From 533d6bffb8aa96395e04a47b5524cd64da289b59 Mon Sep 17 00:00:00 2001
From: Tristan Carrier Baudouin <tristan.carrier@uclouvain.be>
Date: Wed, 22 Feb 2012 15:12:26 +0000
Subject: [PATCH] 3D lloyd et rtree

---
 contrib/rtree/rtree.h | 1593 +++++++++++++++++++++++++++++++++++++++++
 1 file changed, 1593 insertions(+)
 create mode 100644 contrib/rtree/rtree.h

diff --git a/contrib/rtree/rtree.h b/contrib/rtree/rtree.h
new file mode 100644
index 0000000000..ffd63ed751
--- /dev/null
+++ b/contrib/rtree/rtree.h
@@ -0,0 +1,1593 @@
+#ifndef RTREE_H
+#define RTREE_H
+#include <algorithm>
+
+// NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification.
+
+// NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform
+#include <stdio.h>
+#include <math.h>
+#include <assert.h>
+#include <stdlib.h>
+
+#define ASSERT assert // RTree uses ASSERT( condition )
+#ifndef Min
+  #define Min std::min 
+#endif //Min
+#ifndef Max
+  #define Max std::max
+#endif //Max
+
+//
+// RTree.h
+//
+
+#define RTREE_TEMPLATE template<class DATATYPE, class ELEMTYPE, int NUMDIMS, class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
+#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, TMINNODES>
+
+#define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one.
+#define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems
+
+// Fwd decl
+class RTFileStream;  // File I/O helper class, look below for implementation and notes.
+
+
+/// \class RTree
+/// Implementation of RTree, a multidimensional bounding rectangle tree.
+/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
+///
+/// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com)
+///
+/// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type
+/// ELEMTYPE Type of element such as int or float
+/// NUMDIMS Number of dimensions such as 2 or 3
+/// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs
+///
+/// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle.
+///        This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency.
+///        Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory
+///        array similar to MFC CArray or STL Vector for returning search query result.
+///
+template<class DATATYPE, class ELEMTYPE, int NUMDIMS, 
+         class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
+class RTree
+{
+protected: 
+
+  struct Node;  // Fwd decl.  Used by other internal structs and iterator
+
+public:
+
+  // These constant must be declared after Branch and before Node struct
+  // Stuck up here for MSVC 6 compiler.  NSVC .NET 2003 is much happier.
+  enum
+  {
+    MAXNODES = TMAXNODES,                         ///< Max elements in node
+    MINNODES = TMINNODES,                         ///< Min elements in node
+  };
+
+
+public:
+
+  RTree();
+  virtual ~RTree();
+  
+  /// Insert entry
+  /// \param a_min Min of bounding rect
+  /// \param a_max Max of bounding rect
+  /// \param a_dataId Positive Id of data.  Maybe zero, but negative numbers not allowed.
+  void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId);
+  
+  /// Remove entry
+  /// \param a_min Min of bounding rect
+  /// \param a_max Max of bounding rect
+  /// \param a_dataId Positive Id of data.  Maybe zero, but negative numbers not allowed.
+  void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId);
+  
+  /// Find all within search rectangle
+  /// \param a_min Min of search bounding rect
+  /// \param a_max Max of search bounding rect
+  /// \param a_resultCallback Callback function to return result.  Callback should return 'true' to continue searching
+  /// \param a_context User context to pass as parameter to a_resultCallback
+  /// \return Returns the number of entries found
+  int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context);
+  
+  /// Remove all entries from tree
+  void RemoveAll();
+
+  /// Count the data elements in this container.  This is slow as no internal counter is maintained.
+  int Count();
+
+  /// Load tree contents from file
+  bool Load(const char* a_fileName);
+  /// Load tree contents from stream
+  bool Load(RTFileStream& a_stream);
+
+  
+  /// Save tree contents to file
+  bool Save(const char* a_fileName);
+  /// Save tree contents to stream
+  bool Save(RTFileStream& a_stream);
+
+  /// Iterator is not remove safe.
+  class Iterator
+  {
+  private:
+  
+    enum { MAX_STACK = 32 }; //  Max stack size. Allows almost n^32 where n is number of branches in node
+    
+    struct StackElement
+    {
+      Node* m_node;
+      int m_branchIndex;
+    };
+    
+  public:
+  
+    Iterator()                                    { Init(); }
+
+    ~Iterator()                                   { }
+    
+    /// Is iterator invalid
+    bool IsNull()                                 { return (m_tos <= 0); }
+
+    /// Is iterator pointing to valid data
+    bool IsNotNull()                              { return (m_tos > 0); }
+
+    /// Access the current data element. Caller must be sure iterator is not NULL first.
+    DATATYPE& operator*()
+    {
+      ASSERT(IsNotNull());
+      StackElement& curTos = m_stack[m_tos - 1];
+      return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
+    } 
+
+    /// Access the current data element. Caller must be sure iterator is not NULL first.
