberofpoints + firstnumber) { + printf("Error: Tetrahedron %d has an invalid vertex index.\n", + i + firstnumber); + exit(1); + } + tetrahedronlist[index++] = corner; + } + // Read the tetrahedron's attributes. + for (j = 0; j < numberoftetrahedronattributes; j++) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + attrib = 0.0; + } else { + attrib = (REAL) strtod(stringptr, &stringptr); + } + tetrahedronattributelist[attribindex++] = attrib; + } + } + fclose(infile); + } + + // Read the hullfaces or subfaces from a .face file if it exists. + infilename = infacefilename; + infile = fopen(infilename, "r"); + if (infile != (FILE *) NULL) { + printf("Opening %s.\n", infilename); + // Read number of faces, boundary markers. + stringptr = readnumberline(inputline, infile, infilename); + numberoftrifaces = (int) strtol (stringptr, &stringptr, 0); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + markers = 0; // Default there is no marker per face. + } else { + markers = (int) strtol (stringptr, &stringptr, 0); + } + if (numberoftrifaces > 0) { + trifacelist = new int[numberoftrifaces * 3]; + if (trifacelist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + if (markers) { + trifacemarkerlist = new int[numberoftrifaces * 3]; + if (trifacemarkerlist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + } + // Read the list of faces. + index = 0; + for (i = 0; i < numberoftrifaces; i++) { + // Read face index and the face's three corners. + stringptr = readnumberline(inputline, infile, infilename); + for (j = 0; j < 3; j++) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Face %d is missing vertex %d in %s.\n", + i + firstnumber, j + 1, infilename); + exit(1); + } + corner = (int) strtol(stringptr, &stringptr, 0); + if (corner < firstnumber || corner >= numberofpoints + firstnumber) { + printf("Error: Face %d has an invalid vertex index.\n", + i + firstnumber); + exit(1); + } + trifacelist[index++] = corner; + } + // Read the boundary marker if it exists. + if (markers) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + attrib = 0.0; + } else { + attrib = (REAL) strtod(stringptr, &stringptr); + } + trifacemarkerlist[i] = (int) attrib; + } + } + fclose(infile); + } + + // Read the boundary edges from a .edge file if it exists. + infilename = inedgefilename; + infile = fopen(infilename, "r"); + if (infile != (FILE *) NULL) { + printf("Opening %s.\n", infilename); + // Read number of boundary edges. + stringptr = readnumberline(inputline, infile, infilename); + numberofedges = (int) strtol (stringptr, &stringptr, 0); + if (numberofedges > 0) { + edgelist = new int[numberofedges * 2]; + if (edgelist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + // Read the list of faces. + index = 0; + for (i = 0; i < numberofedges; i++) { + // Read face index and the edge's two endpoints. + stringptr = readnumberline(inputline, infile, infilename); + for (j = 0; j < 2; j++) { + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + printf("Error: Edge %d is missing vertex %d in %s.\n", + i + firstnumber, j + 1, infilename); + exit(1); + } + corner = (int) strtol(stringptr, &stringptr, 0); + if (corner < firstnumber || corner >= numberofpoints + firstnumber) { + printf("Error: Edge %d has an invalid vertex index.\n", + i + firstnumber); + exit(1); + } + edgelist[index++] = corner; + } + } + fclose(infile); + } + + // Read the volume constraints from a .vol file if it exists. + infilename = involfilename; + infile = fopen(infilename, "r"); + if (infile != (FILE *) NULL) { + printf("Opening %s.\n", infilename); + // Read number of tetrahedra. + stringptr = readnumberline(inputline, infile, infilename); + volelements = (int) strtol (stringptr, &stringptr, 0); + if (volelements != numberoftetrahedra) { + printf("Warning: %s and %s disagree on number of tetrahedra.\n", + inelefilename, involfilename); + volelements = 0; + } + if (volelements > 0) { + tetrahedronvolumelist = new REAL[volelements]; + if (tetrahedronvolumelist == (REAL *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + // Read the list of volume constraints. + for (i = 0; i < volelements; i++) { + stringptr = readnumberline(inputline, infile, infilename); + stringptr = findnextnumber(stringptr); + if (*stringptr == '\0') { + volume = -1.0; // No constraint on this tetrahedron. + } else { + volume = (REAL) strtod(stringptr, &stringptr); + } + tetrahedronvolumelist[i] = volume; + } + fclose(infile); + } + + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// save_nodes() Save points to a .node file. // +// // +// 'filename' is a string containing the file name without suffix. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenio::save_nodes(char* filename) +{ + FILE *fout; + char outnodefilename[FILENAMESIZE]; + int i, j; + + sprintf(outnodefilename, "%s.node", filename); + printf("Saving nodes to %s\n", outnodefilename); + fout = fopen(outnodefilename, "w"); + fprintf(fout, "%d %d %d %d\n", numberofpoints, mesh_dim, + numberofpointattributes, pointmarkerlist != NULL ? 1 : 0); + for (i = 0; i < numberofpoints; i++) { + if (mesh_dim == 2) { + fprintf(fout, "%d %.16g %.16g", i + firstnumber, pointlist[i * 2], + pointlist[i * 2 + 1]); + } else { + fprintf(fout, "%d %.16g %.16g %.16g", i + firstnumber, + pointlist[i * 3], pointlist[i * 3 + 1], pointlist[i * 3 + 2]); + } + for (j = 0; j < numberofpointattributes; j++) { + fprintf(fout, " %.16g", + pointattributelist[i * numberofpointattributes+j]); + } + if (pointmarkerlist != NULL) { + fprintf(fout, " %d", pointmarkerlist[i]); + } + fprintf(fout, "\n"); + } + + fclose(fout); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// save_elements() Save elements to a .ele file. // +// // +// 'filename' is a string containing the file name without suffix. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenio::save_elements(char* filename) +{ + FILE *fout; + char outelefilename[FILENAMESIZE]; + int i, j; + + sprintf(outelefilename, "%s.ele", filename); + printf("Saving elements to %s\n", outelefilename); + fout = fopen(outelefilename, "w"); + fprintf(fout, "%d %d %d\n", numberoftetrahedra, numberofcorners, + numberoftetrahedronattributes); + for (i = 0; i < numberoftetrahedra; i++) { + fprintf(fout, "%d", i + firstnumber); + for (j = 0; j < numberofcorners; j++) { + fprintf(fout, " %5d", tetrahedronlist[i * numberofcorners + j]); + } + for (j = 0; j < numberoftetrahedronattributes; j++) { + fprintf(fout, " %g", + tetrahedronattributelist[i * numberoftetrahedronattributes + j]); + } + fprintf(fout, "\n"); + } + + fclose(fout); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// save_faces() Save faces to a .face file. // +// // +// 'filename' is a string containing the file name without suffix. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenio::save_faces(char* filename) +{ + FILE *fout; + char outfacefilename[FILENAMESIZE]; + int i; + + sprintf(outfacefilename, "%s.face", filename); + printf("Saving faces to %s\n", outfacefilename); + fout = fopen(outfacefilename, "w"); + fprintf(fout, "%d %d\n", numberoftrifaces, + trifacemarkerlist != NULL ? 1 : 0); + for (i = 0; i < numberoftrifaces; i++) { + fprintf(fout, "%d %5d %5d %5d", i + firstnumber, trifacelist[i * 3], + trifacelist[i * 3 + 1], trifacelist[i * 3 +2]); + if (trifacemarkerlist != NULL) { + fprintf(fout, " %d", trifacemarkerlist[i]); + } + fprintf(fout, "\n"); + } + + fclose(fout); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// save_edges() Save egdes to a .edge file. // +// // +// 'filename' is a string containing the file name without suffix. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenio::save_edges(char* filename) +{ + FILE *fout; + char outedgefilename[FILENAMESIZE]; + int i; + + sprintf(outedgefilename, "%s.edge", filename); + printf("Saving edges to %s\n", outedgefilename); + fout = fopen(outedgefilename, "w"); + fprintf(fout, "%d %d\n", numberofedges, edgemarkerlist != NULL ? 1 : 0); + for (i = 0; i < numberofedges; i++) { + fprintf(fout, "%d %4d %4d", i + firstnumber, edgelist[i * 2], + edgelist[i * 2 + 1]); + if (edgemarkerlist != NULL) { + fprintf(fout, " %d", edgemarkerlist[i]); + } + fprintf(fout, "\n"); + } + + fclose(fout); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// save_neighbors() Save egdes to a .neigh file. // +// // +// 'filename' is a string containing the file name without suffix. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenio::save_neighbors(char* filename) +{ + FILE *fout; + char outneighborfilename[FILENAMESIZE]; + int i; + + sprintf(outneighborfilename, "%s.neigh", filename); + printf("Saving neighbors to %s\n", outneighborfilename); + fout = fopen(outneighborfilename, "w"); + fprintf(fout, "%d %d\n", numberoftetrahedra, mesh_dim + 1); + for (i = 0; i < numberoftetrahedra; i++) { + if (mesh_dim == 2) { + fprintf(fout, "%d %5d %5d %5d", i + firstnumber, neighborlist[i * 3], + neighborlist[i * 3 + 1], neighborlist[i * 3 + 2]); + } else { + fprintf(fout, "%d %5d %5d %5d %5d", i + firstnumber, + neighborlist[i * 4], neighborlist[i * 4 + 1], + neighborlist[i * 4 + 2], neighborlist[i * 4 + 3]); + } + fprintf(fout, "\n"); + } + + fclose(fout); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// save_poly() Save segments or facets to a .poly file. // +// // +// 'filename' is a string containing the file name without suffix. It only // +// save the facets, holes and regions. The nodes are saved in a .node file // +// by routine save_nodes(). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenio::save_poly(char* filename) +{ + FILE *fout; + facet *f; + polygon *p; + char outpolyfilename[FILENAMESIZE]; + int i, j, k; + + sprintf(outpolyfilename, "%s.poly", filename); + printf("Saving poly to %s\n", outpolyfilename); + fout = fopen(outpolyfilename, "w"); + + // The zero indicates that the vertices are in a separate .node file. + // Followed by number of dimensions, number of vertex attributes, + // and number of boundary markers (zero or one). + fprintf(fout, "%d %d %d %d\n", 0, mesh_dim, numberofpointattributes, + pointmarkerlist != NULL ? 1 : 0); + + // Save segments or facets. + if (mesh_dim == 2) { + // Number of segments, number of boundary markers (zero or one). + fprintf(fout, "%d %d\n", numberofedges, edgemarkerlist != NULL ? 1 : 0); + for (i = 0; i < numberofedges; i++) { + fprintf(fout, "%d %4d %4d", i + firstnumber, edgelist[i * 2], + edgelist[i * 2 + 1]); + if (edgemarkerlist != NULL) { + fprintf(fout, " %d", edgemarkerlist[i]); + } + fprintf(fout, "\n"); + } + } else { + // Number of facets, number of boundary markers (zero or one). + fprintf(fout, "%d %d\n", numberoffacets, facetmarkerlist != NULL ? 1 : 0); + for (i = 0; i < numberoffacets; i++) { + f = &(facetlist[i]); + fprintf(fout, "%d %d %d # %d\n", f->numberofpolygons,f->numberofholes, + facetmarkerlist != NULL ? facetmarkerlist[i] : 0, i + firstnumber); + // Output polygons of this facet. + for (j = 0; j < f->numberofpolygons; j++) { + p = &(f->polygonlist[j]); + fprintf(fout, "%d ", p->numberofvertices); + for (k = 0; k < p->numberofvertices; k++) { + if (((k + 1) % 10) == 0) { + fprintf(fout, "\n "); + } + fprintf(fout, " %d", p->vertexlist[k]); + } + fprintf(fout, "\n"); + } + // Output holes of this facet. + for (j = 0; j < f->numberofholes; j++) { + fprintf(fout, "%d %.12g %.12g %.12g\n", j + firstnumber, + f->holelist[j * 3], f->holelist[j * 3 + 1], f->holelist[j * 3 + 2]); + } + } + } + + // Save holes. + fprintf(fout, "%d\n", numberofholes); + for (i = 0; i < numberofholes; i++) { + // Output x, y coordinates. + fprintf(fout, "%d %.12g %.12g", i + firstnumber, holelist[i * mesh_dim], + holelist[i * mesh_dim + 1]); + if (mesh_dim == 3) { + // Output z coordinate. + fprintf(fout, " %.12g", holelist[i * mesh_dim + 2]); + } + fprintf(fout, "\n"); + } + + // Save regions. + fprintf(fout, "%d\n", numberofregions); + for (i = 0; i < numberofregions; i++) { + if (mesh_dim == 2) { + // Output the index, x, y coordinates, attribute (region number) + // and maximum area constraint (maybe -1). + fprintf(fout, "%d %.12g %.12g %.12g %.12g\n", i + firstnumber, + regionlist[i * 4], regionlist[i * 4 + 1], + regionlist[i * 4 + 2], regionlist[i * 4 + 3]); + } else { + // Output the index, x, y, z coordinates, attribute (region number) + // and maximum volume constraint (maybe -1). + fprintf(fout, "%d %.12g %.12g %.12g %.12g %.12g\n", i + firstnumber, + regionlist[i * 5], regionlist[i * 5 + 1], + regionlist[i * 5 + 2], regionlist[i * 5 + 3], + regionlist[i * 5 + 4]); + } + } + + fclose(fout); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// readline() Read a nonempty line from a file. // +// // +// A line is considered "nonempty" if it contains something more than white // +// spaces. If a line is considered empty, it will be dropped and the next // +// line will be read, this process ends until reaching the end-of-file or a // +// non-empty line. Return NULL if it is the end-of-file, otherwise, return // +// a pointer to the first non-whitespace character of the line. // +// // +/////////////////////////////////////////////////////////////////////////////// + +char* tetgenio::readline(char *string, FILE *infile, int *linenumber) +{ + char *result; + + // Search for a non-empty line. + do { + result = fgets(string, INPUTLINESIZE - 1, infile); + (*linenumber)++; + if (result == (char *) NULL) { + return (char *) NULL; + } + // Skip white spaces. + while ((*result == ' ') || (*result == '\t')) result++; + // If it's end of line, read another line and try again. + } while (*result == '\0'); + return result; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// findnextfield() Find the next field of a string. // +// // +// Jumps past the current field by searching for whitespace or a comma, then // +// jumps past the whitespace or the comma to find the next field. // +// // +/////////////////////////////////////////////////////////////////////////////// + +char* tetgenio::findnextfield(char *string) +{ + char *result; + + result = string; + // Skip the current field. Stop upon reaching whitespace or a comma. + while ((*result != '\0') && (*result != ' ') && (*result != '\t') && + (*result != ',')) { + result++; + } + // Now skip the whitespace or the comma, stop at anything else that looks + // like a character, or the end of a line. + while ((*result == ' ') || (*result == '\t') || (*result == ',')) { + result++; + } + return result; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// readnumberline() Read a nonempty number line from a file. // +// // +// A line is considered "nonempty" if it contains something that looks like // +// a number. Comments (prefaced by `#') are ignored. // +// // +/////////////////////////////////////////////////////////////////////////////// + +char* tetgenio::readnumberline(char *string, FILE *infile, char *infilename) +{ + char *result; + + // Search for something that looks like a number. + do { + result = fgets(string, INPUTLINESIZE, infile); + if (result == (char *) NULL) { + printf(" Error: Unexpected end of file in %s.\n", infilename); + exit(1); + } + // Skip anything that doesn't look like a number, a comment, + // or the end of a line. + while ((*result != '\0') && (*result != '#') + && (*result != '.') && (*result != '+') && (*result != '-') + && ((*result < '0') || (*result > '9'))) { + result++; + } + // If it's a comment or end of line, read another line and try again. + } while ((*result == '#') || (*result == '\0')); + return result; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// findnextnumber() Find the next field of a number string. // +// // +// Jumps past the current field by searching for whitespace or a comma, then // +// jumps past the whitespace or the comma to find the next field that looks // +// like a number. // +// // +/////////////////////////////////////////////////////////////////////////////// + +char* tetgenio::findnextnumber(char *string) +{ + char *result; + + result = string; + // Skip the current field. Stop upon reaching whitespace or a comma. + while ((*result != '\0') && (*result != '#') && (*result != ' ') && + (*result != '\t') && (*result != ',')) { + result++; + } + // Now skip the whitespace and anything else that doesn't look like a + // number, a comment, or the end of a line. + while ((*result != '\0') && (*result != '#') + && (*result != '.') && (*result != '+') && (*result != '-') + && ((*result < '0') || (*result > '9'))) { + result++; + } + // Check for a comment (prefixed with `#'). + if (*result == '#') { + *result = '\0'; + } + return result; +} + +// +// End of class 'tetgenio' implementation +// + +static REAL PI = 3.14159265358979323846264338327950288419716939937510582; + +// +// Begin of class 'tetgenbehavior' implementation +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetgenbehavior() Initialize veriables of 'tetgenbehavior'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenbehavior::tetgenbehavior() +{ + // Initialize command line switches. + plc = 0; + refine = 0; + quality = 0; + minratio = 2.0; + goodratio = 0.0; + minangle = 20.0; + goodangle = 0.0; + varvolume = 0; + fixedvolume = 0; + maxvolume = -1.0; + regionattrib = 0; + insertaddpoints = 0; + removesliver = 0; + maxdihedral = 0.0; + detectinter = 0; + checkclosure = 0; + zeroindex = 0; + jettison = 0; + facesout = 0; + edgesout = 0; + neighout = 0; + meditview = 0; + gidview = 0; + geomview = 0; + order = 1; + nobound = 0; + nonodewritten = 0; + noelewritten = 0; + nofacewritten = 0; + noiterationnum = 0; + nobisect = 0; + noflip = 0; + steiner = -1; + dopermute = 0; + srandseed = 1; + nomerge = 0; + docheck = 0; + quiet = 0; + verbose = 0; + useshelles = 0; + epsilon = 1.0e-8; + object = NONE; + // Initialize strings + commandline[0] = '\0'; + infilename[0] = '\0'; + outfilename[0] = '\0'; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// versioninfo() Print the version information of TetGen. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenbehavior::versioninfo() +{ + printf("Version 1.3.2 (Released on December 13, 2004).\n"); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// syntax() Print list of command line switches and exit the program. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenbehavior::syntax() +{ + printf(" tetgen [-pq__a__AriMS__T__dzo_fengGOBNEFICQVvh] input_file\n"); + printf(" -p Tetrahedralizes a piecewise linear complex.\n"); + printf(" -q Quality mesh generation. A minimum radius-edge ratio may\n"); + printf(" be specified (default 2.0).\n"); + printf(" -a Applies a maximum tetrahedron volume constraint.\n"); + printf(" -A Assigns attributes to identify tetrahedra in certain "); + printf("regions.\n"); + printf(" -r Reconstructs/Refines a previously generated mesh.\n"); + printf(" -i Inserts a list of additional points into mesh.\n"); + printf(" -M Does not merge coplanar facets.\n"); + printf(" -S Specifies maximum number of added Steiner points.\n"); + printf(" -T Set a tolerance for coplanar test (default 1e-8).\n"); + printf(" -d Detect intersections of PLC facets.\n"); + printf(" -z Numbers all output items starting from zero.\n"); + printf(" -j Jettison unused vertices from output .node file.\n"); + printf(" -o2 Generates second-order subparametric elements.\n"); + printf(" -f Outputs faces (including non-boundary faces) to .face "); + printf("file.\n"); + printf(" -e Outputs subsegments to .edge file.\n"); + printf(" -n Outputs tetrahedra neighbors to .neigh file.\n"); + printf(" -g Outputs mesh to .mesh file for viewing by Medit.\n"); + printf(" -G Outputs mesh to .msh file for viewing by Gid.\n"); + printf(" -O Outputs mesh to .off file for viewing by Geomview.\n"); + printf(" -B Suppresses output of boundary information.\n"); + printf(" -N Suppresses output of .node file.\n"); + printf(" -E Suppresses output of .ele file.\n"); + printf(" -F Suppresses output of .face file.\n"); + printf(" -I Suppresses mesh iteration numbers.\n"); + printf(" -C Checks the consistency of the final mesh.\n"); + printf(" -Q Quiet: No terminal output except errors.\n"); + printf(" -V Verbose: Detailed information, more terminal output.\n"); + printf(" -v Prints the version information.\n"); + printf(" -h Help: A brief instruction for using TetGen.\n"); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// usage() Print a brief instruction for using TetGen. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenbehavior::usage() +{ + printf("TetGen\n"); + printf("A Quality Tetrahedral Mesh Generator and 3D Delaunay "); + printf("Triangulator\n"); + versioninfo(); + printf("\n"); + printf("Copyright 2002, 2004\n"); + printf("Hang Si\n"); + printf("Rathausstr. 9, 10178 Berlin, Germany\n"); + printf("si@wias-berlin.de\n"); + printf("\n"); + printf("What Can TetGen Do?\n"); + printf("\n"); + printf(" TetGen generates exact Delaunay tetrahedralizations, exact\n"); + printf(" constrained Delaunay tetrahedralizations, and quality "); + printf("tetrahedral\n meshes. The latter are nicely graded and whose "); + printf("tetrahedra have\n radius-edge ratio bounded, thus are suitable "); + printf("for finite element and\n finite volume analysis.\n"); + printf("\n"); + printf("Command Line Syntax:\n"); + printf("\n"); + printf(" Below is the command line syntax of TetGen with a list of "); + printf("short\n"); + printf(" descriptions. Underscores indicate that numbers may optionally\n"); + printf(" follow certain switches. Do not leave any space between a "); + printf("switch\n"); + printf(" and its numeric parameter. \'input_file\' contains input data\n"); + printf(" depending on the switches you supplied which may be a "); + printf(" piecewise\n"); + printf(" linear complex or a list of nodes. File formats and detailed\n"); + printf(" description of command line switches are found in user's "); + printf("manual.\n"); + printf("\n"); + syntax(); + printf("\n"); + printf("Examples of How to Use TetGen:\n"); + printf("\n"); + printf(" \'tetgen object\' reads vertices from object.node, and writes "); + printf("their\n Delaunay tetrahedralization to object.1.node and "); + printf("object.1.ele.\n"); + printf("\n"); + printf(" \'tetgen -p object\' reads a PLC from object.poly or object."); + printf("smesh (and\n possibly object.node) and writes its constrained "); + printf("Delaunay\n tetrahedralization to object.1.node, object.1.ele and "); + printf("object.1.face.\n"); + printf("\n"); + printf(" \'tetgen -pq1.414a.1 object\' reads a PLC from object.poly or\n"); + printf(" object.smesh (and possibly object.node), generates a mesh "); + printf("whose\n tetrahedra have radius-edge ratio smaller than 1.414 and "); + printf("have volume\n of 0.1 or less, and writes the mesh to "); + printf("object.1.node, object.1.ele\n and object.1.face.\n"); + printf("\n"); + printf("Please send bugs/comments to Hang Si <si@wias-berlin.de>\n"); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// parse_commandline() Read the command line, identify switches, and set // +// up options and file names. // +// // +// 'argc' and 'argv' are the same parameters passed to the function main() // +// of a C/C++ program. They together represent the command line user invoked // +// from an environment in which TetGen is running. // +// // +// When TetGen is invoked from an environment. 'argc' is nonzero, switches // +// and input filename should be supplied as zero-terminated strings in // +// argv[0] through argv[argc - 1] and argv[0] shall be the name used to // +// invoke TetGen, i.e. "tetgen". Switches are previously started with a // +// dash '-' to identify them from the input filename. // +// // +// When TetGen is called from within another program. 'argc' is set to zero. // +// switches are given in one zero-terminated string (no previous dash is // +// required.), and 'argv' is a pointer points to this string. No input // +// filename is required (usually the input data has been directly created by // +// user in the 'tetgenio' structure). A default filename 'tetgen-tmpfile' // +// will be created for debugging output purpose. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenbehavior::parse_commandline(int argc, char **argv) +{ + int startindex; + int increment; + int meshnumber; + int i, j, k; + char workstring[1024]; + + // First determine the input style of the switches. + if (argc == 0) { + startindex = 0; // Switches are given without a dash. + argc = 1; // For running the following for-loop once. + commandline[0] = '\0'; + } else { + startindex = 1; + strcpy(commandline, argv[0]); + strcat(commandline, " "); + } + + for (i = startindex; i < argc; i++) { + // Remember the command line switches. + strcat(commandline, argv[i]); + strcat(commandline, " "); + if (startindex == 1) { + // Is this string a filename? + if (argv[i][0] != '-') { + strncpy(infilename, argv[i], 1024 - 1); + infilename[1024 - 1] = '\0'; + // Go to the next string directly. + continue; + } + } + // Parse the individual switch from the string. + for (j = startindex; argv[i][j] != '\0'; j++) { + if (argv[i][j] == 'p') { + plc = 1; + } else if (argv[i][j] == 'r') { + refine = 1; + } else if (argv[i][j] == 'q') { + quality = 1; + if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.')) { + k = 0; + while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.')) { + j++; + workstring[k] = argv[i][j]; + k++; + } + workstring[k] = '\0'; + minratio = (REAL) strtod(workstring, (char **) NULL); + } + } else if (argv[i][j] == 'a') { + quality = 1; + if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.')) { + fixedvolume = 1; + k = 0; + while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || + (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { + j++; + workstring[k] = argv[i][j]; + k++; + } + workstring[k] = '\0'; + maxvolume = (REAL) strtod(workstring, (char **) NULL); + if (maxvolume <= 0.0) { + printf("Error: Number after -a must be greater than zero.\n"); + return false; + } + } else { + varvolume = 1; + } + } else if (argv[i][j] == 'A') { + regionattrib = 1; + } else if (argv[i][j] == 'i') { + insertaddpoints = 1; + } else if (argv[i][j] == 's') { + removesliver = 1; + if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { + k = 0; + while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.')) { + j++; + workstring[k] = argv[i][j]; + k++; + } + workstring[k] = '\0'; + maxdihedral = (REAL) strtod(workstring, (char **) NULL); + if (maxdihedral <= 0.0 || maxdihedral >= 180.0) { + printf("Error: Number after -s must between 0 and 180.\n"); + return false; + } + } else { + maxdihedral = 175.0; + } + maxdihedral = maxdihedral * 3.1415926535897932 / 180.; + } else if (argv[i][j] == 'd') { + detectinter = 1; + } else if (argv[i][j] == 'c') { + checkclosure = 1; + } else if (argv[i][j] == 'z') { + zeroindex = 1; + } else if (argv[i][j] == 'j') { + jettison = 1; + } else if (argv[i][j] == 'e') { + edgesout = 1; + } else if (argv[i][j] == 'n') { + neighout = 1; + } else if (argv[i][j] == 'g') { + meditview = 1; + } else if (argv[i][j] == 'G') { + gidview = 1; + } else if (argv[i][j] == 'O') { + geomview = 1; + } else if (argv[i][j] == 'B') { + nobound = 1; + } else if (argv[i][j] == 'N') { + nonodewritten = 1; + } else if (argv[i][j] == 'E') { + noelewritten = 1; + } else if (argv[i][j] == 'F') { + nofacewritten = 1; + } else if (argv[i][j] == 'I') { + noiterationnum = 1; + } else if (argv[i][j] == 'o') { + if (argv[i][j + 1] == '2') { + j++; + order = 2; + } + } else if (argv[i][j] == 'Y') { + noflip = 1; // nobisect++; + } else if (argv[i][j] == 'S') { + if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.')) { + k = 0; + while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || + (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { + j++; + workstring[k] = argv[i][j]; + k++; + } + workstring[k] = '\0'; + steiner = (int) strtol(workstring, (char **) NULL, 0); + } + } else if (argv[i][j] == 'P') { + dopermute = 1; + if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.')) { + k = 0; + while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || + (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { + j++; + workstring[k] = argv[i][j]; + k++; + } + workstring[k] = '\0'; + srandseed = (int) strtol(workstring, (char **) NULL, 0); + } + } else if (argv[i][j] == 'M') { + nomerge = 1; + } else if (argv[i][j] == 'T') { + if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.')) { + k = 0; + while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || + (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || + (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { + j++; + workstring[k] = argv[i][j]; + k++; + } + workstring[k] = '\0'; + epsilon = (REAL) strtod(workstring, (char **) NULL); + } + if (epsilon <= 0.0) { + printf("Error: Number after -T must be greater than zero.\n"); + return false; + } + } else if (argv[i][j] == 'C') { + docheck++; + } else if (argv[i][j] == 'Q') { + quiet = 1; + } else if (argv[i][j] == 'V') { + verbose++; + } else if (argv[i][j] == 'v') { + versioninfo(); + exit(0); + } else if ((argv[i][j] == 'h') || (argv[i][j] == 'H') || + (argv[i][j] == '?')) { + usage(); + exit(0); + } else { + printf("Warning: Unknown switch -%c.\n", argv[i][j]); + } + } + } + + if (startindex == 0) { + // Set a temporary filename for debugging output. + strcpy(infilename, "tetgen-tmpfile"); + } else { + if (infilename[0] == '\0') { + // No input file name. Print the syntax and exit. + syntax(); + exit(0); + } + // Recognize the object from file extension if it is available. + if (!strcmp(&infilename[strlen(infilename) - 5], ".node")) { + infilename[strlen(infilename) - 5] = '\0'; + object = NODES; + } else if (!strcmp(&infilename[strlen(infilename) - 5], ".poly")) { + infilename[strlen(infilename) - 5] = '\0'; + object = POLY; + plc = 1; + } else if (!strcmp(&infilename[strlen(infilename) - 6], ".smesh")) { + infilename[strlen(infilename) - 6] = '\0'; + object = POLY; + plc = 1; + } else if (!strcmp(&infilename[strlen(infilename) - 4], ".off")) { + infilename[strlen(infilename) - 4] = '\0'; + object = OFF; + plc = 1; + } else if (!strcmp(&infilename[strlen(infilename) - 4], ".ply")) { + infilename[strlen(infilename) - 4] = '\0'; + object = PLY; + plc = 1; + } else if (!strcmp(&infilename[strlen(infilename) - 4], ".stl")) { + infilename[strlen(infilename) - 4] = '\0'; + object = STL; + plc = 1; + } else if (!strcmp(&infilename[strlen(infilename) - 5], ".mesh")) { + infilename[strlen(infilename) - 5] = '\0'; + object = MEDIT; + plc = 1; + } else if (!strcmp(&infilename[strlen(infilename) - 4], ".ele")) { + infilename[strlen(infilename) - 4] = '\0'; + object = MESH; + refine = 1; + } + } + plc = plc || detectinter || checkclosure; + useshelles = plc || refine || quality; + goodratio = minratio; + goodratio *= goodratio; + + // Detect improper combinations of switches. + if (plc && refine) { + printf("Error: Switch -r cannot use together with -p.\n"); + return false; + } + if (refine && (plc || noiterationnum)) { + printf("Error: Switches %s cannot use together with -r.\n", + "-p, -d, -c, and -I"); + return false; + } + if (detectinter && (quality || insertaddpoints || (order == 2) || neighout + || checkclosure || docheck)) { + printf("Error: Switches %s cannot use together with -d.\n", + "-c, -q, -i, -o2, -n, and -C"); + return false; + } + if (checkclosure && (quality || insertaddpoints || (order == 2) || neighout + || detectinter || docheck)) { + printf("Error: Switches %s cannot use together with -c.\n", + "-d, -q, -i, -o2, -n, and -C"); + return false; + } + + // Be careful not to allocate space for element area constraints that + // will never be assigned any value (other than the default -1.0). + if (!refine && !plc) { + varvolume = 0; + } + // Be careful not to add an extra attribute to each element unless the + // input supports it (PLC in, but not refining a preexisting mesh). + if (refine || !plc) { + regionattrib = 0; + } + // Calculate the goodangle for testing bad subfaces. + goodangle = cos(minangle * PI / 180.0); + goodangle *= goodangle; + + increment = 0; + strcpy(workstring, infilename); + j = 1; + while (workstring[j] != '\0') { + if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) { + increment = j + 1; + } + j++; + } + meshnumber = 0; + if (increment > 0) { + j = increment; + do { + if ((workstring[j] >= '0') && (workstring[j] <= '9')) { + meshnumber = meshnumber * 10 + (int) (workstring[j] - '0'); + } else { + increment = 0; + } + j++; + } while (workstring[j] != '\0'); + } + if (noiterationnum) { + strcpy(outfilename, infilename); + } else if (increment == 0) { + strcpy(outfilename, infilename); + strcat(outfilename, ".1"); + } else { + workstring[increment] = '%'; + workstring[increment + 1] = 'd'; + workstring[increment + 2] = '\0'; + sprintf(outfilename, workstring, meshnumber + 1); + } + + return true; +} + +// +// End of class 'tetgenbehavior' implementation +// + +// +// Begin of class 'tetgenmesh' implementation +// + +// +// Begin of class 'list', 'memorypool' and 'link' implementation +// + +// Following are predefined compare functions for primitive data types. +// These functions take two pointers of the corresponding date type, +// perform the comparation. Return -1, 0 or 1 indicating the default +// linear order of two operators. + +// Compare two 'integers'. +int tetgenmesh::compare_2_ints(const void* x, const void* y) { + if (* (int *) x < * (int *) y) { + return -1; + } else if (* (int *) x > * (int *) y) { + return 1; + } else { + return 0; + } +} + +// Compare two 'longs'. Note: in 64-bit machine the 'long' type is 64-bit +// (8-byte) where the 'int' only 32-bit (4-byte). +int tetgenmesh::compare_2_longs(const void* x, const void* y) { + if (* (long *) x < * (long *) y) { + return -1; + } else if (* (long *) x > * (long *) y) { + return 1; + } else { + return 0; + } +} + +// Compare two 'unsigned longs'. +int tetgenmesh::compare_2_unsignedlongs(const void* x, const void* y) { + if (* (unsigned long *) x < * (unsigned long *) y) { + return -1; + } else if (* (unsigned long *) x > * (unsigned long *) y) { + return 1; + } else { + return 0; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// set_compfunc() Determine the size of primitive data types and set the // +// corresponding predefined linear order functions. // +// // +// 'str' is a zero-end string indicating a primitive data type, like 'int', // +// 'long' or 'unsigned long'. Every string ending with a '*' is though as a // +// type of pointer and the type 'unsign long' is used for it. // +// // +// When the type of 'str' is determined, the size of this type (in byte) is // +// returned in 'itbytes', and the pointer of corresponding predefined linear // +// order functions is returned in 'pcomp'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::set_compfunc(char* str, int* itbytes, compfunc* pcomp) +{ + // First figure out whether it is a pointer or not. + if (str[strlen(str) - 1] == '*') { + *itbytes = sizeof(unsigned long); + *pcomp = &compare_2_unsignedlongs; + return; + } + // Then determine other types. + if (strcmp(str, "int") == 0) { + *itbytes = sizeof(int); + *pcomp = &compare_2_ints; + } else if (strcmp(str, "long") == 0) { + *itbytes = sizeof(long); + *pcomp = &compare_2_longs; + } else if (strcmp(str, "unsigned long") == 0) { + *itbytes = sizeof(unsigned long); + *pcomp = &compare_2_unsignedlongs; + } else { + // It is an unknown type. + printf("Error in set_compfunc(): unknown type %s.\n", str); + exit(1); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// listinit() Initialize a list for storing a data type. // +// // +// Determine the size of each item, set the maximum size allocated at onece, // +// set the expand size in case the list is full, and set the linear order // +// function if it is provided (default is NULL). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::list:: +listinit(int itbytes, compfunc pcomp, int mitems,int exsize) +{ + assert(itbytes > 0 && mitems > 0 && exsize > 0); + + itembytes = itbytes; + comp = pcomp; + maxitems = mitems; + expandsize = exsize; + base = (char *) malloc(maxitems * itembytes); + if (base == (char *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + items = 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// append() Add a new item at the end of the list. // +// // +// A new space at the end of this list will be allocated for storing the new // +// item. If the memory is not sufficient, reallocation will be performed. If // +// 'appitem' is not NULL, the contents of this pointer will be copied to the // +// new allocated space. Returns the pointer to the new allocated space. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::list::append(void *appitem) +{ + // Do we have enough space? + if (items == maxitems) { + char* newbase = (char *) realloc(base, (maxitems + expandsize) * + itembytes); + if (newbase == (char *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + base = newbase; + maxitems += expandsize; + } + if (appitem != (void *) NULL) { + memcpy(base + items * itembytes, appitem, itembytes); + } + items++; + return (void *) (base + (items - 1) * itembytes); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// insert() Insert an item before 'pos' (range from 0 to items - 1). // +// // +// A new space will be inserted at the position 'pos', that is, items lie // +// after pos (including the item at pos) will be moved one space downwords. // +// If 'insitem' is not NULL, its contents will be copied into the new // +// inserted space. Return a pointer to the new inserted space. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::list::insert(int pos, void* insitem) +{ + if (pos >= items) { + return append(insitem); + } + // Do we have enough space. + if (items == maxitems) { + char* newbase = (char *) realloc(base, (maxitems + expandsize) * + itembytes); + if (newbase == (char *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + base = newbase; + maxitems += expandsize; + } + // Do block move. + memmove(base + (pos + 1) * itembytes, // dest + base + pos * itembytes, // src + (items - pos) * itembytes); // size in bytes + // Insert the item. + if (insitem != (void *) NULL) { + memcpy(base + pos * itembytes, insitem, itembytes); + } + items++; + return (void *) (base + pos * itembytes); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// del() Delete an item at 'pos' (range from 0 to items - 1). // +// // +// The space at 'pos' will be overlapped by other items, that is, items lie // +// after pos will be moved one space upwords. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::list::del(int pos) +{ + // If 'pos' is the last itemof the list, nothing need to do. + if (pos >= 0 && pos < items - 1) { + // Do block move. + memmove(base + pos * itembytes, // dest + base + (pos + 1) * itembytes, // src + (items - pos - 1) * itembytes); + } + if (items > 0) { + items--; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// hasitem() Search in this list to find if 'checkitem' exists. // +// // +// This routine assumes that a linear order function has been set. It loops // +// through the entire list, compares each item to 'checkitem'. If it exists, // +// return its position (between 0 to items - 1), otherwise, return -1. // +// // +/////////////////////////////////////////////////////////////////////////////// + +int tetgenmesh::list::hasitem(void* checkitem) +{ + int i; + + for (i = 0; i < items; i++) { + if (comp != (compfunc) NULL) { + if ((* comp)((void *)(base + i * itembytes), checkitem) == 0) { + return i; + } + } + } + return -1; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// remove() Remove an item (indicated by its pointer) from the list. // +// // +// If the list contains more than one copy of the pointer, only the first // +// copy is removed. The returned value is the index of the removed item. // +// // +/////////////////////////////////////////////////////////////////////////////// + +int tetgenmesh::list::remove(void* remitem) +{ + int pos = hasitem(remitem); + if (pos != -1) { + del(pos); + } + return pos; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// sort() Sort the items with respect to a linear order function. // +// // +// Uses QuickSort routines (qsort) of the standard C/C++ library (stdlib.h). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::list::sort() +{ + qsort((void *) base, (size_t) items, (size_t) itembytes, comp); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// memorypool() The constructors of memorypool. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::memorypool::memorypool() +{ + firstblock = nowblock = (void **) NULL; + nextitem = (void *) NULL; + deaditemstack = (void *) NULL; + pathblock = (void **) NULL; + pathitem = (void *) NULL; + itemwordtype = POINTER; + alignbytes = 0; + itembytes = itemwords = 0; + itemsperblock = 0; + items = maxitems = 0l; + unallocateditems = 0; + pathitemsleft = 0; +} + +tetgenmesh::memorypool:: +memorypool(int bytecount, int itemcount, enum wordtype wtype, int alignment) +{ + poolinit(bytecount, itemcount, wtype, alignment); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// ~memorypool() Free to the operating system all memory taken by a pool. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::memorypool::~memorypool() +{ + while (firstblock != (void **) NULL) { + nowblock = (void **) *(firstblock); + free(firstblock); + firstblock = nowblock; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// poolinit() Initialize a pool of memory for allocation of items. // +// // +// A `pool' is created whose records have size at least `bytecount'. Items // +// will be allocated in `itemcount'-item blocks. Each item is assumed to be // +// a collection of words, and either pointers or floating-point values are // +// assumed to be the "primary" word type. (The "primary" word type is used // +// to determine alignment of items.) If `alignment' isn't zero, all items // +// will be `alignment'-byte aligned in memory. `alignment' must be either a // +// multiple or a factor of the primary word size; powers of two are safe. // +// `alignment' is normally used to create a few unused bits at the bottom of // +// each item's pointer, in which information may be stored. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::memorypool:: +poolinit(int bytecount, int itemcount, enum wordtype wtype, int alignment) +{ + int wordsize; + + // Initialize values in the pool. + itemwordtype = wtype; + wordsize = (itemwordtype == POINTER) ? sizeof(void *) : sizeof(REAL); + // Find the proper alignment, which must be at least as large as: + // - The parameter `alignment'. + // - The primary word type, to avoid unaligned accesses. + // - sizeof(void *), so the stack of dead items can be maintained + // without unaligned accesses. + if (alignment > wordsize) { + alignbytes = alignment; + } else { + alignbytes = wordsize; + } + if (sizeof(void *) > alignbytes) { + alignbytes = sizeof(void *); + } + itemwords = ((bytecount + alignbytes - 1) / alignbytes) + * (alignbytes / wordsize); + itembytes = itemwords * wordsize; + itemsperblock = itemcount; + + // Allocate a block of items. Space for `itemsperblock' items and one + // pointer (to point to the next block) are allocated, as well as space + // to ensure alignment of the items. + firstblock = (void **) malloc(itemsperblock * itembytes + sizeof(void *) + + alignbytes); + if (firstblock == (void **) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + // Set the next block pointer to NULL. + *(firstblock) = (void *) NULL; + restart(); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// restart() Deallocate all items in this pool. // +// // +// The pool is returned to its starting state, except that no memory is // +// freed to the operating system. Rather, the previously allocated blocks // +// are ready to be reused. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::memorypool::restart() +{ + unsigned long alignptr; + + items = 0; + maxitems = 0; + + // Set the currently active block. + nowblock = firstblock; + // Find the first item in the pool. Increment by the size of (void *). + alignptr = (unsigned long) (nowblock + 1); + // Align the item on an `alignbytes'-byte boundary. + nextitem = (void *) + (alignptr + (unsigned long) alignbytes - + (alignptr % (unsigned long) alignbytes)); + // There are lots of unallocated items left in this block. + unallocateditems = itemsperblock; + // The stack of deallocated items is empty. + deaditemstack = (void *) NULL; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// alloc() Allocate space for an item. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::memorypool::alloc() +{ + void *newitem; + void **newblock; + unsigned long alignptr; + + // First check the linked list of dead items. If the list is not + // empty, allocate an item from the list rather than a fresh one. + if (deaditemstack != (void *) NULL) { + newitem = deaditemstack; // Take first item in list. + deaditemstack = * (void **) deaditemstack; + } else { + // Check if there are any free items left in the current block. + if (unallocateditems == 0) { + // Check if another block must be allocated. + if (*nowblock == (void *) NULL) { + // Allocate a new block of items, pointed to by the previous block. + newblock = (void **) malloc(itemsperblock * itembytes + sizeof(void *) + + alignbytes); + if (newblock == (void **) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + *nowblock = (void *) newblock; + // The next block pointer is NULL. + *newblock = (void *) NULL; + } + // Move to the new block. + nowblock = (void **) *nowblock; + // Find the first item in the block. + // Increment by the size of (void *). + alignptr = (unsigned long) (nowblock + 1); + // Align the item on an `alignbytes'-byte boundary. + nextitem = (void *) + (alignptr + (unsigned long) alignbytes - + (alignptr % (unsigned long) alignbytes)); + // There are lots of unallocated items left in this block. + unallocateditems = itemsperblock; + } + // Allocate a new item. + newitem = nextitem; + // Advance `nextitem' pointer to next free item in block. + if (itemwordtype == POINTER) { + nextitem = (void *) ((void **) nextitem + itemwords); + } else { + nextitem = (void *) ((REAL *) nextitem + itemwords); + } + unallocateditems--; + maxitems++; + } + items++; + return newitem; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// dealloc() Deallocate space for an item. // +// // +// The deallocated space is stored in a queue for later reuse. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::memorypool::dealloc(void *dyingitem) +{ + // Push freshly killed item onto stack. + *((void **) dyingitem) = deaditemstack; + deaditemstack = dyingitem; + items--; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// traversalinit() Prepare to traverse the entire list of items. // +// // +// This routine is used in conjunction with traverse(). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::memorypool::traversalinit() +{ + unsigned long alignptr; + + // Begin the traversal in the first block. + pathblock = firstblock; + // Find the first item in the block. Increment by the size of (void *). + alignptr = (unsigned long) (pathblock + 1); + // Align with item on an `alignbytes'-byte boundary. + pathitem = (void *) + (alignptr + (unsigned long) alignbytes - + (alignptr % (unsigned long) alignbytes)); + // Set the number of items left in the current block. + pathitemsleft = itemsperblock; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// traverse() Find the next item in the list. // +// // +// This routine is used in conjunction with traversalinit(). Be forewarned // +// that this routine successively returns all items in the list, including // +// deallocated ones on the deaditemqueue. It's up to you to figure out which // +// ones are actually dead. It can usually be done more space-efficiently by // +// a routine that knows something about the structure of the item. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::memorypool::traverse() +{ + void *newitem; + unsigned long alignptr; + + // Stop upon exhausting the list of items. + if (pathitem == nextitem) { + return (void *) NULL; + } + // Check whether any untraversed items remain in the current block. + if (pathitemsleft == 0) { + // Find the next block. + pathblock = (void **) *pathblock; + // Find the first item in the block. Increment by the size of (void *). + alignptr = (unsigned long) (pathblock + 1); + // Align with item on an `alignbytes'-byte boundary. + pathitem = (void *) + (alignptr + (unsigned long) alignbytes - + (alignptr % (unsigned long) alignbytes)); + // Set the number of items left in the current block. + pathitemsleft = itemsperblock; + } + newitem = pathitem; + // Find the next item in the block. + if (itemwordtype == POINTER) { + pathitem = (void *) ((void **) pathitem + itemwords); + } else { + pathitem = (void *) ((REAL *) pathitem + itemwords); + } + pathitemsleft--; + return newitem; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// linkinit() Initialize a link for storing items. // +// // +// The input parameters are the size of each item, a pointer of a linear // +// order function and the number of items allocating in one memory bulk. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::link::linkinit(int bytecount, compfunc pcomp, int itemcount) +{ + assert(bytecount > 0 && itemcount > 0); + + // Remember the real size of each item. + linkitembytes = bytecount; + // Set the linear order function for this link. + comp = pcomp; + + // Call the constructor of 'memorypool' to initialize its variables. + // like: itembytes, itemwords, items, ... Each node has size + // bytecount + 2 * sizeof(void **), and total 'itemcount + 2' (because + // link has additional two nodes 'head' and 'tail'). + poolinit(bytecount + 2 * sizeof(void **), itemcount + 2, POINTER, 0); + + // Initial state of this link. + head = (void **) alloc(); + tail = (void **) alloc(); + *head = (void *) tail; + *(head + 1) = NULL; + *tail = NULL; + *(tail + 1) = (void *) head; + nextlinkitem = *head; + curpos = 1; + linkitems = 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// clear() Deallocate all nodes in this link. // +// // +// The link is returned to its starting state, except that no memory is // +// freed to the operating system. Rather, the previously allocated blocks // +// are ready to be reused. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::link::clear() +{ + // Reset the pool. + restart(); + + // Initial state of this link. + head = (void **) alloc(); + tail = (void **) alloc(); + *head = (void *) tail; + *(head + 1) = NULL; + *tail = NULL; + *(tail + 1) = (void *) head; + nextlinkitem = *head; + curpos = 1; + linkitems = 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// move() Causes 'nextlinkitem' to traverse the specified number of nodes,// +// updates 'curpos' to be the node to which 'nextlinkitem' points. // +// // +// 'numberofnodes' is a number indicating how many nodes need be traversed // +// (not counter the current node) need be traversed. It may be positive(move // +// forward) or negative (move backward). Return TRUE if it is successful. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::link::move(int numberofnodes) +{ + void **nownode; + int i; + + nownode = (void **) nextlinkitem; + if (numberofnodes > 0) { + // Move forward. + i = 0; + while ((i < numberofnodes) && *nownode) { + nownode = (void **) *nownode; + i++; + } + if (*nownode == NULL) return false; + nextlinkitem = (void *) nownode; + curpos += numberofnodes; + } else if (numberofnodes < 0) { + // Move backward. + i = 0; + numberofnodes = -numberofnodes; + while ((i < numberofnodes) && *(nownode + 1)) { + nownode = (void **) *(nownode + 1); + i++; + } + if (*(nownode + 1) == NULL) return false; + nextlinkitem = (void *) nownode; + curpos -= numberofnodes; + } + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// locate() Locates the node at the specified position. // +// // +// The number 'pos' (between 1 and 'linkitems') indicates the location. This // +// routine first decides the shortest path traversing from 'curpos' to 'pos',// +// i.e., from head, tail or 'curpos'. Routine 'move()' is called to really // +// traverse the link. If success, 'nextlinkitem' points to the node, 'curpos'// +// and 'pos' are equal. Otherwise, return FALSE. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::link::locate(int pos) +{ + int headdist, taildist, curdist; + int abscurdist, mindist; + + if (pos < 1 || pos > linkitems) return false; + + headdist = pos - 1; + taildist = linkitems - pos; + curdist = pos - curpos; + abscurdist = curdist >= 0 ? curdist : -curdist; + + if (headdist > taildist) { + if (taildist > abscurdist) { + mindist = curdist; + } else { + // taildist <= abs(curdist) + mindist = -taildist; + goend(); + } + } else { + // headdist <= taildist + if (headdist > abscurdist) { + mindist = curdist; + } else { + // headdist <= abs(curdist) + mindist = headdist; + rewind(); + } + } + + return move(mindist); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// add() Add a node at the end of this link. // +// // +// A new node is appended to the end of the link. If 'newitem' is not NULL, // +// its conents will be copied to the data slot of the new node. Returns the // +// pointer to the newest added node. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::link::add(void* newitem) +{ + void **newnode = tail; + if (newitem != (void *) NULL) { + memcpy((void *)(newnode + 2), newitem, linkitembytes); + } + tail = (void **) alloc(); + *tail = NULL; + *newnode = (void*) tail; + *(tail + 1) = (void*) newnode; + linkitems++; + return (void *)(newnode + 2); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// insert() Inserts a node before the specified position. // +// // +// 'pos' (between 1 and 'linkitems') indicates the inserting position. This // +// routine inserts a new node before the node of 'pos'. If 'newitem' is not // +// NULL, its conents will be copied into the data slot of the new node. If // +// 'pos' is larger than 'linkitems', it is equal as 'add()'. A pointer to // +// the newest inserted item is returned. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::link::insert(int pos, void* insitem) +{ + if (!locate(pos)) { + return add(insitem); + } + + void **nownode = (void **) nextlinkitem; + + // Insert a node before 'nownode'. + void **newnode = (void **) alloc(); + if (insitem != (void *) NULL) { + memcpy((void *)(newnode + 2), insitem, linkitembytes); + } + + *(void **)(*(nownode + 1)) = (void *) newnode; + *newnode = (void *) nownode; + *(newnode + 1) = *(nownode + 1); + *(nownode + 1) = (void *) newnode; + + linkitems++; + + nextlinkitem = (void *) newnode; + return (void *)(newnode + 2); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// del() Delete a node containing the given pointer. // +// // +// Returns a pointer of the deleted data. If you try to delete a non-existed // +// node (e.g. link is empty or a wrong index is given) return NULL. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::link::del(void* delitem) +{ + void **deadnode = (void **) ((void **) delitem - 2); + + // now delete the nownode + void **nextnode = (void **) *deadnode; + void **prevnode = (void **) *(deadnode + 1); + *prevnode = (void *) nextnode; + *(nextnode + 1) = (void *) prevnode; + + dealloc((void *) deadnode); + linkitems--; + + nextlinkitem = (void *) nextnode; + return (void *)(deadnode + 2); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// del() Delete a node at the specified position. // +// // +// 'pos' between 1 and 'linkitems'. Returns a pointer of the deleted data. // +// If you try to delete a non-existed node (e.g. link is empty or a wrong // +// index is given) return NULL. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::link::del(int pos) +{ + if (!locate(pos) || (linkitems == 0)) { + return (void *) NULL; + } + return del((void *) ((void **) nextlinkitem + 2)); + /* + void **deadnode = (void **)nextlinkitem; + + // now delete the nownode + void **nextnode = (void **) *deadnode; + void **prevnode = (void **) *(deadnode + 1); + *prevnode = (void *) nextnode; + *(nextnode + 1) = (void *) prevnode; + + dealloc((void *) deadnode); + linkitems--; + + nextlinkitem = (void *) nextnode; + return (void *)(deadnode + 2); + */ +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getitem() The link traversal routine. // +// // +// Returns the node to which 'nextlinkitem' points. Returns a 'NULL' if the // +// end of the link is reaching. Both 'nextlinkitem' and 'curpos' will be // +// updated after this operation. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::link::getitem() +{ + if (nextlinkitem == (void *) tail) return NULL; + void **nownode = (void **) nextlinkitem; + nextlinkitem = *nownode; + curpos += 1; + return (void *)(nownode + 2); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getnitem() Returns the node at a specified position. // +// // +// 'pos' between 1 and 'linkitems'. After this operation, 'nextlinkitem' and // +// 'curpos' will be updated to indicate this node. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void* tetgenmesh::link::getnitem(int pos) +{ + if (!locate(pos)) return NULL; + return (void *)((void **) nextlinkitem + 2); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// hasitem() Search in this link to find if 'checkitem' exists. // +// // +// If 'checkitem' exists, return its position (between 1 to 'linkitems'), // +// otherwise, return -1. This routine requires the linear order function has // +// been set. // +// // +/////////////////////////////////////////////////////////////////////////////// + +int tetgenmesh::link::hasitem(void* checkitem) +{ + void *pathitem; + int count; + + rewind(); + pathitem = getitem(); + count = 0; + while (pathitem) { + count ++; + if (comp) { + if ((* comp)(pathitem, checkitem) == 0) { + return count; + } + } + pathitem = getitem(); + } + return -1; +} + +// +// End of class 'list', 'memorypool' and 'link' implementation +// + +// +// Begin of mesh manipulation primitives +// + +// +// Begin of tables initialization. +// + +// For enumerating three edges of a triangle. + +int tetgenmesh::plus1mod3[3] = {1, 2, 0}; +int tetgenmesh::minus1mod3[3] = {2, 0, 1}; + +// Table 've' takes an edge version as input, returns the next edge version +// in the same edge ring. + +int tetgenmesh::ve[6] = { 2, 5, 4, 1, 0, 3 }; + +// Tables 'vo', 'vd' and 'va' take an edge version, return the positions of +// the origin, destination and apex in the triangle. + +int tetgenmesh::vo[6] = { 0, 1, 1, 2, 2, 0 }; +int tetgenmesh::vd[6] = { 1, 0, 2, 1, 0, 2 }; +int tetgenmesh::va[6] = { 2, 2, 0, 0, 1, 1 }; + +// The following tables are for tetrahedron primitives (operate on trifaces). + +// For 'org()', 'dest()' and 'apex()'. Use 'loc' as the first index and +// 'ver' as the second index. + +int tetgenmesh::locver2org[4][6] = { + 0, 1, 1, 2, 2, 0, + 0, 3, 3, 1, 1, 0, + 1, 3, 3, 2, 2, 1, + 2, 3, 3, 0, 0, 2 +}; +int tetgenmesh::locver2dest[4][6] = { + 1, 0, 2, 1, 0, 2, + 3, 0, 1, 3, 0, 1, + 3, 1, 2, 3, 1, 2, + 3, 2, 0, 3, 2, 0 +}; +int tetgenmesh::locver2apex[4][6] = { + 2, 2, 0, 0, 1, 1, + 1, 1, 0, 0, 3, 3, + 2, 2, 1, 1, 3, 3, + 0, 0, 2, 2, 3, 3 +}; + +// For oppo() primitives, use 'loc' as the index. + +int tetgenmesh::loc2oppo[4] = { 3, 2, 0, 1 }; + +// For fnext() primitive. Use 'loc' as the first index and 'ver' as the +// second index. Returns a new 'loc' and new 'ver' in an array. (It is +// only valid for edge version equals one of {0, 2, 4}.) + +int tetgenmesh::locver2nextf[4][6][2] = { + { {1, 5}, {-1, -1}, {2, 5}, {-1, -1}, {3, 5}, {-1, -1} }, + { {3, 3}, {-1, -1}, {2, 1}, {-1, -1}, {0, 1}, {-1, -1} }, + { {1, 3}, {-1, -1}, {3, 1}, {-1, -1}, {0, 3}, {-1, -1} }, + { {2, 3}, {-1, -1}, {1, 1}, {-1, -1}, {0, 5}, {-1, -1} } +}; + +// +// End of tables initialization. +// + +// Some macros for convenience + +#define Div2 >> 1 +#define Mod2 & 01 + +// NOTE: These bit operators should only be used in macros below. + +// Get orient(Range from 0 to 2) from face version(Range from 0 to 5). + +#define Orient(V) ((V) Div2) + +// Determine edge ring(0 or 1) from face version(Range from 0 to 5). + +#define EdgeRing(V) ((V) Mod2) + +// +// Begin of primitives for tetrahedra +// + +// Each tetrahedron contains four pointers to its neighboring tetrahedra, +// with face indices. To save memory, both information are kept in a +// single pointer. To make this possible, all tetrahedra are aligned to +// eight-byte boundaries, so that the last three bits of each pointer are +// zeros. A face index (in the range 0 to 3) is compressed into the last +// two bits of each pointer by the function 'encode()'. The function +// 'decode()' decodes a pointer, extracting a face index and a pointer to +// the beginning of a tetrahedron. + +inline void tetgenmesh::decode(tetrahedron ptr, triface& t) { + t.loc = (int) ((unsigned long) (ptr) & (unsigned long) 3l); + t.tet = (tetrahedron *) ((unsigned long) (ptr) & ~(unsigned long) 7l); +} + +inline tetgenmesh::tetrahedron tetgenmesh::encode(triface& t) { + return (tetrahedron) ((unsigned long) t.tet | (unsigned long) t.loc); +} + +// sym() finds the abutting tetrahedron on the same face. + +inline void tetgenmesh::sym(triface& t1, triface& t2) { + tetrahedron ptr = t1.tet[t1.loc]; + decode(ptr, t2); +} + +inline void tetgenmesh::symself(triface& t) { + tetrahedron ptr = t.tet[t.loc]; + decode(ptr, t); +} + +// Bond two tetrahedra together at their faces. + +inline void tetgenmesh::bond(triface& t1, triface& t2) { + t1.tet[t1.loc] = encode(t2); + t2.tet[t2.loc] = encode(t1); +} + +// Dissolve a bond (from one side). Note that the other tetrahedron will +// still think it is connected to this tetrahedron. Usually, however, +// the other tetrahedron is being deleted entirely, or bonded to another +// tetrahedron, so it doesn't matter. + +inline void tetgenmesh::dissolve(triface& t) { + t.tet[t.loc] = (tetrahedron) dummytet; +} + +// These primitives determine or set the origin, destination, apex or +// opposition of a tetrahedron with respect to 'loc' and 'ver'. + +inline tetgenmesh::point tetgenmesh::org(triface& t) { + return (point) t.tet[locver2org[t.loc][t.ver] + 4]; +} + +inline tetgenmesh::point tetgenmesh::dest(triface& t) { + return (point) t.tet[locver2dest[t.loc][t.ver] + 4]; +} + +inline tetgenmesh::point tetgenmesh::apex(triface& t) { + return (point) t.tet[locver2apex[t.loc][t.ver] + 4]; +} + +inline tetgenmesh::point tetgenmesh::oppo(triface& t) { + return (point) t.tet[loc2oppo[t.loc] + 4]; +} + +inline void tetgenmesh::setorg(triface& t, point pointptr) { + t.tet[locver2org[t.loc][t.ver] + 4] = (tetrahedron) pointptr; +} + +inline void tetgenmesh::setdest(triface& t, point pointptr) { + t.tet[locver2dest[t.loc][t.ver] + 4] = (tetrahedron) pointptr; +} + +inline void tetgenmesh::setapex(triface& t, point pointptr) { + t.tet[locver2apex[t.loc][t.ver] + 4] = (tetrahedron) pointptr; +} + +inline void tetgenmesh::setoppo(triface& t, point pointptr) { + t.tet[loc2oppo[t.loc] + 4] = (tetrahedron) pointptr; +} + +// These primitives were drived from Mucke's triangle-edge data structure +// to change face-edge relation in a tetrahedron (esym, enext and enext2) +// or between two tetrahedra (fnext). + +// If e0 = e(i, j), e1 = e(j, i), that is e0 and e1 are the two directions +// of the same undirected edge of a face. e0.sym() = e1 and vice versa. + +inline void tetgenmesh::esym(triface& t1, triface& t2) { + t2.tet = t1.tet; + t2.loc = t1.loc; + t2.ver = t1.ver + (EdgeRing(t1.ver) ? -1 : 1); +} + +inline void tetgenmesh::esymself(triface& t) { + t.ver += (EdgeRing(t.ver) ? -1 : 1); +} + +// If e0 and e1 are both in the same edge ring of a face, e1 = e0.enext(). + +inline void tetgenmesh::enext(triface& t1, triface& t2) { + t2.tet = t1.tet; + t2.loc = t1.loc; + t2.ver = ve[t1.ver]; +} + +inline void tetgenmesh::enextself(triface& t) { + t.ver = ve[t.ver]; +} + +// enext2() is equal to e2 = e0.enext().enext() + +inline void tetgenmesh::enext2(triface& t1, triface& t2) { + t2.tet = t1.tet; + t2.loc = t1.loc; + t2.ver = ve[ve[t1.ver]]; +} + +inline void tetgenmesh::enext2self(triface& t) { + t.ver = ve[ve[t.ver]]; +} + +// If f0 and f1 are both in the same face ring of a face, f1 = f0.fnext(). +// If f1 exists, return true. Otherwise, return false, i.e., f0 is a +// boundary or hull face. + +inline bool tetgenmesh::fnext(triface& t1, triface& t2) { + return getnextface(&t1, &t2); +} + +inline bool tetgenmesh::fnextself(triface& t) { + return getnextface(&t, NULL); +} + +// enextfnext() and enext2fnext() are combination primitives of enext(), +// enext2() and fnext(). + +inline void tetgenmesh::enextfnext(triface& t1, triface& t2) { + enext(t1, t2); + fnextself(t2); +} + +inline void tetgenmesh::enextfnextself(triface& t) { + enextself(t); + fnextself(t); +} + +inline void tetgenmesh::enext2fnext(triface& t1, triface& t2) { + enext2(t1, t2); + fnextself(t2); +} + +inline void tetgenmesh::enext2fnextself(triface& t) { + enext2self(t); + fnextself(t); +} + +// Primitives to infect or cure a tetrahedron with the virus. The last +// third bit of the pointer is marked for infection. These rely on the +// assumption that all tetrahedron are aligned to eight-byte boundaries. + +inline void tetgenmesh::infect(triface& t) { + t.tet[0] = (tetrahedron) ((unsigned long) t.tet[0] | (unsigned long) 4l); +} + +inline void tetgenmesh::uninfect(triface& t) { + t.tet[0] = (tetrahedron) ((unsigned long) t.tet[0] & ~ (unsigned long) 4l); +} + +// Test a tetrahedron for viral infection. + +inline bool tetgenmesh::infected(triface& t) { + return (((unsigned long) t.tet[0] & (unsigned long) 4l) != 0); +} + +// Check or set a tetrahedron's attributes. + +inline REAL tetgenmesh::elemattribute(tetrahedron* ptr, int attnum) { + return ((REAL *) (ptr))[elemattribindex + attnum]; +} + +inline void tetgenmesh:: +setelemattribute(tetrahedron* ptr, int attnum, REAL value){ + ((REAL *) (ptr))[elemattribindex + attnum] = value; +} + +// Check or set a tetrahedron's maximum volume bound. + +inline REAL tetgenmesh::volumebound(tetrahedron* ptr) { + return ((REAL *) (ptr))[volumeboundindex]; +} + +inline void tetgenmesh::setvolumebound(tetrahedron* ptr, REAL value) { + ((REAL *) (ptr))[volumeboundindex] = value; +} + +// +// End of primitives for tetrahedra +// + +// +// Begin of primitives for subfaces/subsegments +// + +// Each subface contains three pointers to its neighboring subfaces, with +// edge versions. To save memory, both information are kept in a single +// pointer. To make this possible, all subfaces are aligned to eight-byte +// boundaries, so that the last three bits of each pointer are zeros. An +// edge version (in the range 0 to 5) is compressed into the last three +// bits of each pointer by 'sencode()'. 'sdecode()' decodes a pointer, +// extracting an edge version and a pointer to the beginning of a subface. + +inline void tetgenmesh::sdecode(shellface sptr, face& s) { + s.shver = (int) ((unsigned long) (sptr) & (unsigned long) 7l); + s.sh = (shellface *) ((unsigned long) (sptr) & ~ (unsigned long) 7l); +} + +inline tetgenmesh::shellface tetgenmesh::sencode(face& s) { + return (shellface) ((unsigned long) s.sh | (unsigned long) s.shver); +} + +// spivot() finds the other subface (from this subface) that shares the +// same edge. + +inline void tetgenmesh::spivot(face& s1, face& s2) { + shellface sptr = s1.sh[Orient(s1.shver)]; + sdecode(sptr, s2); +} + +inline void tetgenmesh::spivotself(face& s) { + shellface sptr = s.sh[Orient(s.shver)]; + sdecode(sptr, s); +} + +// sbond() bonds two subfaces together, i.e., after bonding, both faces +// are pointing to each other. + +inline void tetgenmesh::sbond(face& s1, face& s2) { + s1.sh[Orient(s1.shver)] = sencode(s2); + s2.sh[Orient(s2.shver)] = sencode(s1); +} + +// sbond1() only bonds s2 to s1, i.e., after bonding, s1 is pointing to s2, +// but s2 is not pointing to s1. + +inline void tetgenmesh::sbond1(face& s1, face& s2) { + s1.sh[Orient(s1.shver)] = sencode(s2); +} + +// Dissolve a subface bond (from one side). Note that the other subface +// will still think it's connected to this subface. + +inline void tetgenmesh::sdissolve(face& s) { + s.sh[Orient(s.shver)] = (shellface) dummysh; +} + +// These primitives determine or set the origin, destination, or apex +// of a subface with respect to the edge version. + +inline tetgenmesh::point tetgenmesh::sorg(face& s) { + return (point) s.sh[3 + vo[s.shver]]; +} + +inline tetgenmesh::point tetgenmesh::sdest(face& s) { + return (point) s.sh[3 + vd[s.shver]]; +} + +inline tetgenmesh::point tetgenmesh::sapex(face& s) { + return (point) s.sh[3 + va[s.shver]]; +} + +inline void tetgenmesh::setsorg(face& s, point pointptr) { + s.sh[3 + vo[s.shver]] = (shellface) pointptr; +} + +inline void tetgenmesh::setsdest(face& s, point pointptr) { + s.sh[3 + vd[s.shver]] = (shellface) pointptr; +} + +inline void tetgenmesh::setsapex(face& s, point pointptr) { + s.sh[3 + va[s.shver]] = (shellface) pointptr; +} + +// These primitives were drived from Mucke[2]'s triangle-edge data structure +// to change face-edge relation in a subface (sesym, senext and senext2). + +inline void tetgenmesh::sesym(face& s1, face& s2) { + s2.sh = s1.sh; + s2.shver = s1.shver + (EdgeRing(s1.shver) ? -1 : 1); +} + +inline void tetgenmesh::sesymself(face& s) { + s.shver += (EdgeRing(s.shver) ? -1 : 1); +} + +inline void tetgenmesh::senext(face& s1, face& s2) { + s2.sh = s1.sh; + s2.shver = ve[s1.shver]; +} + +inline void tetgenmesh::senextself(face& s) { + s.shver = ve[s.shver]; +} + +inline void tetgenmesh::senext2(face& s1, face& s2) { + s2.sh = s1.sh; + s2.shver = ve[ve[s1.shver]]; +} + +inline void tetgenmesh::senext2self(face& s) { + s.shver = ve[ve[s.shver]]; +} + +// If f0 and f1 are both in the same face ring, then f1 = f0.fnext(), + +inline void tetgenmesh::sfnext(face& s1, face& s2) { + getnextsface(&s1, &s2); +} + +inline void tetgenmesh::sfnextself(face& s) { + getnextsface(&s, NULL); +} + +// These primitives read or set a pointer of the badface structure. The +// pointer is stored sh[11]. + +inline tetgenmesh::badface* tetgenmesh::shell2badface(face& s) { + return (badface*) s.sh[11]; +} + +inline void tetgenmesh::setshell2badface(face& s, badface* value) { + s.sh[11] = (shellface) value; +} + +// Check or set a subface's maximum area bound. + +inline REAL tetgenmesh::areabound(face& s) { + return ((REAL *) (s.sh))[areaboundindex]; +} + +inline void tetgenmesh::setareabound(face& s, REAL value) { + ((REAL *) (s.sh))[areaboundindex] = value; +} + +// These primitives read or set a shell marker. Shell markers are used +// to hold user boundary information. + +inline int tetgenmesh::shellmark(face& s) { + return ((int *) (s.sh))[shmarkindex]; +} + +inline void tetgenmesh::setshellmark(face& s, int value) { + ((int *) (s.sh))[shmarkindex] = value; +} + +// These primitives set or read the type of the subface or subsegment. + +inline enum tetgenmesh::shestype tetgenmesh::shelltype(face& s) { + return (enum shestype) ((int *) (s.sh))[shmarkindex + 1]; +} + +inline void tetgenmesh::setshelltype(face& s, enum shestype value) { + ((int *) (s.sh))[shmarkindex + 1] = (int) value; +} + +// Primitives to infect or cure a subface with the virus. These rely on the +// assumption that all tetrahedra are aligned to eight-byte boundaries. + +inline void tetgenmesh::sinfect(face& s) { + s.sh[6] = (shellface) ((unsigned long) s.sh[6] | (unsigned long) 4l); +} + +inline void tetgenmesh::suninfect(face& s) { + s.sh[6] = (shellface)((unsigned long) s.sh[6] & ~(unsigned long) 4l); +} + +// Test a subface for viral infection. + +inline bool tetgenmesh::sinfected(face& s) { + return (((unsigned long) s.sh[6] & (unsigned long) 4l) != 0); +} + +// +// End of primitives for subfaces/subsegments +// + +// +// Begin of primitives for interacting between tetrahedra and subfaces +// + +// tspivot() finds a subface abutting on this tetrahdera. + +inline void tetgenmesh::tspivot(triface& t, face& s) { + shellface sptr = (shellface) t.tet[8 + t.loc]; + sdecode(sptr, s); +} + +// stpivot() finds a tetrahedron abutting a subface. + +inline void tetgenmesh::stpivot(face& s, triface& t) { + tetrahedron ptr = (tetrahedron) s.sh[6 + EdgeRing(s.shver)]; + decode(ptr, t); +} + +// tsbond() bond a tetrahedron to a subface. + +inline void tetgenmesh::tsbond(triface& t, face& s) { + t.tet[8 + t.loc] = (tetrahedron) sencode(s); + s.sh[6 + EdgeRing(s.shver)] = (shellface) encode(t); +} + +// tsdissolve() dissolve a bond (from the tetrahedron side). + +inline void tetgenmesh::tsdissolve(triface& t) { + t.tet[8 + t.loc] = (tetrahedron) dummysh; +} + +// stdissolve() dissolve a bond (from the subface side). + +inline void tetgenmesh::stdissolve(face& s) { + s.sh[6 + EdgeRing(s.shver)] = (shellface) dummytet; +} + +// +// End of primitives for interacting between tetrahedra and subfaces +// + +// +// Begin of primitives for interacting between subfaces and subsegs +// + +// sspivot() finds a subsegment abutting a subface. + +inline void tetgenmesh::sspivot(face& s, face& edge) { + shellface sptr = (shellface) s.sh[8 + Orient(s.shver)]; + sdecode(sptr, edge); +} + +// ssbond() bond a subface to a subsegment. + +inline void tetgenmesh::ssbond(face& s, face& edge) { + s.sh[8 + Orient(s.shver)] = sencode(edge); + edge.sh[0] = sencode(s); +} + +// ssdisolve() dissolve a bond (from the subface side) + +inline void tetgenmesh::ssdissolve(face& s) { + s.sh[8 + Orient(s.shver)] = (shellface) dummysh; +} + +// +// End of primitives for interacting between subfaces and subsegs +// + +// +// Begin of primitives for points +// + +inline int tetgenmesh::pointmark(point pt) { + return ((int *) (pt))[pointmarkindex]; +} + +inline void tetgenmesh::setpointmark(point pt, int value) { + ((int *) (pt))[pointmarkindex] = value; +} + +// These two primitives set and read the type of the point. + +inline enum tetgenmesh::verttype tetgenmesh::pointtype(point pt) { + return (enum verttype) ((int *) (pt))[pointmarkindex + 1]; +} + +inline void tetgenmesh::setpointtype(point pt, enum verttype value) { + ((int *) (pt))[pointmarkindex + 1] = (int) value; +} + +// These two primitives set and read a pointer to a tetrahedron. + +inline tetgenmesh::tetrahedron tetgenmesh::point2tet(point pt) { + return ((tetrahedron *) (pt))[point2simindex]; +} + +inline void tetgenmesh::setpoint2tet(point pt, tetrahedron value) { + ((tetrahedron *) (pt))[point2simindex] = value; +} + +// These two primitives set and read a pointer to a subface/subsegment. +// Note: they use the same field as the above. Don't use them together. + +inline tetgenmesh::shellface tetgenmesh::point2sh(point pt) { + return (shellface) ((tetrahedron *) (pt))[point2simindex]; +} + +inline void tetgenmesh::setpoint2sh(point pt, shellface value) { + ((tetrahedron *) (pt))[point2simindex] = (tetrahedron) value; +} + +// These two primitives set and read a pointer to a point. +// Note: they use the same field as the above. Don't use them together. + +inline tetgenmesh::point tetgenmesh::point2pt(point pt) { + return (point) ((tetrahedron *) (pt))[point2simindex]; +} + +inline void tetgenmesh::setpoint2pt(point pt, point value) { + ((tetrahedron *) (pt))[point2simindex] = (tetrahedron) value; +} + +// These primitives set and read a pointer to its parent point. They're used +// only in qulaity conforming Delaunay mesh algorithm. + +inline tetgenmesh::point tetgenmesh::point2ppt(point pt) { + return (point) ((tetrahedron *) (pt))[point2simindex + 1]; +} + +inline void tetgenmesh::setpoint2ppt(point pt, point value) { + ((tetrahedron *) (pt))[point2simindex + 1] = (tetrahedron) value; +} + +// Get the pre-calculated lifting point of a facet (specified by its mark). + +inline tetgenmesh::point tetgenmesh::getliftpoint(int facetmark) { + return (point) &liftpointarray[(facetmark - 1) * 3]; +} + +// +// End of primitives for points +// + +// +// Begin of advanced primitives +// + +// adjustedgering() adjusts the edge version so that it belongs to the +// indicated edge ring. The 'direction' only can be 0(CCW) or 1(CW). +// If the edge is not in the wanted edge ring, reverse it. + +inline void tetgenmesh::adjustedgering(triface& t, int direction) { + if (EdgeRing(t.ver) != direction) { + esymself(t); + } +} + +inline void tetgenmesh::adjustedgering(face& s, int direction) { + if (EdgeRing(s.shver) != direction) { + sesymself(s); + } +} + +// isdead() returns TRUE if the tetrahedron or subface has been dealloced. + +inline bool tetgenmesh::isdead(triface* t) { + if (t->tet == (tetrahedron *) NULL) return true; + else return t->tet[4] == (tetrahedron) NULL; +} + +inline bool tetgenmesh::isdead(face* s) { + if (s->sh == (shellface *) NULL) return true; + else return s->sh[3] == (shellface) NULL; +} + +// isfacehaspoint() returns TRUE if the 'testpoint' is one of the vertices +// of the subface 's'. + +inline bool tetgenmesh::isfacehaspoint(face* s, point testpoint) { + return (s->sh[3] == (shellface) testpoint) || + (s->sh[4] == (shellface) testpoint) || + (s->sh[5] == (shellface) testpoint); +} + +// isfacehasedge() returns TRUE if the edge (given by its two endpoints) is +// one of the three edges of the subface 's'. + +inline bool tetgenmesh::isfacehasedge(face* s, point tend1, point tend2) { + return (isfacehaspoint(s, tend1) && isfacehaspoint(s, tend2)); +} + +// issymexist() returns TRUE if the adjoining tetrahedron is not 'duumytet'. + +inline bool tetgenmesh::issymexist(triface* t) { + tetrahedron *ptr = (tetrahedron *) + ((unsigned long)(t->tet[t->loc]) & ~(unsigned long)7l); + return ptr != dummytet; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getnextface() Get the successor of 'tface1' in the face ring. // +// // +// If 'tface1' is not a boundary (or hull) face, then its successor in the // +// face ring exists. The successor is returned in 'tface2' if it is not a // +// NULL, or the 'tface1' itself is used to return this face. On finish, the // +// function returns TRUE. // +// // +// If 'tface1' is a boundary (or hull) face, its successor does not exist. // +// This case, return FALSE and 'tface1' remains unchanged. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::getnextface(triface* tface1, triface* tface2) +{ + point torg, tdest; + int tloc, tver; + + // Where the next face locates, in 'tface1' or in its neigbhour? It can be + // quickly determined by checking the edge ring of 'tface1'. + if (EdgeRing(tface1->ver) == CW) { + // The next face is in the neigbhour of 'tface1'. + if (!issymexist(tface1)) { + // Hit outer space - The next face does not exist. + return false; + } + torg = org(*tface1); + tdest = dest(*tface1); + if (tface2) { + sym(*tface1, *tface2); + findedge(tface2, torg, tdest); + } else { + symself(*tface1); + findedge(tface1, torg, tdest); + } + } else { + // The next face is in 'tface1'. + if (tface2) { + *tface2 = *tface1; + } + } + + if (tface2) { + tloc = tface2->loc; + tver = tface2->ver; + tface2->loc = locver2nextf[tloc][tver][0]; + tface2->ver = locver2nextf[tloc][tver][1]; + } else { + tloc = tface1->loc; + tver = tface1->ver; + tface1->loc = locver2nextf[tloc][tver][0]; + tface1->ver = locver2nextf[tloc][tver][1]; + } + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getnextsface() Finds the next subface in the face ring. // +// // +// For saving space in the data structure of subface, there only exists one // +// face ring around a segment (see programming manual). This routine imple- // +// ments the double face ring as desired in Muecke's data structure. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::getnextsface(face* s1, face* s2) +{ + face neighsh, spinsh; + face testseg; + + sspivot(*s1, testseg); + if (testseg.sh != dummysh) { + testseg.shver = 0; + if (sorg(testseg) == sorg(*s1)) { + spivot(*s1, neighsh); + } else { + spinsh = *s1; + do { + neighsh = spinsh; + spivotself(spinsh); + } while (spinsh.sh != s1->sh); + } + } else { + spivot(*s1, neighsh); + } + if (sorg(neighsh) != sorg(*s1)) { + sesymself(neighsh); + } + if (s2 != (face *) NULL) { + *s2 = neighsh; + } else { + *s1 = neighsh; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tsspivot() Finds a subsegment abutting on a tetrahderon's edge. // +// // +// The edge is represented in the primary edge of 'checkedge'. If there is a // +// subsegment bonded at this edge, it is returned in handle 'checkseg', the // +// edge direction of 'checkseg' is conformed to 'checkedge'. If there isn't, // +// set 'checkseg.sh = dummysh' to indicate it is not a subsegment. // +// // +// To find whether an edge of a tetrahedron is a subsegment or not. First we // +// need find a subface around this edge to see if it contains a subsegment. // +// The reason is there is no direct connection between a tetrahedron and its // +// adjoining subsegments. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::tsspivot(triface* checkedge, face* checkseg) +{ + triface spintet; + face parentsh; + point tapex; + int hitbdry; + + spintet = *checkedge; + tapex = apex(*checkedge); + hitbdry = 0; + do { + tspivot(spintet, parentsh); + if (parentsh.sh != dummysh) { + // Find a subface! + findedge(&parentsh, org(*checkedge), dest(*checkedge)); + sspivot(parentsh, *checkseg); + if (checkseg->sh != dummysh) { + // Find a subsegment! Correct its edge direction before return. + if (sorg(*checkseg) != sorg(parentsh)) { + sesymself(*checkseg); + } + } + return; + } + if (!fnextself(spintet)) { + hitbdry++; + if (hitbdry < 2) { + esym(*checkedge, spintet); + if (!fnextself(spintet)) { + hitbdry++; + } + } + } + } while ((apex(spintet) != tapex) && (hitbdry < 2)); + // Not find. + checkseg->sh = dummysh; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// sstpivot() Finds a tetrahedron abutting a subsegment. // +// // +// This is the inverse operation of 'tsspivot()'. One subsegment shared by // +// arbitrary number of tetrahedron, the returned tetrahedron is not unique. // +// The edge direction of the returned tetrahedron is conformed to the given // +// subsegment. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::sstpivot(face* checkseg, triface* retedge) +{ + face parentsh; + + // Get the subface which holds the subsegment. + sdecode(checkseg->sh[0], parentsh); + assert(parentsh.sh != dummysh); + // Get a tetraheron to which the subface attches. + stpivot(parentsh, *retedge); + if (retedge->tet == dummytet) { + sesymself(parentsh); + stpivot(parentsh, *retedge); + assert(retedge->tet != dummytet); + } + // Correct the edge direction before return. + findedge(retedge, sorg(*checkseg), sdest(*checkseg)); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// findorg() Finds a point in the given handle (tetrahedron or subface). // +// // +// If 'dorg' is a one of vertices of the given handle, set the origin of // +// this handle be that point and return TRUE. Otherwise, return FALSE and // +// 'tface' remains unchanged. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::findorg(triface* tface, point dorg) +{ + if (org(*tface) == dorg) { + return true; + } else { + if (dest(*tface) == dorg) { + enextself(*tface); + return true; + } else { + if (apex(*tface) == dorg) { + enext2self(*tface); + return true; + } else { + if (oppo(*tface) == dorg) { + // Keep 'tface' referring to the same tet after fnext(). + adjustedgering(*tface, CCW); + fnextself(*tface); + enext2self(*tface); + return true; + } + } + } + } + return false; +} + +bool tetgenmesh::findorg(face* sface, point dorg) +{ + if (sorg(*sface) == dorg) { + return true; + } else { + if (sdest(*sface) == dorg) { + senextself(*sface); + return true; + } else { + if (sapex(*sface) == dorg) { + senext2self(*sface); + return true; + } + } + } + return false; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// findedge() Find an edge in the given handle (tetrahedron or subface). // +// // +// The edge is given in two points 'eorg' and 'edest'. It is assumed that // +// the edge must exist in the given handle (tetrahedron or subface). This // +// routine sets the right edge version for the input handle. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::findedge(triface* tface, point eorg, point edest) +{ + int i; + + for (i = 0; i < 3; i++) { + if (org(*tface) == eorg) { + if (dest(*tface) == edest) { + // Edge is found, return. + return; + } + } else { + if (org(*tface) == edest) { + if (dest(*tface) == eorg) { + // Edge is found, but need to inverse the direction. + esymself(*tface); + return; + } + } + } + enextself(*tface); + } + // It should not be here. + assert(i < 3); +} + +void tetgenmesh::findedge(face* sface, point eorg, point edest) +{ + int i; + + for (i = 0; i < 3; i++) { + if (sorg(*sface) == eorg) { + if (sdest(*sface) == edest) { + // Edge is found, return. + return; + } + } else { + if (sorg(*sface) == edest) { + if (sdest(*sface) == eorg) { + // Edge is found, but need to inverse the direction. + sesymself(*sface); + return; + } + } + } + senextself(*sface); + } + // It should not be here. + assert(i < 3); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// findface() Find the face has the given origin, destination and apex. // +// // +// On input, 'fface' is a handle which may contain the three corners or may // +// not or may be dead. On return, it represents exactly the face with the // +// given origin, destination and apex. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::findface(triface *fface, point forg, point fdest, point fapex) +{ + triface spintet; + enum finddirectionresult collinear; + int hitbdry; + + if (!isdead(fface)) { + // First check the easiest case, that 'fface' is just the right one. + if (org(*fface) == forg && dest(*fface) == fdest && + apex(*fface) == fapex) return; + } else { + // The input handle is dead, use the 'recenttet' if it is alive. + if (!isdead(&recenttet)) *fface = recenttet; + } + + if (!isdead(fface)) { + if (!findorg(fface, forg)) { + // 'forg' is not a corner of 'fface', locate it. + preciselocate(forg, fface); + } + // It is possible that forg is not found in a non-convex mesh. + if (org(*fface) == forg) { + collinear = finddirection(fface, fdest); + if (collinear == RIGHTCOLLINEAR) { + // fdest is just the destination. + } else if (collinear == LEFTCOLLINEAR) { + enext2self(*fface); + esymself(*fface); + } else if (collinear == TOPCOLLINEAR) { + fnextself(*fface); + enext2self(*fface); + esymself(*fface); + } + } + // It is possible taht fdest is not found in a non-convex mesh. + if ((org(*fface) == forg) && (dest(*fface) == fdest)) { + // Find the apex of 'fapex'. + spintet = *fface; + hitbdry = 0; + do { + if (apex(spintet) == fapex) { + // We have done. Be careful the edge direction of 'spintet', + // it may reversed because of hitting boundary once. + if (org(spintet) != org(*fface)) { + esymself(spintet); + } + *fface = spintet; + return; + } + if (!fnextself(spintet)) { + hitbdry ++; + if (hitbdry < 2) { + esym(*fface, spintet); + if (!fnextself(spintet)) { + hitbdry ++; + } + } + } + } while (hitbdry < 2 && apex(spintet) != apex(*fface)); + // It is possible that fapex is not found in a non-convex mesh. + } + } + + if (isdead(fface) || (org(*fface) != forg) || (dest(*fface) != fdest) || + (apex(*fface) != fapex)) { + // Too bad, the input handle is useless. We have to find a handle + // for 'fface' contains the 'forg' and 'fdest'. Here a brute force + // search is performed. + if (b->verbose > 1) { + printf("Warning in findface(): Perform a brute-force searching.\n"); + } + enum verttype forgty, fdestty, fapexty; + int share, i; + forgty = pointtype(forg); + fdestty = pointtype(fdest); + fapexty = pointtype(fapex); + setpointtype(forg, DEADVERTEX); + setpointtype(fdest, DEADVERTEX); + setpointtype(fapex, DEADVERTEX); + tetrahedrons->traversalinit(); + fface->tet = tetrahedrontraverse(); + while (fface->tet != (tetrahedron *) NULL) { + share = 0; + for (i = 0; i < 4; i++) { + if (pointtype((point) fface->tet[4 + i]) == DEADVERTEX) share ++; + } + if (share == 3) { + // Found! Set the correct face and desired corners. + if (pointtype((point) fface->tet[4]) != DEADVERTEX) { + fface->loc = 2; + } else if (pointtype((point) fface->tet[5]) != DEADVERTEX) { + fface->loc = 3; + } else if (pointtype((point) fface->tet[6]) != DEADVERTEX) { + fface->loc = 1; + } else { // pointtype((point) fface->tet[7]) != DEADVERTEX + fface->loc = 0; + } + findedge(fface, forg, fdest); + break; + } + fface->tet = tetrahedrontraverse(); + } + setpointtype(forg, forgty); + setpointtype(fdest, fdestty); + setpointtype(fapex, fapexty); + if (fface->tet == (tetrahedron *) NULL) { + // It is impossible to reach here. + printf("Internal error: Fail to find the indicated face.