diff --git a/Fltk/GUI.cpp b/Fltk/GUI.cpp
index a7859defa57084793a6bceba878137a612c4aa52..7c3f81ef4790991153cbc3be35446a32a36cbcfc 100644
--- a/Fltk/GUI.cpp
+++ b/Fltk/GUI.cpp
@@ -1,4 +1,4 @@
-// $Id: GUI.cpp,v 1.47 2001-02-18 18:04:03 geuzaine Exp $
+// $Id: GUI.cpp,v 1.48 2001-02-18 18:43:11 geuzaine Exp $
 
 // To make the interface as visually consistent as possible, please:
 // - use the BH, BW, WB, IW values for button heights/widths, window borders, etc.
@@ -1109,7 +1109,7 @@ void GUI::create_mesh_options_window(){
   if(!init_mesh_options_window){
     init_mesh_options_window = 1 ;
 
-    int width = 29*CTX.fontsize;
+    int width = 25*CTX.fontsize;
     int height = 5*WB+9*BH ;
     
     mesh_window = new Fl_Window(width,height);
@@ -1138,7 +1138,7 @@ void GUI::create_mesh_options_window(){
 	mesh_value[1]->minimum(0.001);
 	mesh_value[1]->maximum(1000); 
 	mesh_value[1]->step(0.001);
-        mesh_value[2] = new Fl_Value_Input(2*WB, 2*WB+6*BH, IW, BH, "Characteristic length scaling factor");
+        mesh_value[2] = new Fl_Value_Input(2*WB, 2*WB+6*BH, IW, BH, "Characteristic length factor");
 	mesh_value[2]->minimum(0.001);
 	mesh_value[2]->maximum(1000); 
 	mesh_value[2]->step(0.001);
diff --git a/tutorial/README b/tutorial/README
index e87631a97220de0e71145e7ee4e9c173b25fc7ea..7f1e1295bc3171e1e83e7e0d08c803f0e90a0f3b 100644
--- a/tutorial/README
+++ b/tutorial/README
@@ -1,4 +1,4 @@
-$Id: README,v 1.3 2001-02-03 13:10:26 geuzaine Exp $
+$Id: README,v 1.4 2001-02-18 18:38:54 geuzaine Exp $
 