+    const DATATYPE& operator*() const
+    {
+      ASSERT(IsNotNull());
+      StackElement& curTos = m_stack[m_tos - 1];
+      return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
+    } 
+
+    /// Find the next data element
+    bool operator++()                             { return FindNextData(); }
+
+    /// Get the bounds for this node
+    void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS])
+    {
+      ASSERT(IsNotNull());
+      StackElement& curTos = m_stack[m_tos - 1];
+      Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];
+      
+      for(int index = 0; index < NUMDIMS; ++index)
+      {
+        a_min[index] = curBranch.m_rect.m_min[index];
+        a_max[index] = curBranch.m_rect.m_max[index];
+      }
+    }
+
+  private:
+  
+    /// Reset iterator
+    void Init()                                   { m_tos = 0; }
+
+    /// Find the next data element in the tree (For internal use only)
+    bool FindNextData()
+    {
+      for(;;)
+      {
+        if(m_tos <= 0)
+        {
+          return false;
+        }
+        StackElement curTos = Pop(); // Copy stack top cause it may change as we use it
+
+        if(curTos.m_node->IsLeaf())
+        {
+          // Keep walking through data while we can
+          if(curTos.m_branchIndex+1 < curTos.m_node->m_count)
+          {
+            // There is more data, just point to the next one
+            Push(curTos.m_node, curTos.m_branchIndex + 1);
+            return true;
+          }
+          // No more data, so it will fall back to previous level
+        }
+        else
+        {
+          if(curTos.m_branchIndex+1 < curTos.m_node->m_count)
+          {
+            // Push sibling on for future tree walk
+            // This is the 'fall back' node when we finish with the current level
+            Push(curTos.m_node, curTos.m_branchIndex + 1);
+          }
+          // Since cur node is not a leaf, push first of next level to get deeper into the tree
+          Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
+          Push(nextLevelnode, 0);
+          
+          // If we pushed on a new leaf, exit as the data is ready at TOS
+          if(nextLevelnode->IsLeaf())
+          {
+            return true;
+          }
+        }
+      }
+    }
+
+    /// Push node and branch onto iteration stack (For internal use only)
+    void Push(Node* a_node, int a_branchIndex)
+    {
+      m_stack[m_tos].m_node = a_node;
+      m_stack[m_tos].m_branchIndex = a_branchIndex;
+      ++m_tos;
+      ASSERT(m_tos <= MAX_STACK);
+    }
+    
+    /// Pop element off iteration stack (For internal use only)
+    StackElement& Pop()
+    {
+      ASSERT(m_tos > 0);
+      --m_tos;
+      return m_stack[m_tos];
+    }
+
+    StackElement m_stack[MAX_STACK];              ///< Stack as we are doing iteration instead of recursion
+    int m_tos;                                    ///< Top Of Stack index
+  
+    friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner
+  };
+
+  /// Get 'first' for iteration
+  void GetFirst(Iterator& a_it)
+  {
+    a_it.Init();
+    Node* first = m_root;
+    while(first)
+    {
+      if(first->IsInternalNode() && first->m_count > 1)
+      {
+        a_it.Push(first, 1); // Descend sibling branch later
+      }
+      else if(first->IsLeaf())
+      {
+        if(first->m_count)
+        {
+          a_it.Push(first, 0);
+        }
+        break;
+      }
+      first = first->m_branch[0].m_child;
+    }
+  }  
+
+  /// Get Next for iteration
+  void GetNext(Iterator& a_it)                    { ++a_it; }
+
+  /// Is iterator NULL, or at end?
+  bool IsNull(Iterator& a_it)                     { return a_it.IsNull(); }
+
+  /// Get object at iterator position
+  DATATYPE& GetAt(Iterator& a_it)                 { return *a_it; }
+
+protected:
+
+  /// Minimal bounding rectangle (n-dimensional)
+  struct Rect
+  {
+    ELEMTYPE m_min[NUMDIMS];                      ///< Min dimensions of bounding box 
+    ELEMTYPE m_max[NUMDIMS];                      ///< Max dimensions of bounding box 
+  };
+
+  /// May be data or may be another subtree
+  /// The parents level determines this.
+  /// If the parents level is 0, then this is data
+  struct Branch
+  {
+    Rect m_rect;                                  ///< Bounds
+    union
+    {
+      Node* m_child;                              ///< Child node
+      DATATYPE m_data;                            ///< Data Id or Ptr
+    };
+  };
+
+  /// Node for each branch level
+  struct Node
+  {
+    bool IsInternalNode()                         { return (m_level > 0); } // Not a leaf, but a internal node
+    bool IsLeaf()                                 { return (m_level == 0); } // A leaf, contains data
+    
+    int m_count;                                  ///< Count
+    int m_level;                                  ///< Leaf is zero, others positive
+    Branch m_branch[MAXNODES];                    ///< Branch
+  };
+  
+  /// A link list of nodes for reinsertion after a delete operation
+  struct ListNode
+  {
+    ListNode* m_next;                             ///< Next in list
+    Node* m_node;                                 ///< Node
+  };
+
+  /// Variables for finding a split partition
+  struct PartitionVars
+  {
+    int m_partition[MAXNODES+1];
+    int m_total;
+    int m_minFill;
+    int m_taken[MAXNODES+1];
+    int m_count[2];
+    Rect m_cover[2];
+    ELEMTYPEREAL m_area[2];
+
+    Branch m_branchBuf[MAXNODES+1];
+    int m_branchCount;
+    Rect m_coverSplit;
+    ELEMTYPEREAL m_coverSplitArea;
+  }; 
+ 
+  Node* AllocNode();
+  void FreeNode(Node* a_node);
+  void InitNode(Node* a_node);
+  void InitRect(Rect* a_rect);
+  bool InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level);
+  bool InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level);
+  Rect NodeCover(Node* a_node);
+  bool AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode);
+  void DisconnectBranch(Node* a_node, int a_index);
+  int PickBranch(Rect* a_rect, Node* a_node);
+  Rect CombineRect(Rect* a_rectA, Rect* a_rectB);
+  void SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode);
+  ELEMTYPEREAL RectSphericalVolume(Rect* a_rect);
+  ELEMTYPEREAL RectVolume(Rect* a_rect);
+  ELEMTYPEREAL CalcRectVolume(Rect* a_rect);
+  void GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars);
+  void ChoosePartition(PartitionVars* a_parVars, int a_minFill);
+  void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars);
+  void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill);
+  void PickSeeds(PartitionVars* a_parVars);
+  void Classify(int a_index, int a_group, PartitionVars* a_parVars);
+  bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root);
+  bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode);
+  ListNode* AllocListNode();
+  void FreeListNode(ListNode* a_listNode);
+  bool Overlap(Rect* a_rectA, Rect* a_rectB);
+  void ReInsert(Node* a_node, ListNode** a_listNode);
+  bool Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context);
+  void RemoveAllRec(Node* a_node);
+  void Reset();
+  void CountRec(Node* a_node, int& a_count);
+
+  bool SaveRec(Node* a_node, RTFileStream& a_stream);
+  bool LoadRec(Node* a_node, RTFileStream& a_stream);
+  
+  Node* m_root;                                    ///< Root of tree
+  ELEMTYPEREAL m_unitSphereVolume;                 ///< Unit sphere constant for required number of dimensions
+};
+
+
+// Because there is not stream support, this is a quick and dirty file I/O helper.