\n"); + internalerror(); + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getonextseg() Get the next SEGMENT counterclockwise with the same org. // +// // +// 's' is a subface. This routine reteuns the segment which is counterclock- // +// wise with the origin of s. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::getonextseg(face* s, face* lseg) +{ + face checksh, checkseg; + point forg; + + forg = sorg(*s); + checksh = *s; + do { + // Go to the edge at forg's left side. + senext2self(checksh); + // Check if there is a segment attaching this edge. + sspivot(checksh, checkseg); + if (checkseg.sh != dummysh) break; + // No segment! Go to the neighbor of this subface. + spivotself(checksh); + // It should always meet a segment before come back. + assert(checksh.sh != s->sh); + if (sorg(checksh) != forg) { + sesymself(checksh); + assert(sorg(checksh) == forg); + } + } while (true); + assert(checkseg.sh != dummysh); + if (sorg(checkseg) != forg) sesymself(checkseg); + *lseg = checkseg; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getseghasorg() Get the segment containing the given point. // +// // +// On input we know 'dorg' is an endpoint of the segment containing 'sseg'. // +// This routine search along 'sseg' for the vertex 'dorg'. On return, 'sseg' // +// contains 'dorg' as its origin. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::getseghasorg(face* sseg, point dorg) +{ + face nextseg; + point checkpt; + + nextseg = *sseg; + checkpt = sorg(nextseg); + while ((checkpt != dorg) && (pointtype(checkpt) == FREESEGVERTEX)) { + // Search dorg along the original direction of sseg. + senext2self(nextseg); + spivotself(nextseg); + nextseg.shver = 0; + if (sdest(nextseg) != checkpt) sesymself(nextseg); + checkpt = sorg(nextseg); + } + if (checkpt == dorg) { + *sseg = nextseg; + return; + } + nextseg = *sseg; + checkpt = sdest(nextseg); + while ((checkpt != dorg) && (pointtype(checkpt) == FREESEGVERTEX)) { + // Search dorg along the destinational direction of sseg. + senextself(nextseg); + spivotself(nextseg); + nextseg.shver = 0; + if (sorg(nextseg) != checkpt) sesymself(nextseg); + checkpt = sdest(nextseg); + } + if (checkpt == dorg) { + sesym(nextseg, *sseg); + return; + } + // Should not be here. + assert(0); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getsubsegfarorg() Get the origin of the parent segment of a subseg. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::point tetgenmesh::getsubsegfarorg(face* sseg) +{ + face prevseg; + point checkpt; + + checkpt = sorg(*sseg); + senext2(*sseg, prevseg); + spivotself(prevseg); + // Search dorg along the original direction of sseg. + while (prevseg.sh != dummysh) { + prevseg.shver = 0; + if (sdest(prevseg) != checkpt) sesymself(prevseg); + checkpt = sorg(prevseg); + senext2self(prevseg); + spivotself(prevseg); + } + return checkpt; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getsubsegfardest() Get the dest. of the parent segment of a subseg. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::point tetgenmesh::getsubsegfardest(face* sseg) +{ + face nextseg; + point checkpt; + + checkpt = sdest(*sseg); + senext(*sseg, nextseg); + spivotself(nextseg); + // Search dorg along the destinational direction of sseg. + while (nextseg.sh != dummysh) { + nextseg.shver = 0; + if (sorg(nextseg) != checkpt) sesymself(nextseg); + checkpt = sdest(nextseg); + senextself(nextseg); + spivotself(nextseg); + } + return checkpt; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// printtet() Print out the details of a tetrahedron on screen. // +// // +// It's also used when the highest level of verbosity (`-VVV') is specified. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::printtet(triface* tface) +{ + triface tmpface, prtface; + point tmppt; + face tmpsh; + int facecount; + + printf("Tetra x%lx with loc(%i) and ver(%i):", + (unsigned long)(tface->tet), tface->loc, tface->ver); + if (infected(*tface)) { + printf(" (infected)"); + } + printf("\n"); + + tmpface = *tface; + facecount = 0; + while(facecount < 4) { + tmpface.loc = facecount; + sym(tmpface, prtface); + if(prtface.tet == dummytet) { + printf(" [%i] Outer space.\n", facecount); + } else { + printf(" [%i] x%lx loc(%i).", facecount, + (unsigned long)(prtface.tet), prtface.loc); + if (infected(prtface)) { + printf(" (infected)"); + } + printf("\n"); + } + facecount ++; + } + + tmppt = org(*tface); + if(tmppt == (point) NULL) { + printf(" Org [%i] NULL\n", locver2org[tface->loc][tface->ver]); + } else { + printf(" Org [%i] x%lx (%.12g,%.12g,%.12g) %d\n", + locver2org[tface->loc][tface->ver], (unsigned long)(tmppt), + tmppt[0], tmppt[1], tmppt[2], pointmark(tmppt)); + } + tmppt = dest(*tface); + if(tmppt == (point) NULL) { + printf(" Dest[%i] NULL\n", locver2dest[tface->loc][tface->ver]); + } else { + printf(" Dest[%i] x%lx (%.12g,%.12g,%.12g) %d\n", + locver2dest[tface->loc][tface->ver], (unsigned long)(tmppt), + tmppt[0], tmppt[1], tmppt[2], pointmark(tmppt)); + } + tmppt = apex(*tface); + if(tmppt == (point) NULL) { + printf(" Apex[%i] NULL\n", locver2apex[tface->loc][tface->ver]); + } else { + printf(" Apex[%i] x%lx (%.12g,%.12g,%.12g) %d\n", + locver2apex[tface->loc][tface->ver], (unsigned long)(tmppt), + tmppt[0], tmppt[1], tmppt[2], pointmark(tmppt)); + } + tmppt = oppo(*tface); + if(tmppt == (point) NULL) { + printf(" Oppo[%i] NULL\n", loc2oppo[tface->loc]); + } else { + printf(" Oppo[%i] x%lx (%.12g,%.12g,%.12g) %d\n", + loc2oppo[tface->loc], (unsigned long)(tmppt), + tmppt[0], tmppt[1], tmppt[2], pointmark(tmppt)); + } + + if (b->useshelles) { + tmpface = *tface; + facecount = 0; + while(facecount < 4) { + tmpface.loc = facecount; + tspivot(tmpface, tmpsh); + if(tmpsh.sh != dummysh) { + printf(" [%i] x%lx ID(%i).\n", facecount, + (unsigned long)(tmpsh.sh), shellmark(tmpsh)); + } + facecount ++; + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// printsh() Print out the details of a subface or subsegment on screen. // +// // +// It's also used when the highest level of verbosity (`-VVV') is specified. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::printsh(face* sface) +{ + face prtsh; + triface prttet; + point printpoint; + + if (sapex(*sface) != NULL) { + printf("subface x%lx, ver %d, mark %d:", + (unsigned long)(sface->sh), sface->shver, shellmark(*sface)); + } else { + printf("Subsegment x%lx, ver %d, mark %d:", + (unsigned long)(sface->sh), sface->shver, shellmark(*sface)); + } + if (sinfected(*sface)) { + printf(" (infected)"); + } + if (shell2badface(*sface)) { + printf(" (queued)"); + } + if (sapex(*sface) != NULL) { + if (shelltype(*sface) == PROTCYLSUBFACE) { + printf(" (cyls)"); + } else if (shelltype(*sface) == PROTSPHSUBFACE) { + printf(" (sphs)"); + } + } else { + if (shelltype(*sface) == SHARPSEGMENT) { + printf(" (sharp)"); + } else if (shelltype(*sface) == PROTCYLSEGMENT) { + printf(" (cyls)"); + } else if (shelltype(*sface) == PROTSPHSEGMENT) { + printf(" (sphs)"); + } + } + printf("\n"); + + sdecode(sface->sh[0], prtsh); + if (prtsh.sh == dummysh) { + printf(" [0] = No shell\n"); + } else { + printf(" [0] = x%lx %d\n", (unsigned long)(prtsh.sh), prtsh.shver); + } + sdecode(sface->sh[1], prtsh); + if (prtsh.sh == dummysh) { + printf(" [1] = No shell\n"); + } else { + printf(" [1] = x%lx %d\n", (unsigned long)(prtsh.sh), prtsh.shver); + } + sdecode(sface->sh[2], prtsh); + if (prtsh.sh == dummysh) { + printf(" [2] = No shell\n"); + } else { + printf(" [2] = x%lx %d\n", (unsigned long)(prtsh.sh), prtsh.shver); + } + + printpoint = sorg(*sface); + if (printpoint == (point) NULL) + printf(" Org [%d] = NULL\n", vo[sface->shver]); + else + printf(" Org [%d] = x%lx (%.12g,%.12g,%.12g) %d\n", + vo[sface->shver], (unsigned long)(printpoint), printpoint[0], + printpoint[1], printpoint[2], pointmark(printpoint)); + printpoint = sdest(*sface); + if (printpoint == (point) NULL) + printf(" Dest[%d] = NULL\n", vd[sface->shver]); + else + printf(" Dest[%d] = x%lx (%.12g,%.12g,%.12g) %d\n", + vd[sface->shver], (unsigned long)(printpoint), printpoint[0], + printpoint[1], printpoint[2], pointmark(printpoint)); + + if (sapex(*sface) != NULL) { + printpoint = sapex(*sface); + if (printpoint == (point) NULL) + printf(" Apex[%d] = NULL\n", va[sface->shver]); + else + printf(" Apex[%d] = x%lx (%.12g,%.12g,%.12g) %d\n", + va[sface->shver], (unsigned long)(printpoint), printpoint[0], + printpoint[1], printpoint[2], pointmark(printpoint)); + + decode(sface->sh[6], prttet); + if (prttet.tet == dummytet) { + printf(" [6] = Outer space\n"); + } else { + printf(" [6] = x%lx %d\n", + (unsigned long)(prttet.tet), prttet.loc); + } + decode(sface->sh[7], prttet); + if (prttet.tet == dummytet) { + printf(" [7] = Outer space\n"); + } else { + printf(" [7] = x%lx %d\n", + (unsigned long)(prttet.tet), prttet.loc); + } + + sdecode(sface->sh[8], prtsh); + if (prtsh.sh == dummysh) { + printf(" [8] = No subsegment\n"); + } else { + printf(" [8] = x%lx %d\n", + (unsigned long)(prtsh.sh), prtsh.shver); + } + sdecode(sface->sh[9], prtsh); + if (prtsh.sh == dummysh) { + printf(" [9] = No subsegment\n"); + } else { + printf(" [9] = x%lx %d\n", + (unsigned long)(prtsh.sh), prtsh.shver); + } + sdecode(sface->sh[10], prtsh); + if (prtsh.sh == dummysh) { + printf(" [10]= No subsegment\n"); + } else { + printf(" [10]= x%lx %d\n", + (unsigned long)(prtsh.sh), prtsh.shver); + } + } +} + +// +// End of advanced primitives +// + +// +// End of mesh manipulation primitives +// + +// +// Begin of mesh items searching routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// makepoint2tetmap() Construct a mapping from points to tetrahedra. // +// // +// Traverses all the tetrahedra, provides each corner of each tetrahedron // +// with a pointer to that tetrahedera. Some pointers will be overwritten by // +// other pointers because each point may be a corner of several tetrahedra, // +// but in the end every point will point to a tetrahedron that contains it. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::makepoint2tetmap() +{ + triface tetloop; + point pointptr; + + if (b->verbose) { + printf(" Constructing mapping from points to tetrahedra.\n"); + } + + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + // Check all four points of the tetrahedron. + pointptr = org(tetloop); + setpoint2tet(pointptr, encode(tetloop)); + pointptr = dest(tetloop); + setpoint2tet(pointptr, encode(tetloop)); + pointptr = apex(tetloop); + setpoint2tet(pointptr, encode(tetloop)); + pointptr = oppo(tetloop); + setpoint2tet(pointptr, encode(tetloop)); + // Get the next tetrahedron in the list. + tetloop.tet = tetrahedrontraverse(); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// makeindex2pointmap() Create a map from index to vertices. // +// // +// 'idx2verlist' returns the created map. Traverse all vertices, a pointer // +// to each vertex is set into the array. The pointer to the first vertex is // +// saved in 'idx2verlist[0]'. Don't forget to minus 'in->firstnumber' when // +// to get the vertex form its index. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::makeindex2pointmap(point*& idx2verlist) +{ + point pointloop; + int idx; + + if (b->verbose) { + printf(" Constructing mapping from indices to points.\n"); + } + + idx2verlist = new point[points->items]; + + points->traversalinit(); + pointloop = pointtraverse(); + idx = 0; + while (pointloop != (point) NULL) { + idx2verlist[idx] = pointloop; + idx++; + pointloop = pointtraverse(); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// makesegmentmap() Create a map from vertices (their indices) to // +// segments incident at the same vertices. // +// // +// Two arrays 'idx2seglist' and 'segsperverlist' together return the map. // +// They form a sparse matrix structure with size (n + 1) x (n + 1), n is the // +// number of segments. idx2seglist contains row information and // +// segsperverlist contains all (non-zero) elements. The i-th entry of // +// idx2seglist is the starting position of i-th row's (non-zero) elements in // +// segsperverlist. The number of elements of i-th row is calculated by the // +// (i+1)-th entry minus i-th entry of idx2seglist. // +// // +// NOTE: These two arrays will be created inside this routine, don't forget // +// to free them after using. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +makesegmentmap(int*& idx2seglist, shellface**& segsperverlist) +{ + shellface *shloop; + int i, j, k; + + if (b->verbose) { + printf(" Constructing mapping from points to segments.\n"); + } + + // Create and initialize 'idx2seglist'. + idx2seglist = new int[points->items + 1]; + for (i = 0; i < points->items + 1; i++) { + idx2seglist[i] = 0; + } + + // Loop the set of segments once, counter the number of segments sharing + // each vertex. + subsegs->traversalinit(); + shloop = shellfacetraverse(subsegs); + while (shloop != (shellface *) NULL) { + // Increment the number of sharing segments for each endpoint. + for (i = 0; i < 2; i++) { + j = pointmark((point) shloop[3 + i]) - in->firstnumber; + idx2seglist[j]++; + } + shloop = shellfacetraverse(subsegs); + } + + // Calculate the total length of array 'facesperverlist'. + j = idx2seglist[0]; + idx2seglist[0] = 0; // Array starts from 0 element. + for (i = 0; i < points->items; i++) { + k = idx2seglist[i + 1]; + idx2seglist[i + 1] = idx2seglist[i] + j; + j = k; + } + // The total length is in the last unit of idx2seglist. + segsperverlist = new shellface*[idx2seglist[i]]; + // Loop the set of segments again, set the info. of segments per vertex. + subsegs->traversalinit(); + shloop = shellfacetraverse(subsegs); + while (shloop != (shellface *) NULL) { + for (i = 0; i < 2; i++) { + j = pointmark((point) shloop[3 + i]) - in->firstnumber; + segsperverlist[idx2seglist[j]] = shloop; + idx2seglist[j]++; + } + shloop = shellfacetraverse(subsegs); + } + // Contents in 'idx2seglist' are shifted, now shift them back. + for (i = points->items - 1; i >= 0; i--) { + idx2seglist[i + 1] = idx2seglist[i]; + } + idx2seglist[0] = 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// makesubfacemap() Create a map from vertices (their indices) to // +// subfaces incident at the same vertices. // +// // +// Two arrays 'idx2facelist' and 'facesperverlist' together return the map. // +// They form a sparse matrix structure with size (n + 1) x (n + 1), n is the // +// number of subfaces. idx2facelist contains row information and // +// facesperverlist contains all (non-zero) elements. The i-th entry of // +// idx2facelist is the starting position of i-th row's(non-zero) elements in // +// facesperverlist. The number of elements of i-th row is calculated by the // +// (i+1)-th entry minus i-th entry of idx2facelist. // +// // +// NOTE: These two arrays will be created inside this routine, don't forget // +// to free them after using. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +makesubfacemap(int*& idx2facelist, shellface**& facesperverlist) +{ + shellface *shloop; + int i, j, k; + + if (b->verbose) { + printf(" Constructing mapping from points to subfaces.\n"); + } + + // Create and initialize 'idx2facelist'. + idx2facelist = new int[points->items + 1]; + for (i = 0; i < points->items + 1; i++) { + idx2facelist[i] = 0; + } + + // Loop the set of subfaces once, counter the number of subfaces sharing + // each vertex. + subfaces->traversalinit(); + shloop = shellfacetraverse(subfaces); + while (shloop != (shellface *) NULL) { + // Increment the number of sharing segments for each endpoint. + for (i = 0; i < 3; i++) { + j = pointmark((point) shloop[3 + i]) - in->firstnumber; + idx2facelist[j]++; + } + shloop = shellfacetraverse(subfaces); + } + + // Calculate the total length of array 'facesperverlist'. + j = idx2facelist[0]; + idx2facelist[0] = 0; // Array starts from 0 element. + for (i = 0; i < points->items; i++) { + k = idx2facelist[i + 1]; + idx2facelist[i + 1] = idx2facelist[i] + j; + j = k; + } + // The total length is in the last unit of idx2facelist. + facesperverlist = new shellface*[idx2facelist[i]]; + // Loop the set of segments again, set the info. of segments per vertex. + subfaces->traversalinit(); + shloop = shellfacetraverse(subfaces); + while (shloop != (shellface *) NULL) { + for (i = 0; i < 3; i++) { + j = pointmark((point) shloop[3 + i]) - in->firstnumber; + facesperverlist[idx2facelist[j]] = shloop; + idx2facelist[j]++; + } + shloop = shellfacetraverse(subfaces); + } + // Contents in 'idx2facelist' are shifted, now shift them back. + for (i = points->items - 1; i >= 0; i--) { + idx2facelist[i + 1] = idx2facelist[i]; + } + idx2facelist[0] = 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// maketetrahedronmap() Create a map from vertices (their indices) to // +// tetrahedra incident at the same vertices. // +// // +// Two arrays 'idx2tetlist' and 'tetsperverlist' together return the map. // +// They form a sparse matrix structure with size (n + 1) x (n + 1), n is the // +// number of tetrahedra. idx2tetlist contains row information and // +// tetsperverlist contains all (non-zero) elements. The i-th entry of // +// idx2tetlist is the starting position of i-th row's (non-zero) elements in // +// tetsperverlist. The number of elements of i-th row is calculated by the // +// (i+1)-th entry minus i-th entry of idx2tetlist. // +// // +// NOTE: These two arrays will be created inside this routine, don't forget // +// to free them after using. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +maketetrahedronmap(int*& idx2tetlist, tetrahedron**& tetsperverlist) +{ + tetrahedron *tetloop; + int i, j, k; + + if (b->verbose) { + printf(" Constructing mapping from points to tetrahedra.\n"); + } + + // Create and initialize 'idx2tetlist'. + idx2tetlist = new int[points->items + 1]; + for (i = 0; i < points->items + 1; i++) { + idx2tetlist[i] = 0; + } + + // Loop the set of tetrahedra once, counter the number of tetrahedra + // sharing each vertex. + tetrahedrons->traversalinit(); + tetloop = tetrahedrontraverse(); + while (tetloop != (tetrahedron *) NULL) { + // Increment the number of sharing tetrahedra for each endpoint. + for (i = 0; i < 4; i++) { + j = pointmark((point) tetloop[4 + i]) - in->firstnumber; + idx2tetlist[j]++; + } + tetloop = tetrahedrontraverse(); + } + + // Calculate the total length of array 'tetsperverlist'. + j = idx2tetlist[0]; + idx2tetlist[0] = 0; // Array starts from 0 element. + for (i = 0; i < points->items; i++) { + k = idx2tetlist[i + 1]; + idx2tetlist[i + 1] = idx2tetlist[i] + j; + j = k; + } + // The total length is in the last unit of idx2tetlist. + tetsperverlist = new tetrahedron*[idx2tetlist[i]]; + // Loop the set of tetrahedra again, set the info. of tet. per vertex. + tetrahedrons->traversalinit(); + tetloop = tetrahedrontraverse(); + while (tetloop != (tetrahedron *) NULL) { + for (i = 0; i < 4; i++) { + j = pointmark((point) tetloop[4 + i]) - in->firstnumber; + tetsperverlist[idx2tetlist[j]] = tetloop; + idx2tetlist[j]++; + } + tetloop = tetrahedrontraverse(); + } + // Contents in 'idx2tetlist' are shifted, now shift them back. + for (i = points->items - 1; i >= 0; i--) { + idx2tetlist[i + 1] = idx2tetlist[i]; + } + idx2tetlist[0] = 0; +} + +// +// End of mesh items searching routines +// + +// +// Begin of linear algebra functions +// + +// dot() returns the dot product: v1 dot v2. + +inline REAL tetgenmesh::dot(REAL* v1, REAL* v2) +{ + return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; +} + +// cross() computes the cross product: n = v1 cross v2. + +inline void tetgenmesh::cross(REAL* v1, REAL* v2, REAL* n) +{ + n[0] = v1[1] * v2[2] - v2[1] * v1[2]; + n[1] = -(v1[0] * v2[2] - v2[0] * v1[2]); + n[2] = v1[0] * v2[1] - v2[0] * v1[1]; +} + +// initm44() initializes a 4x4 matrix. +void tetgenmesh::initm44(REAL a00, REAL a01, REAL a02, REAL a03, + REAL a10, REAL a11, REAL a12, REAL a13, + REAL a20, REAL a21, REAL a22, REAL a23, + REAL a30, REAL a31, REAL a32, REAL a33, + REAL M[4][4]) +{ + M[0][0] = a00; M[0][1] = a01; M[0][2] = a02; M[0][3] = a03; + M[1][0] = a10; M[1][1] = a11; M[1][2] = a12; M[1][3] = a13; + M[2][0] = a20; M[2][1] = a21; M[2][2] = a22; M[2][3] = a23; + M[3][0] = a30; M[3][1] = a31; M[3][2] = a32; M[3][3] = a33; +} + +// m4xm4() multiplies 2 4x4 matrics: m1 = m1 * m2. +void tetgenmesh::m4xm4(REAL m1[4][4], REAL m2[4][4]) +{ + REAL tmp[4]; + int i, j; + + for (i = 0; i < 4; i++) { // i-th row + for (j = 0; j < 4; j++) { // j-th col + tmp[j] = m1[i][0] * m2[0][j] + m1[i][1] * m2[1][j] + + m1[i][2] * m2[2][j] + m1[i][3] * m2[3][j]; + } + for (j = 0; j < 4; j++) + m1[i][j] = tmp[j]; + } +} + +// m4xv4() multiplies a 4x4 matrix and 4x1 vector: v2 = m * v1 +void tetgenmesh::m4xv4(REAL v2[4], REAL m[4][4], REAL v1[4]) +{ + v2[0] = m[0][0]*v1[0] + m[0][1]*v1[1] + m[0][2]*v1[2] + m[0][3]*v1[3]; + v2[1] = m[1][0]*v1[0] + m[1][1]*v1[1] + m[1][2]*v1[2] + m[1][3]*v1[3]; + v2[2] = m[2][0]*v1[0] + m[2][1]*v1[1] + m[2][2]*v1[2] + m[2][3]*v1[3]; + v2[3] = m[3][0]*v1[0] + m[3][1]*v1[1] + m[3][2]*v1[2] + m[3][3]*v1[3]; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// lu_decmp() Compute the LU decomposition of a matrix. // +// // +// Compute the LU decomposition of a (non-singular) square matrix A using // +// partial pivoting and implicit row exchanges. The result is: // +// A = P * L * U, // +// where P is a permutation matrix, L is unit lower triangular, and U is // +// upper triangular. The factored form of A is used in combination with // +// 'lu_solve()' to solve linear equations: Ax = b, or invert a matrix. // +// // +// The inputs are a square matrix 'lu[N..n+N-1][N..n+N-1]', it's size is 'n'.// +// On output, 'lu' is replaced by the LU decomposition of a rowwise permuta- // +// tion of itself, 'ps[N..n+N-1]' is an output vector that records the row // +// permutation effected by the partial pivoting, effectively, 'ps' array // +// tells the user what the permutation matrix P is; 'd' is output as +1/-1 // +// depending on whether the number of row interchanges was even or odd, // +// respectively. // +// // +// Return true if the LU decomposition is successfully computed, otherwise, // +// return false in case that A is a singular matrix. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::lu_decmp(REAL lu[3][3], int n, int* ps, REAL* d, int N) +{ + REAL scales[3]; + REAL pivot, biggest, mult, tempf; + int pivotindex = 0; + int i, j, k; + + *d = 1.0; // No row interchanges yet. + + for (i = N; i < n + N; i++) { // For each row. + // Find the largest element in each row for row equilibration + biggest = 0.0; + for (j = N; j < n + N; j++) + if (biggest < (tempf = fabs(lu[i][j]))) + biggest = tempf; + if (biggest != 0.0) + scales[i] = 1.0 / biggest; + else { + scales[i] = 0.0; + return false; // Zero row: singular matrix. + } + ps[i] = i; // Initialize pivot sequence. + } + + for (k = N; k < n + N - 1; k++) { // For each column. + // Find the largest element in each column to pivot around. + biggest = 0.0; + for (i = k; i < n + N; i++) { + if (biggest < (tempf = fabs(lu[ps[i]][k]) * scales[ps[i]])) { + biggest = tempf; + pivotindex = i; + } + } + if (biggest == 0.0) { + return false; // Zero column: singular matrix. + } + if (pivotindex != k) { // Update pivot sequence. + j = ps[k]; + ps[k] = ps[pivotindex]; + ps[pivotindex] = j; + *d = -(*d); // ...and change the parity of d. + } + + // Pivot, eliminating an extra variable each time + pivot = lu[ps[k]][k]; + for (i = k + 1; i < n + N; i++) { + lu[ps[i]][k] = mult = lu[ps[i]][k] / pivot; + if (mult != 0.0) { + for (j = k + 1; j < n + N; j++) + lu[ps[i]][j] -= mult * lu[ps[k]][j]; + } + } + } + + // (lu[ps[n + N - 1]][n + N - 1] == 0.0) ==> A is singular. + return lu[ps[n + N - 1]][n + N - 1] != 0.0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// lu_solve() Solves the linear equation: Ax = b, after the matrix A // +// has been decomposed into the lower and upper triangular // +// matrices L and U, where A = LU. // +// // +// 'lu[N..n+N-1][N..n+N-1]' is input, not as the matrix 'A' but rather as // +// its LU decomposition, computed by the routine 'lu_decmp'; 'ps[N..n+N-1]' // +// is input as the permutation vector returned by 'lu_decmp'; 'b[N..n+N-1]' // +// is input as the right-hand side vector, and returns with the solution // +// vector. 'lu', 'n', and 'ps' are not modified by this routine and can be // +// left in place for successive calls with different right-hand sides 'b'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::lu_solve(REAL lu[3][3], int n, int* ps, REAL* b, int N) +{ + int i, j; + REAL X[3], dot; + + for (i = N; i < n + N; i++) X[i] = 0.0; + + // Vector reduction using U triangular matrix. + for (i = N; i < n + N; i++) { + dot = 0.0; + for (j = N; j < i + N; j++) + dot += lu[ps[i]][j] * X[j]; + X[i] = b[ps[i]] - dot; + } + + // Back substitution, in L triangular matrix. + for (i = n + N - 1; i >= N; i--) { + dot = 0.0; + for (j = i + 1; j < n + N; j++) + dot += lu[ps[i]][j] * X[j]; + X[i] = (X[i] - dot) / lu[ps[i]][i]; + } + + for (i = N; i < n + N; i++) b[i] = X[i]; +} + +// +// End of linear algebra functions +// + +// +// Begin of geometric tests +// + +// All the following routines require the input objects are not degenerate. +// i.e., a triangle must has three non-collinear corners; an edge must +// has two identical endpoints. Degenerate cases should have to detect +// first and then handled as special cases. + +/////////////////////////////////////////////////////////////////////////////// +// // +// edge_vertex_collinear_inter() Test whether an edge (ab) and a vertex // +// (p) are intersecting or not. // +// // +// p and ab are collinear. Possible cases are p is coincident to a (p = a), // +// or coincident to b (p = b), or inside ab (a < p < b), or outside ab (p < // +// a or p > b). These cases can be quickly determined by comparing the // +// homogeneous coordinates of a, b, and p (which are not all equal). // +// // +// The return value indicates one of the three cases: DISJOINT, SHAREVERTEX // +// (p = a or p = b), and INTERSECT (a < p < b). // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::intersectresult tetgenmesh:: +edge_vertex_collinear_inter(REAL* A, REAL* B, REAL* P) +{ + int i = 0; + do { + if (A[i] < B[i]) { + if (P[i] < A[i]) { + return DISJOINT; + } else if (P[i] > A[i]) { + if (P[i] < B[i]) { + return INTERSECT; + } else if (P[i] > B[i]) { + return DISJOINT; + } else { + // assert(P[i] == B[i]); + return SHAREVERTEX; + } + } else { + // assert(P[i] == A[i]); + return SHAREVERTEX; + } + } else if (A[i] > B[i]) { + if (P[i] < B[i]) { + return DISJOINT; + } else if (P[i] > B[i]) { + if (P[i] < A[i]) { + return INTERSECT; + } else if (P[i] > A[i]) { + return DISJOINT; + } else { + // assert(P[i] == A[i]); + return SHAREVERTEX; + } + } else { + // assert(P[i] == B[i]); + return SHAREVERTEX; + } + } + // i-th coordinates are equal, try i+1-th; + i++; + } while (i < 3); + // Should never be here. + assert(i >= 3); + return DISJOINT; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// edge_edge_coplanar_inter() Test whether two edges (ab) and (pq) are // +// intersecting or not. // +// // +// ab and pq are coplanar. Possible cases are ab and pq are disjointed, or // +// proper intersecting (intersect at a point other than their vertices), or // +// collinear and intersecting, or sharing at a vertex, or ab and pq are co- // +// incident (i.e., the same edge). // +// // +// A reference point R is required, which is exactly not coplanar with these // +// two edges. Since the caller know these two edges are coplanar, it must // +// be able to provide (or calculate) such a point. // +// // +// The return value indicates one of the four cases: DISJOINT, SHAREVERTEX, // +// SHAREEDGE, and INTERSECT. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::intersectresult tetgenmesh:: +edge_edge_coplanar_inter(REAL* A, REAL* B, REAL* P, REAL* Q, REAL* R) +{ + REAL s1, s2, s3, s4; + + assert(R != NULL); + + s1 = orient3d(A, B, R, P); + s2 = orient3d(A, B, R, Q); + if (s1 * s2 > 0.0) { + // Both p and q are at the same side of ab. + return DISJOINT; + } + s3 = orient3d(P, Q, R, A); + s4 = orient3d(P, Q, R, B); + if (s3 * s4 > 0.0) { + // Both a and b are at the same side of pq. + return DISJOINT; + } + + // Possible degenerate cases are: + // (1) Only one of p and q is collinear with ab; + // (2) Both p and q are collinear with ab; + // (3) Only one of a and b is collinear with pq. + enum intersectresult abp, abq; + enum intersectresult pqa, pqb; + + if (s1 == 0.0) { + // p is collinear with ab. + abp = edge_vertex_collinear_inter(A, B, P); + if (abp == INTERSECT) { + // p is inside ab. + return INTERSECT; + } + if (s2 == 0.0) { + // q is collinear with ab. Case (2). + abq = edge_vertex_collinear_inter(A, B, Q); + if (abq == INTERSECT) { + // q is inside ab. + return INTERSECT; + } + if (abp == SHAREVERTEX && abq == SHAREVERTEX) { + // ab and pq are identical. + return SHAREEDGE; + } + pqa = edge_vertex_collinear_inter(P, Q, A); + if (pqa == INTERSECT) { + // a is inside pq. + return INTERSECT; + } + pqb = edge_vertex_collinear_inter(P, Q, B); + if (pqb == INTERSECT) { + // b is inside pq. + return INTERSECT; + } + if (abp == SHAREVERTEX || abq == SHAREVERTEX) { + // either p or q is coincident with a or b. + // ONLY one case is possible, otherwise, shoule be SHAREEDGE. + assert(abp ^ abq); + return SHAREVERTEX; + } + // The last case. They are disjointed. + assert((abp == DISJOINT) && (abp == abq && abq == pqa && pqa == pqb)); + return DISJOINT; + } else { + // p is collinear with ab. Case (1). + assert(abp == SHAREVERTEX || abp == DISJOINT); + return abp; + } + } + // p is NOT collinear with ab. + if (s2 == 0.0) { + // q is collinear with ab. Case (1). + abq = edge_vertex_collinear_inter(A, B, Q); + assert(abq == SHAREVERTEX || abq == DISJOINT || abq == INTERSECT); + return abq; + } + + // We have found p and q are not collinear with ab. However, it is still + // possible that a or b is collinear with pq (ONLY one of a and b). + if (s3 == 0.0) { + // a is collinear with pq. Case (3). + assert(s4 != 0.0); + pqa = edge_vertex_collinear_inter(P, Q, A); + // This case should have been detected in above. + assert(pqa != SHAREVERTEX); + assert(pqa == INTERSECT || pqa == DISJOINT); + return pqa; + } + if (s4 == 0.0) { + // b is collinear with pq. Case (3). + assert(s3 != 0.0); + pqb = edge_vertex_collinear_inter(P, Q, B); + // This case should have been detected in above. + assert(pqb != SHAREVERTEX); + assert(pqb == INTERSECT || pqb == DISJOINT); + return pqb; + } + + // ab and pq are intersecting properly. + return INTERSECT; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// Notations // +// // +// Let ABC be the plane passes through a, b, and c; ABC+ be the halfspace // +// including the set of all points x, such that orient3d(a, b, c, x) > 0; // +// ABC- be the other halfspace, such that for each point x in ABC-, // +// orient3d(a, b, c, x) < 0. For the set of x which are on ABC, orient3d(a, // +// b, c, x) = 0. // +// // +/////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////// +// // +// triangle_vertex_coplanar_inter() Test whether a triangle (abc) and a // +// point (p) are intersecting or not. // +// // +// abc and p are coplanar. Possible cases are p is inside abc, or on an edge // +// of, or coincident with a vertex of, or outside abc. // +// // +// A reference point R is required, which is exactly not coplanar with the // +// triangle and the vertex. Since the caller know they are coplanar, it must // +// be able to provide (or calculate) such a point. // +// // +// The return value indicates one of the four cases: DISJOINT, SHAREVERTEX, // +// and INTERSECT. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::intersectresult tetgenmesh:: +triangle_vertex_coplanar_inter(REAL* A, REAL* B, REAL* C, REAL* P, REAL* R) +{ + REAL s1, s2, s3; + int sign; + + assert(R != (REAL *) NULL); + + // Adjust the orientation of a, b, c and r, so that we can assume that + // r is strictly in ABC- (i.e., r is above ABC wrt. right-hand rule). + s1 = orient3d(A, B, C, R); + assert(s1 != 0.0); + sign = s1 < 0.0 ? 1 : -1; + + // Test starts from here. + s1 = orient3d(A, B, R, P) * sign; + if (s1 < 0.0) { + // p is in ABR-. + return DISJOINT; + } + s2 = orient3d(B, C, R, P) * sign; + if (s2 < 0.0) { + // p is in BCR-. + return DISJOINT; + } + s3 = orient3d(C, A, R, P) * sign; + if (s3 < 0.0) { + // p is in CAR-. + return DISJOINT; + } + if (s1 == 0.0) { + // p is on ABR. + if (s2 == 0.0) { + // p is on BCR. + assert(s3 > 0.0); + // p is coincident with b. + return SHAREVERTEX; + } + if (s3 == 0.0) { + // p is on CAR. + // p is coincident with a. + return SHAREVERTEX; + } + // p is on edge ab. + return INTERSECT; + } + // p is in ABR+. + if (s2 == 0.0) { + // p is on BCR. + if (s3 == 0.0) { + // p is on CAR. + // p is coincident with c. + return SHAREVERTEX; + } + // p is on edge bc. + return INTERSECT; + } + if (s3 == 0.0) { + // p is on CAR. + // p is on edge ca. + return INTERSECT; + } + + // p is strictly inside abc. + return INTERSECT; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// triangle_edge_coplanar_inter() Test whether a triangle (abc) and an // +// edge (pq) are intersecting or not. // +// // +// A reference point R is required, which is exactly not coplanar with the // +// triangle and the edge. Since the caller know they are coplanar, it must // +// be able to provide (or calculate) such a point. // +// // +// The return value indicates one of the four cases: DISJOINT, SHAREVERTEX, // +// SHAREEDGE, and INTERSECT. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::intersectresult tetgenmesh:: +triangle_edge_coplanar_inter(REAL* A, REAL* B, REAL* C, REAL* P, REAL* Q, + REAL* R) +{ + enum intersectresult abpq, bcpq, capq; + enum intersectresult abcp, abcq; + + // Test if pq is intersecting one of edges of abc. + abpq = edge_edge_coplanar_inter(A, B, P, Q, R); + if (abpq == INTERSECT || abpq == SHAREEDGE) { + return abpq; + } + bcpq = edge_edge_coplanar_inter(B, C, P, Q, R); + if (bcpq == INTERSECT || bcpq == SHAREEDGE) { + return bcpq; + } + capq = edge_edge_coplanar_inter(C, A, P, Q, R); + if (capq == INTERSECT || capq == SHAREEDGE) { + return capq; + } + + // Test if p and q is inside abc. + abcp = triangle_vertex_coplanar_inter(A, B, C, P, R); + if (abcp == INTERSECT) { + return INTERSECT; + } + abcq = triangle_vertex_coplanar_inter(A, B, C, Q, R); + if (abcq == INTERSECT) { + return INTERSECT; + } + + // Combine the test results of edge intersectings and triangle insides + // to detect whether abc and pq are sharing vertex or disjointed. + if (abpq == SHAREVERTEX) { + // p or q is coincident with a or b. + assert(abcp ^ abcq); + return SHAREVERTEX; + } + if (bcpq == SHAREVERTEX) { + // p or q is coincident with b or c. + assert(abcp ^ abcq); + return SHAREVERTEX; + } + if (capq == SHAREVERTEX) { + // p or q is coincident with c or a. + assert(abcp ^ abcq); + return SHAREVERTEX; + } + + // They are disjointed. + return DISJOINT; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// triangle_edge_inter_tail() Test whether a triangle (abc) and an edge // +// (pq) are intersecting or not. // +// // +// s1 and s2 are results of pre-performed orientation tests. s1 = orient3d( // +// a, b, c, p); s2 = orient3d(a, b, c, q). // +// // +// To separate this routine from triangle_edge_inter() can save two // +// orientation tests in triangle_triangle_inter(). // +// // +// The return value indicates one of the four cases: DISJOINT, SHAREVERTEX, // +// SHAREEDGE, and INTERSECT. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::intersectresult tetgenmesh:: +triangle_edge_inter_tail(REAL* A, REAL* B, REAL* C, REAL* P, REAL* Q, REAL s1, + REAL s2) +{ + REAL s3, s4, s5; + int sign; + + if (s1 * s2 > 0.0) { + // p, q are at the same halfspace of ABC, no intersection. + return DISJOINT; + } + + if (s1 * s2 < 0.0) { + // p, q are both not on ABC (and not sharing vertices, edges of abc). + // Adjust the orientation of a, b, c and p, so that we can assume that + // p is strictly in ABC-, and q is strictly in ABC+. + sign = s1 < 0.0 ? 1 : -1; + s3 = orient3d(A, B, P, Q) * sign; + if (s3 < 0.0) { + // q is at ABP-. + return DISJOINT; + } + s4 = orient3d(B, C, P, Q) * sign; + if (s4 < 0.0) { + // q is at BCP-. + return DISJOINT; + } + s5 = orient3d(C, A, P, Q) * sign; + if (s5 < 0.0) { + // q is at CAP-. + return DISJOINT; + } + if (s3 == 0.0) { + // q is on ABP. + if (s4 == 0.0) { + // q is on BCP (and q must in CAP+). + assert(s5 > 0.0); + // pq intersects abc at vertex b. + return SHAREVERTEX; + } + if (s5 == 0.0) { + // q is on CAP (and q must in BCP+). + // pq intersects abc at vertex a. + return SHAREVERTEX; + } + // q in both BCP+ and CAP+. + // pq crosses ab properly. + return INTERSECT; + } + // q is in ABP+; + if (s4 == 0.0) { + // q is on BCP. + if (s5 == 0.0) { + // q is on CAP. + // pq intersects abc at vertex c. + return SHAREVERTEX; + } + // pq crosses bc properly. + return INTERSECT; + } + // q is in BCP+; + if (s5 == 0.0) { + // q is on CAP. + // pq crosses ca properly. + return INTERSECT; + } + // q is in CAP+; + // pq crosses abc properly. + return INTERSECT; + } + + if (s1 != 0.0 || s2 != 0.0) { + // Either p or q is coplanar with abc. ONLY one of them is possible. + if (s1 == 0.0) { + // p is coplanar with abc, q can be used as reference point. + assert(s2 != 0.0); + return triangle_vertex_coplanar_inter(A, B, C, P, Q); + } else { + // q is coplanar with abc, p can be used as reference point. + assert(s2 == 0.0); + return triangle_vertex_coplanar_inter(A, B, C, Q, P); + } + } + + // pq is coplanar with abc. Calculate a point which is exactly + // non-coplanar with a, b, and c. + REAL R[3], N[3]; + REAL ax, ay, az, bx, by, bz; + + ax = A[0] - B[0]; + ay = A[1] - B[1]; + az = A[2] - B[2]; + bx = A[0] - C[0]; + by = A[1] - C[1]; + bz = A[2] - C[2]; + N[0] = ay * bz - by * az; + N[1] = az * bx - bz * ax; + N[2] = ax * by - bx * ay; + // The normal should not be a zero vector. + assert((fabs(N[0]) + fabs(N[1]) + fabs(N[2])) > 0.0); + // The reference point R is lifted from A to the normal direction with + // a non-zero distance. + R[0] = N[0] + A[0]; + R[1] = N[1] + A[1]; + R[2] = N[2] + A[2]; + // Becareful the case: if the non-zero component(s) in N is smaller than + // the machine epsilon (i.e., 2^(-16) for double), R will exactly equal + // to A due to the round-off error. Do check if it is. + if (R[0] == A[0] && R[1] == A[1] && R[2] == A[2]) { + int i, j; + for (i = 0; i < 3; i++) { + assert (R[i] == A[i]); + j = 2; + do { + if (N[i] > 0.0) { + N[i] += (j * macheps); + } else { + N[i] -= (j * macheps); + } + R[i] = N[i] + A[i]; + j *= 2; + } while (R[i] == A[i]); + } + } + + return triangle_edge_coplanar_inter(A, B, C, P, Q, R); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// triangle_edge_inter() Test whether a triangle (abc) and an edge (pq) // +// are intersecting or not. // +// // +// The return value indicates one of the four cases: DISJOINT, SHAREVERTEX, // +// SHAREEDGE, and INTERSECT. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::intersectresult tetgenmesh:: +triangle_edge_inter(REAL* A, REAL* B, REAL* C, REAL* P, REAL* Q) +{ + REAL s1, s2; + + // Test the locations of p and q with respect to ABC. + s1 = orient3d(A, B, C, P); + s2 = orient3d(A, B, C, Q); + + return triangle_edge_inter_tail(A, B, C, P, Q, s1, s2); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// triangle_triangle_inter() Test whether two triangle (abc) and (opq) // +// are intersecting or not. // +// // +// The return value indicates one of the five cases: DISJOINT, SHAREVERTEX, // +// SHAREEDGE, SHAREFACE, and INTERSECT. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::intersectresult tetgenmesh:: +triangle_triangle_inter(REAL* A, REAL* B, REAL* C, REAL* O, REAL* P, REAL* Q) +{ + REAL s_o, s_p, s_q; + REAL s_a, s_b, s_c; + + s_o = orient3d(A, B, C, O); + s_p = orient3d(A, B, C, P); + s_q = orient3d(A, B, C, Q); + if ((s_o * s_p > 0.0) && (s_o * s_q > 0.0)) { + // o, p, q are all in the same halfspace of ABC. + return DISJOINT; + } + + s_a = orient3d(O, P, Q, A); + s_b = orient3d(O, P, Q, B); + s_c = orient3d(O, P, Q, C); + if ((s_a * s_b > 0.0) && (s_a * s_c > 0.0)) { + // a, b, c are all in the same halfspace of OPQ. + return DISJOINT; + } + + enum intersectresult abcop, abcpq, abcqo; + int shareedge = 0; + + abcop = triangle_edge_inter_tail(A, B, C, O, P, s_o, s_p); + if (abcop == INTERSECT) { + return INTERSECT; + } else if (abcop == SHAREEDGE) { + shareedge++; + } + abcpq = triangle_edge_inter_tail(A, B, C, P, Q, s_p, s_q); + if (abcpq == INTERSECT) { + return INTERSECT; + } else if (abcpq == SHAREEDGE) { + shareedge++; + } + abcqo = triangle_edge_inter_tail(A, B, C, Q, O, s_q, s_o); + if (abcqo == INTERSECT) { + return INTERSECT; + } else if (abcqo == SHAREEDGE) { + shareedge++; + } + if (shareedge == 3) { + // opq are coincident with abc. + return SHAREFACE; + } + // It is only possible either no share edge or one. + assert(shareedge == 0 || shareedge == 1); + + // Continue to detect whether opq and abc are intersecting or not. + enum intersectresult opqab, opqbc, opqca; + + opqab = triangle_edge_inter_tail(O, P, Q, A, B, s_a, s_b); + if (opqab == INTERSECT) { + return INTERSECT; + } + opqbc = triangle_edge_inter_tail(O, P, Q, B, C, s_b, s_c); + if (opqbc == INTERSECT) { + return INTERSECT; + } + opqca = triangle_edge_inter_tail(O, P, Q, C, A, s_c, s_a); + if (opqca == INTERSECT) { + return INTERSECT; + } + + // At this point, two triangles are not intersecting and not coincident. + // They may be share an edge, or share a vertex, or disjoint. + if (abcop == SHAREEDGE) { + assert(abcpq == SHAREVERTEX && abcqo == SHAREVERTEX); + // op is coincident with an edge of abc. + return SHAREEDGE; + } + if (abcpq == SHAREEDGE) { + assert(abcop == SHAREVERTEX && abcqo == SHAREVERTEX); + // pq is coincident with an edge of abc. + return SHAREEDGE; + } + if (abcqo == SHAREEDGE) { + assert(abcop == SHAREVERTEX && abcpq == SHAREVERTEX); + // qo is coincident with an edge of abc. + return SHAREEDGE; + } + + // They may share a vertex or disjoint. + if (abcop == SHAREVERTEX) { + // o or p is coincident with a vertex of abc. + if (abcpq == SHAREVERTEX) { + // p is the coincident vertex. + assert(abcqo != SHAREVERTEX); + } else { + // o is the coincident vertex. + assert(abcqo == SHAREVERTEX); + } + return SHAREVERTEX; + } + if (abcpq == SHAREVERTEX) { + // q is the coincident vertex. + assert(abcqo == SHAREVERTEX); + return SHAREVERTEX; + } + + // They are disjoint. + return DISJOINT; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// iscollinear() Check if three points are collinear with respect to a // +// given relative tolerance. // +// // +// 'epspp' is the relative tolerance provided by caller. The collinearity is // +// determined by evaluating the angle q between the two vectors formed from // +// thes three points. If q <= epspp, then they are assumed be collinear. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::iscollinear(REAL* A, REAL* B, REAL* C, REAL epspp) +{ + REAL V[3], W[3]; + REAL Lv, Lw, d, q; + + V[0] = A[0] - B[0]; + V[1] = A[1] - B[1]; + V[2] = A[2] - B[2]; + W[0] = A[0] - C[0]; + W[1] = A[1] - C[1]; + W[2] = A[2] - C[2]; + Lv = sqrt(V[0] * V[0] + V[1] * V[1] + V[2] * V[2]); + Lw = sqrt(W[0] * W[0] + W[1] * W[1] + W[2] * W[2]); + + d = (V[0] * W[0] + V[1] * W[1] + V[2] * W[2]) / (Lv * Lw); + if (d > 1.0) { + q = 0.0; + } else if (d < -1.0) { + q = 0.0; // q = PI; + } else { + q = acos(fabs(d)); + } + + return q <= epspp; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// iscoplanar() Check if four points are coplanar with respect to a given // +// relative tolerance. // +// // +// 'vol6' is the six times of the signed volume of the tetrahedron formed by // +// the four points. 'epspp' is the relative tolerance provided by the caller.// +// This coplanarity is determined by evaluating the value: // +// // +// q = fabs(vol6) / L^3 // +// // +// where L is the average edge length of the tetrahedron. If q <= epspp, // +// then these four points are assumed be coplanar. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +iscoplanar(REAL* k, REAL* l, REAL* m, REAL* n, REAL vol6, REAL epspp) +{ + REAL L, q; + REAL x, y, z; + + x = k[0] - l[0]; + y = k[1] - l[1]; + z = k[2] - l[2]; + L = sqrt(x * x + y * y + z * z); + x = l[0] - m[0]; + y = l[1] - m[1]; + z = l[2] - m[2]; + L += sqrt(x * x + y * y + z * z); + x = m[0] - k[0]; + y = m[1] - k[1]; + z = m[2] - k[2]; + L += sqrt(x * x + y * y + z * z); + x = k[0] - n[0]; + y = k[1] - n[1]; + z = k[2] - n[2]; + L += sqrt(x * x + y * y + z * z); + x = l[0] - n[0]; + y = l[1] - n[1]; + z = l[2] - n[2]; + L += sqrt(x * x + y * y + z * z); + x = m[0] - n[0]; + y = m[1] - n[1]; + z = m[2] - n[2]; + L += sqrt(x * x + y * y + z * z); + assert(L > 0.0); + L /= 6.0; + q = fabs(vol6) / (L * L * L); + + return q <= epspp; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// iscospheric() Check if five points are coplanar with respect to a // +// given relative tolerance. // +// // +// The cosphere is determined by comparing the distance between the radius R // +// of the circumsphere S of the first four points and the distance from the // +// circumcenter C of S to the fifth points P, i.e., to calculate the value: // +// // +// q = fabs(P - C) / R // +// // +// If q <= epspp, then these five points are assumed to be cospherical. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +iscospheric(REAL* k, REAL* l, REAL* m, REAL* n, REAL* o, REAL epspp) +{ + REAL ori, *p5; + REAL cent[3], R, D, q; + + ori = orient3d(k, l, m, n); + if (iscoplanar(k, l, m, n, ori, epspp)) { + ori = orient3d(k, l, m, o); + assert(!iscoplanar(k, l, m, o, ori, epspp)); + circumsphere(k, l, m, o, cent, &R); + p5 = n; + } else { + circumsphere(k, l, m, n, cent, &R); + p5 = o; + } + D = distance(p5, cent); + q = fabs(D - R) / R; + + return q <= epspp; +} + +// +// End of geometric tests +// + +// +// Begin of Geometric quantities calculators +// + +// distance() computs the Euclidean distance between two points. +inline REAL tetgenmesh::distance(REAL* p1, REAL* p2) +{ + return sqrt((p2[0] - p1[0]) * (p2[0] - p1[0]) + + (p2[1] - p1[1]) * (p2[1] - p1[1]) + + (p2[2] - p1[2]) * (p2[2] - p1[2])); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// shortdistance() Returns the shortest distance from point p to a line // +// defined by two points e1 and e2. // +// // +// First compute the projection length l_p of the vector v1 = p - e1 along // +// the vector v2 = e2 - e1. Then Pythagoras' Theorem is used to compute the // +// shortest distance. // +// // +// This routine allows that p is collinear with the line. In this case, the // +// return value is zero. The two points e1 and e2 should not be identical. // +// // +/////////////////////////////////////////////////////////////////////////////// + +REAL tetgenmesh::shortdistance(REAL* p, REAL* e1, REAL* e2) +{ + REAL v1[3], v2[3]; + REAL len, l_p; + + v1[0] = e2[0] - e1[0]; + v1[1] = e2[1] - e1[1]; + v1[2] = e2[2] - e1[2]; + v2[0] = p[0] - e1[0]; + v2[1] = p[1] - e1[1]; + v2[2] = p[2] - e1[2]; + + len = sqrt(dot(v1, v1)); + assert(len != 0.0); + v1[0] /= len; + v1[1] /= len; + v1[2] /= len; + l_p = dot(v1, v2); + + return sqrt(dot(v2, v2) - l_p * l_p); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// interiorangle() Return the interior angle (0 - 2 * PI) between vectors // +// o->p1 and o->p2. // +// // +// 'n' is the normal of the plane containing face (o, p1, p2). The interior // +// angle is the total angle rotating from o->p1 around n to o->p2. Exchange // +// the position of p1 and p2 will get the complement angle of the other one. // +// i.e., interiorangle(o, p1, p2) = 2 * PI - interiorangle(o, p2, p1). Set // +// 'n' be NULL if you only want the interior angle between 0 - PI. // +// // +/////////////////////////////////////////////////////////////////////////////// + +REAL tetgenmesh::interiorangle(REAL* o, REAL* p1, REAL* p2, REAL* n) +{ + REAL v1[3], v2[3], np[3]; + REAL theta, costheta, lenlen; + REAL ori, len1, len2; + + // Get the interior angle (0 - PI) between o->p1, and o->p2. + v1[0] = p1[0] - o[0]; + v1[1] = p1[1] - o[1]; + v1[2] = p1[2] - o[2]; + v2[0] = p2[0] - o[0]; + v2[1] = p2[1] - o[1]; + v2[2] = p2[2] - o[2]; + len1 = sqrt(dot(v1, v1)); + len2 = sqrt(dot(v2, v2)); + lenlen = len1 * len2; + assert(lenlen != 0.0); + costheta = dot(v1, v2) / lenlen; + if (costheta > 1.0) { + costheta = 1.0; // Roundoff. + } else if (costheta < -1.0) { + costheta = -1.0; // Roundoff. + } + theta = acos(costheta); + if (n != NULL) { + // Get a point above the face (o, p1, p2); + np[0] = o[0] + n[0]; + np[1] = o[1] + n[1]; + np[2] = o[2] + n[2]; + // Adjust theta (0 - 2 * PI). + ori = orient3d(p1, o, np, p2); + if (ori > 0.0) { + theta = 2 * PI - theta; + } + } + + return theta; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// projpt2edge() Return the projection point from a point to an edge. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::projpt2edge(REAL* p, REAL* e1, REAL* e2, REAL* prj) +{ + REAL v1[3], v2[3]; + REAL len, l_p; + + v1[0] = e2[0] - e1[0]; + v1[1] = e2[1] - e1[1]; + v1[2] = e2[2] - e1[2]; + v2[0] = p[0] - e1[0]; + v2[1] = p[1] - e1[1]; + v2[2] = p[2] - e1[2]; + + len = sqrt(dot(v1, v1)); + assert(len != 0.0); + v1[0] /= len; + v1[1] /= len; + v1[2] /= len; + l_p = dot(v1, v2); + + prj[0] = e1[0] + l_p * v1[0]; + prj[1] = e1[1] + l_p * v1[1]; + prj[2] = e1[2] + l_p * v1[2]; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// projpt2face() Return the projection point from a point to a face. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::projpt2face(REAL* p, REAL* f1, REAL* f2, REAL* f3, REAL* prj) +{ + REAL fnormal[3], v1[3]; + REAL len, dist; + + // Get the unit face normal. + facenormal(f1, f2, f3, fnormal, &len); + assert(len > 0.0); + fnormal[0] /= len; + fnormal[1] /= len; + fnormal[2] /= len; + // Get the vector v1 = |p - f1|. + v1[0] = p[0] - f1[0]; + v1[1] = p[1] - f1[1]; + v1[2] = p[2] - f1[2]; + // Get the project distance. + dist = dot(fnormal, v1); + assert(fabs(dist) >= b->epsilon); + + // Get the project point. + prj[0] = p[0] - dist * fnormal[0]; + prj[1] = p[1] - dist * fnormal[1]; + prj[2] = p[2] - dist * fnormal[2]; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// facenormal() Calculate the normal of a face given by three points. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::facenormal(REAL* pa, REAL* pb, REAL* pc, REAL* n, REAL* nlen) +{ + REAL v1[3], v2[3]; + + v1[0] = pb[0] - pa[0]; + v1[1] = pb[1] - pa[1]; + v1[2] = pb[2] - pa[2]; + v2[0] = pc[0] - pa[0]; + v2[1] = pc[1] - pa[1]; + v2[2] = pc[2] - pa[2]; + + cross(v1, v2, n); + if (nlen != (REAL *) NULL) { + *nlen = sqrt(dot(n, n)); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// edgeorthonormal() Return the unit normal of an edge in a given plane. // +// // +// The edge is from e1 to e2, the plane is defined by given an additional // +// point op, which is non-collinear with the edge. In addition, the side of // +// the edge in which op lies defines the positive position of the normal. // +// // +// Let v1 be the unit vector from e1 to e2, v2 be the unit edge vector from // +// e1 to op, fn be the unit face normal calculated by fn = v1 x v2. Then the // +// unit edge normal of e1e2 pointing to op is n = fn x v1. Note, we should // +// not change the position of fn and v1, otherwise, we get the edge normal // +// pointing to the other side of op. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::edgeorthonormal(REAL* e1, REAL* e2, REAL* op, REAL* n) +{ + REAL v1[3], v2[3], fn[3]; + REAL len; + + // Get the edge vector v1. + v1[0] = e2[0] - e1[0]; + v1[1] = e2[1] - e1[1]; + v1[2] = e2[2] - e1[2]; + // Get the edge vector v2. + v2[0] = op[0] - e1[0]; + v2[1] = op[1] - e1[1]; + v2[2] = op[2] - e1[2]; + // Get the face normal fn = v1 x v2. + cross(v1, v2, fn); + // Get the edge normal n pointing to op. n = fn x v1. + cross(fn, v1, n); + // Normalize the vector. + len = sqrt(dot(n, n)); + n[0] /= len; + n[1] /= len; + n[2] /= len; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// facedihedral() Return the dihedral angle (in radian) between two // +// adjoining faces. // +// // +// 'pa', 'pb' are the shared edge of these two faces, 'pc1', and 'pc2' are // +// apexes of these two faces. Return the angle (between 0 to 2*pi) between // +// the normal of face (pa, pb, pc1) and normal of face (pa, pb, pc2). // +// // +/////////////////////////////////////////////////////////////////////////////// + +REAL tetgenmesh::facedihedral(REAL* pa, REAL* pb, REAL* pc1, REAL* pc2) +{ + REAL n1[3], n2[3]; + REAL n1len, n2len; + REAL costheta, ori; + REAL theta; + + facenormal(pa, pb, pc1, n1, &n1len); + facenormal(pa, pb, pc2, n2, &n2len); + costheta = dot(n1, n2) / (n1len * n2len); + theta = acos(costheta); + ori = orient3d(pa, pb, pc1, pc2); + if (ori > 0.0) { + theta = 2 * PI - theta; + } + + return theta; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetalldihedral() Get all(six) dihedral angles in tetrahedron formed by // +// vertices a, b, c and d. Return by array adDihed[6]. // +// // +// The order in which the dihedrals are assigned matters for computation of // +// solid angles. The way they're currently set up, combining them as (0,1,2),// +// (0,3,4), (1,3,5), (2,4,5) gives (in order) solid angles at vertices a, b, // +// c and d. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +tetalldihedral(point pa, point pb, point pc, point pd, REAL dihed[6]) +{ + REAL n0[3], n1[3], n2[3], n3[3]; + REAL n0len, n1len, n2len, n3len; + REAL dotp; + + facenormal(pc, pb, pd, n0, &n0len); + facenormal(pa, pc, pd, n1, &n1len); + facenormal(pb, pa, pd, n2, &n2len); + facenormal(pa, pb, pc, n3, &n3len); + + n0[0] /= n0len; n0[1] /= n0len; n0[2] /= n0len; + n1[0] /= n1len; n1[1] /= n1len; n1[2] /= n1len; + n2[0] /= n2len; n2[1] /= n2len; n2[2] /= n2len; + n3[0] /= n3len; n3[1] /= n3len; n3[2] /= n3len; + + dotp = -dot(n0, n1); + if (dotp > 1.) dotp = 1.; + else if (dotp < -1.) dotp = -1.; + dihed[5] = acos(dotp); // Edge CD + + dotp = -dot(n0, n2); + if (dotp > 1.) dotp = 1.; + else if (dotp < -1.) dotp = -1.; + dihed[4] = acos(dotp); // Edge BD + + dotp = -dot(n0, n3); + if (dotp > 1.) dotp = 1.; + else if (dotp < -1.) dotp = -1.; + dihed[3] = acos(dotp); // Edge BC + + dotp = -dot(n1, n2); + if (dotp > 1.) dotp = 1.; + else if (dotp < -1.) dotp = -1.; + dihed[2] = acos(dotp); // Edge AD + + dotp = -dot(n1, n3); + if (dotp > 1.) dotp = 1.; + else if (dotp < -1.) dotp = -1.; + dihed[1] = acos(dotp); // Edge AC + + dotp = -dot(n2, n3); + if (dotp > 1.) dotp = 1.; + else if (dotp < -1.) dotp = -1.; + dihed[0] = acos(dotp); // Edge AB +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// circumsphere() Calculate the smallest circumsphere (center and radius) // +// of the given three or four points. // +// // +// The circumsphere of four points (a tetrahedron) is unique if they are not // +// degenerate. If 'pd = NULL', the smallest circumsphere of three points is // +// the diametral sphere of the triangle if they are not degenerate. // +// // +// Return TRUE if the input points are not degenerate and the circumcenter // +// and circumradius are returned in 'cent' and 'radius' respectively if they // +// are not NULLs. Otherwise, return FALSE indicated the points are degenrate.// +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +circumsphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* cent, REAL* radius) +{ + REAL A[3][3], rhs[3], D; + int indx[3]; + + // Compute the coefficient matrix A (3x3). + A[0][0] = pb[0] - pa[0]; + A[0][1] = pb[1] - pa[1]; + A[0][2] = pb[2] - pa[2]; + A[1][0] = pc[0] - pa[0]; + A[1][1] = pc[1] - pa[1]; + A[1][2] = pc[2] - pa[2]; + if (pd != NULL) { + A[2][0] = pd[0] - pa[0]; + A[2][1] = pd[1] - pa[1]; + A[2][2] = pd[2] - pa[2]; + } else { + cross(A[0], A[1], A[2]); + } + + // Compute the right hand side vector b (3x1). + rhs[0] = 0.5 * dot(A[0], A[0]); + rhs[1] = 0.5 * dot(A[1], A[1]); + if (pd != NULL) { + rhs[2] = 0.5 * dot(A[2], A[2]); + } else { + rhs[2] = 0.0; + } + + // Solve the 3 by 3 equations use LU decomposition with partial pivoting + // and backward and forward substitute.. + if (!lu_decmp(A, 3, indx, &D, 0)) { + if (radius != (REAL *) NULL) *radius = 0.0; + return false; + } + lu_solve(A, 3, indx, rhs, 0); + if (cent != (REAL *) NULL) { + cent[0] = pa[0] + rhs[0]; + cent[1] = pa[1] + rhs[1]; + cent[2] = pa[2] + rhs[2]; + } + if (radius != (REAL *) NULL) { + *radius = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); + } + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// inscribedsphere() Compute the radius and center of the biggest // +// inscribed sphere of a given tetrahedron. // +// // +// The tetrahedron is given by its four points, it must not be degenerate. // +// The center and radius are returned in 'cent' and 'radius' respectively if // +// they are not NULLs. // +// // +// Geometrical fact. For any simplex in d dimension, // +// r/h1 + r/h2 + ... r/hn = 1 (n <= d + 1); // +// where r is the radius of inscribed ball, and h is the height of each side // +// of the simplex. The value of 'r/h' is just the barycenter coordinates of // +// each vertex of the simplex. Therefore, we can compute the radius and // +// center of the smallest inscribed ball as following equations: // +// r = 1.0 / (1/h1 + 1/h2 + ... + 1/hn); (1) // +// C = r/h1 * P1 + r/h2 * P2 + ... + r/hn * Pn; (2) // +// where C is the vector of center, P1, P2, .. Pn are vectors of vertices. // +// Here (2) contains n linear equations with n variables. (h, P) must be a // +// pair, h is the height from P to its opposite face. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +inscribedsphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* cent, + REAL* radius) +{ + REAL A[3][3], rhs[3], D; + REAL N[3][4], H[4]; // Normals (colume vectors) and heights of each face. + REAL rd; + int indx[3], i, j; + + // Compute the normals of 4 faces. + A[0][0] = pa[0] - pd[0]; + A[0][1] = pa[1] - pd[1]; + A[0][2] = pa[2] - pd[2]; + A[1][0] = pb[0] - pd[0]; + A[1][1] = pb[1] - pd[1]; + A[1][2] = pb[2] - pd[2]; + A[2][0] = pc[0] - pd[0]; + A[2][1] = pc[1] - pd[1]; + A[2][2] = pc[2] - pd[2]; + // Compute inverse of matrix A, to get the 3 normals of 4 faces. + lu_decmp(A, 3, indx, &D, 0); // Decompose the matrix just once. + for (j = 0; j < 3; j++) { + for (i = 0; i < 3; i++) rhs[i] = 0.0; + rhs[j] = -1.0; + lu_solve(A, 3, indx, rhs, 0); + for (i = 0; i < 3; i++) N[i][j] = rhs[i]; + } + // Compute the last normal by summing 3 computed vectors, because sum over + // a closed sufrace is 0. + N[0][3] = - N[0][0] - N[0][1] - N[0][2]; + N[1][3] = - N[1][0] - N[1][1] - N[1][2]; + N[2][3] = - N[2][0] - N[2][1] - N[2][2]; + // Compute the length of normals. + for (i = 0; i < 4; i++) { + // H[i] is the inverse of height of its corresponding face. + H[i] = sqrt(N[0][i] * N[0][i] + N[1][i] * N[1][i] + N[2][i] * N[2][i]); + } + // Compute the radius use eq. (1). + rd = 1.0 / (H[0] + H[1] + H[2] + H[3]); + if (radius != (REAL*) NULL) *radius = rd; + if (cent != (REAL*) NULL) { + // Compute the center use eq. (2). + cent[0] = rd * (H[0] * pa[0] + H[1] * pb[0] + H[2] * pc[0] + H[3] * pd[0]); + cent[1] = rd * (H[0] * pa[1] + H[1] * pb[1] + H[2] * pc[1] + H[3] * pd[1]); + cent[2] = rd * (H[0] * pa[2] + H[1] * pb[2] + H[2] * pc[2] + H[3] * pd[2]); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// rotatepoint() Create a point by rotating an existing point. // +// // +// Create a 3D point by rotating point 'p' with an angle 'rotangle' (in arc // +// degree) around a rotating axis given by a vector from point 'p1' to 'p2'. // +// The rotation is according with right-hand rule, i.e., use your right-hand // +// to grab the axis with your thumber pointing to its positive direction, // +// your fingers indicate the rotating direction. // +// // +// The rotating steps are the following: // +// 1. Translate vector 'p1->p2' to origin, M1; // +// 2. Rotate vector around the Y-axis until it lies in the YZ plane, M2; // +// 3. Rotate vector around the X-axis until it lies on the Z axis, M3; // +// 4. Perform the rotation of 'p' around the z-axis, M4; // +// 5. Undo Step 3, M5; // +// 6. Undo Step 2, M6; // +// 7. Undo Step 1, M7; // +// Use matrix multiplication to combine the above sequences, we get: // +// p0' = T * p0, where T = M7 * M6 * M5 * M4 * M3 * M2 * M1 // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::rotatepoint(REAL* p, REAL rotangle, REAL* p1, REAL* p2) +{ + REAL T[4][4], pp0[4], p0t[4], p2t[4]; + REAL roty, rotx, alphaR, projlen; + REAL dx, dy, dz; + + initm44(1, 0, 0, -p1[0], + 0, 1, 0, -p1[1], + 0, 0, 1, -p1[2], + 0, 0, 0, 1, T); + pp0[0] = p[0]; pp0[1] = p[1]; pp0[2] = p[2]; pp0[3] = 1.0; + m4xv4(p0t, T, pp0); // Step 1 + pp0[0] = p2[0]; pp0[1] = p2[1]; pp0[2] = p2[2]; pp0[3] = 1.0; + m4xv4(p2t, T, pp0); // Step 1 + + // Get the rotation angle around y-axis; + dx = p2t[0]; + dz = p2t[2]; + projlen = sqrt(dx * dx + dz * dz); + if (projlen <= (b->epsilon * 1e-2) * longest) { + roty = 0; + } else { + roty = acos(dz / projlen); + if (dx < 0) { + roty = -roty; + } + } + + initm44(cos(-roty), 0, sin(-roty), 0, + 0, 1, 0, 0, + -sin(-roty), 0, cos(-roty), 0, + 0, 0, 0, 1, T); + pp0[0] = p0t[0]; pp0[1] = p0t[1]; pp0[2] = p0t[2]; pp0[3] = 1.0; + m4xv4(p0t, T, pp0); // Step 2 + pp0[0] = p2t[0]; pp0[1] = p2t[1]; pp0[2] = p2t[2]; pp0[3] = 1.0; + m4xv4(p2t, T, pp0); // Step 2 + + // Get the rotation angle around x-axis + dy = p2t[1]; + dz = p2t[2]; + projlen = sqrt(dy * dy + dz * dz); + if (projlen <= (b->epsilon * 1e-2) * longest) { + rotx = 0; + } else { + rotx = acos(dz / projlen); + if (dy < 0) { + rotx = -rotx; + } + } + + initm44(1, 0, 0, 0, + 0, cos(rotx), -sin(rotx), 0, + 0, sin(rotx), cos(rotx), 0, + 0, 0, 0, 1, T); + pp0[0] = p0t[0]; pp0[1] = p0t[1]; pp0[2] = p0t[2]; pp0[3] = 1.0; + m4xv4(p0t, T, pp0); // Step 3 + // pp0[0] = p2t[0]; pp0[1] = p2t[1]; pp0[2] = p2t[2]; pp0[3] = 1.0; + // m4xv4(p2t, T, pp0); // Step 3 + + alphaR = rotangle; + initm44(cos(alphaR), -sin(alphaR), 0, 0, + sin(alphaR), cos(alphaR), 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1, T); + pp0[0] = p0t[0]; pp0[1] = p0t[1]; pp0[2] = p0t[2]; pp0[3] = 1.0; + m4xv4(p0t, T, pp0); // Step 4 + + initm44(1, 0, 0, 0, + 0, cos(-rotx), -sin(-rotx), 0, + 0, sin(-rotx), cos(-rotx), 0, + 0, 0, 0, 1, T); + pp0[0] = p0t[0]; pp0[1] = p0t[1]; pp0[2] = p0t[2]; pp0[3] = 1.0; + m4xv4(p0t, T, pp0); // Step 5 + + initm44(cos(roty), 0, sin(roty), 0, + 0, 1, 0, 0, + -sin(roty), 0, cos(roty), 0, + 0, 0, 0, 1, T); + pp0[0] = p0t[0]; pp0[1] = p0t[1]; pp0[2] = p0t[2]; pp0[3] = 1.0; + m4xv4(p0t, T, pp0); // Step 6 + + initm44(1, 0, 0, p1[0], + 0, 1, 0, p1[1], + 0, 0, 1, p1[2], + 0, 0, 0, 1, T); + pp0[0] = p0t[0]; pp0[1] = p0t[1]; pp0[2] = p0t[2]; pp0[3] = 1.0; + m4xv4(p0t, T, pp0); // Step 7 + + p[0] = p0t[0]; + p[1] = p0t[1]; + p[2] = p0t[2]; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// spherelineint() 3D line sphere (or circle) intersection. // +// // +// The line is given by two points p1, and p2, the sphere is centered at c // +// with radius r. This function returns a pointer array p which first index // +// indicates the number of intersection point, followed by coordinate pairs. // +// // +// The following code are adapted from: http://astronomy.swin.edu.au/pbourke // +// /geometry/sphereline. Paul Bourke pbourke@swin.edu.au // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::spherelineint(REAL* p1, REAL* p2, REAL* C, REAL R, REAL p[7]) +{ + REAL x1, y1, z1; // P1 coordinates (point of line) + REAL x2, y2, z2; // P2 coordinates (point of line) + REAL x3, y3, z3, r; // P3 coordinates and radius (sphere) + REAL a, b, c, mu, i ; + + x1 = p1[0]; y1 = p1[1]; z1 = p1[2]; + x2 = p2[0]; y2 = p2[1]; z2 = p2[2]; + x3 = C[0]; y3 = C[1]; z3 = C[2]; + r = R; + + a = (x2 - x1) * (x2 - x1) + + (y2 - y1) * (y2 - y1) + + (z2 - z1) * (z2 - z1); + b = 2 * ( (x2 - x1) * (x1 - x3) + + (y2 - y1) * (y1 - y3) + + (z2 - z1) * (z1 - z3) ) ; + c = (x3 * x3) + (y3 * y3) + (z3 * z3) + + (x1 * x1) + (y1 * y1) + (z1 * z1) + - 2 * (x3 * x1 + y3 * y1 + z3 * z1) - (r * r) ; + i = b * b - 4 * a * c ; + + if (i < 0.0) { + // no intersection + p[0] = 0.0; + } else if (i == 0.0) { + // one intersection + p[0] = 1.0; + mu = -b / (2 * a) ; + p[1] = x1 + mu * (x2 - x1); + p[2] = y1 + mu * (y2 - y1); + p[3] = z1 + mu * (z2 - z1); + } else { + assert(i > 0.0); + // two intersections + p[0] = 2.0; + // first intersection + mu = (-b + sqrt((b * b) - 4 * a * c)) / (2 * a); + p[1] = x1 + mu * (x2 - x1); + p[2] = y1 + mu * (y2 - y1); + p[3] = z1 + mu * (z2 - z1); + // second intersection + mu = (-b - sqrt((b * b) - 4 * a * c)) / (2 * a); + p[4] = x1 + mu * (x2 - x1); + p[5] = y1 + mu * (y2 - y1); + p[6] = z1 + mu * (z2 - z1); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// linelineint() Calculate The shortest line between two lines in 3D. // +// // +// Two 3D lines generally don't intersect at a point, they may be parallel ( // +// no intersections), or they may be coincident (infinite intersections) but // +// most often only their projection onto a plane intersect. When they don't // +// exactly intersect at a point they can be connected by a line segment, the // +// shortest line segment is unique and is often considered to be their inter-// +// section in 3D. // +// // +// The following code are adapted from: http://astronomy.swin.edu.au/pbourke // +// /geometry/lineline3d. Paul Bourke pbourke@swin.edu.au // +// // +// Calculate the line segment PaPb that is the shortest route between two // +// lines P1P2 and P3P4. This function returns a pointer array p which first // +// index indicates there exists solution or not, 0 means no solution, 1 meas // +// has solution followed by two coordinate pairs. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::linelineint(REAL *p1,REAL *p2, REAL *p3, REAL *p4, REAL p[7]) +{ + REAL p13[3], p43[3], p21[3]; + REAL d1343, d4321, d1321, d4343, d2121; + REAL numer, denom; + REAL mua, mub; + + p13[0] = p1[0] - p3[0]; + p13[1] = p1[1] - p3[1]; + p13[2] = p1[2] - p3[2]; + p43[0] = p4[0] - p3[0]; + p43[1] = p4[1] - p3[1]; + p43[2] = p4[2] - p3[2]; + if (p43[0] == 0.0 && p43[1] == 0.0 && p43[2] == 0.0) { + p[0] = 0.0; + return; + } + + p21[0] = p2[0] - p1[0]; + p21[1] = p2[1] - p1[1]; + p21[2] = p2[2] - p1[2]; + if (p21[0] == 0.0 && p21[1] == 0.0 && p21[2] == 0.0) { + p[0] = 0.0; + return; + } + + d1343 = p13[0] * p43[0] + p13[1] * p43[1] + p13[2] * p43[2]; + d4321 = p43[0] * p21[0] + p43[1] * p21[1] + p43[2] * p21[2]; + d1321 = p13[0] * p21[0] + p13[1] * p21[1] + p13[2] * p21[2]; + d4343 = p43[0] * p43[0] + p43[1] * p43[1] + p43[2] * p43[2]; + d2121 = p21[0] * p21[0] + p21[1] * p21[1] + p21[2] * p21[2]; + + denom = d2121 * d4343 - d4321 * d4321; + if (denom == 0.0) { + p[0] = 0.0; + return; + } + numer = d1343 * d4321 - d1321 * d4343; + mua = numer / denom; + mub = (d1343 + d4321 * mua) / d4343; + + p[0] = 1.0; + p[1] = p1[0] + mua * p21[0]; + p[2] = p1[1] + mua * p21[1]; + p[3] = p1[2] + mua * p21[2]; + p[4] = p3[0] + mub * p43[0]; + p[5] = p3[1] + mub * p43[1]; + p[6] = p3[2] + mub * p43[2]; +} + +// +// End of Geometric quantities calculators +// + +// +// Begin of memory management routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// dummyinit() Initialize the tetrahedron that fills "outer space" and // +// the omnipresent subface. // +// // +// The tetrahedron that fills "outer space" called 'dummytet', is pointed to // +// by every tetrahedron and subface on a boundary (be it outer or inner) of // +// the tetrahedralization. Also, 'dummytet' points to one of the tetrahedron // +// on the convex hull(until the holes and concavities are carved), making it // +// possible to find a starting tetrahedron for point location. // +// // +// The omnipresent subface,'dummysh', is pointed to by every tetrahedron or // +// subface that doesn't have a full complement of real subface to point to. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::dummyinit(int tetwords, int shwords) +{ + unsigned long alignptr; + + // Set up 'dummytet', the 'tetrahedron' that occupies "outer space". + dummytetbase = (tetrahedron *) new char[tetwords * sizeof(tetrahedron) + + tetrahedrons->alignbytes]; + // Align 'dummytet' on a 'tetrahedrons->alignbytes'-byte boundary. + alignptr = (unsigned long) dummytetbase; + dummytet = (tetrahedron *) + (alignptr + (unsigned long) tetrahedrons->alignbytes + - (alignptr % (unsigned long) tetrahedrons->alignbytes)); + // Initialize the four adjoining tetrahedra to be "outer space". These + // will eventually be changed by various bonding operations, but their + // values don't really matter, as long as they can legally be + // dereferenced. + dummytet[0] = (tetrahedron) dummytet; + dummytet[1] = (tetrahedron) dummytet; + dummytet[2] = (tetrahedron) dummytet; + dummytet[3] = (tetrahedron) dummytet; + // Four null vertex points. + dummytet[4] = (tetrahedron) NULL; + dummytet[5] = (tetrahedron) NULL; + dummytet[6] = (tetrahedron) NULL; + dummytet[7] = (tetrahedron) NULL; + + if (b->useshelles) { + // Set up 'dummysh', the omnipresent "subface" pointed to by any + // tetrahedron side or subface end that isn't attached to a real + // subface. + dummyshbase = (shellface *) new char[shwords * sizeof(shellface) + + subfaces->alignbytes]; + // Align 'dummysh' on a 'subfaces->alignbytes'-byte boundary. + alignptr = (unsigned long) dummyshbase; + dummysh = (shellface *) + (alignptr + (unsigned long) subfaces->alignbytes + - (alignptr % (unsigned long) subfaces->alignbytes)); + // Initialize the three adjoining subfaces to be the omnipresent + // subface. These will eventually be changed by various bonding + // operations, but their values don't really matter, as long as they + // can legally be dereferenced. + dummysh[0] = (shellface) dummysh; + dummysh[1] = (shellface) dummysh; + dummysh[2] = (shellface) dummysh; + // Three null vertex points. + dummysh[3] = (shellface) NULL; + dummysh[4] = (shellface) NULL; + dummysh[5] = (shellface) NULL; + // Initialize the two adjoining tetrahedra to be "outer space". + dummysh[6] = (shellface) dummytet; + dummysh[7] = (shellface) dummytet; + // Initialize the three adjoining subsegments to be "out boundary". + dummysh[8] = (shellface) dummysh; + dummysh[9] = (shellface) dummysh; + dummysh[10] = (shellface) dummysh; + // Initialize the pointer to badface structure. + dummysh[11] = (shellface) NULL; + // Initialize the four adjoining subfaces of 'dummytet' to be the + // omnipresent subface. + dummytet[8 ] = (tetrahedron) dummysh; + dummytet[9 ] = (tetrahedron) dummysh; + dummytet[10] = (tetrahedron) dummysh; + dummytet[11] = (tetrahedron) dummysh; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// initializepointpool() Calculate the size of the point data structure // +// and initialize its memory pool. // +// // +// This routine also computes the 'pointmarkindex' and 'point2simindex' // +// indices used to find values within each point. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::initializepointpool() +{ + enum wordtype wtype; + int pointsize; + + // The index within each point at which a element pointer is found. Ensure + // the index is aligned to a sizeof(tetrahedron)-byte address. + point2simindex = ((3 + in->numberofpointattributes) * sizeof(REAL) + + sizeof(tetrahedron) - 1) / sizeof(tetrahedron); + if (b->plc || b->refine) { + // Increase the point size by two pointers. One points to a simplex: + // - a tetrahedron containing it, read by point2tet(); + // - a subface containing it, read by point2sh(); + // - a (sharp) subsegment it relates, read by point2sh(); + // - a (duplicated) point of it, read by point2pt(); + // and one points to another point (its parent, used in conforming + // Delaunay meshing algorithm), read by point2ppt(). + pointsize = (point2simindex + 2) * sizeof(tetrahedron); + } else { + pointsize = point2simindex * sizeof(tetrahedron); + } + // The index within each point at which the boundary marker is found, + // Ensure the point marker is aligned to a sizeof(int)-byte address. + pointmarkindex = (pointsize + sizeof(int) - 1) / sizeof(int); + // Now point size is the REALs (inidcated by vertexmarkindex) plus: + // - an integer for boundary marker; + // - an integer for vertex type; + pointsize = (pointmarkindex + 2) * sizeof(int); + // Decide the wordtype used in vertex pool. + wtype = (sizeof(REAL) >= sizeof(tetrahedron)) ? FLOATINGPOINT : POINTER; + // Initialize the pool of vertices. + points = new memorypool(pointsize, VERPERBLOCK, wtype, 0); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// initializetetshpools() Calculate the sizes of the tetrahedron and // +// subface data structures and initialize their // +// memory pools. // +// // +// This routine also computes the 'highorderindex', 'elemattribindex', and // +// 'volumeboundindex' indices used to find values within each tetrahedron. // +// // +// There are two types of boundary elements, whihc are subfaces and subsegs, // +// they are stored in seperate pools. However, the data structures of them // +// are the same. A subsegment can be regarded as a degenerate subface, i.e.,// +// one of its three corners is not used. We set the apex of it be 'NULL' to // +// distinguish it's a subsegment. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::initializetetshpools() +{ + int elesize, shsize; + + // The number of bytes occupied by a tetrahedron. There are four pointers + // to other tetrahedra, four pointers to corners, and possibly four + // pointers to subfaces. + elesize = (8 + b->useshelles * 4) * sizeof(tetrahedron); + // The index within each element at which its attributes are found, where + // the index is measured in REALs. + elemattribindex = (elesize + sizeof(REAL) - 1) / sizeof(REAL); + // The index within each element at which the maximum voulme bound is + // found, where the index is measured in REALs. Note that if the + // `b->regionattrib' flag is set, an additional attribute will be added. + volumeboundindex = elemattribindex + in->numberoftetrahedronattributes + + b->regionattrib; + // If element attributes or an constraint are needed, increase the number + // of bytes occupied by an element. + if (b->varvolume) { + elesize = (volumeboundindex + 1) * sizeof(REAL); + } else if (in->numberoftetrahedronattributes + b->regionattrib > 0) { + elesize = volumeboundindex * sizeof(REAL); + } + // If the high order elements are required (-o2 switch is used), an + // additional pointer pointed to the list of extra nodes is allocated + // for each element. + if (b->order == 2) { + highorderindex = (elesize + sizeof(int) - 1) / sizeof(int); + elesize = (highorderindex + 1) * sizeof(int); + } + // If element neighbor graph is requested, make sure there's room to + // store an integer index in each element. This integer index can + // occupy the same space as the subface pointers. + if (b->neighout && (elesize <= 8 * sizeof(tetrahedron))) { + elesize = 8 * sizeof(tetrahedron) + sizeof(int); + } + // Having determined the memory size of an element, initialize the pool. + tetrahedrons = new memorypool(elesize, ELEPERBLOCK, POINTER, 8); + + if (b->useshelles) { + // The number of bytes occupied by a subface. The list of pointers + // stored in a subface are: three to other subfaces, three to corners, + // three to subsegments, two to tetrahedra, and one to a badface. + shsize = 12 * sizeof(shellface); + // The index within each subface at which the maximum area bound is + // found, where the index is measured in REALs. + areaboundindex = (shsize + sizeof(REAL) - 1) / sizeof(REAL); + // If -q switch is in use, increase the number of bytes occupied by + // a subface for saving maximum area bound. + if (b->quality) { + shsize = (areaboundindex + 1) * sizeof(REAL); + } else { + shsize = areaboundindex * sizeof(REAL); + } + // The index within subface at which the facet marker is found. Ensure + // the marker is aligned to a sizeof(int)-byte address. + shmarkindex = (shsize + sizeof(int) - 1) / sizeof(int); + // Increase the number of bytes by two integers, one for facet marker, + // and one for shellface type. + shsize = (shmarkindex + 2) * sizeof(int); + // Initialize the pool of subfaces. Each subface record is eight-byte + // aligned so it has room to store an edge version (from 0 to 5) in + // the least three bits. + subfaces = new memorypool(shsize, SUBPERBLOCK, POINTER, 8); + // Initialize the pool of subsegments. The subsegment's record is same + // with subface. + subsegs = new memorypool(shsize, SUBPERBLOCK, POINTER, 8); + // Initialize the "outer space" tetrahedron and omnipresent subface. + dummyinit(tetrahedrons->itemwords, subfaces->itemwords); + } else { + // Initialize the "outer space" tetrahedron. + dummyinit(tetrahedrons->itemwords, 0); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetrahedrondealloc() Deallocate space for a tet., marking it dead. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::tetrahedrondealloc(tetrahedron *dyingtetrahedron) +{ + // Set tetrahedron's vertices to NULL. This makes it possible to detect + // dead tetrahedra when traversing the list of all tetrahedra. + dyingtetrahedron[4] = (tetrahedron) NULL; + dyingtetrahedron[5] = (tetrahedron) NULL; + dyingtetrahedron[6] = (tetrahedron) NULL; + dyingtetrahedron[7] = (tetrahedron) NULL; + tetrahedrons->dealloc((void *) dyingtetrahedron); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetrahedrontraverse() Traverse the tetrahedra, skipping dead ones. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::tetrahedron* tetgenmesh::tetrahedrontraverse() +{ + tetrahedron *newtetrahedron; + + do { + newtetrahedron = (tetrahedron *) tetrahedrons->traverse(); + if (newtetrahedron == (tetrahedron *) NULL) { + return (tetrahedron *) NULL; + } + } while (newtetrahedron[7] == (tetrahedron) NULL); // Skip dead ones. + return newtetrahedron; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// shellfacedealloc() Deallocate space for a shellface, marking it dead. // +// Used both for dealloc a subface and subsegment. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::shellfacedealloc(memorypool *pool, shellface *dyingsh) +{ + // Set shellface's vertices to NULL. This makes it possible to detect dead + // shellfaces when traversing the list of all shellfaces. + dyingsh[3] = (shellface) NULL; + dyingsh[4] = (shellface) NULL; + dyingsh[5] = (shellface) NULL; + pool->dealloc((void *) dyingsh); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// shellfacetraverse() Traverse the subfaces, skipping dead ones. Used // +// for both subfaces and subsegments pool traverse. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::shellface* tetgenmesh::shellfacetraverse(memorypool *pool) +{ + shellface *newshellface; + + do { + newshellface = (shellface *) pool->traverse(); + if (newshellface == (shellface *) NULL) { + return (shellface *) NULL; + } + } while (newshellface[3] == (shellface) NULL); // Skip dead ones. + return newshellface; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// badfacedealloc() Deallocate space for a badface, marking it dead. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::badfacedealloc(memorypool *pool, badface *dying) +{ + // Set badface's forg to NULL. This makes it possible to detect dead + // ones when traversing the list of all items. + dying->forg = (point) NULL; + pool->dealloc((void *) dying); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// badfacetraverse() Traverse the pools, skipping dead ones. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::badface* tetgenmesh::badfacetraverse(memorypool *pool) +{ + badface *newsh; + + do { + newsh = (badface *) pool->traverse(); + if (newsh == (badface *) NULL) { + return (badface *) NULL; + } + } while (newsh->forg == (point) NULL); // Skip dead ones. + return newsh; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// pointdealloc() Deallocate space for a point, marking it dead. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::pointdealloc(point dyingpoint) +{ + // Mark the point as dead. This makes it possible to detect dead points + // when traversing the list of all points. + setpointtype(dyingpoint, DEADVERTEX); + points->dealloc((void *) dyingpoint); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// pointtraverse() Traverse the points, skipping dead ones. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::point tetgenmesh::pointtraverse() +{ + point newpoint; + + do { + newpoint = (point) points->traverse(); + if (newpoint == (point) NULL) { + return (point) NULL; + } + } while (pointtype(newpoint) == DEADVERTEX); // Skip dead ones. + return newpoint; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// maketetrahedron() Create a new tetrahedron. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::maketetrahedron(triface *newtet) +{ + newtet->tet = (tetrahedron *) tetrahedrons->alloc(); + // Initialize the four adjoining tetrahedra to be "outer space". + newtet->tet[0] = (tetrahedron) dummytet; + newtet->tet[1] = (tetrahedron) dummytet; + newtet->tet[2] = (tetrahedron) dummytet; + newtet->tet[3] = (tetrahedron) dummytet; + // Four NULL vertices. + newtet->tet[4] = (tetrahedron) NULL; + newtet->tet[5] = (tetrahedron) NULL; + newtet->tet[6] = (tetrahedron) NULL; + newtet->tet[7] = (tetrahedron) NULL; + // Initialize the four adjoining subfaces to be the omnipresent subface. + if (b->useshelles) { + newtet->tet[8 ] = (tetrahedron) dummysh; + newtet->tet[9 ] = (tetrahedron) dummysh; + newtet->tet[10] = (tetrahedron) dummysh; + newtet->tet[11] = (tetrahedron) dummysh; + } + for (int i = 0; i < in->numberoftetrahedronattributes; i++) { + setelemattribute(newtet->tet, i, 0.0); + } + if (b->varvolume) { + setvolumebound(newtet->tet, -1.0); + } + // Initialize the location and version to be Zero. + newtet->loc = 0; + newtet->ver = 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// makeshellface() Create a new shellface with version zero. Used for // +// both subfaces and seusegments. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::makeshellface(memorypool *pool, face *newface) +{ + newface->sh = (shellface *) pool->alloc(); + //Initialize the three adjoining subfaces to be the omnipresent subface. + newface->sh[0] = (shellface) dummysh; + newface->sh[1] = (shellface) dummysh; + newface->sh[2] = (shellface) dummysh; + // Three NULL vertices. + newface->sh[3] = (shellface) NULL; + newface->sh[4] = (shellface) NULL; + newface->sh[5] = (shellface) NULL; + // Initialize the two adjoining tetrahedra to be "outer space". + newface->sh[6] = (shellface) dummytet; + newface->sh[7] = (shellface) dummytet; + // Initialize the three adjoining subsegments to be the omnipresent + // subsegments. + newface->sh [8] = (shellface) dummysh; + newface->sh [9] = (shellface) dummysh; + newface->sh[10] = (shellface) dummysh; + // Initialize the pointer to badface structure. + newface->sh[11] = (shellface) NULL; + if (b->quality) { + // Initialize the maximum area bound. + setareabound(*newface, 0.0); + } + // Set the boundary marker to zero. + setshellmark(*newface, 0); + // Set the type be NONPROTSUBFACE. + setshelltype(*newface, NONPROTSUBFACE); + // Initialize the version to be Zero. + newface->shver = 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// makepoint() Create a new point. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::makepoint(point* pnewpoint) +{ + int ptmark, i; + + *pnewpoint = (point) points->alloc(); + // Initialize three coordinates. + (*pnewpoint)[0] = 0.0; + (*pnewpoint)[1] = 0.0; + (*pnewpoint)[2] = 0.0; + // Initialize the list of user-defined attributes. + for (i = 0; i < in->numberofpointattributes; i++) { + (*pnewpoint)[3 + i] = 0.0; + } + if (b->plc || b->refine) { + // Initialize the point-to-tetrahedron filed. + setpoint2tet(*pnewpoint, NULL); + // Initialize the other pointer to its parent point. + setpoint2ppt(*pnewpoint, NULL); + } + // Initialize the point marker (starting from in->firstnumber). + ptmark = (int) points->items - (in->firstnumber == 1 ? 0 : 1); + setpointmark(*pnewpoint, ptmark); + // Initialize the point type be UNUSEDVERTEX. + setpointtype(*pnewpoint, UNUSEDVERTEX); +} + +// +// End of memory management routines +// + +// +// Begin of point location routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// randomnation() Generate a random number between 0 and 'choices' - 1. // +// // +/////////////////////////////////////////////////////////////////////////////// + +unsigned long tetgenmesh::randomnation(unsigned int choices) +{ + randomseed = (randomseed * 1366l + 150889l) % 714025l; + return randomseed / (714025l / choices + 1); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// distance2() Returns the square "distance" of a tetrahedron to point p. // +// // +/////////////////////////////////////////////////////////////////////////////// + +REAL tetgenmesh::distance2(tetrahedron* tetptr, point p) +{ + point p1, p2, p3, p4; + REAL dx, dy, dz; + + p1 = (point) tetptr[4]; + p2 = (point) tetptr[5]; + p3 = (point) tetptr[6]; + p4 = (point) tetptr[7]; + + dx = p[0] - 0.25 * (p1[0] + p2[0] + p3[0] + p4[0]); + dy = p[1] - 0.25 * (p1[1] + p2[1] + p3[1] + p4[1]); + dz = p[2] - 0.25 * (p1[2] + p2[2] + p3[2] + p4[2]); + + return dx * dx + dy * dy + dz * dz; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// preciselocate() Find a simplex containing a given point. // +// // +// This routine implements the simple Walk-through point location algorithm. // +// Begins its search from 'searchtet', assume there is a line segment L from // +// a vertex of 'searchtet' to the query point 'searchpoint', and simply walk // +// towards 'searchpoint' by traversing all faces intersected by L. // +// // +// On completion, 'searchtet' is a tetrahedron that contains 'searchpoint'. // +// The returned value indicates one of the following cases: // +// - Returns ONVERTEX if the point lies on an existing vertex. 'searchtet' // +// is a handle whose origin is the existing vertex. // +// - Returns ONEDGE if the point lies on a mesh edge. 'searchtet' is a // +// handle whose primary edge is the edge on which the point lies. // +// - Returns ONFACE if the point lies strictly within a face. 'searchtet' // +// is a handle whose primary face is the face on which the point lies. // +// - Returns INTETRAHEDRON if the point lies strictly in a tetrahededron. // +// 'searchtet' is a handle on the tetrahedron that contains the point. // +// - Returns OUTSIDE if the point lies outside the mesh. 'searchtet' is a // +// handle whose location is the face the point is to 'above' of. // +// // +// WARNING: This routine is designed for convex triangulations, and will not // +// generally work after the holes and concavities have been carved. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::locateresult tetgenmesh:: +preciselocate(point searchpoint, triface* searchtet) +{ + triface backtracetet; + triface walkthroface; + point forg, fdest, fapex, toppo; + REAL ori1, ori2, ori3, ori4; + long tetnumber; + int side; + + // 'searchtet' should be a valid tetrahedron. + if (searchtet->tet == dummytet) { + symself(*searchtet); + assert(searchtet->tet != dummytet); + } + assert(!isdead(searchtet)); + + searchtet->ver = 0; // Keep in CCW edge ring. + // Find a face of 'searchtet' such that the 'searchpoint' lies strictly + // above it. Such face should always exist. + for (searchtet->loc = 0; searchtet->loc < 4; searchtet->loc++) { + forg = org(*searchtet); + fdest = dest(*searchtet); + fapex = apex(*searchtet); + ori1 = orient3d(forg, fdest, fapex, searchpoint); + if (ori1 < 0.0) break; + } + assert(searchtet->loc < 4); + + // Define 'tetnumber' for exit the loop when it's running endless. + tetnumber = 0l; + while (tetnumber <= tetrahedrons->items) { + // Check if we are reaching the boundary of the triangulation. + if (searchtet->tet == dummytet) { + *searchtet = backtracetet; + return OUTSIDE; + } + // Initialize the face for returning the walk-through face. + walkthroface.tet = (tetrahedron *) NULL; + // Adjust the edge ring, so that 'ori1 < 0.0' holds. + searchtet->ver = 0; + // 'toppo' remains unchange for the following orientation tests. + toppo = oppo(*searchtet); + // Check the three sides of 'searchtet' to find the face through which + // we can walk next. + for (side = 0; side < 3; side++) { + forg = org(*searchtet); + fdest = dest(*searchtet); + ori2 = orient3d(forg, fdest, toppo, searchpoint); + if (ori2 == 0.0) { + // They are coplanar, check if 'searchpoint' lies inside, or on an + // edge, or coindice with a vertex of face (forg, fdest, toppo). + fapex = apex(*searchtet); + ori3 = orient3d(fdest, fapex, toppo, searchpoint); + if (ori3 < 0.0) { + // Outside the face (fdest, fapex, toppo), walk through it. + enextself(*searchtet); + fnext(*searchtet, walkthroface); + break; + } + ori4 = orient3d(fapex, forg, toppo, searchpoint); + if (ori4 < 0.0) { + // Outside the face (fapex, forg, toppo), walk through it. + enext2self(*searchtet); + fnext(*searchtet, walkthroface); + break; + } + // Remember, ori1 < 0.0, which means 'searchpoint' will not + // on edge (forg, fdest) or on vertex forg or fdest. + assert(ori1 < 0.0); + // The rest possible cases are: + // (1) 'searchpoint' lies on edge (fdest, toppo); + // (2) 'searchpoint' lies on edge (toppo, forg); + // (3) 'searchpoint' coincident with toppo; + // (4) 'searchpoint' lies inside face (forg, fdest, toppo). + fnextself(*searchtet); + if (ori3 == 0.0) { + if (ori4 == 0.0) { + // Case (4). + enext2self(*searchtet); + return ONVERTEX; + } else { + // Case (1). + enextself(*searchtet); + return ONEDGE; + } + } + if (ori4 == 0.0) { + // Case (2). + enext2self(*searchtet); + return ONEDGE; + } + // Case (4). + return ONFACE; + } else if (ori2 < 0.0) { + // Outside the face (forg, fdest, toppo), walk through it. + fnext(*searchtet, walkthroface); + break; + } + // Go to check next side. + enextself(*searchtet); + } + if (side >= 3) { + // Found! Inside tetrahedron. + return INTETRAHEDRON; + } + // We walk through the face 'walkthroface' and continue the searching. + assert(walkthroface.tet != (tetrahedron *) NULL); + // Store the face handle in 'backtracetet' before we take the real walk. + // So we are able to restore the handle to 'searchtet' if we are + // reaching the outer boundary. + backtracetet = walkthroface; + sym(walkthroface, *searchtet); + tetnumber++; + } + + // Should never be here. + printf("Internal error in preciselocate(): Point location failed.\n"); + internalerror(); + return OUTSIDE; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// locate() Find a simplex containing a given point. // +// // +// This routine implements Muecke's Jump-and-walk point location algorithm. // +// It improves the simple walk-through by "jumping" to a good starting point // +// via random sampling. Searching begins from one of handles: the input // +// 'searchtet', a recently encountered tetrahedron 'recenttet', or from one // +// chosen from a random sample. The choice is made by determining which one // +// 's barycenter is closest to the point we are searcing for. Having chosen // +// the starting tetrahedron, the simple Walk-through algorithm is used to do // +// the real walking. // +// // +// On completion, 'searchtet' is a tetrahedron that contains 'searchpoint'. // +// The returned value indicates one of the following cases: // +// - Returns ONVERTEX if the point lies on an existing vertex. 'searchtet' // +// is a handle whose origin is the existing vertex. // +// - Returns ONEDGE if the point lies on a mesh edge. 'searchtet' is a // +// handle whose primary edge is the edge on which the point lies. // +// - Returns ONFACE if the point lies strictly within a face. 'searchtet' // +// is a handle whose primary face is the face on which the point lies. // +// - Returns INTETRAHEDRON if the point lies strictly in a tetrahededron. // +// 'searchtet' is a handle on the tetrahedron that contains the point. // +// - Returns OUTSIDE if the point lies outside the mesh. 'searchtet' is a // +// handle whose location is the face the point is to 'above' of. // +// // +// WARNING: This routine is designed for convex triangulations, and will not // +// generally work after the holes and concavities have been carved. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::locateresult tetgenmesh:: +locate(point searchpoint, triface *searchtet) +{ + tetrahedron *firsttet, *tetptr; + void **sampleblock; + long sampleblocks, samplesperblock, samplenum; + long tetblocks, i, j; + unsigned long alignptr; + REAL searchdist, dist; + + // 'searchtet' should be a valid tetrahedron. + if (isdead(searchtet)) { + searchtet->tet = dummytet; + } + if (searchtet->tet == dummytet) { + // This is an 'Outer Space' handle, get a hull tetrahedron. + searchtet->loc = 0; + symself(*searchtet); + } + assert(!isdead(searchtet)); + + // Record the distance from the suggested starting tetrahedron to the + // point we seek. + searchdist = distance2(searchtet->tet, searchpoint); + + // If a recently encountered tetrahedron has been recorded and has not + // been deallocated, test it as a good starting point. + if (!isdead(&recenttet) && (recenttet.tet != searchtet->tet)) { + dist = distance2(recenttet.tet, searchpoint); + if (dist < searchdist) { + *searchtet = recenttet; + searchdist = dist; + } + } + + // Select "good" candidate using k random samples, taking the closest one. + // The number of random samples taken is proportional to the cube root + // of the number of tetrahedra in the mesh. The next bit of code assumes + // that the number of tetrahedra increases monotonically. + while (SAMPLEFACTOR * samples * samples * samples < tetrahedrons->items) { + samples++; + } + // Find how much blocks in current tet pool. + tetblocks = (tetrahedrons->maxitems + ELEPERBLOCK - 1) / ELEPERBLOCK; + // Find the average samles per block. Each block at least have 1 sample. + samplesperblock = 1 + (samples / tetblocks); + sampleblocks = samples / samplesperblock; + sampleblock = tetrahedrons->firstblock; + for (i = 0; i < sampleblocks; i++) { + alignptr = (unsigned long) (sampleblock + 1); + firsttet = (tetrahedron *) + (alignptr + (unsigned long) tetrahedrons->alignbytes + - (alignptr % (unsigned long) tetrahedrons->alignbytes)); + for (j = 0; j < samplesperblock; j++) { + if (i == tetblocks - 1) { + // This is the last block. + samplenum = randomnation((int) + (tetrahedrons->maxitems - (i * ELEPERBLOCK))); + } else { + samplenum = randomnation(ELEPERBLOCK); + } + tetptr = (tetrahedron *) + (firsttet + (samplenum * tetrahedrons->itemwords)); + if (tetptr[4] != (tetrahedron) NULL) { + dist = distance2(tetptr, searchpoint); + if (dist < searchdist) { + searchtet->tet = tetptr; + searchdist = dist; + } + } + } + sampleblock = (void **) *sampleblock; + } + + // Call simple walk-through to locate the point. + return preciselocate(searchpoint, searchtet); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// adjustlocate() Adjust the precise location of a vertex with respect to // +// a given tetrahedron using a given relative tolerance. // +// // +// 'precise' is the precise location (returned from preciselocate()) of the // +// point 'searchpoint' with respect to the tetrahedron 'searchtet'. 'epspp' // +// is the given relative tolerance. // +// // +// This routine reevaluates the orientations of searchpoint with respect to // +// the four faces of searchtet. Detects the coplanarities by additinal tests // +// which are based on the given tolerance. If 'precise' is ONFACE or ONEDGE, // +// we can save one or two orientation tests. // +// // +// On completion, 'searchtet' is a tetrahedron that contains 'searchpoint'. // +// The returned value indicates one of the following cases: // +// - Returns ONVERTEX if the point lies on an existing vertex. 'searchtet' // +// is a handle whose origin is the existing vertex. // +// - Returns ONEDGE if the point lies on a mesh edge. 'searchtet' is a // +// handle whose primary edge is the edge on which the point lies. // +// - Returns ONFACE if the point lies strictly within a face. 'searchtet' // +// is a handle whose primary face is the face on which the point lies. // +// - Returns INTETRAHEDRON if the point lies strictly in a tetrahededron. // +// 'searchtet' is a handle on the tetrahedron that contains the point. // +// - Returns OUTSIDE if the point lies outside the mesh. 'searchtet' is a // +// handle whose location is the face the point is to 'above' of. // +// // +// WARNING: This routine detect degenerate case using relative tolerance. // +// It is better used after locate() or preciselocate(). For general inputs, // +// it may not able to tell the correct location. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::locateresult tetgenmesh:: +adjustlocate(point searchpoint, triface* searchtet, enum locateresult precise, + REAL epspp) +{ + point torg, tdest, tapex, toppo; + REAL s1, s2, s3, s4; + + // For the given 'searchtet', the orientations tests are: + // s1: (tdest, torg, tapex, searchpoint); + // s2: (torg, tdest, toppo, searchpoint); + // s3: (tdest, tapex, toppo, searchpoint); + // s4: (tapex, torg, toppo, searchpoint); + adjustedgering(*searchtet, CCW); + torg = org(*searchtet); + tdest = dest(*searchtet); + tapex = apex(*searchtet); + toppo = oppo(*searchtet); + + switch (precise) { + case ONVERTEX: + // This case we don't need do any further test. + return ONVERTEX; + case ONEDGE: + // (torg, tdest); + s1 = 0.0; + s2 = 0.0; + break; + case ONFACE: + // (tdest, torg, tapex); + s1 = 0.0; + s2 = orient3d(torg, tdest, toppo, searchpoint); + break; + default: // INTETRAHEDRON or OUTSIDE + s1 = orient3d(tdest, torg, tapex, searchpoint); + s2 = orient3d(torg, tdest, toppo, searchpoint); + } + + if (s1 != 0.0) { + if (iscoplanar(tdest, torg, tapex, searchpoint, s1, epspp)) { + s1 = 0.0; + } + } + if (s1 < 0.0) { + return OUTSIDE; + } + + if (s2 != 0.0) { + if (iscoplanar(torg, tdest, toppo, searchpoint, s2, epspp)) { + s2 = 0.0; + } + } + if (s2 < 0.0) { + fnextself(*searchtet); + return OUTSIDE; + } + + s3 = orient3d(tdest, tapex, toppo, searchpoint); + if (s3 != 0.0) { + if (iscoplanar(tdest, tapex, toppo, searchpoint, s3, epspp)) { + s3 = 0.0; + } + } + if (s3 < 0.0) { + enextfnextself(*searchtet); + return OUTSIDE; + } + + s4 = orient3d(tapex, torg, toppo, searchpoint); + if (s4 != 0.0) { + if (iscoplanar(tapex, torg, toppo, searchpoint, s4, epspp)) { + s4 = 0.0; + } + } + if (s4 < 0.0) { + enext2fnextself(*searchtet); + return OUTSIDE; + } + + // Determine degenerate cases. + if (s1 == 0.0) { + if (s2 == 0.0) { + if (s3 == 0.0) { + // On tdest. + enextself(*searchtet); + return ONVERTEX; + } + if (s4 == 0.0) { + // On torg. + return ONVERTEX; + } + // On edge (torg, tdest). + return ONEDGE; + } + if (s3 == 0.0) { + if (s4 == 0.0) { + // On tapex. + enext2self(*searchtet); + return ONVERTEX; + } + // On edge (tdest, tapex). + enextself(*searchtet); + return ONEDGE; + } + if (s4 == 0.0) { + // On edge (tapex, torg). + enext2self(*searchtet); + return ONEDGE; + } + // On face (torg, tdest, tapex). + return ONFACE; + } + if (s2 == 0.0) { + fnextself(*searchtet); + if (s3 == 0.0) { + if (s4 == 0.0) { + // On toppo. + enext2self(*searchtet); + return ONVERTEX; + } + // On edge (tdest, toppo). + enextself(*searchtet); + return ONEDGE; + } + if (s4 == 0.0) { + // On edge (toppo, torg). + enext2self(*searchtet); + return ONEDGE; + } + // On face (torg, tdest, toppo). + return ONFACE; + } + if (s3 == 0.0) { + enextfnextself(*searchtet); + if (s4 == 0.0) { + // On edge (tapex, toppo). + enextself(*searchtet); + return ONEDGE; + } + // On face (tdest, tapex, toppo). + return ONFACE; + } + if (s4 == 0.0) { + enext2fnextself(*searchtet); + // On face (tapex, torg, toppo). + return ONFACE; + } + + // Inside tetrahedron. + return INTETRAHEDRON; +} + +// +// End of point location routines +// + +// +// Begin of mesh transformation routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// categorizeface() Determine the flip type of a given face. // +// // +// On input, 'horiz' represents the face we want to flip (you can imagine it // +// is parallel to the horizon). Let the tetrahedron above it be abcd, where // +// abc is 'horiz'. // +// // +// If abc is a hull face, it is unflipable, and is locally Delaunay. In the // +// following, we assume abc is an interior face, and the other tetrahedron // +// adjoining at abc is bace. // +// // +// If the convex hull CH of the set {a, b, c, d, e} only has four vertices, // +// i.e., one vertex lies inside CH, then abc is unflipable, and is locally // +// Delaunay. If CH is the vertex set itself, we have the following cases to // +// determine whether abc is flipable or not. // +// // +// If no four points of {a, b, c, d, e} are coplanar, a 2-to-3 flip can be // +// applied to abc if the edge de crosses the triangle abc; a 3-to-2 flip can // +// be applied to abc if ab crosses cde, and abde exists, otherwise, face abc // +// is unflipable, i.e., the tetrahedron abde is not present. // +// // +// If four points of {a, b, c, d, e} are coplanar (two faces are coplanar). // +// Assume faces abd and abe are coplanar (it is impossible be abc). If a, b, // +// d, e form a non-convex quadrilateral, then abc is unflipable, furthermore,// +// it is locally Delaunay. Assume they are convex quadrilateral, if abd and // +// abe are hull faces, a 2-to-2 flip can be applied to abc; if abd and abe // +// are interior faces, assume two tetrahedra adjoining abd and abe at the // +// opposite sides are abdg and abef, respectively. If g = f, a 4-to-4 flip // +// can be applied to abc, otherwise, abc is unflipable. // +// // +// There are other cases which can cause abc unflipable. If abc is a subface,// +// a 2-to-3 flip is forbidden; if ab is a subsegment, flips 3-to-2, 2-to-2, // +// and 4-to-4 are forbidden. // +// // +// This routine determines the suitable type of flip operation for 'horiz'. // +// - Returns T23 if a 2-to-3 flip is applicable. 'horiz' is same as input. // +// - Returns T32 if a 3-to-2 flip is applicable. 'horiz' is adjusted so // +// that the primary edge of 'horiz' is the flipable edge. // +// - Returns T22 if a 2-to-2 or 4-to-4 flip is applicable. 'horiz' is // +// adjusted so that the primary edge of 'horiz' is the flipable edge. // +// - Returns FORBIDDENFACE indicates although a 2-to-3 flip is applicable, // +// but it is a subface and should not be flipped away. // +// - Returns FORBIDDENEDGE indicates although a 3-to-2, or 2-to-2, or // +// 4-to-4 flip is applicable, but the flipable edge is a subsegment and // +// should not be flipped away. 'horiz' is adjusted so that the primary // +// edge of 'horiz' is the flipable edge. // +// - Returns UNFLIPABLE indicates it is unflipable due to the absence of // +// a tetrahedron. 'horiz' is adjusted so that the primary edge of 'horiz'// +// is the unflipable edge. Possibly, It is a subsegment. // +// - Returns NONCONVEX indicates it is unflipable and is locally Delaunay. // +// // +// Given a face abc, with two adjoining tetrahedra abcd and bace. If abc is // +// flipable, i.e., T23, T32, T22 or T44, its flip type can be determined by // +// doing five orientation tests: two tests for determining that d, e lie on // +// the different sides of abc, three tests for determining if the edge de // +// intersects the face abc. However, if we use the neighbor information of // +// the mesh data structure, we can reduce the five orientation tests to at // +// most three tests, that is, the two tests for determining whether d and e // +// lie on the different sides of abc can be saved. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::fliptype tetgenmesh::categorizeface(triface& horiz) +{ + triface symhoriz, casing; + face checksh, checkseg; + face cassh1, cassh2; + point pa, pb, pc, pd, pe, pf, pg; + point abdoppo, bcdoppo, cadoppo; + REAL ori1, ori2, ori3; + int adjtet; + + sym(horiz, symhoriz); + if (symhoriz.tet == dummytet) { + // A hull face is unflipable and locally Delaunay. + return NONCONVEX; + } + + adjustedgering(horiz, CCW); + findedge(&symhoriz, dest(horiz), org(horiz)); + pa = org(horiz); + pb = dest(horiz); + pc = apex(horiz); + pd = oppo(horiz); + pe = oppo(symhoriz); + + // Find the number of adjacent tetrahedra of abc, which have d, e, and one + // of corners of abc as their corners. This number can be 0, 1 and 2. + abdoppo = bcdoppo = cadoppo = (point) NULL; + adjtet = 0; + fnext(horiz, casing); // at edge 'ab'. + symself(casing); + if (casing.tet != dummytet) { + abdoppo = oppo(casing); + if (abdoppo == pe) adjtet++; + } + enextfnext(horiz, casing); // at edge 'bc'. + symself(casing); + if (casing.tet != dummytet) { + bcdoppo = oppo(casing); + if (bcdoppo == pe) adjtet++; + } + enext2fnext(horiz, casing); // at edge 'ca'. + symself(casing); + if (casing.tet != dummytet) { + cadoppo = oppo(casing); + if (cadoppo == pe) adjtet++; + } + + if (adjtet == 0) { + // No adjacent tetrahedron. Types T23, T22 and T44 are possible. + ori1 = orient3d(pa, pb, pd, pe); + if (checksubfaces && ori1 != 0.0) { + // Are abd and abe subfaces and belong to the same facet? + fnext(horiz, casing); + tspivot(casing, cassh1); + fnext(symhoriz, casing); + tspivot(casing, cassh2); + if (cassh1.sh != dummysh && cassh2.sh != dummysh) { + // Two adjoining boundary faces. If the common edge of them is not + // a subsegment, they belong to the same facet. + findedge(&cassh1, pa, pb); + sspivot(cassh1, checkseg); + if (checkseg.sh == dummysh) { + // The four points are forced to be coplanar. + ori1 = 0.0; + } + } + if (ori1 != 0.0) { + // Check if abd and bae are approximately coplanar. + if (iscoplanar(pa, pb, pd, pe, ori1, b->epsilon)) ori1 = 0.0; + } + } + if (ori1 < 0.0) { + // e lies above abd, unflipable, tet abde is not present. +#ifdef SELF_CHECK + if (!nonconvex) { + // abd and abe should not be hull faces, check it. + fnext(horiz, casing); + symself(casing); + assert(casing.tet != dummytet); + fnext(symhoriz, casing); + symself(casing); + assert(casing.tet != dummytet); + } +#endif + if (checksubfaces) { + // The nonconvexbility may be casued by existing an subsegment. + tsspivot(&horiz, &checkseg); + if (checkseg.sh != dummysh) { + return FORBIDDENEDGE; + } + } + return UNFLIPABLE; + } + ori2 = orient3d(pb, pc, pd, pe); + if (checksubfaces && ori2 != 0.0) { + // Are bcd and cbe subfaces and belong to the same facet? + enextfnext(horiz, casing); + tspivot(casing, cassh1); + enext2fnext(symhoriz, casing); + tspivot(casing, cassh2); + if (cassh1.sh != dummysh && cassh2.sh != dummysh) { + // Two adjoining boundary faces. If the common edge of them is not + // a subsegment, they belong to the same facet. + findedge(&cassh1, pb, pc); + sspivot(cassh1, checkseg); + if (checkseg.sh == dummysh) { + // The four points are forced to be coplanar. + ori2 = 0.0; + } + } + if (ori2 != 0.0) { + // Check if bcd and cbe are approximately coplanar. + if (iscoplanar(pb, pc, pd, pe, ori2, b->epsilon)) ori2 = 0.0; + } + } + if (ori2 < 0.0) { + // e lies above bcd, unflipable, tet bcde is not present. +#ifdef SELF_CHECK + if (!nonconvex) { + // bcd and cbe should not be hull faces, check it. + enextfnext(horiz, casing); + symself(casing); + assert(casing.tet != dummytet); + enext2fnext(symhoriz, casing); + symself(casing); + assert(casing.tet != dummytet); + } +#endif + enextself(horiz); + if (checksubfaces) { + // The nonconvexbility may be casued by existing an subsegment. + tsspivot(&horiz, &checkseg); + if (checkseg.sh != dummysh) { + return FORBIDDENEDGE; + } + } + return UNFLIPABLE; + } + ori3 = orient3d(pc, pa, pd, pe); + if (checksubfaces && ori3 != 0.0) { + // Are cad and ace subfaces and belong to the same facet? + enext2fnext(horiz, casing); + tspivot(casing, cassh1); + enextfnext(symhoriz, casing); + tspivot(casing, cassh2); + if (cassh1.sh != dummysh && cassh2.sh != dummysh) { + // Two adjoining boundary faces. If the common edge of them is not + // a subsegment, they belong to the same facet. + findedge(&cassh1, pc, pa); + sspivot(cassh1, checkseg); + if (checkseg.sh == dummysh) { + // The four points are forced to be coplanar. + ori3 = 0.0; + } + } + if (ori3 != 0.0) { + // Check if cad and ace are approximately coplanar. + if (iscoplanar(pc, pa, pd, pe, ori3, b->epsilon)) ori3 = 0.0; + } + } + if (ori3 < 0.0) { + // e lies above cad, unflipable, tet cade is not present. +#ifdef SELF_CHECK + if (!nonconvex) { + // cad and ace should not be hull faces, check it. + enext2fnext(horiz, casing); + symself(casing); + assert(casing.tet != dummytet); + enextfnext(symhoriz, casing); + symself(casing); + assert(casing.tet != dummytet); + } +#endif + enext2self(horiz); + if (checksubfaces) { + // The nonconvexbility may be casued by existing an subsegment. + tsspivot(&horiz, &checkseg); + if (checkseg.sh != dummysh) { + return FORBIDDENEDGE; + } + } + return UNFLIPABLE; + } + if (ori1 == 0.0) { + // e is coplanar with abd. + if (ori2 * ori3 == 0.0) { + // only one zero is possible. + // assert(!(ori2 == 0.0 && ori3 == 0.0)); + // Three points (d, e, and a or b) are collinear, abc is unflipable + // and locally Delaunay. + return NONCONVEX; + } + } else if (ori2 == 0.0) { + // e is coplanar with bcd. + if (ori1 * ori3 == 0.0) { + // only one zero is possible. + // assert(!(ori1 == 0.0 && ori3 == 0.0)); + // Three points (d, e, and b or c) are collinear, abc is unflipable + // and locally Delaunay. + return NONCONVEX; + } + // Adjust 'horiz' and 'symhoriz' be the edge bc. + enextself(horiz); + enext2self(symhoriz); + } else if (ori3 == 0.0) { + // e is coplanar with cad. + if (ori1 * ori2 == 0.0) { + // only one zero is possible. + // assert(!(ori1 == 0.0 && ori2 == 0.0)); + // Three points (d, e, and c or a) are collinear, abc is unflipable + // and locally Delaunay. + return NONCONVEX; + } + // Adjust 'horiz' and 'symhoriz' be the edge ca. + enext2self(horiz); + enextself(symhoriz); + } else { + // e lies below all three faces, flipable. + if (checksubfaces) { + tspivot(horiz, checksh); + if (checksh.sh != dummysh) { + // To flip a subface is forbidden. + return FORBIDDENFACE; + } + } + return T23; + } + // Four points are coplanar, T22 or T44 is possible. + if (checksubfaces) { + tsspivot(&horiz, &checkseg); + if (checkseg.sh != dummysh) { + // To flip a subsegment is forbidden. + return FORBIDDENEDGE; + } + tspivot(horiz, checksh); + if (checksh.sh != dummysh) { + // To flip a subface is forbidden. + return FORBIDDENFACE; + } + } + // Assume the four coplanar points are a, b, d, e, abd and abe are two + // coplanar faces. If both abd and abe are hull faces, flipable(T22). + // If they are interior faces, get the opposite tetrahedra abdf and + // abeg, if f = g, flipable (T44). Otherwise, unflipable. + pf = pg = (point) NULL; + fnext(horiz, casing); + symself(casing); + if (casing.tet != dummytet) { + pf = oppo(casing); + } + fnext(symhoriz, casing); + symself(casing); + if (casing.tet != dummytet) { + pg = oppo(casing); + } + if (pf == (point) NULL && pg == (point) NULL) { + // abd and abe are hull faces, flipable. + return T22; + } else if (pf == pg) { + // abd and abe are interior faces, flipable. + return T44; + } else { + // ab has more than four faces around it, unflipable. + return UNFLIPABLE; + } + } else if (adjtet == 1) { + // One of its three edges is locally non-convex. Type T32 is possible. + // Adjust current configuration so that edge ab is non-convex. + if (bcdoppo == pe) { + // Edge bc is non-convex. Adjust 'horiz' and 'symhoriz' be edge bc. + enextself(horiz); + enext2self(symhoriz); + pa = org(horiz); + pb = dest(horiz); + pc = apex(horiz); + } else if (cadoppo == pe) { + // Edge ca is non-convex. Adjust 'horiz' and 'symhoriz' be edge ca. + enext2self(horiz); + enextself(symhoriz); + pa = org(horiz); + pb = dest(horiz); + pc = apex(horiz); + } else { + // Edge ab is non-convex. + assert(abdoppo == pe); + } // Now ab is the non-convex edge. + // In order to be flipable, ab should cross face cde. Check it. + ori1 = orient3d(pc, pd, pe, pa); + if (checksubfaces && ori1 != 0.0) { + // Are cad and ace subfaces and belong to the same facet? + enext2fnext(horiz, casing); + tspivot(casing, cassh1); + enextfnext(symhoriz, casing); + tspivot(casing, cassh2); + if (cassh1.sh != dummysh && cassh2.sh != dummysh) { + // Two adjoining boundary faces. If the common edge of them is not + // a subsegment, they belong to the same facet. + findedge(&cassh1, pc, pa); + sspivot(cassh1, checkseg); + if (checkseg.sh == dummysh) { + // The four points are forced to be coplanar. + ori1 = 0.0; + } + } + } + if (ori1 <= 0.0) { + // a lies above cde, unflipable, and abc is locally Delaunay. + return NONCONVEX; + } + ori2 = orient3d(pd, pc, pe, pb); + if (checksubfaces && ori2 != 0.0) { + // Are bcd and cbe subfaces and belong to the same facet? + enextfnext(horiz, casing); + tspivot(casing, cassh1); + enext2fnext(symhoriz, casing); + tspivot(casing, cassh2); + if (cassh1.sh != dummysh && cassh2.sh != dummysh) { + // Two adjoining boundary faces. If the common edge of them is not + // a subsegment, they belong to the same facet. + findedge(&cassh1, pb, pc); + sspivot(cassh1, checkseg); + if (checkseg.sh == dummysh) { + // The four points are forced to be coplanar. + ori2 = 0.0; + } + } + } + if (ori2 <= 0.0) { + // b lies above dce, unflipable, and abc is locally Delaunay. + return NONCONVEX; + } + // Edge ab crosses face cde properly. + if (checksubfaces) { + // If abc is subface, then ab must be a subsegment (because abde is + // a tetrahedron and ab crosses cde properly). + tsspivot(&horiz, &checkseg); + if (checkseg.sh != dummysh) { + // To flip a subsegment is forbidden. + return FORBIDDENEDGE; + } + // Both abd and bae should not be subfaces (because they're not + // coplanar and ab is not a subsegment). However, they may be + // subfaces and belong to a facet (created during facet recovery), + // that is, abde is an invalid tetrahedron. Find this case out. + fnext(horiz, casing); + tspivot(casing, cassh1); + fnext(symhoriz, casing); + tspivot(casing, cassh2); + if (cassh1.sh != dummysh || cassh2.sh != dummysh) { + // Unfortunately, they're subfaces. Corrections need be done here. + printf("Warning: A tetrahedron spans two subfaces of a facet.\n"); + // Temporarily, let it be there. + return NONCONVEX; + } + } + return T32; + } else { + assert(adjtet == 2); + // The convex hull of {a, b, c, d, e} has only four vertices, abc is + // unflipable, furthermore, it is locally Delaunay. + return NONCONVEX; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// enqueueflipface(), enqueueflipedge() Add a face or an edge to the end // +// of a queue. // +// // +// This face or edge may be non-Delaunay and will be checked. Corresponding // +// flip operation will be applied on it if it is non-Delaunay. The vertices // +// of the face or edge are stored seperatly used to ensure the face or edge // +// is still the same one when we save it. Sometimes, other flipping will // +// cause this face or edge be changed or dead. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::enqueueflipface(triface& checkface, queue* flipqueue) +{ + badface *queface; + + queface = (badface *) flipqueue->push((void *) NULL); + queface->tt = checkface; + queface->forg = org(checkface); + queface->fdest = dest(checkface); + queface->fapex = apex(checkface); +} + +void tetgenmesh::enqueueflipedge(face& checkedge, queue* flipqueue) +{ + badface *queface; + + queface = (badface *) flipqueue->push((void *) NULL); + queface->ss = checkedge; + queface->forg = sorg(checkedge); + queface->fdest = sdest(checkedge); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// flip23() Perform a 2-to-3 flip. // +// // +// On input, 'flipface' represents the face will be flipped. Let it is abc, // +// the two tetrahedra sharing abc are abcd, bace. abc is not a subface. // +// // +// A 2-to-3 flip is to change two tetrahedra abcd, bace to three tetrahedra // +// edab, edbc, and edca. As a result, face abc has been removed and three // +// new faces eda, edb and edc have been created. // +// // +// On completion, 'flipface' returns edab. If 'flipqueue' is not NULL, all // +// possibly non-Delaunay faces are added into it. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::flip23(triface* flipface, queue* flipqueue) +{ + triface abcd, bace; // Old configuration. + triface oldabd, oldbcd, oldcad; + triface abdcasing, bcdcasing, cadcasing; + face abdsh, bcdsh, cadsh; + triface oldbae, oldcbe, oldace; + triface baecasing, cbecasing, acecasing; + face baesh, cbesh, acesh; + triface edab, edbc, edca; // New configuration. + point pa, pb, pc, pd, pe; + REAL attrib, volume; + int i; + + abcd = *flipface; + adjustedgering(abcd, CCW); // abcd represents edge ab. + sym(abcd, bace); + findedge(&bace, dest(abcd), org(abcd)); // bace represents edge ba. + pa = org(abcd); + pb = dest(abcd); + pc = apex(abcd); + pd = oppo(abcd); + pe = oppo(bace); + + if (b->verbose > 2) { + printf(" Do T23 on face (%d, %d, %d, %d).\n", pointmark(pa), + pointmark(pb), pointmark(pc), pointmark(pd)); + } + flip23s++; + +#ifdef SELF_CHECK + // Edge de must cross face abc properly. + assert(orient3d(pa, pb, pd, pe) >= 0.0); + assert(orient3d(pb, pc, pd, pe) >= 0.0); + assert(orient3d(pc, pa, pd, pe) >= 0.0); +#endif + + // Storing the old configuration outside the convex hull. + fnext(abcd, oldabd); + enextfnext(abcd, oldbcd); + enext2fnext(abcd, oldcad); + fnext(bace, oldbae); + enext2fnext(bace, oldcbe); + enextfnext(bace, oldace); + sym(oldabd, abdcasing); + sym(oldbcd, bcdcasing); + sym(oldcad, cadcasing); + sym(oldbae, baecasing); + sym(oldcbe, cbecasing); + sym(oldace, acecasing); + if (checksubfaces) { + tspivot(oldabd, abdsh); + tspivot(oldbcd, bcdsh); + tspivot(oldcad, cadsh); + tspivot(oldbae, baesh); + tspivot(oldcbe, cbesh); + tspivot(oldace, acesh); + } + + // Creating the new configuration inside the convex hull. + edab.tet = abcd.tet; // Update abcd to be edab. + setorg (edab, pe); + setdest(edab, pd); + setapex(edab, pa); + setoppo(edab, pb); + edbc.tet = bace.tet; // Update bace to be edbc. + setorg (edbc, pe); + setdest(edbc, pd); + setapex(edbc, pb); + setoppo(edbc, pc); + maketetrahedron(&edca); // Create edca. + setorg (edca, pe); + setdest(edca, pd); + setapex(edca, pc); + setoppo(edca, pa); + // Set the element attributes of the new tetrahedron 'edca'. + for (i = 0; i < in->numberoftetrahedronattributes; i++) { + attrib = elemattribute(abcd.tet, i); + setelemattribute(edca.tet, i, attrib); + } + // Set the volume constraint of the new tetrahedron 'edca' if the -ra + // switches are not used together. In -ra case, the various volume + // constraints can be spreaded very far. + if (b->varvolume && !b->refine) { + volume = volumebound(abcd.tet); + setvolumebound(edca.tet, volume); + } + + // Clear old bonds in edab(was abcd) and edbc(was bace). + for (i = 0; i < 4; i ++) { + edab.loc = i; + dissolve(edab); + edbc.loc = i; + dissolve(edbc); + } + // Bond the faces inside the convex hull. + edab.loc = 0; + edca.loc = 1; + bond(edab, edca); + edab.loc = 1; + edbc.loc = 0; + bond(edab, edbc); + edbc.loc = 1; + edca.loc = 0; + bond(edbc, edca); + // Bond the faces on the convex hull. + edab.loc = 2; + bond(edab, abdcasing); + edab.loc = 3; + bond(edab, baecasing); + edbc.loc = 2; + bond(edbc, bcdcasing); + edbc.loc = 3; + bond(edbc, cbecasing); + edca.loc = 2; + bond(edca, cadcasing); + edca.loc = 3; + bond(edca, acecasing); + // There may exist subfaces that need to be bonded to new configuarton. + if (checksubfaces) { + // Clear old flags in edab(was abcd) and edbc(was bace). + for (i = 0; i < 4; i ++) { + edab.loc = i; + tsdissolve(edab); + edbc.loc = i; + tsdissolve(edbc); + } + if (abdsh.sh != dummysh) { + edab.loc = 2; + tsbond(edab, abdsh); + } + if (baesh.sh != dummysh) { + edab.loc = 3; + tsbond(edab, baesh); + } + if (bcdsh.sh != dummysh) { + edbc.loc = 2; + tsbond(edbc, bcdsh); + } + if (cbesh.sh != dummysh) { + edbc.loc = 3; + tsbond(edbc, cbesh); + } + if (cadsh.sh != dummysh) { + edca.loc = 2; + tsbond(edca, cadsh); + } + if (acesh.sh != dummysh) { + edca.loc = 3; + tsbond(edca, acesh); + } + } + + edab.loc = 0; + edbc.loc = 0; + edca.loc = 0; + if (b->verbose > 3) { + printf(" Updating edab "); + printtet(&edab); + printf(" Updating edbc "); + printtet(&edbc); + printf(" Creating edca "); + printtet(&edca); + } + + if (flipqueue != (queue *) NULL) { + enextfnext(edab, abdcasing); + enqueueflipface(abdcasing, flipqueue); + enext2fnext(edab, baecasing); + enqueueflipface(baecasing, flipqueue); + enextfnext(edbc, bcdcasing); + enqueueflipface(bcdcasing, flipqueue); + enext2fnext(edbc, cbecasing); + enqueueflipface(cbecasing, flipqueue); + enextfnext(edca, cadcasing); + enqueueflipface(cadcasing, flipqueue); + enext2fnext(edca, acecasing); + enqueueflipface(acecasing, flipqueue); + } + + // Save a live handle in 'recenttet'. + recenttet = edbc; + // Set the return handle be edab. + *flipface = edab; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// flip32() Perform a 3-to-2 flip. // +// // +// On input, 'flipface' represents the face will be flipped. Let it is eda, // +// where edge ed is locally non-convex. Three tetrahedra sharing ed are edab,// +// edbc, and edca. ed is not a subsegment. // +// // +// A 3-to-2 flip is to change the three tetrahedra edab, edbc, and edca into // +// another two tetrahedra abcd and bace. As a result, the edge ed has been // +// removed and the face abc has been created. // +// // +// On completion, 'flipface' returns abcd. If 'flipqueue' is not NULL, all // +// possibly non-Delaunay faces are added into it. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::flip32(triface* flipface, queue* flipqueue) +{ + triface edab, edbc, edca; // Old configuration. + triface oldabd, oldbcd, oldcad; + triface abdcasing, bcdcasing, cadcasing; + face abdsh, bcdsh, cadsh; + triface oldbae, oldcbe, oldace; + triface baecasing, cbecasing, acecasing; + face baesh, cbesh, acesh; + triface abcd, bace; // New configuration. + point pa, pb, pc, pd, pe; + int i; + + edab = *flipface; + adjustedgering(edab, CCW); + fnext(edab, edbc); + symself(edbc); + findedge(&edbc, org(edab), dest(edab)); + fnext(edbc, edca); + symself(edca); + findedge(&edca, org(edab), dest(edab)); + pa = apex(edab); + pb = oppo(edab); + pc = oppo(edbc); + pd = dest(edab); + pe = org(edab); + + if (b->verbose > 2) { + printf(" Do T32 on face (%d, %d, %d, %d).\n", + pointmark(pe), pointmark(pd), pointmark(pa), pointmark(pb)); + } + flip32s++; + +#ifdef SELF_CHECK + // Edge de must cross face abc properly. + assert(orient3d(pa, pb, pc, pd) <= 0.0); + assert(orient3d(pb, pa, pc, pe) <= 0.0); +#endif + + // Storing the old configuration outside the convex hull. + enextfnext(edab, oldabd); + enext2fnext(edab, oldbae); + enextfnext(edbc, oldbcd); + enext2fnext(edbc, oldcbe); + enextfnext(edca, oldcad); + enext2fnext(edca, oldace); + sym(oldabd, abdcasing); + sym(oldbcd, bcdcasing); + sym(oldcad, cadcasing); + sym(oldbae, baecasing); + sym(oldcbe, cbecasing); + sym(oldace, acecasing); + if (checksubfaces) { + tspivot(oldabd, abdsh); + tspivot(oldbcd, bcdsh); + tspivot(oldcad, cadsh); + tspivot(oldbae, baesh); + tspivot(oldcbe, cbesh); + tspivot(oldace, acesh); + } + + // Creating the new configuration inside the convex hull. + abcd.tet = edab.tet; // Update edab to be abcd. + setorg (abcd, pa); + setdest(abcd, pb); + setapex(abcd, pc); + setoppo(abcd, pd); + bace.tet = edbc.tet; // Update edbc to be bace. + setorg (bace, pb); + setdest(bace, pa); + setapex(bace, pc); + setoppo(bace, pe); + // Dealloc a redundant tetrahedron (edca). + tetrahedrondealloc(edca.tet); + + // Clear the old bonds in abcd (was edab) and bace (was edbc). + for (i = 0; i < 4; i ++) { + abcd.loc = i; + dissolve(abcd); + bace.loc = i; + dissolve(bace); + } + // Bond the inside face of the convex hull. + abcd.loc = 0; + bace.loc = 0; + bond(abcd, bace); + // Bond the outside faces of the convex hull. + abcd.loc = 1; + bond(abcd, abdcasing); + abcd.loc = 2; + bond(abcd, bcdcasing); + abcd.loc = 3; + bond(abcd, cadcasing); + bace.loc = 1; + bond(bace, baecasing); + bace.loc = 3; + bond(bace, cbecasing); + bace.loc = 2; + bond(bace, acecasing); + if (checksubfaces) { + // Clear old bonds in abcd(was edab) and bace(was edbc). + for (i = 0; i < 4; i ++) { + abcd.loc = i; + tsdissolve(abcd); + bace.loc = i; + tsdissolve(bace); + } + if (abdsh.sh != dummysh) { + abcd.loc = 1; + tsbond(abcd, abdsh); + } + if (baesh.sh != dummysh) { + bace.loc = 1; + tsbond(bace, baesh); + } + if (bcdsh.sh != dummysh) { + abcd.loc = 2; + tsbond(abcd, bcdsh); + } + if (cbesh.sh != dummysh) { + bace.loc = 3; + tsbond(bace, cbesh); + } + if (cadsh.sh != dummysh) { + abcd.loc = 3; + tsbond(abcd, cadsh); + } + if (acesh.sh != dummysh) { + bace.loc = 2; + tsbond(bace, acesh); + } + } + + abcd.loc = 0; + bace.loc = 0; + if (b->verbose > 3) { + printf(" Updating abcd "); + printtet(&abcd); + printf(" Updating bace "); + printtet(&bace); + printf(" Deleting edca "); + printtet(&edca); + } + + if (flipqueue != (queue *) NULL) { + fnext(abcd, abdcasing); + enqueueflipface(abdcasing, flipqueue); + fnext(bace, baecasing); + enqueueflipface(baecasing, flipqueue); + enextfnext(abcd, bcdcasing); + enqueueflipface(bcdcasing, flipqueue); + enextfnext(bace, cbecasing); + enqueueflipface(cbecasing, flipqueue); + enext2fnext(abcd, cadcasing); + enqueueflipface(cadcasing, flipqueue); + enext2fnext(bace, acecasing); + enqueueflipface(acecasing, flipqueue); + } + + // Save a live handle in 'recenttet'. + recenttet = abcd; + // Set the return handle be abcd. + *flipface = abcd; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// flip22() Perform a 2-to-2 (or 4-to-4) flip. // +// // +// On input, 'flipface' represents the face will be flipped. Let it is abe, // +// ab is the flipable edge, the two tetrahedra sharing abe are abce and bade,// +// hence a, b, c and d are coplanar. If abc, bad are interior faces, the two // +// tetrahedra opposite to e are bacf and abdf. ab is not a subsegment. // +// // +// A 2-to-2 flip is to change two tetrahedra abce and bade into another two // +// tetrahedra dcae and cdbe. If bacf and abdf exist, they're changed to cdaf // +// and dcbf, thus a 4-to-4 flip. As a result, two or four tetrahedra have // +// rotated counterclockwise (using right-hand rule with thumb points to e): // +// abce->dcae, bade->cdbe, and bacf->cdaf, abdf->dcbf. // +// // +// If abc and bad are subfaces, a 2-to-2 flip is performed simultaneously by // +// calling routine flip22sub(), hence abc->dca, bad->cdb. The edge rings of // +// the flipped subfaces dca and cdb have the same orientation as abc and bad.// +// Hence, they have the same orientation as other subfaces of the facet with // +// respect to the lift point of this facet. // +// // +// On completion, 'flipface' holds edge dc of tetrahedron dcae. 'flipqueue' // +// contains all possibly non-Delaunay faces if it is not NULL. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::flip22(triface* flipface, queue* flipqueue) +{ + triface abce, bade; + triface oldbce, oldcae, oldade, olddbe; + triface bcecasing, caecasing, adecasing, dbecasing; + face bcesh, caesh, adesh, dbesh; + triface bacf, abdf; + triface oldacf, oldcbf, oldbdf, olddaf; + triface acfcasing, cbfcasing, bdfcasing, dafcasing; + face acfsh, cbfsh, bdfsh, dafsh; + face abc, bad; + point pa, pb, pc, pd, pe, pf; + int mirrorflag; + + adjustedgering(*flipface, CCW); // 'flipface' is bae. + fnext(*flipface, abce); + esymself(abce); + adjustedgering(*flipface, CW); // 'flipface' is abe. + fnext(*flipface, bade); + assert(bade.tet != dummytet); + esymself(bade); + pa = org(abce); + pb = dest(abce); + pc = apex(abce); + pd = apex(bade); + pe = oppo(bade); + assert(oppo(abce) == pe); + sym(abce, bacf); + mirrorflag = bacf.tet != dummytet; + if (mirrorflag) { + findedge(&bacf, pb, pa); + sym(bade, abdf); + assert(abdf.tet != dummytet); + findedge(&abdf, pa, pb); + pf = oppo(bacf); + assert(oppo(abdf) == pf); + } + + if (b->verbose > 2) { + printf(" Do %s on edge (%d, %d).\n", mirrorflag ? "T44" : "T22", + pointmark(pa), pointmark(pb)); + } + mirrorflag ? flip44s++ : flip22s++; + +#ifdef SELF_CHECK + // The quadrilateral formed by a, b, c, and d must be convex. + assert(orient3d(pc, pd, pe, pa) <= 0.0); + assert(orient3d(pd, pc, pe, pb) <= 0.0); +#endif + + // Save the old configuration at the convex hull. + enextfnext(abce, oldbce); + enext2fnext(abce, oldcae); + enextfnext(bade, oldade); + enext2fnext(bade, olddbe); + sym(oldbce, bcecasing); + sym(oldcae, caecasing); + sym(oldade, adecasing); + sym(olddbe, dbecasing); + if (checksubfaces) { + tspivot(oldbce, bcesh); + tspivot(oldcae, caesh); + tspivot(oldade, adesh); + tspivot(olddbe, dbesh); + tspivot(abce, abc); + tspivot(bade, bad); + } + if (mirrorflag) { + enextfnext(bacf, oldacf); + enext2fnext(bacf, oldcbf); + enextfnext(abdf, oldbdf); + enext2fnext(abdf, olddaf); + sym(oldacf, acfcasing); + sym(oldcbf, cbfcasing); + sym(oldbdf, bdfcasing); + sym(olddaf, dafcasing); + if (checksubfaces) { + tspivot(oldacf, acfsh); + tspivot(oldcbf, cbfsh); + tspivot(oldbdf, bdfsh); + tspivot(olddaf, dafsh); + } + } + + // Rotate abce, bade one-quarter turn counterclockwise. + bond(oldbce, caecasing); + bond(oldcae, adecasing); + bond(oldade, dbecasing); + bond(olddbe, bcecasing); + if (checksubfaces) { + // Check for subfaces and rebond them to the rotated tets. + if (caesh.sh == dummysh) { + tsdissolve(oldbce); + } else { + tsbond(oldbce, caesh); + } + if (adesh.sh == dummysh) { + tsdissolve(oldcae); + } else { + tsbond(oldcae, adesh); + } + if (dbesh.sh == dummysh) { + tsdissolve(oldade); + } else { + tsbond(oldade, dbesh); + } + if (bcesh.sh == dummysh) { + tsdissolve(olddbe); + } else { + tsbond(olddbe, bcesh); + } + } + if (mirrorflag) { + // Rotate bacf, abdf one-quarter turn counterclockwise. + bond(oldcbf, acfcasing); + bond(oldacf, dafcasing); + bond(olddaf, bdfcasing); + bond(oldbdf, cbfcasing); + if (checksubfaces) { + // Check for subfaces and rebond them to the rotated tets. + if (acfsh.sh == dummysh) { + tsdissolve(oldcbf); + } else { + tsbond(oldcbf, acfsh); + } + if (dafsh.sh == dummysh) { + tsdissolve(oldacf); + } else { + tsbond(oldacf, dafsh); + } + if (bdfsh.sh == dummysh) { + tsdissolve(olddaf); + } else { + tsbond(olddaf, bdfsh); + } + if (cbfsh.sh == dummysh) { + tsdissolve(oldbdf); + } else { + tsbond(oldbdf, cbfsh); + } + } + } + + // New vertex assignments for the rotated tetrahedra. + setorg(abce, pd); // Update abce to dcae + setdest(abce, pc); + setapex(abce, pa); + setorg(bade, pc); // Update bade to cdbe + setdest(bade, pd); + setapex(bade, pb); + if (mirrorflag) { + setorg(bacf, pc); // Update bacf to cdaf + setdest(bacf, pd); + setapex(bacf, pa); + setorg(abdf, pd); // Update abdf to dcbf + setdest(abdf, pc); + setapex(abdf, pb); + } + + // Are there subfaces need to be flipped? + if (checksubfaces && abc.sh != dummysh) { + assert(bad.sh != dummysh); + // Adjust the edge be ab, so the rotation of subfaces is according with + // the rotation of tetrahedra. + findedge(&abc, pa, pb); + // Flip an edge of two subfaces, ignore non-Delaunay edges. + flip22sub(&abc, NULL); + } + + if (b->verbose > 3) { + printf(" Updating abce "); + printtet(&abce); + printf(" Updating bade "); + printtet(&bade); + if (mirrorflag) { + printf(" Updating bacf "); + printtet(&bacf); + printf(" Updating abdf "); + printtet(&abdf); + } + } + + if (flipqueue != (queue *) NULL) { + enextfnext(abce, bcecasing); + enqueueflipface(bcecasing, flipqueue); + enext2fnext(abce, caecasing); + enqueueflipface(caecasing, flipqueue); + enextfnext(bade, adecasing); + enqueueflipface(adecasing, flipqueue); + enext2fnext(bade, dbecasing); + enqueueflipface(dbecasing, flipqueue); + if (mirrorflag) { + enextfnext(bacf, acfcasing); + enqueueflipface(acfcasing, flipqueue); + enext2fnext(bacf, cbfcasing); + enqueueflipface(cbfcasing, flipqueue); + enextfnext(abdf, bdfcasing); + enqueueflipface(bdfcasing, flipqueue); + enext2fnext(abdf, dafcasing); + enqueueflipface(dafcasing, flipqueue); + } + // The two new faces dcae (abce), cdbe (bade) may still not be locally + // Delaunay, and may need be flipped (flip23). On the other hand, in + // conforming Delaunay algorithm, two new subfaces dca (abc), and cdb + // (bad) may be non-conforming Delaunay, they need be queued if they + // are locally Delaunay but non-conforming Delaunay. + enqueueflipface(abce, flipqueue); + enqueueflipface(bade, flipqueue); + } + + // Save a live handle in 'recenttet'. + recenttet = abce; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// flip22sub() Perform a 2-to-2 flip on a subface edge. // +// // +// The flip edge is given by subface 'flipedge'. Let it is abc, where ab is // +// the flipping edge. The other subface is bad, where a, b, c, d form a // +// convex quadrilateral. ab is not a subsegment. // +// // +// A 2-to-2 subface flip is to change two subfaces abc and bad to another // +// two subfaces dca and cdb. Hence, edge ab has been removed and dc becomes // +// an edge. If a point e is above abc, this flip is equal to rotate abc and // +// bad counterclockwise using right-hand rule with thumb points to e. It is // +// important to know that the edge rings of the flipped subfaces dca and cdb // +// are keeping the same orientation as their original subfaces. So they have // +// the same orientation with respect to the lift point of this facet. // +// // +// During rotating, the face rings of the four edges bc, ca, ad, and de need // +// be re-connected. If the edge is not a subsegment, then its face ring has // +// only two faces, a sbond() will bond them together. If it is a subsegment, // +// one should use sbond1() twice to bond two different handles to the rotat- // +// ing subface, one is predecssor (-casin), another is successor (-casout). // +// // +// If 'flipqueue' is not NULL, it returns four edges bc, ca, ad, de, which // +// may be non-Delaunay. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::flip22sub(face* flipedge, queue* flipqueue) +{ + face abc, bad; + face oldbc, oldca, oldad, olddb; + face bccasin, bccasout, cacasin, cacasout; + face adcasin, adcasout, dbcasin, dbcasout; + face bc, ca, ad, db; + face spinsh; + point pa, pb, pc, pd; + + abc = *flipedge; + spivot(abc, bad); + if (sorg(bad) != sdest(abc)) { + sesymself(bad); + } + pa = sorg(abc); + pb = sdest(abc); + pc = sapex(abc); + pd = sapex(bad); + + if (b->verbose > 2) { + printf(" Flip sub edge (%d, %d).\n", pointmark(pa), pointmark(pb)); + } + + // Save the old configuration outside the quadrilateral. + senext(abc, oldbc); + senext2(abc, oldca); + senext(bad, oldad); + senext2(bad, olddb); + // Get the outside connection. Becareful if there is a subsegment on the + // quadrilateral, two casings (casin and casout) are needed to save for + // keeping the face link. + spivot(oldbc, bccasout); + sspivot(oldbc, bc); + if (bc.sh != dummysh) { + // 'bc' is a subsegment. + assert(bccasout.sh != dummysh); + if (oldbc.sh != bccasout.sh) { + // 'oldbc' is not self-bonded. + spinsh = bccasout; + do { + bccasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != oldbc.sh); + } else { + bccasout.sh = dummysh; + } + ssdissolve(oldbc); + } + spivot(oldca, cacasout); + sspivot(oldca, ca); + if (ca.sh != dummysh) { + // 'ca' is a subsegment. + assert(cacasout.sh != dummysh); + if (oldca.sh != cacasout.sh) { + // 'oldca' is not self-bonded. + spinsh = cacasout; + do { + cacasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != oldca.sh); + } else { + cacasout.sh = dummysh; + } + ssdissolve(oldca); + } + spivot(oldad, adcasout); + sspivot(oldad, ad); + if (ad.sh != dummysh) { + // 'ad' is a subsegment. + assert(adcasout.sh != dummysh); + if (oldad.sh != adcasout.sh) { + // 'adcasout' is not self-bonded. + spinsh = adcasout; + do { + adcasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != oldad.sh); + } else { + adcasout.sh = dummysh; + } + ssdissolve(oldad); + } + spivot(olddb, dbcasout); + sspivot(olddb, db); + if (db.sh != dummysh) { + // 'db' is a subsegment. + assert(dbcasout.sh != dummysh); + if (olddb.sh != dbcasout.sh) { + // 'dbcasout' is not self-bonded. + spinsh = dbcasout; + do { + dbcasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != olddb.sh); + } else { + dbcasout.sh = dummysh; + } + ssdissolve(olddb); + } + + // Rotate abc and bad one-quarter turn counterclockwise. + if (ca.sh != dummysh) { + if (cacasout.sh != dummysh) { + sbond1(cacasin, oldbc); + sbond1(oldbc, cacasout); + } else { + // Bond 'oldbc' to itself. + sbond(oldbc, oldbc); + // Make sure that dummysh always correctly bonded. + dummysh[0] = sencode(oldbc); + } + ssbond(oldbc, ca); + } else { + sbond(oldbc, cacasout); + } + if (ad.sh != dummysh) { + if (adcasout.sh != dummysh) { + sbond1(adcasin, oldca); + sbond1(oldca, adcasout); + } else { + // Bond 'oldca' to itself. + sbond(oldca, oldca); + // Make sure that dummysh always correctly bonded. + dummysh[0] = sencode(oldca); + } + ssbond(oldca, ad); + } else { + sbond(oldca, adcasout); + } + if (db.sh != dummysh) { + if (dbcasout.sh != dummysh) { + sbond1(dbcasin, oldad); + sbond1(oldad, dbcasout); + } else { + // Bond 'oldad' to itself. + sbond(oldad, oldad); + // Make sure that dummysh always correctly bonded. + dummysh[0] = sencode(oldad); + } + ssbond(oldad, db); + } else { + sbond(oldad, dbcasout); + } + if (bc.sh != dummysh) { + if (bccasout.sh != dummysh) { + sbond1(bccasin, olddb); + sbond1(olddb, bccasout); + } else { + // Bond 'olddb' to itself. + sbond(olddb, olddb); + // Make sure that dummysh always correctly bonded. + dummysh[0] = sencode(olddb); + } + ssbond(olddb, bc); + } else { + sbond(olddb, bccasout); + } + + // New vertex assignments for the rotated subfaces. + setsorg(abc, pd); // Update abc to dca. + setsdest(abc, pc); + setsapex(abc, pa); + setsorg(bad, pc); // Update bad to cdb. + setsdest(bad, pd); + setsapex(bad, pb); + + if (flipqueue != (queue *) NULL) { + enqueueflipedge(bccasout, flipqueue); + enqueueflipedge(cacasout, flipqueue); + enqueueflipedge(adcasout, flipqueue); + enqueueflipedge(dbcasout, flipqueue); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// flip() Flips non-locally Delaunay faces in flipqueue until it is empty.// +// // +// Assumpation: Current tetrahedralization is non-Delaunay after inserting // +// a point or performing a flip operation, all possibly non-Delaunay faces // +// are in 'flipqueue'. // +// // +// If 'plastflip' is not NULL, it is used to return a stack of recently // +// flipped faces. This stack will be used to reverse the flips done in this // +// routine later for removing a newly inserted point because it encroaches // +// any subfaces or subsegments. // +// // +// If the quality mesh step is starting, (indicated by pools 'badsubsegs', // +// 'badsubfaces' and 'badtetrahedrons' are not NULLs.) we will check the // +// encroached subface or subsegments of a hull face, and queuing tetrahedra // +// for quality checking. // +// // +// The return value is the total number of flips done during this invocation.// +// // +/////////////////////////////////////////////////////////////////////////////// + +long tetgenmesh::flip(queue* flipqueue, flipstacker **plastflip) +{ + badface *qface; + flipstacker *newflip; + triface flipface, symface; + face checkseg, checksh; + enum fliptype fc; + bool flipped; + REAL sign, bakepsilon; + long flipcount; + int epscount; + int i; + + if (b->verbose > 1) { + printf(" Do flipface queue: %ld faces.\n", flipqueue->len()); + } + + flipcount = flip23s + flip32s + flip22s + flip44s; + + if (plastflip != (flipstacker **) NULL) { + // Initialize the stack of the flip sequence. + flipstackers->restart(); + *plastflip = (flipstacker *) NULL; + } + + // Loop until the queue is empty. + while ((qface = (badface *) flipqueue->pop()) != NULL) { + // Get a face. + flipface = qface->tt; + // Check the validity of this face. + if (isdead(&flipface) || flipface.tet == dummytet || + (org(flipface) != qface->forg) || + (dest(flipface) != qface->fdest) || + (apex(flipface) != qface->fapex) || + (oppo(flipface) == (point) NULL)) continue; + flipped = false; + sym(flipface, symface); + // Only do check when the adjacent tet exists and it's not a "fake" tet. + if (symface.tet != dummytet && oppo(symface) != (point) NULL) { + // For positive orientation that insphere() test requires. + adjustedgering(flipface, CW); + sign = insphere(org(flipface), dest(flipface), apex(flipface), + oppo(flipface), oppo(symface)); + } else { + sign = -1.0; // A hull face is locally Delaunay. + } + if (sign > 0.0) { + // 'flipface' is non-locally Delaunay, try to flip it. + if (checksubfaces) { + bakepsilon = b->epsilon; + epscount = 0; + while (epscount < 16) { + fc = categorizeface(flipface); + if (fc == NONCONVEX) { + b->epsilon *= 1e-2; + epscount++; + continue; + } + break; + } + b->epsilon = bakepsilon; + // assert(epscount < 16); + if (epscount == 16) { + if (b->verbose) { + printf("Warning: Can't flip a degenerate tetrahedron.\n"); + } + fc = NONCONVEX; + } + } else { + fc = categorizeface(flipface); + assert(fc != NONCONVEX); + } + switch (fc) { + // The following face types are flipable. + case T44: + case T22: + flip22(&flipface, flipqueue); + flipped = true; + break; + case T23: + flip23(&flipface, flipqueue); + flipped = true; + break; + case T32: + flip32(&flipface, flipqueue); + flipped = true; + break; + // The following face types are unflipable. + case UNFLIPABLE: + break; + case FORBIDDENFACE: + // Meet an encroaching subface, unflipable. + break; + case FORBIDDENEDGE: + // Meet an encroaching subsegment, unflipable. + break; + // This case is only possible when the domain is nonconvex. + case NONCONVEX: + assert(nonconvex); + break; + } + if (plastflip != (flipstacker **) NULL && flipped) { + // Push the flipped face into stack. + newflip = (flipstacker *) flipstackers->alloc(); + newflip->flippedface = flipface; + newflip->fc = fc; + newflip->forg = org(flipface); + newflip->fdest = dest(flipface); + newflip->fapex = apex(flipface); + newflip->prevflip = *plastflip; + *plastflip = newflip; + } + } + if (!flipped) { + // 'flipface' is locally Delaunay, or it is non-locally Delaunay but + // not flipable because it is a subface or contains a subsegment. + if (badsubsegs != (memorypool *) NULL) { + // Check for encroaching subsegments, add them into list. + for (i = 0; i < 3; i++) { + tsspivot(&flipface, &checkseg); + if ((checkseg.sh != dummysh) && !shell2badface(checkseg)) { + checkseg4encroach(&checkseg, NULL, true); + } + enextself(flipface); + } + } + if (badsubfaces != (memorypool *) NULL) { + // Check for encroaching subface, add it into list. + tspivot(flipface, checksh); + if ((checksh.sh != dummysh) && !shell2badface(checksh)) { + checksub4encroach(&checksh, NULL, true); + } + } + if (badtetrahedrons != (memorypool *) NULL) { + // Put the tetrahedra at both sides into list for quality check. + qualchecktetlist->append(&flipface); + if (symface.tet != dummytet) { + qualchecktetlist->append(&symface); + } + } + } + } + + flipcount = flip23s + flip32s + flip22s + flip44s - flipcount; + if (b->verbose > 1) { + printf(" %ld flips.\n", flipcount); + } + + return flipcount; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// undoflip() Undo the most recent flip sequence induced by flip(). // +// // +// 'lastflip' is the stack of recently flipped faces. Walks through the list // +// of flips, in the reverse of the order in which they were done, and undoes // +// them. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::undoflip(flipstacker *lastflip) +{ + while (lastflip != (flipstacker *) NULL) { + // Get the right flipped face. + findface(&lastflip->flippedface, lastflip->forg, lastflip->fdest, + lastflip->fapex); + switch (lastflip->fc) { + case T23: + // The reverse operation of T23 is T32. + flip32(&lastflip->flippedface, NULL); + break; + case T32: + // The reverse operation of T32 is T23. + flip23(&lastflip->flippedface, NULL); + break; + case T22: + case T44: + // The reverse operation of T22 or T44 is again T22 or T44. + flip22(&lastflip->flippedface, NULL); + break; + } + // Go on and process the next transformation. + lastflip = lastflip->prevflip; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// splittetrahedron() Insert a point into a tetrahedron, split it into // +// four tetrahedra. // +// // +// The tetrahedron is given by 'splittet'. Let it is abcd. The inserting // +// point 'newpoint' v should lie strictly inside abcd. // +// // +// Splitting a tetrahedron is to shrink abcd to abcv, and create three new // +// tetrahedra badv, cbdv, and acdv. // +// // +// On completion, 'splittet' returns abcv. If 'flipqueue' is not NULL, it // +// contains all possibly non-locally Delaunay faces. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +splittetrahedron(point newpoint, triface* splittet, queue* flipqueue) +{ + triface oldabd, oldbcd, oldcad; // Old configuration. + triface abdcasing, bcdcasing, cadcasing; + face abdsh, bcdsh, cadsh; + triface abcv, badv, cbdv, acdv; // New configuration. + point pa, pb, pc, pd; + REAL attrib, volume; + int i; + + abcv = *splittet; + abcv.ver = 0; + // Set the changed vertices and new tetrahedron. + pa = org(abcv); + pb = dest(abcv); + pc = apex(abcv); + pd = oppo(abcv); + + if (b->verbose > 1) { + printf(" Inserting point %d in tetrahedron (%d, %d, %d, %d).\n", + pointmark(newpoint), pointmark(pa), pointmark(pb), pointmark(pc), + pointmark(pd)); + } + + fnext(abcv, oldabd); + enextfnext(abcv, oldbcd); + enext2fnext(abcv, oldcad); + sym(oldabd, abdcasing); + sym(oldbcd, bcdcasing); + sym(oldcad, cadcasing); + maketetrahedron(&badv); + maketetrahedron(&cbdv); + maketetrahedron(&acdv); + + // Set 'badv' vertices. + setorg (badv, pb); + setdest(badv, pa); + setapex(badv, pd); + setoppo(badv, newpoint); + // Set 'cbdv' vertices. + setorg (cbdv, pc); + setdest(cbdv, pb); + setapex(cbdv, pd); + setoppo(cbdv, newpoint); + // Set 'acdv' vertices. + setorg (acdv, pa); + setdest(acdv, pc); + setapex(acdv, pd); + setoppo(acdv, newpoint); + // Set 'abcv' vertices + setoppo(abcv, newpoint); + + // Set the element attributes of the new tetrahedra. + for (i = 0; i < in->numberoftetrahedronattributes; i++) { + attrib = elemattribute(abcv.tet, i); + setelemattribute(badv.tet, i, attrib); + setelemattribute(cbdv.tet, i, attrib); + setelemattribute(acdv.tet, i, attrib); + } + // Set the volume constraint of the new tetrahedra. + if (b->varvolume) { + volume = volumebound(abcv.tet); + setvolumebound(badv.tet, volume); + setvolumebound(cbdv.tet, volume); + setvolumebound(acdv.tet, volume); + } + + // Bond the new triangles to the surrounding tetrahedron. + bond(badv, abdcasing); + bond(cbdv, bcdcasing); + bond(acdv, cadcasing); + // There may exist subfaces need to be bonded to the new tetrahedra. + if (checksubfaces) { + tspivot(oldabd, abdsh); + if (abdsh.sh != dummysh) { + tsdissolve(oldabd); + tsbond(badv, abdsh); + } + tspivot(oldbcd, bcdsh); + if (bcdsh.sh != dummysh) { + tsdissolve(oldbcd); + tsbond(cbdv, bcdsh); + } + tspivot(oldcad, cadsh); + if (cadsh.sh != dummysh) { + tsdissolve(oldcad); + tsbond(acdv, cadsh); + } + } + badv.loc = 3; + cbdv.loc = 2; + bond(badv, cbdv); + cbdv.loc = 3; + acdv.loc = 2; + bond(cbdv, acdv); + acdv.loc = 3; + badv.loc = 2; + bond(acdv, badv); + badv.loc = 1; + bond(badv, oldabd); + cbdv.loc = 1; + bond(cbdv, oldbcd); + acdv.loc = 1; + bond(acdv, oldcad); + + badv.loc = 0; + cbdv.loc = 0; + acdv.loc = 0; + if (b->verbose > 3) { + printf(" Updating abcv "); + printtet(&abcv); + printf(" Creating badv "); + printtet(&badv); + printf(" Creating cbdv "); + printtet(&cbdv); + printf(" Creating acdv "); + printtet(&acdv); + } + + if (flipqueue != (queue *) NULL) { + enqueueflipface(abcv, flipqueue); + enqueueflipface(badv, flipqueue); + enqueueflipface(cbdv, flipqueue); + enqueueflipface(acdv, flipqueue); + } + + // Save a handle for quick point location. + recenttet = abcv; + // Set the return handle be abcv. + *splittet = abcv; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// unsplittetrahedron() Reverse the operation of inserting a point into a // +// tetrahedron, so as to remove the newly inserted // +// point from the mesh. // +// // +// Assume the origional tetrahedron is abcd, it was split by v into four // +// tetrahedra abcv, badv, cbdv, and acdv. 'splittet' represents face abc of // +// abcv (i.e., its opposite is v). // +// // +// Point v is removed by expanding abcv to abcd, deleting three tetrahedra // +// badv, cbdv and acdv. On return, point v is not deleted in this routine. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::unsplittetrahedron(triface* splittet) +{ + triface abcv, badv, cbdv, acdv; + triface oldabv, oldbcv, oldcav; + triface badcasing, cbdcasing, acdcasing; + face badsh, cbdsh, acdsh; + + abcv = *splittet; + adjustedgering(abcv, CCW); // for sure. + fnext(abcv, oldabv); + fnext(oldabv, badv); + esymself(badv); + enextfnext(abcv, oldbcv); + fnext(oldbcv, cbdv); + esymself(cbdv); + enext2fnext(abcv, oldcav); + fnext(oldcav, acdv); + esymself(acdv); + + if (b->verbose > 1) { + printf(" Removing point %d in tetrahedron (%d, %d, %d, %d).\n", + pointmark(oppo(abcv)), pointmark(org(abcv)), pointmark(dest(abcv)), + pointmark(apex(abcv)), pointmark(apex(badv))); + } + + sym(badv, badcasing); + tspivot(badv, badsh); + sym(cbdv, cbdcasing); + tspivot(cbdv, cbdsh); + sym(acdv, acdcasing); + tspivot(acdv, acdsh); + + // Expanding abcv to abcd. + setoppo(abcv, apex(badv)); + bond(oldabv, badcasing); + if (badsh.sh != dummysh) { + tsbond(oldabv, badsh); + } + bond(oldbcv, cbdcasing); + if (cbdsh.sh != dummysh) { + tsbond(oldbcv, cbdsh); + } + bond(oldcav, acdcasing); + if (acdsh.sh != dummysh) { + tsbond(oldcav, acdsh); + } + + // Delete the three split-out tetrahedra. + tetrahedrondealloc(badv.tet); + tetrahedrondealloc(cbdv.tet); + tetrahedrondealloc(acdv.tet); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// splittetface() Insert a point on a face of a mesh. // +// // +// 'splittet' is the splitting face. Let it is abcd, where abc is the face // +// will be split. If abc is not a hull face, abce is the tetrahedron at the // +// opposite of d. // +// // +// To split face abc by a point v is to shrink the tetrahedra abcd to abvd, // +// create two new tetrahedra bcvd, cavd. If abc is not a hull face, shrink // +// the tetrahedra bace to bave, create two new tetrahedra cbve, acve. // +// // +// If abc is a subface, it is split into three subfaces simultaneously by // +// calling routine splitsubface(), hence, abv, bcv, cav. The edge rings of // +// the split subfaces have the same orientation as abc's. // +// // +// On completion, 'splittet' returns abvd. If 'flipqueue' is not NULL, it // +// contains all possibly non-locally Delaunay faces. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +splittetface(point newpoint, triface* splittet, queue* flipqueue) +{ + triface abcd, bace; // Old configuration. + triface oldbcd, oldcad, oldace, oldcbe; + triface bcdcasing, cadcasing, acecasing, cbecasing; + face abcsh, bcdsh, cadsh, acesh, cbesh; + triface abvd, bcvd, cavd, bave, cbve, acve; // New configuration. + point pa, pb, pc, pd, pe; + REAL attrib, volume; + bool mirrorflag; + int i; + + abcd = *splittet; + // abcd.ver = 0; // Adjust to be CCW edge ring. + adjustedgering(abcd, CCW); + pa = org(abcd); + pb = dest(abcd); + pc = apex(abcd); + pd = oppo(abcd); + // Is there a second tetrahderon? + mirrorflag = issymexist(&abcd); + if (mirrorflag) { + // This is an interior face. + sym(abcd, bace); + findedge(&bace, dest(abcd), org(abcd)); + pe = oppo(bace); + } + if (checksubfaces) { + // Is there a subface need to be split together? + tspivot(abcd, abcsh); + if (abcsh.sh != dummysh) { + // Exists! Keep the edge ab of both handles be the same. + findedge(&abcsh, org(abcd), dest(abcd)); + } + } + + if (b->verbose > 1) { + printf(" Inserting point %d on face (%d, %d, %d).\n", pointmark(newpoint), + pointmark(pa), pointmark(pb), pointmark(pc)); + } + +#ifdef SELF_CHECK + // Make sure no inversed tetrahedron has been created. + assert(orient3d(pa, pb, pd, newpoint) >= 0.0); + assert(orient3d(pb, pc, pd, newpoint) >= 0.0); + assert(orient3d(pc, pa, pd, newpoint) >= 0.0); +#endif + + // Save the old configuration at faces bcd and cad. + enextfnext(abcd, oldbcd); + enext2fnext(abcd, oldcad); + sym(oldbcd, bcdcasing); + sym(oldcad, cadcasing); + // Create two new tetrahedra. + maketetrahedron(&bcvd); + maketetrahedron(&cavd); + if (mirrorflag) { + // Save the old configuration at faces bce and cae. + enextfnext(bace, oldace); + enext2fnext(bace, oldcbe); + sym(oldace, acecasing); + sym(oldcbe, cbecasing); + // Create two new tetrahedra. + maketetrahedron(&acve); + maketetrahedron(&cbve); + } else { + // Splitting a boundary face increases the number of boundary faces. + hullsize += 2; + } + + // Set vertices to the changed tetrahedron and new tetrahedra. + abvd = abcd; // Update 'abcd' to 'abvd'. + setapex(abvd, newpoint); + setorg (bcvd, pb); // Set 'bcvd'. + setdest(bcvd, pc); + setapex(bcvd, newpoint); + setoppo(bcvd, pd); + setorg (cavd, pc); // Set 'cavd'. + setdest(cavd, pa); + setapex(cavd, newpoint); + setoppo(cavd, pd); + // Set the element attributes of the new tetrahedra. + for (i = 0; i < in->numberoftetrahedronattributes; i++) { + attrib = elemattribute(abvd.tet, i); + setelemattribute(bcvd.tet, i, attrib); + setelemattribute(cavd.tet, i, attrib); + } + if (b->varvolume) { + // Set the area constraint of the new tetrahedra. + volume = volumebound(abvd.tet); + setvolumebound(bcvd.tet, volume); + setvolumebound(cavd.tet, volume); + } + if (mirrorflag) { + bave = bace; // Update 'bace' to 'bave'. + setapex(bave, newpoint); + setorg (acve, pa); // Set 'acve'. + setdest(acve, pc); + setapex(acve, newpoint); + setoppo(acve, pe); + setorg (cbve, pc); // Set 'cbve'. + setdest(cbve, pb); + setapex(cbve, newpoint); + setoppo(cbve, pe); + // Set the element attributes of the new tetrahedra. + for (i = 0; i < in->numberoftetrahedronattributes; i++) { + attrib = elemattribute(bave.tet, i); + setelemattribute(acve.tet, i, attrib); + setelemattribute(cbve.tet, i, attrib); + } + if (b->varvolume) { + // Set the area constraint of the new tetrahedra. + volume = volumebound(bave.tet); + setvolumebound(acve.tet, volume); + setvolumebound(cbve.tet, volume); + } + } + + // Bond the new tetrahedra to the surrounding tetrahedra. + bcvd.loc = 1; + bond(bcvd, bcdcasing); + cavd.loc = 1; + bond(cavd, cadcasing); + bcvd.loc = 3; + bond(bcvd, oldbcd); + cavd.loc = 2; + bond(cavd, oldcad); + bcvd.loc = 2; + cavd.loc = 3; + bond(bcvd, cavd); + if (mirrorflag) { + acve.loc = 1; + bond(acve, acecasing); + cbve.loc = 1; + bond(cbve, cbecasing); + acve.loc = 3; + bond(acve, oldace); + cbve.loc = 2; + bond(cbve, oldcbe); + acve.loc = 2; + cbve.loc = 3; + bond(acve, cbve); + // Bond two new coplanar facets. + bcvd.loc = 0; + cbve.loc = 0; + bond(bcvd, cbve); + cavd.loc = 0; + acve.loc = 0; + bond(cavd, acve); + } + + // There may exist subface needed to be bonded to the new tetrahedra. + if (checksubfaces) { + tspivot(oldbcd, bcdsh); + if (bcdsh.sh != dummysh) { + tsdissolve(oldbcd); + bcvd.loc = 1; + tsbond(bcvd, bcdsh); + } + tspivot(oldcad, cadsh); + if (cadsh.sh != dummysh) { + tsdissolve(oldcad); + cavd.loc = 1; + tsbond(cavd, cadsh); + } + if (mirrorflag) { + tspivot(oldace, acesh); + if (acesh.sh != dummysh) { + tsdissolve(oldace); + acve.loc = 1; + tsbond(acve, acesh); + } + tspivot(oldcbe, cbesh); + if (cbesh.sh != dummysh) { + tsdissolve(oldcbe); + cbve.loc = 1; + tsbond(cbve, cbesh); + } + } + // Is there a subface needs to be split together? + if (abcsh.sh != dummysh) { + // Split this subface 'abc' into three i.e, abv, bcv, cav. + splitsubface(newpoint, &abcsh, (queue *) NULL); + } + } + + // Save a handle for quick point location. + recenttet = abvd; + // Set the return handle be abvd. + *splittet = abvd; + + bcvd.loc = 0; + cavd.loc = 0; + if (mirrorflag) { + cbve.loc = 0; + acve.loc = 0; + } + if (b->verbose > 3) { + printf(" Updating abvd "); + printtet(&abvd); + printf(" Creating bcvd "); + printtet(&bcvd); + printf(" Creating cavd "); + printtet(&cavd); + if (mirrorflag) { + printf(" Updating bave "); + printtet(&bave); + printf(" Creating cbve "); + printtet(&cbve); + printf(" Creating acve "); + printtet(&acve); + } + } + + if (flipqueue != (queue *) NULL) { + fnextself(abvd); + enqueueflipface(abvd, flipqueue); + fnextself(bcvd); + enqueueflipface(bcvd, flipqueue); + fnextself(cavd); + enqueueflipface(cavd, flipqueue); + if (mirrorflag) { + fnextself(bave); + enqueueflipface(bave, flipqueue); + fnextself(cbve); + enqueueflipface(cbve, flipqueue); + fnextself(acve); + enqueueflipface(acve, flipqueue); + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// unsplittetface() Reverse the operation of inserting a point on a face, // +// so as to remove the newly inserted point. // +// // +// Assume the original face is abc, the tetrahedron containing abc is abcd. // +// If abc is not a hull face, bace is the tetrahedron at the opposite of d. // +// After face abc was split by a point v, tetrahedron abcd had been split // +// into three tetrahedra, abvd, bcvd, cavd, and bace (if it exists) had been // +// split into bave, cbve, acve. 'splittet' represents abvd (its apex is v). // +// // +// Point v is removed by expanding abvd to abcd, deleting two tetrahedra // +// bcvd, cavd. Expanding bave(if it exists) to bace, deleting two tetrahedra // +// cbve, acve. If abv is a subface, routine unsplitsubface() will be called // +// to reverse the operation of splitting a subface. On completion, point v // +// is not deleted in this routine. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::unsplittetface(triface* splittet) +{ + triface abvd, bcvd, cavd, bave, cbve, acve; + triface oldbvd, oldvad, oldvbe, oldave; + triface bcdcasing, cadcasing, cbecasing, acecasing; + face bcdsh, cadsh, cbesh, acesh; + face abvsh; + bool mirrorflag; + + abvd = *splittet; + adjustedgering(abvd, CCW); // for sure. + enextfnext(abvd, oldbvd); + fnext(oldbvd, bcvd); + esymself(bcvd); + enextself(bcvd); + enext2fnext(abvd, oldvad); + fnext(oldvad, cavd); + esymself(cavd); + enext2self(cavd); + // Is there a second tetrahedron? + sym(abvd, bave); + mirrorflag = bave.tet != dummytet; + if (mirrorflag) { + findedge(&bave, dest(abvd), org(abvd)); + enextfnext(bave, oldave); + fnext(oldave, acve); + esymself(acve); + enextself(acve); + enext2fnext(bave, oldvbe); + fnext(oldvbe, cbve); + esymself(cbve); + enext2self(cbve); + } else { + // Unsplit a hull face decrease the number of boundary faces. + hullsize -= 2; + } + // Is there a subface at abv. + tspivot(abvd, abvsh); + if (abvsh.sh != dummysh) { + // Exists! Keep the edge ab of both handles be the same. + findedge(&abvsh, org(abvd), dest(abvd)); + } + + if (b->verbose > 1) { + printf(" Removing point %d on face (%d, %d, %d).\n", + pointmark(apex(abvd)), pointmark(org(abvd)), pointmark(dest(abvd)), + pointmark(dest(bcvd))); + } + + fnextself(bcvd); // bcvd has changed to bcdv. + sym(bcvd, bcdcasing); + tspivot(bcvd, bcdsh); + fnextself(cavd); // cavd has changed to cadv. + sym(cavd, cadcasing); + tspivot(cavd, cadsh); + if (mirrorflag) { + fnextself(acve); // acve has changed to acev. + sym(acve, acecasing); + tspivot(acve, acesh); + fnextself(cbve); // cbve has changed to cbev. + sym(cbve, cbecasing); + tspivot(cbve, cbesh); + } + + // Expand abvd to abcd. + setapex(abvd, dest(bcvd)); + bond(oldbvd, bcdcasing); + if (bcdsh.sh != dummysh) { + tsbond(oldbvd, bcdsh); + } + bond(oldvad, cadcasing); + if (cadsh.sh != dummysh) { + tsbond(oldvad, cadsh); + } + if (mirrorflag) { + // Expanding bave to bace. + setapex(bave, dest(acve)); + bond(oldave, acecasing); + if (acesh.sh != dummysh) { + tsbond(oldave, acesh); + } + bond(oldvbe, cbecasing); + if (cbesh.sh != dummysh) { + tsbond(oldvbe, cbesh); + } + } + + // Unsplit a subface if there exists. + if (abvsh.sh != dummysh) { + unsplitsubface(&abvsh); + } + + // Delete the split-out tetrahedra. + tetrahedrondealloc(bcvd.tet); + tetrahedrondealloc(cavd.tet); + if (mirrorflag) { + tetrahedrondealloc(acve.tet); + tetrahedrondealloc(cbve.tet); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// splitsubface() Insert a point on a subface, split it into three. // +// // +// The subface is 'splitface'. Let it is abc. The inserting point 'newpoint'// +// v should lie inside abc. If the neighbor tetrahedra of abc exist, i.e., // +// abcd and bace, they should have been split by routine splittetface() // +// before calling this routine, so the connection between the new tetrahedra // +// and new subfaces can be correctly set. // +// // +// To split subface abc by point v is to shrink abc to abv, create two new // +// subfaces bcv and cav. Set the connection between updated and new created // +// subfaces. If there is a subsegment at edge bc or ca, connection of new // +// subface (bcv or cav) to its casing subfaces is a face link, 'casingin' is // +// the predecessor and 'casingout' is the successor. It is important to keep // +// the orientations of the edge rings of the updated and created subfaces be // +// the same as abc's. So they have the same orientation as other subfaces of // +// this facet with respect to the lift point of this facet. // +// // +// On completion, 'splitface' returns abv. If 'flipqueue' is not NULL, it // +// returns all possibly non-Delaunay edges. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +splitsubface(point newpoint, face* splitface, queue* flipqueue) +{ + triface abvd, bcvd, cavd, bave, cbve, acve; + face abc, oldbc, oldca, bc, ca, spinsh; + face bccasin, bccasout, cacasin, cacasout; + face abv, bcv, cav; + point pa, pb, pc; + + abc = *splitface; + // The newly created subfaces will have the same edge ring as abc. + adjustedgering(abc, CCW); + pa = sorg(abc); + pb = sdest(abc); + pc = sapex(abc); + + if (b->verbose > 1) { + printf(" Inserting point %d on subface (%d, %d, %d).\n", + pointmark(newpoint), pointmark(pa), pointmark(pb), pointmark(pc)); + } + + // Save the old configuration at edge bc and ca. Subsegments may appear + // at both sides, save the face links and dissolve them. + senext(abc, oldbc); + senext2(abc, oldca); + spivot(oldbc, bccasout); + sspivot(oldbc, bc); + if (bc.sh != dummysh) { + if (oldbc.sh != bccasout.sh) { + // 'oldbc' is not self-bonded. + spinsh = bccasout; + do { + bccasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != oldbc.sh); + } else { + bccasout.sh = dummysh; + } + ssdissolve(oldbc); + } + spivot(oldca, cacasout); + sspivot(oldca, ca); + if (ca.sh != dummysh) { + if (oldca.sh != cacasout.sh) { + // 'oldca' is not self-bonded. + spinsh = cacasout; + do { + cacasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != oldca.sh); + } else { + cacasout.sh = dummysh; + } + ssdissolve(oldca); + } + // Create two new subfaces. + makeshellface(subfaces, &bcv); + makeshellface(subfaces, &cav); + + // Set the vertices of changed and new subfaces. + abv = abc; // Update 'abc' to 'abv'. + setsapex(abv, newpoint); + setsorg(bcv, pb); // Set 'bcv'. + setsdest(bcv, pc); + setsapex(bcv, newpoint); + setsorg(cav, pc); // Set 'cav'. + setsdest(cav, pa); + setsapex(cav, newpoint); + if (b->quality) { + // Copy yhr area bound into the new subfaces. + setareabound(bcv, areabound(abv)); + setareabound(cav, areabound(abv)); + } + // Copy the boundary mark into the new subfaces. + setshellmark(bcv, shellmark(abv)); + setshellmark(cav, shellmark(abv)); + // Copy the subface type into the new subfaces. + setshelltype(bcv, shelltype(abv)); + setshelltype(cav, shelltype(abv)); + // Bond the new subfaces to the surrounding subfaces. + if (bc.sh != dummysh) { + if (bccasout.sh != dummysh) { + sbond1(bccasin, bcv); + sbond1(bcv, bccasout); + } else { + // Bond 'bcv' to itsself. + sbond(bcv, bcv); + } + ssbond(bcv, bc); + } else { + sbond(bcv, bccasout); + } + if (ca.sh != dummysh) { + if (cacasout.sh != dummysh) { + sbond1(cacasin, cav); + sbond1(cav, cacasout); + } else { + // Bond 'cav' to itself. + sbond(cav, cav); + } + ssbond(cav, ca); + } else { + sbond(cav, cacasout); + } + senext2self(bcv); + sbond(bcv, oldbc); + senextself(cav); + sbond(cav, oldca); + senext2self(bcv); + senextself(cav); + sbond(bcv, cav); + + // Bond the new subfaces to the new tetrahedra if they exist. + stpivot(abv, abvd); + if (abvd.tet != dummytet) { + // Get two new tetrahedra and their syms. + findedge(&abvd, sorg(abv), sdest(abv)); + enextfnext(abvd, bcvd); + assert(bcvd.tet != dummytet); + fnextself(bcvd); + enext2fnext(abvd, cavd); + assert(cavd.tet != dummytet); + fnextself(cavd); + // Bond two new subfaces to the two new tetrahedra. + tsbond(bcvd, bcv); + tsbond(cavd, cav); + } + // Set the connection at the other sides if the tetrahedra exist. + sesymself(abv); // bav + stpivot(abv, bave); + if (bave.tet != dummytet) { + sesymself(bcv); // cbv + sesymself(cav); // acv + // Get two new tetrahedra and their syms. + findedge(&bave, sorg(abv), sdest(abv)); + enextfnext(bave, acve); + assert(acve.tet != dummytet); + fnextself(acve); + enext2fnext(bave, cbve); + assert(cbve.tet != dummytet); + fnextself(cbve); + // Bond two new subfaces to the two new tetrahedra. + tsbond(acve, cav); + tsbond(cbve, bcv); + } + + bcv.shver = 0; + cav.shver = 0; + if (b->verbose > 3) { + printf(" Updating abv "); + printsh(&abv); + printf(" Creating bcv "); + printsh(&bcv); + printf(" Creating cav "); + printsh(&cav); + } + + if (flipqueue != (queue *) NULL) { + enqueueflipedge(abv, flipqueue); + enqueueflipedge(bcv, flipqueue); + enqueueflipedge(cav, flipqueue); + } + + // Set the return handle be abv. + *splitface = abv; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// unsplitsubface() Reverse the operation of inserting a point on a // +// subface, so as to remove the newly inserted point. // +// // +// Assume the original subface is abc, it was split by a point v into three // +// subfaces abv, bcv and cav. 'splitsh' represents abv. // +// // +// To remove point v is to expand abv to abc, delete bcv and cav. If edge bc // +// or ca is a subsegment, the connection at a subsegment is a subface link, // +// '-casin' and '-casout' are used to save the predecessor and successor of // +// bcv or cav. On completion, point v is not deleted in this routine. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::unsplitsubface(face* splitsh) +{ + face abv, bcv, cav; + face oldbv, oldva, bc, ca, spinsh; + face bccasin, bccasout, cacasin, cacasout; + + abv = *splitsh; + senext(abv, oldbv); + spivot(oldbv, bcv); + if (sorg(bcv) != sdest(oldbv)) { + sesymself(bcv); + } + senextself(bcv); + senext2(abv, oldva); + spivot(oldva, cav); + if (sorg(cav) != sdest(oldva)) { + sesymself(cav); + } + senext2self(cav); + + if (b->verbose > 1) { + printf(" Removing point %d on subface (%d, %d, %d).\n", + pointmark(sapex(abv)), pointmark(sorg(abv)), pointmark(sdest(abv)), + pointmark(sdest(bcv))); + } + + spivot(bcv, bccasout); + sspivot(bcv, bc); + if (bc.sh != dummysh) { + if (bcv.sh != bccasout.sh) { + // 'bcv' is not self-bonded. + spinsh = bccasout; + do { + bccasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != bcv.sh); + } else { + bccasout.sh = dummysh; + } + } + spivot(cav, cacasout); + sspivot(cav, ca); + if (ca.sh != dummysh) { + if (cav.sh != cacasout.sh) { + // 'cav' is not self-bonded. + spinsh = cacasout; + do { + cacasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != cav.sh); + } else { + cacasout.sh = dummysh; + } + } + + // Expand abv to abc. + setsapex(abv, sdest(bcv)); + if (bc.sh != dummysh) { + if (bccasout.sh != dummysh) { + sbond1(bccasin, oldbv); + sbond1(oldbv, bccasout); + } else { + // Bond 'oldbv' to itself. + sbond(oldbv, oldbv); + } + ssbond(oldbv, bc); + } else { + sbond(oldbv, bccasout); + } + if (ca.sh != dummysh) { + if (cacasout.sh != dummysh) { + sbond1(cacasin, oldva); + sbond1(oldva, cacasout); + } else { + // Bond 'oldva' to itself. + sbond(oldva, oldva); + } + ssbond(oldva, ca); + } else { + sbond(oldva, cacasout); + } + + // Delete two split-out subfaces. + shellfacedealloc(subfaces, bcv.sh); + shellfacedealloc(subfaces, cav.sh); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// splittetedge() Insert a point on an edge of the mesh. // +// // +// The edge is given by 'splittet'. Assume its four corners are a, b, n1 and // +// n2, where ab is the edge will be split. Around ab may exist any number of // +// tetrahedra. For convenience, they're ordered in a sequence following the // +// right-hand rule with your thumb points from a to b. Let the vertex set of // +// these tetrahedra be {a, b, n1, n2, ..., n(i)}. NOTE the tetrahedra around // +// ab may not connect to each other (can only happen when ab is a subsegment,// +// hence some faces abn(i) are subfaces). If ab is a subsegment, abn1 must // +// be a subface. // +// // +// To split edge ab by a point v is to split all tetrahedra containing ab by // +// v. More specifically, for each such tetrahedron, an1n2b, it is shrunk to // +// an1n2v, and a new tetrahedra bn2n1v is created. If ab is a subsegment, or // +// some faces of the splitting tetrahedra are subfaces, they must be split // +// either by calling routine 'splitsubedge()'. // +// // +// On completion, 'splittet' returns avn1n2. If 'flipqueue' is not NULL, it // +// returns all faces which may become non-Delaunay after this operation. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +splittetedge(point newpoint, triface* splittet, queue* flipqueue) +{ + triface *bots, *newtops; + triface oldtop, topcasing; + triface spintet, tmpbond0, tmpbond1; + face abseg, splitsh, topsh, spinsh; + point pa, pb, n1, n2; + REAL attrib, volume; + int wrapcount, hitbdry; + int i, j; + + if (checksubfaces) { + // Is there a subsegment need to be split together? + tsspivot(splittet, &abseg); + if (abseg.sh != dummysh) { + abseg.shver = 0; + // Orient the edge direction of 'splittet' be abseg. + if (org(*splittet) != sorg(abseg)) { + esymself(*splittet); + } + } + } + spintet = *splittet; + pa = org(spintet); + pb = dest(spintet); + + if (b->verbose > 1) { + printf(" Inserting point %d on edge (%d, %d).\n", + pointmark(newpoint), pointmark(pa), pointmark(pb)); + } + + // Collect the tetrahedra containing the splitting edge (ab). + n1 = apex(spintet); + hitbdry = 0; + wrapcount = 1; + if (checksubfaces && abseg.sh != dummysh) { + // It may happen that some tetrahedra containing ab (a subsegment) are + // completely disconnected with others. If it happens, use the face + // link of ab to cross the boundary. + while (true) { + if (!fnextself(spintet)) { + // Meet a boundary, walk through it. + hitbdry ++; + tspivot(spintet, spinsh); + assert(spinsh.sh != dummysh); + findedge(&spinsh, pa, pb); + sfnextself(spinsh); + stpivot(spinsh, spintet); + assert(spintet.tet != dummytet); + findedge(&spintet, pa, pb); + // Remember this position (hull face) in 'splittet'. + *splittet = spintet; + // Split two hull faces increase the hull size; + hullsize += 2; + } + if (apex(spintet) == n1) break; + wrapcount ++; + } + if (hitbdry > 0) { + wrapcount -= hitbdry; + } + } else { + // All the tetrahedra containing ab are connected together. If there + // are subfaces, 'splitsh' keeps one of them. + splitsh.sh = dummysh; + while (hitbdry < 2) { + if (checksubfaces && splitsh.sh == dummysh) { + tspivot(spintet, splitsh); + } + if (fnextself(spintet)) { + if (apex(spintet) == n1) break; + wrapcount++; + } else { + hitbdry ++; + if (hitbdry < 2) { + esym(*splittet, spintet); + } + } + } + if (hitbdry > 0) { + // ab is on the hull. + wrapcount -= 1; + // 'spintet' now is a hull face, inverse its edge direction. + esym(spintet, *splittet); + // Split two hull faces increases the number of hull faces. + hullsize += 2; + } + } + + // Make arrays of updating (bot, oldtop) and new (newtop) tetrahedra. + bots = new triface[wrapcount]; + newtops = new triface[wrapcount]; + // Spin around ab, gather tetrahedra and set up new tetrahedra. + spintet = *splittet; + for (i = 0; i < wrapcount; i++) { + // Get 'bots[i] = an1n2b'. + enext2fnext(spintet, bots[i]); + esymself(bots[i]); + // Create 'newtops[i]'. + maketetrahedron(&(newtops[i])); + // Go to the next. + fnextself(spintet); + if (checksubfaces && abseg.sh != dummysh) { + if (!issymexist(&spintet)) { + // We meet a hull face, walk through it. + tspivot(spintet, spinsh); + assert(spinsh.sh != dummysh); + findedge(&spinsh, pa, pb); + sfnextself(spinsh); + stpivot(spinsh, spintet); + assert(spintet.tet != dummytet); + findedge(&spintet, pa, pb); + } + } + } + + // Set the vertices of updated and new tetrahedra. + for (i = 0; i < wrapcount; i++) { + // Update 'bots[i] = an1n2v'. + setoppo(bots[i], newpoint); + // Set 'newtops[i] = bn2n1v'. + n1 = dest(bots[i]); + n2 = apex(bots[i]); + // Set 'newtops[i]'. + setorg(newtops[i], pb); + setdest(newtops[i], n2); + setapex(newtops[i], n1); + setoppo(newtops[i], newpoint); + // Set the element attributes of a new tetrahedron. + for (j = 0; j < in->numberoftetrahedronattributes; j++) { + attrib = elemattribute(bots[i].tet, j); + setelemattribute(newtops[i].tet, j, attrib); + } + if (b->varvolume) { + // Set the area constraint of a new tetrahedron. + volume = volumebound(bots[i].tet); + setvolumebound(newtops[i].tet, volume); + } +#ifdef SELF_CHECK + // Make sure no inversed tetrahedron has been created. + assert(orient3d(pa, n1, n2, newpoint) <= 0.0); + assert(orient3d(pb, n2, n1, newpoint) <= 0.0); +#endif + } + + // Bond newtops to topcasings and bots. + for (i = 0; i < wrapcount; i++) { + // Get 'oldtop = n1n2va' from 'bots[i]'. + enextfnext(bots[i], oldtop); + sym(oldtop, topcasing); + bond(newtops[i], topcasing); + if (checksubfaces) { + tspivot(oldtop, topsh); + if (topsh.sh != dummysh) { + tsdissolve(oldtop); + tsbond(newtops[i], topsh); + } + } + enextfnext(newtops[i], tmpbond0); + bond(oldtop, tmpbond0); + } + // Bond between newtops. + fnext(newtops[0], tmpbond0); + enext2fnext(bots[0], spintet); + for (i = 1; i < wrapcount; i ++) { + if (issymexist(&spintet)) { + enext2fnext(newtops[i], tmpbond1); + bond(tmpbond0, tmpbond1); + } + fnext(newtops[i], tmpbond0); + enext2fnext(bots[i], spintet); + } + // Bond the last to the first if no boundary. + if (issymexist(&spintet)) { + enext2fnext(newtops[0], tmpbond1); + bond(tmpbond0, tmpbond1); + } + + // Is there exist subfaces and subsegment need to be split? + if (checksubfaces) { + if (abseg.sh != dummysh) { + // A subsegment needs be split. + spivot(abseg, splitsh); + assert(splitsh.sh != dummysh); + } + if (splitsh.sh != dummysh) { + // Split subfaces (and subsegment). + findedge(&splitsh, pa, pb); + splitsubedge(newpoint, &splitsh, (queue *) NULL); + } + } + + if (b->verbose > 3) { + for (i = 0; i < wrapcount; i++) { + printf(" Updating bots[%i] ", i); + printtet(&(bots[i])); + printf(" Creating newtops[%i] ", i); + printtet(&(newtops[i])); + } + } + + if (flipqueue != (queue *) NULL) { + for (i = 0; i < wrapcount; i++) { + enqueueflipface(bots[i], flipqueue); + enqueueflipface(newtops[i], flipqueue); + } + } + + // Set the return handle be avn1n2. It is got by transforming from + // 'bots[0]' (which is an1n2v). + fnext(bots[0], spintet); // spintet is an1vn2. + esymself(spintet); // spintet is n1avn2. + enextself(spintet); // spintet is avn1n2. + *splittet = spintet; + + delete [] bots; + delete [] newtops; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// unsplittetedge() Reverse the operation of splitting an edge, so as to // +// remove the newly inserted point. // +// // +// Assume the original edge is ab, the tetrahedron containing ab is abn1n2. // +// After ab was split by a point v, every tetrahedron containing ab (e.g., // +// abn1n2) has been split into two (e.g., an1n2v and bn2n1v). 'splittet' // +// represents avn1n2 (i.e., its destination is v). // +// // +// To remove point v is to expand each split tetrahedron containing ab (e.g.,// +// (avn1n2 to abn1n2), then delete the redundant one(e.g., vbn1n2). If there // +// exists any subface around ab, routine unsplitsubedge() will be called to // +// reverse the operation of splitting a edge (or a subsegment) of subfaces. // +// On completion, point v is not deleted in this routine. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::unsplittetedge(triface* splittet) +{ + triface *bots, *newtops; + triface oldtop, topcasing; + triface spintet; + face avseg, splitsh, topsh, spinsh; + point pa, pv, n1; + int wrapcount, hitbdry; + int i; + + spintet = *splittet; + pa = org(spintet); + pv = dest(spintet); + if (checksubfaces) { + // Is there a subsegment need to be unsplit together? + tsspivot(splittet, &avseg); + if (avseg.sh != dummysh) { + // The subsegment's direction should conform to 'splittet'. + if (sorg(avseg) != pa) { + sesymself(avseg); + } + } + } + + n1 = apex(spintet); + hitbdry = 0; + wrapcount = 1; + if (checksubfaces && avseg.sh != dummysh) { + // It may happen that some tetrahedra containing ab (a subsegment) are + // completely disconnected with others. If it happens, use the face + // link of ab to cross the boundary. + while (true) { + if (!fnextself(spintet)) { + // Meet a boundary, walk through it. + hitbdry ++; + tspivot(spintet, spinsh); + assert(spinsh.sh != dummysh); + findedge(&spinsh, pa, pv); + sfnextself(spinsh); + stpivot(spinsh, spintet); + assert(spintet.tet != dummytet); + findedge(&spintet, pa, pv); + // Remember this position (hull face) in 'splittet'. + *splittet = spintet; + // Split two hull faces increase the hull size; + hullsize += 2; + } + if (apex(spintet) == n1) break; + wrapcount ++; + } + if (hitbdry > 0) { + wrapcount -= hitbdry; + } + } else { + // All the tetrahedra containing ab are connected together. If there + // are subfaces, 'splitsh' keeps one of them. + splitsh.sh = dummysh; + while (hitbdry < 2) { + if (checksubfaces && splitsh.sh == dummysh) { + tspivot(spintet, splitsh); + } + if (fnextself(spintet)) { + if (apex(spintet) == n1) break; + wrapcount++; + } else { + hitbdry ++; + if (hitbdry < 2) { + esym(*splittet, spintet); + } + } + } + if (hitbdry > 0) { + // ab is on the hull. + wrapcount -= 1; + // 'spintet' now is a hull face, inverse its edge direction. + esym(spintet, *splittet); + // Split two hull faces increases the number of hull faces. + hullsize += 2; + } + } + + // Make arrays of updating (bot, oldtop) and new (newtop) tetrahedra. + bots = new triface[wrapcount]; + newtops = new triface[wrapcount]; + // Spin around av, gather tetrahedra and set up new tetrahedra. + spintet = *splittet; + for (i = 0; i < wrapcount; i++) { + // Get 'bots[i] = an1n2v'. + enext2fnext(spintet, bots[i]); + esymself(bots[i]); + // Get 'oldtop = n1n2va'. + enextfnext(bots[i], oldtop); + // Get 'newtops[i] = 'bn1n2v' + fnext(oldtop, newtops[i]); // newtop = n1n2bv + esymself(newtops[i]); // newtop = n2n1bv + enext2self(newtops[i]); // newtop = bn2n1v + // Go to the next. + fnextself(spintet); + if (checksubfaces && avseg.sh != dummysh) { + if (!issymexist(&spintet)) { + // We meet a hull face, walk through it. + tspivot(spintet, spinsh); + assert(spinsh.sh != dummysh); + findedge(&spinsh, pa, pv); + sfnextself(spinsh); + stpivot(spinsh, spintet); + assert(spintet.tet != dummytet); + findedge(&spintet, pa, pv); + } + } + } + + if (b->verbose > 1) { + printf(" Removing point %d from edge (%d, %d).\n", + pointmark(oppo(bots[0])), pointmark(org(bots[0])), + pointmark(org(newtops[0]))); + } + + for (i = 0; i < wrapcount; i++) { + // Expand an1n2v to an1n2b. + setoppo(bots[i], org(newtops[i])); + // Get 'oldtop = n1n2va' from 'bot[i]'. + enextfnext(bots[i], oldtop); + // Get 'topcasing' from 'newtop[i]' + sym(newtops[i], topcasing); + // Bond them. + bond(oldtop, topcasing); + if (checksubfaces) { + tspivot(newtops[i], topsh); + if (topsh.sh != dummysh) { + tsbond(oldtop, topsh); + } + } + // Delete the tetrahedron above an1n2v. + tetrahedrondealloc(newtops[i].tet); + } + + // If there exists any subface, unsplit them. + if (checksubfaces) { + if (avseg.sh != dummysh) { + spivot(avseg, splitsh); + assert(splitsh.sh != dummysh); + } + if (splitsh.sh != dummysh) { + findedge(&splitsh, pa, pv); + unsplitsubedge(&splitsh); + } + } + + delete [] bots; + delete [] newtops; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// splitsubedge() Insert a point on an edge of the surface mesh. // +// // +// The splitting edge is given by 'splitsh'. Assume its three corners are a, // +// b, c, where ab is the edge will be split. ab may be a subsegment. // +// // +// To split edge ab is to split all subfaces conatining ab. If ab is not a // +// subsegment, there are only two subfaces need be split, otherwise, there // +// may have any number of subfaces need be split. Each splitting subface abc // +// is shrunk to avc, a new subface vbc is created. It is important to keep // +// the orientations of edge rings of avc and vbc be the same as abc's. If ab // +// is a subsegment, it is shrunk to av and a new subsegment vb is created. // +// // +// If there are tetrahedra adjoining to the splitting subfaces, they should // +// be split before calling this routine, so the connection between the new // +// tetrahedra and the new subfaces can be correctly set. // +// // +// On completion, 'splitsh' returns avc. If 'flipqueue' is not NULL, it // +// returns all edges which may be non-Delaunay. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::splitsubedge(point newpoint, face* splitsh, queue* flipqueue) +{ + triface abcd, bace, vbcd, bvce; + face startabc, spinabc, spinsh; + face oldbc, bccasin, bccasout; + face ab, bc; + face avc, vbc, vbc1; + face av, vb; + point pa, pb; + + startabc = *splitsh; + // Is there a subsegment? + sspivot(startabc, ab); + if (ab.sh != dummysh) { + ab.shver = 0; + if (sorg(startabc) != sorg(ab)) { + sesymself(startabc); + } + } + pa = sorg(startabc); + pb = sdest(startabc); + + if (b->verbose > 1) { + printf(" Inserting point %d on subedge (%d, %d).\n", + pointmark(newpoint), pointmark(pa), pointmark(pb)); + } + + // Spin arround ab, split every subface containing ab. + spinabc = startabc; + do { + // Adjust spinabc be edge ab. + if (sorg(spinabc) != pa) { + sesymself(spinabc); + } + // Save old configuration at edge bc, if bc has a subsegment, save the + // face link of it and dissolve it from bc. + senext(spinabc, oldbc); + spivot(oldbc, bccasout); + sspivot(oldbc, bc); + if (bc.sh != dummysh) { + if (spinabc.sh != bccasout.sh) { + // 'spinabc' is not self-bonded. + spinsh = bccasout; + do { + bccasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != oldbc.sh); + } else { + bccasout.sh = dummysh; + } + ssdissolve(oldbc); + } + // Create a new subface. + makeshellface(subfaces, &vbc); + // Split abc. + avc = spinabc; // Update 'abc' to 'avc'. + setsdest(avc, newpoint); + // Make 'vbc' be in the same edge ring as 'avc'. + vbc.shver = avc.shver; + setsorg(vbc, newpoint); // Set 'vbc'. + setsdest(vbc, pb); + setsapex(vbc, sapex(avc)); + if (b->quality) { + // Copy yhr area bound into the new subfaces. + setareabound(vbc, areabound(avc)); + } + // Copy the shell marker and shell type into the new subface. + setshellmark(vbc, shellmark(avc)); + setshelltype(vbc, shelltype(avc)); + // Set the connection between updated and new subfaces. + senext2self(vbc); + sbond(vbc, oldbc); + // Set the connection between new subface and casings. + senext2self(vbc); + if (bc.sh != dummysh) { + if (bccasout.sh != dummysh) { + // Insert 'vbc' into face link. + sbond1(bccasin, vbc); + sbond1(vbc, bccasout); + } else { + // Bond 'vbc' to itself. + sbond(vbc, vbc); + } + ssbond(vbc, bc); + } else { + sbond(vbc, bccasout); + } + // Go to next subface at edge ab. + spivotself(spinabc); + if (spinabc.sh == dummysh) { + break; // 'ab' is a hull edge. + } + } while (spinabc.sh != startabc.sh); + + // Get the new subface vbc above the updated subface avc (= startabc). + senext(startabc, oldbc); + spivot(oldbc, vbc); + if (sorg(vbc) == newpoint) { + sesymself(vbc); + } + assert(sorg(vbc) == sdest(oldbc) && sdest(vbc) == sorg(oldbc)); + senextself(vbc); + // Set the face link for the new created subfaces around edge vb. + spinabc = startabc; + do { + // Go to the next subface at edge av. + spivotself(spinabc); + if (spinabc.sh == dummysh) { + break; // 'ab' is a hull edge. + } + if (sorg(spinabc) != pa) { + sesymself(spinabc); + } + // Get the new subface vbc1 above the updated subface avc (= spinabc). + senext(spinabc, oldbc); + spivot(oldbc, vbc1); + if (sorg(vbc1) == newpoint) { + sesymself(vbc1); + } + assert(sorg(vbc1) == sdest(oldbc) && sdest(vbc1) == sorg(oldbc)); + senextself(vbc1); + // Set the connection: vbc->vbc1. + sbond1(vbc, vbc1); + // For the next connection. + vbc = vbc1; + } while (spinabc.sh != startabc.sh); + + // Split ab if it is a subsegment. + if (ab.sh != dummysh) { + // Update subsegment ab to av. + av = ab; + setsdest(av, newpoint); + // Create a new subsegment vb. + makeshellface(subsegs, &vb); + setsorg(vb, newpoint); + setsdest(vb, pb); + // vb gets the same mark and segment type as av. + setshellmark(vb, shellmark(av)); + setshelltype(vb, shelltype(av)); + // Save the old connection at ab (re-use the handles oldbc, bccasout). + senext(av, oldbc); + spivot(oldbc, bccasout); + // Bond av and vb (bonded at their "fake" edges). + senext2(vb, bccasin); + sbond(bccasin, oldbc); + if (bccasout.sh != dummysh) { + // There is a subsegment connecting with ab at b. It will connect + // to vb at b after splitting. + bccasout.shver = 0; + assert(sorg(bccasout) == pb); + senext2self(bccasout); + senext(vb, bccasin); + sbond(bccasin, bccasout); + } + // Bond all new subfaces (vbc) to vb. + spinabc = startabc; + do { + // Adjust spinabc be edge av. + if (sorg(spinabc) != pa) { + sesymself(spinabc); + } + // Get new subface vbc above the updated subface avc (= spinabc). + senext(spinabc, oldbc); + spivot(oldbc, vbc); + if (sorg(vbc) == newpoint) { + sesymself(vbc); + } + senextself(vbc); + // Bond the new subface and the new subsegment. + ssbond(vbc, vb); + // Go to the next. + spivotself(spinabc); + assert(spinabc.sh != dummysh); + } while (spinabc.sh != startabc.sh); + } + + // Bond the new subfaces to new tetrahedra if they exist. New tetrahedra + // should have been created before calling this routine. + spinabc = startabc; + do { + // Adjust spinabc be edge av. + if (sorg(spinabc) != pa) { + sesymself(spinabc); + } + // Get new subface vbc above the updated subface avc (= spinabc). + senext(spinabc, oldbc); + spivot(oldbc, vbc); + if (sorg(vbc) == newpoint) { + sesymself(vbc); + } + senextself(vbc); + // Get the adjacent tetrahedra at 'spinabc'. + stpivot(spinabc, abcd); + if (abcd.tet != dummytet) { + findedge(&abcd, sorg(spinabc), sdest(spinabc)); + enextfnext(abcd, vbcd); + fnextself(vbcd); + assert(vbcd.tet != dummytet); + tsbond(vbcd, vbc); + sym(vbcd, bvce); + sesymself(vbc); + tsbond(bvce, vbc); + } else { + // One side is empty, check the other side. + sesymself(spinabc); + stpivot(spinabc, bace); + if (bace.tet != dummytet) { + findedge(&bace, sorg(spinabc), sdest(spinabc)); + enext2fnext(bace, bvce); + fnextself(bvce); + assert(bvce.tet != dummytet); + sesymself(vbc); + tsbond(bvce, vbc); + } + } + // Go to the next. + spivotself(spinabc); + if (spinabc.sh == dummysh) { + break; // 'ab' is a hull edge. + } + } while (spinabc.sh != startabc.sh); + + if (b->verbose > 3) { + spinabc = startabc; + do { + // Adjust spinabc be edge av. + if (sorg(spinabc) != pa) { + sesymself(spinabc); + } + printf(" Updating abc:\n"); + printsh(&spinabc); + // Get new subface vbc above the updated subface avc (= spinabc). + senext(spinabc, oldbc); + spivot(oldbc, vbc); + if (sorg(vbc) == newpoint) { + sesymself(vbc); + } + senextself(vbc); + printf(" Creating vbc:\n"); + printsh(&vbc); + // Go to the next. + spivotself(spinabc); + if (spinabc.sh == dummysh) { + break; // 'ab' is a hull edge. + } + } while (spinabc.sh != startabc.sh); + } + + if (flipqueue != (queue *) NULL) { + spinabc = startabc; + do { + // Adjust spinabc be edge av. + if (sorg(spinabc) != pa) { + sesymself(spinabc); + } + senext2(spinabc, oldbc); // Re-use oldbc. + enqueueflipedge(oldbc, flipqueue); + // Get new subface vbc above the updated subface avc (= spinabc). + senext(spinabc, oldbc); + spivot(oldbc, vbc); + if (sorg(vbc) == newpoint) { + sesymself(vbc); + } + senextself(vbc); + senext(vbc, oldbc); // Re-use oldbc. + enqueueflipedge(oldbc, flipqueue); + // Go to the next. + spivotself(spinabc); + if (spinabc.sh == dummysh) { + break; // 'ab' is a hull edge. + } + } while (spinabc.sh != startabc.sh); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// unsplitsubedge() Reverse the operation of splitting an edge of subface,// +// so as to remove a point from the edge. // +// // +// Assume the original edge is ab, the subface containing it is abc. It was // +// split by a point v into avc, and vbc. 'splitsh' represents avc, further- // +// more, if av is a subsegment, av should be the zero version of the split // +// subsegment (i.e., av.shver = 0), so we are sure that the destination (v) // +// of both avc and av is the deleting point. // +// // +// To remove point v is to expand avc to abc, delete vbc, do the same for // +// other subfaces containing av and vb. If av and vb are subsegments, expand // +// av to ab, delete vb. On completion, point v is not deleted. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::unsplitsubedge(face* splitsh) +{ + face startavc, spinavc, spinbcv; + face oldvc, bccasin, bccasout, spinsh; + face av, vb, bc; + point pa, pv, pb; + + startavc = *splitsh; + sspivot(startavc, av); + if (av.sh != dummysh) { + // Orient the direction of subsegment to conform the subface. + if (sorg(av) != sorg(startavc)) { + sesymself(av); + } + assert(av.shver == 0); + } + senext(startavc, oldvc); + spivot(oldvc, vb); // vb is subface vbc + if (sorg(vb) != sdest(oldvc)) { + sesymself(vb); + } + senextself(vb); + pa = sorg(startavc); + pv = sdest(startavc); + pb = sdest(vb); + + if (b->verbose > 1) { + printf(" Removing point %d from subedge (%d, %d).\n", + pointmark(pv), pointmark(pa), pointmark(pb)); + } + + // Spin arround av, unsplit every subface containing av. + spinavc = startavc; + do { + // Adjust spinavc be edge av. + if (sorg(spinavc) != pa) { + sesymself(spinavc); + } + // Save old configuration at edge bc, if bc has a subsegment, save the + // face link of it. + senext(spinavc, oldvc); + spivot(oldvc, spinbcv); + if (sorg(spinbcv) != sdest(oldvc)) { + sesymself(spinbcv); + } + senext2self(spinbcv); + spivot(spinbcv, bccasout); + sspivot(spinbcv, bc); + if (bc.sh != dummysh) { + if (spinbcv.sh != bccasout.sh) { + // 'spinbcv' is not self-bonded. + spinsh = bccasout; + do { + bccasin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != spinbcv.sh); + } else { + bccasout.sh = dummysh; + } + } + // Expand avc to abc. + setsdest(spinavc, pb); + if (bc.sh != dummysh) { + if (bccasout.sh != dummysh) { + sbond1(bccasin, oldvc); + sbond1(oldvc, bccasout); + } else { + // Bond 'oldbc' to itself. + sbond(oldvc, oldvc); + } + ssbond(oldvc, bc); + } else { + sbond(oldvc, bccasout); + } + // Delete bcv. + shellfacedealloc(subfaces, spinbcv.sh); + // Go to next subface at edge av. + spivotself(spinavc); + if (spinavc.sh == dummysh) { + break; // 'av' is a hull edge. + } + } while (spinavc.sh != startavc.sh); + + // Is there a subsegment need to be unsplit? + if (av.sh != dummysh) { + senext(av, oldvc); // Re-use oldvc. + spivot(oldvc, vb); + vb.shver = 0; + assert(sdest(av) == sorg(vb)); + senext(vb, spinbcv); // Re-use spinbcv. + spivot(spinbcv, bccasout); + // Expand av to ab. + setsdest(av, pb); + sbond(oldvc, bccasout); + // Delete vb. + shellfacedealloc(subsegs, vb.sh); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// insertsite() Insert a point into the mesh. // +// // +// The 'newpoint' is located. If 'searchtet->tet' is not NULL, the search // +// for the containing tetrahedron begins from 'searchtet', otherwise, a full // +// point location procedure is called. If 'newpoint' is found inside a // +// tetrahedron, the tetrahedron is split into four (by splittetrahedron()); // +// if 'newpoint' lies on a face, the face is split into three, thereby // +// splitting the two adjacent tetrahedra into six (by splittetface()); if // +// 'newpoint' lies on an edge, the edge is split into two, thereby, every // +// tetrahedron containing this edge is split into two. If 'newpoint' lies on // +// an existing vertex, no action is taken, and the value DUPLICATEPOINT is // +// returned and 'searchtet' is set to a handle whose origin is the vertex. // +// // +// If 'flipqueue' is not NULL, after 'newpoint' is inserted, it returns all // +// faces which may become non-Delaunay due to the newly inserted point. Flip // +// operations can be performed as necessary on them to maintain the Delaunay // +// property. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::insertsiteresult tetgenmesh:: +insertsite(point newpoint, triface* searchtet, bool approx, queue* flipqueue) +{ + enum locateresult intersect, exactloc; + point checkpt; + REAL epspp, checklen; + int count; + + if (b->verbose > 1) { + printf(" Insert point to mesh: (%.12g, %.12g, %.12g) %d.\n", + newpoint[0], newpoint[1], newpoint[2], pointmark(newpoint)); + } + + if (searchtet->tet == (tetrahedron *) NULL) { + // Search for a tetrahedron containing 'newpoint'. + searchtet->tet = dummytet; + exactloc = locate(newpoint, searchtet); + } else { + // Start searching from the tetrahedron provided by the caller. + exactloc = preciselocate(newpoint, searchtet); + } + intersect = exactloc; + if (approx && (exactloc != ONVERTEX)) { + // Adjust the exact location to an approx. location wrt. epsilon. + epspp = b->epsilon; + count = 0; + while (count < 16) { + intersect = adjustlocate(newpoint, searchtet, exactloc, epspp); + if (intersect == ONVERTEX) { + checkpt = org(*searchtet); + checklen = distance(checkpt, newpoint); + if (checklen / longest > b->epsilon) { + epspp *= 1e-2; + count++; + continue; + } + } + break; + } + } + // Keep current search state for next searching. + recenttet = *searchtet; + + // Insert the point using the right routine + switch (intersect) { + case ONVERTEX: + // There's already a vertex there. Return in 'searchtet' a tetrahedron + // whose origin is the existing vertex. + if (b->verbose > 1) { + printf(" Not insert for duplicating point.\n"); + } + return DUPLICATEPOINT; + + case OUTSIDE: + if (b->verbose > 1) { + printf(" Not insert for locating outside the mesh.\n"); + } + return OUTSIDEPOINT; + + case ONEDGE: + // 'newpoint' falls on an edge. + splittetedge(newpoint, searchtet, flipqueue); + return SUCCESSONEDGE; + + case ONFACE: + // 'newpoint' falls on a face. + splittetface(newpoint, searchtet, flipqueue); + return SUCCESSONFACE; + + case INTETRAHEDRON: + // 'newpoint' falls inside a tetrahedron. + splittetrahedron(newpoint, searchtet, flipqueue); + return SUCCESSINTET; + } + + // Impossible case. + assert(0); + return OUTSIDEPOINT; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// undosite() Undo the most recently point insertion. // +// // +// 'insresult' indicates in where the newpoint has been inserted, i.e., in a // +// tetrahedron, on a face, or on an edge. A correspoding routine will be // +// called to undo the point insertion. 'splittet' is a handle represent one // +// of the resulting tetrahedra, but it may be changed after transformation, // +// even may be dead. Four points 'torg', ... 'toppo' are the corners which // +// 'splittet' should have. On finish, 'newpoint' is not removed. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +undosite(enum insertsiteresult insresult, triface* splittet, point torg, + point tdest, point tapex, point toppo) +{ + // Set the four corners of 'splittet' exactly be 'torg', ... 'toppo'. + findface(splittet, torg, tdest, tapex); + if (oppo(*splittet) != toppo) { + symself(*splittet); + assert(oppo(*splittet) == toppo); + // The sym() operation may inverse the edge, correct it if so. + findedge(splittet, torg, tdest); + } + + // Unsplit the tetrahedron according to 'insresult'. + switch (insresult) { + case SUCCESSINTET: + // 'splittet' should be the face with 'newpoint' as its opposite. + unsplittetrahedron(splittet); + break; + case SUCCESSONFACE: + // 'splittet' should be the one of three splitted face with 'newpoint' + // as its apex. + unsplittetface(splittet); + break; + case SUCCESSONEDGE: + // 'splittet' should be the tet with destination is 'newpoint'. + unsplittetedge(splittet); + break; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// inserthullsite() Insert a point which is outside the convex hull. // +// // +// The inserting point 'inspoint' lies outside the tetrahedralization.'horiz'// +// is one of the convex hull faces which are visible from it. (You can image // +// that is is parallel to the horizon). To insert a point outside the convex // +// hull we have to enlarge current convex hull of the tetrahedralization for // +// including this point. This routine collects convex hull faces which are // +// visible from the inserting point, constructs new tetrahedra from these // +// faces and the inserting point. On return, 'inspoint' has become a vertex // +// of the augmented tetrahedralization. The convex hull has been updated. // +// 'flipcheckqueue' returns the old convex hull faces which may become non- // +// Delaunay and need be flipped. // +// // +// The caller can optionally provide two variables. 'hulllink' is a link for // +// saving newly created hull faces (containing 'inspoint') which may not // +// convex. Non-convex hull faces will be detected and finished by mounting // +// new tetrahedra with other hull vertex near them. 'worklist' is an array, // +// used for face matching. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +inserthullsite(point inspoint, triface* horiz, queue* flipqueue, + link* hulllink, int* worklist) +{ + link *myhulllink; + triface newtet, hullface; + triface oldhull, newhull; + point workpt[3]; + bool finished; + int *myworklist; + int idx, share; + int i, j, k; + + if (b->verbose > 1) { + printf(" Collect visible convex hull faces.\n"); + } + + // Check if the 'hulllink' is provided by the caller. + if (hulllink != (link *) NULL) { + myhulllink = (link *) NULL; + } else { + myhulllink = new link(sizeof(triface), NULL, 256); + hulllink = myhulllink; + } + + // Check if the 'worklist' is provided by the caller. + if (worklist != (int *) NULL) { + myworklist = (int *) NULL; + } else { + myworklist = new int[in->numberofpoints]; + for (i = 0; i < in->numberofpoints; i++) { + myworklist[i] = 0; + } + worklist = myworklist; + } + + adjustedgering(*horiz, CW); + // Create a new tetrahedron from 'horiz' and 'inspoint'. + maketetrahedron(&newtet); + setorg (newtet, org(*horiz)); + setdest(newtet, dest(*horiz)); + setapex(newtet, apex(*horiz)); + setoppo(newtet, inspoint); + // Make the connection of two tets. + bond(newtet, *horiz); + // 'horiz' becomes interior face. + enqueueflipface(*horiz, flipqueue); + // Add the three sides of 'newtet' to 'hulllink'. + fnext(newtet, hullface); + hulllink->add(&hullface); + enextfnext(newtet, hullface); + hulllink->add(&hullface); + enext2fnext(newtet, hullface); + hulllink->add(&hullface); + if (b->verbose > 3) { + printf(" Creating newtet "); + printtet(&newtet); + } + // Hull face number decreased caused by face bond() operation. + hullsize--; + + // Loop untill 'hulllink' is empty. Find other visible convex hull faces, + // create tetrahedra from them and 'inspoint'. Update 'hulllink'. + while (hulllink->len() > 0) { + // Remove the top hull face from the link, its apex is 'inspoint'. + hullface = * (triface *) hulllink->del(1); + // Get the neighbor convex hull face at the edge of 'hullface'. This is + // done by rotating faces around the edge from the inside until reach + // outer space (The rotation of faces should always terminate). + esym(hullface, oldhull); + while (fnextself(oldhull)) ; + // Is 'inspoint' visible from 'oldhull'? + if (orient3d(org(oldhull), dest(oldhull), apex(oldhull), inspoint) < 0.0) { + // 'oldhull' is visible from 'inspoint'. Create a new tetrahedron + // from them. + maketetrahedron(&newtet); + setorg(newtet, org(oldhull)); + setdest(newtet, dest(oldhull)); + setapex(newtet, apex(oldhull)); + setoppo(newtet, inspoint); + // Bond 'newtet' to 'oldhull'. + bond(newtet, oldhull); + // Hull face number decrease caused by bond(). + hullsize--; + // Bond 'newtet' to 'hullface'. + fnext(newtet, newhull); + bond(newhull, hullface); + // 'oldhull' becomes interior face. + enqueueflipface(oldhull, flipqueue); + // Check other two sides of 'newtet'. If one exists in 'hulllink'. + // remove the one in 'hulllink' (it is finished), otherwise, it + // becomes a new hull face, add it into 'hulllink'. + for (i = 0; i < 2; i++) { + // Get 'newhull' and set flags for its vertices. + if (i == 0) { + enextfnext(newtet, newhull); + } else { + enext2fnext(newtet, newhull); + } + workpt[0] = org(newhull); + workpt[1] = dest(newhull); + workpt[2] = apex(newhull); + for (k = 0; k < 3; k++) { + idx = pointmark(workpt[k]) - in->firstnumber; + worklist[idx] = 1; + } + // Search 'newhull' in 'hulllink'. + finished = false; + for (j = 0; j < hulllink->len() && !finished; j++) { + hullface = * (triface *) hulllink->getnitem(j + 1); + workpt[0] = org(hullface); + workpt[1] = dest(hullface); + workpt[2] = apex(hullface); + share = 0; + for (k = 0; k < 3; k++) { + idx = pointmark(workpt[k]) - in->firstnumber; + if (worklist[idx] == 1) { + share++; + } + } + if (share == 3) { + // Two faces are identical. Bond them togther. + bond(newhull, hullface); + // Remove 'hullface' from the link. + hulllink->del(j + 1); + finished = true; + } + } + if (!finished) { + // 'newhull' becomes a hull face, add it into 'hulllink'. + hulllink->add(&newhull); + } + // Clear used flags. + workpt[0] = org(newhull); + workpt[1] = dest(newhull); + workpt[2] = apex(newhull); + for (k = 0; k < 3; k++) { + idx = pointmark(workpt[k]) - in->firstnumber; + worklist[idx] = 0; + } + } + } else { + // 'hullface' becomes a convex hull face. + hullsize++; + // Let 'dummytet[0]' points to it for next point location. + dummytet[0] = encode(hullface); + } + } + + if (myhulllink != (link *) NULL) { + delete myhulllink; + } + if (myworklist != (int *) NULL) { + delete [] myworklist; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// collectcavtets() Collect all tetrahedra whose circumsphere conatining // +// the given point. // +// // +// This routine first locates the newpoint. Note the mesh may not be convex, // +// the locate() function may not find it. However, if we start from a very // +// close neighborhood, the function preciselocate() can be used. Here we // +// assume "recenttet" suggests such a starting point. 'cavtetlist' is a list // +// returns the tetrahedra. It is empty on input. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::collectcavtets(point newpoint, list* cavtetlist) +{ + triface starttet, neightet; + enum locateresult loc; + REAL sign; + int i, j; + + // First locate the newpoint. 'recenttet' suggests the starting point. + starttet = recenttet; + loc = preciselocate(newpoint, &starttet); + if (loc == OUTSIDE) { + // Principlly, the newpoint should lie inside or on the hull. But it + // may happen practically when the newpoint is just slightly lies + // outside the hull due to the rounding error. + loc = ONFACE; // This line is no meaning. + } + + // Now starttet contains newpoint. + infect(starttet); + cavtetlist->append(&starttet); + // Check the adjacent tet. + sym(starttet, neightet); + if (neightet.tet != dummytet) { + // For positive orientation that insphere() test requires. + adjustedgering(neightet, CW); + sign = insphere(org(neightet), dest(neightet), apex(neightet), + oppo(neightet), newpoint); + if (sign >= 0.0) { + // Add neightet into list. + infect(neightet); + cavtetlist->append(&neightet); + } + } + + // Find the other tetrahedra by looping in list. + for (i = 0; i < cavtetlist->len(); i++) { + starttet = * (triface *)(* cavtetlist)[i]; + // Check the other three neighbors of starttet. + adjustedgering(starttet, CCW); + for (j = 0; j < 3; j++) { + fnext(starttet, neightet); + symself(neightet); + if ((neightet.tet != dummytet) && !infected(neightet)) { + // For positive orientation that insphere() test requires. + adjustedgering(neightet, CW); + sign = insphere(org(neightet), dest(neightet), apex(neightet), + oppo(neightet), newpoint); + if (sign >= 0.0) { + // Add neightet into list. + infect(neightet); + cavtetlist->append(&neightet); + } + } + enextself(starttet); + } + } + + // Having find all tetrahedra, uninfect them before return. + for (i = 0; i < cavtetlist->len(); i++) { + starttet = * (triface *)(* cavtetlist)[i]; + assert(infected(starttet)); + uninfect(starttet); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// removetetbypeeloff() Remove a boundary tetrahedron by peeling off it // +// from the mesh. // +// // +// 'badtet' (abcd) is a boundary tetrahedron and going to be peeled off. abc // +// and bad are the outer boundary faces. To remove 'abcd' from the mesh is // +// simply detach its two inner faces (dca and cdb) from the adjoining tets. // +// A 2-to-2 flip is applied to transform subfaces abc and bad to dca and cdb.// +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::removetetbypeeloff(triface *badtet, queue* flipqueue) +{ + triface abcd, badc; + triface dcacasing, cdbcasing; + face abc, bad; + + if (b->verbose > 1) { + printf(" by peeling off it from boundary.\n"); + } + + abcd = *badtet; + adjustedgering(abcd, CCW); + // Get subfaces abc, bad. + fnext(abcd, badc); + esymself(badc); + tspivot(abcd, abc); + tspivot(badc, bad); + assert(abc.sh != dummysh && bad.sh != dummysh); + findedge(&abc, org(abcd), dest(abcd)); + findedge(&bad, org(badc), dest(badc)); + // Get the casing tets at the two inner sides of 'badtet'. + enextfnext(abcd, cdbcasing); + enext2fnext(abcd, dcacasing); + symself(cdbcasing); + symself(dcacasing); + assert(cdbcasing.tet != dummytet && dcacasing.tet != dummytet); + + // Do a 2-to-2 flip on abc and bad, transform abc->dca, bad->cdb. + flip22sub(&abc, NULL); + // Detach abcd from its inner sides. + dissolve(cdbcasing); + dissolve(dcacasing); + // Make its inner sides be boundary. + tsbond(cdbcasing, bad); + tsbond(dcacasing, abc); + // Delete abcd. + tetrahedrondealloc(abcd.tet); + + if (flipqueue != (queue *) NULL) { + // Edge cd maybe non-Delaunay. + adjustedgering(cdbcasing, CCW); + fnextself(cdbcasing); + enqueueflipface(cdbcasing, flipqueue); + adjustedgering(dcacasing, CCW); + fnextself(dcacasing); + enqueueflipface(dcacasing, flipqueue); + // Do flipping. + flip(flipqueue, NULL); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// removetetbyflip32() Remove a tetrahedron by doing a 3-to-2 flip. // +// // +// 'badtet' (abcd) is the bad tetrahedron which is going to be removed by a // +// 3-to-2 flip. abc represents one of the internal faces, bad is another. // +// If abc and bad are subfaces, a 2-to-2 flip is performed to transform abc, // +// bad into dca, cdb, before the 3-to-2 flip is applying. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::removetetbyflip32(triface *badtet, queue* flipqueue) +{ + triface abcd, badc; + triface cdab, dcba; + triface baccasing, abdcasing; + triface dcacasing, cdbcasing; + face abc, bad; + + if (b->verbose > 1) { + printf(" by doing a 3-to-2 flip.\n"); + } + + abcd = *badtet; + adjustedgering(abcd, CCW); + fnext(abcd, badc); + esymself(badc); + sym(abcd, baccasing); + sym(badc, abdcasing); + assert(baccasing.tet != dummytet && abdcasing.tet != dummytet); + assert(oppo(baccasing) == oppo(abdcasing)); + + // Get subfaces abc, bad. + tspivot(abcd, abc); + tspivot(badc, bad); + if (abc.sh != dummysh) { + // Because ab should not be a subsegment. + assert(bad.sh != dummysh); + findedge(&abc, org(abcd), dest(abcd)); + findedge(&bad, org(badc), dest(badc)); + // Detach abc, bad from tetrahedra at both sides. + stdissolve(abc); + stdissolve(bad); + sesymself(abc); + sesymself(bad); + stdissolve(abc); + stdissolve(bad); + sesymself(abc); + sesymself(bad); + // Detach tetrahedra witch hold abc and bad. + tsdissolve(abcd); + tsdissolve(badc); + tsdissolve(baccasing); + tsdissolve(abdcasing); + // Perform a 2-to-2 flip on abc, bad, transform abc->dca, bad->cdb. + flip22sub(&abc, NULL); + // Insert the flipped subfaces abc and bad into tetrahedra. + enextfnext(abcd, dcba); // dcba = bcda + esymself(dcba); // dcba = cbda + enext2fnext(abcd, cdab); // cdab = cadb + esymself(cdab); // cdab = acdb + findedge(&abc, org(cdab), dest(cdab)); + tsbond(cdab, abc); + findedge(&bad, org(dcba), dest(dcba)); + tsbond(dcba, bad); + // Bond the other sides of cdab, dcba, they may outer space. + sym(cdab, dcacasing); + sym(dcba, cdbcasing); + sesymself(abc); + sesymself(bad); + tsbond(dcacasing, abc); + tsbond(cdbcasing, bad); + } + // Do a 3-to-2 flip on face abc to remove tetrahedron abcd. + flip32(&abcd, flipqueue); + // Do flipping if necessary. + if (flipqueue != (queue *) NULL) { + flip(flipqueue, NULL); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// removetetbycflips() Remove a tetrahedron by a combination of flips. // +// // +// 'badtet' (abcd) is the tetrahedron which is going to be removed. It can't // +// be removed simply by a 3-to-2 flip. // +// // +// A flipstack is used for remembering flips have done, in case falure, we // +// can restore the original state. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::removetetbycflips(triface *badtet, queue* flipqueue) +{ + triface abcd; + triface bacd, baec; + triface abdc, abfd; + flipstacker *lastflip, *newflip; + enum fliptype fc; + int flipcount; + + abcd = *badtet; + adjustedgering(abcd, CCW); + esym(abcd, bacd); + if (issymexist(&bacd)) { + fnext(bacd, baec); + assert(baec.tet != dummytet); + } else { + // This side is empty. But the tet can not be peeled off. + return false; + } + fnext(abcd, abdc); + if (issymexist(&abdc)) { + fnext(abdc, abfd); + assert(abfd.tet != dummytet); + } else { + // This side is empty. But the tet can not be peeled off. + return false; + } + assert(apex(baec) != apex(abfd)); + + if (b->verbose > 1) { + printf(" by doing a combination of flips.\n"); + } + + // Initialize the stack of the flip sequence. + flipstackers->restart(); + lastflip = (flipstacker *) NULL; + + // Flip faces above abc. + flipcount = 0; + do { + assert(baec.tet != dummytet); + fc = categorizeface(baec); + if (fc == T23) { + flip23(&baec, NULL); + } else if (fc == T22 || fc == T44) { + flip22(&baec, NULL); + } + if (fc == T23 || fc == T22 || fc == T44) { + // Push the flipped face into stack. + newflip = (flipstacker *) flipstackers->alloc(); + newflip->flippedface = baec; + newflip->fc = fc; + newflip->forg = org(baec); + newflip->fdest = dest(baec); + newflip->fapex = apex(baec); + newflip->prevflip = lastflip; + lastflip = newflip; + // Check the flipped side. + fnext(bacd, baec); + if (apex(baec) == apex(abfd)) { + // We have made 'abcd' flipable. + removetetbyflip32(&abcd, flipqueue); + return true; + } + flipcount++; + } else { + // Face is unflipable, break the loop. + break; + } + } while (flipcount < 16); + + // Flip faces above bad. + fnext(bacd, baec); + assert(apex(abfd) != apex(baec)); + flipcount = 0; + do { + assert(abfd.tet != dummytet); + fc = categorizeface(abfd); + if (fc == T23) { + flip23(&abfd, NULL); + } else if (fc == T22 || fc == T44) { + flip22(&abfd, NULL); + } + if (fc == T23 || fc == T22 || fc == T44) { + // Push the flipped face into stack. + newflip = (flipstacker *) flipstackers->alloc(); + newflip->flippedface = abfd; + newflip->fc = fc; + newflip->forg = org(abfd); + newflip->fdest = dest(abfd); + newflip->fapex = apex(abfd); + newflip->prevflip = lastflip; + lastflip = newflip; + // Check the flipped side. + fnext(abdc, abfd); + if (apex(abfd) == apex(baec)) { + // We have made 'abcd' flipable. + removetetbyflip32(&abcd, flipqueue); + return true; + } + flipcount++; + } else { + // Face is unflipable, break the loop. + break; + } + } while (flipcount < 16); + + // Unable to use a combination of flips. + if (b->verbose > 1) { + printf(" Not success.\n"); + } + // Restore the flips we've done. + undoflip(lastflip); + return false; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// removebadtet() Remove a bad tetrahedron from the mesh. // +// // +// 'bt' indicates the type of the 'badtet', assume it is abcd. If it is a // +// SLIVER, ab and cd are the two diagonal edges; if it is a CAP, abc is the // +// bottom face (the projection of d is inside abc); if it is ILLEGAL, abc, // +// bad are the two boundary subfaces (which are on the same facet). // +// // +// This routine first classifies the type of operation can be used to remove // +// 'badtet', e.g. simpley do a 3-to-2 flip, or combine several flips. Then // +// do the corresponding flip operation. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +removebadtet(enum badtettype bt, triface *badtet, queue* flipqueue) +{ + triface abcd, badc, cdab, dcba; + triface bcdcasing, cadcasing; + triface baccasing, abdcasing; + face ab, cd; + point pa, pb, pc, pd; + + abcd = *badtet; + adjustedgering(abcd, CCW); + pa = org(abcd); + pb = dest(abcd); + pc = apex(abcd); + pd = oppo(abcd); + + if (b->verbose > 1) { + printf(" Remove tetrahedron (%d, %d, %d, %d).\n", pointmark(pa), + pointmark(pb), pointmark(pc), pointmark(pd)); + } + + // Get the casing tets at the four sides of 'badtet'. + fnext(abcd, badc); + esymself(badc); + sym(abcd, baccasing); + sym(badc, abdcasing); + tsspivot(&abcd, &ab); + enextfnext(abcd, dcba); // dcba = bcda + esymself(dcba); // dcba = cbda + enext2self(dcba); + enext2fnext(abcd, cdab); // cdab = cadb + esymself(cdab); // cdab = acdb + enextself(cdab); + sym(dcba, bcdcasing); + sym(cdab, cadcasing); + tsspivot(&dcba, &cd); + + if (ab.sh != dummysh && cd.sh != dummysh) { + printf("Warning: Two subsegments (%d, %d), (%d, %d) cross in one tet.\n", + pointmark(pa), pointmark(pb), pointmark(pc), pointmark(pd)); + return false; + } + + if (bt == ILLEGAL || bt == SLIVER) { + if (cd.sh == dummysh) { + // Test if edge 'cd' is removeable. + if (bcdcasing.tet == dummytet && cadcasing.tet == dummytet) { + removetetbypeeloff(&cdab, flipqueue); + return true; + } + if (oppo(bcdcasing) == oppo(cadcasing)) { + removetetbyflip32(&cdab, flipqueue); + return true; + } + } + if (ab.sh == dummysh) { + // Test if edge 'ab' is removeable. + if (baccasing.tet == dummytet && abdcasing.tet == dummytet) { + removetetbypeeloff(&abcd, flipqueue); + return true; + } + if (oppo(baccasing) == oppo(abdcasing)) { + removetetbyflip32(&abcd, flipqueue); + return true; + } + } + // 'badtet' can not be easily removed, try to remove it by a combination + // of flips. + if (cd.sh == dummysh) { + if (removetetbycflips(&cdab, flipqueue)) { + return true; + } + } + if (ab.sh == dummysh) { + if (removetetbycflips(&abcd, flipqueue)) { + return true; + } + } + if (b->verbose) { + printf("Warning: Unable to remove bad tet (%d, %d, %d, %d).\n", + pointmark(pa), pointmark(pb), pointmark(pc), pointmark(pd)); + } + return false; + } + + return false; +} + +// +// End of mesh transformation routines +// + +// +// Begin of incremental flip Delaunay triangulation routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// incrflipinit() Create an initial tetrahedralization. // +// // +// The initial tetrahedralization only contains one tetrahedron formed from // +// four affinely linear independent vertices from the input point set. // +// // +// 'insertqueue' returns the rest of vertices of the input point set. These // +// vertices will be inserted one by one in the later step. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::incrflipinit(queue* insertqueue) +{ + triface newtet; + point *plist, pointloop; + point pa, pb, pc, pd; + REAL det; + int count; + int i, j; + + if (b->verbose > 1) { + printf(" Constructing an initial tetrahedron.\n"); + } + + // Create a point list and initialize it. + plist = new point[in->numberofpoints]; + i = 0; + points->traversalinit(); + pointloop = pointtraverse(); + while (pointloop != (point) NULL) { + plist[i++] = pointloop; + pointloop = pointtraverse(); + } + assert(i == in->numberofpoints); + + if (b->dopermute) { + // Do permutation. Initialize the random seed. + randomseed = b->srandseed; + for (i = 0; i < in->numberofpoints; i++) { + // Get a index j (from 0 to in->numberofpoints - i - 1). + j = (int) randomnation(in->numberofpoints - i); + // Exchange the i-th point and (j + i)-th point. + pointloop = plist[j + i]; + plist[j + i] = plist[i]; + plist[i] = pointloop; + } + } + + // Set the plist into insertqueue. + if (!insertqueue->empty()) { + insertqueue->clear(); + } + for (i = 0; i < in->numberofpoints; i++) { + pointloop = plist[i]; + insertqueue->push(&pointloop); + } + delete [] plist; + + // Get the first two point 'pa'. + pa = * (point *) insertqueue->pop(); + + // Get the second point 'pb', which is not identical with 'pa'. + count = 0; + pb = * (point *) insertqueue->pop(); + while ((pb != (point) NULL) && (count < in->numberofpoints)) { + if ((pb[0] == pa[0]) && (pb[1] == pa[1]) && (pb[2] == pa[2])) { + // 'pb' is identical to 'pa', skip it. + insertqueue->push(&pb); + } else { + break; + } + pb = * (point *) insertqueue->pop(); + count++; + } + if (pb == (point) NULL) { + printf("\nAll points are identical, no triangulation be constructed.\n"); + exit(1); + } + + // Get the third point 'pc', which is not collinear with 'pa' and 'pb'. + count = 0; + pc = * (point *) insertqueue->pop(); + while ((pc != (point) NULL) && (count < in->numberofpoints)) { + if (iscollinear(pa, pb, pc, (b->epsilon * 1e-2))) { + // They are collinear or identical, put it back to queue. + insertqueue->push(&pc); + } else { + break; + } + pc = * (point *) insertqueue->pop(); + count++; + } + if (pc == (point) NULL) { + printf("\nAll points are collinear, no triangulation be constructed.\n"); + exit(1); + } + + // Get the fourth point which is not coplanar with pa, pb, and pc. + count = 0; + pd = * (point *) insertqueue->pop(); + while ((pd != (point) NULL) && (count < in->numberofpoints)) { + det = orient3d(pa, pb, pc, pd); + if (det == 0.0) { + // They are coplanar or identical, put it back to queue. + insertqueue->push(&pd); + } else { + break; + } + pd = * (point *) insertqueue->pop(); + count++; + } + if (pd == (point) NULL) { + printf("\nAll points are coplanar, no triangulation be constructed.\n"); + exit(1); + } + if (det > 0.0) { + pointloop = pa; pa = pb; pb = pointloop; + } + + // Create the tetrahedron with corners pa, pb, pc and pd. + maketetrahedron(&newtet); + setorg(newtet, pa); + setdest(newtet, pb); + setapex(newtet, pc); + setoppo(newtet, pd); + // Set the vertices be FREEVOLVERTEX to indicate they belong to the mesh. + setpointtype(pa, FREEVOLVERTEX); + setpointtype(pb, FREEVOLVERTEX); + setpointtype(pc, FREEVOLVERTEX); + setpointtype(pd, FREEVOLVERTEX); + // Bond to 'dummytet' for point location. + dummytet[0] = encode(newtet); + if (b->verbose > 3) { + printf(" Creating tetra "); + printtet(&newtet); + } + // At init, all faces of this tet are hull faces. + hullsize = 4; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// incrflipdelaunay() Construct a delaunay tetrahedrization from a set of // +// 3D points using the incremental flip algorithm. // +// // +// The incremental flip algorithm is described in the paper of Edelsbrunner // +// and Shah, "Incremental Topological Flipping Works for Regular Triangulat- // +// ions", Algorithmica 15: 223-241, 1996. It can be described as follows: // +// // +// S be a set of points in 3D, Let 4 <= i <= n and assume that the // +// Delaunay triangulation of the first i-1 points in S is already // +// constructed; call it D(i-1). Add the i-th point p_i (belong to S) to // +// the triangulation,and restore Delaunayhood by flipping; this result // +// in D(i). Repeat this procedure until i = n. // +// // +// This strategy always leads to the Ddelaunay triangulation of a point set. // +// The return value is the number of convex hull faces of this point set. // +// // +/////////////////////////////////////////////////////////////////////////////// + +long tetgenmesh::incrflipdelaunay() +{ + triface starttet; + point pointloop; + queue *flipqueue; + queue *insertqueue; + link *hulllink; + enum insertsiteresult insres; + int *worklist, i; + + if (!b->quiet) { + if (!b->noflip) { + printf("Constructing Delaunay tetrahedrization.\n"); + } else { + printf("Constructing tetrahedrization.\n"); + } + } + + // Initialize 'flipqueue'. + flipqueue = new queue(sizeof(badface)); + // Create a queue for all inserting points. + insertqueue = new queue(sizeof(point*), in->numberofpoints); + // Create a 'hulllink' used in inserthullsite(). + hulllink = new link(sizeof(triface), NULL, 256); + // Create and initialize 'worklist' used in inserthullsite(). + worklist = new int[in->numberofpoints]; + for (i = 0; i < in->numberofpoints; i++) worklist[i] = 0; + // Initialize global counters. + flip23s = flip32s = flip22s = flip44s = 0; + + // Algorithm starts from here. + + // Construct an initial tetrahedralization and fill 'insertqueue'. + incrflipinit(insertqueue); + + // Loop untill all points are inserted. + while (!insertqueue->empty()) { + pointloop = * (point *) insertqueue->pop(); + // It will become a mesh point unless it duplicates an existing point. + setpointtype(pointloop, FREEVOLVERTEX); + // Try to insert the point first. + starttet.tet = (tetrahedron *) NULL; + insres = insertsite(pointloop, &starttet, false, flipqueue); + if (insres == OUTSIDEPOINT) { + // Point locates outside the convex hull. + inserthullsite(pointloop, &starttet, flipqueue, hulllink, worklist); + } else if (insres == DUPLICATEPOINT) { + if (b->object != tetgenbehavior::STL) { + if (!b->quiet) { + printf("Warning: Point %d is identical with point %d.\n", + pointmark(pointloop), pointmark(org(starttet))); + } + // Count the number of duplicated points. + dupverts++; + } + // Remember it is a duplicated point. + setpointtype(pointloop, DUPLICATEDVERTEX); + if (b->plc || b->refine) { + // Set a pointer to the point it duplicates. + setpoint2pt(pointloop, org(starttet)); + } + } + if (!b->noflip) { + // Call flip algorithm to recover Delaunayness. + flip(flipqueue, NULL); + } else { + // Not perform flip. + flipqueue->clear(); + } + } + + delete flipqueue; + delete insertqueue; + delete hulllink; + delete [] worklist; + + if (!b->noflip && b->verbose) { + printf(" Total flips: %ld, where T23 %ld, T32 %ld, T22 %ld, T44 %ld\n", + flip23s + flip32s + flip22s + flip44s, + flip23s, flip32s, flip22s, flip44s); + } + + return hullsize; +} + +// +// End of incremental flip Delaunay triangulation routines +// + +// +// Begin of surface triangulation routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// The lift points // +// // +// A 'lifting point' of a facet is a point which lies exactly non-coplanar // +// with the plane containing that facet. With such an additional point, the // +// three-dimensional geometric predicates (orient3d, insphere) can be used // +// to substitute the lower dimensional predicates (orient2d, incircle). The // +// advantage is there is no need to project 3D points back into 2D, so the // +// rounding error can be avoid. // +// // +// These points are calculated during the initialization of triangulating // +// the facets. It is important to orient subfaces of the same facet to have // +// the same orientation with respect to its lift point. This way guarantees // +// the test results are consistent. We take the convention that the lift // +// point of a facet always lies above the CCW edge rings of subfaces of the // +// same facet. By this convention, given three points a, b, and c in a facet,// +// we say c has the counterclockwise order with ab is corresponding to say // +// that c is below the plane abp, where p is the lift point. // +// // +/////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////// +// // +// locatesub() Find a point in the surface mesh. // +// // +// Searching begins from the input 'searchsh', it should be a handle on the // +// convex hull of the facet triangulation. // +// // +// On completion, 'searchsh' is a subface that contains 'searchpoint'. // +// - Returns ONVERTEX if the point lies on an existing vertex. 'searchsh' // +// is a handle whose origin is the existing vertex. // +// - Returns ONEDGE if the point lies on a mesh edge. 'searchsh' is a // +// handle whose primary edge is the edge on which the point lies. // +// - Returns ONFACE if the point lies strictly within a subface. // +// 'searchsh' is a handle on which the point lies. // +// - Returns OUTSIDE if the point lies outside the triangulation. // +// // +// WARNING: This routine is designed for convex triangulations, and will not // +// not generally work after the holes and concavities have been carved. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::locateresult tetgenmesh:: +locatesub(point searchpt, face* searchsh, point abovept) +{ + face backtracksh, checkedge; + point forg, fdest, fapex, liftpoint; + REAL orgori, destori; + int moveleft, i; + + if (searchsh->sh == dummysh) { + searchsh->shver = 0; + spivotself(*searchsh); + assert(searchsh->sh != dummysh); + } + + // Set the liftpoint. (Note, the liftpoint is always above the face.) + if (abovept == (point) NULL) { + liftpoint = getliftpoint(shellmark(*searchsh)); + adjustedgering(*searchsh, CCW); + } else { + liftpoint = abovept; + forg = sorg(*searchsh); + fdest = sdest(*searchsh); + fapex = sapex(*searchsh); + orgori = orient3d(forg, fdest, fapex, liftpoint); + assert(orgori != 0.0); + if (orgori > 0.0) { + sesymself(*searchsh); + } + } + + // Orient 'searchsh' so that 'searchpt' is below it (i.e., searchpt has + // CCW orientation with respect to searchsh in plane). Such edge + // should always exist. Save it as (forg, fdest). + for (i = 0; i < 3; i++) { + forg = sorg(*searchsh); + fdest = sdest(*searchsh); + if (orient3d(forg, fdest, liftpoint, searchpt) > 0.0) break; + senextself(*searchsh); + } + assert(i < 3); + + while (1) { + fapex = sapex(*searchsh); + // Check whether the apex is the point we seek. + if (fapex[0] == searchpt[0] && fapex[1] == searchpt[1] && + fapex[2] == searchpt[2]) { + senext2self(*searchsh); + return ONVERTEX; + } + // Does the point lie on the other side of the line defined by the + // triangle edge opposite the triangle's destination? + destori = orient3d(forg, fapex, liftpoint, searchpt); + // Does the point lie on the other side of the line defined by the + // triangle edge opposite the triangle's origin? + orgori = orient3d(fapex, fdest, liftpoint, searchpt); + if (destori > 0.0) { + moveleft = 1; + } else { + if (orgori > 0.0) { + moveleft = 0; + } else { + // The point must be on the boundary of or inside this triangle. + if (destori == 0.0) { + senext2self(*searchsh); + return ONEDGE; + } + if (orgori == 0.0) { + senextself(*searchsh); + return ONEDGE; + } + return ONFACE; + } + } + // Move to another triangle. Leave a trace `backtracksh' in case + // walking off a boundary of the triangulation. + if (moveleft) { + senext2(*searchsh, backtracksh); + fdest = fapex; + } else { + senext(*searchsh, backtracksh); + forg = fapex; + } + spivot(backtracksh, *searchsh); + // Check for walking right out of the triangulation. + if (searchsh->sh == dummysh) { + // Go back to the last triangle. + *searchsh = backtracksh; + return OUTSIDE; + } + // To keep the same orientation wrt. liftpoint. + // adjustedgering(*searchsh, CCW); + if (sorg(*searchsh) != forg) { + sesymself(*searchsh); + } + assert((sorg(*searchsh) == forg) && (sdest(*searchsh) == fdest)); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// flipsub() Flip all non-Delaunay edges in a given queue of subfaces. // +// // +// Assumpation: Current triangulation is non-Delaunay after inserting a // +// point or performing a flip operation, all possibly non-Delaunay edges are // +// in 'facequeue'. The return value is the total number of flips done during // +// this invocation. // +// // +/////////////////////////////////////////////////////////////////////////////// + +long tetgenmesh::flipsub(queue* flipqueue) +{ + badface *qedge; + face flipedge, symedge, bdedge; + point pa, pb, pc, pd, liftpoint; + REAL sign; + int edgeflips; + + if (b->verbose > 1) { + printf(" Start do edge queue: %ld edges.\n", flipqueue->len()); + } + + edgeflips = 0; + + while ((qedge = (badface *) flipqueue->pop()) != NULL) { + flipedge = qedge->ss; + if (flipedge.sh == dummysh) continue; + if ((sorg(flipedge) != qedge->forg) || + (sdest(flipedge) != qedge->fdest)) continue; + sspivot(flipedge, bdedge); + if (bdedge.sh != dummysh) continue; // Can't flip a subsegment. + spivot(flipedge, symedge); + if (symedge.sh == dummysh) continue; // Can't flip a hull edge. + pa = sorg(flipedge); + pb = sdest(flipedge); + pc = sapex(flipedge); + pd = sapex(symedge); + liftpoint = getliftpoint(shellmark(flipedge)); + // Check whether pd lies inside the circumcircle of pa, pb, pc or not. + sign = insphere(pa, pb, pc, liftpoint, pd) + * orient3d(pa, pb, pc, liftpoint); + if (sign > 0.0) { + // Flip the non-Delaunay edge. + flip22sub(&flipedge, flipqueue); + edgeflips++; + } + } + + if (b->verbose > 1) { + printf(" Total %d flips.\n", edgeflips); + } + + return edgeflips; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// incrflipinitsub() Create a initial triangulation. // +// // +// The initial triangulation only consists of one triangle formed by three // +// non-collinear points. 'facetidx' is the index of the facet in 'facetlist' // +// (starts from 1) of the tetgenio structure; 'ptlist' is a list of indices // +// of the facet vertices; 'idx2verlist' is a map from indices to vertices. // +// // +// The 'lift point' of this facet is calculated. If not all vertices of the // +// facet are collinear, such point is found by lifting the centroid of the // +// set of vertices for a certain distance along the normal of this facet. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +incrflipinitsub(int facetidx, list* ptlist, point* idx2verlist) +{ + face newsh; + point pt1, pt2, pt3; + point liftpoint, ptloop; + REAL cent[3], norm[3]; + REAL v1[3], v2[3]; + REAL smallcos, cosa; + REAL liftdist, len, vol; + int smallidx; + int idx, i; + + if (ptlist->len() > 3) { + // Find a (non-degenerate) vector from the vertex set. + idx = * (int *) (* ptlist)[0]; + pt1 = idx2verlist[idx - in->firstnumber]; + len = 0.0; + // Loop the set of vertices until a not too small edge be found. + for (i = 1; i < ptlist->len(); i++) { + idx = * (int *) (* ptlist)[i]; + pt2 = idx2verlist[idx - in->firstnumber]; + v1[0] = pt2[0] - pt1[0]; + v1[1] = pt2[1] - pt1[1]; + v1[2] = pt2[2] - pt1[2]; + len = sqrt(dot(v1, v1)); + if ((len / longest) > (b->epsilon * 1e+2)) break; + } + // Remember this size as lift distance. + liftdist = len; + // 'v1' is a reasonable vector, normalize it. + for (i = 0; i < 3; i++) v1[i] /= len; + // Continue to find another (non-degenerate) vector, which forms an + // angle with v1 most close to 90 degree. + smallcos = 1.0; // The cosine value of 0 degree. + for (i = 1; i < ptlist->len(); i++) { + idx = * (int *) (* ptlist)[i]; + pt3 = idx2verlist[idx - in->firstnumber]; + if (pt3 == pt2) continue; // Skip the same point. + v2[0] = pt3[0] - pt1[0]; + v2[1] = pt3[1] - pt1[1]; + v2[2] = pt3[2] - pt1[2]; + len = sqrt(dot(v2, v2)); + if (len > 0.0) { // v2 is not too small. + cosa = fabs(dot(v1, v2)) / len; + if (cosa < smallcos) { + smallidx = idx; + smallcos = cosa; + } + } else { // len == 0.0, two identical points defined in a facet. + printf("Warning: Facet %d has two identical vertices: %d, %d.\n", + facetidx, pointmark(pt1), pointmark(pt3)); + return false; // Invalid polygon, do not procced. + } + } + if (smallcos == 1.0) { + // The input set of vertices is not a good set (or nearly degenerate). + printf("Warning: Facet %d with vertices: ", facetidx); + for (i = 0; i < 3; i++) { + idx = * (int *) (* ptlist)[i]; + ptloop = idx2verlist[idx - in->firstnumber]; + printf("%d ", pointmark(ptloop)); + } + printf("... is degenerate.\n"); + return false; // Invalid polygon, do not procced. + } + // Get the right point to form v2. + pt3 = idx2verlist[smallidx - in->firstnumber]; + assert(pt3 != pt2); + v2[0] = pt3[0] - pt1[0]; + v2[1] = pt3[1] - pt1[1]; + v2[2] = pt3[2] - pt1[2]; + len = sqrt(dot(v2, v2)); + assert(len > 0.0); + // Remember this size as lift distance. + liftdist = (liftdist > len ? liftdist : len); + // 'v2' is a reasonable vector, normalize it. + for (i = 0; i < 3; i++) v2[i] /= len; + } else { + // There are only three vertices of this facet (a triangle). + idx = * (int *) (* ptlist)[0]; + pt1 = idx2verlist[idx - in->firstnumber]; + idx = * (int *) (* ptlist)[1]; + pt2 = idx2verlist[idx - in->firstnumber]; + idx = * (int *) (* ptlist)[2]; + pt3 = idx2verlist[idx - in->firstnumber]; + v1[0] = pt2[0] - pt1[0]; + v1[1] = pt2[1] - pt1[1]; + v1[2] = pt2[2] - pt1[2]; + len = sqrt(dot(v1, v1)); + if (len == 0.0) { + printf("Warning: Facet %d has two identical vertices: %d, %d.\n", + facetidx, pointmark(pt1), pointmark(pt2)); + return false; // Invalid polygon, do not procced. + } + // Remember this size as lift distance. + liftdist = len; + // 'v1' is a reasonable vector, normalize it. + for (i = 0; i < 3; i++) v1[i] /= len; + v2[0] = pt3[0] - pt1[0]; + v2[1] = pt3[1] - pt1[1]; + v2[2] = pt3[2] - pt1[2]; + len = sqrt(dot(v2, v2)); + if (len == 0.0) { + printf("Warning: Facet %d has two identical vertices: %d, %d.\n", + facetidx, pointmark(pt1), pointmark(pt3)); + return false; // Invalid polygon, do not procced. + } + // Remember this size as lift distance. + liftdist = (liftdist > len ? liftdist : len); + // 'v2' is a reasonable vector, normalize it. + for (i = 0; i < 3; i++) v2[i] /= len; + } + // Calculate the unit normal of this facet. + cross(v1, v2, norm); + + // Calculate the centroid point of the vertex set. At the same time, check + // whether vertices of this facet are roughly coplanar or not. + cent[0] = cent[1] = cent[2] = 0.0; + for (i = 0; i < ptlist->len(); i++) { + idx = * (int *) (* ptlist)[i]; + ptloop = idx2verlist[idx - in->firstnumber]; + if (ptlist->len() > 3) { + vol = orient3d(pt1, pt2, pt3, ptloop); + if (vol != 0.0) { + if (!iscoplanar(pt1, pt2, pt3, ptloop, vol, b->epsilon * 1e+3)) { + printf("Warning: Facet %d has a non-coplanar vertex %d.\n", + facetidx, pointmark(ptloop)); + // This is not a fatal problem, we still can procced. + } + } + } + cent[0] += ptloop[0]; + cent[1] += ptloop[1]; + cent[2] += ptloop[2]; + } + for (i = 0; i < 3; i++) cent[i] /= ptlist->len(); + // Calculate the lifting point of the facet. It is lifted from 'cent' + // along the normal direction with a certain ditance. + liftpoint = getliftpoint(facetidx); + for (i = 0; i < 3; i++) { + liftpoint[i] = cent[i] + liftdist * norm[i]; + } + + // Create the initial triangle. The liftpoint is above (pt1, pt2, pt3). + makeshellface(subfaces, &newsh); + setsorg(newsh, pt1); + setsdest(newsh, pt2); + setsapex(newsh, pt3); + // Remeber the facet it belongs to. + setshellmark(newsh, facetidx); + // Set vertices be type FACETVERTEX to indicate they belong to a facet. + setpointtype(pt1, FACETVERTEX); + setpointtype(pt2, FACETVERTEX); + setpointtype(pt3, FACETVERTEX); + // Bond this subface to 'dummysh' for point location routine. + dummysh[0] = sencode(newsh); + + return true; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// collectvisiblesubs() Collect convex hull edges which are visible from // +// the inserting point. Construct new subfaces from // +// these edges and the point. // +// // +// 'facetidx' is the index of the facet in 'in->facetlist' (starts from 1), // +// 'inspoint' is located outside current triangulation, 'horiz' is the hull // +// edge it is visible. 'flipqueue' returns the visible hull edges which have // +// become interior edges on completion of this routine. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +collectvisiblesubs(int facetidx, point inspoint, face* horiz, queue* flipqueue) +{ + face newsh, hullsh; + face rightsh, leftsh, spinedge; + point horg, hdest, liftpoint; + bool aboveflag; + + liftpoint = getliftpoint(facetidx); + + // Create a new subface above 'horiz'. + adjustedgering(*horiz, CCW); + makeshellface(subfaces, &newsh); + setsorg(newsh, sdest(*horiz)); + setsdest(newsh, sorg(*horiz)); + setsapex(newsh, inspoint); + setshellmark(newsh, facetidx); + // Make the connection. + sbond(newsh, *horiz); + // 'horiz' becomes interior edge. + enqueueflipedge(*horiz, flipqueue); + + // Finish the hull edges at the right side of the newsh. + hullsh = *horiz; + while (1) { + senext(newsh, rightsh); + // Get the right hull edge of 'horiz' by spinning inside edges around + // the origin of 'horiz' until reaching the 'dummysh'. + spinedge = hullsh; + do { + hullsh = spinedge; + senext2self(hullsh); + spivot(hullsh, spinedge); + adjustedgering(spinedge, CCW); + } while (spinedge.sh != dummysh); + // Test whether 'inspoint' is visible from 'hullsh'. + horg = sorg(hullsh); + hdest = sdest(hullsh); + aboveflag = orient3d(horg, hdest, liftpoint, inspoint) < 0.0; + if (aboveflag) { + // It's a visible hull edge. + makeshellface(subfaces, &newsh); + setsorg(newsh, sdest(hullsh)); + setsdest(newsh, sorg(hullsh)); + setsapex(newsh, inspoint); + setshellmark(newsh, facetidx); + // Make the connection. + sbond(newsh, hullsh); + senext2(newsh, leftsh); + sbond(leftsh, rightsh); + // 'horiz' becomes interior edge. + enqueueflipedge(hullsh, flipqueue); + } else { + // 'rightsh' is a new hull edge. + dummysh[0] = sencode(rightsh); + break; + } + } + + // Finish the hull edges at the left side of the newsh. + hullsh = *horiz; + spivot(*horiz, newsh); + while (1) { + senext2(newsh, leftsh); + // Get the left hull edge of 'horiz' by spinning edges around the + // destination of 'horiz'. + spinedge = hullsh; + do { + hullsh = spinedge; + senextself(hullsh); + spivot(hullsh, spinedge); + adjustedgering(spinedge, CCW); + } while (spinedge.sh != dummysh); + // Test whether 'inspoint' is visible from 'hullsh'. + horg = sorg(hullsh); + hdest = sdest(hullsh); + aboveflag = orient3d(horg, hdest, liftpoint, inspoint) < 0.0; + if (aboveflag) { + // It's a visible hull edge. + makeshellface(subfaces, &newsh); + setsorg(newsh, sdest(hullsh)); + setsdest(newsh, sorg(hullsh)); + setsapex(newsh, inspoint); + setshellmark(newsh, facetidx); + // Make the connection. + sbond(newsh, hullsh); + senext(newsh, rightsh); + sbond(rightsh, leftsh); + // 'horiz' becomes interior edge. + enqueueflipedge(hullsh, flipqueue); + } else { + // 'leftsh' is a new hull edge. + dummysh[0] = sencode(leftsh); + break; + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// incrflipdelaunaysub() Create a Delaunay triangulation from a 3D point // +// set using the incremental flip algorithm. // +// // +// 'facetidx' is the index of the facet in 'in->facetlist' (starts from 1), // +// 'ptlist' is the index list of the vertices of the facet, 'idx2verlist' is // +// a map from indices to vertices. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +incrflipdelaunaysub(int facetidx, list* ptlist, point* idx2verlist, + queue* flipqueue) +{ + face startsh; + point pointloop; + enum locateresult loc; + int idx, i; + + for (i = 1; i < ptlist->len(); i++) { + idx = * (int *) (* ptlist)[i]; + pointloop = idx2verlist[idx - in->firstnumber]; + // Set vertices be type FACETVERTEX to indicate they belong to a facet. + setpointtype(pointloop, FACETVERTEX); + startsh.sh = dummysh; + loc = locatesub(pointloop, &startsh, NULL); + if (loc == ONVERTEX) continue; + if (loc == ONFACE) { + splitsubface(pointloop, &startsh, flipqueue); + } else if (loc == ONEDGE) { + splitsubedge(pointloop, &startsh, flipqueue); + } else if (loc == OUTSIDE) { + collectvisiblesubs(facetidx, pointloop, &startsh, flipqueue); + } + flipsub(flipqueue); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// finddirectionsub() Find the first subface in a facet on the path from // +// one point to another. // +// // +// Finds the subface in the facet that intersects a line segment drawn from // +// the origin of `searchsh' to the point `tend', and returns the result in // +// `searchsh'. The origin of `searchsh' does not change, even though the // +// subface returned may differ from the one passed in. // +// // +// The return value notes whether the destination or apex of the found face // +// is collinear with the two points in question. // +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::finddirectionresult tetgenmesh:: +finddirectionsub(face* searchsh, point tend) +{ + face checksh; + point startpoint, liftpoint; + point leftpoint, rightpoint; + REAL leftccw, rightccw; + int leftflag, rightflag; + + adjustedgering(*searchsh, CCW); + liftpoint = getliftpoint(shellmark(*searchsh)); + startpoint = sorg(*searchsh); + rightpoint = sdest(*searchsh); + leftpoint = sapex(*searchsh); + // Is `tend' to the left? + leftccw = orient3d(tend, startpoint, liftpoint, leftpoint); + leftflag = leftccw > 0.0; + // Is `tend' to the right? + rightccw = orient3d(startpoint, tend, liftpoint, rightpoint); + rightflag = rightccw > 0.0; + if (leftflag && rightflag) { + // `searchsh' faces directly away from `tend'. We could go left or + // right. Ask whether it's a triangle or a boundary on the left. + senext2(*searchsh, checksh); + spivotself(checksh); + if (checksh.sh == dummysh) { + leftflag = 0; + } else { + rightflag = 0; + } + } + while (leftflag) { + // Turn left until satisfied. + senext2self(*searchsh); + spivotself(*searchsh); + if (searchsh->sh == dummysh) { + printf("Internal error in finddirectionsub(): Unable to find a\n"); + printf(" triangle leading from %d to %d.\n", pointmark(startpoint), + pointmark(tend)); + internalerror(); + } + adjustedgering(*searchsh, CCW); + leftpoint = sapex(*searchsh); + rightccw = leftccw; + leftccw = orient3d(tend, startpoint, liftpoint, leftpoint); + leftflag = leftccw > 0.0; + } + while (rightflag) { + // Turn right until satisfied. + spivotself(*searchsh); + if (searchsh->sh == dummysh) { + printf("Internal error in finddirectionsub(): Unable to find a\n"); + printf(" triangle leading from %d to %d.\n", pointmark(startpoint), + pointmark(tend)); + internalerror(); + } + adjustedgering(*searchsh, CCW); + senextself(*searchsh); + rightpoint = sdest(*searchsh); + leftccw = rightccw; + rightccw = orient3d(startpoint, tend, liftpoint, rightpoint); + rightflag = rightccw > 0.0; + } + if (leftccw == 0.0) { + return LEFTCOLLINEAR; + } else if (rightccw == 0.0) { + return RIGHTCOLLINEAR; + } else { + return ACROSSEDGE; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// insertsubseg() Create a subsegment and insert it between two subfaces. // +// // +// The new subsegment is inserted at the edge described by the handle 'tri'. // +// If 'tri' is not on the hull, the segment is inserted between two faces. // +// If 'tri' is a hull face, the initial face ring of this segment will be // +// set only one face which is self-bonded. The official face ring will be // +// constructed later in routine unifysegments(). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::insertsubseg(face* tri) +{ + face oppotri; + face newsubseg; + + // Check if there's already a subsegment here. + sspivot(*tri, newsubseg); + if (newsubseg.sh == dummysh) { + // Make new subsegment and initialize its vertices. + makeshellface(subsegs, &newsubseg); + setsorg(newsubseg, sorg(*tri)); + setsdest(newsubseg, sdest(*tri)); + // Bond new subsegment to the two triangles it is sandwiched between. + ssbond(*tri, newsubseg); + spivot(*tri, oppotri); + // 'oppotri' might be "out space". + if (oppotri.sh != dummysh) { + ssbond(oppotri, newsubseg); + } else { + // Outside! Bond '*tri' to itself. + sbond(*tri, *tri); + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// scoutsegmentsub() Scout the first triangle on the path from one point // +// to another, and check for completion (reaching the // +// second point), a collinear point,or the intersection // +// of two segments. // +// // +// Returns true if the entire segment is successfully inserted, and false if // +// the job must be finished by constrainededge(). // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::scoutsegmentsub(face* searchsh, point tend) +{ + face newsubseg; + face crosssub, crosssubseg; + point leftpoint, rightpoint; + enum finddirectionresult collinear; + + collinear = finddirectionsub(searchsh, tend); + rightpoint = sdest(*searchsh); + leftpoint = sapex(*searchsh); + if (rightpoint == tend || leftpoint == tend) { + // The segment is already an edge. + if (leftpoint == tend) { + senext2self(*searchsh); + } + // Insert a subsegment. + insertsubseg(searchsh); + return true; + } else if (collinear == LEFTCOLLINEAR) { + // We've collided with a vertex between the segment's endpoints. + // Make the collinear vertex be the triangle's origin. + senextself(*searchsh); // lprevself(*searchtri); + // Insert a subsegment. + insertsubseg(searchsh); + // Insert the remainder of the segment. + return scoutsegmentsub(searchsh, tend); + } else if (collinear == RIGHTCOLLINEAR) { + // We've collided with a vertex between the segment's endpoints. + // Insert a subsegment. + insertsubseg(searchsh); + // Make the collinear vertex be the triangle's origin. + senextself(*searchsh); // lnextself(*searchtri); + // Insert the remainder of the segment. + return scoutsegmentsub(searchsh, tend); + } else { + senext(*searchsh, crosssub); // lnext(*searchtri, crosstri); + // Check for a crossing segment. + sspivot(crosssub, crosssubseg); + assert(crosssubseg.sh == dummysh); + return false; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// delaunayfixup() Enforce the Delaunay condition at an edge, fanning out // +// recursively from an existing point. Pay special // +// attention to stacking inverted triangles. // +// // +// This is a support routine for inserting segments into a constrained // +// Delaunay triangulation. // +// // +// The origin of 'fixupsh' is treated as if it has just been inserted, and // +// the local Delaunay condition needs to be enforced. It is only enforced in // +// one sector, however, that being the angular range defined by 'fixupsh'. // +// // +// `leftside' indicates whether or not fixupsh is to the left of the segment // +// being inserted. (Imagine that the segment is pointing up from endpoint1 // +// to endpoint2.) // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::delaunayfixup(face* fixupsh, int leftside) +{ + face nearsh, farsh, faredge; + point nearpoint, leftpoint, rightpoint, farpoint; + point liftpoint; + REAL sign; + + // It is up to the caller, that 'fixupsh' must be in CCW edge ring. + // adjustedgering(*fixupsh, CCW); + assert((fixupsh->shver % 2) == 0); + senext(*fixupsh, nearsh); + spivot(nearsh, farsh); + if (nearsh.sh == farsh.sh) { + farsh.sh = dummysh; + } + // Check if the edge opposite the origin of fixupsh can be flipped. + if (farsh.sh == dummysh) { + return; + } + adjustedgering(farsh, CCW); + sspivot(nearsh, faredge); + if (faredge.sh != dummysh) { + return; + } + // Find all the relevant vertices. + liftpoint = getliftpoint(shellmark(*fixupsh)); + nearpoint = sapex(nearsh); + leftpoint = sorg(nearsh); + rightpoint = sdest(nearsh); + farpoint = sapex(farsh); + // Check whether the previous polygon point is a reflex point. + if (leftside) { + if (orient3d(nearpoint, leftpoint, liftpoint, farpoint) <= 0.0) { + // leftpoint is a reflex point too. Nothing can + // be done until a convex section is found. + return; + } + } else { + if (orient3d(farpoint, rightpoint, liftpoint, nearpoint) <= 0.0) { + // rightpoint is a reflex point too. Nothing can + // be done until a convex section is found. + return; + } + } + if (orient3d(rightpoint, leftpoint, liftpoint, farpoint) > 0.0) { + // farsh is not an inverted triangle, and farpoint is not a reflex + // point. As there are no reflex vertices, fixupsh isn't an + // inverted triangle, either. Hence, test the edge between the + // triangles to ensure it is locally Delaunay. + sign = insphere(leftpoint, farpoint, rightpoint, liftpoint, nearpoint) + * orient3d(leftpoint, farpoint, rightpoint, liftpoint); + if (sign <= 0.0) { + return; + } + // Not locally Delaunay; go on to an edge flip. + } // else farsh is inverted; remove it from the stack by flipping. + flip22sub(&nearsh, NULL); + senext2self(*fixupsh); // Restore the origin of fixupsh after the flip. + // Recursively process the two triangles that result from the flip. + delaunayfixup(fixupsh, leftside); + delaunayfixup(&farsh, leftside); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// constrainededge() Force a segment into a constrained Delaunay // +// triangulation by deleting the triangles it // +// intersects, and triangulating the polygons that // +// form on each side of it. // +// // +// Generates a single subsegment connecting `tstart' to `tend'. The triangle // +// `startsh' has `tstart' as its origin. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::constrainededge(face* startsh, point tend) +{ + face fixupsh, fixupsh2; + face crosssubseg, newsubseg; + point tstart, farpoint; + point liftpoint; + REAL area; + int collision; + int done; + + liftpoint = getliftpoint(shellmark(*startsh)); + tstart = sorg(*startsh); + // Always works in the CCW edge ring. + adjustedgering(*startsh, CCW); + // Make sure the 'tstart' remians be the origin. + if (sorg(*startsh) != tstart) { + senextself(*startsh); + assert(sorg(*startsh) == tstart); + } + senext(*startsh, fixupsh); + flip22sub(&fixupsh, NULL); + // `collision' indicates whether we have found a vertex directly + // between endpoint1 and endpoint2. + collision = 0; + done = 0; + do { + farpoint = sorg(fixupsh); + // `farpoint' is the extreme point of the polygon we are "digging" + // to get from tstart to tend. + if (farpoint == tend) { + spivot(fixupsh, fixupsh2); // oprev(fixupsh, fixupsh2); + adjustedgering(fixupsh2, CCW); + senextself(fixupsh2); + // Enforce the Delaunay condition around tend. + delaunayfixup(&fixupsh, 0); + delaunayfixup(&fixupsh2, 1); + done = 1; + } else { + // Check whether farpoint is to the left or right of the segment + // being inserted, to decide which edge of fixupsh to dig + // through next. + area = orient3d(tstart, tend, liftpoint, farpoint); + if (area == 0.0) { + // We've collided with a vertex between tstart and tend. + collision = 1; + spivot(fixupsh, fixupsh2); // oprev(fixupsh, fixupsh2); + adjustedgering(fixupsh2, CCW); + senextself(fixupsh2); + // Enforce the Delaunay condition around farpoint. + delaunayfixup(&fixupsh, 0); + delaunayfixup(&fixupsh2, 1); + done = 1; + } else { + if (area > 0.0) { // farpoint is to the left of the segment. + spivot(fixupsh, fixupsh2); // oprev(fixupsh, fixupsh2); + adjustedgering(fixupsh2, CCW); + senextself(fixupsh2); + // Enforce the Delaunay condition around farpoint, on the + // left side of the segment only. + delaunayfixup(&fixupsh2, 1); + // Flip the edge that crosses the segment. After the edge is + // flipped, one of its endpoints is the fan vertex, and the + // destination of fixupsh is the fan vertex. + senext2self(fixupsh); // lprevself(fixupsh); + } else { // farpoint is to the right of the segment. + delaunayfixup(&fixupsh, 0); + // Flip the edge that crosses the segment. After the edge is + // flipped, one of its endpoints is the fan vertex, and the + // destination of fixupsh is the fan vertex. + spivotself(fixupsh); // oprevself(fixupsh); + adjustedgering(fixupsh, CCW); + senextself(fixupsh); + } + // Check for two intersecting segments. + sspivot(fixupsh, crosssubseg); + if (crosssubseg.sh == dummysh) { + flip22sub(&fixupsh, NULL);// May create inverted triangle at left. + } else { + // We've collided with a segment between tstart and tend. + /* collision = 1; + // Insert a vertex at the intersection. + segmentintersection(m, b, &fixupsh, &crosssubseg, tend); + done = 1; + */ + assert(0); + } + } + } + } while (!done); + // Insert a subsegment to make the segment permanent. + insertsubseg(&fixupsh); + // If there was a collision with an interceding vertex, install another + // segment connecting that vertex with endpoint2. + if (collision) { + // Insert the remainder of the segment. + if (!scoutsegmentsub(&fixupsh, tend)) { + constrainededge(&fixupsh, tend); + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// insertsegmentsub() Insert a PSLG segment into a triangulation. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::insertsegmentsub(point tstart, point tend) +{ + face searchsh1, searchsh2; + + if (b->verbose > 2) { + printf(" Insert subsegment (%d, %d).\n", pointmark(tstart), + pointmark(tend)); + } + + // Find a triangle whose origin is the segment's first endpoint. + searchsh1.sh = dummysh; + // Search for the segment's first endpoint by point location. + if (locatesub(tstart, &searchsh1, NULL) != ONVERTEX) { + printf("Internal error in insertsegmentsub():"); + printf(" Unable to locate PSLG vertex %d.\n", pointmark(tstart)); + internalerror(); + } + // Scout the beginnings of a path from the first endpoint + // toward the second. + if (scoutsegmentsub(&searchsh1, tend)) { + // The segment was easily inserted. + return; + } + // The first endpoint may have changed if a collision with an intervening + // vertex on the segment occurred. + tstart = sorg(searchsh1); + + // Find a boundary triangle to search from. + searchsh2.sh = dummysh; + // Search for the segment's second endpoint by point location. + if (locatesub(tend, &searchsh2, NULL) != ONVERTEX) { + printf("Internal error in insertsegmentsub():"); + printf(" Unable to locate PSLG vertex %d.\n", pointmark(tend)); + internalerror(); + } + // Scout the beginnings of a path from the second endpoint + // toward the first. + if (scoutsegmentsub(&searchsh2, tstart)) { + // The segment was easily inserted. + return; + } + // The second endpoint may have changed if a collision with an intervening + // vertex on the segment occurred. + tend = sorg(searchsh2); + + // Insert the segment directly into the triangulation. + constrainededge(&searchsh1, tend); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// infecthullsub() Virally infect all of the triangles of the convex hull // +// that are not protected by subsegments. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::infecthullsub(memorypool* viri) +{ + face hulltri, nexttri, starttri; + face hullsubseg; + shellface **deadshellface; + + // Find a triangle handle on the hull. + hulltri.sh = dummysh; + hulltri.shver = 0; + spivotself(hulltri); + adjustedgering(hulltri, CCW); + // Remember where we started so we know when to stop. + starttri = hulltri; + // Go once counterclockwise around the convex hull. + do { + // Ignore triangles that are already infected. + if (!sinfected(hulltri)) { + // Is the triangle protected by a subsegment? + sspivot(hulltri, hullsubseg); + if (hullsubseg.sh == dummysh) { + // The triangle is not protected; infect it. + if (!sinfected(hulltri)) { + sinfect(hulltri); + deadshellface = (shellface **) viri->alloc(); + *deadshellface = hulltri.sh; + } + } + } + // To find the next hull edge, go clockwise around the next vertex. + senextself(hulltri); // lnextself(hulltri); + spivot(hulltri, nexttri); // oprev(hulltri, nexttri); + if (nexttri.sh == hulltri.sh) { + nexttri.sh = dummysh; // 'hulltri' is self-bonded. + } else { + adjustedgering(nexttri, CCW); + senextself(nexttri); + } + while (nexttri.sh != dummysh) { + hulltri = nexttri; + spivot(hulltri, nexttri); // oprev(hulltri, nexttri); + if (nexttri.sh == hulltri.sh) { + nexttri.sh = dummysh; // 'hulltri' is self-bonded. + } else { + adjustedgering(nexttri, CCW); + senextself(nexttri); + } + } + } while (hulltri != starttri); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// plaguesub() Spread the virus from all infected triangles to any // +// neighbors not protected by subsegments. Delete all // +// infected triangles. // +// // +// This is the procedure that actually creates holes and concavities. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::plaguesub(memorypool* viri) +{ + face testtri, neighbor, ghostsh; + face neighborsubseg; + shellface **virusloop; + shellface **deadshellface; + int i; + + // Loop through all the infected triangles, spreading the virus to + // their neighbors, then to their neighbors' neighbors. + viri->traversalinit(); + virusloop = (shellface **) viri->traverse(); + while (virusloop != (shellface **) NULL) { + testtri.sh = *virusloop; + // Check each of the triangle's three neighbors. + for (i = 0; i < 3; i++) { + // Find the neighbor. + spivot(testtri, neighbor); + // Check for a subsegment between the triangle and its neighbor. + sspivot(testtri, neighborsubseg); + // Check if the neighbor is nonexistent or already infected. + if ((neighbor.sh == dummysh) || sinfected(neighbor)) { + if (neighborsubseg.sh != dummysh) { + // There is a subsegment separating the triangle from its + // neighbor, but both triangles are dying, so the subsegment + // dies too. + shellfacedealloc(subsegs, neighborsubseg.sh); + if (neighbor.sh != dummysh) { + // Make sure the subsegment doesn't get deallocated again + // later when the infected neighbor is visited. + ssdissolve(neighbor); + } + } + } else { // The neighbor exists and is not infected. + if (neighborsubseg.sh == dummysh) { + // There is no subsegment protecting the neighbor, so the + // neighbor becomes infected. + sinfect(neighbor); + // Ensure that the neighbor's neighbors will be infected. + deadshellface = (shellface **) viri->alloc(); + *deadshellface = neighbor.sh; + } else { // The neighbor is protected by a subsegment. + // Remove this triangle from the subsegment. + ssbond(neighbor, neighborsubseg); + } + } + senextself(testtri); + } + virusloop = (shellface **) viri->traverse(); + } + + ghostsh.sh = dummysh; // A handle of outer space. + viri->traversalinit(); + virusloop = (shellface **) viri->traverse(); + while (virusloop != (shellface **) NULL) { + testtri.sh = *virusloop; + // Record changes in the number of boundary edges, and disconnect + // dead triangles from their neighbors. + for (i = 0; i < 3; i++) { + spivot(testtri, neighbor); + if (neighbor.sh != dummysh) { + // Disconnect the triangle from its neighbor. + // sdissolve(neighbor); + sbond(neighbor, ghostsh); + } + senextself(testtri); + } + // Return the dead triangle to the pool of triangles. + shellfacedealloc(subfaces, testtri.sh); + virusloop = (shellface **) viri->traverse(); + } + // Empty the virus pool. + viri->restart(); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// carveholessub() Find the holes and infect them. Find the area // +// constraints and infect them. Infect the convex hull. // +// Spread the infection and kill triangles. Spread the // +// area constraints. // +// // +// This routine mainly calls other routines to carry out all these functions.// +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::carveholessub(int holes, REAL* holelist) +{ + face searchtri, triangleloop; + shellface **holetri; + memorypool *viri; + enum locateresult intersect; + int i; + + // Initialize a pool of viri to be used for holes, concavities. + viri = new memorypool(sizeof(shellface *), 1024, POINTER, 0); + + // Mark as infected any unprotected triangles on the boundary. + // This is one way by which concavities are created. + infecthullsub(viri); + + if (holes > 0) { + // Infect each triangle in which a hole lies. + for (i = 0; i < 3 * holes; i += 3) { + // Ignore holes that aren't within the bounds of the mesh. + if ((holelist[i] >= xmin) && (holelist[i] <= xmax) + && (holelist[i + 1] >= ymin) && (holelist[i + 1] <= ymax) + && (holelist[i + 2] >= zmin) && (holelist[i + 2] <= zmax)) { + // Start searching from some triangle on the outer boundary. + searchtri.sh = dummysh; + // Find a triangle that contains the hole. + intersect = locatesub(&holelist[i], &searchtri, NULL); + if ((intersect != OUTSIDE) && (!sinfected(searchtri))) { + // Infect the triangle. This is done by marking the triangle + // as infected and including the triangle in the virus pool. + sinfect(searchtri); + holetri = (shellface **) viri->alloc(); + *holetri = searchtri.sh; + } + } + } + } + + if (viri->items > 0) { + // Carve the holes and concavities. + plaguesub(viri); + } + // The virus pool should be empty now. + + // Free up memory. + delete viri; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// triangulatefacet() Create the constrained Delaunay triang. of a facet. // +// // +// 'facetidx' is the index of the facet in 'in->facetlist' (starts from 1), // +// 'idx2verlist' is a map from indices to vertices. 'ptlist' and 'conlist' // +// are two lists used to assemble the input data for each facet, 'ptlist' // +// stores the index set of its vertices, 'conlist' stores the set of its // +// segments, they should be empty on input and output. // +// // +// On completion, the CDT of this facet is constructed in pool 'subfaces'. // +// Every isolated point on the facet will be set a type of FACETVERTEX. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +triangulatefacet(int facetidx, list* ptlist, list* conlist, point* idx2verlist, + queue* flipqueue) +{ + tetgenio::facet *f; + tetgenio::polygon *p; + point tstart, tend; + int end1, end2; + int *cons, idx1, idx2; + int i, j; + + if (b->verbose > 1) { + printf(" Triangulate facet %d.\n", facetidx); + } + + // Get the pointer of the facet. + f = &in->facetlist[facetidx - 1]; + + // Are there duplicated points? + if ((b->object == tetgenbehavior::STL) || dupverts) { + // Loop all polygons of this facet. + for (i = 0; i < f->numberofpolygons; i++) { + p = &(f->polygonlist[i]); + // Loop other vertices of this polygon. + for (j = 0; j < p->numberofvertices; j++) { + idx1 = p->vertexlist[j]; + tstart = idx2verlist[idx1 - in->firstnumber]; + if (pointtype(tstart) == DUPLICATEDVERTEX) { + // Reset the index of vertex-j. + tend = point2pt(tstart); + idx2 = pointmark(tend); + p->vertexlist[j] = idx2; + } + } + } + } + + // Loop all polygons of this facet, get the sets of vertices and segments. + for (i = 0; i < f->numberofpolygons; i++) { + p = &(f->polygonlist[i]); + // Get the first vertex. + end1 = p->vertexlist[0]; + if ((end1 < in->firstnumber) || + (end1 >= in->firstnumber + in->numberofpoints)) { + if (!b->quiet) { + printf("Warning: Invalid the 1st vertex %d of polygon", end1); + printf(" %d in facet %d.\n", i + 1, facetidx); + } + break; // Skip to mesh this facet. + } + // Save it in 'ptlist' if it didn't be added, and set its position. + idx1 = ptlist->hasitem(&end1); + if (idx1 == -1) { + ptlist->append(&end1); + idx1 = ptlist->len() - 1; + } + // Loop other vertices of this polygon. + for (j = 1; j <= p->numberofvertices; j++) { + // get a vertex. + if (j < p->numberofvertices) { + end2 = p->vertexlist[j]; + } else { + end2 = p->vertexlist[0]; // Form a loop from last to first. + } + if ((end2 < in->firstnumber) || + (end2 >= in->firstnumber + in->numberofpoints)) { + if (!b->quiet) { + printf("Warning: Invalid vertex %d in polygon %d", end2, i + 1); + printf(" in facet %d.\n", facetidx); + } + } else { + if (end1 != end2) { + // 'end1' and 'end2' form a segment. Save 'end2' in 'ptlist' if + // it didn't be added before. + idx2 = ptlist->hasitem(&end2); + if (idx2 == -1) { + ptlist->append(&end2); + idx2 = ptlist->len() - 1; + } + // Save the segment in 'conlist'. + cons = (int *) conlist->append(NULL); + cons[0] = idx1; + cons[1] = idx2; + // Set the start for next continuous segment. + end1 = end2; + idx1 = idx2; + } else { + // It's a (degenerate) segment with identical endpoints, which + // represents an isolate vertex in facet. + if (p->numberofvertices > 2) { + // This may be an error in the input, anyway, we let it be. + if (!b->quiet) { + printf("Warning: Polygon %d has two identical vertices", i + 1); + printf(" in facet %d.\n", facetidx); + } + } + // Set the vertex type be 'FACETVERTEX'. + // setpointtype(idx2verlist[end1 - in->firstnumber], FACETVERTEX); + // Ignore this vertex. + } + } + if (p->numberofvertices == 2) { + // This case the polygon is either a segment or an isolated vertex. + break; + } + } + } + + // Have got the vertex list and segment list. + if (b->verbose > 1) { + printf(" %d vertices, %d segments", ptlist->len(), conlist->len()); + if (f->numberofholes > 0) { + printf(", %d holes\n", f->numberofholes); + } + printf(".