+// Users will likely replace its usage with a Stream implementation from their favorite API.
+class RTFileStream
+{
+  FILE* m_file;
+
+public:
+
+  
+  RTFileStream()
+  {
+    m_file = NULL;
+  }
+
+  ~RTFileStream()
+  {
+    Close();
+  }
+
+  bool OpenRead(const char* a_fileName)
+  {
+    m_file = fopen(a_fileName, "rb");
+    if(!m_file)
+    {
+      return false;
+    }
+    return true;
+  }
+
+  bool OpenWrite(const char* a_fileName)
+  {
+    m_file = fopen(a_fileName, "wb");
+    if(!m_file)
+    {
+      return false;
+    }
+    return true;
+  }
+
+  void Close()
+  {
+    if(m_file)
+    {
+      fclose(m_file);
+      m_file = NULL;
+    }
+  }
+
+  template< typename TYPE >
+  size_t Write(const TYPE& a_value)
+  {
+    ASSERT(m_file);
+    return fwrite((void*)&a_value, sizeof(a_value), 1, m_file);
+  }
+
+  template< typename TYPE >
+  size_t WriteArray(const TYPE* a_array, int a_count)
+  {
+    ASSERT(m_file);
+    return fwrite((void*)a_array, sizeof(TYPE) * a_count, 1, m_file);
+  }
+
+  template< typename TYPE >
+  size_t Read(TYPE& a_value)
+  {
+    ASSERT(m_file);
+    return fread((void*)&a_value, sizeof(a_value), 1, m_file);
+  }
+
+  template< typename TYPE >
+  size_t ReadArray(TYPE* a_array, int a_count)
+  {
+    ASSERT(m_file);
+    return fread((void*)a_array, sizeof(TYPE) * a_count, 1, m_file);
+  }
+};
+
+
+RTREE_TEMPLATE
+RTREE_QUAL::RTree()
+{
+  ASSERT(MAXNODES > MINNODES);
+  ASSERT(MINNODES > 0);
+
+
+  // We only support machine word size simple data type eg. integer index or object pointer.
+  // Since we are storing as union with non data branch
+  ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
+
+  // Precomputed volumes of the unit spheres for the first few dimensions
+  const float UNIT_SPHERE_VOLUMES[] = {
+    0.000000f, 2.000000f, 3.141593f, // Dimension  0,1,2
+    4.188790f, 4.934802f, 5.263789f, // Dimension  3,4,5
+    5.167713f, 4.724766f, 4.058712f, // Dimension  6,7,8
+    3.298509f, 2.550164f, 1.884104f, // Dimension  9,10,11
+    1.335263f, 0.910629f, 0.599265f, // Dimension  12,13,14
+    0.381443f, 0.235331f, 0.140981f, // Dimension  15,16,17
+    0.082146f, 0.046622f, 0.025807f, // Dimension  18,19,20 
+  };
+
+  m_root = AllocNode();
+  m_root->m_level = 0;
+  m_unitSphereVolume = (ELEMTYPEREAL)UNIT_SPHERE_VOLUMES[NUMDIMS];
+}
+
+
+RTREE_TEMPLATE
+RTREE_QUAL::~RTree()
+{
+  Reset(); // Free, or reset node memory
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
+{
+#ifdef _DEBUG
+  for(int index=0; index<NUMDIMS; ++index)
+  {
+    ASSERT(a_min[index] <= a_max[index]);
+  }
+#endif //_DEBUG
+
+  Rect rect;
+  
+  for(int axis=0; axis<NUMDIMS; ++axis)
+  {
+    rect.m_min[axis] = a_min[axis];
+    rect.m_max[axis] = a_max[axis];
+  }
+  
+  InsertRect(&rect, a_dataId, &m_root, 0);
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
+{
+#ifdef _DEBUG
+  for(int index=0; index<NUMDIMS; ++index)
+  {
+    ASSERT(a_min[index] <= a_max[index]);
+  }
+#endif //_DEBUG
+
+  Rect rect;
+  
+  for(int axis=0; axis<NUMDIMS; ++axis)
+  {
+    rect.m_min[axis] = a_min[axis];
+    rect.m_max[axis] = a_max[axis];
+  }
+
+  RemoveRect(&rect, a_dataId, &m_root);
+}
+
+
+RTREE_TEMPLATE
+int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context)
+{
+#ifdef _DEBUG
+  for(int index=0; index<NUMDIMS; ++index)
+  {
+    ASSERT(a_min[index] <= a_max[index]);
+  }
+#endif //_DEBUG
+
+  Rect rect;
+  
+  for(int axis=0; axis<NUMDIMS; ++axis)
+  {
+    rect.m_min[axis] = a_min[axis];
+    rect.m_max[axis] = a_max[axis];
+  }
+
+  // NOTE: May want to return search result another way, perhaps returning the number of found elements here.
+
+  int foundCount = 0;
+  Search(m_root, &rect, foundCount, a_resultCallback, a_context);
+
+  return foundCount;
+}
+
+
+RTREE_TEMPLATE
+int RTREE_QUAL::Count()
+{
+  int count = 0;
+  CountRec(m_root, count);
+  
+  return count;
+}
+
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::CountRec(Node* a_node, int& a_count)
+{
+  if(a_node->IsInternalNode())  // not a leaf node
+  {
+    for(int index = 0; index < a_node->m_count; ++index)
+    {
+      CountRec(a_node->m_branch[index].m_child, a_count);
+    }
+  }
+  else // A leaf node
+  {
+    a_count += a_node->m_count;
+  }
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::Load(const char* a_fileName)
+{
+  RemoveAll(); // Clear existing tree
+
+  RTFileStream stream;
+  if(!stream.OpenRead(a_fileName))
+  {
+    return false;
+  }
+
+  bool result = Load(stream);
+  
+  stream.Close();
+
+  return result;
+};
+
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::Load(RTFileStream& a_stream)
+{
+  // Write some kind of header
+  int _dataFileId = ('R'<<0)|('T'<<8)|('R'<<16)|('E'<<24);
+  int _dataSize = sizeof(DATATYPE);
+  int _dataNumDims = NUMDIMS;
+  int _dataElemSize = sizeof(ELEMTYPE);
+  int _dataElemRealSize = sizeof(ELEMTYPEREAL);
+  int _dataMaxNodes = TMAXNODES;
+  int _dataMinNodes = TMINNODES;
+
+  int dataFileId = 0;
+  int dataSize = 0;
+  int dataNumDims = 0;
+  int dataElemSize = 0;
+  int dataElemRealSize = 0;
+  int dataMaxNodes = 0;
+  int dataMinNodes = 0;
+
+  a_stream.Read(dataFileId);
+  a_stream.Read(dataSize);
+  a_stream.Read(dataNumDims);
+  a_stream.Read(dataElemSize);
+  a_stream.Read(dataElemRealSize);
+  a_stream.Read(dataMaxNodes);
+  a_stream.Read(dataMinNodes);
+
+  bool result = false;
+
+  // Test if header was valid and compatible
+  if(    (dataFileId == _dataFileId) 
+      && (dataSize == _dataSize) 
+      && (dataNumDims == _dataNumDims) 
+      && (dataElemSize == _dataElemSize) 
+      && (dataElemRealSize == _dataElemRealSize) 
+      && (dataMaxNodes == _dataMaxNodes) 
+      && (dataMinNodes == _dataMinNodes) 
+    )
+  {
+    // Recursively load tree
+    result = LoadRec(m_root, a_stream);
+  }
+
+  return result;
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::LoadRec(Node* a_node, RTFileStream& a_stream)
+{
+  a_stream.Read(a_node->m_level);
+  a_stream.Read(a_node->m_count);
+
+  if(a_node->IsInternalNode())  // not a leaf node
+  {
+    for(int index = 0; index < a_node->m_count; ++index)
+    {
+      Branch* curBranch = &a_node->m_branch[index];
+
+      a_stream.ReadArray(curBranch->m_rect.m_min, NUMDIMS);
+      a_stream.ReadArray(curBranch->m_rect.m_max, NUMDIMS);
+
+      curBranch->m_child = AllocNode();
+      LoadRec(curBranch->m_child, a_stream);
+    }
+  }
+  else // A leaf node
+  {
+    for(int index = 0; index < a_node->m_count; ++index)
+    {
+      Branch* curBranch = &a_node->m_branch[index];
+
+      a_stream.ReadArray(curBranch->m_rect.m_min, NUMDIMS);
+      a_stream.ReadArray(curBranch->m_rect.m_max, NUMDIMS);
+
+      a_stream.Read(curBranch->m_data);
+    }
+  }
+
+  return true; // Should do more error checking on I/O operations
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::Save(const char* a_fileName)
+{
+  RTFileStream stream;
+  if(!stream.OpenWrite(a_fileName))
+  {
+    return false;
+  }
+
+  bool result = Save(stream);
+
+  stream.Close();
+
+  return result;
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::Save(RTFileStream& a_stream)
+{
+  // Write some kind of header
+  int dataFileId = ('R'<<0)|('T'<<8)|('R'<<16)|('E'<<24);
+  int dataSize = sizeof(DATATYPE);
+  int dataNumDims = NUMDIMS;
+  int dataElemSize = sizeof(ELEMTYPE);
+  int dataElemRealSize = sizeof(ELEMTYPEREAL);
+  int dataMaxNodes = TMAXNODES;
+  int dataMinNodes = TMINNODES;
+
+  a_stream.Write(dataFileId);
+  a_stream.Write(dataSize);
+  a_stream.Write(dataNumDims);
+  a_stream.Write(dataElemSize);
+  a_stream.Write(dataElemRealSize);
+  a_stream.Write(dataMaxNodes);
+  a_stream.Write(dataMinNodes);
+
+  // Recursively save tree
+  bool result = SaveRec(m_root, a_stream);
+  
+  return result;
+}
+
+
+RTREE_TEMPLATE
+bool RTREE_QUAL::SaveRec(Node* a_node, RTFileStream& a_stream)
+{
+  a_stream.Write(a_node->m_level);
+  a_stream.Write(a_node->m_count);
+
+  if(a_node->IsInternalNode())  // not a leaf node
+  {
+    for(int index = 0; index < a_node->m_count; ++index)
+    {
+      Branch* curBranch = &a_node->m_branch[index];
+
+      a_stream.WriteArray(curBranch->m_rect.m_min, NUMDIMS);
+      a_stream.WriteArray(curBranch->m_rect.m_max, NUMDIMS);
+
+      SaveRec(curBranch->m_child, a_stream);
+    }
+  }
+  else // A leaf node
+  {
+    for(int index = 0; index < a_node->m_count; ++index)
+    {
+      Branch* curBranch = &a_node->m_branch[index];
+
+      a_stream.WriteArray(curBranch->m_rect.m_min, NUMDIMS);
+      a_stream.WriteArray(curBranch->m_rect.m_max, NUMDIMS);
+
+      a_stream.Write(curBranch->m_data);
+    }
+  }
+
+  return true; // Should do more error checking on I/O operations
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::RemoveAll()
+{