\n"); + } + + if (ptlist->len() > 2) { + // Construct an initial triangulation. + if (incrflipinitsub(facetidx, ptlist, idx2verlist)) { + if (ptlist->len() > 3) { + // Create the Delaunay triangulation of 'ptlist'. + incrflipdelaunaysub(facetidx, ptlist, idx2verlist, flipqueue); + } + // Insert segments (in 'conlist') into the Delaunay triangulation. + for (i = 0; i < conlist->len(); i++) { + cons = (int *)(* conlist)[i]; + idx1 = * (int *)(* ptlist)[cons[0]]; + tstart = idx2verlist[idx1 - in->firstnumber]; + idx2 = * (int *)(* ptlist)[cons[1]]; + tend = idx2verlist[idx2 - in->firstnumber]; + insertsegmentsub(tstart, tend); + } + if (ptlist->len() > 3 && conlist->len() > 3) { + // Carve holes and concavities. + carveholessub(f->numberofholes, f->holelist); + } + } + } + + // Clear working lists. + ptlist->clear(); + conlist->clear(); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// unifysegments() Unify identical segments and build facet connections. // +// // +// After the surface mesh has been created. Each facet has its own segments. // +// There are many segments having the same endpoints, which are indentical. // +// This routine has two purposes: (1) identify the set of segments which // +// have the same endpoints and unify them into one segment, remove redundant // +// ones; and (2) create the face rings of the unified segments, hence, setup // +// the facet connections. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::unifysegments() +{ + list *sfacelist; + shellface **facesperverlist; + face subsegloop, testseg; + face sface, sface1, sface2; + point torg, tdest; + REAL da1, da2; + int *idx2facelist; + int idx, k, m; + + if (b->verbose) { + printf(" Unifying segments.\n"); + } + + // Compute a mapping from indices of vertices to subfaces. + makesubfacemap(idx2facelist, facesperverlist); + // Initialize 'sfacelist' for constructing the face link of each segment. + sfacelist = new list(sizeof(face), NULL); + + subsegs->traversalinit(); + subsegloop.sh = shellfacetraverse(subsegs); + while (subsegloop.sh != (shellface *) NULL) { + subsegloop.shver = 0; // For sure. + torg = sorg(subsegloop); + tdest = sdest(subsegloop); + idx = pointmark(torg) - in->firstnumber; + // Loop through the set of subfaces containing 'torg'. Get all the + // subfaces containing the edge (torg, tdest). Save and order them + // in 'sfacelist', the ordering is defined by the right-hand rule + // with thumb points from torg to tdest. + for (k = idx2facelist[idx]; k < idx2facelist[idx + 1]; k++) { + sface.sh = facesperverlist[k]; + sface.shver = 0; + // sface may be died due to the removing of duplicated subfaces. + if (!isdead(&sface) && isfacehasedge(&sface, torg, tdest)) { + // 'sface' contains this segment. + findedge(&sface, torg, tdest); + // Save it in 'sfacelist'. + if (sfacelist->len() < 2) { + sfacelist->append(&sface); + } else { + for (m = 0; m < sfacelist->len() - 1; m++) { + sface1 = * (face *)(* sfacelist)[m]; + sface2 = * (face *)(* sfacelist)[m + 1]; + da1 = facedihedral(torg, tdest, sapex(sface1), sapex(sface)); + da2 = facedihedral(torg, tdest, sapex(sface1),sapex(sface2)); + if (da1 < da2) { + break; // Insert it after m. + } + } + sfacelist->insert(m + 1, &sface); + } + } + } + if (b->verbose > 1) { + printf(" Identifying %d segments of (%d %d).\n", sfacelist->len(), + pointmark(torg), pointmark(tdest)); + } + // Set the connection between this segment and faces containing it, + // at the same time, remove redundant segments. + for (k = 0; k < sfacelist->len(); k++) { + sface = *(face *)(* sfacelist)[k]; + sspivot(sface, testseg); + // If 'testseg' is not 'subsegloop', it is a redundant segment that + // needs be removed. BE CAREFUL it may already be removed. Do not + // remove it twice, i.e., we need do test 'isdead()' together. + if ((testseg.sh != subsegloop.sh) && !isdead(&testseg)) { + shellfacedealloc(subsegs, testseg.sh); + } + // 'ssbond' bonds the subface and the segment together, and dissloves + // the old bond as well. + ssbond(sface, subsegloop); + } + // Set connection between these faces. + sface = *(face *)(* sfacelist)[0]; + for (k = 1; k <= sfacelist->len(); k++) { + if (k < sfacelist->len()) { + sface1 = *(face *)(* sfacelist)[k]; + } else { + sface1 = *(face *)(* sfacelist)[0]; // Form a face loop. + } + /* + // Check if these two subfaces are the same. It is possible when user + // defines one facet (or polygon) two or more times. If they are, + // they should not be bonded together, instead of that, one of them + // should be delete from the surface mesh. + if ((sfacelist->len() > 1) && sapex(sface) == sapex(sface1)) { + // They are duplicated faces. + if (b->verbose) { + printf(" A duplicated subface (%d, %d, %d) is removed.\n", + pointmark(torg), pointmark(tdest), pointmark(sapex(sface))); + } + if (k == sfacelist->len()) { + // 'sface' is the last face, however, it is same as the first one. + // In order to form the ring, we have to let the second last + // face bond to the first one 'sface1'. + shellfacedealloc(subfaces, sface.sh); + assert(sfacelist->len() >= 2); + assert(k == sfacelist->len()); + sface = *(face *)(* sfacelist)[k - 2]; + } else { + // 'sface1' is in the middle and may be the last one. + shellfacedealloc(subfaces, sface1.sh); + // Skip this face and go to the next one. + continue; + } + } + */ + if (b->verbose > 2) { + printf(" Bond subfaces (%d, %d, %d) and (%d, %d, %d).\n", + pointmark(torg), pointmark(tdest), pointmark(sapex(sface)), + pointmark(torg), pointmark(tdest), pointmark(sapex(sface1))); + } + sbond1(sface, sface1); + sface = sface1; + } + // Clear the working list. + sfacelist->clear(); + subsegloop.sh = shellfacetraverse(subsegs); + } + + delete [] idx2facelist; + delete [] facesperverlist; + delete sfacelist; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// mergefacets() Merge adjacent facets to be one facet if they are // +// coplanar and have the same boundary marker. // +// // +// Segments between two merged facets will be removed from the mesh. If all // +// segments around a vertex have been removed, change its vertex type to be // +// FACETVERTEX. Edge flips will be performed to ensure the Delaunay criteria // +// of the triangulation of merged facets. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::mergefacets(queue* flipqueue) +{ + face parentsh, neighsh, neineighsh; + face segloop; + point eorg, edest; + REAL ori; + bool mergeflag; + int* segspernodelist; + int fidx1, fidx2; + int i, j; + + if (b->verbose) { + printf(" Merging coplanar facets.\n"); + } + // Create and initialize 'segspernodelist'. + segspernodelist = new int[points->items + 1]; + for (i = 0; i < points->items + 1; i++) { + segspernodelist[i] = 0; + } + + // Loop the segments, counter the number of segments sharing each vertex. + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while (segloop.sh != (shellface *) NULL) { + // Increment the number of sharing segments for each endpoint. + for (i = 0; i < 2; i++) { + j = pointmark((point) segloop.sh[3 + i]); + segspernodelist[j]++; + } + segloop.sh = shellfacetraverse(subsegs); + } + + // Loop the segments, find out dead segments. + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while (segloop.sh != (shellface *) NULL) { + eorg = sorg(segloop); + edest = sdest(segloop); + spivot(segloop, parentsh); + spivot(parentsh, neighsh); + spivot(neighsh, neineighsh); + if (parentsh.sh != neighsh.sh && parentsh.sh == neineighsh.sh) { + // Exactly two subfaces at this segment. + fidx1 = shellmark(parentsh) - 1; + fidx2 = shellmark(neighsh) - 1; + // Possibly merge them if they are not in the same facet. + if (fidx1 != fidx2) { + // Test if they are coplanar. + ori = orient3d(eorg, edest, sapex(parentsh), sapex(neighsh)); + if (ori != 0.0) { + if (iscoplanar(eorg, edest, sapex(parentsh), sapex(neighsh), ori, + b->epsilon)) { + ori = 0.0; // They are assumed as coplanar. + } + } + if (ori == 0.0) { + mergeflag = (in->facetmarkerlist == (int *) NULL || + in->facetmarkerlist[fidx1] == in->facetmarkerlist[fidx2]); + if (mergeflag) { + // This segment becomes dead. + if (b->verbose > 1) { + printf(" Removing segment (%d, %d).\n", pointmark(eorg), + pointmark(edest)); + } + ssdissolve(parentsh); + ssdissolve(neighsh); + shellfacedealloc(subsegs, segloop.sh); + j = pointmark(eorg); + segspernodelist[j]--; + if (segspernodelist[j] == 0) { + setpointtype(eorg, FACETVERTEX); + } + j = pointmark(edest); + segspernodelist[j]--; + if (segspernodelist[j] == 0) { + setpointtype(edest, FACETVERTEX); + } + // Add 'parentsh' to queue checking for flip. + enqueueflipedge(parentsh, flipqueue); + } + } + } + } + segloop.sh = shellfacetraverse(subsegs); + } + + if (!flipqueue->empty()) { + // Restore the Delaunay property in the facet triangulation. + flipsub(flipqueue); + } + + delete [] segspernodelist; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// meshsurface() Create a surface triangulation of a PLC. // +// // +// The surface mesh consists of a set of subfaces which are two dimensional // +// constrained Delaunay triangulations of the facets of the PLC and a set of // +// subsegments which are edges bounded the facets. Subfaces belong to one // +// facet are connecting each other. Around each subsegment is a subface ring,// +// which saves the connection between facets sharing at this subsegment. // +// // +// This routine first creates the CDTs separatly, that is, each facet will // +// be meshed into a set of subfaces and subsegments. As a result, subfaces // +// only have connections to subfaces which are belong to the same facet. And // +// subsegments are over-created. Then, routine unifysegment() is called to // +// remove redundant subsegments and create the face ring around subsegments. // +// // +// Return the number of (input) segments. // +// // +/////////////////////////////////////////////////////////////////////////////// + +long tetgenmesh::meshsurface() +{ + list *ptlist, *conlist; + queue *flipqueue; + point *idx2verlist; + int i; + + if (!b->quiet) { + printf("Creating surface mesh.\n"); + } + + // Compute a mapping from indices to points. + makeindex2pointmap(idx2verlist); + // Initialize 'liftpointarray'. + liftpointarray = new REAL[in->numberoffacets * 3]; + // Initialize 'flipqueue'. + flipqueue = new queue(sizeof(badface)); + // Two re-useable lists 'ptlist' and 'conlist'. + ptlist = new list("int"); + conlist = new list(sizeof(int) * 2, NULL); + + // Loop the facet list, triangulate each facet. On finish, all subfaces + // are in 'subfaces', all segments are in 'subsegs' (Note: there exist + // duplicated segments). + for (i = 0; i < in->numberoffacets; i++) { + triangulatefacet(i + 1, ptlist, conlist, idx2verlist, flipqueue); + } + + // Unify segments in 'subsegs', remove redundant segments. Face links + // of segments are also built. + unifysegments(); + + if (b->object == tetgenbehavior::STL) { + // Remove redundant vertices (for .stl input mesh). + jettisonnodes(); + } + + if (!b->nomerge) { + // Merge adjacent facets if they are coplanar. + mergefacets(flipqueue); + } + + delete [] idx2verlist; + delete flipqueue; + delete conlist; + delete ptlist; + + return subsegs->items; +} + +// +// End of surface triangulation routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// interecursive() Recursively do intersection test on a set of triangles.// +// // +// Recursively split the set 'subfacearray' of subfaces into two sets using // +// a cut plane parallel to x-, or, y-, or z-axies. The split criteria are // +// follows. Assume the cut plane is H, and H+ denotes the left halfspace of // +// H, and H- denotes the right halfspace of H; and s be a subface: // +// // +// (1) If all points of s lie at H+, put it into left array; // +// (2) If all points of s lie at H-, put it into right array; // +// (3) If some points of s lie at H+ and some of lie at H-, or some // +// points lie on H, put it into both arraies. // +// // +// Partitions by x-axis if axis == '0'; by y-axis if axis == '1'; by z-axis // +// if axis == '2'. If current cut plane is parallel to the x-axis, the next // +// one will be parallel to y-axis, and the next one after the next is z-axis,// +// and then alternately return back to x-axis. // +// // +// Stop splitting when the number of triangles of the input array is not // +// decreased anymore. Do tests on the current set. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +interecursive(shellface** subfacearray, int arraysize, int axis, REAL bxmin, + REAL bxmax, REAL bymin, REAL bymax, REAL bzmin, REAL bzmax, + int* internum) +{ + shellface **leftarray, **rightarray; + face sface1, sface2; + point p1, p2, p3; + point p4, p5, p6; + enum intersectresult intersect; + REAL split; + bool toleft, toright; + int leftsize, rightsize; + int i, j; + + if (b->verbose > 1) { + printf(" Recur %d faces. Bbox (%g, %g, %g),(%g, %g, %g). %s-axis\n", + arraysize, bxmin, bymin, bzmin, bxmax, bymax, bzmax, + axis == 0 ? "x" : (axis == 1 ? "y" : "z")); + } + + leftarray = new shellface*[arraysize]; + if (leftarray == NULL) { + printf("Error in interecursive(): Insufficient memory.\n"); + exit(1); + } + rightarray = new shellface*[arraysize]; + if (rightarray == NULL) { + printf("Error in interecursive(): Insufficient memory.\n"); + exit(1); + } + leftsize = rightsize = 0; + + if (axis == 0) { + // Split along x-axis. + split = 0.5 * (bxmin + bxmax); + } else if (axis == 1) { + // Split along y-axis. + split = 0.5 * (bymin + bymax); + } else { + // Split along z-axis. + split = 0.5 * (bzmin + bzmax); + } + + for (i = 0; i < arraysize; i++) { + sface1.sh = subfacearray[i]; + p1 = (point) sface1.sh[3]; + p2 = (point) sface1.sh[4]; + p3 = (point) sface1.sh[5]; + toleft = toright = false; + if (p1[axis] < split) { + toleft = true; + if (p2[axis] >= split || p3[axis] >= split) { + toright = true; + } + } else if (p1[axis] > split) { + toright = true; + if (p2[axis] <= split || p3[axis] <= split) { + toleft = true; + } + } else { + // p1[axis] == split; + toleft = true; + toright = true; + } + // At least one is true; + assert(!(toleft == false && toright == false)); + if (toleft) { + leftarray[leftsize] = sface1.sh; + leftsize++; + } + if (toright) { + rightarray[rightsize] = sface1.sh; + rightsize++; + } + } + + if (leftsize < arraysize && rightsize < arraysize) { + // Continue to partition the input set. Now 'subfacearray' has been + // split into two sets, it's memory can be freed. 'leftarray' and + // 'rightarray' will be freed in the next recursive (after they're + // partitioned again or performing tests). + delete [] subfacearray; + // Continue to split these two sets. + if (axis == 0) { + interecursive(leftarray, leftsize, 1, bxmin, split, bymin, bymax, + bzmin, bzmax, internum); + interecursive(rightarray, rightsize, 1, split, bxmax, bymin, bymax, + bzmin, bzmax, internum); + } else if (axis == 1) { + interecursive(leftarray, leftsize, 2, bxmin, bxmax, bymin, split, + bzmin, bzmax, internum); + interecursive(rightarray, rightsize, 2, bxmin, bxmax, split, bymax, + bzmin, bzmax, internum); + } else { + interecursive(leftarray, leftsize, 0, bxmin, bxmax, bymin, bymax, + bzmin, split, internum); + interecursive(rightarray, rightsize, 0, bxmin, bxmax, bymin, bymax, + split, bzmax, internum); + } + } else { + if (b->verbose > 1) { + printf(" Checking intersecting faces.\n"); + } + // Perform a brute-force compare on the set. + for (i = 0; i < arraysize; i++) { + sface1.sh = subfacearray[i]; + p1 = (point) sface1.sh[3]; + p2 = (point) sface1.sh[4]; + p3 = (point) sface1.sh[5]; + for (j = i + 1; j < arraysize; j++) { + sface2.sh = subfacearray[j]; + p4 = (point) sface2.sh[3]; + p5 = (point) sface2.sh[4]; + p6 = (point) sface2.sh[5]; + intersect = triangle_triangle_inter(p1, p2, p3, p4, p5, p6); + if (intersect == INTERSECT || intersect == SHAREFACE) { + if (!b->quiet) { + if (intersect == INTERSECT) { + printf(" Facet #%d intersects facet #%d at triangles:\n", + shellmark(sface1), shellmark(sface2)); + printf(" (%4d, %4d, %4d) and (%4d, %4d, %4d)\n", + pointmark(p1), pointmark(p2), pointmark(p3), + pointmark(p4), pointmark(p5), pointmark(p6)); + } else { + printf(" Facet #%d duplicates facet #%d at triangle:\n", + shellmark(sface1), shellmark(sface2)); + printf(" (%4d, %4d, %4d)\n", pointmark(p1), pointmark(p2), + pointmark(p3)); + } + } + // Increase the number of intersecting pairs. + (*internum)++; + // Infect these two faces (although they may already be infected). + sinfect(sface1); + sinfect(sface2); + } + } + } + // Don't forget to free all three arrays. No further partition. + delete [] leftarray; + delete [] rightarray; + delete [] subfacearray; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// detectinterfaces() Detect intersecting triangles. // +// // +// Given a set of triangles, find the pairs of intersecting triangles from // +// them. Here the set of triangles is in 'subfaces' which is a surface mesh // +// of a PLC (.poly or .smesh). // +// // +// To detect whether or not two triangles are intersecting is done by the // +// routine 'triangle_triangle_inter()'. The algorithm for the test is very // +// simple and stable. It is based on geometric orientation test which uses // +// exact arithmetics. // +// // +// Use divide-and-conquer algorithm for reducing the number of intersection // +// tests. Start from the bounding box of the input point set, recursively // +// partition the box into smaller boxes, until the number of triangles in a // +// box is not decreased anymore. Then perform triangle-triangle tests on the // +// remaining set of triangles. The memory allocated in the input set is // +// freed immediately after it has been partitioned into two arrays. So it // +// can be re-used for the consequent partitions. // +// // +// On return, pool 'subfaces' will be cleared, and only the intersecting // +// triangles remain for output (to a .face file). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::detectinterfaces() +{ + shellface **subfacearray; + face shloop; + int internum; + int i; + + if (!b->quiet) { + printf("Detecting intersecting facets.\n"); + } + + // Construct a map from indices to subfaces; + subfacearray = new shellface*[subfaces->items]; + subfaces->traversalinit(); + shloop.sh = shellfacetraverse(subfaces); + i = 0; + while (shloop.sh != (shellface *) NULL) { + subfacearray[i] = shloop.sh; + shloop.sh = shellfacetraverse(subfaces); + i++; + } + + internum = 0; + // Recursively split the set of triangles into two sets using a cut plane + // parallel to x-, or, y-, or z-axies. Stop splitting when the number + // of subfaces is not decreasing anymore. Do tests on the current set. + interecursive(subfacearray, subfaces->items, 0, xmin, xmax, ymin, ymax, + zmin, zmax, &internum); + + if (!b->quiet) { + if (internum > 0) { + printf("\n!! Found %d pairs of faces are intersecting.\n\n", internum); + } else { + printf("\nNo faces are intersecting.\n\n"); + } + } + + if (internum > 0) { + // Traverse all subfaces, deallocate those have not been infected (they + // are not intersecting faces). Uninfect those have been infected. + // After this loop, only intersecting faces remain. + subfaces->traversalinit(); + shloop.sh = shellfacetraverse(subfaces); + while (shloop.sh != (shellface *) NULL) { + if (sinfected(shloop)) { + suninfect(shloop); + } else { + shellfacedealloc(subfaces, shloop.sh); + } + shloop.sh = shellfacetraverse(subfaces); + } + } else { + // Deallocate all subfaces. + subfaces->restart(); + } +} + +// +// Begin of segments recovery routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// markacutevertices() Set the proper type (ACUTEVERTEX, NONACUTEVERTEX) // +// for segment vertices. // +// // +// Parameter 'acuteangle' gives the upperbound (in degree). Angles which are // +// smaller or equal than it are assumed as acute angles. A vertex is acute // +// if at least two segments incident at it with an acute angle. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::markacutevertices(REAL acuteangle) +{ + shellface** segsperverlist; + face segloop, workseg, inciseg; + point eorg, edest, eapex; + REAL cosbound, anglearc; + REAL v1[3], v2[3], L, D; + bool isacute; + int* idx2seglist; + int idx, i, j, k; + + if (b->verbose) { + printf(" Marking segments have acute corners.\n"); + } + + // Constructing a map from vertex to segments. + makesegmentmap(idx2seglist, segsperverlist); + + // Initialize all vertices be unknown. + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while (segloop.sh != (shellface *) NULL) { + // Check and set types for the two ends of this segment. + for (segloop.shver = 0; segloop.shver < 2; segloop.shver++) { + eorg = sorg(segloop); + setpointtype(eorg, FACETVERTEX); + } + segloop.sh = shellfacetraverse(subsegs); + } + + anglearc = acuteangle * 3.1415926535897932 / 180.0; + cosbound = cos(anglearc); + + // Loop over the set of subsegments. + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while (segloop.sh != (shellface *) NULL) { + // Check and set types for the two ends of this segment. + for (segloop.shver = 0; segloop.shver < 2; segloop.shver++) { + eorg = sorg(segloop); + if ((pointtype(eorg) != ACUTEVERTEX) && + (pointtype(eorg) != NONACUTEVERTEX)) { + // This vertex has no type be set yet. + idx = pointmark(eorg) - in->firstnumber; + isacute = false; + for (i = idx2seglist[idx]; i < idx2seglist[idx + 1] && !isacute; i++) { + workseg.sh = segsperverlist[i]; + workseg.shver = 0; + if (sorg(workseg) != eorg) { + sesymself(workseg); + } + assert(sorg(workseg) == eorg); + edest = sdest(workseg); + for (j = i + 1; j < idx2seglist[idx + 1] && !isacute; j++) { + inciseg.sh = segsperverlist[j]; + inciseg.shver = 0; + assert(inciseg.sh != workseg.sh); + if (sorg(inciseg) != eorg) { + sesymself(inciseg); + } + assert(sorg(inciseg) == eorg); + eapex = sdest(inciseg); + // Check angles between segs (eorg, edest) and (eorg, eapex). + for (k = 0; k < 3; k++) { + v1[k] = edest[k] - eorg[k]; + v2[k] = eapex[k] - eorg[k]; + } + L = sqrt(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2]); + for (k = 0; k < 3; k++) v1[k] /= L; + L = sqrt(v2[0] * v2[0] + v2[1] * v2[1] + v2[2] * v2[2]); + for (k = 0; k < 3; k++) v2[k] /= L; + D = v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; + if (D >= cosbound) { + isacute = true; + } + } + } + if (isacute) { + setpointtype(eorg, ACUTEVERTEX); + } else { + setpointtype(eorg, NONACUTEVERTEX); + } + } + } + segloop.sh = shellfacetraverse(subsegs); + } + + delete [] idx2seglist; + delete [] segsperverlist; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// finddirection() Find the first tetrahedron on the path from one point // +// to another. // +// // +// Find the tetrahedron that intersects a line segment L (from the origin of // +// 'searchtet' to the point 'tend'), and returns the result in 'searchtet'. // +// The origin of 'searchtet' does not change, even though the tetrahedron // +// returned may differ from the one passed in. This routine is used to find // +// the direction to move in to get from one point to another. // +// // +// The return value notes the location of the line segment L with respect to // +// 'searchtet': // +// - Returns RIGHTCOLLINEAR indicates L is collinear with the line segment // +// from the origin to the destination of 'searchtet'. // +// - Returns LEFTCOLLINEAR indicates L is collinear with the line segment // +// from the origin to the apex of 'searchtet'. // +// - Returns TOPCOLLINEAR indicates L is collinear with the line segment // +// from the origin to the opposite of 'searchtet'. // +// - Returns ACROSSEDGE indicates L intersects with the line segment from // +// the destination to the apex of 'searchtet'. // +// - Returns ACROSSFACE indicates L intersects with the face opposite to // +// the origin of 'searchtet'. // +// - Returns BELOWHULL indicates L crosses outside the mesh domain. This // +// can only happen when the domain is non-convex. // +// // +// NOTE: This routine only works correctly when the mesh is exactly Delaunay.// +// // +/////////////////////////////////////////////////////////////////////////////// + +enum tetgenmesh::finddirectionresult tetgenmesh:: +finddirection(triface *searchtet, point tend) +{ + triface neightet; + point tstart, tdest, tapex, toppo; + REAL ori1, ori2, ori3; + + tstart = org(*searchtet); + assert(tstart != tend); + adjustedgering(*searchtet, CCW); + if (tstart != org(*searchtet)) { + enextself(*searchtet); // For keeping the same origin. + } + tdest = dest(*searchtet); + if (tdest == tend) { + return RIGHTCOLLINEAR; + } + tapex = apex(*searchtet); + if (tapex == tend) { + return LEFTCOLLINEAR; + } + + ori1 = orient3d(tstart, tdest, tapex, tend); + if (ori1 > 0.0) { + // 'tend' is below the face, get the neighbor of this side. + sym(*searchtet, neightet); + if (neightet.tet != dummytet) { + findorg(&neightet, tstart); + adjustedgering(neightet, CCW); + if (org(neightet) != tstart) { + enextself(neightet); // keep the same origin. + } + // Set the changed configuratiuon. + *searchtet = neightet; + ori1 = -1.0; + tdest = dest(*searchtet); + tapex = apex(*searchtet); + } else { + // A hull face. Only possible for a nonconvex mesh. +#ifdef SELF_CHECK + assert(nonconvex); +#endif + return BELOWHULL; + } + } + + // Repeatedly change the 'searchtet', remain 'tstart' be its origin, until + // find a tetrahedron contains 'tend' or is crossed by the line segment + // from 'tstart' to 'tend'. + while (true) { + toppo = oppo(*searchtet); + if (toppo == tend) { + return TOPCOLLINEAR; + } + ori2 = orient3d(tstart, toppo, tdest, tend); + if (ori2 > 0.0) { + // 'tend' is below the face, get the neighbor at this side. + fnext(*searchtet, neightet); + symself(neightet); + if (neightet.tet != dummytet) { + findorg(&neightet, tstart); + adjustedgering(neightet, CCW); + if (org(neightet) != tstart) { + enextself(neightet); // keep the same origin. + } + // Set the changed configuration. + *searchtet = neightet; + ori1 = -1.0; + tdest = dest(*searchtet); + tapex = apex(*searchtet); + // Continue the search from the changed 'searchtet'. + continue; + } else { + // A hull face. Only possible for a nonconvex mesh. +#ifdef SELF_CHECK + assert(nonconvex); +#endif + return BELOWHULL; + } + } + ori3 = orient3d(tapex, toppo, tstart, tend); + if (ori3 > 0.0) { + // 'tend' is below the face, get the neighbor at this side. + enext2fnext(*searchtet, neightet); + symself(neightet); + if (neightet.tet != dummytet) { + findorg(&neightet, tstart); + adjustedgering(neightet, CCW); + if (org(neightet) != tstart) { + enextself(neightet); // keep the same origin. + } + // Set the changed configuration. + *searchtet = neightet; + ori1 = -1.0; + tdest = dest(*searchtet); + tapex = apex(*searchtet); + // Continue the search from the changed 'searchtet'. + continue; + } else { + // A hull face. Only possible for a nonconvex mesh. +#ifdef SELF_CHECK + assert(nonconvex); +#endif + return BELOWHULL; + } + } + // Now 'ori1', 'ori2' and 'ori3' are possible be 0.0 or all < 0.0; + if (ori1 < 0.0) { + // Possible cases are: ACROSSFACE, ACROSSEDGE, TOPCOLLINEAR. + if (ori2 < 0.0) { + if (ori3 < 0.0) { + return ACROSSFACE; + } else { // ori3 == 0.0; + // Cross edge (apex, oppo) + enext2fnextself(*searchtet); + esymself(*searchtet); // org(*searchtet) == tstart; + return ACROSSEDGE; + } + } else { // ori2 == 0.0; + if (ori3 < 0.0) { + // Cross edge (dest, oppo) + fnextself(*searchtet); + esymself(*searchtet); + enextself(*searchtet); // org(*searchtet) == tstart; + return ACROSSEDGE; + } else { // ori3 == 0.0; + // Collinear with edge (org, oppo) + return TOPCOLLINEAR; + } + } + } else { // ori1 == 0.0; + // Possible cases are: RIGHTCOLLINEAR, LEFTCOLLINEAR, ACROSSEDGE. + if (ori2 < 0.0) { + if (ori3 < 0.0) { + // Cross edge (tdest, tapex) + return ACROSSEDGE; + } else { // ori3 == 0.0 + // Collinear with edge (torg, tapex) + return LEFTCOLLINEAR; + } + } else { // ori2 == 0.0; + assert(ori3 != 0.0); + // Collinear with edge (torg, tdest) + return RIGHTCOLLINEAR; + } + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getsearchtet() Find a tetrahedron whose origin is either 'p1' or 'p2'. // +// // +// On return, the origin of 'searchtet' is either 'p1' or 'p2', and 'tend' // +// returns the other point. 'searchtet' serves as the starting tetrahedron // +// for searching of the line segment from 'p1' to 'p2' or vice versa. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +getsearchtet(point p1, point p2, triface* searchtet, point* tend) +{ + tetrahedron encodedtet1, encodedtet2; + + // Is there a valid handle provided by the user? + if ((searchtet->tet != (tetrahedron *) NULL) && !isdead(searchtet)) { + // Find which endpoint the handle holds. + if (findorg(searchtet, p1)) { + *tend = p2; + return; + } else { + if (findorg(searchtet, p2)) { + *tend = p1; + return; + } + } + } + // If not, search the handle stored in 'p1' or 'p2'. + *tend = (point) NULL; + encodedtet1 = point2tet(p1); + encodedtet2 = point2tet(p2); + if (encodedtet1 != (tetrahedron) NULL) { + decode(encodedtet1, *searchtet); + // Be careful, here 'searchtet' may be dead. + if (findorg(searchtet, p1)) { + *tend = p2; + } + } else if (encodedtet2 != (tetrahedron) NULL) { + decode(encodedtet2, *searchtet); + // Be careful, here 'searchtet' may be dead. + if (findorg(searchtet, p2)) { + *tend = p1; + } + } + // If still not, perform a full point location. The starting tetrahedron + // is chosen as follows: Use the handle stored in 'p1' or 'p2' if it is + // alive; otherwise, start from a tetrahedron on the convex hull. + if (*tend == (point) NULL) { + if (encodedtet1 != (tetrahedron) NULL) { + decode(encodedtet1, *searchtet); + // Be careful, here 'searchtet' may be dead. + } + if (isdead(searchtet)) { + if (encodedtet2 != (tetrahedron) NULL) { + decode(encodedtet2, *searchtet); + // Be careful, here 'searchtet' may be dead. + } + if (isdead(searchtet)) { + searchtet->tet = dummytet; + searchtet->loc = 0; + symself(*searchtet); + } + assert(!isdead(searchtet)); + } + if (locate(p1, searchtet) != ONVERTEX) { + printf("Internal error in getsearchtet(): Failed to locate point\n"); + printf(" (%.12g, %.12g, %.12g) %d.\n", p1[0], p1[1], p1[2], + pointmark(p1)); + internalerror(); + } + // Remember this handle in 'p1' to enhance the search speed. + setpoint2tet(p1, encode(*searchtet)); + *tend = p2; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// isedgeencroached() Check whether or not a subsegment is encroached by // +// a given point. // +// // +// A segment with endpoints 'p1' and 'p2' is encroached by the point 'testpt'// +// if it lies in the diametral sphere of this segment. The degenerate case // +// that 'testpt' lies on the sphere can be treated as either be encroached // +// or not so. If you want to regard this case as be encroached, set the flag // +// 'degflag' be TRUE. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +isedgeencroached(point p1, point p2, point testpt, bool degflag) +{ + REAL dotproduct; + + // Check if the segment is facing an angle larger than 90 degree? + dotproduct = (p1[0] - testpt[0]) * (p2[0] - testpt[0]) + + (p1[1] - testpt[1]) * (p2[1] - testpt[1]) + + (p1[2] - testpt[2]) * (p2[2] - testpt[2]); + if (dotproduct < 0) { + return true; + } else if (dotproduct == 0 && degflag) { + return true; + } else { + return false; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// scoutrefpoint() Search the reference point of a missing segment. // +// // +// A segment S is missing in current Delaunay tetrahedralization DT and will // +// be split by inserting a point V in it. The two end points of S are the // +// origin of 'searchtet' and 'tend'. And we know that S is crossing the face // +// of 'searchtet' opposite to its origin (may be intersecting with the edge // +// from the destination to the apex of the 'searchtet'). The search of P is // +// completed by walking through all faces of DT across by S. // +// // +// The reference point P of S is an existing vertex of DT which is 'respon- // +// sible' for deciding where to insert V. P is chosen as follows: // +// (1) P encroaches upon S; and // +// (2) the circumradius of the smallest circumsphere of the triangle // +// formed by the two endpoints of S and P is maximum over other // +// encroaching points of S. // +// The reference point of S may not unique, choose arbitrary one if there're // +// several points available. // +// // +// Warning: This routine is correct when the tetrahedralization is Delaunay // +// and convex. Otherwise, the search loop may not terminate. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::point tetgenmesh::scoutrefpoint(triface* searchtet, point tend) +{ + triface checkface; + point tstart, testpt, refpoint; + REAL cent[3], radius, largest; + REAL ahead; + bool ncollinear; + int sides; + + if (b->verbose > 2) { + printf(" Scout the reference point of segment (%d, %d).\n", + pointmark(org(*searchtet)), pointmark(tend)); + } + + tstart = org(*searchtet); + refpoint = (point) NULL; + + // Check the three vertices of the crossing face. + testpt = apex(*searchtet); + if (isedgeencroached(tstart, tend, testpt, true)) { + ncollinear = circumsphere(tstart, tend, testpt, NULL, cent, &radius); + assert(ncollinear); + refpoint = testpt; + largest = radius; + } + testpt = dest(*searchtet); + if (isedgeencroached(tstart, tend, testpt, true)) { + ncollinear = circumsphere(tstart, tend, testpt, NULL, cent, &radius); + assert(ncollinear); + if (refpoint == (point) NULL) { + refpoint = testpt; + largest = radius; + } else { + if (radius > largest) { + refpoint = testpt; + largest = radius; + } + } + } + testpt = oppo(*searchtet); + if (isedgeencroached(tstart, tend, testpt, true)) { + ncollinear = circumsphere(tstart, tend, testpt, NULL, cent, &radius); + assert(ncollinear); + if (refpoint == (point) NULL) { + refpoint = testpt; + largest = radius; + } else { + if (radius > largest) { + refpoint = testpt; + largest = radius; + } + } + } + // Check the opposite vertex of the neighboring tet in case the segment + // crosses the edge (leftpoint, rightpoint) of the crossing face. + sym(*searchtet, checkface); + if (checkface.tet != dummytet) { + testpt = oppo(checkface); + if (isedgeencroached(tstart, tend, testpt, true)) { + ncollinear = circumsphere(tstart, tend, testpt, NULL, cent, &radius); + assert(ncollinear); + if (refpoint == (point) NULL) { + refpoint = testpt; + largest = radius; + } else { + if (radius > largest) { + refpoint = testpt; + largest = radius; + } + } + } + } + + // Walk through all crossing faces. + enextfnext(*searchtet, checkface); + sym(checkface, *searchtet); + while (true) { + // Check if we are reaching the boundary of the triangulation. + assert(searchtet->tet != dummytet); + // Search for an adjoining tetrahedron we can walk through. + searchtet->ver = 0; + // 'testpt' is the shared vertex for the following orientation tests. + testpt = oppo(*searchtet); + if (testpt == tend) { + // The searching is finished. + break; + } else { + // 'testpt' may encroach the segment. + if ((testpt != tstart) && (testpt != refpoint)) { + if (isedgeencroached(tstart, tend, testpt, true)) { + ncollinear = circumsphere(tstart, tend, testpt, NULL, cent, &radius); + if (!ncollinear) { + // 'testpt' is collinear with the segment. It may happen when a + // set of collinear and continuous segments is defined by two + // extreme endpoints. In this case, we should choose 'testpt' + // as the splitting point immediately. No new point should be + // created. + refpoint = testpt; + break; + } + if (refpoint == (point) NULL) { + refpoint = testpt; + largest = radius; + } else { + if (radius > largest) { + refpoint = testpt; + largest = radius; + } + } + } + } + } + // Check three side-faces of 'searchtet' to find the one through + // which we can walk next. + for (sides = 0; sides < 3; sides++) { + fnext(*searchtet, checkface); + ahead = orient3d(org(checkface), dest(checkface), testpt, tend); + if (ahead < 0.0) { + // We can walk through this face and continue the searching. + sym(checkface, *searchtet); + break; + } + enextself(*searchtet); + } + assert (sides < 3); + } + + assert(refpoint != (point) NULL); + return refpoint; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getsegmentorigin() Return the origin of the (unsplit) segment. // +// // +// After a segment (or a subsegment) is split. Two resulting subsegments are // +// connecting each other through the pointers saved in their data fields. // +// With these pointers, the whole (unsplit) segment can be found. 'splitseg' // +// may be a split subsegment. Returns the origin of the unsplit segment. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::point tetgenmesh::getsegmentorigin(face* splitseg) +{ + face workseg; + point farorg; + + farorg = sorg(*splitseg); + if ((pointtype(farorg) != ACUTEVERTEX) && + (pointtype(farorg) != NONACUTEVERTEX)) { + workseg = *splitseg; + do { + senext2self(workseg); + spivotself(workseg); + if (workseg.sh != dummysh) { + workseg.shver = 0; // It's a subsegment. + if (sdest(workseg) != farorg) { + sesymself(workseg); + assert(sdest(workseg) == farorg); + } + farorg = sorg(workseg); + if ((pointtype(farorg) == ACUTEVERTEX) || + (pointtype(farorg) == NONACUTEVERTEX)) break; + } + } while (workseg.sh != dummysh); + } + assert((pointtype(farorg) == ACUTEVERTEX) || + (pointtype(farorg) == NONACUTEVERTEX)); + return farorg; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// getsplitpoint() Get a point for splitting a segment. // +// // +// 'splitseg' is the segment will be split. 'refpoint' is a reference point // +// for splitting this segment. Moreover, it should not collinear with the // +// splitting segment. (The collinear case will be detected by iscollinear() // +// before entering this routine.) The calculation of the splitting point is // +// governed by three rules introduced in my paper. // +// // +// After the position is calculated, a new point is created at this location.// +// The new point has one of the two pointtypes: FREESEGVERTEX indicating it // +// is an inserting vertex on segment, and NONACUTEVERTEX indicating it is an // +// endpoint of a segment which original has type-3 now becomes type-2. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::point tetgenmesh::getsplitpoint(face* splitseg, point refpoint) +{ + point splitpoint; + point farorg, fardest; + point ei, ej, ek, c; + REAL v[3], r, split; + bool acuteorg, acutedest; + int stype, ptmark; + int i; + + // First determine the type of the segment (type-1, type-2, or type-3). + farorg = getsegmentorigin(splitseg); + acuteorg = (pointtype(farorg) == ACUTEVERTEX); + sesymself(*splitseg); + fardest = getsegmentorigin(splitseg); + acutedest = (pointtype(fardest) == ACUTEVERTEX); + sesymself(*splitseg); + + if (acuteorg) { + if (acutedest) { + stype = 3; + } else { + stype = 2; + ek = farorg; + } + } else { + if (acutedest) { + stype = 2; + // Adjust splitseg, so that its origin is acute. + sesymself(*splitseg); + ek = fardest; + } else { + stype = 1; + } + } + ei = sorg(*splitseg); + ej = sdest(*splitseg); + + if (b->verbose > 1) { + printf(" Splitting segment (%d, %d) type-%d with refpoint %d.\n", + pointmark(ei), pointmark(ej), stype, pointmark(refpoint)); + } + + if (stype == 1 || stype == 3) { + // Use rule-1. + REAL eij, eip, ejp; + eij = distance(ei, ej); + eip = distance(ei, refpoint); + ejp = distance(ej, refpoint); + if ((eip < ejp) && (eip < 0.5 * eij)) { + c = ei; + r = eip; + } else if ((eip > ejp) && (ejp < 0.5 * eij)) { + c = ej; + ej = ei; + r = ejp; + } else { + c = ei; + r = 0.5 * eij; + } + split = r / eij; + for (i = 0; i < 3; i++) { + v[i] = c[i] + split * (ej[i] - c[i]); + } + } else { + // Use rule-2 or rule-3. + REAL eki, ekj, ekp, evj, evp, eiv; + c = ek; + eki = distance(ek, ei); // eki may equal zero. + ekj = distance(ek, ej); + ekp = distance(ek, refpoint); + // Calculate v (the going to split position between ei, ej). + r = ekp; + assert(eki < r && r < ekj); + split = r / ekj; + for (i = 0; i < 3; i++) { + v[i] = c[i] + split * (ej[i] - c[i]); + } + evj = ekj - r; // distance(v, ej); + evp = distance(v, refpoint); + if (evj < evp) { + // v is rejected, use rule-3. + eiv = distance(ei, v); + if (evp <= 0.5 * eiv) { + r = eki + eiv - evp; + } else { + r = eki + 0.5 * eiv; + } + assert(eki < r && r < ekj); + split = r / ekj; + for (i = 0; i < 3; i++) { + v[i] = c[i] + split * (ej[i] - c[i]); + } + if (b->verbose > 1) { + printf(" Using rule-3.\n"); + } + } + } + + if (b->verbose > 1) { + if (stype == 2) { + printf(" Split = %.12g.\n", distance(ei, v) / distance(ei, ej)); + } else { + printf(" Split = %.12g.\n", distance(c, v) / distance(c, ej)); + } + } + + // Allocate a point from points. + splitpoint = (point) points->alloc(); + // Set its coordinates. + for (i = 0; i < 3; i++) { + splitpoint[i] = v[i]; + } + // Interpolate its attributes. + for (i = 0; i < in->numberofpointattributes; i++) { + splitpoint[i + 3] = c[i + 3] + split * (ej[i + 3] - c[i + 3]); + } + // Remember the index (starts from 'in->firstnumber') of this vertex. + ptmark = (int) points->items - (in->firstnumber == 1 ? 0 : 1); + setpointmark(splitpoint, ptmark); + if (stype == 3) { + // Change a type-3 segment into two type-2 segments. + setpointtype(splitpoint, NONACUTEVERTEX); + } else { + // Set it's type be FREESEGVERTEX. + setpointtype(splitpoint, FREESEGVERTEX); + } + // Init this field. + setpoint2tet(splitpoint, NULL); + + return splitpoint; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// delaunizesegments() Split segments repeatedly until they appear in a // +// Delaunay tetrahedralization together. // +// // +// Given a PLC X, which has a set V of vertices and a set of segments. Start // +// from a Delaunay tetrahedralization D of V, this routine recovers segments // +// of X in D by incrementally inserting points on missing segments, updating // +// D with the newly inserted points into D', which remains to be a Delaunay // +// tetrahedralization and respects the segments of X. Hence, each segment of // +// X appears as a union of edges in D'. // +// // +// This routine dynamically maintains two meshes, one is DT, another is the // +// surface mesh F of X. DT and F have exactly the same vertices. They are // +// updated simultaneously with the newly inserted points. // +// // +// Missing segments are found by looping the set S of segments, checking the // +// existence of each segment in DT. Once a segment is found missing in DT, // +// it is split into two subsegments by inserting a point into both DT and F, // +// and S is updated accordingly. However, the inserted point may cause some // +// other existing segments be non-Delaunay, hence are missing from the DT. // +// In order to force all segments to appear in DT, we have to loop S again // +// after some segments are split. (A little ugly method) Use a handle to // +// remember the last segment be split in one loop, hence all segments after // +// it are existing and need not be checked. // +// // +// In priciple, a segment on the convex hull should exist in DT. However, if // +// there are four coplanar points on the convex hull, and the DT only can // +// contain one diagonal edge which is unfortunately not the segment, then it // +// is missing. During the recovery of the segment, it is possible that the // +// calculated inserting point for recovering this convex hull segment is not // +// exact enough and lies (slightly) outside the DT. In order to insert the // +// point, we enlarge the convex hull of the DT, so it can contain the point // +// and remains convex. 'inserthullsite()' is called under this case. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::delaunizesegments() +{ + queue *flipqueue; + triface searchtet; + face segloop, lastsplit; + face splitsh; + point p1, p2; + point tend, checkpoint; + point refpoint, splitpoint; + enum finddirectionresult collinear; + enum insertsiteresult success; + bool finish; + + if (!b->quiet) { + printf("Delaunizing segments.\n"); + } + + // Mark segment vertices (acute or not) for determining segment types. + markacutevertices(60.0); + // Construct a map from points to tetrahedra for speeding point location. + makepoint2tetmap(); + // Initialize a queue for returning non-Delaunay faces and edges. + flipqueue = new queue(sizeof(badface)); + // 'lastsplit' is the last segment be split in one loop, all segments + // after it are existing. At first, set it be NULL; + lastsplit.sh = (shellface *) NULL; + + finish = false; + while (!finish && (steinerleft != 0)) { + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while ((segloop.sh != (shellface *) NULL) && (steinerleft != 0)) { + // Search the segment in DT. + p1 = sorg(segloop); + p2 = sdest(segloop); + if (b->verbose > 2) { + printf(" Checking segment (%d, %d).\n", pointmark(p1), pointmark(p2)); + } + getsearchtet(p1, p2, &searchtet, &tend); + collinear = finddirection(&searchtet, tend); + if (collinear == LEFTCOLLINEAR) { + checkpoint = apex(searchtet); + } else if (collinear == RIGHTCOLLINEAR) { + checkpoint = dest(searchtet); + } else if (collinear == TOPCOLLINEAR) { + checkpoint = oppo(searchtet); + } else { + assert(collinear == ACROSSFACE || collinear == ACROSSEDGE); + checkpoint = (point) NULL; + } + if (checkpoint != tend) { + // The segment is missing. + if (checkpoint != (point) NULL) { + splitpoint = checkpoint; + } else { + refpoint = scoutrefpoint(&searchtet, tend); + if (iscollinear(p1, p2, refpoint, b->epsilon)) { + splitpoint = refpoint; + } else { + splitpoint = getsplitpoint(&segloop, refpoint); + // Insert 'splitpoint' into DT. + success = insertsite(splitpoint, &searchtet, false, flipqueue); + if (success == OUTSIDEPOINT) { + // A convex hull edge is mssing, and the inserting point lies + // (slightly) outside the convex hull due to the significant + // digits lost in the calculation. Enlarge the convex hull. + inserthullsite(splitpoint, &searchtet, flipqueue, NULL, NULL); + } + if (steinerleft > 0) steinerleft--; + // Remember a handle in 'splitpoint' to enhance the speed of + // consequent point location. + setpoint2tet(splitpoint, encode(searchtet)); + // Maintain Delaunayness in DT. + flip(flipqueue, NULL); + } + } + // Insert 'splitpoint' into F. + spivot(segloop, splitsh); + splitsubedge(splitpoint, &splitsh, flipqueue); + flipsub(flipqueue); + // Remember 'segloop'. + lastsplit = segloop; + } else { + // The segment exists. + if (segloop.sh == lastsplit.sh) { + finish = true; + break; + } + } + segloop.sh = shellfacetraverse(subsegs); + } + if (lastsplit.sh == (shellface *) NULL) { + // No missing segment! + finish = true; + } + } + + delete flipqueue; +} + +// +// End of segments recovery routines +// + +// +// Begin of constrained Delaunay triangulation routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// insertsubface() Insert a subface into the Delaunay tetrahedralization. // +// // +// Search the subface in current Delaunay tetrahedralization. Return TRUE if // +// the subface exists, i.e., it appears as a face of the DT and is inserted. // +// Otherwise, return FALSE indicating it is a missing face. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::insertsubface(face* insertsh, triface* searchtet) +{ + triface spintet, symtet; + face testsh, testseg; + face spinsh, casin, casout; + point tapex, checkpoint; + enum finddirectionresult collinear; + int hitbdry; + + // Search one edge of 'insertsh'. + getsearchtet(sorg(*insertsh), sdest(*insertsh), searchtet, &checkpoint); + collinear = finddirection(searchtet, checkpoint); + if (collinear == LEFTCOLLINEAR) { + enext2self(*searchtet); + esymself(*searchtet); + } else if (collinear == TOPCOLLINEAR) { + fnextself(*searchtet); + enext2self(*searchtet); + esymself(*searchtet); + } + if (dest(*searchtet) != checkpoint) { + // The edge is missing => subface is missing. + return false; + } + + // Spin around the edge (torg, tdest), look for a face containing tapex. + tapex = sapex(*insertsh); + spintet = *searchtet; + hitbdry = 0; + do { + if (apex(spintet) == tapex) { + // The subface is exist in DT. We will insert this subface. Before + // insertion, make sure there is no subface at this position. + tspivot(spintet, testsh); + if (testsh.sh == dummysh) { + adjustedgering(spintet, CCW); + findedge(insertsh, org(spintet), dest(spintet)); + tsbond(spintet, *insertsh); + sym(spintet, symtet); // 'symtet' maybe outside, use it anyway. + sesymself(*insertsh); + tsbond(symtet, *insertsh); + } else { + // There already exists one subface. They're Duplicated. + printf("Warning: Two subfaces are found duplicated at "); + printf("(%d, %d, %d)\n", pointmark(sorg(testsh)), + pointmark(sdest(testsh)), pointmark(sapex(testsh))); + printf(" The one of facet #%d is ignored.\n", shellmark(*insertsh)); + // printf(" Hint: -d switch can find all duplicated facets.\n"); + } + return true; + } + if (!fnextself(spintet)) { + hitbdry ++; + if (hitbdry < 2) { + esym(*searchtet, spintet); + if (!fnextself(spintet)) { + hitbdry ++; + } + } + } + } while (hitbdry < 2 && apex(spintet) != apex(*searchtet)); + + // The face is missing. + return false; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tritritest() Test if two triangles are intersecting in their interior. // +// // +// One triangles is represented by 'checktet', the other is given by three // +// corners 'p1', 'p2' and 'p3'. This routine calls triangle_triangle_inter() // +// to detect whether or not these two triangles are exactly intersecting in // +// their interior (excluding the cases share a vertex, share an edge, or are // +// coincide). // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::tritritest(triface* checktet, point p1, point p2, point p3) +{ + point forg, fdest, fapex; + enum intersectresult intersect; + + forg = org(*checktet); + fdest = dest(*checktet); + fapex = apex(*checktet); + +#ifdef SELF_CHECK + REAL ax, ay, az, bx, by, bz; + REAL n[3]; + // face (torg, tdest, tapex) should not be degenerate. However p1, p2, + // and p3 may be collinear. Check it. + ax = forg[0] - fdest[0]; + ay = forg[1] - fdest[1]; + az = forg[2] - fdest[2]; + bx = forg[0] - fapex[0]; + by = forg[1] - fapex[1]; + bz = forg[2] - fapex[2]; + n[0] = ay * bz - by * az; + n[1] = az * bx - bz * ax; + n[2] = ax * by - bx * ay; + assert(fabs(n[0]) + fabs(n[1]) + fabs(n[2]) > 0.0); + // The components of n should not smaller than the machine epsilon. + + ax = p1[0] - p2[0]; + ay = p1[1] - p2[1]; + az = p1[2] - p2[2]; + bx = p1[0] - p3[0]; + by = p1[1] - p3[1]; + bz = p1[2] - p3[2]; + n[0] = ay * bz - by * az; + n[1] = az * bx - bz * ax; + n[2] = ax * by - bx * ay; + assert(fabs(n[0]) + fabs(n[1]) + fabs(n[2]) > 0.0); + // The components of n should not smaller than the machine epsilon. +#endif + + intersect = triangle_triangle_inter(forg, fdest, fapex, p1, p2, p3); + return intersect == INTERSECT; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// initializecavity() Create the initial fronts. // +// // +// 'floorlist' is a list of coplanar subfaces, they are oriented in the same // +// direction pointing to the ceiling. 'ceilinglist' is a list of faces of // +// tetrahedra which are crossing the cavity, they form the rest part of the // +// boundary of the cavity. 'frontlink' is used to return the list of fronts, // +// it is empty on input. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +initializecavity(list* floorlist, list* ceillist, list* floorptlist, + list* ceilptlist, link* frontlink, link* ptlink) +{ + triface neightet, casingtet; + triface faketet; + face worksh; + int i; + + // First add all faces in 'floorlist' into 'frontlink'. + for (i = 0; i < floorlist->len(); i++) { + worksh = * (face *)(* floorlist)[i]; + // Current side of 'worksh' should be empty. + stpivot(worksh, neightet); + assert(neightet.tet == dummytet); + // Check another side, if there is no tetrahedron, create a 'fake' + // tetrahedron in order to hold this side. It will be removed + // during filling the cavity. + sesymself(worksh); + stpivot(worksh, casingtet); + if (casingtet.tet == dummytet) { + maketetrahedron(&faketet); + setorg(faketet, sorg(worksh)); + setdest(faketet, sdest(worksh)); + setapex(faketet, sapex(worksh)); + setoppo(faketet, (point) NULL); // Indicates it is 'fake'. + tsbond(faketet, worksh); + frontlink->add(&faketet); + } else { + frontlink->add(&casingtet); + } + } + // Second add all casing faces in 'ceilinglist' into 'frontlink'. + for (i = 0; i < ceillist->len(); i++) { + neightet = * (triface *) (* ceillist)[i]; + // The ceil is a face of cavity tetrahedron (going to be deleted). + assert(infected(neightet)); + sym(neightet, casingtet); + if (casingtet.tet == dummytet) { + // This side is on the hull. Create a 'fake' tetrahedron in order to + // hold this side. It will be removed during filling the cavity. + tspivot(neightet, worksh); + maketetrahedron(&faketet); + setorg(faketet, org(neightet)); + setdest(faketet, dest(neightet)); + setapex(faketet, apex(neightet)); + setoppo(faketet, (point) NULL); // Indicates it is 'fake'. + if (worksh.sh != dummysh) { + sesymself(worksh); + tsbond(faketet, worksh); + } + frontlink->add(&faketet); + } else { + frontlink->add(&casingtet); + } + } + // Put points in 'equatptlist' and 'ceilptlist' into 'ptlink'. + for (i = 0; i < floorptlist->len(); i++) { + ptlink->add((point *)(* floorptlist)[i]); + } + for (i = 0; i < ceilptlist->len(); i++) { + ptlink->add((point *)(* ceilptlist)[i]); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// reducecavity() Reduce the cavity by chopping off tetrahedra formed by // +// faces in 'frontlink' without creating new edges. // +// // +// When a face of cavity has three neighbors which are sharing a same vertex,// +// form a tetrahedron from the face and the vertex, consequently, four faces // +// of the cavity are removed. If only two of its three neighbors share a // +// common vertex, it only can form a tetrahedron when no vertex of the // +// cavity lies inside the tetrahedorn, consequently, three faces are removed // +// from the cavity and a face(at the open side) becomes a face of the cavity.// +// // +// Not every face of the cavity can be removed by this way. This routine // +// returns when there is no face can be removed. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::reducecavity(link* frontlink, link* ptlink, queue* flipqueue) +{ + triface front, *neigh[3], *checkface; + triface newtet, newface; + face checksh; + point *ploop; + point forg, fdest; + point workpt[3], shareoppo; + REAL sign; + bool isneighbor, isconvex; + int loopcount, share; + int i, j, k; + + if (b->verbose > 2) { + printf(" Reducecavity: %d faces.\n", (int) frontlink->len()); + } + + loopcount = 0; + while (loopcount < frontlink->len()) { + // Get and remove a front face from 'fronlink'. + front = * (triface *) frontlink->del(1); + // Make the front point to insde the cavity. + adjustedgering(front, CW); + if (b->verbose > 2) { + printf(" Get front (%d, %d, %d).\n", pointmark(org(front)), + pointmark(dest(front)), pointmark(apex(front))); + } + // Find the three neighbors of 'front' in 'frontlink'. They must exist, + // because the cavity is closed. + for (i = 0; i < 3; i++) { + forg = org(front); + fdest = dest(front); + isneighbor = false; + for (j = 0; j < frontlink->len() && !isneighbor; j++) { + checkface = (triface *) frontlink->getnitem(j + 1); + for (k = 0; k < 3; k++) { + workpt[0] = org(*checkface); + workpt[1] = dest(*checkface); + if (workpt[0] == forg) { + if (workpt[1] == fdest) isneighbor = true; + } else if (workpt[0] == fdest) { + if (workpt[1] == forg) isneighbor = true; + } + if (isneighbor) { + neigh[i] = checkface; + break; + } + enextself(*checkface); + } + } + assert(isneighbor); + enextself(front); + } + + // Find the number of common apexes. + for (i = 0; i < 3; i++) { + workpt[i] = apex(*neigh[i]); + } + if (workpt[0] == workpt[1]) { + shareoppo = workpt[0]; + if (workpt[1] == workpt[2]) { + share = 3; + } else { + share = 2; + } + } else if (workpt[0] == workpt[2]) { + shareoppo = workpt[0]; + share = 2; + } else { + if (workpt[1] == workpt[2]) { + shareoppo = workpt[1]; + share = 2; + } else { + share = 1; + } + } + + if (share == 2) { + // It is possible that the open side is also a cavity face, but not + // pop up because there are more than two cavity faces sharing the + // edge. Check is there a cavity face having this edge and having + // its apex be 'shareoppo'. + for (i = 0; i < 3; i++) { + if (workpt[i] != shareoppo) { + // 'neigh[i]' is the open side. Get the edge. + forg = org(*neigh[i]); + fdest = dest(*neigh[i]); + break; + } + } + assert(i < 3); + // Search faces containing edge (forg, fdest) in 'frontlist'. If + // the found face containing 'shareoppo', stop; + for (j = 0; j < frontlink->len() && share != 3; j++) { + checkface = (triface *) frontlink->getnitem(j + 1); + // Skip if it is one of the neighbors. + if ((checkface == neigh[0]) || (checkface == neigh[1]) || + (checkface == neigh[2])) continue; + isneighbor = false; + for (k = 0; k < 3; k++) { + workpt[0] = org(*checkface); + workpt[1] = dest(*checkface); + if (workpt[0] == forg) { + if (workpt[1] == fdest) isneighbor = true; + } else if (workpt[0] == fdest) { + if (workpt[1] == forg) isneighbor = true; + } + if (isneighbor) { + if (apex(*checkface) == shareoppo) { + // Find! Change the old neighbor at this side be this one. + neigh[i] = checkface; + share = 3; + break; + } + } + enextself(*checkface); + } + } + } + + isconvex = true; + if (share == 2 || share == 3) { + // It is possible to reduce the cavity by constructing a tetrahedron + // from the face 'front' and 'shareoppo'. However, we have to make + // sure that this tetrahedron is valid, i.e., shareoppo should lie + // above front. + workpt[0] = org(front); + workpt[1] = dest(front); + workpt[2] = apex(front); + sign = orient3d(workpt[0], workpt[1], workpt[2], shareoppo); + if (sign > 0.0) { + // It is not a valid tetrahedron, skip to create it. + isconvex = false; + } else if (sign == 0.0) { + // These four points are coplanar. If there are only three faces + // left, we should stop here. Create a degenerate tetrahedron + // on these four faces and return. It will be repaired later. + if (frontlink->len() > 3) { + isconvex = false; + } + } + } + if (share == 2 && isconvex) { + // Check if we can reduce the tetrahedron formed by the front and the + // shareoppo. The condition is no vertex is inside the tetrahedron. + for (i = 0; i < ptlink->len() && isconvex; i++) { + ploop = (point *) ptlink->getnitem(i + 1); + if (*ploop == workpt[0] || *ploop == workpt[1] || *ploop == workpt[2] + || *ploop == shareoppo) continue; + sign = orient3d(workpt[0], workpt[1], workpt[2], *ploop); + isconvex = sign > 0.0; + if (isconvex) continue; + sign = orient3d(workpt[1], workpt[0], shareoppo, *ploop); + isconvex = sign > 0.0; + if (isconvex) continue; + sign = orient3d(workpt[2], workpt[1], shareoppo, *ploop); + isconvex = sign > 0.0; + if (isconvex) continue; + sign = orient3d(workpt[0], workpt[2], shareoppo, *ploop); + isconvex = sign > 0.0; + } + } + + if (share == 1 || !isconvex) { + // Put 'front' back into 'frontlink'. + frontlink->add(&front); + loopcount++; // Increase the loop counter. + continue; + } else { + // Find a reducable tetrahedron. Reset the loop counter. + loopcount = 0; + } + + if (b->verbose > 2) { + for (i = 0; i < 3; i++) { + if (apex(*neigh[i]) == shareoppo) { + printf(" (%d, %d, %d).\n", pointmark(org(*neigh[i])), + pointmark(dest(*neigh[i])), pointmark(apex(*neigh[i]))); + } + } + } + + // The front will be finished by two or three faces. + maketetrahedron(&newtet); + setorg(newtet, org(front)); + setdest(newtet, dest(front)); + setapex(newtet, apex(front)); + setoppo(newtet, shareoppo); + // 'front' may be a 'fake' tet. + tspivot(front, checksh); + if (oppo(front) == (point) NULL) { + // Dealloc the 'fake' tet. + tetrahedrondealloc(front.tet); + // This side (newtet) is a boundary face, let 'dummytet' bond to it. + // Otherwise, 'dummytet' may point to a dead tetrahedron after the + // old cavity tets are removed. + dummytet[0] = encode(newtet); + } else { + // Bond two tetrahedra, also dissolve the old bond at 'front'. + bond(newtet, front); + // 'front' becomes an interior face, add it to 'flipqueue'. + if (flipqueue != (queue *) NULL) { + enqueueflipface(front, flipqueue); + } + } + if (checksh.sh != dummysh) { + if (oppo(front) == (point) NULL) { + stdissolve(checksh); + } + sesymself(checksh); + tsbond(newtet, checksh); + } + // Bond the neighbor faces to 'newtet'. + for (i = 0; i < 3; i++) { + fnext(newtet, newface); + if (apex(*neigh[i]) == shareoppo) { + // This side is finished. 'neigh[i]' may be a 'fake' tet. + tspivot(*neigh[i], checksh); + if (oppo(*neigh[i]) == (point) NULL) { + // Dealloc the 'fake' tet. + tetrahedrondealloc(neigh[i]->tet); + // This side (newface) is a boundary face, let 'dummytet' bond to + // it. Otherwise, 'dummytet' may point to a dead tetrahedron + // after the old cavity tets are removed. + dummytet[0] = encode(newface); + } else { + // Bond two tetrahedra, also dissolve the old bond at 'neigh[i]'. + bond(newface, *neigh[i]); + // 'neigh[i]' becomes an interior face, add it to 'flipqueue'. + if (flipqueue != (queue *) NULL) { + enqueueflipface(*neigh[i], flipqueue); + } + } + if (checksh.sh != dummysh) { + if (oppo(*neigh[i]) == (point) NULL) { + stdissolve(checksh); + } + sesymself(checksh); + tsbond(newface, checksh); + } + // Remove it from the link. + frontlink->del(neigh[i]); + } else { + // This side is unfinished. Add 'newface' into 'frontlink'. + frontlink->add(&newface); + } + // Get the face in 'newtet' corresponding to 'neigh[i]'. + enextself(newtet); + } + } // End of while loop. + + return frontlink->len() == 0; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// reducecavity1() Reduce the cavity by forming a new tetrahedron from a // +// cavity face to a visible point. As a result, create // +// one or more new edges inside the cavity. // +// // +// We know that the cavity is not simply reducable, we have to create new // +// faces inside the cavity in order to reduce the cavity. This routine finds // +// the most suitable edge we can create in the cavity. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::reducecavity1(link* frontlink, queue* flipqueue) +{ + list *edgelist; + triface front, *neigh[3], *checkface; + triface newtet, newface; + face checksh; + point forg, fdest; + point workpt[3], *edgeends; + REAL sign; + bool isneighbor, isvalid; + bool isexist, isfind; + bool isreducable; + unsigned long count; + int loopcount; + int i, j, k; + + if (b->verbose > 2) { + printf(" Reducecavity1: %d faces.\n", (int) frontlink->len()); + } + + // Initialize 'edgelist'. Each edge has two endpoints and 1 counter. + edgelist = new list(sizeof(point) * 3, NULL); + + loopcount = 0; + while (loopcount < frontlink->len()) { + front = * (triface *) frontlink->getnitem(loopcount + 1); + // Make the front point to the inside of the cavity. + adjustedgering(front, CW); + if (b->verbose > 2) { + printf(" Get front (%d, %d, %d).\n", pointmark(org(front)), + pointmark(dest(front)), pointmark(apex(front))); + } + // Find the three neighbors of 'front' in 'frontlink'. + for (i = 0; i < 3; i++) { + forg = org(front); + fdest = dest(front); + isneighbor = false; + for (j = 0; j < frontlink->len() && !isneighbor; j++) { + if (j == loopcount) continue; + checkface = (triface *) frontlink->getnitem(j + 1); + for (k = 0; k < 3; k++) { + workpt[0] = org(*checkface); + workpt[1] = dest(*checkface); + if (workpt[0] == forg) { + if (workpt[1] == fdest) isneighbor = true; + } else if (workpt[0] == fdest) { + if (workpt[1] == forg) isneighbor = true; + } + if (isneighbor) { + neigh[i] = checkface; + break; + } + enextself(*checkface); + } + } + assert(isneighbor); + enextself(front); + } + // Check the three edges which are possibly created in cavity. + for (i = 0; i < 3; i++) { + // 'forg', 'fdest' is the edge. + forg = apex(front); + fdest = apex(*neigh[i]); + // Two face vertices. + workpt[0] = org(front); + workpt[1] = dest(front); + // Only do check if these four points form a positive volume. Allow + // the case that they are coplanar. + sign = orient3d(workpt[0], workpt[1], forg, fdest); + if (sign <= 0.0) { + // Check the face (forg, fdest, workpt[i]) is valid or not. + isvalid = true; + for (j = 0; j < 2 && isvalid; j++) { + // Skip the following tests if the face is (nearly) degenerate. + if (iscollinear(forg, fdest, workpt[j], b->epsilon)) { + isvalid = false; + } + for (k = 0; k < frontlink->len() && isvalid; k++) { + if (k == loopcount) continue; + checkface = (triface *) frontlink->getnitem(k + 1); + if (checkface == neigh[i]) continue; + isvalid = !tritritest(checkface, forg, fdest, workpt[j]); + } + } + if (isvalid) { + // This edge can be created. Check in 'edgelist', if it is not + // in there, add it, if it exists, increase its counter. + isexist = false; + for (j = 0; j < edgelist->len() && !isexist; j++) { + edgeends = (point *)(* edgelist)[j]; + if (edgeends[0] == forg) { + if (edgeends[1] == fdest) isexist = true; + } else if (edgeends[0] == fdest) { + if (edgeends[1] == forg) isexist = true; + } + } + if (!isexist) { + // Not exist, add it into 'edgelist'. + if (b->verbose > 2) { + printf(" Add edge (%d, %d).\n", pointmark(forg), + pointmark(fdest)); + } + edgeends = (point *) edgelist->append(NULL); + edgeends[0] = forg; + edgeends[1] = fdest; + edgeends[2] = (point) 1; + } else { + // Exist, only increase its counter. + if (b->verbose > 2) { + printf(" Increase edge (%d, %d)'s counter.\n", + pointmark(forg), pointmark(fdest)); + } + count = (unsigned long)(edgeends[2]); + edgeends[2] = (point) (++count); + } + } + } + enextself(front); + } + loopcount++; + } + + isreducable = edgelist->len() > 0; + + if (edgelist->len() > 0) { + // Get the edge which has the largest counter. + k = 0; + for (i = 0; i < edgelist->len(); i++) { + edgeends = (point *)(* edgelist)[i]; + count = (unsigned long)(edgeends[2]); + if (k < (int) count) { + k = (int) count; + j = i; + } + } + // Get the edge we want to create. + edgeends = (point *)(* edgelist)[j]; + if (b->verbose > 2) { + printf(" Create new edge (%d, %d).\n", pointmark(edgeends[0]), + pointmark(edgeends[1])); + } + // Find two adjacent faces in 'frontlink' conatining this edge's ends. + neigh[0] = neigh[1] = (triface *) NULL; + isfind = false; + for (i = 0; i < frontlink->len() && !isfind; i++) { + checkface = (triface *) frontlink->getnitem(i + 1); + for (j = 0; j < 3; j++) { + if (apex(*checkface) == edgeends[0]) { + neigh[0] = checkface; + break; + } + enextself(*checkface); + } + if (neigh[0] != (triface *) NULL) { + forg = org(*neigh[0]); + fdest = dest(*neigh[0]); + for (k = 0; k < frontlink->len(); k++) { + if (k == i) continue; + checkface = (triface *) frontlink->getnitem(k + 1); + isneighbor = false; + for (j = 0; j < 3; j++) { + workpt[0] = org(*checkface); + workpt[1] = dest(*checkface); + if (workpt[0] == forg) { + if (workpt[1] == fdest) isneighbor = true; + } else if (workpt[0] == fdest) { + if (workpt[1] == forg) isneighbor = true; + } + if (isneighbor) break; + enextself(*checkface); + } + if (isneighbor) { + if (apex(*checkface) == edgeends[1]) { + neigh[1] = checkface; + isfind = true; + break; + } + } + } + if (neigh[1] == (triface *) NULL) { + neigh[0] = (triface *) NULL; + } + } + } + assert(isfind); + if (b->verbose > 2) { + for (i = 0; i < 2; i++) { + printf(" Finish face (%d, %d, %d).\n", pointmark(org(*neigh[i])), + pointmark(dest(*neigh[i])), pointmark(apex(*neigh[i]))); + } + } + // Make the front point inside the cavity. + front = *neigh[0]; + adjustedgering(front, CW); + maketetrahedron(&newtet); + setorg(newtet, org(front)); + setdest(newtet, dest(front)); + setapex(newtet, apex(front)); + setoppo(newtet, edgeends[1]); + // 'front' may be a 'fake' tet. + tspivot(front, checksh); + if (oppo(front) == (point) NULL) { + // Dealloc the 'fake' tet. + tetrahedrondealloc(front.tet); + // This side (newtet) is a boundary face, let 'dummytet' bond to it. + // Otherwise, 'dummytet' may point to a dead tetrahedron after the + // old cavity tets are removed. + dummytet[0] = encode(newtet); + } else { + // Bond two tetrahedra, also dissolve the old bond at 'front'. + bond(newtet, front); + // 'front' becomes an interior face, add it to 'flipqueue'. + if (flipqueue != (queue *) NULL) { + enqueueflipface(front, flipqueue); + } + } + if (checksh.sh != dummysh) { + if (oppo(front) == (point) NULL) { + stdissolve(checksh); + } + sesymself(checksh); + tsbond(newtet, checksh); + } + fnext(newtet, newface); + // 'neigh[1]' may be a 'fake' tet. + tspivot(*neigh[1], checksh); + if (oppo(*neigh[1]) == (point) NULL) { + // Dealloc the 'fake' tet. + tetrahedrondealloc(neigh[1]->tet); + // This side (newface) is a boundary face, let 'dummytet' bond to it. + // Otherwise, 'dummytet' may point to a dead tetrahedron after the + // old cavity tets are removed. + dummytet[0] = encode(newface); + } else { + // Bond two tetrahedra, also dissolve the old bond at 'newface'. + bond(*neigh[1], newface); + // 'neigh[0]' becomes an interior face, add it to 'flipqueue'. + if (flipqueue != (queue *) NULL) { + enqueueflipface(*neigh[1], flipqueue); + } + } + if (checksh.sh != dummysh) { + if (oppo(*neigh[1]) == (point) NULL) { + stdissolve(checksh); + } + sesymself(checksh); + tsbond(newface, checksh); + } + // Remove 'neigh[0]', 'neigh[1]' from 'frontlink'. + frontlink->del(neigh[0]); + frontlink->del(neigh[1]); + // Add two new faces into 'frontlink'. + enextfnext(newtet, newface); + frontlink->add(&newface); + enext2fnext(newtet, newface); + frontlink->add(&newface); + } + + delete edgelist; + return isreducable; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// triangulatecavity() Triangulate a cavity by filling a set of Delaunay // +// tetrahedra inside. // +// // +// The boundary of the cavity is consisted of two list of triangular faces. // +// 'floorlist' is a list of coplanar subfaces. All subfaces are oriented in // +// the same direction so that the cavity is in the above part of each face. // +// 'ceilinglist' is a list of faces of tetrahedra which are crossing the // +// cavity, they form the rest part of the boundary of the cavity. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +triangulatecavity(list* floorlist, list* ceillist, list* floorptlist, + list* ceilptlist) +{ + link *frontlink; + link *ptlink; + queue *flipqueue; + + if (b->verbose > 1) { + printf(" Triangulate cavity %d floors, %d ceilings.\n", + floorlist->len(), ceillist->len()); + } + + // Initialize flipqueue; + flipqueue = new queue(sizeof(badface)); + // Initialize 'frontlink', 'ptlink'. + frontlink = new link(sizeof(triface), NULL, 256); + ptlink = new link(sizeof(point), NULL, 256); + + initializecavity(floorlist, ceillist, floorptlist, ceilptlist, frontlink, + ptlink); + + // Loop until 'frontlink' is empty. + while (frontlink->len() > 0) { + // Shrink the cavity by finishing easy connected fronts. + if (!reducecavity(frontlink, ptlink, flipqueue)) { + // Create new fronts inside the cavity (may insert point(s)). + if (!reducecavity1(frontlink, flipqueue)) { + // reducecavity2(frontlink, flipqueue); + assert(0); + } + } + } + // Some inner faces may need be flipped. + flip(flipqueue, NULL); + + delete frontlink; + delete ptlink; + delete flipqueue; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// formmissingregion() Form the missing region from a given missing face. // +// // +// 'missingsh' is a missing subface. Start from it, we can find the missing // +// adjoinging subfaces. More detail, remember that all missing subfaces have // +// been infected, and missing region of a facet is bounded by facet segments.// +// All missing subfaces of the region can be found by checking the neighbors // +// of 'missingsh', and the neighbors of the neighbors, and so on. // +// // +// 'missingshlist' returns all missing subfaces of this region, furthermore, // +// the edge rings of these subfaces are oriented in the same direction. // +// 'equatptlist' returns the vertices of the missing subfaces. Both lists // +// should be empty on input. 'worklist' is used for marking vertices of the // +// missing region. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +formmissingregion(face* missingsh, list* missingshlist, list* equatptlist, + int* worklist) +{ + face neighsh, worksh, workseg; + point workpt[3]; + int idx, i, j; + + // Add 'missingsh' into 'missingshlist'. + missingshlist->append(missingsh); + // Save and mark its three vertices. + workpt[0] = sorg(*missingsh); + workpt[1] = sdest(*missingsh); + workpt[2] = sapex(*missingsh); + for (i = 0; i < 3; i++) { + idx = pointmark(workpt[i]) - in->firstnumber; + worklist[idx] = 1; + equatptlist->append(&workpt[i]); + } + // Temporarily uninfect it (avoid to save it again). + suninfect(*missingsh); + + // Find other missing subfaces. + for (i = 0; i < missingshlist->len(); i++) { + // Get a missing subface. + worksh = * (face *)(* missingshlist)[i]; + // Check three neighbors of this face. + for (j = 0; j < 3; j++) { + sspivot(worksh, workseg); + if (workseg.sh == dummysh) { + spivot(worksh, neighsh); + if (sinfected(neighsh)) { + // Find a missing subface, adjust the edge ring. + if (sorg(neighsh) != sdest(worksh)) { + sesymself(neighsh); + } + if (b->verbose > 2) { + printf(" Add missing subface (%d, %d, %d).\n", + pointmark(sorg(neighsh)), pointmark(sdest(neighsh)), + pointmark(sapex(neighsh))); + } + missingshlist->append(&neighsh); + // Save and mark its apex. + workpt[0] = sapex(neighsh); + idx = pointmark(workpt[0]) - in->firstnumber; + worklist[idx] = 1; + equatptlist->append(&workpt[0]); + // Temporarily uninfect it (avoid to save it again). + suninfect(neighsh); + } + } + senextself(worksh); + } + } + + // The missing region has been formed. Infect missing subfaces again. + for (i = 0; i < missingshlist->len(); i++) { + worksh = * (face *)(* missingshlist)[i]; + sinfect(worksh); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// scoutcrossingedge() Search an edge crossing the missing region. // +// // +// 'missingshlist' contains all subfaces of the missing region. This routine // +// first form a 'boundedgelist' consists of all boundary edges of the region,// +// which are existing in DT (because they are either edges of existing faces // +// or segments of the facet). A crossing edge is found by rotating faces of // +// DT around one of the boundary edges. It is possible that there is no edge // +// crosses the missing region (e.g. the region has a degenerate point set). // +// // +// If find a croosing edge, return TRUE, and 'crossedgelist' contains this // +// edge. Otherwise, return FALSE. Both 'boundedgelist' and 'crossedgelist' // +// should be empty on input. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +scoutcrossingedge(list* missingshlist, list* boundedgelist, + list* crossedgelist, int* worklist) +{ + triface starttet, spintet, worktet; + face startsh, neighsh, worksh, workseg; + point torg, tdest, tapex, workpt[3]; + enum finddirectionresult collinear; + bool crossflag, inlistflag; + int hitbdry, i, j, k; + + // Form the 'boundedgelist'. Loop through 'missingshlist', check edges + // of these subfaces. If an edge is a subsegment, or the neighbor + // subface is uninfected, add it to 'boundedgelist'. + for (i = 0; i < missingshlist->len(); i++) { + worksh = * (face *)(* missingshlist)[i]; + for (j = 0; j < 3; j++) { + sspivot(worksh, workseg); + if (workseg.sh == dummysh) { + spivot(worksh, neighsh); + if (!sinfected(neighsh)) { + boundedgelist->append(&worksh); + } + } else { + boundedgelist->append(&worksh); + } + senextself(worksh); + } + } + + crossflag = false; + // Find a crossing edge. It is possible there is no such edge. We need to + // loop through all edges of 'boundedgelist' for sure we don't miss any. + for (i = 0; i < boundedgelist->len() && !crossflag; i++) { + startsh = * (face *)(* boundedgelist)[i]; + // 'startsh' holds an existing edge of the DT, find it. + torg = sorg(startsh); + tdest = sdest(startsh); + tapex = sapex(startsh); + getsearchtet(torg, tdest, &starttet, &workpt[0]); + collinear = finddirection(&starttet, workpt[0]); + if (collinear == LEFTCOLLINEAR) { + enext2self(starttet); + esymself(starttet); + } else if (collinear == TOPCOLLINEAR) { + fnextself(starttet); + enext2self(starttet); + esymself(starttet); + } + assert(dest(starttet) == workpt[0]); + // Find the crossing edge by rotating faces around 'starttet'. + spintet = starttet; + hitbdry = 0; + do { + if (fnextself(spintet)) { + // Check if the opposite edge of 'spintet' crosses the region. + workpt[1] = apex(spintet); + workpt[2] = oppo(spintet); + j = pointmark(workpt[1]) - in->firstnumber; + k = pointmark(workpt[2]) - in->firstnumber; + if (worklist[j] == 1 || worklist[k] == 1) { + // One of the two points is a vertex of the missing region. This + // edge can not cross this region. + inlistflag = false; + } else { + // Check if the edge crosses the region by performing a triangle + // triangle intersection test. ('workpt[0]' is the dest of the + // rotating edge 'spintet'). + inlistflag = (triangle_triangle_inter(torg, tdest, tapex, workpt[0], + workpt[1], workpt[2]) == INTERSECT); + } + if (inlistflag) { + // Find an edge crossing the missing region. Save it. + worktet = spintet; + adjustedgering(worktet, CCW); + enextfnextself(worktet); + enextself(worktet); + // Add this edge (worktet) into 'crossedgelist'. + crossedgelist->append(&worktet); + break; + } + if (apex(spintet) == apex(starttet)) break; + } else { + hitbdry++; + // It is only possible to hit boundary once. + if (hitbdry < 2) { + esym(starttet, spintet); + } + } + } while (hitbdry < 2); + crossflag = (crossedgelist->len() == 1); + } + + return crossflag; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// rearrangesubfaces() Rearrange the set of subfaces of a missing region // +// so that they conform to the faces of DT. // +// // +// The missing region formed by subfaces of 'missingshlist' contains a set // +// of degenerate vertices, hence the set of subfaces don't match the set of // +// faces in DT. Instead of forcing them to present in DT, we re-arrange the // +// connection of them so that the new subfaces conform to the faces of DT. // +// // +// 'boundedgelist' is a set of boundary edges of the region, these edges(may // +// be subsegments) must exist in DT. The process of rearrangement can be // +// described as follows: // +// - Form an inital link of boundary egdes; // +// - For each boundary edge (it must exist in DT), // +// - Remove it from the link; // +// - Look for a face in DT which contains this edge and has its apex // +// be a region vertex; Such face should exist (otherwise, an edge // +// will cross the region). // +// - Create a new subface on this face; insert it into the surface // +// mesh (the old subface connected at this edge will automatically // +// be disconnecte; // +// - Check the other two edges of this new created subface, if one // +// matches a boundary edge, remove the edge from the link (it is // +// finished) and bond them together. Otherwise, add a new boundary // +// to the link. // +// - Loop until the link of boundary edge is empty. // +// // +// On completion, we have created and inserted a set of new subfaces which // +// conform to faces of DT. The set of old subfaces in 'missingshlist' are // +// deleted. The region vertices in 'equatptlist' are unmarked. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +rearrangesubfaces(list* missingshlist, list* boundedgelist, list* equatptlist, + int* worklist) +{ + link *boundedgelink; + triface starttet, spintet, neightet, worktet; + face shloop, newsh, neighsh, spinsh, worksh; + face workseg, casingin, casingout; + point torg, tdest, workpt; + point liftpoint; + enum finddirectionresult collinear; + REAL area, ori1, ori2; + bool matchflag, finishflag; + int shmark, idx, hitbdry; + int i, j; + + // Initialize the boundary edge link. + boundedgelink = new link(sizeof(face), NULL, 256); + + // Create an initial boundary link. + for (i = 0; i < boundedgelist->len(); i++) { + shloop = * (face *)(* boundedgelist)[i]; + if (i == 0) { + if (b->quality) { + // area will be copied to all new created subfaces. + area = areabound(shloop); + } + // 'shmark' will be set to all new created subfaces. + shmark = shellmark(shloop); + // Get the liftpoint of this facet for later checking. + liftpoint = getliftpoint(shmark); + } + sspivot(shloop, workseg); + if (workseg.sh == dummysh) { + // This edge is an interior edge. + spivot(shloop, neighsh); + boundedgelink->add(&neighsh); + } else { + // This side has a segment, the edge exists. + boundedgelink->add(&shloop); + } + } + + // Loop until the link is empty. Each boundary edge will be finished by a + // new subface. After a new subface is created, it will be inserted into + // both the surface mesh and the DT, and new boundary edge will be added + // into the link. + while (boundedgelink->len() > 0) { + // Remove the top boundary edge from the link. + shloop = * (face *) boundedgelink->del(1); + sspivot(shloop, workseg); // 'workseg' indicates it is a segment or not. + torg = sorg(shloop); + tdest = sdest(shloop); + // Find a tetrahedron containing edge (torg, tdest). + getsearchtet(torg, tdest, &starttet, &workpt); + collinear = finddirection(&starttet, workpt); + if (collinear == LEFTCOLLINEAR) { + enext2self(starttet); + esymself(starttet); + } else if (collinear == TOPCOLLINEAR) { + fnextself(starttet); + enext2self(starttet); + esymself(starttet); + } + assert(dest(starttet) == workpt); + // Spinning faces around this edge, find the one lies on the facet AND + // is not a subface yet. + matchflag = false; + spintet = starttet; + hitbdry = 0; + do { + workpt = apex(spintet); + idx = pointmark(workpt) - in->firstnumber; + if (worklist[idx] == 1) { + // This face is on the facet. + if (workseg.sh != dummysh) { + // 'shloop' is a segment. + if (workpt != sapex(shloop)) { + // Be careful that 'workpt' may not be the vertex that we're + // looking for. Because the missing region may be non-convex. + // However, the right vertex should be at the same side of + // the apex of 'shloop'. + ori1 = orient3d(torg, tdest, liftpoint, sapex(shloop)); + ori2 = orient3d(torg, tdest, liftpoint, workpt); + assert(ori1 != 0.0 && ori2 != 0.0); + if ((ori1 > 0.0 && ori2 > 0.0) || (ori1 < 0.0 && ori2 < 0.0)) { + matchflag = true; + break; + } + } else { + // This face is already exist! It is possible. Created by + // previous recovering procedures. + matchflag = true; + break; + } + } else { + // 'shloop' is not a segment. Only insert a subface when there + // does not already exist a subface. + tspivot(spintet, neighsh); + if (neighsh.sh == dummysh) { + // This face is not a subface yet. + matchflag = true; + break; + } + } + } + if (!fnextself(spintet)) { + hitbdry ++; + if (hitbdry < 2) { + esym(starttet, spintet); + if (!fnextself(spintet)) { + hitbdry ++; + } + } + } + } while (hitbdry < 2 && apex(spintet) != apex(starttet)); + assert(matchflag == true); + tspivot(spintet, neighsh); + if (neighsh.sh != dummysh) { + printf("Error: Invalid PLC.\n"); + printf(" Facet #%d and facet #%d overlap each other.\n", + shellmark(neighsh), shellmark(shloop)); + printf(" It might be caused by a facet is defined more than once.\n"); + printf(" Hint: Use -d switch to find all overlapping facets.\n"); + exit(1); + } + // The side of 'spintet' is at which a new subface will be attached. + adjustedgering(spintet, CCW); + // Create the new subface. + makeshellface(subfaces, &newsh); + setsorg(newsh, org(spintet)); + setsdest(newsh, dest(spintet)); + setsapex(newsh, apex(spintet)); + if (b->quality) { + // Copy the areabound into the new subface. + setareabound(newsh, area); + } + setshellmark(newsh, shmark); + // Insert it into the current mesh. + tsbond(spintet, newsh); + sym(spintet, neightet); + if (neightet.tet != dummytet) { + sesym(newsh, neighsh); + tsbond(neightet, neighsh); + } + // Insert it into the surface mesh. + sspivot(shloop, workseg); + if (workseg.sh == dummysh) { + sbond(shloop, newsh); + } else { + // There is a subsegment, 'shloop' is the subface which is going to + // die. Insert the 'newsh' at the place of 'shloop' into its face + // link, so as to dettach 'shloop'. The original connection is: + // -> casingin -> shloop -> casingout ->, it will be changed with: + // -> casingin -> newsh -> casingout ->. Pay attention to the + // case when this subsegment is dangling in the mesh, i.e., 'shloop' + // is bonded to itself. + spivot(shloop, casingout); + if (shloop.sh != casingout.sh) { + // 'shloop' is not bonded to itself. + spinsh = casingout; + do { + casingin = spinsh; + spivotself(spinsh); + } while (sapex(spinsh) != sapex(shloop)); + assert(casingin.sh != shloop.sh); + // Bond casingin -> newsh -> casingout. + sbond1(casingin, newsh); + sbond1(newsh, casingout); + } else { + // Bond newsh -> newsh. + sbond(newsh, newsh); + } + // Bond the segment. + ssbond(newsh, workseg); + } + // Check other two sides of this new subface. If a side is not bonded + // to any edge in the link, it will be added to the link. + for (i = 0; i < 2; i++) { + if (i == 0) { + senext(newsh, worksh); + } else { + senext2(newsh, worksh); + } + torg = sorg(worksh); + tdest = sdest(worksh); + finishflag = false; + for (j = 0; j < boundedgelink->len() && !finishflag; j++) { + neighsh = * (face *) boundedgelink->getnitem(j + 1); + if ((sorg(neighsh) == torg && sdest(neighsh) == tdest) || + (sorg(neighsh) == tdest && sdest(neighsh) == torg)) { + // Find a boundary edge. Bond them and exit the loop. + sspivot(neighsh, workseg); + if (workseg.sh == dummysh) { + sbond(neighsh, worksh); + } else { + // There is a subsegment, 'neighsh' is the subface which is + // going to die. Do the same as above for 'worksh'. + spivot(neighsh, casingout); + if (neighsh.sh != casingout.sh) { + // 'neighsh' is not bonded to itself. + spinsh = casingout; + do { + casingin = spinsh; + spivotself(spinsh); + } while (sapex(spinsh) != sapex(neighsh)); + assert(casingin.sh != neighsh.sh); + // Bond casingin -> worksh -> casingout. + sbond1(casingin, worksh); + sbond1(worksh, casingout); + } else { + // Bond worksh -> worksh. + sbond(worksh, worksh); + } + // Bond the segment. + ssbond(worksh, workseg); + } + // Remove this boundary edge from the link. + boundedgelink->del(j + 1); + finishflag = true; + } + } + if (!finishflag) { + // It's a new boundary edge, add it to link. + boundedgelink->add(&worksh); + } + } + } + + // Deallocate the set of old missing subfaces. + for (i = 0; i < missingshlist->len(); i++) { + worksh = * (face *)(* missingshlist)[i]; + shellfacedealloc(subfaces, worksh.sh); + } + // Unmark region vertices in 'worklist'. + for (i = 0; i < equatptlist->len(); i++) { + workpt = * (point *)(* equatptlist)[i]; + idx = pointmark(workpt) - in->firstnumber; + worklist[idx] = 0; + } + + delete boundedgelink; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// recoversubfaces() Recover the set of subfaces of a missing region so // +// that they become faces of the DT. // +// // +// 'missingshlist' contains a set of missing subfaces which form the missing // +// region. A cavity retriangulation method is used to recover these subfaces // +// in the DT. To do so, first find all the tetrahedra in DT that intersect // +// the relative interior of the missing region. Then delete them from the DT,// +// this will form a cavity C inside the DT. Now we want to retriangulate the // +// C and want the missing subfaces will appear after the retriangulation. To // +// complete this, we first insert the missing subfaces into the C, so as to // +// split it into two disjointed cavity. Then retriangulate them separately. // +// (See the intoduction of the routine triangulatecavity() for the cavity // +// retriangulation method.) // +// // +// On input, 'crossedgelist' contains an edge which is crossing the missing // +// region. All tetrahedra containing this edge must cross the region. It is // +// possible there are other crossing edges as well. They can be found by // +// checking the edges of the discovered crossing tetrahedra. Through this // +// way, other crossing tetrahedra of the region can be found incrementally. // +// However, it doesn't guarantee we can get all crossing tetrahedra of this // +// region. The discovered tetrahedra are connected each other. There may // +// exist other tetrahedra which are crossing the region but disjoint with // +// the set of discovered tetrahedra. Due to this fact, we need to check the // +// missing subfaces once more. Only recover those which are crossed by the // +// set of discovered tetrahedra. The other subfaces remain missing and will // +// be recovered later. // +// // +// On completion, we have modified the DT to incorporate a set of subfaces. // +// The recovered subfaces of 'missingshlist' are uninfected. The region // +// vertices in 'equatptlist' are unmarked. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +recoversubfaces(list* missingshlist, list* crossedgelist, list* equatptlist, + int* worklist) +{ + list *crossshlist, *crosstetlist; + list *belowfacelist, *abovefacelist; + list *belowptlist, *aboveptlist; + triface starttet, spintet, neightet, worktet; + face startsh, neighsh, worksh, workseg; + point torg, tdest, tapex, workpt[3]; + REAL checksign, orgori, destori; + bool crossflag, inlistflag; + bool belowflag, aboveflag; + int idx, share; + int i, j, k; + + // Initialize the working lists. + crossshlist = new list(sizeof(face), NULL); + crosstetlist = new list(sizeof(triface), NULL); + belowfacelist = new list(sizeof(triface), NULL); + abovefacelist = new list(sizeof(triface), NULL); + belowptlist = new list("point *"); + aboveptlist = new list("point *"); + + // Get a face as horizon. + startsh = * (face *)(* missingshlist)[0]; + torg = sorg(startsh); + tdest = sdest(startsh); + tapex = sapex(startsh); + + // Collect the set of crossing tetrahedra by rotating crossing edges. At + // the beginning, 'crossedgelist' contains one crossing edge, others + // will be discovered after newly crossing tetrahedra are found. + for (i = 0; i < crossedgelist->len(); i++) { + starttet = * (triface *)(* crossedgelist)[i]; + adjustedgering(starttet, CCW); + if (b->verbose > 2) { + printf(" Collect tets containing edge (%d, %d).\n", + pointmark(org(starttet)), pointmark(dest(starttet))); + } + orgori = orient3d(torg, tdest, tapex, org(starttet)); + destori = orient3d(torg, tdest, tapex, dest(starttet)); + assert(orgori * destori < 0.0); + spintet = starttet; + do { + // The face rotation should not meet boundary. + fnextself(spintet); + // Check the validity of the PLC. + tspivot(spintet, worksh); + if (worksh.sh != dummysh) { + printf("Error: Invalid PLC.\n"); + printf(" Two subfaces (%d, %d, %d) and (%d, %d, %d)\n", + pointmark(torg), pointmark(tdest), pointmark(tapex), + pointmark(sorg(worksh)), pointmark(sdest(worksh)), + pointmark(sapex(worksh))); + printf(" are found intersecting each other.\n"); + printf(" Hint: Use -d switch to find all intersecting facets.\n"); + exit(1); + } + if (!infected(spintet)) { + if (b->verbose > 2) { + printf(" Add crossing tet (%d, %d, %d, %d).\n", + pointmark(org(spintet)), pointmark(dest(spintet)), + pointmark(apex(spintet)), pointmark(oppo(spintet))); + } + infect(spintet); + crosstetlist->append(&spintet); + } + // Check whether other two edges of 'spintet' is a crossing edge. + // It can be quickly checked from the apex of 'spintet', if it is + // not on the facet, then there exists a crossing edge. + workpt[0] = apex(spintet); + idx = pointmark(workpt[0]) - in->firstnumber; + if (worklist[idx] != 1) { + // Either edge (dest, apex) or edge (apex, org) crosses. + checksign = orient3d(torg, tdest, tapex, workpt[0]); + assert(checksign != 0.0); + if (checksign * orgori < 0.0) { + enext2(spintet, worktet); // edge (apex, org). + workpt[1] = org(spintet); + } else { + assert(checksign * destori < 0.0); + enext(spintet, worktet); // edge (dest, apex). + workpt[1] = dest(spintet); + } + // 'worktet' represents the crossing edge. Add it into list only + // it doesn't exist in 'crossedgelist'. + inlistflag = false; + for (j = 0; j < crossedgelist->len() && !inlistflag; j++) { + neightet = * (triface *)(* crossedgelist)[j]; + if (org(neightet) == workpt[0]) { + if (dest(neightet) == workpt[1]) inlistflag = true; + } else if (org(neightet) == workpt[1]) { + if (dest(neightet) == workpt[0]) inlistflag = true; + } + } + if (!inlistflag) { + crossedgelist->append(&worktet); + } + } + } while (apex(spintet) != apex(starttet)); + } + + // Identifying the boundary faces of the cavity. + for (i = 0; i < crosstetlist->len(); i++) { + starttet = * (triface *)(* crosstetlist)[i]; + assert(infected(starttet)); + adjustedgering(starttet, CCW); + // Only need to check two sides of starttet. Current side and the side + // of fnext() are sharing the crossing edge, the two neighbors must + // be crossing tetrahedra. Hence these two sides can't be boundaries + // of the cavity. + for (j = 0; j < 2; j++) { + if (j == 0) { + enextfnext(starttet, worktet); + } else { + enext2fnext(starttet, worktet); + } + sym(worktet, neightet); + // If the neighbor doesn't exist or exists but doesn't be infected, + // it's a boundary face of the cavity, save it. + if (neightet.tet == dummytet || !infected(neightet)) { + workpt[0] = org(worktet); + workpt[1] = dest(worktet); + workpt[2] = apex(worktet); + belowflag = aboveflag = false; + share = 0; + for (k = 0; k < 3; k++) { + idx = pointmark(workpt[k]) - in->firstnumber; + if (worklist[idx] == 0) { + // It's not a vertices of facet, find which side it lies. + checksign = orient3d(torg, tdest, tapex, workpt[k]); + assert(checksign != 0.0); + if (checksign > 0.0) { + // It lies "below" the facet wrt. 'startsh'. + worklist[idx] = 2; + belowptlist->append(&workpt[k]); + } else if (checksign < 0.0) { + // It lies "above" the facet wrt. 'startsh'. + worklist[idx] = 3; + aboveptlist->append(&workpt[k]); + } + } + if (worklist[idx] == 2) { + // This face lies "below" the facet wrt. 'startsh'. + belowflag = true; + } else if (worklist[idx] == 3) { + // This face lies "above" the facet wrt. 'startsh'. + aboveflag = true; + } else { + // In degenerate case, this face may just be the equator. + assert(worklist[idx] == 1); + share++; + } + } + // The degenerate case has been ruled out. + assert(share < 3); + // Only one flag is possible for a cavity face. + assert(belowflag ^ aboveflag); + if (belowflag) { + belowfacelist->append(&worktet); + } else if (aboveflag) { + abovefacelist->append(&worktet); + } + } + } + } + + // Form the set of missing subfaces which are crossed by tetrahedra of + // 'crosstetlist'. It is a subset of 'missingshlist'. These faces + // need be recovered (using cavity filling algorithm). Other subfaces + // remain infected and will be recovered later. + for (i = 0; i < missingshlist->len(); i++) { + worksh = * (face *)(* missingshlist)[i]; + assert(sinfected(worksh)); + torg = sorg(worksh); + tdest = sdest(worksh); + tapex = sapex(worksh); + crossflag = false; + for (j = 0; j < crosstetlist->len() && !crossflag; j++) { + starttet = * (triface *)(* crosstetlist)[j]; + adjustedgering(starttet, CCW); + // Only need to check two sides of worktet. + for (k = 0; k < 2 && !crossflag; k++) { + if (k == 0) { + worktet = starttet; + } else { + fnext(starttet, worktet); + } + // torg, tdest and tapex SHOULD be non-collinear. + crossflag = tritritest(&worktet, torg, tdest, tapex); + } + } + if (crossflag) { + // 'worksh' is crossed by 'worktet', uninfect it. + suninfect(worksh); + crossshlist->append(&worksh); + } + } + + // Clear flags set in 'worklist'. + for (i = 0; i < equatptlist->len(); i++) { + workpt[0] = * (point *)(* equatptlist)[i]; + idx = pointmark(workpt[0]) - in->firstnumber; + // assert(worklist[idx] == 1); + worklist[idx] = 0; + } + for (i = 0; i < belowptlist->len(); i++) { + workpt[0] = * (point *)(* belowptlist)[i]; + idx = pointmark(workpt[0]) - in->firstnumber; + // assert(worklist[idx] == 2); + worklist[idx] = 0; + } + for (i = 0; i < aboveptlist->len(); i++) { + workpt[0] = * (point *)(* aboveptlist)[i]; + idx = pointmark(workpt[0]) - in->firstnumber; + // assert(worklist[idx] == 3); + worklist[idx] = 0; + } + + assert (aboveptlist->len() > 0); + // Retriangulate the upper part of the cavity. + triangulatecavity(crossshlist, abovefacelist, equatptlist, aboveptlist); + + // Inverse the direction of faces in 'missingshlist'. + for (i = 0; i < crossshlist->len(); i++) { + worksh = * (face *)(* crossshlist)[i]; + sesymself(worksh); + * (face *)(* crossshlist)[i] = worksh; + } + + assert(belowptlist->len() > 0); + // Retriangulate the lower part of the cavity. + triangulatecavity(crossshlist, belowfacelist, equatptlist, belowptlist); + + // Delete old tetrahedra of this cavity. + for (i = 0; i < crosstetlist->len(); i++) { + worktet = * (triface *)(* crosstetlist)[i]; + tetrahedrondealloc(worktet.tet); + } + + delete crossshlist; + delete crosstetlist; + delete belowfacelist; + delete abovefacelist; + delete belowptlist; + delete aboveptlist; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// constrainedfacets() Insert PLC facets into the Delaunay tetrahedraliz- // +// ation of the PLC vertices. // +// // +// This is the last step of our CDT algorithm, which transforms a Delaunay // +// tetrahedralization DT into a constrained Delaunay tetrahedralization by // +// forcing all subfaces of the surface mesh F of the PLC into the DT. It is // +// important that all PLC segments have been previously recovered in DT, so // +// the existence of a CDT is guaranteed (by our CDT theorem). Hence, all // +// subfaces of F can be recovered in the DT without inserting vertices. // +// // +// The process of constrained facets can be though of "merging" the surface // +// mesh F completely into the Delaunay tetrahedralization DT. Recover the // +// subfaces in DT if they are not matching. Hence, the process is divided // +// into two steps: first insert all existing subfaces of F into DT, that is, // +// each subface already appears as a face of DT; at the same time, queue all // +// missing subfaces. Then recover missing subfaces (explained below). The // +// second step changes a DT into a CDT. // +// // +// When a subface s of a facet f is found missing in DT, most probably, some // +// other subfaces near to s and belong to f are also missing. The set of // +// adjoining missing subfaces of f forms a missing region. It is obvious to // +// see that this region is closed and is bounded by the edges of existing // +// subfaces or the segments of f. Instead of recovering missing subfaces of // +// this region one by one, they are recovered together, i.e., each time a // +// closed missing region will be recovered. // +// // +// There are two possibilities can from a mssing region R: (1) Some edges of // +// DT intersect subfaces in R; (2) No edge of DT cross R, but another set of // +// faces of DT spans R, this is because the existence of degeneracies (five // +// or more vertices of R are cospherical). If it is case (1), we modify DT // +// so that its faces spans R. A cavity retriangulation algorithm is used to // +// recover the region. If it is case (2), F is modified so that the set of // +// subfaces of F matches faces in DT. A face rearrangment algorithm is used. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::constrainedfacets() +{ + queue *missingshqueue; + list *missingshlist; + list *boundedgelist; + list *crossedgelist; + list *equatptlist; + triface searchtet; + face subloop; + int *worklist; + int i; + + if (!b->quiet) { + printf("Constraining facets.\n"); + } + + // Compute a mapping from points to tetrahedra. + makepoint2tetmap(); + // Initialize the queue to store the set of missing subfaces. + missingshqueue = new queue(sizeof(face)); + // Initialize the working lists. + missingshlist = new list(sizeof(face), NULL); + boundedgelist = new list(sizeof(face), NULL); + crossedgelist = new list(sizeof(triface), NULL); + equatptlist = new list("point *"); + // Initialize the list for matching vertices. + worklist = new int[points->items]; + for (i = 0; i < points->items; i++) { + worklist[i] = 0; + } + + // Step 1, go through all subfaces, insert existing subfaces into DT. + // Missing subfaces are queued. Moreover, they are infected so that + // can be distinguished from existing ones. + searchtet.tet = (tetrahedron *) NULL; + subfaces->traversalinit(); + subloop.sh = shellfacetraverse(subfaces); + while (subloop.sh != (shellface *) NULL) { + if (!insertsubface(&subloop, &searchtet)) { + if (b->verbose > 1) { + printf(" Queuing missing subface (%d, %d, %d).\n", + pointmark(sorg(subloop)), pointmark(sdest(subloop)), + pointmark(sapex(subloop))); + } + sinfect(subloop); + missingshqueue->push(&subloop); + } + subloop.sh = shellfacetraverse(subfaces); + } + + // Step 2, recover all missing subfaces. + while (!missingshqueue->empty()) { + subloop = * (face *) missingshqueue->pop(); + if (!isdead(&subloop) && sinfected(subloop)) { + if (b->verbose > 1) { + printf(" Recovering subface (%d, %d, %d).\n", + pointmark(sorg(subloop)), pointmark(sdest(subloop)), + pointmark(sapex(subloop))); + } + // Other operation may have recovered this subface. + if (!insertsubface(&subloop, &searchtet)) { + // First form the missing region. + formmissingregion(&subloop, missingshlist, equatptlist, worklist); + // Are there crossing tetrahedra? + if (scoutcrossingedge(missingshlist, boundedgelist, crossedgelist, + worklist)) { + // There are! Recover by retriangulating cavities. + recoversubfaces(missingshlist, crossedgelist, equatptlist, worklist); + // There may remain some un-recovered subfaces. Don't ignore them. + for (i = 0; i < missingshlist->len(); i++) { + subloop = * (face *)(* missingshlist)[i]; + if (sinfected(subloop)) { + // Put it back into queue. + missingshqueue->push(&subloop); + } + } + } else { + // No crossing tetrahedra. Rearrange subfaces in surface mesh. + rearrangesubfaces(missingshlist, boundedgelist, equatptlist, + worklist); + } + // Clear all working lists. + missingshlist->clear(); + boundedgelist->clear(); + crossedgelist->clear(); + equatptlist->clear(); + } else { + // This subface has been recovered. Only uninfect it. + suninfect(subloop); + } + } + } + + delete missingshqueue; + delete missingshlist; + delete boundedgelist; + delete crossedgelist; + delete equatptlist; + delete [] worklist; +} + +// +// End of constrained Delaunay triangulation routines +// + +// +// Begin of carving out holes and concavities routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// indenthull() Remove redundant tetrahedra on the convex hull. // +// // +// All tetrahedra on the hull which are not protected by subfaces will be // +// removed. As a result, the convex tetrahedralization becomes concave, and // +// the new hull is formed by subfaces. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::indenthull() +{ + memorypool *viri; + link *hulllink; + tetrahedron **virusloop; + triface tetloop, hullface; + triface checkface, neightet; + face checksh; + point p1, p2, p3; + bool indentflag;; + int i; + + if (b->verbose) { + printf(" Indenting hulls.\n"); + } + + // Initialize a pool of viri. + viri = new memorypool(sizeof(tetrahedron *), 1024, POINTER, 0); + // Initialize the hulllink. + hulllink = new link(sizeof(triface), NULL, 1024); + + // Find out all hull faces which are not protected by subfaces. At the + // same time, infect all tetrahedra which has faces on the hull and + // are protected by subfaces. + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + indentflag = true; + for (tetloop.loc = 0; tetloop.loc < 4; tetloop.loc++) { + // Is this face on the hull? + sym(tetloop, neightet); + if (neightet.tet == dummytet) { + // Is the face protected by a subface? + tspivot(tetloop, checksh); + if (checksh.sh == dummysh) { + // Add this face into hulllink. + hulllink->add(&tetloop); + } else { + // It is protected by a subface. + indentflag = false; + } + } + } + if (!indentflag) { + // Infect it to indicate it is at interior space. + virusloop = (tetrahedron **) viri->alloc(); + *virusloop = tetloop.tet; + } + tetloop.tet = tetrahedrontraverse(); + } + + // Loop until the hulllink is empty. + while (hulllink->len() > 0) { + // Remove a hullface from the link. + hullface = * (triface *) hulllink->del(1); + // The tet may already be removed. + if (isdead(&hullface)) continue; + if (b->verbose > 1) { + printf(" Indenting face (%d, %d, %d).\n", pointmark(org(hullface)), + pointmark(dest(hullface)), pointmark(apex(hullface))); + } + // The tet may be an interior one (if it is infected). + indentflag = !infected(hullface); + // Check if hullface can be indented. + adjustedgering(hullface, CCW); + for (i = 0; i < 3 && indentflag; i++) { + fnext(hullface, checkface); + sym(checkface, neightet); + tspivot(checkface, checksh); + if (neightet.tet != dummytet) { + // The neighbor exists. + if (checksh.sh == dummysh) { + // This side is not protected by a subface. If the neighbor is + // marked as an interior tet, hullface survives. + indentflag = !infected(neightet); + } else { + // It is protected by a subface. + if (!infected(neightet)) { + // This is a new discovered interior tet. Infect it. + infect(neightet); + virusloop = (tetrahedron **) viri->alloc(); + *virusloop = neightet.tet; + } + } + } + enextself(hullface); + } + if (!indentflag) { + // hullface survives. + p1 = org(hullface); + p2 = dest(hullface); + p3 = apex(hullface); + printf("Warning: Face (%d, %d, %d) is open.\n", pointmark(p1), + pointmark(p2), pointmark(p3)); + if (!infected(hullface)) { + // Infect it and add it into viris. + infect(hullface); + virusloop = (tetrahedron **) viri->alloc(); + *virusloop = hullface.tet; + } + continue; + } + // Indent hullface. That is, remove it from the hull. The hullsize is + // changed, new discoved open hullfaces will be added to hulllink. + for (i = 0; i < 3; i++) { + fnext(hullface, checkface); + sym(checkface, neightet); + tspivot(checkface, checksh); + if (neightet.tet != dummytet) { + // The neighbor exists. + if (checksh.sh == dummysh) { + // This side is not protected. + assert(!infected(neightet)); + hulllink->add(&neightet); + } else { + // It is protected. + assert(infected(neightet)); + stdissolve(checksh); + } + // It becomes a new hull face. + dissolve(neightet); + hullsize++; + } else { + // This side is hull face also. + if (checksh.sh != dummysh) { + // A dangling subface. It will be isolated. + stdissolve(checksh); + } + // Decrease the hullsize. + hullsize--; + } + enextself(hullface); + } + // Delete the tetrahedron. + tetrahedrondealloc(hullface.tet); + // Decrease the hullsize. + hullsize--; + } + + // Uninfect infected tetrahedra. + viri->traversalinit(); + virusloop = (tetrahedron **) viri->traverse(); + while (virusloop != (tetrahedron **) NULL) { + neightet.tet = *virusloop; + uninfect(neightet); + virusloop = (tetrahedron **) viri->traverse(); + } + + delete viri; + delete hulllink; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// infecthull() Virally infect all of the tetrahedra of the convex hull // +// that are not protected by subfaces. Where there are // +// subfaces, set boundary markers as appropriate. // +// // +// Memorypool 'viri' is used to return all the infected tetrahedra. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::infecthull(memorypool *viri) +{ + triface tetloop, tsymtet; + tetrahedron **deadtet; + face hullface; + // point horg, hdest, hapex; + + if (b->verbose) { + printf(" Marking concavities for elimination.\n"); + } + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + // Is this tetrahedron on the hull? + for (tetloop.loc = 0; tetloop.loc < 4; tetloop.loc++) { + sym(tetloop, tsymtet); + if (tsymtet.tet == dummytet) { + // Is the tetrahedron protected by a subface? + tspivot(tetloop, hullface); + if (hullface.sh == dummysh) { + // The tetrahedron is not protected; infect it. + if (!infected(tetloop)) { + infect(tetloop); + deadtet = (tetrahedron **) viri->alloc(); + *deadtet = tetloop.tet; + break; // Go and get next tet. + } + } else { + // The tetrahedron is protected; set boundary markers if appropriate. + if (shellmark(hullface) == 0) { + setshellmark(hullface, 1); + /* + horg = sorg(hullface); + hdest = sdest(hullface); + hapex = sapex(hullface); + if (pointmark(horg) == 0) { + setpointmark(horg, 1); + } + if (pointmark(hdest) == 0) { + setpointmark(hdest, 1); + } + if (pointmark(hapex) == 0) { + setpointmark(hapex, 1); + } + */ + } + } + } + } + tetloop.tet = tetrahedrontraverse(); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// plague() Spread the virus from all infected tetrahedra to any // +// neighbors not protected by subfaces. Delete all infected // +// tetrahedra. // +// // +// This is the procedure that actually creates holes and concavities. // +// // +// This procedure operates in two phases. The first phase identifies all // +// the tetrahedra that will die, and marks them as infected. They are // +// marked to ensure that each tetrahedron is added to the virus pool only // +// once, so the procedure will terminate. // +// // +// The second phase actually eliminates the infected tetrahedra. It also // +// eliminates orphaned segments and points(not done now). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::plague(memorypool *viri) +{ + tetrahedron **virusloop; + tetrahedron **deadtet; + triface testtet, neighbor; + face neighsh, testseg; + face spinsh, casingin, casingout; + point checkpt; + int *tetspernodelist; + int i, j; + + if (b->verbose) { + printf(" Marking neighbors of marked tetrahedra.\n"); + } + // Loop through all the infected tetrahedra, spreading the virus to + // their neighbors, then to their neighbors' neighbors. + viri->traversalinit(); + virusloop = (tetrahedron **) viri->traverse(); + while (virusloop != (tetrahedron **) NULL) { + testtet.tet = *virusloop; + // Temporarily uninfect this tetrahedron, not necessary. + uninfect(testtet); + // Check each of the tetrahedron's four neighbors. + for (testtet.loc = 0; testtet.loc < 4; testtet.loc++) { + // Find the neighbor. + sym(testtet, neighbor); + // Check for a shell between the tetrahedron and its neighbor. + tspivot(testtet, neighsh); + // Check if the neighbor is nonexistent or already infected. + if ((neighbor.tet == dummytet) || infected(neighbor)) { + if (neighsh.sh != dummysh) { + // There is a subface separating the tetrahedron from its neighbor, + // but both tetrahedra are dying, so the subface dies too. + // Before deallocte this subface, dissolve the connections between + // other subfaces, subsegments and tetrahedra. + neighsh.shver = 0; + // For keep the same enext() direction. + findedge(&testtet, sorg(neighsh), sdest(neighsh)); + for (i = 0; i < 3; i++) { + sspivot(neighsh, testseg); + if (testseg.sh != dummysh) { + // A subsegment is found at this side, dissolve this subface + // from the face link of this subsegment. + testseg.shver = 0; + spinsh = neighsh; + if (sorg(spinsh) != sorg(testseg)) { + sesymself(spinsh); + } + spivot(spinsh, casingout); + if (casingout.sh == spinsh.sh) { + // This is a trivial face link, only 'neighsh' itself, + // the subsegment at this side is also died. + shellfacedealloc(subsegs, testseg.sh); + } else { + spinsh = casingout; + do { + casingin = spinsh; + spivotself(spinsh); + } while (spinsh.sh != neighsh.sh); + // Set the link casingin->casingout. + sbond1(casingin, casingout); + // Bond the subsegment anyway. + ssbond(casingin, testseg); + } + } + senextself(neighsh); + enextself(testtet); + } + shellfacedealloc(subfaces, neighsh.sh); + if (neighbor.tet != dummytet) { + // Make sure the subface doesn't get deallocated again later + // when the infected neighbor is visited. + tsdissolve(neighbor); + } + } + } else { // The neighbor exists and is not infected. + if (neighsh.sh == dummysh) { + // There is no subface protecting the neighbor, infect it. + infect(neighbor); + // Ensure that the neighbor's neighbors will be infected. + deadtet = (tetrahedron **) viri->alloc(); + *deadtet = neighbor.tet; + } else { // The neighbor is protected by a subface. + // Remove this tetrahedron from the subface. + stdissolve(neighsh); + // The subface becomes a boundary. Set markers accordingly. + if (shellmark(neighsh) == 0) { + setshellmark(neighsh, 1); + } + } + } + } + // Remark the tetrahedron as infected, so it doesn't get added to the + // virus pool again. + infect(testtet); + virusloop = (tetrahedron **) viri->traverse(); + } + + if (b->verbose) { + printf(" Deleting marked tetrahedra.\n"); + } + + // Create and initialize 'segspernodelist'. + tetspernodelist = new int[points->items + 1]; + for (i = 0; i < points->items + 1; i++) tetspernodelist[i] = 0; + + // Loop the tetrahedra list, counter the number of tets sharing each node. + tetrahedrons->traversalinit(); + testtet.tet = tetrahedrontraverse(); + while (testtet.tet != (tetrahedron *) NULL) { + // Increment the number of sharing tets for each endpoint. + for (i = 0; i < 4; i++) { + j = pointmark((point) testtet.tet[4 + i]); + tetspernodelist[j]++; + } + testtet.tet = tetrahedrontraverse(); + } + + viri->traversalinit(); + virusloop = (tetrahedron **) viri->traverse(); + while (virusloop != (tetrahedron **) NULL) { + testtet.tet = *virusloop; + // Record changes in the number of boundary faces, and disconnect + // dead tetrahedra from their neighbors. + for (testtet.loc = 0; testtet.loc < 4; testtet.loc++) { + sym(testtet, neighbor); + if (neighbor.tet == dummytet) { + // There is no neighboring tetrahedron on this face, so this face + // is a boundary face. This tetrahedron is being deleted, so this + // boundary face is deleted. + hullsize--; + } else { + // Disconnect the tetrahedron from its neighbor. + dissolve(neighbor); + // There is a neighboring tetrahedron on this face, so this face + // becomes a boundary face when this tetrahedron is deleted. + hullsize++; + } + } + // Check the four corners of this tet if they're isolated. + for (i = 0; i < 4; i++) { + checkpt = (point) testtet.tet[4 + i]; + j = pointmark(checkpt); + tetspernodelist[j]--; + if (tetspernodelist[j] == 0) { + setpointtype(checkpt, UNUSEDVERTEX); + } + } + // Return the dead tetrahedron to the pool of tetrahedra. + tetrahedrondealloc(testtet.tet); + virusloop = (tetrahedron **) viri->traverse(); + } + + delete [] tetspernodelist; + // Empty the virus pool. + viri->restart(); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// regionplague() Spread regional attributes and/or volume constraints // +// (from a .poly file) throughout the mesh. // +// // +// This procedure operates in two phases. The first phase spreads an // +// attribute and/or an volume constraint through a (segment-bounded) region. // +// The tetrahedra are marked to ensure that each tetrahedra is added to the // +// virus pool only once, so the procedure will terminate. // +// // +// The second phase uninfects all infected tetrahedra, returning them to // +// normal. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +regionplague(memorypool *viri, REAL attribute, REAL volume) +{ + tetrahedron **virusloop; + tetrahedron **regiontet; + triface testtet, neighbor; + face neighsh; + + if (b->verbose > 1) { + printf(" Marking neighbors of marked tetrahedra.\n"); + } + // Loop through all the infected tetrahedra, spreading the attribute + // and/or volume constraint to their neighbors, then to their neighbors' + // neighbors. + viri->traversalinit(); + virusloop = (tetrahedron **) viri->traverse(); + while (virusloop != (tetrahedron **) NULL) { + testtet.tet = *virusloop; + // Temporarily uninfect this tetrahedron, not necessary. + uninfect(testtet); + if (b->regionattrib) { + // Set an attribute. + setelemattribute(testtet.tet, in->numberoftetrahedronattributes, + attribute); + } + if (b->varvolume) { + // Set an volume constraint. + setvolumebound(testtet.tet, volume); + } + // Check each of the tetrahedron's four neighbors. + for (testtet.loc = 0; testtet.loc < 4; testtet.loc++) { + // Find the neighbor. + sym(testtet, neighbor); + // Check for a subface between the tetrahedron and its neighbor. + tspivot(testtet, neighsh); + // Make sure the neighbor exists, is not already infected, and + // isn't protected by a subface, or is protected by a nonsolid + // subface. + if ((neighbor.tet != dummytet) && !infected(neighbor) + && (neighsh.sh == dummysh)) { + // Infect the neighbor. + infect(neighbor); + // Ensure that the neighbor's neighbors will be infected. + regiontet = (tetrahedron **) viri->alloc(); + *regiontet = neighbor.tet; + } + } + // Remark the tetrahedron as infected, so it doesn't get added to the + // virus pool again. + infect(testtet); + virusloop = (tetrahedron **) viri->traverse(); + } + + // Uninfect all tetrahedra. + if (b->verbose > 1) { + printf(" Unmarking marked tetrahedra.\n"); + } + viri->traversalinit(); + virusloop = (tetrahedron **) viri->traverse(); + while (virusloop != (tetrahedron **) NULL) { + testtet.tet = *virusloop; + uninfect(testtet); + virusloop = (tetrahedron **) viri->traverse(); + } + // Empty the virus pool. + viri->restart(); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// carveholes() Find the holes and infect them. Find the volume // +// constraints and infect them. Infect the convex hull. // +// Spread the infection and kill tetrahedra. Spread the // +// volume constraints. // +// // +// This routine mainly calls other routines to carry out all these functions.// +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::carveholes() +{ + memorypool *viri; + triface searchtet; + triface *holetets; + triface *regiontets; + tetrahedron *tptr; + tetrahedron **holetet; + tetrahedron **regiontet; + enum locateresult intersect; + int i; + + if (!b->quiet) { + printf("Removing unwanted tetrahedra.\n"); + if (b->verbose && (in->numberofholes > 0)) { + printf(" Marking holes for elimination.\n"); + } + } + + if (in->numberofholes > 0) { + // Allocate storage for the tetrahedra in which hole points fall. + holetets = (triface *) new triface[in->numberofholes]; + } + if (in->numberofregions > 0) { + // Allocate storage for the tetrahedra in which region points fall. + regiontets = (triface *) new triface[in->numberofregions]; + } + + // Now, we have to find all the holes and regions BEFORE we infect hull + // and carve the holes, because locate() won't work when there exist + // infect tetrahedra and the tetrahedronlization is no longer convex. + + if (in->numberofholes > 0) { + // Infect each tetrahedron in which a hole lies. + for (i = 0; i < 3 * in->numberofholes; i += 3) { + // Ignore holes that aren't within the bounds of the mesh. + if ((in->holelist[i] >= xmin) && (in->holelist[i] <= xmax) + && (in->holelist[i + 1] >= ymin) + && (in->holelist[i + 1] <= ymax) + && (in->holelist[i + 2] >= zmin) + && (in->holelist[i + 2] <= zmax)) { + searchtet.tet = dummytet; + // Find a tetrahedron that contains the hole. + intersect = locate(&in->holelist[i], &searchtet); + if ((intersect != OUTSIDE) && (!infected(searchtet))) { + // Record the tetrahedron for processing carve hole. + holetets[i / 3] = searchtet; + } + } + } + } + + if (in->numberofregions > 0) { + // Find the starting tetrahedron for each region. + for (i = 0; i < in->numberofregions; i++) { + regiontets[i].tet = dummytet; + // Ignore region points that aren't within the bounds of the mesh. + if ((in->regionlist[5 * i] >= xmin) + && (in->regionlist[5 * i] <= xmax) + && (in->regionlist[5 * i + 1] >= ymin) + && (in->regionlist[5 * i + 1] <= ymax) + && (in->regionlist[5 * i + 2] >= zmin) + && (in->regionlist[5 * i + 2] <= zmax)) { + searchtet.tet = dummytet; + // Find a tetrahedron that contains the region point. + intersect = locate(&in->regionlist[5 * i], &searchtet); + if ((intersect != OUTSIDE) && (!infected(searchtet))) { + // Record the tetrahedron for processing after the + // holes have been carved. + regiontets[i] = searchtet; + } + } + } + } + + // Initialize a pool of viri to be used for holes, concavities, + // regional attributes, and/or regional volume constraints. + viri = new memorypool(sizeof(tetrahedron *), 1024, POINTER, 0); + // Mark as infected any unprotected tetrahedra on the boundary. + // This is one way by which concavities are created. + infecthull(viri); + + if (in->numberofholes > 0) { + // Infect the hole tetrahedron. This is done by marking the + // tetrahedron as infect and including the tetrahedron in + // the virus pool. + for (i = 0; i < in->numberofholes; i++) { + infect(holetets[i]); + holetet = (tetrahedron **) viri->alloc(); + *holetet = holetets[i].tet; + } + } + + if (viri->items > 0) { + // Carve the holes and concavities. + plague(viri); + } + // The virus pool should be empty now. + + if (in->numberofregions > 0) { + if (!b->quiet) { + if (b->regionattrib) { + if (b->varvolume) { + printf("Spreading regional attributes and volume constraints.\n"); + } else { + printf("Spreading regional attributes.\n"); + } + } else { + printf("Spreading regional volume constraints.\n"); + } + } + if (b->regionattrib && !b->refine) { + // Assign every tetrahedron a regional attribute of zero. + tetrahedrons->traversalinit(); + tptr = tetrahedrontraverse(); + while (tptr != (tetrahedron *) NULL) { + setelemattribute(tptr, in->numberoftetrahedronattributes, 0.0); + tptr = tetrahedrontraverse(); + } + } + for (i = 0; i < in->numberofregions; i++) { + if (regiontets[i].tet != dummytet) { + // Make sure the tetrahedron under consideration still exists. + // It may have been eaten by the virus. + if (!isdead(&(regiontets[i]))) { + // Put one tetrahedron in the virus pool. + infect(regiontets[i]); + regiontet = (tetrahedron **) viri->alloc(); + *regiontet = regiontets[i].tet; + // Apply one region's attribute and/or volume constraint. + regionplague(viri, in->regionlist[5 * i + 3], + in->regionlist[5 * i + 4]); + // The virus pool should be empty now. + } + } + } + if (b->regionattrib && !b->refine) { + // Note the fact that each tetrahedron has an additional attribute. + in->numberoftetrahedronattributes++; + } + } + + // Free up memory. + delete viri; + if (in->numberofholes > 0) { + delete [] holetets; + } + if (in->numberofregions > 0) { + delete [] regiontets; + } +} + +// +// End of carving out holes and concavities routines +// + +// +// Begin of mesh update routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// reconstructmesh() Reconstruct a tetrahedral mesh from a list of // +// tetrahedra and possibly a list of boundary faces. // +// // +// The list of tetrahedra is stored in 'in->tetrahedronlist', the list of // +// boundary faces is stored in 'in->trifacelist'. The tetrahedral mesh is // +// reconstructed in memorypool 'tetrahedrons', its boundary faces (subfaces) // +// are reconstructed in 'subfaces', its boundary edges (subsegments) are // +// reconstructed in 'subsegs'. If the -a switch is used, this procedure will // +// also read a list of REALs from 'in->tetrahedronvolumelist' and set a // +// maximum volume constraint on each tetrahedron. // +// // +// If the user has provided the boundary faces in 'in->trifacelist', they // +// will be inserted the mesh. Otherwise subfaces will be identified from the // +// mesh. All hull faces (including faces of the internal holes) will be // +// recognized as subfaces, internal faces between two tetrahedra which have // +// different attributes will also be recognized as subfaces. // +// // +// Subsegments will be identified after subfaces are reconstructed. Edges at // +// the intersections of non-coplanar subfaces are recognized as subsegments. // +// Edges between two coplanar subfaces with different boundary markers are // +// also recognized as subsegments. // +// // +// The facet index of each subface will be set automatically after we have // +// recovered subfaces and subsegments. That is, the set of subfaces, which // +// are coplanar and have the same boundary marker will be recognized as a // +// facet and has a unique index, stored as the facet marker in each subface // +// of the set, the real boundary marker of each subface will be found in // +// 'in->facetmarkerlist' by the index. Facet index will be used in Delaunay // +// refinement for detecting two incident facets. // +// // +// Points which are not corners of tetrahedra will be inserted into the mesh.// +// Return the number of faces on the hull after the reconstruction. // +// // +/////////////////////////////////////////////////////////////////////////////// + +long tetgenmesh::reconstructmesh() +{ + tetrahedron **tetsperverlist; + shellface **facesperverlist; + triface tetloop, neightet, neineightet, spintet; + face subloop, neighsh, neineighsh, subseg; + face sface1, sface2; + point *idx2verlist; + point torg, tdest, tapex, toppo; + point norg, ndest, napex; + list *neighshlist, *markerlist; + REAL sign, attrib, volume; + REAL da1, da2; + bool bondflag, insertsegflag; + int *idx2tetlist; + int *idx2facelist; + int *worklist; + int facetidx, marker; + int iorg, idest, iapex, ioppo; + int inorg, indest, inapex; + int index, i, j; + + if (!b->quiet) { + printf("Reconstructing mesh.\n"); + } + + // Create a map from index to points. + makeindex2pointmap(idx2verlist); + + // Create the tetrahedra. + for (i = 0; i < in->numberoftetrahedra; i++) { + // Create a new tetrahedron and set its four corners, make sure that + // four corners form a positive orientation. + maketetrahedron(&tetloop); + index = i * in->numberofcorners; + // Although there may be 10 nodes, we only read the first 4. + iorg = in->tetrahedronlist[index] - in->firstnumber; + idest = in->tetrahedronlist[index + 1] - in->firstnumber; + iapex = in->tetrahedronlist[index + 2] - in->firstnumber; + ioppo = in->tetrahedronlist[index + 3] - in->firstnumber; + torg = idx2verlist[iorg]; + tdest = idx2verlist[idest]; + tapex = idx2verlist[iapex]; + toppo = idx2verlist[ioppo]; + sign = orient3d(torg, tdest, tapex, toppo); + if (sign > 0.0) { + norg = torg; torg = tdest; tdest = norg; + } else if (sign == 0.0) { + printf("Warning: Tetrahedron %d is degenerate.\n", i + in->firstnumber); + } + setorg(tetloop, torg); + setdest(tetloop, tdest); + setapex(tetloop, tapex); + setoppo(tetloop, toppo); + // Temporarily set the vertices be type FREEVOLVERTEX, to indicate that + // they belong to the mesh. These types may be changed later. + setpointtype(torg, FREEVOLVERTEX); + setpointtype(tdest, FREEVOLVERTEX); + setpointtype(tapex, FREEVOLVERTEX); + setpointtype(toppo, FREEVOLVERTEX); + // Set element attributes if they exist. + for (j = 0; j < in->numberoftetrahedronattributes; j++) { + index = i * in->numberoftetrahedronattributes; + attrib = in->tetrahedronattributelist[index + j]; + setelemattribute(tetloop.tet, j, attrib); + } + // If -a switch is used (with no number follows) Set a volume + // constraint if it exists. + if (b->varvolume) { + if (in->tetrahedronvolumelist != (REAL *) NULL) { + volume = in->tetrahedronvolumelist[i]; + } else { + volume = -1.0; + } + setvolumebound(tetloop.tet, volume); + } + } + + // Set the connection between tetrahedra. + hullsize = 0l; + // Create a map from nodes to tetrahedra. + maketetrahedronmap(idx2tetlist, tetsperverlist); + // Initialize the worklist. + worklist = new int[points->items]; + for (i = 0; i < points->items; i++) { + worklist[i] = 0; + } + + // Loop all tetrahedra, bond two tetrahedra if they share a common face. + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + // Loop the four sides of the tetrahedron. + for (tetloop.loc = 0; tetloop.loc < 4; tetloop.loc++) { + sym(tetloop, neightet); + if (neightet.tet != dummytet) continue; // This side has finished. + torg = org(tetloop); + tdest = dest(tetloop); + tapex = apex(tetloop); + iorg = pointmark(torg) - in->firstnumber; + idest = pointmark(tdest) - in->firstnumber; + iapex = pointmark(tapex) - in->firstnumber; + worklist[iorg] = 1; + worklist[idest] = 1; + worklist[iapex] = 1; + bondflag = false; + // Search its neighbor in the adjacent tets of torg. + for (j = idx2tetlist[iorg]; j < idx2tetlist[iorg + 1] && !bondflag; + j++) { + if (tetsperverlist[j] == tetloop.tet) continue; // Skip myself. + neightet.tet = tetsperverlist[j]; + for (neightet.loc = 0; neightet.loc < 4; neightet.loc++) { + sym(neightet, neineightet); + if (neineightet.tet == dummytet) { + norg = org(neightet); + ndest = dest(neightet); + napex = apex(neightet); + inorg = pointmark(norg) - in->firstnumber; + indest = pointmark(ndest) - in->firstnumber; + inapex = pointmark(napex) - in->firstnumber; + if ((worklist[inorg] + worklist[indest] + worklist[inapex]) == 3) { + // Find! Bond them together and break the loop. + bond(tetloop, neightet); + bondflag = true; + break; + } + } + } + } + if (!bondflag) { + hullsize++; // It's a hull face. + // Bond this side to outer space. + dummytet[0] = encode(tetloop); + if (in->pointmarkerlist != (int *) NULL) { + // Set its three corners's markers be boundary (hull) vertices. + if (in->pointmarkerlist[iorg] == 0) { + in->pointmarkerlist[iorg] = 1; + } + if (in->pointmarkerlist[idest] == 0) { + in->pointmarkerlist[idest] = 1; + } + if (in->pointmarkerlist[iapex] == 0) { + in->pointmarkerlist[iapex] = 1; + } + } + } + worklist[iorg] = 0; + worklist[idest] = 0; + worklist[iapex] = 0; + } + tetloop.tet = tetrahedrontraverse(); + } + + // Subfaces will be inserted into the mesh. + if (in->trifacelist != (int *) NULL) { + // Recover subfaces from 'in->trifacelist'. + for (i = 0; i < in->numberoftrifaces; i++) { + index = i * 3; + iorg = in->trifacelist[index] - in->firstnumber; + idest = in->trifacelist[index + 1] - in->firstnumber; + iapex = in->trifacelist[index + 2] - in->firstnumber; + // Look for the location of this subface. + worklist[iorg] = 1; + worklist[idest] = 1; + worklist[iapex] = 1; + bondflag = false; + // Search its neighbor in the adjacent tets of torg. + for (j = idx2tetlist[iorg]; j < idx2tetlist[iorg + 1] && !bondflag; + j++) { + neightet.tet = tetsperverlist[j]; + for (neightet.loc = 0; neightet.loc < 4; neightet.loc++) { + norg = org(neightet); + ndest = dest(neightet); + napex = apex(neightet); + inorg = pointmark(norg) - in->firstnumber; + indest = pointmark(ndest) - in->firstnumber; + inapex = pointmark(napex) - in->firstnumber; + if ((worklist[inorg] + worklist[indest] + worklist[inapex]) == 3) { + bondflag = true; // Find! + break; + } + } + } + if (bondflag) { + // Create a new subface and insert it into the mesh. + makeshellface(subfaces, &subloop); + torg = idx2verlist[iorg]; + tdest = idx2verlist[idest]; + tapex = idx2verlist[iapex]; + setsorg(subloop, torg); + setsdest(subloop, tdest); + setsapex(subloop, tapex); + // Set the vertices be FREESUBVERTEX to indicate they belong to a + // facet of the domain. They may be changed later. + setpointtype(torg, FREESUBVERTEX); + setpointtype(tdest, FREESUBVERTEX); + setpointtype(tapex, FREESUBVERTEX); + if (in->trifacemarkerlist != (int *) NULL) { + setshellmark(subloop, in->trifacemarkerlist[i]); + } + adjustedgering(neightet, CCW); + findedge(&subloop, org(neightet), dest(neightet)); + tsbond(neightet, subloop); + sym(neightet, neineightet); + if (neineightet.tet != dummytet) { + sesymself(subloop); + tsbond(neineightet, subloop); + } + } else { + printf("Warning: Subface %d is discarded.\n", i + in->firstnumber); + } + worklist[iorg] = 0; + worklist[idest] = 0; + worklist[iapex] = 0; + } + } else { + // Indentify subfaces from the mesh. + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + // Loop the four sides of the tetrahedron. + for (tetloop.loc = 0; tetloop.loc < 4; tetloop.loc++) { + tspivot(tetloop, subloop); + if (subloop.sh != dummysh) continue; + bondflag = false; + sym(tetloop, neightet); + if (neightet.tet == dummytet) { + // It's a hull face. Insert a subface at here. + bondflag = true; + } else { + // It's an interior face. Insert a subface if two tetrahedra have + // different attributes (i.e., they belong to two regions). + if (in->numberoftetrahedronattributes > 0) { + if (elemattribute(neightet.tet, + in->numberoftetrahedronattributes - 1) != + elemattribute(tetloop.tet, + in->numberoftetrahedronattributes - 1)) { + bondflag = true; + } + } + } + if (bondflag) { + adjustedgering(tetloop, CCW); + makeshellface(subfaces, &subloop); + torg = org(tetloop); + tdest = dest(tetloop); + tapex = apex(tetloop); + setsorg(subloop, torg); + setsdest(subloop, tdest); + setsapex(subloop, tapex); + // Set the vertices be FACETVERTEX to indicate they belong to a + // facet of the domain. They may be changed later. + setpointtype(torg, FACETVERTEX); + setpointtype(tdest, FACETVERTEX); + setpointtype(tapex, FACETVERTEX); + tsbond(tetloop, subloop); + if (neightet.tet != dummytet) { + sesymself(subloop); + tsbond(neightet, subloop); + } + } + } + tetloop.tet = tetrahedrontraverse(); + } + } + + // Set the connection between subfaces. An subsegment may have more than + // two subfaces sharing it, 'neighshlist' stores all subfaces sharing + // one edge. + neighshlist = new list(sizeof(face), NULL); + // Create a map from nodes to subfaces. + makesubfacemap(idx2facelist, facesperverlist); + + // Loop over the set of subfaces, setup the connection between subfaces. + subfaces->traversalinit(); + subloop.sh = shellfacetraverse(subfaces); + while (subloop.sh != (shellface *) NULL) { + for (i = 0; i < 3; i++) { + spivot(subloop, neighsh); + if (neighsh.sh == dummysh) { + // This side is 'empty', operate on it. + torg = sorg(subloop); + tdest = sdest(subloop); + tapex = sapex(subloop); + neighshlist->append(&subloop); + iorg = pointmark(torg) - in->firstnumber; + // Search its neighbor in the adjacent list of torg. + for (j = idx2facelist[iorg]; j < idx2facelist[iorg + 1]; j++) { + neighsh.sh = facesperverlist[j]; + if (neighsh.sh == subloop.sh) continue; + neighsh.shver = 0; + if (isfacehasedge(&neighsh, torg, tdest)) { + findedge(&neighsh, torg, tdest); + // Insert 'neighsh' into 'neighshlist'. + if (neighshlist->len() < 2) { + neighshlist->append(&neighsh); + } else { + for (index = 0; index < neighshlist->len() - 1; index++) { + sface1 = * (face *)(* neighshlist)[index]; + sface2 = * (face *)(* neighshlist)[index + 1]; + da1 = facedihedral(torg, tdest, sapex(sface1), sapex(neighsh)); + da2 = facedihedral(torg, tdest, sapex(sface1), sapex(sface2)); + if (da1 < da2) { + break; // Insert it after index. + } + } + neighshlist->insert(index + 1, &neighsh); + } + } + } + // Bond the subfaces in 'neighshlist'. + if (neighshlist->len() > 1) { + neighsh = * (face *)(* neighshlist)[0]; + for (j = 1; j <= neighshlist->len(); j++) { + if (j < neighshlist->len()) { + neineighsh = * (face *)(* neighshlist)[j]; + } else { + neineighsh = * (face *)(* neighshlist)[0]; + } + sbond1(neighsh, neineighsh); + neighsh = neineighsh; + } + } else { + // No neighbor subface be found, bond 'subloop' to itself. + sbond(subloop, subloop); + } + neighshlist->clear(); + } + senextself(subloop); + } + subloop.sh = shellfacetraverse(subfaces); + } + + // Subsegments will be introudced. + subfaces->traversalinit(); + subloop.sh = shellfacetraverse(subfaces); + while (subloop.sh != (shellface *) NULL) { + for (i = 0; i < 3; i++) { + sspivot(subloop, subseg); + if (subseg.sh == dummysh) { + // This side has no subsegment bonded, check it. + torg = sorg(subloop); + tdest = sdest(subloop); + tapex = sapex(subloop); + spivot(subloop, neighsh); + spivot(neighsh, neineighsh); + insertsegflag = false; + if (subloop.sh == neighsh.sh || subloop.sh != neineighsh.sh) { + // This side is either self-bonded or more than two subfaces, + // insert a subsegment at this side. + insertsegflag = true; + } else { + // Only two subfaces case. + assert(subloop.sh != neighsh.sh); + napex = sapex(neighsh); + sign = orient3d(torg, tdest, tapex, napex); + if (iscoplanar(torg, tdest, tapex, napex, sign, b->epsilon)) { + // Although they are coplanar, we still need to check if they + // have the same boundary marker. + insertsegflag = (shellmark(subloop) != shellmark(neighsh)); + } else { + // Non-coplanar. + insertsegflag = true; + } + } + if (insertsegflag) { + // Create a subsegment at this side. + makeshellface(subsegs, &subseg); + setsorg(subseg, torg); + setsdest(subseg, tdest); + // At the moment, all segment vertices have type FACETVERTEX. + // They will be set to type ACUTEVERTEX or NONACUTEVERTEX by + // routine markacutevertices() later. + // setpointtype(torg, SEGMENTVERTEX); + // setpointtype(tdest, SEGMENTVERTEX); + // Bond all subfaces to this subsegment. + neighsh = subloop; + do { + ssbond(neighsh, subseg); + spivotself(neighsh); + } while (neighsh.sh != subloop.sh); + } + } + senextself(subloop); + } + subloop.sh = shellfacetraverse(subfaces); + } + // Remember the number of input segments. + insegment = subsegs->items; + // Find the acute vertices and set them be type ACUTEVERTEX. + + // Indentify the facet and set facet index for each subface. + markerlist = new list("int"); + + subfaces->traversalinit(); + subloop.sh = shellfacetraverse(subfaces); + while (subloop.sh != (shellface *) NULL) { + // Only operate on uninfected subface, after operating, infect it. + if (!sinfected(subloop)) { + // A new facet has found. + marker = shellmark(subloop); + markerlist->append(&marker); + facetidx = markerlist->len(); // 'facetidx' starts from 1. + setshellmark(subloop, facetidx); + sinfect(subloop); + neighshlist->append(&subloop); + // Find out all subfaces of this facet (bounded by subsegments). + for (i = 0; i < neighshlist->len(); i++) { + neighsh = * (face *) (* neighshlist)[i]; + for (j = 0; j < 3; j++) { + sspivot(neighsh, subseg); + if (subseg.sh == dummysh) { + spivot(neighsh, neineighsh); + if (!sinfected(neineighsh)) { + // 'neineighsh' is in the same facet as 'subloop'. + assert(shellmark(neineighsh) == marker); + setshellmark(neineighsh, facetidx); + sinfect(neineighsh); + neighshlist->append(&neineighsh); + } + } + senextself(neighsh); + } + } + neighshlist->clear(); + } + subloop.sh = shellfacetraverse(subfaces); + } + // Save the facet markers in 'in->facetmarkerlist'. + in->numberoffacets = markerlist->len(); + in->facetmarkerlist = new int[in->numberoffacets]; + for (i = 0; i < in->numberoffacets; i++) { + marker = * (int *) (* markerlist)[i]; + in->facetmarkerlist[i] = marker; + } + // Uninfect all subfaces. + subfaces->traversalinit(); + subloop.sh = shellfacetraverse(subfaces); + while (subloop.sh != (shellface *) NULL) { + assert(sinfected(subloop)); + suninfect(subloop); + subloop.sh = shellfacetraverse(subfaces); + } + + // The mesh contains boundary now. + checksubfaces = 1; + + if (b->quality) { + // Check and recover the Delaunay property. + queue* flipqueue = new queue(sizeof(badface)); + checkdelaunay(flipqueue); + if (!flipqueue->empty()) { + // Call flip algorithm to recover Delaunayness. + flip(flipqueue, NULL); + } + delete flipqueue; + } + + delete markerlist; + delete neighshlist; + delete [] worklist; + delete [] idx2tetlist; + delete [] tetsperverlist; + delete [] idx2facelist; + delete [] facesperverlist; + delete [] idx2verlist; + + return hullsize; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// insertaddpoints() Insert additional points in 'in->addpointlist'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::insertaddpoints() +{ + queue *flipqueue; + triface searchtet; + face checksh, checkseg; + point newpoint; + point p1, p2, p3, p4; + enum locateresult loc; + REAL ori; + int ptmark; + int index; + int i, j; + + if (!b->quiet) { + printf("Insert additional points into mesh.\n"); + } + // Initialize 'flipqueue'. + flipqueue = new queue(sizeof(badface)); + recenttet.tet = dummytet; + + index = 0; + for (i = 0; i < in->numberofaddpoints; i++) { + // Create a newpoint. + newpoint = (point) points->alloc(); + newpoint[0] = in->addpointlist[index++]; + newpoint[1] = in->addpointlist[index++]; + newpoint[2] = in->addpointlist[index++]; + for (j = 0; j < in->numberofpointattributes; j++) { + newpoint[3 + j] = 0.0; + } + // Remember the point index (starts from 'in->firstnumber'). + ptmark = (int) points->items - (in->firstnumber == 1 ? 0 : 1); + setpointmark(newpoint, ptmark); + // Find the location of the inserted point. + searchtet = recenttet; + loc = locate(newpoint, &searchtet); + if (loc != OUTSIDE) { + if (loc != ONVERTEX) { + loc = adjustlocate(newpoint, &searchtet, loc, b->epsilon); + } + } + if (loc == OUTSIDE) { + // Perform a brute-force search. + tetrahedrons->traversalinit(); + searchtet.tet = tetrahedrontraverse(); + while (searchtet.tet != (tetrahedron *) NULL) { + p1 = (point) searchtet.tet[4]; + p2 = (point) searchtet.tet[5]; + p3 = (point) searchtet.tet[6]; + p4 = (point) searchtet.tet[7]; + ori = orient3d(p2, p1, p3, newpoint); + if (ori >= 0) { + ori = orient3d(p1, p2, p4, newpoint); + if (ori >= 0) { + ori = orient3d(p2, p3, p4, newpoint); + if (ori >= 0) { + ori = orient3d(p3, p1, p4, newpoint); + if (ori >= 0) { + // 'newpoint' lies inside, or on a face, or on an edge, or + // a vertex of 'searchtet'. + loc = adjustlocate(newpoint, &searchtet, OUTSIDE, b->epsilon); + if (loc != OUTSIDE) break; + } + } + } + } + searchtet.tet = tetrahedrontraverse(); + } + } + // Insert the point if it not lies outside or on a vertex. + switch (loc) { + case INTETRAHEDRON: + setpointtype(newpoint, FREEVOLVERTEX); + splittetrahedron(newpoint, &searchtet, flipqueue); + break; + case ONFACE: + tspivot(searchtet, checksh); + if (checksh.sh != dummysh) { + setpointtype(newpoint, FREESUBVERTEX); + } else { + setpointtype(newpoint, FREEVOLVERTEX); + } + splittetface(newpoint, &searchtet, flipqueue); + break; + case ONEDGE: + tsspivot(&searchtet, &checkseg); + if (checkseg.sh != dummysh) { + setpointtype(newpoint, FREESEGVERTEX); + } else { + tspivot(searchtet, checksh); + if (checksh.sh != dummysh) { + setpointtype(newpoint, FREESUBVERTEX); + } else { + setpointtype(newpoint, FREEVOLVERTEX); + } + } + splittetedge(newpoint, &searchtet, flipqueue); + break; + case ONVERTEX: + if (b->verbose) { + printf("Warning: Point (%.17g, %.17g, %.17g) falls on a vertex.\n", + newpoint[0], newpoint[1], newpoint[2]); + } + break; + case OUTSIDE: + if (b->verbose) { + printf("Warning: Point (%.17g, %.17g, %.17g) lies outside the mesh.\n", + newpoint[0], newpoint[1], newpoint[2]); + } + break; + } + // Remember the tetrahedron for next point searching. + recenttet = searchtet; + if (loc == ONVERTEX || loc == OUTSIDE) { + pointdealloc(newpoint); + } else { + flip(flipqueue, NULL); + } + } + + delete flipqueue; +} + +// +// End of mesh update routines +// + +// +// Begin of Delaunay refinement routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// initializerpsarray() Calculate the initial radii of protecting spheres // +// of all acute vertices, save in 'rpsarray'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::initializerpsarray(REAL* rpsarray) +{ + list *neightetlist; + tetrahedron tetptr; + triface starttet, neightet; + point pointloop, workpt[3]; + REAL rps, len; + int index, i, j; + + if (b->verbose) { + printf(" Initializing protecting spheres.\n"); + } + + // Initialize the point2tet field of each point. + points->traversalinit(); + pointloop = pointtraverse(); + while (pointloop != (point) NULL) { + setpoint2tet(pointloop, (tetrahedron) NULL); + pointloop = pointtraverse(); + } + // Construct a map from points to tetrahedra. + makepoint2tetmap(); + // Initialize 'neightetlist'. + neightetlist = new list(sizeof(triface), NULL, 256); + + points->traversalinit(); + pointloop = pointtraverse(); + while (pointloop != (point) NULL) { + tetptr = point2tet(pointloop); + // Only calculate lfs(p) if it is acute and is not dangling. + if ((pointtype(pointloop) == ACUTEVERTEX) && + (tetptr != (tetrahedron) NULL)) { + decode(tetptr, starttet); + assert((starttet.tet != NULL) && (starttet.tet != dummytet)); + // Find all tetrahedra sharing 'pointloop'. + findorg(&starttet, pointloop); + infect(starttet); + neightetlist->append(&starttet); + for (i = 0; i < neightetlist->len(); i++) { + starttet = * (triface *)(* neightetlist)[i]; + assert(infected(starttet)); + // The origin of 'starttet' should be 'pointloop'. + adjustedgering(starttet, CCW); + if (org(starttet) != pointloop) { + enextself(starttet); + } + assert(org(starttet) == pointloop); + // Let 'starttet' be the opposite face of 'pointloop'. + enextfnextself(starttet); + assert(oppo(starttet) == pointloop); + // Get three neighbors of faces having 'pointloop'. + adjustedgering(starttet, CCW); + for (j = 0; j < 3; j++) { + fnext(starttet, neightet); + symself(neightet); + // Add it into list if is is not outer space and not infected. + if ((neightet.tet != dummytet) && !infected(neightet)) { + findorg(&neightet, pointloop); + infect(neightet); + neightetlist->append(&neightet); + } + enextself(starttet); + } + } + // 'neightetlist' contains all tetrahedra sharing at 'pointloop'. Get + // the shortest edge length of edges sharing at 'pointloop'. + rps = longest; + for (i = 0; i < neightetlist->len(); i++) { + starttet = * (triface *)(* neightetlist)[i]; + assert(org(starttet) == pointloop); + workpt[0] = dest(starttet); + workpt[1] = apex(starttet); + workpt[2] = oppo(starttet); + for (j = 0; j < 3; j++) { + len = distance(workpt[j], pointloop); + if (pointtype(workpt[j]) == ACUTEVERTEX) { + len /= 3.0; + } else { + len /= 2.0; + } + if (len < rps) rps = len; + } + } + // Uninfect tetrahedra and clear 'neightetlist'. + for (i = 0; i < neightetlist->len(); i++) { + starttet = * (triface *)(* neightetlist)[i]; + uninfect(starttet); + } + neightetlist->clear(); + } else { + // A non-acute or dangling vertex. + rps = 0.0; + } + // Return the local feature size of pointloop. + index = pointmark(pointloop) - in->firstnumber; + rpsarray[index] = rps; + pointloop = pointtraverse(); + } + + delete neightetlist; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// marksharpfacets() Make a map of facets which form sharp corners. // +// // +// A sharp corner between two facets has a dihedral angle smaller than the // +// 'dihedbound' (in degrees). The map is returned in an integer array // +// 'idx2facetlist'. If idx2facetlist[facetidx - 1] is '1', it means that // +// facet form a sharp corner with other facet. // +// // +// NOTE: idx2facetlist is created inside this routine, don't forget to free // +// it after using. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::marksharpfacets(int*& idx2facetlist, REAL dihedbound) +{ + list *incishlist; + triface adjtet; + face segloop, prevseg, checkseg; + face subloop, parentsh, spinsh; + face neighsh, checksh; + point eorg, edest; + REAL anglebound, angle; + int facetidx; + int i, j; + + if (b->verbose) { + printf(" Marking facets have sharp corners.\n"); + } + + anglebound = dihedbound * 3.1415926535897932 / 180.; + // Create and initialize 'idx2facetlist'. + idx2facetlist = new int[in->numberoffacets + 1]; + for (i = 0; i < in->numberoffacets + 1; i++) idx2facetlist[i] = 0; + // A list keeps incident and not co-facet subfaces around a subsegment. + incishlist = new list(sizeof(face), NULL); + + // Loop the set of subsegments once, counter the number of incident + // facets of each facet. + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while (segloop.sh != (shellface *) NULL) { + // A subsegment may be split into many pieces, we only need one piece + // for getting the incident facets. Only operate on the one which + // contains the origin of the unsplit subsegment. + segloop.shver = 0; + senext2(segloop, prevseg); + spivotself(prevseg); + if (prevseg.sh == dummysh) { + // Operate on this subsegment. + segloop.shver = 0; + spivot(segloop, parentsh); + assert(parentsh.sh != dummysh); + spivot(parentsh, spinsh); + if (spinsh.sh != parentsh.sh) { + // This subface is not self-bonded. + eorg = sorg(segloop); + edest = sdest(segloop); + // Get all incident subfaces around 'segloop'. + spinsh = parentsh; + do { + if (sorg(spinsh) != eorg) { + sesymself(spinsh); + } + incishlist->append(&spinsh); + spivotself(spinsh); + } while (spinsh.sh != parentsh.sh); + // Check the pair of adjacent subfaces for small angle. + spinsh = * (face *)(* incishlist)[0]; + for (i = 1; i <= incishlist->len(); i++) { + if (i == incishlist->len()) { + neighsh = * (face *)(* incishlist)[0]; + } else { + neighsh = * (face *)(* incishlist)[i]; + } + // Only do test when the side spinsh is faceing inward. + stpivot(spinsh, adjtet); + if (adjtet.tet != dummytet) { + angle = facedihedral(eorg, edest, sapex(spinsh), sapex(neighsh)); + if (angle < anglebound) { + facetidx = shellmark(spinsh); + idx2facetlist[facetidx - 1] = 1; + facetidx = shellmark(neighsh); + idx2facetlist[facetidx - 1] = 1; + } + } + spinsh = neighsh; + } + incishlist->clear(); + } + } + segloop.sh = shellfacetraverse(subsegs); + } + + // Ensure all the sharp facets are marked. The mergefacet() operation + // may leave several facets having different markers merged. + incishlist->clear(); + subfaces->traversalinit(); + subloop.sh = shellfacetraverse(subfaces); + while (subloop.sh != (shellface *) NULL) { + // Only operate on sharp and unmarked subfaces. + facetidx = shellmark(subloop); + if (!sinfected(subloop) && (idx2facetlist[facetidx - 1] == 1)) { + sinfect(subloop); + incishlist->append(&subloop); + // Find out all subfaces of this facet (bounded by subsegments). + for (i = 0; i < incishlist->len(); i++) { + neighsh = * (face *) (* incishlist)[i]; + for (j = 0; j < 3; j++) { + sspivot(neighsh, checkseg); + if (checkseg.sh == dummysh) { + spivot(neighsh, checksh); + if (!sinfected(checksh)) { + // 'checksh' is in the same facet as 'subloop'. + sinfect(checksh); + // Check if it is marked. + facetidx = shellmark(checksh); + if (idx2facetlist[facetidx - 1] == 0) { + idx2facetlist[facetidx - 1] = 1; + } + incishlist->append(&checksh); + } + } + senextself(neighsh); + } + } + incishlist->clear(); + } + subloop.sh = shellfacetraverse(subfaces); + } + // Uninfect all sharp subfaces. + subfaces->traversalinit(); + subloop.sh = shellfacetraverse(subfaces); + while (subloop.sh != (shellface *) NULL) { + if (sinfected(subloop)) { + facetidx = shellmark(subloop); + assert(idx2facetlist[facetidx - 1] == 1); + suninfect(subloop); + } + subloop.sh = shellfacetraverse(subfaces); + } + + delete incishlist; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// enqueuebadtet() Add a bad tetrahedron to the end of a queue. // +// // +// The queue is actually a set of 64 queues. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh:: +enqueuebadtet(triface *instet, REAL ratio, point insorg, point insdest, + point insapex, point insoppo, point inscent) +{ + badtetrahedron *newtet; + int queuenumber; + + // Allocate space for the bad tetrahedron. + newtet = (badtetrahedron *) badtetrahedrons->alloc(); + newtet->tet = *instet; + newtet->key = ratio; + newtet->cent[0] = inscent[0]; + newtet->cent[1] = inscent[1]; + newtet->cent[2] = inscent[2]; + newtet->tetorg = insorg; + newtet->tetdest = insdest; + newtet->tetapex = insapex; + newtet->tetoppo = insoppo; + newtet->nexttet = (badtetrahedron *) NULL; + // Determine the appropriate queue to put the bad tetrahedron into. + if (ratio > b->goodratio) { + queuenumber = (int) ((ratio - b->goodratio) / 0.5); + // 'queuenumber' may overflow (negative) caused by a very large ratio. + if ((queuenumber > 63) || (queuenumber < 0)) { + queuenumber = 63; + } + } else { + // It's not a bad ratio; put the tet in the lowest-priority queue. + queuenumber = 0; + } + // Add the tetrahedron to the end of a queue. + *tetquetail[queuenumber] = newtet; + // Maintain a pointer to the NULL pointer at the end of the queue. + tetquetail[queuenumber] = &newtet->nexttet; + + if (b->verbose > 2) { + printf(" Queueing bad tet: (%d, %d, %d, %d), ratio %g, qnum %d.\n", + pointmark(insorg), pointmark(insdest), pointmark(insapex), + pointmark(insoppo), sqrt(ratio), queuenumber); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// dequeuebadtet() Remove a tetrahedron from the front of the queue. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::badtetrahedron* tetgenmesh::dequeuebadtet() +{ + badtetrahedron *result; + int queuenumber; + + // Look for a nonempty queue. + for (queuenumber = 63; queuenumber >= 0; queuenumber--) { + result = tetquefront[queuenumber]; + if (result != (badtetrahedron *) NULL) { + // Remove the tetrahedron from the queue. + tetquefront[queuenumber] = result->nexttet; + // Maintain a pointer to the NULL pointer at the end of the queue. + if (tetquefront[queuenumber] == (badtetrahedron *) NULL) { + tetquetail[queuenumber] = &tetquefront[queuenumber]; + } + return result; + } + } + return (badtetrahedron *) NULL; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checkseg4encroach() Check a subsegment to see if it is encroached. // +// // +// A subsegment is encroached if there is a vertex in its diametral circle // +// (that is, the subsegment faces an angle greater than 90 degrees). // +// // +// If 'testpt' is not NULL, only check whether 'testsubseg' is encroached by // +// it or not. Otherwise, check all apexes of faces containing 'testsubseg', // +// to see if there is one encroaches it. // +// // +// If 'enqueueflag' is TRUE, add 'testsubseg' to queue 'badsubsegs' if it is // +// encroached. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +checkseg4encroach(face* testsubseg, point testpt, bool enqueueflag) +{ + badface *encsubseg; + triface starttet, spintet; + point eorg, edest, eapex, encpt; + REAL cent[3], radius, dist, diff; + bool enq; + int hitbdry; + + eorg = sorg(*testsubseg); + edest = sdest(*testsubseg); + cent[0] = 0.5 * (eorg[0] + edest[0]); + cent[1] = 0.5 * (eorg[1] + edest[1]); + cent[2] = 0.5 * (eorg[2] + edest[2]); + radius = distance(cent, eorg); + + enq = false; + encpt = (point) NULL; + if (testpt == (point) NULL) { + // Check if it is encroached by traversing all faces containing it. + sstpivot(testsubseg, &starttet); + eapex = apex(starttet); + spintet = starttet; + hitbdry = 0; + do { + dist = distance(cent, apex(spintet)); + diff = dist - radius; + if (fabs(diff) / radius <= b->epsilon) diff = 0.0; // Rounding. + if (diff < 0.0) { + enq = true; + encpt = apex(spintet); + break; + } + if (!fnextself(spintet)) { + hitbdry++; + if (hitbdry < 2) { + esym(starttet, spintet); + if (!fnextself(spintet)) { + hitbdry++; + } + } + } + } while (apex(spintet) != eapex && (hitbdry < 2)); + } else { + // Only check if 'testsubseg' is encroached by 'testpt'. + dist = distance(cent, testpt); + diff = dist - radius; + if (fabs(diff) / radius <= b->epsilon) diff = 0.0; // Rounding. + if (diff < 0.0) { + enq = true; + } + } + + if (enq && enqueueflag) { + if (b->verbose > 2) { + printf(" Queuing encroaching subsegment (%d, %d).\n", + pointmark(eorg), pointmark(edest)); + } + encsubseg = (badface *) badsubsegs->alloc(); + encsubseg->ss = *testsubseg; + encsubseg->forg = eorg; + encsubseg->fdest = edest; + encsubseg->foppo = encpt; + // Set the pointer of 'encsubseg' into 'testseg'. It has two purposes: + // (1) We can regonize it is encroached; (2) It is uniquely queued. + setshell2badface(encsubseg->ss, encsubseg); + } + + return enq; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checksub4encroach() Check a subface to see if it is encroached. If so, // +// add it to the list. // +// // +// A subface is encroached if there is a vertex in its diametral sphere. If // +// 'testpt != NULL', only test if 'testsub' is encroached by it. Otherwise, // +// test the opposites of the adjoining tetrahedra of 'testsub' at both side // +// to see whether it is encroached or not. If 'enqueueflag = TRUE', add // +// 'testsub' into pool 'badsubfaces'. Return TRUE if 'testsub' is encroached,// +// return FALSE if it is not. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh:: +checksub4encroach(face* testsub, point testpt, bool enqueueflag) +{ + badface *encsub; + triface abuttet; + point forg, fdest, fapex, encpt; + REAL cent[3], radius, dist, diff; + bool enq, bqual, ncollinear; + int quenumber, i; + + enq = false; + encpt = (point) NULL; + bqual = checksub4badqual(testsub); + + if (!bqual) { + forg = sorg(*testsub); + fdest = sdest(*testsub); + fapex = sapex(*testsub); + ncollinear = circumsphere(forg, fdest, fapex, NULL, cent, &radius); + assert(ncollinear == true); + + if (testpt == (point) NULL) { + stpivot(*testsub, abuttet); + if (abuttet.tet != dummytet) { + dist = distance(cent, oppo(abuttet)); + diff = dist - radius; + if (fabs(diff) / radius <= b->epsilon) diff = 0.0; // Rounding. + enq = diff < 0.0; + if (enq) encpt = oppo(abuttet); + } + if (!enq) { + sesymself(*testsub); + stpivot(*testsub, abuttet); + if (abuttet.tet != dummytet) { + dist = distance(cent, oppo(abuttet)); + diff = dist - radius; + if (fabs(diff) / radius <= b->epsilon) diff = 0.0; // Rounding. + enq = diff < 0.0; + if (enq) encpt = oppo(abuttet); + } + } + } else { + // Only do test when 'testpt' is one of its corners. + if (testpt != forg && testpt != fdest && testpt != fapex) { + dist = distance(cent, testpt); + diff = dist - radius; + if (fabs(diff) / radius <= b->epsilon) diff = 0.0; // Rounding. + enq = diff < 0.0; + } + } + } + + if ((enq || bqual) && enqueueflag) { + encsub = (badface *) badsubfaces->alloc(); + encsub->ss = *testsub; + encsub->forg = sorg(*testsub); + encsub->fdest = sdest(*testsub); + encsub->fapex = sapex(*testsub); + encsub->foppo = encpt; + if (enq) { + for (i = 0; i < 3; i++) encsub->cent[i] = cent[i]; + } else { + for (i = 0; i < 3; i++) encsub->cent[i] = 0.0; + } + encsub->nextface = (badface *) NULL; + // Set the pointer of 'encsubseg' into 'testsub'. It has two purposes: + // (1) We can regonize it is encroached; (2) It is uniquely queued. + setshell2badface(encsub->ss, encsub); + quenumber = bqual ? 1 : 0; + // Add the subface to the end of a queue. + *subquetail[quenumber] = encsub; + // Maintain a pointer to the NULL pointer at the end of the queue. + subquetail[quenumber] = &encsub->nextface; + if (b->verbose > 2) { + printf(" Queuing %s subface (%d, %d, %d).\n", + enq ? "encroached" : "badqual", pointmark(encsub->forg), + pointmark(encsub->fdest), pointmark(encsub->fapex)); + } + } + + return enq || bqual; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checksub4badquality() Test if the quality of a subface is bad. // +// // +// A subface has bad quality if: (1) its minimum internal angle is smaller // +// than 20 degree; or (2) its area is larger than a maximum area condition. // +// Return TRUE if it is bad. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::checksub4badqual(face* testsub) +{ + face sametestsub; + face subseg1, subseg2; + point torg, tdest, tapex; + point anglevertex; + REAL dxod, dyod, dzod; + REAL dxda, dyda, dzda; + REAL dxao, dyao, dzao; + REAL dxod2, dyod2, dzod2; + REAL dxda2, dyda2, dzda2; + REAL dxao2, dyao2, dzao2; + REAL apexlen, orglen, destlen; + REAL angle, area; + bool enq; + + enq = false; + torg = sorg(*testsub); + tdest = sdest(*testsub); + tapex = sapex(*testsub); + dxod = torg[0] - tdest[0]; + dyod = torg[1] - tdest[1]; + dzod = torg[2] - tdest[2]; + dxda = tdest[0] - tapex[0]; + dyda = tdest[1] - tapex[1]; + dzda = tdest[2] - tapex[2]; + dxao = tapex[0] - torg[0]; + dyao = tapex[1] - torg[1]; + dzao = tapex[2] - torg[2]; + dxod2 = dxod * dxod; + dyod2 = dyod * dyod; + dzod2 = dzod * dzod; + dxda2 = dxda * dxda; + dyda2 = dyda * dyda; + dzda2 = dzda * dzda; + dxao2 = dxao * dxao; + dyao2 = dyao * dyao; + dzao2 = dzao * dzao; + // Find the lengths of the triangle's three edges. + apexlen = dxod2 + dyod2 + dzod2; + orglen = dxda2 + dyda2 + dzda2; + destlen = dxao2 + dyao2 + dzao2; + if ((apexlen < orglen) && (apexlen < destlen)) { + // The edge opposite the apex is shortest. + // Find the square of the cosine of the angle at the apex. + angle = dxda * dxao + dyda * dyao + dzda * dzao; + angle = angle * angle / (orglen * destlen); + anglevertex = tapex; + senext(*testsub, sametestsub); + sspivot(sametestsub, subseg1); + senext2(*testsub, sametestsub); + sspivot(sametestsub, subseg2); + } else if (orglen < destlen) { + // The edge opposite the origin is shortest. + // Find the square of the cosine of the angle at the origin. + angle = dxod * dxao + dyod * dyao + dzod * dzao; + angle = angle * angle / (apexlen * destlen); + anglevertex = torg; + sspivot(*testsub, subseg1); + senext2(*testsub, sametestsub); + sspivot(sametestsub, subseg2); + } else { + // The edge opposite the destination is shortest. + // Find the square of the cosine of the angle at the destination. + angle = dxod * dxda + dyod * dyda + dzod * dzda; + angle = angle * angle / (apexlen * orglen); + anglevertex = tdest; + sspivot(*testsub, subseg1); + senext(*testsub, sametestsub); + sspivot(sametestsub, subseg2); + } + + // Check if both edges that form the angle are segments. + if ((subseg1.sh != dummysh) && (subseg2.sh != dummysh)) { + // The angle is a segment intersection. Don't add this bad subface to + // the list; there's nothing that can be done about a small angle + // between two segments. + angle = 0.0; + } else if (pointtype(anglevertex) == ACUTEVERTEX) { + // If the small angle vertex is acute, do not refine this face. + angle = 0.0; + } + + // Check whether the angle is smaller than permitted. + if (angle > b->goodangle) { + enq = true; + } + + if (!enq && areabound(*testsub) > 0.0) { + // Check whether the area is larger than desired. A variation form of + // Heron's formula which only uses the squares of the edge lengthes + // is used to calculated the area of a 3D triangle. + area = apexlen + orglen - destlen; + area = area * area; + area = 4 * apexlen * orglen - area; + area = 0.25 * sqrt(fabs(area)); + if (area > areabound(*testsub)) { + enq = true; + } + } + + return enq; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checktet4badqual() Test a tetrahedron for quality measures. // +// // +// Tests a tetrahedron to see if it satisfies the minimum ratio condition // +// and the maximum volume condition. Tetrahedra that aren't upto spec are // +// added to the bad tetrahedron queue. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::checktet4badqual(triface* testtet) +{ + point torg, tdest, tapex, toppo; + REAL dxod, dyod, dzod, dxda, dyda, dzda, dxao, dyao, dzao; + REAL dxop, dyop, dzop, dxdp, dydp, dzdp, dxap, dyap, dzap; + REAL dxod2, dyod2, dzod2, dxda2, dyda2, dzda2, dxao2, dyao2, dzao2; + REAL dxop2, dyop2, dzop2, dxdp2, dydp2, dzdp2, dxap2, dyap2, dzap2; + REAL dxoc, dyoc, dzoc, dxoc2, dyoc2, dzoc2; + REAL edgelen[6], cent[3]; + REAL smedgelen, averlen, volume; + REAL radius, ratio2; + int i; + + torg = org(*testtet); + tdest = dest(*testtet); + tapex = apex(*testtet); + toppo = oppo(*testtet); + + dxod = torg[0] - tdest[0]; + dyod = torg[1] - tdest[1]; + dzod = torg[2] - tdest[2]; + dxda = tdest[0] - tapex[0]; + dyda = tdest[1] - tapex[1]; + dzda = tdest[2] - tapex[2]; + dxao = tapex[0] - torg[0]; + dyao = tapex[1] - torg[1]; + dzao = tapex[2] - torg[2]; + + dxop = torg[0] - toppo[0]; + dyop = torg[1] - toppo[1]; + dzop = torg[2] - toppo[2]; + dxdp = tdest[0] - toppo[0]; + dydp = tdest[1] - toppo[1]; + dzdp = tdest[2] - toppo[2]; + dxap = tapex[0] - toppo[0]; + dyap = tapex[1] - toppo[1]; + dzap = tapex[2] - toppo[2]; + + dxod2 = dxod * dxod; + dyod2 = dyod * dyod; + dzod2 = dzod * dzod; + dxda2 = dxda * dxda; + dyda2 = dyda * dyda; + dzda2 = dzda * dzda; + dxao2 = dxao * dxao; + dyao2 = dyao * dyao; + dzao2 = dzao * dzao; + + dxop2 = dxop * dxop; + dyop2 = dyop * dyop; + dzop2 = dzop * dzop; + dxdp2 = dxdp * dxdp; + dydp2 = dydp * dydp; + dzdp2 = dzdp * dzdp; + dxap2 = dxap * dxap; + dyap2 = dyap * dyap; + dzap2 = dzap * dzap; + + // Find the smallest edge length of 'testtet'. + edgelen[0] = dxod2 + dyod2 + dzod2; + edgelen[1] = dxda2 + dyda2 + dzda2; + edgelen[2] = dxao2 + dyao2 + dzao2; + edgelen[3] = dxop2 + dyop2 + dzop2; + edgelen[4] = dxdp2 + dydp2 + dzdp2; + edgelen[5] = dxap2 + dyap2 + dzap2; + smedgelen = averlen = edgelen[0]; + for (i = 1; i < 6; i++) { + averlen += sqrt(edgelen[i]); + if (smedgelen > edgelen[i]) { + smedgelen = edgelen[i]; + } + } + averlen /= 6.0; + + // Find the circumcenter and circumradius of 'testtet'. + circumsphere(torg, tdest, tapex, toppo, cent, NULL); + dxoc = torg[0] - cent[0]; + dyoc = torg[1] - cent[1]; + dzoc = torg[2] - cent[2]; + dxoc2 = dxoc * dxoc; + dyoc2 = dyoc * dyoc; + dzoc2 = dzoc * dzoc; + radius = dxoc2 + dyoc2 + dzoc2; + + // Calculate the square of radius-edge ratio. + ratio2 = radius / smedgelen; + + // Check whether the ratio is smaller than permitted. + if (ratio2 > b->goodratio) { + // Add this tet to the list of bad tetrahedra. + enqueuebadtet(testtet, ratio2, torg, tdest, tapex, toppo, cent); + return true; + } + if (b->varvolume || b->fixedvolume) { + volume = orient3d(torg, tdest, tapex, toppo); + if (volume < 0) volume = -volume; + volume /= 6.0; + // Check whether the volume is larger than permitted. + if (b->fixedvolume && (volume > b->maxvolume)) { + // Add this tetrahedron to the list of bad tetrahedra. + enqueuebadtet(testtet, 0, torg, tdest, tapex, toppo, cent); + return true; + } else if (b->varvolume) { + // Nonpositive volume constraints are treated as unconstrained. + if ((volume > volumebound(testtet->tet)) && + (volumebound(testtet->tet) > 0.0)) { + // Add this tetrahedron to the list of bad tetrahedron. + enqueuebadtet(testtet, 0, torg, tdest, tapex, toppo, cent); + return true; + } + } + } + return false; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checktet4illtet() Test a tetrahedron to see if it is illegal. // +// // +// A tetrahedron is assumed as illegal if its four corners are defined on // +// one facet. A tetrahedron has zero volume is illegal. Add it into queue // +// if it is illegal. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::checktet4illtet(triface* testtet, list* illtetlist) +{ + badtetrahedron *badtet; + triface neighface; + face testsh, neighsh, testseg; + bool isill; + int i; + + isill = false; + testtet->loc = 0; + testtet->ver = 0; + tspivot(*testtet, testsh); // edge ab + if (testsh.sh != dummysh) { + // Check subfaces at edges ab, bc, ca. + findedge(&testsh, org(*testtet), dest(*testtet)); + for (i = 0; i < 3; i++) { + sspivot(testsh, testseg); + if (testseg.sh == dummysh) { + fnext(*testtet, neighface); + tspivot(neighface, neighsh); + if (neighsh.sh != dummysh) { + isill = true; + break; + } + } + enextself(*testtet); + senextself(testsh); + } + } + if (!isill) { + testtet->loc = 0; + testtet->ver = 0; + fnextself(*testtet); + esymself(*testtet); + tspivot(*testtet, testsh); + if (testsh.sh != dummysh) { + // Check subfaces at edges ad, db. + findedge(&testsh, org(*testtet), dest(*testtet)); + for (i = 0; i < 2; i++) { + enextself(*testtet); + senextself(testsh); + sspivot(testsh, testseg); + if (testseg.sh == dummysh) { + fnext(*testtet, neighface); + tspivot(neighface, neighsh); + if (neighsh.sh != dummysh) { + isill = true; + break; + } + } + } + } + } + if (!isill) { + testtet->loc = 0; + testtet->ver = 0; + enextfnextself(*testtet); + esymself(*testtet); + enext2self(*testtet); // edge cd. + tspivot(*testtet, testsh); + if (testsh.sh != dummysh) { + findedge(&testsh, org(*testtet), dest(*testtet)); + sspivot(testsh, testseg); + if (testseg.sh == dummysh) { + fnext(*testtet, neighface); + tspivot(neighface, neighsh); + if (neighsh.sh != dummysh) { + isill = true; + } + } + } + } + if (isill) { + badtet = (badtetrahedron *) illtetlist->append(NULL); + badtet->tet = *testtet; + badtet->tetorg = org(*testtet); + badtet->tetdest = dest(*testtet); + badtet->tetapex = apex(*testtet); + badtet->tetoppo = oppo(*testtet); + if (b->verbose > 2) { + printf(" Queuing illtet (%d, %d, %d, %d).\n", + pointmark(badtet->tetorg), pointmark(badtet->tetdest), + pointmark(badtet->tetapex), pointmark(badtet->tetoppo)); + } + } + return isill; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checktet4sliver() Test a tetrahedron for large dihedral angle. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::checktet4sliver(triface* testtet, list* illtetlist) +{ + badtetrahedron *badtet; + point pa, pb, pc, pd; + REAL dihed[6]; + bool issliver; + + pa = (point) testtet->tet[4]; + pb = (point) testtet->tet[5]; + pc = (point) testtet->tet[6]; + pd = (point) testtet->tet[7]; + tetalldihedral(pa, pb, pc, pd, dihed); + + issliver = false; + testtet->loc = 0; + testtet->ver = 0; + if (dihed[0] > b->maxdihedral) { // Edge ab + issliver = true; + } + if (!issliver && (dihed[1] > b->maxdihedral)) { // Edge ac + enext2self(*testtet); + issliver = true; + } + if (!issliver && (dihed[2] > b->maxdihedral)) { // Edge ad + fnextself(*testtet); + enext2self(*testtet); + esymself(*testtet); + issliver = true; + } + if (!issliver && (dihed[3] > b->maxdihedral)) { // Edge bc + enextself(*testtet); + issliver = true; + } + if (!issliver && (dihed[4] > b->maxdihedral)) { // Edge bd + fnextself(*testtet); + enextself(*testtet); + esymself(*testtet); + issliver = true; + } + if (!issliver && (dihed[5] > b->maxdihedral)) { // Edge cd + enextfnextself(*testtet); + enextself(*testtet); + esymself(*testtet); + issliver = true; + } + + if (issliver) { + badtet = (badtetrahedron *) illtetlist->append(NULL); + badtet->tet = *testtet; + badtet->tetorg = org(*testtet); + badtet->tetdest = dest(*testtet); + badtet->tetapex = apex(*testtet); + badtet->tetoppo = oppo(*testtet); + if (b->verbose > 2) { + printf(" Queuing sliver (%d, %d, %d, %d).\n", + pointmark(badtet->tetorg), pointmark(badtet->tetdest), + pointmark(badtet->tetapex), pointmark(badtet->tetoppo)); + } + } + return issliver; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checkseg4splitting() Check an encroached subsegment to see if it is // +// suitable to be split. // +// // +// If a subsegment is one of edges of a subface which is on the sharp corner,// +// it is not suitable to be split. If the volume constraint is set, it is // +// still suitable to be split if there is a tetrahedron around it which has // +// volume larger than volumebound. To avoid resulting too skinny tetrahedron,// +// we compare the longest edge length to the cubic root of volumebound. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::checkseg4splitting(face* testseg, REAL* rpsarray, bool bqual) +{ + triface spintet; + face parentsh, spinsh; + point eorg, edest, fapex; + bool acuteorg, acutedest; + REAL rpslimit; + REAL L, L3; + int ptidx; + + eorg = sorg(*testseg); + edest = sdest(*testseg); + acuteorg = pointtype(eorg) == ACUTEVERTEX; + acutedest = pointtype(edest) == ACUTEVERTEX; + if ((acuteorg && acutedest) || (!acuteorg && !acutedest)) { + // Can be split. + return true; + } + // Now exactly one vertex is acute. + assert(acuteorg || acutedest); + if (!bqual) { + // We're not forced to split it. However, if it is encroached by an + // existing vertex, we must split it, otherwise, not split it. + return checkseg4encroach(testseg, NULL, false); + } + + L = distance(eorg, edest); + if (acuteorg) { + ptidx = pointmark(eorg) - in->firstnumber; + } else { + assert(acutedest); + ptidx = pointmark(edest) - in->firstnumber; + } + rpslimit = rpsarray[ptidx] / 4.0; + if (L > (rpslimit * 1.1)) { + // The edge is not too small, can be split. + return true; + } + // L <= rpslimit. We should not split it. However, it may still be + // split if its length is too long wrt. the volume constraints. + if (b->varvolume || b->fixedvolume) { + L3 = L * L * L / 6.0; + if (b->fixedvolume && (L3 > b->maxvolume)) { + // This edge is too long wrt. the maximum volume bound. Split it. + return true; + } + if (b->varvolume) { + spivot(*testseg, parentsh); + if (sorg(parentsh) != eorg) sesymself(parentsh); + stpivot(parentsh, spintet); + if (spintet.tet == dummytet) { + sesymself(parentsh); + stpivot(parentsh, spintet); + assert(spintet.tet != dummytet); + } + findedge(&spintet, eorg, edest); + fapex = apex(spintet); + while (true) { + if (!fnextself(spintet)) { + // Meet a boundary, walk through it. + tspivot(spintet, spinsh); + assert(spinsh.sh != dummysh); + findedge(&spinsh, eorg, edest); + sfnextself(spinsh); + stpivot(spinsh, spintet); + assert(spintet.tet != dummytet); + findedge(&spintet, eorg, edest); + } + if ((L3 > volumebound(spintet.tet)) && + (volumebound(spintet.tet) > 0.0)) { + // This edge is too long wrt. the maximum volume bound. Split it. + return true; + } + if (apex(spintet) == fapex) break; + } + } + } + + // Not split it. + return false; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checksub4splitting() Check an encroached subface to see if it is // +// suitable to be split. // +// // +// If a subface is on the sharp corner, it is not suitable to be split. If // +// the volume constraint is set, it is still suitable to be split if there // +// is a tetrahedron around it which has volume larger than volumebound. To // +// avoid resulting too skinny tet, we compare the longest edge length to the // +// cubic root of volumebound. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::checksub4splitting(face* testsh) +{ + triface testtet; + point p[3]; + REAL L, L3; + int i; + + if (b->varvolume || b->fixedvolume) { + // Check if all the tetrahedra having this subface are conforming to + // the volume bound specified in b.maxvolume. Here we don't use each + // tetrahedron's volume for comparsion, instead is an approximate + // volume (one sixth of the cubic of its longest edge length). We + // hope this way can find skinny tetrahedra and split them. + p[0] = sorg(*testsh); + p[1] = sdest(*testsh); + p[2] = sapex(*testsh); + // Get the longest edge length of testsh = L. + L = distance(p[0], p[1]); + L3 = distance(p[1], p[2]); + L = (L >= L3 ? L : L3); + L3 = distance(p[2], p[0]); + L = (L >= L3 ? L : L3); + + L3 = L * L * L / 6.0; + if (b->fixedvolume && (L3 > b->maxvolume)) { + // This face is too large wrt. the maximum volume bound. Split it. + return true; + } + if (b->varvolume) { + for (i = 0; i < 2; i ++) { + stpivot(*testsh, testtet); + if (testtet.tet != dummytet) { + if ((L3 > volumebound(testtet.tet)) && + (volumebound(testtet.tet) > 0.0)) { + // This face is too large wrt. the maximum volume bound. + return true; + } + } + sesymself(*testsh); + } + } + } + return false; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// doqualchecktetlist() Put bad-quality tetrahedra in 'qualchecktetlist' // +// into queue and clear it. // +// // +// 'qualchecktetlist' stores a list of tetrahedra which are possibly bad- // +// quality, furthermore, one tetrahedron may appear many times in it. For // +// testing and queuing each bad-quality tetrahedron only once, infect it // +// after testing, later on, only test the one which is not infected. On // +// finish, uninfect them. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::doqualchecktetlist() +{ + triface testtet; + int i; + + for (i = 0; i < qualchecktetlist->len(); i++) { + testtet = * (triface *) (* qualchecktetlist)[i]; + if (!isdead(&testtet) && !infected(testtet)) { + checktet4badqual(&testtet); + infect(testtet); + } + } + for (i = 0; i < qualchecktetlist->len(); i++) { + testtet = * (triface *) (* qualchecktetlist)[i]; + if (!isdead(&testtet) && infected(testtet)) { + uninfect(testtet); + } + } + qualchecktetlist->clear(); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tallencsegs() Check for encroached segments, save them in list. // +// // +// If both 'testpt' and 'cavtetlist' are not NULLs, then check the segments // +// in 'cavtetlist' to see if they're encroached by 'testpt'. Otherwise, // +// check the entire list of segments to see if they're encroached by any of // +// mesh vertices. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::tallencsegs(point testpt, list *cavtetlist) +{ + triface starttet, neightet; + face checkseg; + long oldencnum; + int i, j; + + // Remember the current number of encroached segments. + oldencnum = badsubsegs->items; + + if (cavtetlist != (list *) NULL) { + assert(testpt != (point) NULL); + // Check segments in the list of tetrahedra. + for (i = 0; i < cavtetlist->len(); i++) { + starttet = * (triface *)(* cavtetlist)[i]; + infect(starttet); // Indicate it has been tested. + sym(starttet, neightet); + if (!infected(neightet)) { + // Test all three edges of this face. + for (j = 0; j < 3; j++) { + tsspivot(&starttet, &checkseg); + if (checkseg.sh != dummysh) { + if (!shell2badface(checkseg)) { + checkseg4encroach(&checkseg, testpt, true); + } + } + enextself(starttet); + } + } + adjustedgering(starttet, CCW); + fnext(starttet, neightet); + symself(neightet); + if ((neightet.tet == dummytet) || !infected(neightet)) { + fnext(starttet, neightet); + // Test the tow other edges of this face. + for (j = 0; j < 2; j++) { + enextself(neightet); + tsspivot(&neightet, &checkseg); + if (checkseg.sh != dummysh) { + if (!shell2badface(checkseg)) { + checkseg4encroach(&checkseg, testpt, true); + } + } + } + } + enextfnext(starttet, neightet); + symself(neightet); + if ((neightet.tet == dummytet) || !infected(neightet)) { + enextfnext(starttet, neightet); + // Only test the next edge of this face. + enextself(neightet); + tsspivot(&neightet, &checkseg); + if (checkseg.sh != dummysh) { + if (!shell2badface(checkseg)) { + checkseg4encroach(&checkseg, testpt, true); + } + } + } + } + // Uninfect all tetrahedra in the list. + for (i = 0; i < cavtetlist->len(); i++) { + starttet = * (triface *)(* cavtetlist)[i]; + assert(infected(starttet)); + uninfect(starttet); + } + } else { + // Check the entire list of segments. + subsegs->traversalinit(); + checkseg.sh = shellfacetraverse(subsegs); + while (checkseg.sh != (shellface *) NULL) { + checkseg4encroach(&checkseg, NULL, true); + checkseg.sh = shellfacetraverse(subsegs); + } + } + + return (badsubsegs->items > oldencnum); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tallencsubs() Find all encroached subfaces and save them in list. // +// // +// If 'cavtetlist' and 'testpt' are not NULL, only check subfaces which are // +// in cavtetlist. Otherwise check all subfaces in current mesh. If 'protonly'// +// is TRUE, only check subfaces which are in protecting cylinders & spheres. // +// Return TRUE if at least one encorached subface is found. // +// // +/////////////////////////////////////////////////////////////////////////////// + +bool tetgenmesh::tallencsubs(point testpt, list* cavtetlist) +{ + triface starttet, neightet; + face checksh; + long oldencnum; + int i, j; + + // Remember the current number of encroached segments. + oldencnum = badsubfaces->items; + + if (cavtetlist != (list *) NULL) { + assert(testpt != (point) NULL); + // Check subfaces in the list of tetrahedra. + for (i = 0; i < cavtetlist->len(); i++) { + starttet = * (triface *)(* cavtetlist)[i]; + infect(starttet); // Indicate it has been tested. + sym(starttet, neightet); + if (!infected(neightet)) { + // Test if this face is encroached. + tspivot(starttet, checksh); + if (checksh.sh != dummysh) { + // If it is not encroached, test it. + if (shell2badface(checksh) == NULL) { + checksub4encroach(&checksh, testpt, true); + } + } + } + adjustedgering(starttet, CCW); + // Check the other three sides of this tet. + for (j = 0; j < 3; j++) { + fnext(starttet, neightet); + symself(neightet); + if ((neightet.tet == dummytet) || !infected(neightet)) { + fnext(starttet, neightet); + // Test if this face is encroached. + tspivot(neightet, checksh); + if (checksh.sh != dummysh) { + // If it is not encroached, test it. + if (shell2badface(checksh) == NULL) { + checksub4encroach(&checksh, testpt, true); + } + } + } + enextself(starttet); + } + } + // Uninfect all tetrahedra in the list. + for (i = 0; i < cavtetlist->len(); i++) { + starttet = * (triface *)(* cavtetlist)[i]; + assert(infected(starttet)); + uninfect(starttet); + } + } else { + // Check the entire list of subfaces. + subfaces->traversalinit(); + checksh.sh = shellfacetraverse(subfaces); + while (checksh.sh != (shellface *) NULL) { + // If it is not encroached, test it. + checksub4encroach(&checksh, NULL, true); + checksh.sh = shellfacetraverse(subfaces); + } + } + + return (badsubfaces->items > oldencnum); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tallbadtetrahedrons() Test every tetrahedron in the mesh for quality // +// measures. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::tallbadtetrahedrons() +{ + triface tetloop; + + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + checktet4badqual(&tetloop); + tetloop.tet = tetrahedrontraverse(); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tallilltets() Test every tetrahedron in the mesh for illegal tet. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::tallilltets(list* illtetlist) +{ + triface tetloop; + REAL bakdihedral; + + bakdihedral = b->maxdihedral; + b->maxdihedral = 3.1415926535897932 * (1.0 - b->epsilon); + + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + if (!checktet4illtet(&tetloop, illtetlist)) { + checktet4sliver(&tetloop, illtetlist); + } + tetloop.tet = tetrahedrontraverse(); + } + + b->maxdihedral = bakdihedral; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tallslivers() Test every tetrahedron in the mesh for sliver checking. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::tallslivers(list* illtetlist) +{ + triface tetloop; + + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + checktet4sliver(&tetloop, illtetlist); + tetloop.tet = tetrahedrontraverse(); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// removeilltets() Repair mesh by removing illegal elements. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::removeilltets() +{ + badtetrahedron *badtet; + list *illtetlist; + queue *flipqueue; + int i; + + if (!b->quiet) { + printf("Removing illegal tetrahedra.\n"); + } + // Initialize the pool of bad tetrahedra. + illtetlist = new list(sizeof(badtetrahedron), NULL, 1024); + // Initialize 'flipqueue'. + flipqueue = new queue(sizeof(badface)); + // Initialize the pool of recently flipped faces. + flipstackers = new memorypool(sizeof(flipstacker), 1024, POINTER, 0); + + // Test all tetrahedra to see if they're slivers. + tallilltets(illtetlist); + do { + for (i = 0; i < illtetlist->len(); i++) { + badtet = (badtetrahedron *)(* illtetlist)[i]; + if (!isdead(&badtet->tet) && (org(badtet->tet) == badtet->tetorg) && + (dest(badtet->tet) == badtet->tetdest) && + (apex(badtet->tet) == badtet->tetapex) && + (oppo(badtet->tet) == badtet->tetoppo)) { + removebadtet(ILLEGAL, &badtet->tet, flipqueue); + } + } + illtetlist->clear(); + tallilltets(illtetlist); + } while (illtetlist->len() > 0); + + delete flipstackers; + delete flipqueue; + delete illtetlist; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// removeslivers() Repair mesh by removing slivers. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::removeslivers() +{ + badtetrahedron *badtet; + list *illtetlist; + int i; + + if (!b->quiet) { + printf("Removing slivers.\n"); + } + + // Initialize the pool of bad tetrahedra. + illtetlist = new list(sizeof(badtetrahedron), NULL, 1024); + // Initialize the pool of recently flipped faces. + flipstackers = new memorypool(sizeof(flipstacker), 1024, POINTER, 0); + + // Test all tetrahedra to see if they're slivers. + tallslivers(illtetlist); + for (i = 0; i < illtetlist->len(); i++) { + badtet = (badtetrahedron *)(* illtetlist)[i]; + if (!isdead(&badtet->tet) && (org(badtet->tet) == badtet->tetorg) && + (dest(badtet->tet) == badtet->tetdest) && + (apex(badtet->tet) == badtet->tetapex) && + (oppo(badtet->tet) == badtet->tetoppo)) { + // It's a sliver, remove it. + removebadtet(SLIVER, &badtet->tet, NULL); + } + } + illtetlist->clear(); + + delete flipstackers; + delete illtetlist; +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// repairencsegs() Repair all the encroached subsegments until no // +// subsegment is encroached. // +// // +// At beginning, all encroached subsegments are stored in pool 'badsubsegs'. // +// Each encroached subsegment is repaired by splitting it, i.e., inserting a // +// point somewhere in it. Newly inserted points may encroach upon other // +// subsegments, these are also repaired. // +// // +// After splitting a segment, the Delaunay property of the mesh is recovered // +// by flip operations. 'flipqueue' returns a list of updated faces which may // +// be non-locally Delaunay. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::repairencsegs(REAL* rpsarray, bool bqual, queue* flipqueue) +{ + badface *encloop; + triface starttet; + face startsh, spinsh, checksh; + face splitseg, checkseg; + point eorg, edest; + point newpoint, ppt; + bool acuteorg, acutedest; + REAL rps, len, split; + int ptidx, i; + + if (b->verbose > 1) { + printf(" Splitting encroached subsegments.\n"); + } + + // Note that steinerleft == -1 if an unlimited number of Steiner points + // is allowed. Loop until 'badsubsegs' is empty. + while ((badsubsegs->items > 0) && (steinerleft != 0)) { + badsubsegs->traversalinit(); + encloop = badfacetraverse(badsubsegs); + while ((encloop != (badface *) NULL) && (steinerleft != 0)) { + splitseg = encloop->ss; + // Every splitseg has a pointer to encloop, now clear it. + assert(shell2badface(splitseg) == encloop); + setshell2badface(splitseg, NULL); + eorg = sorg(splitseg); + edest = sdest(splitseg); + assert((eorg == encloop->forg) && (edest == encloop->fdest)); + if (b->verbose > 1) { + printf(" Get encseg (%d, %d).\n", pointmark(eorg), pointmark(edest)); + } + + if (checkseg4splitting(&splitseg, rpsarray, bqual)) { + // Decide the position to split the segment. Use the cutting sphere + // if any of the endpoints is acute. + acuteorg = (pointtype(eorg) == ACUTEVERTEX); + acutedest = (pointtype(edest) == ACUTEVERTEX); + if (acuteorg || acutedest) { + if (!acuteorg) { + // eorg is not acute, but edest is. Exchange eorg, edest. + eorg = edest; + edest = sorg(splitseg); + } + // Now, eorg must be acute. + len = distance(eorg, edest); + // Get the radius of the current protecting sphere. + ptidx = pointmark(eorg) - in->firstnumber; + rps = rpsarray[ptidx]; + // Calculate the suitable radius to split the segment. It should + // be no larger than half of the segment length. + while (rps > 0.51 * len) { + rps *= 0.5; + } + assert((rps * 16.0) > rpsarray[ptidx]); + // Where to split the segment. + split = rps / len; + ppt = eorg; + } else { + split = 0.5; + ppt = (point) NULL; + } + + // Create the new point. + makepoint(&newpoint); + // Set its coordinates. + for (i = 0; i < 3; i++) { + newpoint[i] = eorg[i] + split * (edest[i] - eorg[i]); + } + // Interpolate its attributes. + for (i = 0; i < in->numberofpointattributes; i++) { + newpoint[i + 3] = eorg[i + 3] + split * (edest[i + 3] - eorg[i + 3]); + } + // Set the parent point into the newpoint. + setpoint2ppt(newpoint, ppt); + // Set the type of the newpoint. + setpointtype(newpoint, FREESEGVERTEX); + // Set splitseg into the newpoint. + setpoint2sh(newpoint, sencode(splitseg)); + + // Insert new point into the mesh. It should be always success. + splitseg.shver = 0; + sstpivot(&splitseg, &starttet); + splittetedge(newpoint, &starttet, flipqueue); + if (steinerleft > 0) steinerleft--; + + // Check the two new subsegments to see if they're encroached. + checkseg4encroach(&splitseg, NULL, true); + if (badsubfaces != (memorypool *) NULL) { + // Check the subfaces link of s to see if they're encroached. + spivot(splitseg, startsh); + spinsh = startsh; + do { + findedge(&spinsh, sorg(splitseg), sdest(splitseg)); + // The next two lines are only for checking. + sspivot(spinsh, checkseg); + assert(checkseg.sh == splitseg.sh); + checksh = spinsh; + if (!shell2badface(checksh)) { + checksub4encroach(&checksh, NULL, true); + } + // The above operation may change the edge. + findedge(&spinsh, sorg(splitseg), sdest(splitseg)); + spivotself(spinsh); + } while (spinsh.sh != startsh.sh); + } + senextself(splitseg); + spivotself(splitseg); + assert(splitseg.sh != (shellface *) NULL); + splitseg.shver = 0; + checkseg4encroach(&splitseg, NULL, true); + if (badsubfaces != (memorypool *) NULL) { + // Check the subfaces link of s to see if they're encroached. + spivot(splitseg, startsh); + spinsh = startsh; + do { + findedge(&spinsh, sorg(splitseg), sdest(splitseg)); + // The next two lines are only for checking. + sspivot(spinsh, checkseg); + assert(checkseg.sh == splitseg.sh); + checksh = spinsh; + if (!shell2badface(checksh)) { + checksub4encroach(&checksh, NULL, true); + } + // The above operation may change the edge. + findedge(&spinsh, sorg(splitseg), sdest(splitseg)); + spivotself(spinsh); + } while (spinsh.sh != startsh.sh); + } + + // Recover Delaunay property by flipping. All existing segments which + // are encroached by the new point will be discovered during flips + // and be queued in list. + flip(flipqueue, NULL); + // Queuing bad-quality tetrahedra if need. + if (badtetrahedrons != (memorypool *) NULL) { + doqualchecktetlist(); + } + } + + // Remove this entry from list. + badfacedealloc(badsubsegs, encloop); + // Get the next encroached segments. + encloop = badfacetraverse(badsubsegs); + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// repairencsubs() Repair all the encroached subfaces until no subface is // +// encroached. // +// // +// At beginning, all encroached subfaces are stored in pool 'badsubfaces'. // +// Each encroached subface is repaired by splitting it, i.e., inserting a // +// point at its circumcenter. However, if this point encroaches upon one or // +// more subsegments then we don not add it and instead split the subsegments.// +// Newly inserted points may encroach upon other subfaces, these are also // +// repaired. // +// // +// After splitting a subface, the Delaunay property of the mesh is recovered // +// by flip operations. 'flipqueue' returns a list of updated faces and may // +// be non-locally Delaunay. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::repairencsubs(REAL* rpsarray, int* idx2facetlist, + list* cavtetlist, queue* flipqueue) +{ + badface *encloop; + triface starttet; + face splitsub, neisplitsub; + face checksh, checkseg; + point newpoint, checkpt; + point pa, pb; + enum locateresult loc; + REAL epspp, dist; + bool enq, reject; + bool splitit, bqual; + int facetidx, quenumber; + int epscount; + int i; + + if (b->verbose > 1) { + printf(" Splitting encroached subfaces.\n"); + } + + // Note that steinerleft == -1 if an unlimited number of Steiner points + // is allowed. Loop until the list 'badsubfaces' is empty. + while ((badsubfaces->items > 0) && (steinerleft != 0)) { + // Look for a nonempty queue. + encloop = (badface *) NULL; + for (quenumber = 1; quenumber >= 0; quenumber--) { + encloop = subquefront[quenumber]; + if (encloop != (badface *) NULL) { + // Remove the badface from the queue. + subquefront[quenumber] = encloop->nextface; + // Maintain a pointer to the NULL pointer at the end of the queue. + if (subquefront[quenumber] == (badface *) NULL) { + subquetail[quenumber] = &subquefront[quenumber]; + } + break; + } + } + assert(encloop != (badface *) NULL); + if (b->verbose > 2) { + printf(" Dequeuing ensub (%d, %d, %d) [%d].\n", + pointmark(encloop->forg), pointmark(encloop->fdest), + pointmark(encloop->fapex), quenumber); + } + + // Clear the pointer saved in encloop->ss. + splitsub = encloop->ss; + setshell2badface(splitsub, NULL); + // The subface may be not the same one when it was determined to be + // encroached. If its adjacent encroached subface was split, the + // consequent flips may change it into another subface. + enq = ((sorg(splitsub) == encloop->forg) && + (sdest(splitsub) == encloop->fdest) && + (sapex(splitsub) == encloop->fapex)); + if (enq) { + // This subface is encroached or has bad quality. + bqual = (quenumber == 1); + facetidx = shellmark(splitsub); + // Split it if it is bad quality or is not sharp. + splitit = bqual || (idx2facetlist[facetidx - 1] != 1); + if (!splitit) { + // Split it if it's neighboring tets have too big volume. + bqual = checksub4splitting(&splitsub); + splitit = (bqual == true); + } + if (splitit) { + // We can or force to split this subface. + makepoint(&newpoint); + // If it is a bad quality face, calculate its circumcenter. + if (quenumber == 1) { + circumsphere(encloop->forg, encloop->fdest, encloop->fapex, NULL, + encloop->cent, NULL); + } + // Set the coordinates of newpoint. + for (i = 0; i < 3; i++) newpoint[i] = encloop->cent[i]; + stpivot(splitsub, starttet); + if (starttet.tet == dummytet) { + sesymself(splitsub); + stpivot(splitsub, starttet); + } + assert(starttet.tet != dummytet); + // Locate the newpoint in facet (resulting in splitsub). + loc = locatesub(newpoint, &splitsub, oppo(starttet)); + stpivot(splitsub, starttet); + if (starttet.tet == dummytet) { + sesymself(splitsub); + stpivot(splitsub, starttet); + } + assert(starttet.tet != dummytet); + // Look if the newpoint encroaches upon some segments. + recenttet = starttet; // Used for the input of preciselocate(). + collectcavtets(newpoint, cavtetlist); + assert(cavtetlist->len() > 0); + reject = tallencsegs(newpoint, cavtetlist); + // Clear the list for the next use. + cavtetlist->clear(); + if (!reject) { + // Remove the encroached subface by inserting the newpoint. + if (loc != ONVERTEX) { + // Adjust the location of newpoint wrt. starttet. + epspp = b->epsilon; + epscount = 0; + while (epscount < 16) { + loc = adjustlocate(newpoint, &starttet, ONFACE, epspp); + if (loc == ONVERTEX) { + checkpt = org(starttet); + dist = distance(checkpt, newpoint); + if ((dist / longest) > b->epsilon) { + epspp *= 1e-2; + epscount++; + continue; + } + } + break; + } + } + pa = org(starttet); + pb = dest(starttet); + findedge(&splitsub, pa, pb); + // Let splitsub be face abc. ab is the current edge. + if (loc == ONFACE) { + // Split the face abc into three faces abv, bcv, cav. + splittetface(newpoint, &starttet, flipqueue); + // Adjust splitsub be abv. + findedge(&splitsub, pa, pb); + assert(sapex(splitsub) == newpoint); + // Check the three new subfaces to see if they're encroached. + // splitsub may be queued (it exists before split). + checksh = splitsub; + if (!shell2badface(checksh)) { + checksub4encroach(&checksh, NULL, true); // abv + } + senext(splitsub, checksh); + spivotself(checksh); + // It is a new created face and should not be infected. + assert(checksh.sh != dummysh && !shell2badface(checksh)); + checksub4encroach(&checksh, NULL, true); // bcv + senext2(splitsub, checksh); + spivotself(checksh); + // It is a new created face and should not be infected. + assert(checksh.sh != dummysh && !shell2badface(checksh)); + checksub4encroach(&checksh, NULL, true); // cav + } else if (loc == ONEDGE) { + // Let the adjacent subface be bad. ab is the spliting edge. + // Split two faces abc, bad into 4 faces avc, vbc, avd, vbd. + sspivot(splitsub, checkseg); + assert(checkseg.sh == dummysh); + // Remember the neighbor subface abd (going to be split also). + spivot(splitsub, neisplitsub); + findedge(&neisplitsub, pa, pb); + // Split two faces abc, abd into four faces avc, vbc, avd, vbd. + splittetedge(newpoint, &starttet, flipqueue); + // Adjust splitsub be avc, neisplitsub be avd. + findedge(&splitsub, pa, newpoint); + findedge(&neisplitsub, pa, newpoint); + // Check the four new subfaces to see if they're encroached. + // splitsub may be an infected one (it exists before split). + checksh = splitsub; + if (!shell2badface(checksh)) { + checksub4encroach(&checksh, NULL, true); // avc + } + // Get vbc. + senext(splitsub, checksh); + spivotself(checksh); + // vbc is newly created. + assert(checksh.sh != dummysh && !shell2badface(checksh)); + checksub4encroach(&checksh, NULL, true); // vbc + // neisplitsub may be an infected one (it exists before split). + checksh = neisplitsub; + if (!shell2badface(checksh)) { + checksub4encroach(&checksh, NULL, true); // avd + } + // Get vbd. + senext(neisplitsub, checksh); + spivotself(checksh); + // vbd is newly created. + assert(checksh.sh != dummysh && !shell2badface(checksh)); + checksub4encroach(&checksh, NULL, true); // vbd + } else { + printf("Internal error in splitencsub(): Point %d locates %s.\n", + pointmark(newpoint), loc == ONVERTEX ? "on vertex" : "outside"); + internalerror(); + } + if (steinerleft > 0) steinerleft--; + // Recover Delaunay property by flipping. All existing subfaces + // which are encroached by the new point will be discovered + // during flips and be queued in list. + flip(flipqueue, NULL); + // There should be no encroached segments. + // assert(badsubsegs->items == 0); + // Queuing bad-quality tetrahedra if need. + if (badtetrahedrons != (memorypool *) NULL) { + doqualchecktetlist(); + } + } else { + // newpoint encroaches upon some segments. Rejected. + /* + if (bqual) { + // Re-queue this face to process it later. + badface *splitsub = encloop->ss; + encsub = (badface *) badsubfaces->alloc(); + encsub->ss = splitsub; + encsub->forg = sorg(splitsub); + encsub->fdest = sdest(splitsub); + encsub->fapex = sapex(splitsub); + encsub->foppo = encloop->foppo; + for (i = 0; i < 3; i++) encsub->cent[i] = newpoint[i]; + encsub->nextface = (badface *) NULL; + setshell2badface(encsub->ss, encsub); + // Add the subface to the end of a queue. + *subquetail[quenumber] = encsub; + // Maintain a pointer to the NULL pointer at the end of the queue. + subquetail[quenumber] = &encsub->nextface; + if (b->verbose > 2) { + printf(" Requeuing subface (%d, %d, %d) [%d].\n", + pointmark(encsub->forg), pointmark(encsub->fdest), + pointmark(encsub->fapex), quenumber); + } + } + */ + // Delete the newpoint. + pointdealloc(newpoint); + // Repair all the encroached segments. + if (badsubsegs->items > 0) { + repairencsegs(rpsarray, bqual, flipqueue); + } + } + } + } else { + // enq = false! This subface has been changed, check it again. + checksub4encroach(&splitsub, NULL, true); + } + // Remove this entry from list. + badfacedealloc(badsubfaces, encloop); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// repairbadtets() Repair all bad-quality tetrahedra until no tetrahedron // +// is considered as bad-quality. // +// // +// At beginning, all bad-quality tetrahedra are stored in 'badtetrahedrons'. // +// Each bad tetrahedron is repaired by splitting it, i.e., inserting a point // +// at its circumcenter. However, if this point encroaches any subsegment or // +// subface, we do not add it and instead split the subsegment or subface. // +// Newly inserted points may create other bad-quality tetrahedra, these are // +// also repaired. // +// // +// After splitting a subface, the Delaunay property of the mesh is recovered // +// by flip operations. 'flipqueue' returns a list of updated faces and may // +// be non-locally Delaunay. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::repairbadtets(REAL* rpsarray, int* idx2facetlist, + list* cavtetlist, queue* flipqueue) +{ + badtetrahedron *badtet; + triface starttet; + point newpoint; + point torg, tdest, tapex, toppo; + enum insertsiteresult success; + bool reject; + int i; + + // Loop until pool 'badtetrahedrons' is empty. Note that steinerleft == -1 + // if an unlimited number of Steiner points is allowed. + while ((badtetrahedrons->items > 0) && (steinerleft != 0)) { + badtet = dequeuebadtet(); + assert (badtet != (badtetrahedron *) NULL); + // Make sure that this tetrahedron is still the same tetrahedron it was + // when it was tested and determined to be of bad quality. Subsequent + // transformations may have made it a different tetrahedron. + if (!isdead(&badtet->tet) && org(badtet->tet) == badtet->tetorg && + dest(badtet->tet) == badtet->tetdest && + apex(badtet->tet) == badtet->tetapex && + oppo(badtet->tet) == badtet->tetoppo) { + // Create a newpoint at the circumcenter of this tetrahedron. + makepoint(&newpoint); + for (i = 0; i < 3; i++) newpoint[i] = badtet->cent[i]; + for (i = 0; i < in->numberofpointattributes; i++) newpoint[3 + i] = 0.0; + // Set it's type be FREEVOLVERTEX. + setpointtype(newpoint, FREEVOLVERTEX); + + // Look if the newpoint encroaches upon some segments, subfaces. + recenttet = badtet->tet; // Used for the input of preciselocate(). + collectcavtets(newpoint, cavtetlist); + assert(cavtetlist->len() > 0); + reject = tallencsegs(newpoint, cavtetlist); + if (!reject) { + reject = tallencsubs(newpoint, cavtetlist); + } + // Clear the list for the next use. + cavtetlist->clear(); + + if (!reject) { + // Insert the point, it should be always success. + starttet = badtet->tet; + success = insertsite(newpoint, &starttet, true, flipqueue); + if (success != DUPLICATEPOINT) { + if (steinerleft > 0) steinerleft--; + // Recover Delaunay property by flipping. + flip(flipqueue, NULL); + // Queuing bad-quality tetrahedra if need. + doqualchecktetlist(); + } else { + // !!! It's a bug!!! + pointdealloc(newpoint); + } + } else { + // newpoint encroaches upon some segments or subfaces. Rejected. + pointdealloc(newpoint); + if (badsubsegs->items > 0) { + // Repair all the encroached segments. + repairencsegs(rpsarray, false, flipqueue); + } + if (badsubfaces->items > 0) { + // Repair all the encroached subfaces. + repairencsubs(rpsarray, idx2facetlist, cavtetlist, flipqueue); + } + } + } + // Remove the bad-quality tetrahedron from the pool. + badtetrahedrons->dealloc((void *) badtet); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// enforcequality() Remove all the encroached subsegments, subfaces and // +// bad tetrahedra from the tetrahedral mesh. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::enforcequality() +{ + queue *flipqueue; + list *cavtetlist; + REAL *rpsarray; + int *idx2facetlist; + int i; + + if (!b->quiet) { + printf("Adding Steiner points to enforce quality.\n"); + } + + // Initialize working queues, lists. + flipqueue = new queue(sizeof(badface)); + cavtetlist = new list(sizeof(triface), NULL, 256); + rpsarray = new REAL[points->items]; + + // Mark segment vertices (acute or not) for determining segment types. + markacutevertices(89.0); + // Mark facets have sharp corners (for termination). + marksharpfacets(idx2facetlist, 89.0); + // Calculate the protecting spheres for all acute points. + initializerpsarray(rpsarray); + + // Initialize the pool of encroached subsegments. + badsubsegs = new memorypool(sizeof(badface), SUBPERBLOCK, POINTER, 0); + // Test all segments to see if they're encroached. + tallencsegs(NULL, NULL); + if (b->verbose && badsubsegs->items > 0) { + printf(" Splitting encroached subsegments.\n"); + } + // Fix encroached subsegments without noting any encr. subfaces. + repairencsegs(rpsarray, true, flipqueue); + + // Initialize the pool of encroached subfaces. + badsubfaces = new memorypool(sizeof(badface), SUBPERBLOCK, POINTER, 0); + // Initialize the queues of badfaces. + for (i = 0; i < 2; i++) subquefront[i] = (badface *) NULL; + for (i = 0; i < 2; i++) subquetail[i] = &subquefront[i]; + // Test all subfaces to see if they're encroached. + tallencsubs(NULL, NULL); + if (b->verbose && badsubfaces->items > 0) { + printf(" Splitting encroached subfaces.\n"); + } + // Fix encroached subfaces without noting bad tetrahedra. + repairencsubs(rpsarray, idx2facetlist, cavtetlist, flipqueue); + // At this point, the mesh should be (conforming) Delaunay. + + // Next, fix bad quality tetrahedra. + if ((b->minratio > 0.0) || b->varvolume || b->fixedvolume) { + // Initialize the pool of bad tetrahedra. + badtetrahedrons = new memorypool(sizeof(badtetrahedron), ELEPERBLOCK, + POINTER, 0); + // Initialize the list of bad tetrahedra. + qualchecktetlist = new list(sizeof(triface), NULL); + // Initialize the queues of bad tetrahedra. + for (i = 0; i < 64; i++) tetquefront[i] = (badtetrahedron *) NULL; + for (i = 0; i < 64; i++) tetquetail[i] = &tetquefront[i]; + // Test all tetrahedra to see if they're bad. + tallbadtetrahedrons(); + if (b->verbose && badtetrahedrons->items > 0) { + printf(" Splitting bad tetrahedra.\n"); + } + repairbadtets(rpsarray, idx2facetlist, cavtetlist, flipqueue); + // At this point, it should no bad quality tetrahedra. + delete qualchecktetlist; + delete badtetrahedrons; + } + + delete badsubfaces; + delete badsubsegs; + delete cavtetlist; + delete flipqueue; + delete [] idx2facetlist; + delete [] rpsarray; +} + +// +// End of Delaunay refinement routines +// + +// +// Begin of I/O rouitnes +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// transfernodes() Transfer nodes from 'io->pointlist' to 'this->points'. // +// // +// Initializing 'this->points'. Transferring all points from 'in->pointlist'// +// into it. All points are indexed (start from in->firstnumber). Each point // +// is initialized be UNUSEDVERTEX. The bounding box (xmin, xmax, ymin, ymax,// +// zmin, zmax) and the diameter (longest) of the point set are calculated. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::transfernodes() +{ + point pointloop; + REAL x, y, z; + int coordindex; + int attribindex; + int i, j; + + // Read the points. + coordindex = 0; + attribindex = 0; + for (i = 0; i < in->numberofpoints; i++) { + makepoint(&pointloop); + // Read the point coordinates. + x = pointloop[0] = in->pointlist[coordindex++]; + y = pointloop[1] = in->pointlist[coordindex++]; + z = pointloop[2] = in->pointlist[coordindex++]; + // Read the point attributes. + for (j = 0; j < in->numberofpointattributes; j++) { + pointloop[3 + j] = in->pointattributelist[attribindex++]; + } + // Determine the smallest and largests x, y and z coordinates. + if (i == 0) { + xmin = xmax = x; + ymin = ymax = y; + zmin = zmax = z; + } else { + xmin = (x < xmin) ? x : xmin; + xmax = (x > xmax) ? x : xmax; + ymin = (y < ymin) ? y : ymin; + ymax = (y > ymax) ? y : ymax; + zmin = (z < zmin) ? z : zmin; + zmax = (z > zmax) ? z : zmax; + } + } + // 'longest' is the largest possible edge length formed by input vertices. + // It is used as the measure to distinguish two identical points. + x = xmax - xmin; + y = ymax - ymin; + z = zmax - zmin; + longest = sqrt(x * x + y * y + z * z); + if (longest == 0.0) { + printf("Error: The point set is trivial.\n"); + exit(1); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// jettisonnodes() Jettison unused or duplicated vertices. // +// // +// Unused points are those input points which are outside the mesh domain or // +// have no connection (isolated) to the mesh. Duplicated points exist for // +// example if the input PLC is read from a .stl mesh file (marked during the // +// Delaunay tetrahedralization step. This routine remove these points from // +// points list. All existing points are reindexed. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::jettisonnodes() +{ + point pointloop; + bool jetflag; + int idx; + + if (!b->quiet) { + printf("Jettisoning redundants points.\n"); + } + + points->traversalinit(); + pointloop = pointtraverse(); + idx = in->firstnumber; + while (pointloop != (point) NULL) { + jetflag = (pointtype(pointloop) == DUPLICATEDVERTEX) || + (pointtype(pointloop) == UNUSEDVERTEX); + if (jetflag) { + // It is a duplicated point, delete it. + pointdealloc(pointloop); + } else { + // Index it. + setpointmark(pointloop, idx); + idx++; + } + pointloop = pointtraverse(); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// highorder() Create extra nodes for quadratic subparametric elements. // +// // +// 'highordertable' is an array (size = numberoftetrahedra * 6) for storing // +// high-order nodes of each tetrahedron. This routine is used only when -o2 // +// switch is used. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::highorder() +{ + triface tetloop, worktet; + triface spintet, adjtet; + point torg, tdest, tapex; + point *extralist, *adjextralist; + point newpoint; + int hitbdry, ptmark; + int i, j; + + // The 'edgeindex' (from 0 to 5) is list as follows: + // 0 - (v0, v1), 1 - (v1, v2), 2 - (v2, v0) + // 3 - (v3, v0), 4 - (v3, v1), 5 - (v3, v2) + // Define an edgeindex map: (loc, ver)->edgeindex. + int edgeindexmap[4][6] = {0, 0, 1, 1, 2, 2, + 3, 3, 4, 4, 0, 0, + 4, 4, 5, 5, 1, 1, + 5, 5, 3, 3, 2, 2}; + + if (!b->quiet) { + printf("Adding vertices for second-order tetrahedra.\n"); + } + + // Initialize the 'highordertable'. + highordertable = new point[tetrahedrons->items * 6]; + if (highordertable == (point *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + + // The following line ensures that dead items in the pool of nodes cannot + // be allocated for the extra nodes associated with high order elements. + // This ensures that the primary nodes (at the corners of elements) will + // occur earlier in the output files, and have lower indices, than the + // extra nodes. + points->deaditemstack = (void *) NULL; + + // Assign an entry for each tetrahedron to find its extra nodes. At the + // mean while, initialize all extra nodes be NULL. + i = 0; + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + tetloop.tet[highorderindex] = (tetrahedron) &highordertable[i]; + for (j = 0; j < 6; j++) { + highordertable[i + j] = (point) NULL; + } + i += 6; + tetloop.tet = tetrahedrontraverse(); + } + + // To create a unique node on each edge. Loop over all tetrahedra, and + // look at the six edges of each tetrahedron. If the extra node in + // the tetrahedron corresponding to this edge is NULL, create a node + // for this edge, at the same time, set the new node into the extra + // node lists of all other tetrahedra sharing this edge. + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + // Get the list of extra nodes. + extralist = (point *) tetloop.tet[highorderindex]; + for (i = 0; i < 6; i++) { + if (extralist[i] == (point) NULL) { + // Operate on this edge. + worktet = tetloop; + worktet.loc = 0; worktet.ver = 0; + // Get the correct edge in 'worktet'. + switch(i) { + case 0: // (v0, v1) + break; + case 1: // (v1, v2) + enextself(worktet); + break; + case 2: // (v2, v0) + enext2self(worktet); + break; + case 3: // (v3, v0) + fnextself(worktet); + enext2self(worktet); + break; + case 4: // (v3, v1) + enextself(worktet); + fnextself(worktet); + enext2self(worktet); + break; + case 5: // (v3, v2) + enext2self(worktet); + fnextself(worktet); + enext2self(worktet); + } + // Create a new node on this edge. + torg = org(worktet); + tdest = dest(worktet); + // Create a new node in the middle of the edge. + newpoint = (point) points->alloc(); + // Interpolate its attributes. + for (j = 0; j < 3 + in->numberofpointattributes; j++) { + newpoint[j] = 0.5 * (torg[j] + tdest[j]); + } + ptmark = (int) points->items - (in->firstnumber == 1 ? 0 : 1); + setpointmark(newpoint, ptmark); + // Add this node to its extra node list. + extralist[i] = newpoint; + // Set 'newpoint' into extra node lists of other tetrahedra + // sharing this edge. + tapex = apex(worktet); + spintet = worktet; + hitbdry = 0; + while (hitbdry < 2) { + if (fnextself(spintet)) { + // Get the extra node list of 'spintet'. + adjextralist = (point *) spintet.tet[highorderindex]; + // Find the index of its extra node list. + j = edgeindexmap[spintet.loc][spintet.ver]; + // Only set 'newpoint' into 'adjextralist' if it is a NULL. + // Because two faces can belong to the same tetrahedron. + if (adjextralist[j] == (point) NULL) { + adjextralist[j] = newpoint; + } + if (apex(spintet) == tapex) { + break; + } + } else { + hitbdry++; + if (hitbdry < 2) { + esym(worktet, spintet); + } + } + } + } + } + tetloop.tet = tetrahedrontraverse(); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outnodes() Output the points to a .node file or a tetgenio structure. // +// // +// Note: each point has already been numbered on input (the first index is // +// 'in->firstnumber'). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outnodes(tetgenio* out) +{ + FILE *outfile; + char outnodefilename[FILENAMESIZE]; + point pointloop; + int nextras, bmark, marker; + int coordindex, attribindex; + int pointnumber, index, i; + + if (out == (tetgenio *) NULL) { + strcpy(outnodefilename, b->outfilename); + strcat(outnodefilename, ".node"); + } + + if (!b->quiet) { + if (out == (tetgenio *) NULL) { + printf("Writing %s.\n", outnodefilename); + } else { + printf("Writing nodes.\n"); + } + } + + nextras = in->numberofpointattributes; + bmark = !b->nobound && in->pointmarkerlist; + + if (out == (tetgenio *) NULL) { + outfile = fopen(outnodefilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", outnodefilename); + exit(1); + } + // Number of points, number of dimensions, number of point attributes, + // and number of boundary markers (zero or one). + fprintf(outfile, "%ld %d %d %d\n", points->items, 3, nextras, bmark); + } else { + // Allocate space for 'pointlist'; + out->pointlist = new REAL[points->items * 3]; + if (out->pointlist == (REAL *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + // Allocate space for 'pointattributelist' if necessary; + if (nextras > 0) { + out->pointattributelist = new REAL[points->items * nextras]; + if (out->pointattributelist == (REAL *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + // Allocate space for 'pointmarkerlist' if necessary; + if (bmark) { + out->pointmarkerlist = new int[points->items]; + if (out->pointmarkerlist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + out->numberofpoints = points->items; + out->numberofpointattributes = nextras; + coordindex = 0; + attribindex = 0; + } + + points->traversalinit(); + pointloop = pointtraverse(); + pointnumber = in->firstnumber; + index = 0; + while (pointloop != (point) NULL) { + if (bmark) { + // Determine the boundary marker. + if (index < in->numberofpoints) { + // Input point's marker is directly copied to output. + marker = in->pointmarkerlist[index]; + if (marker == 0) { + // Change the marker if it is a boundary point. + marker = ((pointtype(pointloop) != UNUSEDVERTEX) && + (pointtype(pointloop) != FREEVOLVERTEX) && + (pointtype(pointloop) != DUPLICATEDVERTEX)) + ? 1 : 0; + } + } else if ((pointtype(pointloop) != UNUSEDVERTEX) && + (pointtype(pointloop) != FREEVOLVERTEX) && + (pointtype(pointloop) != DUPLICATEDVERTEX)) { + // A boundary vertex has marker 1. + marker = 1; + } else { + // Free or internal point has a zero marker. + marker = 0; + } + } + if (out == (tetgenio *) NULL) { + // Point number, x, y and z coordinates. + fprintf(outfile, "%4d %.17g %.17g %.17g", pointnumber, + pointloop[0], pointloop[1], pointloop[2]); + for (i = 0; i < nextras; i++) { + // Write an attribute. + fprintf(outfile, " %.17g", pointloop[3 + i]); + } + if (bmark) { + // Write the boundary marker. + fprintf(outfile, " %d", marker); + } + fprintf(outfile, "\n"); + } else { + // X, y, and z coordinates. + out->pointlist[coordindex++] = pointloop[0]; + out->pointlist[coordindex++] = pointloop[1]; + out->pointlist[coordindex++] = pointloop[2]; + // Point attributes. + for (i = 0; i < nextras; i++) { + // Output an attribute. + out->pointattributelist[attribindex++] = pointloop[3 + i]; + } + if (bmark) { + // Output the boundary marker. + out->pointmarkerlist[index] = marker; + } + } + pointloop = pointtraverse(); + pointnumber++; + index++; + } + + if (out == (tetgenio *) NULL) { + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outelements() Output the tetrahedra to an .ele file or a tetgenio // +// structure. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outelements(tetgenio* out) +{ + FILE *outfile; + char outelefilename[FILENAMESIZE]; + tetrahedron* tptr; + int *tlist; + REAL *talist; + int pointindex; + int attribindex; + point p1, p2, p3, p4; + point *extralist; + int elementnumber; + int eextras; + int i; + + if (out == (tetgenio *) NULL) { + strcpy(outelefilename, b->outfilename); + strcat(outelefilename, ".ele"); + } + + if (!b->quiet) { + if (out == (tetgenio *) NULL) { + printf("Writing %s.\n", outelefilename); + } else { + printf("Writing elements.\n"); + } + } + + eextras = in->numberoftetrahedronattributes; + if (out == (tetgenio *) NULL) { + outfile = fopen(outelefilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", outelefilename); + exit(1); + } + // Number of tetras, points per tetra, attributes per tetra. + fprintf(outfile, "%ld %d %d\n", tetrahedrons->items, + b->order == 1 ? 4 : 10, eextras); + } else { + // Allocate memory for output tetrahedra. + out->tetrahedronlist = new int[tetrahedrons->items * + (b->order == 1 ? 4 : 10)]; + if (out->tetrahedronlist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + // Allocate memory for output tetrahedron attributes if necessary. + if (eextras > 0) { + out->tetrahedronattributelist = new REAL[tetrahedrons->items * eextras]; + if (out->tetrahedronattributelist == (REAL *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + out->numberoftetrahedra = tetrahedrons->items; + out->numberofcorners = b->order == 1 ? 4 : 10; + out->numberoftetrahedronattributes = eextras; + tlist = out->tetrahedronlist; + talist = out->tetrahedronattributelist; + pointindex = 0; + attribindex = 0; + } + + tetrahedrons->traversalinit(); + tptr = tetrahedrontraverse(); + elementnumber = in->firstnumber; + while (tptr != (tetrahedron *) NULL) { + p1 = (point) tptr[4]; + p2 = (point) tptr[5]; + p3 = (point) tptr[6]; + p4 = (point) tptr[7]; + if (out == (tetgenio *) NULL) { + // Tetrahedron number, indices for four points. + fprintf(outfile, "%5d %5d %5d %5d %5d", elementnumber, + pointmark(p1), pointmark(p2), pointmark(p3), pointmark(p4)); + if (b->order == 2) { + extralist = (point *) tptr[highorderindex]; + // Tetrahedron number, indices for four points plus six extra points. + fprintf(outfile, " %5d %5d %5d %5d %5d %5d", + pointmark(extralist[0]), pointmark(extralist[1]), + pointmark(extralist[2]), pointmark(extralist[3]), + pointmark(extralist[4]), pointmark(extralist[5])); + } + for (i = 0; i < eextras; i++) { + fprintf(outfile, " %.17g", elemattribute(tptr, i)); + } + fprintf(outfile, "\n"); + } else { + tlist[pointindex++] = pointmark(p1); + tlist[pointindex++] = pointmark(p2); + tlist[pointindex++] = pointmark(p3); + tlist[pointindex++] = pointmark(p4); + if (b->order == 2) { + extralist = (point *) tptr[highorderindex]; + tlist[pointindex++] = pointmark(extralist[0]); + tlist[pointindex++] = pointmark(extralist[1]); + tlist[pointindex++] = pointmark(extralist[2]); + tlist[pointindex++] = pointmark(extralist[3]); + tlist[pointindex++] = pointmark(extralist[4]); + tlist[pointindex++] = pointmark(extralist[5]); + } + for (i = 0; i < eextras; i++) { + talist[attribindex++] = elemattribute(tptr, i); + } + } + tptr = tetrahedrontraverse(); + elementnumber++; + } + + if (out == (tetgenio *) NULL) { + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outfaces() Output all faces to a .face file or a tetgenio structure. // +// // +// This routines outputs all triangular faces (including outer boundary // +// faces and inner faces) of this mesh. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outfaces(tetgenio* out) +{ + FILE *outfile; + char facefilename[FILENAMESIZE]; + int *elist; + int *emlist; + int index; + triface tface, tsymface; + face checkmark; + point torg, tdest, tapex; + long faces; + int bmark, faceid, marker; + int facenumber; + + if (out == (tetgenio *) NULL) { + strcpy(facefilename, b->outfilename); + strcat(facefilename, ".face"); + } + + if (!b->quiet) { + if (out == (tetgenio *) NULL) { + printf("Writing %s.\n", facefilename); + } else { + printf("Writing faces.\n"); + } + } + + faces = (4l * tetrahedrons->items + hullsize) / 2l; + bmark = !b->nobound && in->facetmarkerlist; + + if (out == (tetgenio *) NULL) { + outfile = fopen(facefilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", facefilename); + exit(1); + } + fprintf(outfile, "%ld %d\n", faces, bmark); + } else { + // Allocate memory for 'trifacelist'. + out->trifacelist = new int[faces * 3]; + if (out->trifacelist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + // Allocate memory for 'trifacemarkerlist' if necessary. + if (bmark) { + out->trifacemarkerlist = new int[faces]; + if (out->trifacemarkerlist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + out->numberoftrifaces = faces; + elist = out->trifacelist; + emlist = out->trifacemarkerlist; + index = 0; + } + + tetrahedrons->traversalinit(); + tface.tet = tetrahedrontraverse(); + facenumber = in->firstnumber; + // To loop over the set of faces, loop over all tetrahedra, and look at + // the four faces of each one. If there isn't another tetrahedron + // adjacent to this face, operate on the face. If there is another + // adjacent tetrahedron, operate on the face only if the current + // tetrahedron has a smaller pointer than its neighbor. This way, each + // face is considered only once. + while (tface.tet != (tetrahedron *) NULL) { + for (tface.loc = 0; tface.loc < 4; tface.loc ++) { + sym(tface, tsymface); + if ((tsymface.tet == dummytet) || (tface.tet < tsymface.tet)) { + torg = org(tface); + tdest = dest(tface); + tapex = apex(tface); + if (bmark) { + // Get the boundary marker of this face. If it is an inner face, + // it has no boundary marker, set it be zero. + if (b->useshelles) { + // Shell face is used. + tspivot(tface, checkmark); + if (checkmark.sh == dummysh) { + marker = 0; // It is an inner face. + } else { + faceid = shellmark(checkmark) - 1; + marker = in->facetmarkerlist[faceid]; + } + } else { + // Shell face is not used, only distinguish outer and inner face. + marker = tsymface.tet != dummytet ? 1 : 0; + } + } + if (out == (tetgenio *) NULL) { + // Face number, indices of three vertices. + fprintf(outfile, "%5d %4d %4d %4d", facenumber, + pointmark(torg), pointmark(tdest), pointmark(tapex)); + if (bmark) { + // Output a boundary marker. + fprintf(outfile, " %d", marker); + } + fprintf(outfile, "\n"); + } else { + // Output indices of three vertices. + elist[index++] = pointmark(torg); + elist[index++] = pointmark(tdest); + elist[index++] = pointmark(tapex); + if (bmark) { + emlist[facenumber - in->firstnumber] = marker; + } + } + facenumber++; + } + } + tface.tet = tetrahedrontraverse(); + } + + if (out == (tetgenio *) NULL) { + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outhullfaces() Output outer boundary faces to a .face file or a // +// tetgenio structure. // +// // +// The normal of each face is arranged to point inside of the domain (use // +// right-hand rule). This routines will outputs convex hull faces if the // +// mesh is a Delaunay tetrahedralization. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outhullfaces(tetgenio* out) +{ + FILE *outfile; + char facefilename[FILENAMESIZE]; + int *elist; + int index; + triface tface, tsymface; + face checkmark; + point torg, tdest, tapex; + int facenumber; + + if (out == (tetgenio *) NULL) { + strcpy(facefilename, b->outfilename); + strcat(facefilename, ".face"); + } + + if (!b->quiet) { + if (out == (tetgenio *) NULL) { + printf("Writing %s.\n", facefilename); + } else { + printf("Writing faces.\n"); + } + } + + if (out == (tetgenio *) NULL) { + outfile = fopen(facefilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", facefilename); + exit(1); + } + fprintf(outfile, "%ld 0\n", hullsize); + } else { + // Allocate memory for 'trifacelist'. + out->trifacelist = new int[hullsize * 3]; + if (out->trifacelist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + out->numberoftrifaces = hullsize; + elist = out->trifacelist; + index = 0; + } + + tetrahedrons->traversalinit(); + tface.tet = tetrahedrontraverse(); + facenumber = in->firstnumber; + // To loop over the set of hull faces, loop over all tetrahedra, and look + // at the four faces of each one. If there isn't another tetrahedron + // adjacent to this face, operate on the face. + while (tface.tet != (tetrahedron *) NULL) { + for (tface.loc = 0; tface.loc < 4; tface.loc ++) { + sym(tface, tsymface); + if (tsymface.tet == dummytet) { + torg = org(tface); + tdest = dest(tface); + tapex = apex(tface); + if (out == (tetgenio *) NULL) { + // Face number, indices of three vertices. + fprintf(outfile, "%5d %4d %4d %4d", facenumber, + pointmark(torg), pointmark(tdest), pointmark(tapex)); + fprintf(outfile, "\n"); + } else { + // Output indices of three vertices. + elist[index++] = pointmark(torg); + elist[index++] = pointmark(tdest); + elist[index++] = pointmark(tapex); + } + facenumber++; + } + } + tface.tet = tetrahedrontraverse(); + } + + if (out == (tetgenio *) NULL) { + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outsubfaces() Output subfaces (i.e. boundary faces) to a .face file or // +// a tetgenio structure. // +// // +// The boundary faces are exist in 'subfaces'. For listing triangle vertices // +// in the same sense for all triangles in the mesh, the direction determined // +// by right-hand rule is pointer to the inside of the volume. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outsubfaces(tetgenio* out) +{ + FILE *outfile; + char facefilename[FILENAMESIZE]; + int *elist; + int *emlist; + int index; + triface abuttingtet; + face faceloop; + point torg, tdest, tapex; + int bmark, faceid, marker; + int facenumber; + + if (out == (tetgenio *) NULL) { + strcpy(facefilename, b->outfilename); + strcat(facefilename, ".face"); + } + + if (!b->quiet) { + if (out == (tetgenio *) NULL) { + printf("Writing %s.\n", facefilename); + } else { + printf("Writing faces.\n"); + } + } + + bmark = !b->nobound && in->facetmarkerlist; + + if (out == (tetgenio *) NULL) { + outfile = fopen(facefilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", facefilename); + exit(1); + } + // Number of subfaces. + fprintf(outfile, "%ld %d\n", subfaces->items, bmark); + } else { + // Allocate memory for 'trifacelist'. + out->trifacelist = new int[subfaces->items * 3]; + if (out->trifacelist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + // Allocate memory for 'trifacemarkerlist', if necessary. + if (bmark) { + out->trifacemarkerlist = new int[subfaces->items]; + if (out->trifacemarkerlist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + } + out->numberoftrifaces = subfaces->items; + elist = out->trifacelist; + emlist = out->trifacemarkerlist; + index = 0; + } + + subfaces->traversalinit(); + faceloop.sh = shellfacetraverse(subfaces); + facenumber = in->firstnumber; + while (faceloop.sh != (shellface *) NULL) { + stpivot(faceloop, abuttingtet); + if (abuttingtet.tet == dummytet) { + sesymself(faceloop); + stpivot(faceloop, abuttingtet); + // assert(abuttingtet.tet != dummytet) { + } + if (abuttingtet.tet != dummytet) { + // If there is a tetrahedron containing this subface, orient it so + // that the normal of this face points to inside of the volume by + // right-hand rule. + adjustedgering(abuttingtet, CCW); + torg = org(abuttingtet); + tdest = dest(abuttingtet); + tapex = apex(abuttingtet); + } else { + // This may happen when only a surface mesh be generated. + torg = sorg(faceloop); + tdest = sdest(faceloop); + tapex = sapex(faceloop); + } + if (bmark) { + faceid = shellmark(faceloop) - 1; + marker = in->facetmarkerlist[faceid]; + } + if (out == (tetgenio *) NULL) { + fprintf(outfile, "%5d %4d %4d %4d", facenumber, + pointmark(torg), pointmark(tdest), pointmark(tapex)); + if (bmark) { + fprintf(outfile, " %d", marker); + } + fprintf(outfile, "\n"); + } else { + // Output three vertices of this face; + elist[index++] = pointmark(torg); + elist[index++] = pointmark(tdest); + elist[index++] = pointmark(tapex); + if (bmark) { + emlist[facenumber - in->firstnumber] = marker; + } + } + facenumber++; + faceloop.sh = shellfacetraverse(subfaces); + } + + if (out == (tetgenio *) NULL) { + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outsubsegments() Output segments (i.e. boundary edges) to a .edge file // +// or a tetgenio structure. // +// // +// The boundary edges are stored in 'subsegs'. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outsubsegments(tetgenio* out) +{ + FILE *outfile; + char edgefilename[FILENAMESIZE]; + int *elist; + int index; + face edgeloop; + point torg, tdest; + int edgenumber; + + if (out == (tetgenio *) NULL) { + strcpy(edgefilename, b->outfilename); + strcat(edgefilename, ".edge"); + } + + if (!b->quiet) { + if (out == (tetgenio *) NULL) { + printf("Writing %s.\n", edgefilename); + } else { + printf("Writing faces.\n"); + } + } + + if (out == (tetgenio *) NULL) { + outfile = fopen(edgefilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", edgefilename); + exit(1); + } + // Number of subsegments. + fprintf(outfile, "%ld\n", subsegs->items); + } else { + // Allocate memory for 'edgelist'. + out->edgelist = new int[subsegs->items * 2]; + if (out->edgelist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + out->numberofedges = subsegs->items; + elist = out->edgelist; + index = 0; + } + + subsegs->traversalinit(); + edgeloop.sh = shellfacetraverse(subsegs); + edgenumber = in->firstnumber; + while (edgeloop.sh != (shellface *) NULL) { + torg = sorg(edgeloop); + tdest = sdest(edgeloop); + if (out == (tetgenio *) NULL) { + fprintf(outfile, "%5d %4d %4d\n", edgenumber, pointmark(torg), + pointmark(tdest)); + } else { + // Output three vertices of this face; + elist[index++] = pointmark(torg); + elist[index++] = pointmark(tdest); + } + edgenumber++; + edgeloop.sh = shellfacetraverse(subsegs); + } + + if (out == (tetgenio *) NULL) { + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outneighbors() Output a list of neighbors to a .neigh file or a // +// tetgenio structure. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outneighbors(tetgenio* out) +{ + FILE *outfile; + char neighborfilename[FILENAMESIZE]; + int *nlist; + int index; + tetrahedron *tptr; + triface tetloop, tetsym; + int neighbor1, neighbor2, neighbor3, neighbor4; + int elementnumber; + + if (out == (tetgenio *) NULL) { + strcpy(neighborfilename, b->outfilename); + strcat(neighborfilename, ".neigh"); + } + + if (!b->quiet) { + if (out == (tetgenio *) NULL) { + printf("Writing %s.\n", neighborfilename); + } else { + printf("Writing neighbors.\n"); + } + } + + if (out == (tetgenio *) NULL) { + outfile = fopen(neighborfilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", neighborfilename); + exit(1); + } + // Number of tetrahedra, four faces per tetrahedron. + fprintf(outfile, "%ld %d\n", tetrahedrons->items, 4); + } else { + // Allocate memory for 'neighborlist'. + out->neighborlist = new int[tetrahedrons->items * 4]; + if (out->neighborlist == (int *) NULL) { + printf("Error: Out of memory.\n"); + exit(1); + } + nlist = out->neighborlist; + index = 0; + } + + tetrahedrons->traversalinit(); + tptr = tetrahedrontraverse(); + elementnumber = in->firstnumber; + while (tptr != (tetrahedron *) NULL) { + * (int *) (tptr + 8) = elementnumber; + tptr = tetrahedrontraverse(); + elementnumber++; + } + * (int *) (dummytet + 8) = -1; + + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + elementnumber = in->firstnumber; + while (tetloop.tet != (tetrahedron *) NULL) { + tetloop.loc = 2; + sym(tetloop, tetsym); + neighbor1 = * (int *) (tetsym.tet + 8); + tetloop.loc = 3; + sym(tetloop, tetsym); + neighbor2 = * (int *) (tetsym.tet + 8); + tetloop.loc = 1; + sym(tetloop, tetsym); + neighbor3 = * (int *) (tetsym.tet + 8); + tetloop.loc = 0; + sym(tetloop, tetsym); + neighbor4 = * (int *) (tetsym.tet + 8); + if (out == (tetgenio *) NULL) { + // Tetrahedra number, neighboring tetrahedron numbers. + fprintf(outfile, "%4d %4d %4d %4d %4d\n", elementnumber, + neighbor1, neighbor2, neighbor3, neighbor4); + } else { + nlist[index++] = neighbor1; + nlist[index++] = neighbor2; + nlist[index++] = neighbor3; + nlist[index++] = neighbor4; + } + tetloop.tet = tetrahedrontraverse(); + elementnumber++; + } + + if (out == (tetgenio *) NULL) { + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outsmesh() Write surface mesh to a .smesh file, which can be read and // +// tetrahedralized by TetGen. // +// // +// You can specify a filename (without suffix) in 'smfilename'. If you don't // +// supply a filename (let smfilename be NULL), the default name stored in // +// 'tetgenbehavior' will be used. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outsmesh(char* smfilename) +{ + FILE *outfile; + char smefilename[FILENAMESIZE]; + face faceloop; + point pointloop; + point p1, p2, p3; + int pointnumber; + int nextras, bmark; + int faceid, marker; + + if (smfilename != (char *) NULL && smfilename[0] != '\0') { + strcpy(smefilename, smfilename); + } else if (b->outfilename[0] != '\0') { + strcpy(smefilename, b->outfilename); + } else { + strcpy(smefilename, "unnamed"); + } + strcat(smefilename, ".smesh"); + + if (!b->quiet) { + printf("Writing %s.\n", smefilename); + } + outfile = fopen(smefilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", smefilename); + return; + } + + fprintf(outfile, "# %s. TetGen's input file.\n", smefilename); + + nextras = in->numberofpointattributes; + bmark = !b->nobound && in->pointmarkerlist; + + fprintf(outfile, "\n# part 1: node list.\n"); + // Number of points, number of dimensions, number of point attributes, + // and number of boundary markers (zero or one). + fprintf(outfile, "%ld %d %d %d\n", points->items, 3, nextras, bmark); + + points->traversalinit(); + pointloop = pointtraverse(); + pointnumber = in->firstnumber; + while (pointloop != (point) NULL) { + // Point coordinates. + fprintf(outfile, "%4d %.17g %.17g %.17g", pointnumber, + pointloop[0], pointloop[1], pointloop[2]); + if (in->numberofpointattributes > 0) { + // Write an attribute, ignore others if more than one. + fprintf(outfile, " %.17g", pointloop[3]); + } + fprintf(outfile, "\n"); + setpointmark(pointloop, pointnumber); + pointloop = pointtraverse(); + pointnumber++; + } + + bmark = !b->nobound && in->facetmarkerlist; + + fprintf(outfile, "\n# part 2: facet list.\n"); + // Number of facets, boundary marker. + fprintf(outfile, "%ld %d\n", subfaces->items, bmark); + + subfaces->traversalinit(); + faceloop.sh = shellfacetraverse(subfaces); + while (faceloop.sh != (shellface *) NULL) { + p1 = sorg(faceloop); + p2 = sdest(faceloop); + p3 = sapex(faceloop); + if (bmark) { + faceid = shellmark(faceloop) - 1; + marker = in->facetmarkerlist[faceid]; + } + fprintf(outfile, "3 %4d %4d %4d", pointmark(p1), pointmark(p2), + pointmark(p3)); + if (bmark) { + fprintf(outfile, " %d", marker); + } + fprintf(outfile, "\n"); + faceloop.sh = shellfacetraverse(subfaces); + } + + fprintf(outfile, "\n# part 3: hole list.\n"); + fprintf(outfile, "0\n"); + + fprintf(outfile, "\n# part 4: region list.\n"); + fprintf(outfile, "0\n"); + + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outmesh2medit() Write mesh to a .mesh file, which can be read and // +// rendered by Medit (a free mesh viewer from INRIA). // +// // +// You can specify a filename (without suffix) in 'mfilename'. If you don't // +// supply a filename (let mfilename be NULL), the default name stored in // +// 'tetgenbehavior' will be used. The output file will have the suffix .mesh.// +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outmesh2medit(char* mfilename) +{ + FILE *outfile; + char mefilename[FILENAMESIZE]; + tetrahedron* tetptr; + triface tface, tsymface; + face segloop, checkmark; + point pointloop, p1, p2, p3, p4; + long faces; + int pointnumber; + int i; + + if (mfilename != (char *) NULL && mfilename[0] != '\0') { + strcpy(mefilename, mfilename); + } else if (b->outfilename[0] != '\0') { + strcpy(mefilename, b->outfilename); + } else { + strcpy(mefilename, "unnamed"); + } + strcat(mefilename, ".mesh"); + + if (!b->quiet) { + printf("Writing %s.\n", mefilename); + } + outfile = fopen(mefilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", mefilename); + return; + } + + fprintf(outfile, "MeshVersionFormatted 1\n"); + fprintf(outfile, "\n"); + fprintf(outfile, "Dimension\n"); + fprintf(outfile, "3\n"); + fprintf(outfile, "\n"); + + fprintf(outfile, "\n# Set of mesh vertices\n"); + fprintf(outfile, "Vertices\n"); + fprintf(outfile, "%ld\n", points->items); + + points->traversalinit(); + pointloop = pointtraverse(); + pointnumber = 1; // Medit need start number form 1. + while (pointloop != (point) NULL) { + // Point coordinates. + fprintf(outfile, "%.17g %.17g %.17g", + pointloop[0], pointloop[1], pointloop[2]); + if (in->numberofpointattributes > 0) { + // Write an attribute, ignore others if more than one. + fprintf(outfile, " %.17g\n", pointloop[3]); + } else { + fprintf(outfile, " 0\n"); + } + setpointmark(pointloop, pointnumber); + pointloop = pointtraverse(); + pointnumber++; + } + + // Compute the number of edges. + faces = (4l * tetrahedrons->items + hullsize) / 2l; + + fprintf(outfile, "\n# Set of Triangles\n"); + fprintf(outfile, "Triangles\n"); + fprintf(outfile, "%ld\n", faces); + + tetrahedrons->traversalinit(); + tface.tet = tetrahedrontraverse(); + // To loop over the set of faces, loop over all tetrahedra, and look at + // the four faces of each tetrahedron. If there isn't another tetrahedron + // adjacent to the face, operate on the face. If there is another adj- + // acent tetrahedron, operate on the face only if the current tetrahedron + // has a smaller pointer than its neighbor. This way, each face is + // considered only once. + while (tface.tet != (tetrahedron *) NULL) { + for (tface.loc = 0; tface.loc < 4; tface.loc ++) { + sym(tface, tsymface); + if (tface.tet < tsymface.tet || tsymface.tet == dummytet) { + p1 = org (tface); + p2 = dest(tface); + p3 = apex(tface); + fprintf(outfile, "%5d %5d %5d", + pointmark(p1), pointmark(p2), pointmark(p3)); + fprintf(outfile, " 0\n"); + } + } + tface.tet = tetrahedrontraverse(); + } + + fprintf(outfile, "\n# Set of Tetrahedra\n"); + fprintf(outfile, "Tetrahedra\n"); + fprintf(outfile, "%ld\n", tetrahedrons->items); + + tetrahedrons->traversalinit(); + tetptr = tetrahedrontraverse(); + while (tetptr != (tetrahedron *) NULL) { + p1 = (point) tetptr[4]; + p2 = (point) tetptr[5]; + p3 = (point) tetptr[6]; + p4 = (point) tetptr[7]; + fprintf(outfile, "%5d %5d %5d %5d", + pointmark(p1), pointmark(p2), pointmark(p3), pointmark(p4)); + if (in->numberoftetrahedronattributes > 0) { + fprintf(outfile, " %.17g", elemattribute(tetptr, 0)); + } else { + fprintf(outfile, " 0"); + } + fprintf(outfile, "\n"); + tetptr = tetrahedrontraverse(); + } + + fprintf(outfile, "\nCorners\n"); + fprintf(outfile, "%d\n", in->numberofpoints); + + for (i = 0; i < in->numberofpoints; i++) { + fprintf(outfile, "%4d\n", i + 1); + } + + if (b->useshelles) { + fprintf(outfile, "\nEdges\n"); + fprintf(outfile, "%ld\n", subsegs->items); + + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while (segloop.sh != (shellface *) NULL) { + p1 = sorg(segloop); + p2 = sdest(segloop); + fprintf(outfile, "%5d %5d", pointmark(p1), pointmark(p2)); + fprintf(outfile, " 0\n"); + segloop.sh = shellfacetraverse(subsegs); + } + } + + fprintf(outfile, "\nEnd\n"); + fclose(outfile); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outmesh2gid() Write mesh to a .ele.msh file and a .face.msh file, // +// which can be imported and rendered by Gid. // +// // +// You can specify a filename (without suffix) in 'gfilename'. If you don't // +// supply a filename (let gfilename be NULL), the default name stored in // +// 'tetgenbehavior' will be used. The suffixes (.ele.msh and .face.msh) will // +// be automatically added. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outmesh2gid(char* gfilename) +{ + FILE *outfile; + char gidfilename[FILENAMESIZE]; + tetrahedron* tetptr; + triface tface, tsymface; + face sface; + point pointloop, p1, p2, p3, p4; + int pointnumber; + int elementnumber; + + if (gfilename != (char *) NULL && gfilename[0] != '\0') { + strcpy(gidfilename, gfilename); + } else if (b->outfilename[0] != '\0') { + strcpy(gidfilename, b->outfilename); + } else { + strcpy(gidfilename, "unnamed"); + } + strcat(gidfilename, ".ele.msh"); + + if (!b->quiet) { + printf("Writing %s.\n", gidfilename); + } + outfile = fopen(gidfilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", gidfilename); + return; + } + + fprintf(outfile, "mesh dimension = 3 elemtype tetrahedron nnode = 4\n"); + fprintf(outfile, "coordinates\n"); + + points->traversalinit(); + pointloop = pointtraverse(); + pointnumber = 1; // Gid need start number form 1. + while (pointloop != (point) NULL) { + // Point coordinates. + fprintf(outfile, "%4d %.17g %.17g %.17g", pointnumber, + pointloop[0], pointloop[1], pointloop[2]); + if (in->numberofpointattributes > 0) { + // Write an attribute, ignore others if more than one. + fprintf(outfile, " %.17g", pointloop[3]); + } + fprintf(outfile, "\n"); + setpointmark(pointloop, pointnumber); + pointloop = pointtraverse(); + pointnumber++; + } + + fprintf(outfile, "end coordinates\n"); + fprintf(outfile, "elements\n"); + + tetrahedrons->traversalinit(); + tetptr = tetrahedrontraverse(); + elementnumber = 1; + while (tetptr != (tetrahedron *) NULL) { + p1 = (point) tetptr[4]; + p2 = (point) tetptr[5]; + p3 = (point) tetptr[6]; + p4 = (point) tetptr[7]; + fprintf(outfile, "%5d %5d %5d %5d %5d", elementnumber, + pointmark(p1), pointmark(p2), pointmark(p3), pointmark(p4)); + if (in->numberoftetrahedronattributes > 0) { + fprintf(outfile, " %.17g", elemattribute(tetptr, 0)); + } + fprintf(outfile, "\n"); + tetptr = tetrahedrontraverse(); + elementnumber++; + } + + fprintf(outfile, "end elements\n"); + fclose(outfile); + + if (gfilename != (char *) NULL && gfilename[0] != '\0') { + strcpy(gidfilename, gfilename); + } else if (b->outfilename[0] != '\0') { + strcpy(gidfilename, b->outfilename); + } else { + strcpy(gidfilename, "unnamed"); + } + strcat(gidfilename, ".face.msh"); + + if (!b->quiet) { + printf("Writing %s.\n", gidfilename); + } + outfile = fopen(gidfilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", gidfilename); + return; + } + + fprintf(outfile, "mesh dimension = 3 elemtype triangle nnode = 3\n"); + fprintf(outfile, "coordinates\n"); + + points->traversalinit(); + pointloop = pointtraverse(); + pointnumber = 1; // Gid need start number form 1. + while (pointloop != (point) NULL) { + // Point coordinates. + fprintf(outfile, "%4d %.17g %.17g %.17g", pointnumber, + pointloop[0], pointloop[1], pointloop[2]); + if (in->numberofpointattributes > 0) { + // Write an attribute, ignore others if more than one. + fprintf(outfile, " %.17g", pointloop[3]); + } + fprintf(outfile, "\n"); + setpointmark(pointloop, pointnumber); + pointloop = pointtraverse(); + pointnumber++; + } + + fprintf(outfile, "end coordinates\n"); + fprintf(outfile, "elements\n"); + + tetrahedrons->traversalinit(); + tface.tet = tetrahedrontraverse(); + elementnumber = 1; + while (tface.tet != (tetrahedron *) NULL) { + for (tface.loc = 0; tface.loc < 4; tface.loc ++) { + sym(tface, tsymface); + if ((tface.tet < tsymface.tet) || (tsymface.tet == dummytet)) { + p1 = org(tface); + p2 = dest(tface); + p3 = apex(tface); + if (tsymface.tet == dummytet) { + // It's a hull face, output it. + fprintf(outfile, "%5d %d %d %d\n", elementnumber, + pointmark(p1), pointmark(p2), pointmark(p3)); + elementnumber++; + } else if (b->useshelles) { + // Only output it if it's a subface. + tspivot(tface, sface); + if (sface.sh != dummysh) { + fprintf(outfile, "%5d %d %d %d\n", elementnumber, + pointmark(p1), pointmark(p2), pointmark(p3)); + elementnumber++; + } + } + } + } + tface.tet = tetrahedrontraverse(); + } + + fprintf(outfile, "end elements\n"); + fclose(outfile); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// outmesh2off() Write the mesh to an .off file. // +// // +// .off, the Object File Format, is one of the popular file formats from the // +// Geometry Center's Geomview package (http://www.geomview.org). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::outmesh2off(char* ofilename) +{ + FILE *outfile; + char offfilename[FILENAMESIZE]; + triface tface, tsymface; + point pointloop, p1, p2, p3; + long faces; + int shift; + + if (ofilename != (char *) NULL && ofilename[0] != '\0') { + strcpy(offfilename, ofilename); + } else if (b->outfilename[0] != '\0') { + strcpy(offfilename, b->outfilename); + } else { + strcpy(offfilename, "unnamed"); + } + strcat(offfilename, ".off"); + + if (!b->quiet) { + printf("Writing %s.\n", offfilename); + } + outfile = fopen(offfilename, "w"); + if (outfile == (FILE *) NULL) { + printf("File I/O Error: Cannot create file %s.\n", offfilename); + return; + } + + // Calculate the number of triangular faces in the tetrahedral mesh. + faces = (4l * tetrahedrons->items + hullsize) / 2l; + + // Number of points, faces, and edges(not used, here show hullsize). + fprintf(outfile, "OFF\n%ld %ld %ld\n", points->items, faces, hullsize); + + // Write the points. + points->traversalinit(); + pointloop = pointtraverse(); + while (pointloop != (point) NULL) { + fprintf(outfile, " %.17g %.17g %.17g\n", pointloop[0], pointloop[1], + pointloop[2]); + pointloop = pointtraverse(); + } + + // OFF always use zero as the first index. + shift = in->firstnumber == 1 ? 1 : 0; + + tetrahedrons->traversalinit(); + tface.tet = tetrahedrontraverse(); + // To loop over the set of faces, loop over all tetrahedra, and look at + // the four faces of each tetrahedron. If there isn't another tetrahedron + // adjacent to the face, operate on the face. If there is another adj- + // acent tetrahedron, operate on the face only if the current tetrahedron + // has a smaller pointer than its neighbor. This way, each face is + // considered only once. + while (tface.tet != (tetrahedron *) NULL) { + for (tface.loc = 0; tface.loc < 4; tface.loc ++) { + sym(tface, tsymface); + if ((tface.tet < tsymface.tet) || (tsymface.tet == dummytet)) { + p1 = org(tface); + p2 = dest(tface); + p3 = apex(tface); + // Face number, indices of three vertexs. + fprintf(outfile, "3 %4d %4d %4d\n", pointmark(p1) - shift, + pointmark(p2) - shift, pointmark(p3) - shift); + } + } + tface.tet = tetrahedrontraverse(); + } + + fprintf(outfile, "# Generated by %s\n", b->commandline); + fclose(outfile); +} + +// +// End of I/O rouitnes +// + +// +// Begin of user interaction routines +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// internalerror() Ask the user to send me the defective product. Exit. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::internalerror() +{ + printf(" Please report this bug to sihang@mail.berlios.de. Include the\n"); + printf(" message above, your input data set, and the exact command\n"); + printf(" line you used to run this program, thank you.\n"); + exit(1); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checkmesh() Test the mesh for topological consistency. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::checkmesh() +{ + triface tetraloop; + triface oppotet, oppooppotet; + point tetorg, tetdest, tetapex, tetoppo; + point oppodest, oppoapex; + REAL oritest; + int horrors; + + if (!b->quiet) { + printf(" Checking consistency of mesh...\n"); + } + horrors = 0; + // Run through the list of tetrahedra, checking each one. + tetrahedrons->traversalinit(); + tetraloop.tet = tetrahedrontraverse(); + while (tetraloop.tet != (tetrahedron *) NULL) { + // Check all four faces of the tetrahedron. + for (tetraloop.loc = 0; tetraloop.loc < 4; tetraloop.loc++) { + tetorg = org(tetraloop); + tetdest = dest(tetraloop); + tetapex = apex(tetraloop); + tetoppo = oppo(tetraloop); + if (tetraloop.loc == 0) { // Only test for inversion once. + oritest = orient3d(tetorg, tetdest, tetapex, tetoppo); + if (oritest >= 0.0) { + printf(" !! !! %s ", oritest > 0.0 ? "Inverted" : "Degenerated"); + printtet(&tetraloop); + printf(" orient3d = %.17g.\n", oritest); + horrors++; + } + } + // Find the neighboring tetrahedron on this face. + sym(tetraloop, oppotet); + if (oppotet.tet != dummytet) { + // Check that the tetrahedron's neighbor knows it's a neighbor. + sym(oppotet, oppooppotet); + if ((tetraloop.tet != oppooppotet.tet) + || (tetraloop.loc != oppooppotet.loc)) { + printf(" !! !! Asymmetric tetra-tetra bond:\n"); + if (tetraloop.tet == oppooppotet.tet) { + printf(" (Right tetrahedron, wrong orientation)\n"); + } + printf(" First "); + printtet(&tetraloop); + printf(" Second (nonreciprocating) "); + printtet(&oppotet); + horrors++; + } + // Check that both tetrahedra agree on the identities + // of their shared vertices. + if (findorg(&oppotet, tetorg)) { + oppodest = dest(oppotet); + oppoapex = apex(oppotet); + } else { + oppodest = (point) NULL; + } + if ((tetdest != oppoapex) || (tetapex != oppodest)) { + printf(" !! !! Mismatched face coordinates between two tetras:\n"); + printf(" First mismatched "); + printtet(&tetraloop); + printf(" Second mismatched "); + printtet(&oppotet); + horrors++; + } + } + } + tetraloop.tet = tetrahedrontraverse(); + } + if (horrors == 0) { + if (!b->quiet) { + printf(" In my studied opinion, the mesh appears to be consistent.\n"); + } + } else if (horrors == 1) { + printf(" !! !! !! !! Precisely one festering wound discovered.\n"); + } else { + printf(" !! !! !! !! %d abominations witnessed.\n", horrors); + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checkshells() Test the boundary mesh for topological consistency. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::checkshells() +{ + triface oppotet, oppooppotet, testtet; + face shloop, segloop, spin; + face testsh, testseg, testshsh; + point shorg, shdest, segorg, segdest; + REAL checksign; + bool same; + int horrors; + int i; + + if (!b->quiet) { + printf(" Checking consistency of the mesh boundary...\n"); + } + horrors = 0; + + // Run through the list of subfaces, checking each one. + subfaces->traversalinit(); + shloop.sh = shellfacetraverse(subfaces); + while (shloop.sh != (shellface *) NULL) { + // Check two connected tetrahedra if they exist. + shloop.shver = 0; + stpivot(shloop, oppotet); + if (oppotet.tet != dummytet) { + tspivot(oppotet, testsh); + if (testsh.sh != shloop.sh) { + printf(" !! !! Wrong tetra-subface connection.\n"); + printf(" Tetra: "); + printtet(&oppotet); + printf(" Subface: "); + printsh(&shloop); + horrors++; + } + if (oppo(oppotet) != (point) NULL) { + adjustedgering(oppotet, CCW); + checksign = orient3d(sorg(shloop), sdest(shloop), sapex(shloop), + oppo(oppotet)); + if (checksign >= 0.0) { + printf(" !! !! Wrong subface orientation.\n"); + printf(" Subface: "); + printsh(&shloop); + horrors++; + } + } + } + sesymself(shloop); + stpivot(shloop, oppooppotet); + if (oppooppotet.tet != dummytet) { + tspivot(oppooppotet, testsh); + if (testsh.sh != shloop.sh) { + printf(" !! !! Wrong tetra-subface connection.\n"); + printf(" Tetra: "); + printtet(&oppooppotet); + printf(" Subface: "); + printsh(&shloop); + horrors++; + } + if (oppotet.tet != dummytet) { + sym(oppotet, testtet); + if (testtet.tet != oppooppotet.tet) { + printf(" !! !! Wrong tetra-subface-tetra connection.\n"); + printf(" Tetra 1: "); + printtet(&oppotet); + printf(" Subface: "); + printsh(&shloop); + printf(" Tetra 2: "); + printtet(&oppooppotet); + horrors++; + } + } + if (oppo(oppooppotet) != (point) NULL) { + adjustedgering(oppooppotet, CCW); + checksign = orient3d(sorg(shloop), sdest(shloop), sapex(shloop), + oppo(oppooppotet)); + if (checksign >= 0.0) { + printf(" !! !! Wrong subface orientation.\n"); + printf(" Subface: "); + printsh(&shloop); + horrors++; + } + } + } + // Check connection between subfaces. + shloop.shver = 0; + for (i = 0; i < 3; i++) { + shorg = sorg(shloop); + shdest = sdest(shloop); + sspivot(shloop, testseg); + if (testseg.sh != dummysh) { + segorg = sorg(testseg); + segdest = sdest(testseg); + same = ((shorg == segorg) && (shdest == segdest)) + || ((shorg == segdest) && (shdest == segorg)); + if (!same) { + printf(" !! !! Wrong subface-subsegment connection.\n"); + printf(" Subface: "); + printsh(&shloop); + printf(" Subsegment: "); + printsh(&testseg); + horrors++; + } + } + spivot(shloop, testsh); + if (testsh.sh != dummysh) { + segorg = sorg(testsh); + segdest = sdest(testsh); + same = ((shorg == segorg) && (shdest == segdest)) + || ((shorg == segdest) && (shdest == segorg)); + if (!same) { + printf(" !! !! Wrong subface-subface connection.\n"); + printf(" Subface 1: "); + printsh(&shloop); + printf(" Subface 2: "); + printsh(&testsh); + horrors++; + } + spivot(testsh, testshsh); + shorg = sorg(testshsh); + shdest = sdest(testshsh); + same = ((shorg == segorg) && (shdest == segdest)) + || ((shorg == segdest) && (shdest == segorg)); + if (!same) { + printf(" !! !! Wrong subface-subface connection.\n"); + printf(" Subface 1: "); + printsh(&testsh); + printf(" Subface 2: "); + printsh(&testshsh); + horrors++; + } + if (testseg.sh == dummysh) { + if (testshsh.sh != shloop.sh) { + printf(" !! !! Wrong subface-subface connection.\n"); + printf(" Subface 1: "); + printsh(&shloop); + printf(" Subface 2: "); + printsh(&testsh); + horrors++; + } + } + } + senextself(shloop); + } + shloop.sh = shellfacetraverse(subfaces); + } + + // Run through the list of subsegs, checking each one. + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while (segloop.sh != (shellface *) NULL) { + segorg = sorg(segloop); + segdest = sdest(segloop); + spivot(segloop, testsh); + if (testsh.sh == dummysh) { + printf(" !! !! Wrong subsegment-subface connection.\n"); + printf(" Subsegment: "); + printsh(&segloop); + horrors++; + segloop.sh = shellfacetraverse(subsegs); + continue; + } + shorg = sorg(testsh); + shdest = sdest(testsh); + same = ((shorg == segorg) && (shdest == segdest)) + || ((shorg == segdest) && (shdest == segorg)); + if (!same) { + printf(" !! !! Wrong subsegment-subface connection.\n"); + printf(" Subsegment : "); + printsh(&segloop); + printf(" Subface : "); + printsh(&testsh); + horrors++; + segloop.sh = shellfacetraverse(subsegs); + continue; + } + // Check the connection of face loop around this subsegment. + spin = testsh; + i = 0; + do { + spivotself(spin); + shorg = sorg(spin); + shdest = sdest(spin); + same = ((shorg == segorg) && (shdest == segdest)) + || ((shorg == segdest) && (shdest == segorg)); + if (!same) { + printf(" !! !! Wrong subsegment-subface connection.\n"); + printf(" Subsegment : "); + printsh(&segloop); + printf(" Subface : "); + printsh(&testsh); + horrors++; + break; + } + i++; + } while (spin.sh != testsh.sh && i < 1000); + if (i >= 1000) { + printf(" !! !! Wrong subsegment-subface connection.\n"); + printf(" Subsegment : "); + printsh(&segloop); + horrors++; + } + segloop.sh = shellfacetraverse(subsegs); + } + if (horrors == 0) { + if (!b->quiet) { + printf(" Mesh boundaries connected correctly.\n"); + } + } else { + printf(" !! !! !! !! %d boundary connection viewed with horror.\n", + horrors); + return; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checkdelaunay() Ensure that the mesh is constrained Delaunay. // +// // +// If 'flipqueue' is not NULL, non-locally Delaunay faces are saved in it. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::checkdelaunay(queue* flipqueue) +{ + triface tetraloop; + triface oppotet; + face opposhelle; + point tetorg, tetdest, tetapex, tetoppo; + point oppooppo; + REAL sign; + int shouldbedelaunay; + int horrors; + + if (!b->quiet) { + printf(" Checking Delaunay property of the mesh...\n"); + } + horrors = 0; + // Run through the list of triangles, checking each one. + tetrahedrons->traversalinit(); + tetraloop.tet = tetrahedrontraverse(); + while (tetraloop.tet != (tetrahedron *) NULL) { + // Check all four faces of the tetrahedron. + for (tetraloop.loc = 0; tetraloop.loc < 4; tetraloop.loc++) { + tetorg = org(tetraloop); + tetdest = dest(tetraloop); + tetapex = apex(tetraloop); + tetoppo = oppo(tetraloop); + sym(tetraloop, oppotet); + oppooppo = oppo(oppotet); + // Only test that the face is locally Delaunay if there is an + // adjoining tetrahedron whose pointer is larger (to ensure that + // each pair isn't tested twice). + shouldbedelaunay = (oppotet.tet != dummytet) + && (tetoppo != (point) NULL) + && (oppooppo != (point) NULL) + && (tetraloop.tet < oppotet.tet); + if (checksubfaces && shouldbedelaunay) { + // If a shell edge separates the triangles, then the edge is + // constrained, so no local Delaunay test should be done. + tspivot(tetraloop, opposhelle); + if (opposhelle.sh != dummysh){ + shouldbedelaunay = 0; + } + } + if (shouldbedelaunay) { + sign = insphere(tetdest, tetorg, tetapex, tetoppo, oppooppo); + if (checksubfaces && sign > 0.0) { + if (iscospheric(tetdest, tetorg, tetapex, tetoppo, oppooppo, + b->epsilon)) sign = 0.0; + } + if (sign > 0.0) { + if (flipqueue) { + enqueueflipface(tetraloop, flipqueue); + } else { + printf(" !! Non-locally Delaunay face (%d, %d, %d).\n", + pointmark(tetorg), pointmark(tetdest), pointmark(tetapex)); + } + horrors++; + } + } + } + tetraloop.tet = tetrahedrontraverse(); + } + if (flipqueue == (queue *) NULL) { + if (horrors == 0) { + if (!b->quiet) { + printf(" The mesh is %s.\n", + checksubfaces ? "constrained Delaunay" : "Delaunay"); + } + } else { + printf(" !! !! !! !! %d obscenities viewed with horror.\n", horrors); + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// checkconforming() Ensure that the mesh is conforming Delaunay. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::checkconforming() +{ + face segloop, shloop; + int encsubsegs, encsubfaces; + + if (!b->quiet) { + printf(" Checking conforming Delaunay property of mesh...\n"); + } + encsubsegs = encsubfaces = 0; + // Run through the list of subsegments, check each one. + subsegs->traversalinit(); + segloop.sh = shellfacetraverse(subsegs); + while (segloop.sh != (shellface *) NULL) { + if (checkseg4encroach(&segloop, NULL, false)) { + printf(" !! !! Non-conforming subsegment: "); + printsh(&segloop); + encsubsegs++; + } + segloop.sh = shellfacetraverse(subsegs); + } + // Run through the list of subfaces, check each one. + subfaces->traversalinit(); + shloop.sh = shellfacetraverse(subfaces); + while (shloop.sh != (shellface *) NULL) { + if (checksub4encroach(&shloop, NULL, false)) { + printf(" !! !! Non-conforming subface: "); + printsh(&shloop); + encsubfaces++; + } + shloop.sh = shellfacetraverse(subfaces); + } + if (encsubsegs == 0 && encsubfaces == 0) { + if (!b->quiet) { + printf(" The mesh is conforming Delaunay.\n"); + } + } else { + if (encsubsegs > 0) { + printf(" !! !! %d subsegments are non-conforming.\n", encsubsegs); + } + if (encsubfaces > 0) { + printf(" !! !! %d subfaces are non-conforming.\n", encsubfaces); + } + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// qualitystatistics() Print statistics about the quality of the mesh. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::qualitystatistics() +{ + triface tetloop; + point p[4]; + char sbuf[128]; + REAL radiusratiotable[12]; + REAL aspectratiotable[16]; + REAL dx[6], dy[6], dz[6]; + REAL edgelength[6]; + REAL alldihed[6]; + REAL cent[3]; + REAL shortest, longest; + REAL smallestvolume, biggestvolume; + REAL smallestdiangle, biggestdiangle; + REAL tetvol; + REAL tetlongest2; + REAL minaltitude; + REAL cirradius, insradius; + REAL shortlen, longlen; + REAL tetaspect, tetradius; + REAL smalldiangle, bigdiangle; + int radiustable[12]; + int aspecttable[16]; + int dihedangletable[18]; + int radiusindex; + int aspectindex; + int tendegree; + int i, j, k; + + printf("Mesh quality statistics:\n\n"); + + radiusratiotable[0] = 0.707; radiusratiotable[1] = 1.0; + radiusratiotable[2] = 1.1; radiusratiotable[3] = 1.2; + radiusratiotable[4] = 1.4; radiusratiotable[5] = 1.6; + radiusratiotable[6] = 1.8; radiusratiotable[7] = 2.0; + radiusratiotable[8] = 2.5; radiusratiotable[9] = 3.0; + radiusratiotable[10] = 10.0; radiusratiotable[11] = 0.0; + + aspectratiotable[0] = 1.5; aspectratiotable[1] = 2.0; + aspectratiotable[2] = 2.5; aspectratiotable[3] = 3.0; + aspectratiotable[4] = 4.0; aspectratiotable[5] = 6.0; + aspectratiotable[6] = 10.0; aspectratiotable[7] = 15.0; + aspectratiotable[8] = 25.0; aspectratiotable[9] = 50.0; + aspectratiotable[10] = 100.0; aspectratiotable[11] = 300.0; + aspectratiotable[12] = 1000.0; aspectratiotable[13] = 10000.0; + aspectratiotable[14] = 100000.0; aspectratiotable[15] = 0.0; + + for (i = 0; i < 12; i++) { + radiustable[i] = 0; + } + for (i = 0; i < 16; i++) { + aspecttable[i] = 0; + } + for (i = 0; i < 18; i++) { + dihedangletable[i] = 0; + } + + minaltitude = xmax - xmin + ymax - ymin + zmax - zmin; + minaltitude = minaltitude * minaltitude; + shortest = minaltitude; + longest = 0.0; + smallestvolume = minaltitude; + biggestvolume = 0.0; + smallestdiangle = 180.0; + biggestdiangle = 0.0; + + // Loop all elements, calculate quality parameters for each element. + tetrahedrons->traversalinit(); + tetloop.tet = tetrahedrontraverse(); + while (tetloop.tet != (tetrahedron *) NULL) { + p[0] = org(tetloop); + p[1] = dest(tetloop); + p[2] = apex(tetloop); + p[3] = oppo(tetloop); + tetlongest2 = 0.0; + + // Calculate the longest and shortest edge length. + for (i = 0; i < 3; i++) { + j = plus1mod3[i]; + k = minus1mod3[i]; + dx[i] = p[j][0] - p[k][0]; + dy[i] = p[j][1] - p[k][1]; + dz[i] = p[j][2] - p[k][2]; + edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i] + dz[i] * dz[i]; + if (i == 0) { + shortlen = longlen = edgelength[i]; + } else { + shortlen = edgelength[i] < shortlen ? edgelength[i] : shortlen; + longlen = edgelength[i] > longlen ? edgelength[i] : longlen; + } + if (edgelength[i] > tetlongest2) { + tetlongest2 = edgelength[i]; + } + if (edgelength[i] > longest) { + longest = edgelength[i]; + } + if (edgelength[i] < shortest) { + shortest = edgelength[i]; + } + } + for (i = 3; i < 6; i++) { + j = i - 3; + k = 3; + dx[i] = p[j][0] - p[k][0]; + dy[i] = p[j][1] - p[k][1]; + dz[i] = p[j][2] - p[k][2]; + edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i] + dz[i] * dz[i]; + shortlen = edgelength[i] < shortlen ? edgelength[i] : shortlen; + longlen = edgelength[i] > longlen ? edgelength[i] : longlen; + if (edgelength[i] > tetlongest2) { + tetlongest2 = edgelength[i]; + } + if (edgelength[i] > longest) { + longest = edgelength[i]; + } + if (edgelength[i] < shortest) { + shortest = edgelength[i]; + } + } + + // Calculate the largest and smallest volume. + tetvol = orient3d(p[0], p[1], p[2], p[3]) / 6.0; + if (tetvol < 0) tetvol = -tetvol; + if (tetvol < smallestvolume) { + smallestvolume = tetvol; + } + if (tetvol > biggestvolume) { + biggestvolume = tetvol; + } + + // Calculate the largest and smallest dihedral angles. + tetalldihedral(p[0], p[1], p[2], p[3], alldihed); + for (i = 0; i < 6; i++) { + alldihed[i] = alldihed[i] * 180.0 / PI; + if (i == 0) { + smalldiangle = bigdiangle = alldihed[i]; + } else { + smalldiangle = alldihed[i] < smalldiangle ? alldihed[i] : smalldiangle; + bigdiangle = alldihed[i] > bigdiangle ? alldihed[i] : bigdiangle; + } + if (alldihed[i] < smallestdiangle) { + smallestdiangle = alldihed[i]; + } else if (alldihed[i] > biggestdiangle) { + biggestdiangle = alldihed[i]; + } + } + tendegree = (int) (smalldiangle / 10.); + dihedangletable[tendegree]++; + tendegree = (int) (bigdiangle / 10.); + dihedangletable[tendegree]++; + + // Calculate aspect ratio and radius-edge ratio for this element. + tetaspect = 0.0; + if (!circumsphere(p[0], p[1], p[2], p[3], cent, &cirradius)) { + // ! Very bad element. + tetaspect = 1.e+8; + tetradius = 100.0; + } else { + inscribedsphere(p[0], p[1], p[2], p[3], cent, &insradius); + } + if (tetaspect == 0.0) { + tetradius = cirradius / sqrt(shortlen); + tetaspect = sqrt(longlen) / (2.0 * insradius); + + } + aspectindex = 0; + while ((tetaspect > aspectratiotable[aspectindex]) && (aspectindex < 15)) { + aspectindex++; + } + aspecttable[aspectindex]++; + radiusindex = 0; + while ((tetradius > radiusratiotable[radiusindex]) && (radiusindex < 11)) { + radiusindex++; + } + radiustable[radiusindex]++; + + tetloop.tet = tetrahedrontraverse(); + } + + shortest = sqrt(shortest); + longest = sqrt(longest); + minaltitude = sqrt(minaltitude); + + printf(" Smallest volume: %16.5g | Largest volume: %16.5g\n", + smallestvolume, biggestvolume); + printf(" Shortest edge: %16.5g | Longest edge: %16.5g\n", + shortest, longest); + sprintf(sbuf, "%.17g", biggestdiangle); + if (strlen(sbuf) > 8) { + sbuf[8] = '\0'; + } + printf(" Smallest dihedral: %14.5g | Largest dihedral: %s\n\n", + smallestdiangle, sbuf); + + printf(" Radius-edge ratio histogram:\n"); + printf(" < %-6.6g : %8d | %6.6g - %-6.6g : %8d\n", + radiusratiotable[0], radiustable[0], radiusratiotable[5], + radiusratiotable[6], radiustable[6]); + for (i = 1; i < 5; i++) { + printf(" %6.6g - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n", + radiusratiotable[i - 1], radiusratiotable[i], radiustable[i], + radiusratiotable[i + 5], radiusratiotable[i + 6], + radiustable[i + 6]); + } + printf(" %6.6g - %-6.6g : %8d | %6.6g - : %8d\n", + radiusratiotable[4], radiusratiotable[5], radiustable[5], + radiusratiotable[10], radiustable[11]); + printf(" (A tetrahedron's radius-edge ratio is its radius of "); + printf("circumsphere divided\n"); + printf(" by its shortest edge length)\n\n"); + + printf(" Aspect ratio histogram:\n"); + printf(" 1.1547 - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n", + aspectratiotable[0], aspecttable[0], aspectratiotable[7], + aspectratiotable[8], aspecttable[8]); + for (i = 1; i < 7; i++) { + printf(" %6.6g - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n", + aspectratiotable[i - 1], aspectratiotable[i], aspecttable[i], + aspectratiotable[i + 7], aspectratiotable[i + 8], + aspecttable[i + 8]); + } + printf(" %6.6g - %-6.6g : %8d | %6.6g - : %8d\n", + aspectratiotable[6], aspectratiotable[7], aspecttable[7], + aspectratiotable[14], aspecttable[15]); + printf(" (A tetrahedron's aspect ratio is its longest edge length"); + printf(" divided by the\n"); + printf(" diameter of its inscribed sphere)\n\n"); + + printf(" Dihedral Angle histogram:\n"); + for (i = 0; i < 9; i++) { + printf(" %3d - %2d degrees: %8d | %3d - %3d degrees: %8d\n", + i * 10, i * 10 + 10, dihedangletable[i], + i * 10 + 90, i * 10 + 100, dihedangletable[i + 9]); + } + printf("\n"); +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// statistics() Print all sorts of cool facts. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetgenmesh::statistics() +{ + printf("\nStatistics:\n\n"); + printf(" Input points: %d\n", in->numberofpoints); + if (b->refine) { + printf(" Input tetrahedra: %d\n", in->numberoftetrahedra); + } + if (b->plc) { + printf(" Input facets: %d\n", in->numberoffacets); + printf(" Input holes: %d\n", in->numberofholes); + printf(" Input regions: %d\n", in->numberofregions); + } + + printf("\n Mesh points: %ld\n", points->items); + printf(" Mesh tetrahedra: %ld\n", tetrahedrons->items); + if (b->plc || b->refine) { + printf(" Mesh faces: %ld\n", (4l * tetrahedrons->items + hullsize) / 2l); + } + if (b->plc || b->refine) { + printf(" Mesh subfaces: %ld\n", subfaces->items); + printf(" Mesh subsegments: %ld\n\n", subsegs->items); + } else { + printf(" Convex hull faces: %ld\n\n", hullsize); + } + if (b->verbose) { + // if (b->quality || b->removesliver) { + qualitystatistics(); + // } + printf("\n"); + } +} + +// +// End of user interaction routines +// + +// +// Begin of constructor and destructor of tetgenmesh +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// ~tetgenmesh() Deallocte memory occupied by a tetgenmesh object. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::~tetgenmesh() +{ + in = (tetgenio *) NULL; + b = (tetgenbehavior *) NULL; + + if (tetrahedrons != (memorypool *) NULL) { + delete tetrahedrons; + } + if (subfaces != (memorypool *) NULL) { + delete subfaces; + } + if (subsegs != (memorypool *) NULL) { + delete subsegs; + } + if (points != (memorypool *) NULL) { + delete points; + } + if (dummytetbase != (tetrahedron *) NULL) { + delete [] dummytetbase; + } + if (dummyshbase != (shellface *) NULL) { + delete [] dummyshbase; + } + if (liftpointarray != (REAL *) NULL) { + delete [] liftpointarray; + } + if (highordertable != (point *) NULL) { + delete [] highordertable; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetgenmesh() Initialize a tetgenmesh object. // +// // +/////////////////////////////////////////////////////////////////////////////// + +tetgenmesh::tetgenmesh() +{ + in = (tetgenio *) NULL; + b = (tetgenbehavior *) NULL; + + tetrahedrons = (memorypool *) NULL; + subfaces = (memorypool *) NULL; + subsegs = (memorypool *) NULL; + points = (memorypool *) NULL; + badsubsegs = (memorypool *) NULL; + badsubfaces = (memorypool *) NULL; + badtetrahedrons = (memorypool *) NULL; + flipstackers = (memorypool *) NULL; + + dummytet = (tetrahedron *) NULL; + dummytetbase = (tetrahedron *) NULL; + dummysh = (shellface *) NULL; + dummyshbase = (shellface *) NULL; + + liftpointarray = (REAL *) NULL; + highordertable = (point *) NULL; + + xmax = xmin = ymax = ymin = zmax = zmin = 0.0; + longest = 0.0; + hullsize = 0l; + insegment = 0l; + pointmarkindex = 0; + point2simindex = 0; + highorderindex = 0; + elemattribindex = 0; + volumeboundindex = 0; + shmarkindex = 0; + areaboundindex = 0; + checksubfaces = 0; + checkquality = 0; + nonconvex = 0; + dupverts = 0; + samples = 0l; + randomseed = 0l; + macheps = 0.0; + flip23s = flip32s = flip22s = flip44s = 0l; +} + +// +// End of constructor and destructor of tetgenmesh +// + +// +// End of class 'tetgenmesh' implementation. +// + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetrahedralize() The interface for users using TetGen library to // +// generate tetrahedral meshes with all features. // +// // +// The sequence is roughly as follows. Many of these steps can be skipped, // +// depending on the command line switches. // +// // +// - Initialize constants and parse the command line. // +// - Read the vertices from a file and either // +// - tetrahedralize them (no -r), or // +// - read an old mesh from files and reconstruct it (-r). // +// - Insert the PLC segments and facets (-p). // +// - Read the holes (-p), regional attributes (-pA), and regional volume // +// constraints (-pa). Carve the holes and concavities, and spread the // +// regional attributes and volume constraints. // +// - Enforce the constraints on minimum quality bound (-q) and maximum // +// volume (-a). Also enforce the conforming Delaunay property (-q and -a). // +// - Promote the mesh's linear tetrahedra to higher order elements (-o). // +// - Write the output files and print the statistics. // +// - Check the consistency and Delaunay property of the mesh (-C). // +// // +/////////////////////////////////////////////////////////////////////////////// + +#include <time.h> // Defined type clock_t, constant CLOCKS_PER_SEC. + +void tetrahedralize(tetgenbehavior *b, tetgenio *in, tetgenio *out) +{ + tetgenmesh m; + clock_t tv0, tv1, tv2, tv3, tv4, tv5, tv6, tv7, tv8; + + if (!b->quiet) { + tv0 = clock(); + } + + m.b = b; + m.in = in; + + m.macheps = exactinit(); + m.initializepointpool(); + m.initializetetshpools(); + m.steinerleft = b->steiner; + + if (!b->quiet) { + tv1 = clock(); + } + + m.transfernodes(); + if (b->refine) { + m.reconstructmesh(); + } else { + m.incrflipdelaunay(); + } + + if (!b->quiet) { + tv2 = clock(); + if (b->refine) { + printf("Mesh reconstruction seconds: %g\n", + (tv2 - tv1) / (REAL) CLOCKS_PER_SEC); + } else if (!b->detectinter) { + printf("Delaunay seconds: %g\n", (tv2 - tv1) / (REAL) CLOCKS_PER_SEC); + } + } + + if (b->useshelles && !b->refine) { + m.insegment = m.meshsurface(); + if (b->detectinter) { + m.detectinterfaces(); + } else { + if (!b->nobisect) { + m.delaunizesegments(); + m.checksubfaces = 1; + m.constrainedfacets(); + } + } + } + + if (!b->quiet) { + tv3 = clock(); + if (b->useshelles && !b->refine) { + if (b->detectinter) { + printf("Intersection seconds: %g\n", + (tv3 - tv2) / (REAL) CLOCKS_PER_SEC); + } else { + if (!b->nobisect) { + printf("Segment and facet seconds: %g\n", + (tv3 - tv2) / (REAL) CLOCKS_PER_SEC); + } + } + } + } + + if (b->plc && !b->refine && !b->detectinter) { + if (b->checkclosure) { + m.indenthull(); + } else { + m.carveholes(); + } + m.nonconvex = 1; + } + + if (!b->quiet) { + tv4 = clock(); + if (b->plc && !b->refine && !b->detectinter) { + printf("Hole seconds: %g\n", (tv4 - tv3) / (REAL) CLOCKS_PER_SEC); + } + } + + if ((b->plc || b->refine) && !b->detectinter && !b->checkclosure) { + m.removeilltets(); + } + + if (!b->quiet) { + tv5 = clock(); + if ((b->plc || b->refine) && !b->detectinter) { + printf("Repair seconds: %g\n", (tv5 - tv4) / (REAL) CLOCKS_PER_SEC); + } + } + + if (b->insertaddpoints) { + if (in->numberofaddpoints == 0) { + in->load_addnodes(b->infilename); + } + if (in->numberofaddpoints > 0) { + m.insertaddpoints(); + } + } + + if (!b->quiet) { + tv6 = clock(); + if ((b->plc || b->refine) && (in->numberofaddpoints > 0)) { + printf("Add points seconds: %g\n", (tv6 - tv5) / (REAL) CLOCKS_PER_SEC); + } + } + + if (b->quality && (m.tetrahedrons->items > 0)) { + m.enforcequality(); + } + + if (!b->quiet) { + tv7 = clock(); + if (b->quality && (m.tetrahedrons->items > 0)) { + printf("Quality seconds: %g\n", (tv7 - tv6) / (REAL) CLOCKS_PER_SEC); + } + } + + if ((b->plc || b->refine) && b->removesliver) { + m.removeslivers(); + } + + if (!b->quiet) { + tv8 = clock(); + if ((b->plc || b->refine) && b->removesliver) { + printf("Sliver repair seconds: %g\n", + (tv8 - tv7) / (REAL) CLOCKS_PER_SEC); + } + } + + if (b->order > 1) { + m.highorder(); + } + + if (!b->quiet) { + printf("\n"); + } + + if (out != (tetgenio *) NULL) { + out->firstnumber = in->firstnumber; + out->mesh_dim = in->mesh_dim; + } + + if (b->nonodewritten || b->noiterationnum) { + if (!b->quiet) { + printf("NOT writing a .node file.\n"); + } + } else { + if (b->detectinter) { + if (m.subfaces->items > 0l) { + // Only output when there are intersecting faces. + m.outnodes(out); + } + } else { + m.outnodes(out); + } + } + + if (b->noelewritten) { + if (!b->quiet) { + printf("NOT writing an .ele file.\n"); + } + } else { + if (!b->detectinter) { + if (m.tetrahedrons->items > 0l) { + m.outelements(out); + } + } + } + + if (b->nofacewritten) { + if (!b->quiet) { + printf("NOT writing an .face file.\n"); + } + } else { + if (b->facesout) { + if (m.tetrahedrons->items > 0l) { + // Output all faces. + m.outfaces(out); + } + } else { + if (b->detectinter) { + if (m.subfaces->items > 0l) { + // Only output when there are intersecting faces. + m.outsubfaces(out); + } + } else if (b->plc || b->refine) { + if (m.tetrahedrons->items > 0l) { + // Output boundary faces. + m.outsubfaces(out); + } + } else { + if (m.tetrahedrons->items > 0l) { + // Output convex hull faces. + m.outhullfaces(out); + } + } + } + } + + if (b->edgesout && b->plc) { + m.outsubsegments(out); + } + + if (!out && b->plc && ((b->object == tetgenbehavior::OFF) || + (b->object == tetgenbehavior::PLY) || + (b->object == tetgenbehavior::STL))) { + m.outsmesh(b->outfilename); + } + + if (!out && b->meditview) { + m.outmesh2medit(b->outfilename); + } + + if (!out && b->gidview) { + m.outmesh2gid(b->outfilename); + } + + if (!out && b->geomview) { + m.outmesh2off(b->outfilename); + } + + if (b->neighout) { + m.outneighbors(out); + } + + if (!b->quiet) { + tv7 = clock(); + printf("\nOutput seconds: %g\n", (tv7 - tv6) / (REAL) CLOCKS_PER_SEC); + printf("Total running seconds: %g\n", + (tv7 - tv0) / (REAL) CLOCKS_PER_SEC); + } + + if (b->docheck) { + m.checkmesh(); + if (m.checksubfaces) { + m.checkshells(); + } + if (b->docheck > 1) { + m.checkdelaunay(NULL); + if (b->docheck > 2) { + if (b->quality || b->refine) { + m.checkconforming(); + } + } + } + } + + if (!b->quiet) { + m.statistics(); + } +} + +#ifndef TETLIBRARY + +/////////////////////////////////////////////////////////////////////////////// +// // +// main() The entrance for running TetGen from command line. // +// // +/////////////////////////////////////////////////////////////////////////////// + +int main(int argc, char *argv[]) + +#else // with TETLIBRARY + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetrahedralize() The entrance for calling TetGen from another program. // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetrahedralize(char *switches, tetgenio *in, tetgenio *out) + +#endif // not TETLIBRARY + +{ + tetgenbehavior b; + +#ifndef TETLIBRARY + + tetgenio in; + + if (!b.parse_commandline(argc, argv)) { + exit(1); + } + if (b.refine) { + if (!in.load_tetmesh(b.infilename)) { + exit(1); + } + } else { + if (!in.load_plc(b.infilename, (int) b.object)) { + exit(1); + } + } + tetrahedralize(&b, &in, NULL); + + return 0; + +#else // with TETLIBRARY + + if (!b.parse_commandline(switches)) { + exit(1); + } + tetrahedralize(&b, in, out); + +#endif // not TETLIBRARY +} diff --git a/Tetgen/tetgen.h b/Tetgen/tetgen.h new file mode 100644 index 0000000000000000000000000000000000000000..cbe84252e85f3d6d1e7679d7af3da343644587cb --- /dev/null +++ b/Tetgen/tetgen.h @@ -0,0 +1,1764 @@ +/////////////////////////////////////////////////////////////////////////////// +// // +// TetGen // +// // +// A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator // +// // +// Version 1.3 // +// June 13, 2004 // +// // +// Copyright 2002, 2004 // +// Hang Si // +// Rathausstr. 9, 10178 Berlin, Germany // +// si@wias-berlin.de // +// // +// You can obtain TetGen via internet: http://tetgen.berlios.de. It may be // +// freely copied, modified, and redistributed under the copyright notices // +// given in the file LICENSE. // +// // +// TetGen is a program for generating quality tetrahedral meshes and three- // +// dimensional Delaunay triangulations. It currently computes exact // +// Delaunay tetrahedralizations, constrained Delaunay tetrahedralizations, // +// and quality tetrahedral meshes. The latter are nicely graded and whose // +// tetrahedra have radius-edge ratio bounded, and are conforming Delaunay // +// if there are no input angles smaller than 60 degree. // +// // +// TetGen incorporates a suit of geometrical and mesh generation algorithms. // +// A brief description of these algorithms used in TetGen can be found in // +// the first section of the user's manual. References are given for users // +// who are interesting in these approaches. However, the main references // +// are listed below: // +// // +// The efficient Delaunay tetrahedralization algorithm is: H. Edelsbrunner // +// and N. R. Shah, "Incremental Topological Flipping Works for Regular // +// Triangulations". Algorithmica 15: 223-241, 1996. // +// // +// The constrained Delaunay tetrahedralization algorithm is described in: // +// H. Si and K. Gaertner, "An Algorithm for Three-Dimensional Constrained // +// Delaunay Triangles". Proceedings of the 4th International Conference on // +// Engineering Computational Technology, Lisbon, September 2004. // +// // +// The Delaunay refinement algorithm is from: J. R. Shewchuk, "Tetrahedral // +// Mesh Generation by Delaunay Refinement". Proceedings of the 14th Annual // +// Symposium on Computational Geometry, pages 86-95, 1998. // +// // +// The mesh data structure of TetGen is a combination of two types of mesh // +// data structures. The tetrahedron-based mesh data structure introduced // +// by Shewchuk is eligible to implement algorithms of generating Delaunay // +// tetrahedralizations. However, constrained Delaunay tetrahedralization // +// and quality mesh generation algorithms require other mesh elements // +// (subfaces, subsegments) be handled at the same time. The triangle-edge // +// data structure from Muecke is adopted for this purpose. Handling // +// these data types together is through a set of fast mesh manipulation // +// primitives. References of these two data structures are found below: // +// // +// J. R. Shewchuk, "Delaunay Refinement Mesh Generation". PhD thesis, // +// Carnegie Mellon University, 1997. // +// // +// E. P. Muecke, "Shapes and Implementations in Three-Dimensional // +// Geometry". PhD thesis, Univ. of Illinois, Urbana, Illinois, 1993. // +// // +// The research of mesh generation is definitly on the move. A lot of state- // +// of-the-art algorithms need to be implemented and evaluated. I heartily // +// welcome new algorithms especially for quality conforming Delaunay mesh // +// generation and anisotropic conforming Delaunay mesh generation. If you // +// have any idea on new approaches, please please kindly let me know. // +// // +// TetGen is supported by the "pdelib" project of Weierstrass Institute for // +// Applied Analysis and Stochastics (WIAS) in Berlin. It is a collection // +// of software components for solving non-linear partial differential // +// equations including 2D and 3D mesh generators, sparse matrix solvers, // +// and scientific visualization tools, etc. For more information please // +// see: http://www.wias-berlin.de/software/pdelib. // +// // +/////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetgen.h // +// // +// Header file of the TetGen library. Also is the user-level header file. // +// // +/////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////// +// // +// TetGen Library Overview // +// // +// TetGen library is comprised by several data types and global functions. // +// // +// If you quickly go through this file, you will find there are only three // +// main data types defined, which are "tetgenio", "tetgenbehavior", and // +// "tetgenmesh". Tetgenio is used to pass data into and out of mesh routines // +// of the library; tetgenbehavior sets the command line options selected by // +// user and thus controls the behaviors of TetGen; tetgenmesh, the biggest // +// data type I've ever defined, contains everything for creating Delaunay // +// tetrahedralizations and tetrahedral meshes. These data types are defined // +// as C++ classes. // +// // +// There are few global functions as well. "tetrahedralize()" is the (only) // +// user interface for calling TetGen from other programs. Two functions // +// "orient3d()" and "insphere()" are incorporated from a public C code for // +// performing exact geometrical tests. // +// // +/////////////////////////////////////////////////////////////////////////////// + +#ifndef tetgenH +#define tetgenH + +// To compile TetGen as a library (e.g. libtet.a) but not as an executable +// program, define the TETLIBRARY symbol. The library of TetGen can be +// linked with programs which want to call TetGen as a function. + +// #define TETLIBRARY + +// Uncomment the following line to disable assert macros. These macros are +// inserted in places where I hope to catch bugs. Somewhat, they slow down +// the speed of TetGen. They can be ignored by adding the -DNDEBUG +// compiler switch or uncomment the following line + +// #define NDEBUG + +// To insert lots of self-checks for internal errors, define the SELF_CHECK +// symbol. This will slow down the program significantly. + +// #define SELF_CHECK + +// For single precision ( which will save some memory and reduce paging ), +// define the symbol SINGLE by using the -DSINGLE compiler switch or by +// writing "#define SINGLE" below. +// +// For double precision ( which will allow you to refine meshes to a smaller +// edge length), leave SINGLE undefined. + +// #define SINGLE + +#ifdef SINGLE + #define REAL float +#else + #define REAL double +#endif // not defined SINGLE + +// Here is the most general used head files for all C/C++ codes + +#include <stdio.h> // Standard IO: FILE, NULL, EOF, printf(), ... +#include <stdlib.h> // Standard lib: abort(), system(), getenv(), ... +#include <string.h> // String lib: strcpy(), strcat(), strcmp(), ... +#include <math.h> // Math lib: sin(), sqrt(), pow(), ... +#include <assert.h> + +/////////////////////////////////////////////////////////////////////////////// +// // +// The tetgenio data type // +// // +// Used to pass data into and out of the library of TetGen. // +// // +// If you want to program with the library of TetGen, it's necessary for you // +// to understand the tetgenio data type, while the other two data types can // +// be hidden through calling the global function "tetrahedralize()". As you // +// will see below, that basically tetgenio is nothing more than a collection // +// of arrays. These arrays are used to store points, tetrahedra, (triangular)// +// faces, boundary markers, and so forth. They are used to describe data in // +// input & output files of TetGen. If you understand TetGen's file formats, // +// then it is straighforward for you to understand these arrays. The file // +// formats of TetGen are described in the third section of the user's manual.// +// // +// Once you create an object of tetgenio, all arrays are initialized to NULL.// +// This is done by routine "initialize()", it is automatically called by the // +// constructor. Before you set data into these arrays, you need to allocate // +// enough memory for them. After you use the object, you need to clear the // +// memory occupied by these arrays. Routine "deinitialize()" will be auto- // +// matically called on deletion of the object. It will clear the memory in // +// each array if it is not a NULL. However, it assumes that the memory is // +// allocated by C++ operator 'new'. If you use malloc() to allocate memory, // +// you should free them yourself, after they're freed, call "initialize()" // +// once to disable "deinitialize()". // +// // +// In all cases, the first item in any array is stored starting at index [0].// +// However, that item is item number `firstnumber' which may be '0' or '1'. // +// Be sure to set the 'firstnumber' be '1' if your indices pointing into the // +// pointlist is starting from '1'. Default, it is initialized be '0'. // +// // +// Tetgenio also contains routines for reading and writing TetGen's files as // +// well. Both the library of TetGen and TetView use these routines to parse // +// input files, i.e., .node, .poly, .smesh, .ele, .face, and .edge files. // +// Other routines are provided mainly for debugging purpose. // +// // +/////////////////////////////////////////////////////////////////////////////// + +class tetgenio { + + public: + + // Maximum number of characters in a file name (including the null). + enum {FILENAMESIZE = 1024}; + + // Maxi. numbers of chars in a line read from a file (incl. the null). + enum {INPUTLINESIZE = 1024}; + + // The polygon data structure. A "polygon" is a planar polygon. It can + // be arbitrary shaped (convex or non-convex) and bounded by non- + // crossing segments, i.e., the number of vertices it has indictes the + // same number of edges. + // 'vertexlist' is a list of vertex indices (integers), its length is + // indicated by 'numberofvertices'. The vertex indices are odered in + // either counterclockwise or clockwise way. + typedef struct { + int *vertexlist; + int numberofvertices; + } polygon; + + static void init(polygon* p) { + p->vertexlist = (int *) NULL; + p->numberofvertices = 0; + } + + // The facet data structure. A "facet" is a planar facet. It is used + // to represent a planar straight line graph (PSLG) in two dimension. + // A PSLG contains a list of polygons. It also may conatin holes in it, + // indicated by a list of hole points (their coordinates). + typedef struct { + polygon *polygonlist; + int numberofpolygons; + REAL *holelist; + int numberofholes; + } facet; + + static void init(facet* f) { + f->polygonlist = (polygon *) NULL; + f->numberofpolygons = 0; + f->holelist = (REAL *) NULL; + f->numberofholes = 0; + } + + public: + + // Items are numbered starting from 'firstnumber' (0 or 1), default is 0. + int firstnumber; + + // Dimension of the mesh (2 or 3), default is 3. + int mesh_dim; + + // `pointlist': An array of point coordinates. The first point's x + // coordinate is at index [0] and its y coordinate at index [1], its + // z coordinate is at index [2], followed by the coordinates of the + // remaining points. Each point occupies three REALs. + // `pointattributelist': An array of point attributes. Each point's + // attributes occupy `numberofpointattributes' REALs. + // 'addpointlist': An array of additional point coordinates. + // `pointmarkerlist': An array of point markers; one int per point. + REAL *pointlist; + REAL *pointattributelist; + REAL *addpointlist; + int *pointmarkerlist; + int numberofpoints; + int numberofpointattributes; + int numberofaddpoints; + + // `elementlist': An array of element (triangle or tetrahedron) corners. + // The first element's first corner is at index [0], followed by its + // other corners in counterclockwise order, followed by any other + // nodes if the element represents a nonlinear element. Each element + // occupies `numberofcorners' ints. + // `elementattributelist': An array of element attributes. Each + // element's attributes occupy `numberofelementattributes' REALs. + // `elementconstraintlist': An array of constraints, i.e. triangle's + // area or tetrahedron's volume; one REAL per element. Input only. + // `neighborlist': An array of element neighbors; 3 or 4 ints per + // element. Output only. + int *tetrahedronlist; + REAL *tetrahedronattributelist; + REAL *tetrahedronvolumelist; + int *neighborlist; + int numberoftetrahedra; + int numberofcorners; + int numberoftetrahedronattributes; + + // `facetlist': An array of facets. Each entry is a structure of facet. + // `facetmarkerlist': An array of facet markers; one int per facet. + facet *facetlist; + int *facetmarkerlist; + int numberoffacets; + + // `holelist': An array of holes. The first hole's x, y and z + // coordinates are at indices [0], [1] and [2], followed by the + // remaining holes. Three REALs per hole. + REAL *holelist; + int numberofholes; + + // `regionlist': An array of regional attributes and area or volume + // constraints. The first constraint's x, y and z coordinates are at + // indices [0], [1] and [2], followed by the regional attribute and + // index [3], followed by the maximum area or volume at index [4], + // followed by the remaining area or volume constraints. Five REALs + // per constraint. + // Note that each regional attribute is used only if you select the `A' + // switch, and each constraint is used only if you select the `a' + // switch (with no number following), but omitting one of these + // switches does not change the memory layout. + REAL *regionlist; + int numberofregions; + + // `trifacelist': An array of triangular face endpoints. The first + // face's endpoints are at indices [0], [1] and [2], followed by the + // remaining faces. Three ints per face. + // `trifacemarkerlist': An array of face markers; one int per face. + int *trifacelist; + int *trifacemarkerlist; + int numberoftrifaces; + + // `edgelist': An array of edge endpoints. The first edge's endpoints + // are at indices [0] and [1], followed by the remaining edges. Two + // ints per edge. + // `edgemarkerlist': An array of edge markers; one int per edge. + int *edgelist; + int *edgemarkerlist; + int numberofedges; + + public: + + // Initialize routine. + void initialize(); + void deinitialize(); + + // Input & output routines. + bool load_node_call(FILE* infile, int markers, char* nodefilename); + bool load_node(char* filename); + bool load_addnodes(char* filename); + bool load_poly(char* filename); + bool load_off(char* filename); + bool load_ply(char* filename); + bool load_stl(char* filename); + bool load_medit(char* filename); + bool load_plc(char* filename, int object); + bool load_tetmesh(char* filename); + void save_nodes(char* filename); + void save_elements(char* filename); + void save_faces(char* filename); + void save_edges(char* filename); + void save_neighbors(char* filename); + void save_poly(char* filename); + + // Read line and parse string functions. + char *readline(char* string, FILE* infile, int *linenumber); + char *findnextfield(char* string); + char *readnumberline(char* string, FILE* infile, char* infilename); + char *findnextnumber(char* string); + + // Constructor and destructor. + tetgenio() {initialize();} + ~tetgenio() {deinitialize();} +}; + +/////////////////////////////////////////////////////////////////////////////// +// // +// The tetgenbehavior data type // +// // +// Used to parse command line switches and file names. // +// // +// It includes a list of variables corresponding to the commandline switches // +// for control the behavior of TetGen. These varibales are all initialized // +// to their default values. // +// // +// Routine "parse_commandline()" defined in this data type is used to change // +// the vaules of the variables. This routine accepts the standard parameters // +// ('argc' and 'argv') that pass to C/C++ main() function. It also accepts a // +// string which contains the command line options. // +// // +// You don't need to understand this data type. It can be implicitly called // +// by the global function "tetrahedralize()" defined below. The necessary // +// thing you need to know is the meaning of command line switches of TetGen. // +// They are described in the third section of the user's manual. // +// // +/////////////////////////////////////////////////////////////////////////////// + +class tetgenbehavior { + + public: + + // Labels define the objects which are acceptable by TetGen. They are + // recoggnized from the extensions of the input filenames. + // - NODES, a list of nodes (.node); + // - POLY, a piecewise linear complex (.poly or .smesh); + // - OFF, a polyhedron (.off, Geomview's file format); + // - PLY, a polyhedron (.ply, file format from gatech); + // - STL, a surface mesh (.stl, stereolithography format); + // - MEDIT, a surface mesh (.mesh, Medit's file format); + // - MESH, a tetrahedral mesh (.ele). + // If no extension is available, the imposed commandline switch + // (-p or -r) implies the object. + + enum objecttype {NONE, NODES, POLY, OFF, PLY, STL, MEDIT, MESH}; + + // Variables of command line switches. After each variable are the + // corresponding switch and its default value. Read the user's manul + // or online instructions to find out the meaning of these switches. + + int plc; // '-p' switch, 0. + int refine; // '-r' switch, 0. + int quality; // '-q' switch, 0. + REAL minratio; // number after '-q' switch, 2.0. + REAL goodratio; // number calculated from 'minratio', 0.0. + REAL minangle; // minimum angle bound, 20.0. + REAL goodangle; // cosine squared of minangle, 0.0. + int varvolume; // '-a' switch without number, 0. + int fixedvolume; // '-a' switch with number, 0. + REAL maxvolume; // number after '-a' switch, -1.0. + int removesliver; // '-s' switch, 0. + REAL maxdihedral; // number after '-s' switch, 0.0. + int insertaddpoints; // '-i' switch, 0. + int regionattrib; // '-A' switch, 0. + REAL epsilon; // number after '-T' switch, 1.0e-8. + int nomerge; // not merge two coplanar facets, '-M' switch, 0. + int detectinter; // '-d' switch, 0. + int checkclosure; // '-c' switch, 0. + int zeroindex; // '-z' switch, 0. + int jettison; // '-j' switch, 0. + int order; // element order, specified after '-o' switch, 1. + int facesout; // '-f' switch, 0. + int edgesout; // '-e' switch, 0. + int neighout; // '-n' switch, 0. + int meditview; // '-g' switch, 0. + int gidview; // '-G' switch, 0. + int geomview; // '-O' switch, 0. + int nobound; // '-B' switch, 0. + int nonodewritten; // '-N' switch, 0. + int noelewritten; // '-E' switch, 0. + int nofacewritten; // '-F' switch, 0. + int noiterationnum; // '-I' switch, 0. + int nobisect; // count of how often '-Y' switch is selected, 0. + int noflip; // do not perform flips. '-Y' switch. 0. + int steiner; // number after '-S' switch. 0. + int dopermute; // do permutation. '-P' switch, 0. + int srandseed; // number of a random seed after '-P' switch, 1. + int docheck; // '-C' switch, 0. + int quiet; // '-Q' switch, 0. + int verbose; // count of how often '-V' switch is selected, 0. + int useshelles; // '-p', '-r', '-q', 'd', or 'c' switch, 0. + enum objecttype object; // determined by -p, or -r switch. NONE. + + // Variables used to save command line switches and in/out file names. + char commandline[1024]; + char infilename[1024]; + char outfilename[1024]; + + // Default initialize and de-initialize functions. + tetgenbehavior(); + ~tetgenbehavior() {} + + void versioninfo(); + void syntax(); + void usage(); + + // Command line parse routine. + bool parse_commandline(int argc, char **argv); + bool parse_commandline(char *switches) { + return parse_commandline(0, &switches); + } +}; + +/////////////////////////////////////////////////////////////////////////////// +// // +// Geometric predicates // +// // +// TetGen uses two basic geometric predicates, which are orientation test, // +// and locally Delaunay test (insphere test). // +// // +// Orientation test: let a, b, c be a sequence of 3 points in R^3 and are // +// not collinear, there exists a unique plane H passes through them. Let H+ // +// H- be the two spaces separated by H, which are defined as follows (using // +// left-hand rule): make a fist using your left hand in such a way that your // +// fingers follow the order of a, b and c, then your thumb is pointing to H+.// +// The orientation test is to determine whether another point d lies in H+ // +// (also say that d has positive orientation), or in H- (also say that d has // +// negative orientation), or on H (zero orientation). // +// // +// Locally Delaunay test (insphere test): let a, b, c, d be 4 points in R^3 // +// and are not coplanar, there exists a unique circumsphere S passes through // +// these 4 points. The task is to check if another point e lies outside, on // +// or inside S. // +// // +// The following routines use arbitrary precision floating-point arithmetic // +// to implement these geometric predicates. They are fast and robust. It is // +// provided by J. R. Schewchuk in public domain. See the following link: // +// http://www.cs.cmu.edu/~quake/robust.html. The source code are found in a // +// separate file "predicates.cxx". // +// // +/////////////////////////////////////////////////////////////////////////////// + +REAL exactinit(); +REAL orient3d(REAL *pa, REAL *pb, REAL *pc, REAL *pd); +REAL insphere(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe); + +/////////////////////////////////////////////////////////////////////////////// +// // +// The tetgenmesh data type // +// // +// Includes data types and mesh routines for Delaunay tetrahedralizations // +// and tetrahedral meshes. // +// // +// An object of tetgenmesh can be used to store a triangular or tetrahedral // +// mesh and its settings. TetGen's functions operates on one mesh each time. // +// This type allows reusing of the same function for different meshes. // +// // +// The mesh data structure (tetrahedron-based and triangle-edge data struct- // +// ures) are declared in this data type. There are other accessary data type // +// defined as well, they are used for efficient memory management and fast // +// link list operations, etc. // +// // +// All algorithms TetGen used are implemented in this data type as member // +// functions. References of these algorithms can be found in user's manual. // +// // +// You don't need to study this data type if you only want to use TetGen's // +// library to create tetrahedral mesh. The global function "tetrahedralize()"// +// implicitly creates the object and calls its member functions due to the // +// command line switches you used. // +// // +/////////////////////////////////////////////////////////////////////////////// + +class tetgenmesh { + + public: + + // Maximum number of characters in a file name (including the null). + enum {FILENAMESIZE = 1024}; + + // For efficiency, a variety of data structures are allocated in bulk. + // The following constants determine how many of each structure is + // allocated at once. + enum {VERPERBLOCK = 4092, SUBPERBLOCK = 4092, ELEPERBLOCK = 8188}; + + // Used for the point location scheme of Mucke, Saias, and Zhu, to + // decide how large a random sample of tetrahedra to inspect. + enum {SAMPLEFACTOR = 11}; + + // Labels that signify two edge rings of a triangle defined in Muecke's + // triangle-edge data structure, one (CCW) traversing edges in count- + // erclockwise direction and one (CW) in clockwise direction. + enum {CCW = 0, CW = 1}; + + // Labels that signify whether a record consists primarily of pointers + // or of floating-point words. Used to make decisions about data + // alignment. + enum wordtype {POINTER, FLOATINGPOINT}; + + // Labels that signify the type of a vertex. An UNUSEDVERTEX is a vertex + // read from input (.node file or tetgenio structure) or an isolated + // vertex (outside the mesh). It is the default type for a newpoint. + enum verttype {UNUSEDVERTEX, NONACUTEVERTEX, ACUTEVERTEX, FREESEGVERTEX, + FACETVERTEX, PROTCYLSPHVERTEX, FREECYLSPHVERTEX, + PROTCYLVERTEX, PROTSPHVERTEX, FREECYLVERTEX, + FREESPHVERTEX, FREESUBVERTEX, FREEVOLVERTEX, + DUPLICATEDVERTEX, DEADVERTEX = -32768}; + + // Labels that signify the type of a subsegment or a subface. An input + // (sub)segment may have type NONSHARPSEGMENT, SHARPSEGMENT. Segments + // preceding with "PROT" are artificially created for protecting the + // internal region of cylinders and spheres. A subface may have one of + // the three types PROTCYLSUBFACE, PROTSPHSUBFACE, and NONPROTSUBFACE. + enum shestype {NONSHARPSEGMENT, SHARPSEGMENT, PROTCYLSEGMENT, + PROTSPHSEGMENT, PROTCYLSUBFACE, PROTSPHSUBFACE, + NONPROTSUBFACE}; + + // Labels that signify the type of flips which can be applied on a face. + // A flipable face has one of the types T23, T32, T22, and T44. Types + // NONCONVEX, FORBIDDEN and UNFLIPABLE indicate non-flipable faces. + enum fliptype {T23, T32, T22, T44, UNFLIPABLE, FORBIDDENFACE, + FORBIDDENEDGE, NONCONVEX}; + + // Labels that signify the type of a bad tetrahedron. + enum badtettype {SKINNY, CAP, SLIVER, ILLEGAL}; + + // Labels that signify the result of triangle-triangle intersection. + // The result indicates that two triangles t1 and t2 are completely + // DISJOINT, or adjoint only at a vertex SHAREVERTEX, or adjoint at + // an edge SHAREEDGE, or coincident SHAREFACE, or INTERSECT. + enum intersectresult {DISJOINT, SHAREVERTEX, SHAREEDGE, SHAREFACE, + INTERSECT}; + + // Labels that signify the result of point location. The result of a + // search indicates that the point falls inside a tetrahedron, inside + // a triangle, on an edge, on a vertex, or outside the mesh. + enum locateresult {INTETRAHEDRON, ONFACE, ONEDGE, ONVERTEX, OUTSIDE}; + + // Labels that signify the result of vertex insertion. The result + // indicates that the vertex was inserted with complete success, was + // inserted but encroaches upon a subsegment, was not inserted because + // it lies on a segment, or was not inserted because another vertex + // occupies the same location. + enum insertsiteresult {SUCCESSINTET, SUCCESSONFACE, SUCCESSONEDGE, + ENCROACHINGPOINT, DUPLICATEPOINT, OUTSIDEPOINT}; + + // Labels that signify the result of direction finding. The result + // indicates that a segment connecting the two query points accross + // an edge of the direction triangle/tetrahedron, across a face of + // the direction tetrahedron, along the left edge of the direction + // triangle/tetrahedron, along the right edge of the direction + // triangle/tetrahedron, or along the top edge of the tetrahedron. + enum finddirectionresult {ACROSSEDGE, ACROSSFACE, LEFTCOLLINEAR, + RIGHTCOLLINEAR, TOPCOLLINEAR, BELOWHULL}; + +/////////////////////////////////////////////////////////////////////////////// +// // +// The basic mesh element data structures // +// // +// There are four types of mesh elements: tetrahedra, subfaces, subsegments, // +// and points, where subfaces and subsegments are triangles and edges which // +// appear on boundaries. A tetrahedralization of a 3D point set comprises // +// tetrahedra and points; a surface mesh of a 3D domain comprises subfaces // +// (triangles), subsegments and points; and it is the elements of all the // +// four types consist of a tetrahedral mesh of a 3D domain. However, TetGen // +// uses three data types: 'tetrahedron', 'shellface', and 'point' to repres- // +// ent the basic mesh elements. A 'tetrahedron' is a tetrahedron; while a // +// 'shellface' can represent either a subface or a subsegment; and a 'point' // +// represent a point. Theese three data types, linked by pointers comprise // +// a tetrahedralization or a mesh. // +// // +// The data type 'tetrahedron' primarily consists of a list of four pointers // +// to its corners, a list of four pointers to its adjoining tetrahedra, a // +// list of four pointers to its adjoining subfaces(when subfaces are needed).// +// Optinoally, (depending on the selected switches), it may contain an arbi- // +// trary number of user-defined floating-point attributes, an optional max- // +// imum volume constraint (-a switch), and a pointer to a list of high-order // +// nodes (-o2 switch). Because the size of a tetrahedron is not determined // +// until running time, it is not simply declared as a structure. // +// // +// For purpose of storing geometric information, it is important to know the // +// ordering of the vertices of a tetrahedron. Let v0, v1, v2, and v3 be the // +// four nodes corresponding to the order of their storage in a tetrahedron. // +// v3 always has negative orientation with respect to v0, v1, v2 (in other // +// words, v3 lies above the oriented plane passes through v0, v1, v2). Let // +// the four faces of the tetrahedron be f0, f1, f2, and f3. Vertices of each // +// face are stipulated as follows: f0 (v0, v1, v2), f1 (v0, v3, v1), f2 (v1, // +// v3, v2), f3 (v2, v3, v0). Adjoining tetrahedra as well as subfaces are // +// stored in the order of its faces, e.g., the first adjoining tetrahedra is // +// the neighbor at f0, and so on. // +// // +// A subface is represented by the data type 'shellface'. It has three // +// pointers to its vertices, three pointers to its adjoining subfaces, three // +// pointers to subsegments, two pointers to its adjoining tetrahedra, and a // +// boundary marker (an integer). Furthermore, the pointers to vertices, // +// adjoining subfaces, and subsegments are ordered in a way that indicates // +// their geometric relation. Let the three vertices according to the order // +// of their storage be v0, v1 and v2, respectively, and e0, e1 and e2 be the // +// three edges, then we have: e0 (v0, v1), e1 (v1, v2), e2 (v2, v0). Adjoin- // +// ing subfaces and subsegments are stored in the order of its edges. // +// // +// A subsegment is also represented by a 'shellface'. It has exactly the // +// same data fields as a subface has, but only uses some of them. It has two // +// pointers to its endpoints, two pointers to its adjoining (and collinear) // +// subsegments, one pointer to a subface containing it (there may exist any // +// number of subfaces having it, choose one of them arbitrarily). The geome- // +// tric relation between its endpoints and adjoining (collinear) subsegments // +// is kept with respect to the storing order of its endpoints. The adjoining // +// subsegment at the first endpoint is saved ahead of the other. // +// // +// The data type 'point' is relatively simple. A point is a list of floating // +// -point numbers, starting with the x, y, and z coordinates, followed by an // +// arbitrary number of optional user-defined floating-point attributes, an // +// integer boundary marker, an integer for the point type, and a pointer to // +// a tetrahedron. The latter is used for speeding up point location during // +// the mesh generation. // +// // +// For a tetrahedron on a boundary (or a hull) of the mesh, some or all of // +// the adjoining tetrahedra may not be present. For an interior tetrahedron, // +// often no neighboring subfaces are present, Such absent tetrahedra and // +// subfaces are never represented by the NULL pointers; they are represented // +// by two special records: `dummytet', the tetrahedron fills "outer space", // +// and `dummysh', the vacuous subfaces which are omnipresent. // +// // +// Tetrahedra and adjoining subfaces are glued together through the pointers // +// saved in each data fields of them. Subfaces and adjoining subsegments are // +// connected in the same fashion. However, there are no pointers directly // +// gluing tetrahedra and adjoining subsegments. For the purpose of saving // +// space, the connections between tetrahedra and subsegments are entirely // +// mediated through subfaces. The following part is an explaination of how // +// subfaces are connected in TetGen. // +// // +/////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////// +// // +// The subface-subface and subface-subsegment connections // +// // +// Adjoining subfaces sharing a common edge are connected in such a way that // +// they form a face ring around the edge. It is in deed a single linked list // +// which is cyclic, e.g., one can start from any subface in it and traverse // +// back. When the edge is not a subsegment, the ring only has two coplanar // +// subfaces which are pointing to each other. Otherwise, the face ring may // +// have any number of subfaces (and are not all coplanar). // +// // +// The face ring around a subsegment is formed as follows. Let s be a sub- // +// segment, and f be a subface containing s as an edge. The direction of s // +// is stipulated from its first endpoint to its second (the first and second // +// endpoints are according to their storage in s). When the direction of s // +// is determined, other two edges of f are oriented following this direction.// +// The "directional normal" of f is a ray starts from any point in f, points // +// to the direction of the cross product of any of two edge vectors of f. // +// // +// The face ring of s is a cyclic ordered set of subfaces containing s, i.e.,// +// F(s) = {f1, f2, ..., fn}, n >= 1. Where the order is defined as follows: // +// let fi, fj be two faces in F(s), the "normal-angle", nangle(i,j) (range // +// from 0 to 360 degree) is the angle between the directional normals of fi // +// and fj; that fi is in front of fj (or symbolically, fi < fj) if there // +// exists another fk in F(s), and nangle(k, i) < nangle(k, j). The face ring // +// of s can be represented as: f1 < f2 < ... < fn < f1. // +// // +// The easiest way to imagine how a face ring is formed is to use the right- // +// hand rule. Make a fist using your right hand with the thumb pointing to // +// the direction of the subsegment. The face ring is connected following the // +// direction of your fingers. // +// // +// The subface and subsegment are also connected through pointers stored in // +// their own data fields. Every subface has a pointer ti its adjoining sub- // +// segment. However, a subsegment only has one pointer to a subface which is // +// containing it. Such subface can be choosn arbitrarily, other subfaces are // +// found through the face ring. // +// // +/////////////////////////////////////////////////////////////////////////////// + + // The tetrahedron data structure. Fields of a tetrahedron contains: + // - a list of four adjoining tetrahedra; + // - a list of four vertices; + // - a list of four subfaces (optional, used for -p switch); + // - a list of user-defined floating-point attributes (optional); + // - a volume constraint (optional, used for -a switch); + // - a pointer to a list of high-ordered nodes (optional, -o2 switch); + + typedef REAL **tetrahedron; + + // The shellface data structure. Fields of a shellface contains: + // - a list of three adjoining subfaces; + // - a list of three vertices; + // - a list of two adjoining tetrahedra; + // - a list of three adjoining subsegments; + // - a pointer to a badface containing it (optional, used for -q); + // - an area constraint (optional, used for -q); + // - an integer for boundary marker; + // - an integer for type: SHARPSEGMENT, NONSHARPSEGMENT, ...; + + typedef REAL **shellface; + + // The point data structure. It is actually an array of REALs: + // - x, y and z coordinates; + // - a list of user-defined point attributes (optional); + // - a pointer to a simplex (tet, tri, edge, or vertex); + // - a pointer to a parent point (optional, used for -q); + // - an integer for boundary marker; + // - an integer for verttype: INPUTVERTEX, FREEVERTEX, ...; + + typedef REAL *point; + +/////////////////////////////////////////////////////////////////////////////// +// // +// The mesh handle (triface, face) data types // +// // +// Two special data types, 'triface' and 'face' are defined for maintaining // +// and updating meshes. They are like pointers (or handles), which allow you // +// to hold one particular part of the mesh, i.e., a tetrahedron, a triangle, // +// an edge and a vertex. However, these data types do not themselves store // +// any part of the mesh. The mesh is made of the data types defined above. // +// // +// Muecke's "triangle-edge" data structure is the prototype for these data // +// types. It allows a universal representation for every tetrahedron, // +// triangle, edge and vertex. For understanding the following descriptions // +// of these handle data structures, readers are required to read both the // +// introduction and implementation detail of "triangle-edge" data structure // +// in Muecke's thesis. // +// // +// A 'triface' represents a face of a tetrahedron and an oriented edge of // +// the face simultaneously. It has a pointer 'tet' to a tetrahedron, an // +// integer 'loc' (range from 0 to 3) as the face index, and an integer 'ver' // +// (range from 0 to 5) as the edge version. A face of the tetrahedron can be // +// uniquly determined by the pair (tet, loc), and an oriented edge of this // +// face can be uniquly determined by the triple (tet, loc, ver). Therefore, // +// different usages of one triface are possible. If we only use the pair // +// (tet, loc), it refers to a face, and if we add the 'ver' additionally to // +// the pair, it is an oriented edge of this face. // +// // +// A 'face' represents a subface and an oriented edge of it simultaneously. // +// It has a pointer 'sh' to a subface, an integer 'shver'(range from 0 to 5) // +// as the edge version. The pair (sh, shver) determines a unique oriented // +// edge of this subface. A 'face' is also used to represent a subsegment, // +// in this case, 'sh' points to the subsegment, and 'shver' indicates the // +// one of two orientations of this subsegment, hence, it only can be 0 or 1. // +// // +// Mesh navigation and updating are accomplished through a set of mesh // +// manipulation primitives which operate on trifaces and faces. They are // +// introduced below. // +// // +/////////////////////////////////////////////////////////////////////////////// + + class triface { + + public: + + tetrahedron* tet; + int loc, ver; + + // Constructors; + triface() : tet(0), loc(0), ver(0) {} + // Operators; + triface& operator=(const triface& t) { + tet = t.tet; loc = t.loc; ver = t.ver; + return *this; + } + bool operator==(triface& t) { + return tet == t.tet && loc == t.loc && ver == t.ver; + } + bool operator!=(triface& t) { + return tet != t.tet || loc != t.loc || ver != t.ver; + } + }; + + class face { + + public: + + shellface *sh; + int shver; + + // Constructors; + face() : sh(0), shver(0) {} + // Operators; + face& operator=(const face& s) { + sh = s.sh; shver = s.shver; + return *this; + } + bool operator==(face& s) {return (sh == s.sh) && (shver == s.shver);} + bool operator!=(face& s) {return (sh != s.sh) || (shver != s.shver);} + }; + +/////////////////////////////////////////////////////////////////////////////// +// // +// The badface structure // +// // +// This structure has several usages in TetGen. A 'badface' can represent a // +// tetrahedron face possibly be non-locally Delaunay and will be flipped if // +// it is. A 'badface' can hold an encroached subsegment or subface needs to // +// be split in conforming Delaunay process. // +// // +// A badface has the following fields: 'tt' points to a tetrahedral face // +// which is possibly non-locally Delaunay. 'ss' points to an encroached // +// subsegment or subface. 'cent' is the diametric circumcent of the 'shface',// +// Three vertices 'forg', 'fdest' and 'fapex' are stored so that one can // +// check whether a face is still the same. 'prevface' and 'nextface' are // +// used to implement a double link for managing many badfaces. // +// // +/////////////////////////////////////////////////////////////////////////////// + + struct badface { + triface tt; + face ss; + REAL cent[3]; + point forg, fdest, fapex, foppo; + struct badface *prevface, *nextface; + }; + + // A queue structure used to store bad tetrahedra. Each tetrahedron's + // vertices are stored so that one can check whether a tetrahedron is + // still the same. + + struct badtetrahedron { + triface tet; // A bad tet. + REAL key; // radius-edge ratio^2. + REAL cent[3]; // The circumcenters' coordinates. + point tetorg, tetdest, tetapex, tetoppo; // The four vertices. + struct badtetrahedron *nexttet; // Pointer to next bad tet. + }; + + // A stack of faces flipped during the most recent vertex insertion. + // The stack is used to undo the point insertion if the point + // encroaches upon other subfaces or subsegments. + + struct flipstacker { + triface flippedface; // A recently flipped face. + enum fliptype fc; // The flipped type T23, T32, T22 or T44. + point forg, fdest, fapex; // The three vertices for checking. + struct flipstacker *prevflip; // Previous flip in the stack. + }; + +/////////////////////////////////////////////////////////////////////////////// +// // +// The list, link and queue data structures // +// // +// These data types are used to manipulate a set of (same-typed) data items. // +// For a given set S = {a, b, c, ...}, a list stores the elements of S in a // +// piece of continuous memory. It allows quickly accessing each element of S,// +// thus is suitable for storing a fix-sized set. While a link stores its // +// elements incontinuously. It allows quickly inserting or deleting one item,// +// thus is good for storing a size-changable set. A queue is basically a // +// special case of a link where one data element joins the link at the end // +// and leaves in an ordered fashion at the other end. // +// // +// These data types are all implemented with dynamic memory re-allocation. // +// // +/////////////////////////////////////////////////////////////////////////////// + + // The compfunc data type. "compfunc" is a pointer to a linear-order + // function, which takes two 'void*' arguments and returning an 'int'. + // + // A function: int cmp(const T &, const T &), is said to realize a + // linear order on the type T if there is a linear order <= on T such + // that for all x and y in T satisfy the following relation: + // -1 if x < y. + // comp(x, y) = 0 if x is equivalent to y. + // +1 if x > y. + typedef int (*compfunc) (const void *, const void *); + + // The predefined compare functions for primitive data types. They + // take two pointers of the corresponding date type, perform the + // comparation, and return -1, 0 or 1 indicating the default linear + // order of them. + + // Compare two 'integers'. + static int compare_2_ints(const void* x, const void* y); + // Compare two 'longs'. + static int compare_2_longs(const void* x, const void* y); + // Compare two 'unsigned longs'. + static int compare_2_unsignedlongs(const void* x, const void* y); + + // The function used to determine the size of primitive data types and + // set the corresponding predefined linear order functions for them. + static void set_compfunc(char* str, int* itembytes, compfunc* pcomp); + +/////////////////////////////////////////////////////////////////////////////// +// // +// List data structure. // +// // +// A 'list' is an array of items with automatically reallocation of memory. // +// It behaves like an array. // +// // +// 'base' is the starting address of the array; The memory unit in list is // +// byte, i.e., sizeof(char). 'itembytes' is the size of each item in byte, // +// so that the next item in list will be found at the next 'itembytes' // +// counted from the current position. // +// // +// 'items' is the number of items stored in list. 'maxitems' indicates how // +// many items can be stored in this list. 'expandsize' is the increasing // +// size (items) when the list is full. // +// // +// 'comp' is a pointer pointing to a linear order function for the list. // +// default it is set to 'NULL'. // +// // +// The index of list always starts from zero, i.e., for a list L contains // +// n elements, the first element is L[0], and the last element is L[n-1]. // +// This feature lets lists likes C/C++ arrays. // +// // +/////////////////////////////////////////////////////////////////////////////// + + class list { + + public: + + char *base; + int itembytes; + int items, maxitems, expandsize; + compfunc comp; + + public: + + list(int itbytes, compfunc pcomp, int mitems = 256, int exsize = 128) { + listinit(itbytes, pcomp, mitems, exsize); + } + list(char* str, int mitems = 256, int exsize = 128) { + set_compfunc(str, &itembytes, &comp); + listinit(itembytes, comp, mitems, exsize); + } + ~list() { free(base); } + + void *operator[](int i) { return (void *) (base + i * itembytes); } + + void listinit(int itbytes, compfunc pcomp, int mitems, int exsize); + void setcomp(compfunc compf) { comp = compf; } + void clear() { items = 0; } + int len() { return items; } + void *append(void* appitem); + void *insert(int pos, void* insitem); + void del(int pos); + int hasitem(void* checkitem); + int remove(void* remitem); + void sort(); + }; + +/////////////////////////////////////////////////////////////////////////////// +// // +// Memorypool data structure. // +// // +// A type used to allocate memory. (It is incorporated from Shewchuk's // +// Triangle program) // +// // +// firstblock is the first block of items. nowblock is the block from which // +// items are currently being allocated. nextitem points to the next slab // +// of free memory for an item. deaditemstack is the head of a linked list // +// (stack) of deallocated items that can be recycled. unallocateditems is // +// the number of items that remain to be allocated from nowblock. // +// // +// Traversal is the process of walking through the entire list of items, and // +// is separate from allocation. Note that a traversal will visit items on // +// the "deaditemstack" stack as well as live items. pathblock points to // +// the block currently being traversed. pathitem points to the next item // +// to be traversed. pathitemsleft is the number of items that remain to // +// be traversed in pathblock. // +// // +// itemwordtype is set to POINTER or FLOATINGPOINT, and is used to suggest // +// what sort of word the record is primarily made up of. alignbytes // +// determines how new records should be aligned in memory. itembytes and // +// itemwords are the length of a record in bytes (after rounding up) and // +// words. itemsperblock is the number of items allocated at once in a // +// single block. items is the number of currently allocated items. // +// maxitems is the maximum number of items that have been allocated at // +// once; it is the current number of items plus the number of records kept // +// on deaditemstack. // +// // +/////////////////////////////////////////////////////////////////////////////// + + class memorypool { + + public: + + void **firstblock, **nowblock; + void *nextitem; + void *deaditemstack; + void **pathblock; + void *pathitem; + wordtype itemwordtype; + int alignbytes; + int itembytes, itemwords; + int itemsperblock; + long items, maxitems; + int unallocateditems; + int pathitemsleft; + + public: + + memorypool(); + memorypool(int, int, enum wordtype, int); + ~memorypool(); + + void poolinit(int, int, enum wordtype, int); + void restart(); + void *alloc(); + void dealloc(void*); + void traversalinit(); + void *traverse(); + }; + +/////////////////////////////////////////////////////////////////////////////// +// // +// Link data structure. // +// // +// A 'link' is a double linked nodes. It uses the memorypool data structure // +// for memory management. Following is an image of a link. // +// // +// head-> ____0____ ____1____ ____2____ _________<-tail // +// |__next___|--> |__next___|--> |__next___|--> |__NULL___| // +// |__NULL___|<-- |__prev___|<-- |__prev___|<-- |__prev___| // +// | | |_ _| |_ _| | | // +// | | |_ Data1 _| |_ Data2 _| | | // +// |_________| |_________| |_________| |_________| // +// // +// The unit size for storage is size of pointer, which may be 4-byte (in 32- // +// bit machine) or 8-byte (in 64-bit machine). The real size of an item is // +// stored in 'linkitembytes'. // +// // +// 'head' and 'tail' are pointers pointing to the first and last nodes. They // +// do not conatin data (See above). // +// // +// 'nextlinkitem' is a pointer pointing to a node which is the next one will // +// be traversed. 'curpos' remembers the position (1-based) of the current // +// traversing node. // +// // +// 'linkitems' indicates how many items in link. Note it is different with // +// 'items' of memorypool. // +// // +// The index of link starts from 1, i.e., for a link K contains n elements, // +// the first element of the link is K[1], and the last element is K[n]. // +// See the above figure. // +// // +/////////////////////////////////////////////////////////////////////////////// + + class link : public memorypool { + + public: + + void **head, **tail; + void *nextlinkitem; + int linkitembytes; + int linkitems; + int curpos; + compfunc comp; + + public: + + link(int _itembytes, compfunc _comp, int itemcount) { + linkinit(_itembytes, _comp, itemcount); + } + link(char* str, int itemcount) { + set_compfunc(str, &linkitembytes, &comp); + linkinit(linkitembytes, comp, itemcount); + } + + void linkinit(int _itembytes, compfunc _comp, int itemcount); + void setcomp(compfunc compf) { comp = compf; } + void rewind() { nextlinkitem = *head; curpos = 1; } + void goend() { nextlinkitem = *(tail + 1); curpos = linkitems; } + long len() { return linkitems; } + void clear(); + bool move(int numberofnodes); + bool locate(int pos); + void *add(void* newitem); + void *insert(int pos, void* insitem); + void *del(void* delitem); + void *del(int pos); + void *getitem(); + void *getnitem(int pos); + int hasitem(void* checkitem); + }; + +/////////////////////////////////////////////////////////////////////////////// +// // +// Queue data structure. // +// // +// A 'queue' is a basically a link. Following is an image of a queue. // +// ___________ ___________ ___________ // +// Pop() <-- |_ _|<--|_ _|<--|_ _| <-- Push() // +// |_ Data0 _| |_ Data1 _| |_ Data2 _| // +// |___________| |___________| |___________| // +// queue head queue tail // +// // +/////////////////////////////////////////////////////////////////////////////// + + class queue : public link { + + public: + + queue(int bytes, int count = 256) : link(bytes, NULL, count) {} + queue(char* str, int count = 256) : link(str, count) {} + + int empty() { return linkitems == 0; } + void *push(void* newitem) { return link::add(newitem); } + void *bot() { return link::getnitem(1); } + void *pop() { return link::del(1); } + }; + +/////////////////////////////////////////////////////////////////////////////// +// // +// Following are variables used in 'tetgenmesh' for miscellaneous purposes. // +// // +/////////////////////////////////////////////////////////////////////////////// + + // Pointer to an object of 'tetgenio', which contains input data. + tetgenio *in; + + // Pointer to an object of 'tetgenbehavor', which contains the user- + // defined command line swithes and filenames. + tetgenbehavior *b; + + // Variables used to allocate and access memory for tetrahedra, subfaces + // subsegments, points, encroached subfaces, encroached subsegments, + // bad-quality tetrahedra, and so on. + memorypool *tetrahedrons; + memorypool *subfaces; + memorypool *subsegs; + memorypool *points; + memorypool *badsubsegs; + memorypool *badsubfaces; + memorypool *badtetrahedrons; + memorypool *flipstackers; + + // Pointer to a recently visited tetrahedron. Improves point location + // if proximate points are inserted sequentially. + triface recenttet; + + // Pointer to the 'tetrahedron' that occupies all of "outer space". + tetrahedron *dummytet; + tetrahedron *dummytetbase; // Keep base address so we can free it later. + + // Pointer to the omnipresent subface. Referenced by any tetrahedron, + // or subface that isn't connected to a subface at that location. + shellface *dummysh; + shellface *dummyshbase; // Keep base address so we can free it later. + + // List of lifting points of facets used for surface triangulation. + REAL *liftpointarray; + + // List used for Delaunay refinement algorithm. + list *qualchecktetlist; + + // Queues that maintain the bad (badly-shaped or too large) tetrahedra. + // The tails are pointers to the pointers that have to be filled in to + // enqueue an item. The queues are ordered from 63 (highest priority) + // to 0 (lowest priority). + badface *subquefront[2], **subquetail[2]; + badtetrahedron *tetquefront[64], **tetquetail[64]; + + // Array (size = numberoftetrahedra * 6) for storing high-order nodes of + // tetrahedra (only used when -o2 switch is selected). + point *highordertable; + + REAL xmax, xmin, ymax, ymin, zmax, zmin; // Bounding box of points. + REAL longest; // The longest possible edge length. + long hullsize; // Number of faces of convex hull. + long insegment; // Number of input segments. + int steinerleft; // Number of Steiner points not yet used. + int pointmarkindex; // Index to find boundary marker of a point. + int point2simindex; // Index to find a simplex adjacent to a point. + int highorderindex; // Index to find extra nodes for highorder elements. + int elemattribindex; // Index to find attributes of a tetrahedron. + int volumeboundindex; // Index to find volume bound of a tetrahedron. + int shmarkindex; // Index to find boundary marker of a subface. + int areaboundindex; // Index to find area bound of a subface. + int checksubfaces; // Are there subfaces in the mesh yet? + int checkquality; // Has quality triangulation begun yet? + int nonconvex; // Is current mesh non-convex? + int dupverts; // Are there duplicated vertices? + long samples; // Number of random samples for point location. + unsigned long randomseed; // Current random number seed. + REAL macheps; // The machine epsilon. + long flip23s, flip32s, flip22s, flip44s; // Number of flips performed. + +/////////////////////////////////////////////////////////////////////////////// +// // +// Fast lookup tables for mesh manipulation primitives. // +// // +// Mesh manipulation primitives (given below) are basic operations on mesh // +// data structures. They answer basic queries on mesh handles, such as "what // +// is the origin (or destination, or apex) of the face?", "what is the next // +// (or previous) edge in the edge ring?", and "what is the next face in the // +// face ring?", and so on. // +// // +// The implementation of basic queries can take advangtage of the fact that // +// the mesh data structures additionally store geometric informations. For // +// example, we have ordered the four vertices (from 0 to 3) and four faces // +// (from 0 to 3) of a tetrahedron, and for each face of the tetrahedron, a // +// sequence of vertices has stipulated, therefore the origin of any face of // +// the tetrahedron can be quickly determined by a table 'locver2org', which // +// takes the index of the face and the edge version as inputs. A list of // +// fast lookup tables are defined below. They're just like global variables. // +// All tables are initialized once at the runtime and used by all objects of // +// tetgenmesh. // +// // +/////////////////////////////////////////////////////////////////////////////// + + // For enext() primitive, uses 'ver' as the index. + static int ve[6]; + + // For org(), dest() and apex() primitives, uses 'ver' as the index. + static int vo[6], vd[6], va[6]; + + // For org(), dest() and apex() primitives, uses 'loc' as the first + // index and 'ver' as the second index. + static int locver2org[4][6]; + static int locver2dest[4][6]; + static int locver2apex[4][6]; + + // For oppo() primitives, uses 'loc' as the index. + static int loc2oppo[4]; + + // For fnext() primitives, uses 'loc' as the first index and 'ver' as + // the second index, returns an array containing a new 'loc' and a + // new 'ver'. Note: Only valid for 'ver' equals one of {0, 2, 4}. + static int locver2nextf[4][6][2]; + + // For enumerating three edges of a triangle. + static int plus1mod3[3]; + static int minus1mod3[3]; + +/////////////////////////////////////////////////////////////////////////////// +// // +// Mesh manipulation primitives // +// // +// A serial of mesh operations such as topological maintenance, navigation, // +// local modification, etc., is accomplished through a set of mesh manipul- // +// ation primitives. These primitives are indeed very simple functions which // +// take one or two handles ('triface's and 'face's) as parameters, perform // +// basic operations such as "glue two tetrahedra at a face", "return the // +// origin of a tetrahedron", "return the subface adjoining at the face of a // +// tetrahedron", and so on. // +// // +// In the following, symbols t, t1, and t2 denote handles of type 'triface', // +// i.e., t is a face of a tetrahedron. Likewise, handles of type 'face' are // +// denoted by s, s1, s2; e denotes an oriented edge, and v denotes a vertex. // +// // +// The basic primitives for tetrahedra are: // +// // +// sym(t1, t2) t1 and t2 refer to the same face but point to two // +// different tetrahedra respectively. // +// bond(t1, t2) Bonds t1 and t2 together. t1 and t2 should refer to // +// the same face. // +// dissolve(t) Detaches the adjoining tetrahedron from t. t bonds to // +// 'dummytet' after this operation. // +// // +// v = org(t) v is the origin of t. // +// v = dest(t) v is the destination of t. // +// v = apex(t) v is the apex of t. // +// v = oppo(t) v is the opposite of t. // +// // +// esym(t1, t2) t2 is the inversed edge of t1, i.e., t1 and t2 are two // +// directed edges of the same undirected edge. // +// enext(t1, t2) t2 is the successor of t1 in the edge ring. // +// enext2(t1, t2) t2 is the precessor of t1 in the edge ring. // +// // +// fnext(t1, t2) t2 is the successor of t1 in the face ring. // +// // +// The basic primitives for subfaces (as well as subsegments) are: // +// // +// spivot(s1, s2) s1 and s2 refer to the same edge but point to two // +// different subfaces respectively. // +// sbond(s1, s2) Bonds s1 and s2 together (at an edge). // +// sbond1(s1, s2) Only bonds s2 to s1 (but not s1 to s2). It is used // +// for creating the face ring. // +// sdissolve(s) Detaches the adjoining subface from s. s bonds to // +// 'dummysh' after this operation. // +// // +// v = sorg(s) v is the origin of s. // +// v = sdest(s) v is the destination of s. // +// v = sapex(s) v is the apex of s. // +// // +// sesym(s1, s2) s2 is the inversed edge of s1. // +// senext(s1, s2) s2 is the successor of s1 in the edge ring. // +// senext2(s1, s2) s2 is the precessor of s1 in the edge ring.. // +// // +// For interacting tetrahedra and subfaces: // +// // +// tspivot(t, s) Returns the adjoining subface of t in s. s may hold // +// 'dummysh' when t is an internal face. // +// stpivot(s, t) Returns the adjoining tetrahedron of s in t. t may be // +// 'dummytet'. // +// tsbond(t, s) Bond t and s together. t and s must represent the // +// same face. // +// tsdissolve(t) Detaches the adjoining subface from t. // +// stdissolve(s) Detaches the adjoining tetrahedron from s. // +// // +// For interacting subfaces and subsegments: // +// // +// sspivot(s, e) Returns the adjoining subsegment of s in e. // +// ssbond(s, e) Bond s and e together. s and e must represent the // +// same edge. // +// ssdissolve(s) Detaches the adjoining subsegment from s. // +// // +/////////////////////////////////////////////////////////////////////////////// + + // Primitives for tetrahedra. + inline void decode(tetrahedron ptr, triface& t); + inline tetrahedron encode(triface& t); + inline void sym(triface& t1, triface& t2); + inline void symself(triface& t); + inline void bond(triface& t1, triface& t2); + inline void dissolve(triface& t); + inline point org(triface& t); + inline point dest(triface& t); + inline point apex(triface& t); + inline point oppo(triface& t); + inline void setorg(triface& t, point pointptr); + inline void setdest(triface& t, point pointptr); + inline void setapex(triface& t, point pointptr); + inline void setoppo(triface& t, point pointptr); + inline void esym(triface& t1, triface& t2); + inline void esymself(triface& t); + inline void enext(triface& t1, triface& t2); + inline void enextself(triface& t); + inline void enext2(triface& t1, triface& t2); + inline void enext2self(triface& t); + inline bool fnext(triface& t1, triface& t2); + inline bool fnextself(triface& t); + inline void enextfnext(triface& t1, triface& t2); + inline void enextfnextself(triface& t); + inline void enext2fnext(triface& t1, triface& t2); + inline void enext2fnextself(triface& t); + inline void infect(triface& t); + inline void uninfect(triface& t); + inline bool infected(triface& t); + inline REAL elemattribute(tetrahedron* ptr, int attnum); + inline void setelemattribute(tetrahedron* ptr, int attnum, REAL value); + inline REAL volumebound(tetrahedron* ptr); + inline void setvolumebound(tetrahedron* ptr, REAL value); + + // Primitives for subfaces and subsegments. + inline void sdecode(shellface sptr, face& s); + inline shellface sencode(face& s); + inline void spivot(face& s1, face& s2); + inline void spivotself(face& s); + inline void sbond(face& s1, face& s2); + inline void sbond1(face& s1, face& s2); + inline void sdissolve(face& s); + inline point sorg(face& s); + inline point sdest(face& s); + inline point sapex(face& s); + inline void setsorg(face& s, point pointptr); + inline void setsdest(face& s, point pointptr); + inline void setsapex(face& s, point pointptr); + inline void sesym(face& s1, face& s2); + inline void sesymself(face& s); + inline void senext(face& s1, face& s2); + inline void senextself(face& s); + inline void senext2(face& s1, face& s2); + inline void senext2self(face& s); + inline void sfnext(face&, face&); + inline void sfnextself(face&); + inline badface* shell2badface(face& s); + inline void setshell2badface(face& s, badface* value); + inline REAL areabound(face& s); + inline void setareabound(face& s, REAL value); + inline int shellmark(face& s); + inline void setshellmark(face& s, int value); + inline enum shestype shelltype(face& s); + inline void setshelltype(face& s, enum shestype value); + inline void sinfect(face& s); + inline void suninfect(face& s); + inline bool sinfected(face& s); + + // Primitives for interacting tetrahedra and subfaces. + inline void tspivot(triface& t, face& s); + inline void stpivot(face& s, triface& t); + inline void tsbond(triface& t, face& s); + inline void tsdissolve(triface& t); + inline void stdissolve(face& s); + + // Primitives for interacting subfaces and subsegs. + inline void sspivot(face& s, face& edge); + inline void ssbond(face& s, face& edge); + inline void ssdissolve(face& s); + + // Primitives for points. + inline int pointmark(point pt); + inline void setpointmark(point pt, int value); + inline enum verttype pointtype(point pt); + inline void setpointtype(point pt, enum verttype value); + inline tetrahedron point2tet(point pt); + inline void setpoint2tet(point pt, tetrahedron value); + inline shellface point2sh(point pt); + inline void setpoint2sh(point pt, shellface value); + inline point point2pt(point pt); + inline void setpoint2pt(point pt, point value); + inline point point2ppt(point pt); + inline void setpoint2ppt(point pt, point value); + inline point getliftpoint(int facetmark); + + // Advanced primitives. + inline void adjustedgering(triface& t, int direction); + inline void adjustedgering(face& s, int direction); + inline bool isdead(triface* t); + inline bool isdead(face* s); + inline bool isfacehaspoint(face* t, point testpoint); + inline bool isfacehasedge(face* s, point tend1, point tend2); + inline bool issymexist(triface* t); + bool getnextface(triface*, triface*); + void getnextsface(face*, face*); + void tsspivot(triface*, face*); + void sstpivot(face*, triface*); + bool findorg(triface* t, point dorg); + bool findorg(face* s, point dorg); + void findedge(triface* t, point eorg, point edest); + void findedge(face* s, point eorg, point edest); + void findface(triface *fface, point forg, point fdest, point fapex); + void getonextseg(face* s, face* lseg); + void getseghasorg(face* sseg, point dorg); + point getsubsegfarorg(face* sseg); + point getsubsegfardest(face* sseg); + void printtet(triface*); + void printsh(face*); + +/////////////////////////////////////////////////////////////////////////////// +// // +// Primitive geometric test functions // +// // +// A primitive operation is a function f that maps a set Q of k objects to // +// +1, 0, or -1. Primitive geometric functions operater on geometric objects // +// (points, segments, triangles, polyhedron, etc), determine the geometric // +// relations between them. Like the orientation of a sequence of d+1 points // +// in d-dimension, whether or not a point lies inside a triangle, and so on. // +// Algorithms for solving geometric problems are always based on the answers // +// of some primitives so that the corresponding deterministic rules can be // +// applied. However, the implementation of geometric algorithms is not a // +// trivial task even for one which is very simple and only relies on few // +// primitives. The correctness of primitives is crucial for the cotrol flow. // +// // +// The following functions perform various primitives geometric tests, some // +// perform tests with exact arithmetic and some do not. // +// // +// The triangle-triangle intersection test is implemented with exact arithm- // +// etic. It exactly tells whether or not two triangles in three dimensions // +// intersect. Before implementing this test myself, I tried two C codes // +// (implemented by Thomas Moeller and Philippe Guigue, respectively), which // +// are all public available and very efficient. However both of them failed // +// frequently. Another unsuitable problem is that both codes only tell // +// whether or not two triangles are intersecting and not distinguish the // +// cases whether they are exactly intersecting in interior or they share a // +// vertex, or share an edge. All the latter cases are acceptable and should // +// return not intersection in TetGen. // +// // +/////////////////////////////////////////////////////////////////////////////// + + // Triangle-triangle intersection tests + enum intersectresult edge_vertex_collinear_inter(REAL*, REAL*, REAL*); + enum intersectresult edge_edge_coplanar_inter(REAL*, REAL*, REAL*, + REAL*, REAL*); + enum intersectresult triangle_vertex_coplanar_inter(REAL*, REAL*, REAL*, + REAL*, REAL*); + enum intersectresult triangle_edge_coplanar_inter(REAL*, REAL*, REAL*, + REAL*, REAL*, REAL*); + enum intersectresult triangle_edge_inter_tail(REAL*, REAL*, REAL*, REAL*, + REAL*, REAL, REAL); + enum intersectresult triangle_edge_inter(REAL*, REAL*, REAL*, REAL*, + REAL*); + enum intersectresult triangle_triangle_inter(REAL*, REAL*, REAL*, REAL*, + REAL*, REAL*); + + // Degenerate cases tests + bool iscollinear(REAL*, REAL*, REAL*, REAL epspp); + bool iscoplanar(REAL*, REAL*, REAL*, REAL*, REAL vol6, REAL epspp); + bool iscospheric(REAL*, REAL*, REAL*, REAL*, REAL*, REAL epspp); + + // Linear algebra functions + inline REAL dot(REAL* v1, REAL* v2); + inline void cross(REAL* v1, REAL* v2, REAL* n); + void initm44(REAL a00, REAL a01, REAL a02, REAL a03, + REAL a10, REAL a11, REAL a12, REAL a13, + REAL a20, REAL a21, REAL a22, REAL a23, + REAL a30, REAL a31, REAL a32, REAL a33, REAL M[4][4]); + void m4xm4(REAL m1[4][4], REAL m2[4][4]); + void m4xv4(REAL v2[4], REAL m[4][4], REAL v1[4]); + bool lu_decmp(REAL lu[3][3], int n, int* ps, REAL* d, int N); + void lu_solve(REAL lu[3][3], int n, int* ps, REAL* b, int N); + + // Geometric quantities calculators. + inline REAL distance(REAL* p1, REAL* p2); + REAL shortdistance(REAL* p, REAL* e1, REAL* e2); + REAL interiorangle(REAL* o, REAL* p1, REAL* p2, REAL* n); + void projpt2edge(REAL* p, REAL* e1, REAL* e2, REAL* prj); + void projpt2face(REAL* p, REAL* f1, REAL* f2, REAL* f3, REAL* prj); + void facenormal(REAL* pa, REAL* pb, REAL* pc, REAL* n, REAL* nlen); + void edgeorthonormal(REAL* e1, REAL* e2, REAL* op, REAL* n); + REAL facedihedral(REAL* pa, REAL* pb, REAL* pc1, REAL* pc2); + void tetalldihedral(point, point, point, point, REAL dihed[6]); + bool circumsphere(REAL*, REAL*, REAL*, REAL*, REAL* cent, REAL* radius); + void inscribedsphere(REAL*, REAL*, REAL*, REAL*, REAL* cent, REAL* radius); + void rotatepoint(REAL* p, REAL rotangle, REAL* p1, REAL* p2); + void spherelineint(REAL* p1, REAL* p2, REAL* C, REAL R, REAL p[7]); + void linelineint(REAL *p1,REAL *p2, REAL *p3, REAL *p4, REAL p[7]); + + // Memory managment routines. + void dummyinit(int, int); + void initializepointpool(); + void initializetetshpools(); + void tetrahedrondealloc(tetrahedron*); + tetrahedron *tetrahedrontraverse(); + void shellfacedealloc(memorypool*, shellface*); + shellface *shellfacetraverse(memorypool*); + void badfacedealloc(memorypool*, badface*); + badface *badfacetraverse(memorypool*); + void pointdealloc(point); + point pointtraverse(); + void maketetrahedron(triface*); + void makeshellface(memorypool*, face*); + void makepoint(point*); + + // Mesh items searching routines. + void makepoint2tetmap(); + void makeindex2pointmap(point*& idx2verlist); + void makesegmentmap(int*& idx2seglist, shellface**& segsperverlist); + void makesubfacemap(int*& idx2facelist, shellface**& facesperverlist); + void maketetrahedronmap(int*& idx2tetlist, tetrahedron**& tetsperverlist); + + // Point location routines. + unsigned long randomnation(unsigned int choices); + REAL distance2(tetrahedron* tetptr, point p); + enum locateresult preciselocate(point searchpoint, triface* searchtet); + enum locateresult locate(point searchpoint, triface* searchtet); + enum locateresult adjustlocate(point searchpoint, triface* searchtet, + enum locateresult precise, REAL epspp); + + // Mesh transformation routines. + enum fliptype categorizeface(triface& horiz); + void enqueueflipface(triface& checkface, queue* flipqueue); + void enqueueflipedge(face& checkedge, queue* flipqueue); + void flip23(triface* flipface, queue* flipqueue); + void flip32(triface* flipface, queue* flipqueue); + void flip22(triface* flipface, queue* flipqueue); + void flip22sub(face* flipedge, queue* flipqueue); + long flip(queue* flipqueue, flipstacker **plastflip); + void undoflip(flipstacker *lastflip); + + void splittetrahedron(point newpoint, triface* splittet, queue* flipqueue); + void unsplittetrahedron(triface* splittet); + void splittetface(point newpoint, triface* splittet, queue* flipqueue); + void unsplittetface(triface* splittet); + void splitsubface(point newpoint, face* splitface, queue* flipqueue); + void unsplitsubface(face* splitsh); + void splittetedge(point newpoint, triface* splittet, queue* flipqueue); + void unsplittetedge(triface* splittet); + void splitsubedge(point newpoint, face* splitsh, queue* flipqueue); + void unsplitsubedge(face* splitsh); + enum insertsiteresult insertsite(point newpoint, triface* searchtet, + bool approx, queue* flipqueue); + void undosite(enum insertsiteresult insresult, triface* splittet, + point torg, point tdest, point tapex, point toppo); + void inserthullsite(point inspoint, triface* horiz, queue* flipqueue, + link* hulllink, int* worklist); + void collectcavtets(point newpoint, list* cavtetlist); + + void removetetbypeeloff(triface *badtet, queue* flipqueue); + void removetetbyflip32(triface *badtet, queue* flipqueue); + bool removetetbycflips(triface *badtet, queue* flipqueue); + bool removebadtet(enum badtettype bt, triface *badtet, queue* flipqueue); + + // Incremental flip Delaunay triangulation routines. + void incrflipinit(queue* insertqueue); + long incrflipdelaunay(); + + // Surface triangulation routines. + enum locateresult locatesub(point searchpt, face* searchsh, point abovept); + long flipsub(queue* flipqueue); + bool incrflipinitsub(int facetidx, list* ptlist, point* idx2verlist); + void collectvisiblesubs(int facetidx, point inspoint, face* horiz, + queue* flipqueue); + void incrflipdelaunaysub(int facetidx, list* ptlist, point* idx2verlist, + queue* flipqueue); + enum finddirectionresult finddirectionsub(face* searchsh, point tend); + void insertsubseg(face* tri); + bool scoutsegmentsub(face* searchsh, point tend); + void delaunayfixup(face* fixupsh, int leftside); + void constrainededge(face* startsh, point tend); + void insertsegmentsub(point tstart, point tend); + void infecthullsub(memorypool* viri); + void plaguesub(memorypool* viri); + void carveholessub(int holes, REAL* holelist); + void triangulatefacet(int facetidx, list* ptlist, list* conlist, + point* idx2verlist, queue* flipqueue); + void unifysegments(); + void mergefacets(queue* flipqueue); + long meshsurface(); + + // Detect intersecting facets of PLC. + void interecursive(shellface** subfacearray, int arraysize, int axis, + REAL bxmin, REAL bxmax, REAL bymin, REAL bymax, + REAL bzmin, REAL bzmax, int* internum); + void detectinterfaces(); + + // Segments recovery routines. + void markacutevertices(REAL acuteangle); + enum finddirectionresult finddirection(triface* searchtet, point tend); + void getsearchtet(point p1, point p2, triface* searchtet, point* tend); + bool isedgeencroached(point p1, point p2, point testpt, bool degflag); + point scoutrefpoint(triface* searchtet, point tend); + point getsegmentorigin(face* splitseg); + point getsplitpoint(face* splitseg, point refpoint); + void delaunizesegments(); + + // Constrained Delaunay triangulation routines. + bool insertsubface(face* insertsh, triface* searchtet); + bool tritritest(triface* checktet, point p1, point p2, point p3); + void initializecavity(list* floorlist, list* ceillist, list* floorptlist, + list* ceilptlist, link* frontlink, link* ptlink); + bool reducecavity(link* frontlink, link* ptlink, queue* flipqueue); + bool reducecavity1(link* frontlink, queue* flipqueue); + void triangulatecavity(list* floorlist, list* ceillist, list* floorptlist, + list* ceilptlist); + void formmissingregion(face* missingsh, list* missingshlist, + list* equatptlist, int* worklist); + bool scoutcrossingedge(list* missingshlist, list* boundedgelist, + list* crossedgelist, int* worklist); + void rearrangesubfaces(list* missingshlist, list* boundedgelist, + list* equatptlist, int* worklist); + void recoversubfaces(list* missingshlist, list* crossedgelist, + list* equatptlist, int* worklist); + void constrainedfacets(); + + // Carving out holes and concavities routines. + void indenthull(); + void infecthull(memorypool *viri); + void plague(memorypool *viri); + void regionplague(memorypool *viri, REAL attribute, REAL volume); + void carveholes(); + + // Mesh update rotuines. + long reconstructmesh(); + void insertaddpoints(); + + // Delaunay refinement routines. + void initializerpsarray(REAL* rpsarray); + void marksharpfacets(int*& idx2facetlist, REAL dihedbound); + void enqueuebadtet(triface *instet, REAL ratio, point insorg, + point insdest, point insapex, point insoppo, + point inscent); + badtetrahedron* dequeuebadtet(); + bool checkseg4encroach(face* testseg, point testpt, bool enqueueflag); + bool checksub4encroach(face* testsub, point testpt, bool enqueueflag); + bool checksub4badqual(face* testsub); + bool checktet4badqual(triface* testtet); + bool checktet4illtet(triface* testtet, list* illtetlist); + bool checktet4sliver(triface* testtet, list* illtetlist); + bool checkseg4splitting(face* testseg, REAL* rpsarray, bool bqual); + bool checksub4splitting(face* testsub); + void doqualchecktetlist(); + bool tallencsegs(point testpt, list *cavtetlist); + bool tallencsubs(point testpt, list *cavtetlist); + void tallbadtetrahedrons(); + void tallilltets(list* illtetlist); + void tallslivers(list* illtetlist); + void removeilltets(); + void removeslivers(); + void repairencsegs(REAL* rpsarray, bool bqual, queue* flipqueue); + void repairencsubs(REAL* rpsarray, int* idx2facetlist, list* cavtetlist, + queue* flipqueue); + void repairbadtets(REAL* rpsarray, int* idx2facetlist, list* cavtetlist, + queue* flipqueue); + void enforcequality(); + + // I/O routines + void transfernodes(); + void jettisonnodes(); + void highorder(); + void outnodes(tetgenio* out); + void outelements(tetgenio* out); + void outfaces(tetgenio* out); + void outhullfaces(tetgenio* out); + void outsubfaces(tetgenio* out); + void outsubsegments(tetgenio* out); + void outneighbors(tetgenio* out); + void outsmesh(char* smfilename); + void outmesh2medit(char* mfilename); + void outmesh2gid(char* gfilename); + void outmesh2off(char* ofilename); + + // User interaction routines. + void internalerror(); + void checkmesh(); + void checkshells(); + void checkdelaunay(queue* flipqueue); + void checkconforming(); + void qualitystatistics(); + void statistics(); + + public: + + // Constructor and destructor. + tetgenmesh(); + ~tetgenmesh(); + +}; // End of class tetgenmesh. + +/////////////////////////////////////////////////////////////////////////////// +// // +// tetrahedralize() Interface for using TetGen's library to generate // +// Delaunay tetrahedralizations, constrained Delaunay // +// tetrahedralizations, quality tetrahedral meshes. // +// // +// Two functions (interfaces) are available. The difference is only the way // +// of passing switches. One directly accepts an object of 'tetgenbehavior', // +// the other accepts a string which is the same as one can used in command // +// line. The latter may be more convenient for users who don't know the // +// 'tetgenbehavir' structure. // +// // +// 'in' is the input object containing a PLC or a list of points. It should // +// not be a NULL. 'out' is for outputting the mesh or tetrahedralization // +// created by TetGen. If it is NULL, the output will be redirect to file(s). // +// // +/////////////////////////////////////////////////////////////////////////////// + +void tetrahedralize(tetgenbehavior *b, tetgenio *in, tetgenio *out); +void tetrahedralize(char *switches, tetgenio *in, tetgenio *out); + +#endif // #ifndef tetgenH