+  // Delete all existing nodes
+  Reset();
+
+  m_root = AllocNode();
+  m_root->m_level = 0;
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::Reset()
+{
+#ifdef RTREE_DONT_USE_MEMPOOLS
+  // Delete all existing nodes
+  RemoveAllRec(m_root);
+#else // RTREE_DONT_USE_MEMPOOLS
+  // Just reset memory pools.  We are not using complex types
+  // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::RemoveAllRec(Node* a_node)
+{
+  ASSERT(a_node);
+  ASSERT(a_node->m_level >= 0);
+
+  if(a_node->IsInternalNode()) // This is an internal node in the tree
+  {
+    for(int index=0; index < a_node->m_count; ++index)
+    {
+      RemoveAllRec(a_node->m_branch[index].m_child);
+    }
+  }
+  FreeNode(a_node); 
+}
+
+
+RTREE_TEMPLATE
+typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode()
+{
+  Node* newNode;
+#ifdef RTREE_DONT_USE_MEMPOOLS
+  newNode = new Node;
+#else // RTREE_DONT_USE_MEMPOOLS
+  // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+  InitNode(newNode);
+  return newNode;
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::FreeNode(Node* a_node)
+{
+  ASSERT(a_node);
+
+#ifdef RTREE_DONT_USE_MEMPOOLS
+  delete a_node;
+#else // RTREE_DONT_USE_MEMPOOLS
+  // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+}
+
+
+// Allocate space for a node in the list used in DeletRect to
+// store Nodes that are too empty.
+RTREE_TEMPLATE
+typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode()
+{
+#ifdef RTREE_DONT_USE_MEMPOOLS
+  return new ListNode;
+#else // RTREE_DONT_USE_MEMPOOLS
+  // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::FreeListNode(ListNode* a_listNode)
+{
+#ifdef RTREE_DONT_USE_MEMPOOLS
+  delete a_listNode;
+#else // RTREE_DONT_USE_MEMPOOLS
+  // EXAMPLE
+#endif // RTREE_DONT_USE_MEMPOOLS
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::InitNode(Node* a_node)
+{
+  a_node->m_count = 0;
+  a_node->m_level = -1;
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::InitRect(Rect* a_rect)
+{
+  for(int index = 0; index < NUMDIMS; ++index)
+  {
+    a_rect->m_min[index] = (ELEMTYPE)0;
+    a_rect->m_max[index] = (ELEMTYPE)0;
+  }
+}
+
+
+// Inserts a new data rectangle into the index structure.
+// Recursively descends tree, propagates splits back up.
+// Returns 0 if node was not split.  Old node updated.
+// If node was split, returns 1 and sets the pointer pointed to by
+// new_node to point to the new node.  Old node updated to become one of two.
+// The level argument specifies the number of steps up from the leaf
+// level to insert; e.g. a data rectangle goes in at level = 0.
+RTREE_TEMPLATE
+bool RTREE_QUAL::InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level)
+{
+  ASSERT(a_rect && a_node && a_newNode);
+  ASSERT(a_level >= 0 && a_level <= a_node->m_level);
+
+  int index;
+  Branch branch;
+  Node* otherNode;
+
+  // Still above level for insertion, go down tree recursively
+  if(a_node->m_level > a_level)
+  {
+    index = PickBranch(a_rect, a_node);
+    if (!InsertRectRec(a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level))
+    {
+      // Child was not split
+      a_node->m_branch[index].m_rect = CombineRect(a_rect, &(a_node->m_branch[index].m_rect));
+      return false;
+    }
+    else // Child was split
+    {
+      a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
+      branch.m_child = otherNode;
+      branch.m_rect = NodeCover(otherNode);
+      return AddBranch(&branch, a_node, a_newNode);
+    }
+  }
+  else if(a_node->m_level == a_level) // Have reached level for insertion. Add rect, split if necessary
+  {
+    branch.m_rect = *a_rect;
+    branch.m_child = (Node*) a_id;
+    // Child field of leaves contains id of data record
+    return AddBranch(&branch, a_node, a_newNode);
+  }
+  else
+  {
+    // Should never occur
+    ASSERT(0);
+    return false;
+  }
+}
+
+
+// Insert a data rectangle into an index structure.
+// InsertRect provides for splitting the root;
+// returns 1 if root was split, 0 if it was not.
+// The level argument specifies the number of steps up from the leaf
+// level to insert; e.g. a data rectangle goes in at level = 0.
+// InsertRect2 does the recursion.
+//
+RTREE_TEMPLATE
+bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level)
+{
+  ASSERT(a_rect && a_root);
+  ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level);
+#ifdef _DEBUG
+  for(int index=0; index < NUMDIMS; ++index)
+  {
+    ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]);
+  }
+#endif //_DEBUG  
+
+  Node* newRoot;
+  Node* newNode;
+  Branch branch;
+
+  if(InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level))  // Root split
+  {
+    newRoot = AllocNode();  // Grow tree taller and new root
+    newRoot->m_level = (*a_root)->m_level + 1;
+    branch.m_rect = NodeCover(*a_root);
+    branch.m_child = *a_root;
+    AddBranch(&branch, newRoot, NULL);
+    branch.m_rect = NodeCover(newNode);
+    branch.m_child = newNode;
+    AddBranch(&branch, newRoot, NULL);
+    *a_root = newRoot;
+    return true;
+  }
+
+  return false;
+}
+
+
+// Find the smallest rectangle that includes all rectangles in branches of a node.
+RTREE_TEMPLATE
+typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node)
+{
+  ASSERT(a_node);
+  
+  int firstTime = true;
+  Rect rect;
+  InitRect(&rect);
+  
+  for(int index = 0; index < a_node->m_count; ++index)
+  {
+    if(firstTime)
+    {
+      rect = a_node->m_branch[index].m_rect;
+      firstTime = false;
+    }
+    else
+    {
+      rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect));
+    }
+  }
+  
+  return rect;
+}
+
+
+// Add a branch to a node.  Split the node if necessary.
+// Returns 0 if node not split.  Old node updated.
+// Returns 1 if node split, sets *new_node to address of new node.
+// Old node updated, becomes one of two.
+RTREE_TEMPLATE
+bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode)
+{
+  ASSERT(a_branch);
+  ASSERT(a_node);
+
+  if(a_node->m_count < MAXNODES)  // Split won't be necessary
+  {
+    a_node->m_branch[a_node->m_count] = *a_branch;
+    ++a_node->m_count;
+
+    return false;
+  }
+  else
+  {
+    ASSERT(a_newNode);
+    
+    SplitNode(a_node, a_branch, a_newNode);
+    return true;
+  }
+}
+
+
+// Disconnect a dependent node.
+// Caller must return (or stop using iteration index) after this as count has changed
+RTREE_TEMPLATE
+void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index)
+{
+  ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES));
+  ASSERT(a_node->m_count > 0);
+
+  // Remove element by swapping with the last element to prevent gaps in array
+  a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
+  
+  --a_node->m_count;
+}
+
+
+// Pick a branch.  Pick the one that will need the smallest increase
+// in area to accomodate the new rectangle.  This will result in the
+// least total area for the covering rectangles in the current node.
+// In case of a tie, pick the one which was smaller before, to get
+// the best resolution when searching.
+RTREE_TEMPLATE
+int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node)
+{
+  ASSERT(a_rect && a_node);
+  
+  bool firstTime = true;
+  ELEMTYPEREAL increase;
+  ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1;
+  ELEMTYPEREAL area;
+  ELEMTYPEREAL bestArea;
+  int best;
+  Rect tempRect;
+
+  for(int index=0; index < a_node->m_count; ++index)
+  {
+    Rect* curRect = &a_node->m_branch[index].m_rect;
+    area = CalcRectVolume(curRect);
+    tempRect = CombineRect(a_rect, curRect);
+    increase = CalcRectVolume(&tempRect) - area;
+    if((increase < bestIncr) || firstTime)
+    {
+      best = index;
+      bestArea = area;
+      bestIncr = increase;
+      firstTime = false;
+    }
+    else if((increase == bestIncr) && (area < bestArea))
+    {
+      best = index;
+      bestArea = area;
+      bestIncr = increase;
+    }
+  }
+  return best;
+}
+
+
+// Combine two rectangles into larger one containing both
+RTREE_TEMPLATE
+typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB)
+{
+  ASSERT(a_rectA && a_rectB);
+
+  Rect newRect;
+
+  for(int index = 0; index < NUMDIMS; ++index)
+  {
+    newRect.m_min[index] = Min(a_rectA->m_min[index], a_rectB->m_min[index]);
+    newRect.m_max[index] = Max(a_rectA->m_max[index], a_rectB->m_max[index]);
+  }
+
+  return newRect;
+}
+
+
+
+// Split a node.
+// Divides the nodes branches and the extra one between two nodes.
+// Old node is one of the new ones, and one really new one is created.
+// Tries more than one method for choosing a partition, uses best result.
+RTREE_TEMPLATE
+void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode)
+{
+  ASSERT(a_node);
+  ASSERT(a_branch);
+
+  // Could just use local here, but member or external is faster since it is reused
+  PartitionVars localVars;
+  PartitionVars* parVars = &localVars;
+  int level;
+
+  // Load all the branches into a buffer, initialize old node
+  level = a_node->m_level;
+  GetBranches(a_node, a_branch, parVars);
+
+  // Find partition
+  ChoosePartition(parVars, MINNODES);
+
+  // Put branches from buffer into 2 nodes according to chosen partition
+  *a_newNode = AllocNode();
+  (*a_newNode)->m_level = a_node->m_level = level;
+  LoadNodes(a_node, *a_newNode, parVars);
+  
+  ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total);
+}
+
+
+// Calculate the n-dimensional volume of a rectangle
+RTREE_TEMPLATE
+ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect)
+{
+  ASSERT(a_rect);
+  
+  ELEMTYPEREAL volume = (ELEMTYPEREAL)1;
+
+  for(int index=0; index<NUMDIMS; ++index)
+  {
+    volume *= a_rect->m_max[index] - a_rect->m_min[index];
+  }
+  
+  ASSERT(volume >= (ELEMTYPEREAL)0);
+  
+  return volume;
+}
+
+
+// The exact volume of the bounding sphere for the given Rect
+RTREE_TEMPLATE
+ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect)
+{
+  ASSERT(a_rect);
+   
+  ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0;
+  ELEMTYPEREAL radius;
+
+  for(int index=0; index < NUMDIMS; ++index) 
+  {
+    ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index] - (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f;
+    sumOfSquares += halfExtent * halfExtent;
+  }
+
+  radius = (ELEMTYPEREAL)sqrt(sumOfSquares);
+  
+  // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
+  if(NUMDIMS == 3)
+  {
+    return (radius * radius * radius * m_unitSphereVolume);
+  }
+  else if(NUMDIMS == 2)
+  {
+    return (radius * radius * m_unitSphereVolume);
+  }
+  else
+  {
+    return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume);
+  }
+}
+
+
+// Use one of the methods to calculate retangle volume
+RTREE_TEMPLATE
+ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect)
+{
+#ifdef RTREE_USE_SPHERICAL_VOLUME
+  return RectSphericalVolume(a_rect); // Slower but helps certain merge cases
+#else // RTREE_USE_SPHERICAL_VOLUME
+  return RectVolume(a_rect); // Faster but can cause poor merges
+#endif // RTREE_USE_SPHERICAL_VOLUME  
+}
+
+
+// Load branch buffer with branches from full node plus the extra branch.
+RTREE_TEMPLATE
+void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars)
+{
+  ASSERT(a_node);
+  ASSERT(a_branch);
+
+  ASSERT(a_node->m_count == MAXNODES);
+    
+  // Load the branch buffer
+  for(int index=0; index < MAXNODES; ++index)
+  {
+    a_parVars->m_branchBuf[index] = a_node->m_branch[index];
+  }
+  a_parVars->m_branchBuf[MAXNODES] = *a_branch;
+  a_parVars->m_branchCount = MAXNODES + 1;
+
+  // Calculate rect containing all in the set
+  a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
+  for(int index=1; index < MAXNODES+1; ++index)
+  {
+    a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect);
+  }
+  a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit);
+
+  InitNode(a_node);
+}
+
+
+// Method #0 for choosing a partition:
+// As the seeds for the two groups, pick the two rects that would waste the
+// most area if covered by a single rectangle, i.e. evidently the worst pair
+// to have in the same group.
+// Of the remaining, one at a time is chosen to be put in one of the two groups.
+// The one chosen is the one with the greatest difference in area expansion
+// depending on which group - the rect most strongly attracted to one group
+// and repelled from the other.
+// If one group gets too full (more would force other group to violate min
+// fill requirement) then other group gets the rest.
+// These last are the ones that can go in either group most easily.
+RTREE_TEMPLATE
+void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill)
+{
+  ASSERT(a_parVars);
+  
+  ELEMTYPEREAL biggestDiff;
+  int group, chosen, betterGroup;
+  
+  InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
+  PickSeeds(a_parVars);
+
+  while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
+       && (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
+       && (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill)))
+  {
+    biggestDiff = (ELEMTYPEREAL) -1;
+    for(int index=0; index<a_parVars->m_total; ++index)
+    {
+      if(!a_parVars->m_taken[index])
+      {
+        Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
+        Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
+        Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
+        ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
+        ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
+        ELEMTYPEREAL diff = growth1 - growth0;
+        if(diff >= 0)
+        {
+          group = 0;
+        }
+        else
+        {
+          group = 1;
+          diff = -diff;
+        }
+
+        if(diff > biggestDiff)
+        {
+          biggestDiff = diff;
+          chosen = index;
+          betterGroup = group;
+        }
+        else if((diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]))
+        {
+          chosen = index;
+          betterGroup = group;
+        }
+      }
+    }
+    Classify(chosen, betterGroup, a_parVars);
+  }
+
+  // If one group too full, put remaining rects in the other
+  if((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
+  {
+    if(a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill)
+    {
+      group = 1;
+    }
+    else
+    {
+      group = 0;
+    }
+    for(int index=0; index<a_parVars->m_total; ++index)
+    {
+      if(!a_parVars->m_taken[index])
+      {
+        Classify(index, group, a_parVars);
+      }
+    }
+  }
+
+  ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
+  ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) && 
+        (a_parVars->m_count[1] >= a_parVars->m_minFill));
+}
+
+
+// Copy branches from the buffer into two nodes according to the partition.
+RTREE_TEMPLATE
+void RTREE_QUAL::LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars)
+{
+  ASSERT(a_nodeA);
+  ASSERT(a_nodeB);
+  ASSERT(a_parVars);
+
+  for(int index=0; index < a_parVars->m_total; ++index)
+  {
+    ASSERT(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1);
+    
+    if(a_parVars->m_partition[index] == 0)
+    {
+      AddBranch(&a_parVars->m_branchBuf[index], a_nodeA, NULL);
+    }
+    else if(a_parVars->m_partition[index] == 1)
+    {
+      AddBranch(&a_parVars->m_branchBuf[index], a_nodeB, NULL);
+    }
+  }
+}
+
+
+// Initialize a PartitionVars structure.
+RTREE_TEMPLATE
+void RTREE_QUAL::InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill)
+{
+  ASSERT(a_parVars);
+
+  a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
+  a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL)0;
+  a_parVars->m_total = a_maxRects;
+  a_parVars->m_minFill = a_minFill;
+  for(int index=0; index < a_maxRects; ++index)
+  {
+    a_parVars->m_taken[index] = false;
+    a_parVars->m_partition[index] = -1;
+  }
+}
+
+
+RTREE_TEMPLATE
+void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars)
+{
+  int seed0, seed1;
+  ELEMTYPEREAL worst, waste;
+  ELEMTYPEREAL area[MAXNODES+1];
+
+  for(int index=0; index<a_parVars->m_total; ++index)
+  {
+    area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect);
+  }
+
+  worst = -a_parVars->m_coverSplitArea - 1;
+  for(int indexA=0; indexA < a_parVars->m_total-1; ++indexA)
+  {
+    for(int indexB = indexA+1; indexB < a_parVars->m_total; ++indexB)
+    {
+      Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect);
+      waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB];
+      if(waste > worst)
+      {
+        worst = waste;
+        seed0 = indexA;
+        seed1 = indexB;
+      }
+    }
+  }
+  Classify(seed0, 0, a_parVars);
+  Classify(seed1, 1, a_parVars);
+}
+
+
+// Put a branch in one of the groups.
+RTREE_TEMPLATE
+void RTREE_QUAL::Classify(int a_index, int a_group, PartitionVars* a_parVars)
+{
+  ASSERT(a_parVars);
+  ASSERT(!a_parVars->m_taken[a_index]);
+
+  a_parVars->m_partition[a_index] = a_group;
+  a_parVars->m_taken[a_index] = true;
+
+  if (a_parVars->m_count[a_group] == 0)
+  {
+    a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
+  }
+  else
+  {
+    a_parVars->m_cover[a_group] = CombineRect(&a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group]);
+  }
+  a_parVars->m_area[a_group] = CalcRectVolume(&a_parVars->m_cover[a_group]);
+  ++a_parVars->m_count[a_group];
+}
+
+
+// Delete a data rectangle from an index structure.
+// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
+// Returns 1 if record not found, 0 if success.
+// RemoveRect provides for eliminating the root.
+RTREE_TEMPLATE
+bool RTREE_QUAL::RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root)
+{
+  ASSERT(a_rect && a_root);
+  ASSERT(*a_root);
+
+  Node* tempNode;
+  ListNode* reInsertList = NULL;
+
+  if(!RemoveRectRec(a_rect, a_id, *a_root, &reInsertList))
+  {
+    // Found and deleted a data item
+    // Reinsert any branches from eliminated nodes
+    while(reInsertList)
+    {
+      tempNode = reInsertList->m_node;
+
+      for(int index = 0; index < tempNode->m_count; ++index)
+      {
+        InsertRect(&(tempNode->m_branch[index].m_rect),
+                   tempNode->m_branch[index].m_data,
+                   a_root,
+                   tempNode->m_level);
+      }
+      
+      ListNode* remLNode = reInsertList;
+      reInsertList = reInsertList->m_next;
+      
+      FreeNode(remLNode->m_node);
+      FreeListNode(remLNode);
+    }
+    
+    // Check for redundant root (not leaf, 1 child) and eliminate
+    if((*a_root)->m_count == 1 && (*a_root)->IsInternalNode())
+    {
+      tempNode = (*a_root)->m_branch[0].m_child;
+      
+      ASSERT(tempNode);
+      FreeNode(*a_root);
+      *a_root = tempNode;
+    }
+    return false;
+  }
+  else
+  {
+    return true;
+  }
+}
+
+
+// Delete a rectangle from non-root part of an index structure.
+// Called by RemoveRect.  Descends tree recursively,
+// merges branches on the way back up.
+// Returns 1 if record not found, 0 if success.
+RTREE_TEMPLATE
+bool RTREE_QUAL::RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode)
+{
+  ASSERT(a_rect && a_node && a_listNode);
+  ASSERT(a_node->m_level >= 0);
+
+  if(a_node->IsInternalNode())  // not a leaf node
+  {
+    for(int index = 0; index < a_node->m_count; ++index)
+    {
+      if(Overlap(a_rect, &(a_node->m_branch[index].m_rect)))
+      {
+        if(!RemoveRectRec(a_rect, a_id, a_node->m_branch[index].m_child, a_listNode))
+        {
+          if(a_node->m_branch[index].m_child->m_count >= MINNODES)
+          {
+            // child removed, just resize parent rect
+            a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
+          }
+          else
+          {
+            // child removed, not enough entries in node, eliminate node
+            ReInsert(a_node->m_branch[index].m_child, a_listNode);
+            DisconnectBranch(a_node, index); // Must return after this call as count has changed
+          }
+          return false;
+        }
+      }
+    }
+    return true;
+  }
+  else // A leaf node
+  {
+    for(int index = 0; index < a_node->m_count; ++index)
+    {
+      if(a_node->m_branch[index].m_child == (Node*)a_id)
+      {
+        DisconnectBranch(a_node, index); // Must return after this call as count has changed
+        return false;
+      }
+    }
+    return true;
+  }
+}
+
+
+// Decide whether two rectangles overlap.
+RTREE_TEMPLATE
+bool RTREE_QUAL::Overlap(Rect* a_rectA, Rect* a_rectB)
+{
+  ASSERT(a_rectA && a_rectB);
+
+  for(int index=0; index < NUMDIMS; ++index)
+  {
+    if (a_rectA->m_min[index] > a_rectB->m_max[index] ||
+        a_rectB->m_min[index] > a_rectA->m_max[index])
+    {
+      return false;
+    }
+  }
+  return true;
+}
+
+
+// Add a node to the reinsertion list.  All its branches will later
+// be reinserted into the index structure.
+RTREE_TEMPLATE
+void RTREE_QUAL::ReInsert(Node* a_node, ListNode** a_listNode)
+{
+  ListNode* newListNode;
+
+  newListNode = AllocListNode();
+  newListNode->m_node = a_node;
+  newListNode->m_next = *a_listNode;
+  *a_listNode = newListNode;
+}
+
+
+// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
+RTREE_TEMPLATE
+bool RTREE_QUAL::Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context)
+{
+  ASSERT(a_node);
+  ASSERT(a_node->m_level >= 0);
+  ASSERT(a_rect);
+
+  if(a_node->IsInternalNode()) // This is an internal node in the tree
+  {
+    for(int index=0; index < a_node->m_count; ++index)
+    {
+      if(Overlap(a_rect, &a_node->m_branch[index].m_rect))
+      {
+        if(!Search(a_node->m_branch[index].m_child, a_rect, a_foundCount, a_resultCallback, a_context))
+        {
+          return false; // Don't continue searching
+        }
+      }
+    }
+  }
+  else // This is a leaf node
+  {
+    for(int index=0; index < a_node->m_count; ++index)
+    {
+      if(Overlap(a_rect, &a_node->m_branch[index].m_rect))
+      {
+        DATATYPE& id = a_node->m_branch[index].m_data;
+        
+        // NOTE: There are different ways to return results.  Here's where to modify
+        if(&a_resultCallback)
+        {
+          ++a_foundCount;
+          if(!a_resultCallback(id, a_context))
+          {
+            return false; // Don't continue searching
+          }
+        }
+      }
+    }
+  }
+
+  return true; // Continue searching
+}
+
+
+#undef RTREE_TEMPLATE
+#undef RTREE_QUAL
+
+#endif //RTREE_H
-- 
GitLab