 Here are the examples in the Gmsh tutorial. These examples are
 commented (both C and C++-style comments can be used in Gmsh input
diff --git a/tutorial/tutorial.html b/tutorial/tutorial.html
new file mode 100644
index 0000000000000000000000000000000000000000..44f7611e02a3e21f781af19c242140fede0cf524
--- /dev/null
+++ b/tutorial/tutorial.html
@@ -0,0 +1,1121 @@
+<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">
+<HTML>
+<HEAD>
+<TITLE>Enscript Output</TITLE>
+</HEAD>
+<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#1F00FF" ALINK="#FF0000" VLINK="#9900DD">
+<A NAME="top">
+<H1>Contents</H1>
+<OL>
+  <LI><A HREF="#file1">README</A>
+  <LI><A HREF="#file2">t1.geo</A>
+  <LI><A HREF="#file3">t2.geo</A>
+  <LI><A HREF="#file4">t3.geo</A>
+  <LI><A HREF="#file5">t4.geo</A>
+  <LI><A HREF="#file6">t5.geo</A>
+  <LI><A HREF="#file7">t6.geo</A>
+  <LI><A HREF="#file8">t7.geo</A>
+  <LI><A HREF="#file9">t8.geo</A>
+</OL>
+<HR>
+<A NAME="file1">
+<H1>README 1/9</H1>
+[<A HREF="#top">top</A>][prev][<A HREF="#file2">next</A>]
+<PRE>
+$Id: tutorial.html,v 1.6 2001-02-18 18:41:05 geuzaine Exp $
+
+Here are the examples in the Gmsh tutorial. These examples are
+commented (both C and C++-style comments can be used in Gmsh input
+files) and should introduce new features gradually, starting with
+t1.geo.
+
+(The tutorial does not explain the mesh and post-processing file
+formats. See the FORMATS file for this.)
+
+There are two ways to actually run these examples with Gmsh. (The
+operations to run Gmsh may vary depending on your operating system. In
+the following, we will assume that you're working with a UNIX-like
+shell.) The first working mode of Gmsh is the interactive graphical
+mode. To launch Gmsh in interactive mode, just type
+
+&gt; gmsh
+
+at the prompt on the command line. This will open two windows: the
+graphic window (with a status bar at the bottom) and the menu window
+(with a menu bar and some context dependent buttons). To open the
+first tutorial file, you have to select the 'File-&gt;Open' menu, and
+choose 't1.geo' in the input field. To perform the mesh generation,
+you have to go to the mesh module (by selecting 'Mesh' in the module
+menu) and choose the required dimension in the context-dependent
+buttons ('1D' will mesh all the curves; '2D' will mesh all the
+surfaces ---as well as all the curves if '1D' was not called before;
+'3D' will mesh all the volumes ---and all the surfaces if '2D' was not
+called before). To save the resulting mesh, select 'File-&gt;Save_Mesh'
+in the menu bar. The default mesh file name is based on the name of
+the first input file on the command line (or 'unnamed' if there wasn't
+any input file given), with an appended extension depending on the
+mesh format.
+
+Note: nearly all the interactive commands have shortcuts. Select
+'Help-&gt;Short_Help' in the menu bar to learn about these shortcuts.
+
+Instead of opening the tutorial with the 'File-&gt;Open' menu, it is
+often more convenient to put the file name on the command line, here
+for example with:
+
+&gt; gmsh t1.geo
+
+(The '.geo' extension can also be omitted.)
+
+Note: to define new geometries, if it is often handy to define the
+variables and the points directly in the input files, it is almost
+always simpler to define the curves, the surfaces and the volumes
+interactively. To do so, just follow the context dependent buttons in
+the Geometry module. For example, to create a line, select 'Geometry'
+in the module menu, and then select 'Elementary, Add, Create,
+Line'. You will then be asked (in the status bar of the graphic
+window) to select a list of points, and to click 'e' when you're
+done. Once the interactive command is completed, a string is
+automatically added at the end of the currently opened project file.
+
+
+The second operating mode for Gmsh is the non-interactive mode. In
+this mode, there is no graphical user interface, and all operations
+are performed without any user interaction. To mesh the first tutorial
+in non-interactive mode, just type:
+
+&gt; gmsh t1.geo -2
+
+Several files can be loaded simultaneously in Gmsh. The first one
+defines the project, while the others are appended (&quot;merged&quot;) to this
+project. You can merge such files with the 'File-&gt;Merge' menu, or by
+directly specifying the names of the files on the command line. This
+is most useful for post-processing purposes. For example, to merge the
+post-processing views contained in the files 'view1.pos' and
+'view2.pos' together with the first tutorial 't1.geo', you can type
+the following line on the command line:
+
+&gt; gmsh t1.geo view1.pos view2.pos
+
+In the Post-Processing module (select 'Post_Processing' in the module
+menu), two view buttons will appear, respectively labeled &quot;a scalar
+map&quot; and &quot;a vector map&quot;. A left mouse click will toggle the visibility
+of the selected view. A right mouse click provides access to the
+view's options. If you want the modifications made to one view to
+affect also all other views, select the 'Link all views' option in the
+'Options-&gt;Post-Processing' menu.
+
+Note: all the options specified interactively can also be directly
+specified in the ascii input files. The current options can be saved
+into a file by selecting 'File-&gt;Save_as', or simply viewed by pressing
+the '?' button in the status bar.
+
+
+OK, that's all, folks. Enjoy the tutorial.
+
+</PRE>
+<HR>
+<A NAME="file2">
+<H1>t1.geo 2/9</H1>
+[<A HREF="#top">top</A>][<A HREF="#file1">prev</A>][<A HREF="#file3">next</A>]
+<PRE>
+<I><FONT COLOR="#B22222">/********************************************************************* 
+ *
+ *  Gmsh tutorial 1
+ * 
+ *  Variables, Elementary entities (Points, Lines, Surfaces), Physical
+ *  entities (Points, Lines, Surfaces)
+ *
+ *********************************************************************/</FONT></I>
+
+<I><FONT COLOR="#B22222">// All geometry description in Gmsh is made by means of a special
+</FONT></I><I><FONT COLOR="#B22222">// language (looking somewhat similar to C). The simplest construction
+</FONT></I><I><FONT COLOR="#B22222">// of this language is the 'affectation'. 
+</FONT></I>
+<I><FONT COLOR="#B22222">// The following command (all commands end with a semi colon) defines
+</FONT></I><I><FONT COLOR="#B22222">// a variable called 'lc' and affects the value 0.007 to 'lc':
+</FONT></I>
+lc = 0.007 ;
+
+<I><FONT COLOR="#B22222">// This newly created variable can be used to define the first Gmsh
+</FONT></I><I><FONT COLOR="#B22222">// elementary entity, a 'Point'. A Point is defined by a list of four
+</FONT></I><I><FONT COLOR="#B22222">// numbers: its three coordinates (x, y and z), and a characteristic
+</FONT></I><I><FONT COLOR="#B22222">// length, which sets the target mesh size at the point:
+</FONT></I>
+Point(1) = {0,  0,  0, 9.e-1 * lc} ;
+
+<I><FONT COLOR="#B22222">// As can be seen in this definition, more complex expressions can be
+</FONT></I><I><FONT COLOR="#B22222">// constructed from variables on the fly. Here, the product of the
+</FONT></I><I><FONT COLOR="#B22222">// variable 'lc' by the constant 9.e-1 is given as the fourth argument
+</FONT></I><I><FONT COLOR="#B22222">// of the list defining the point.
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// The following general syntax rule is applied for the definition of
+</FONT></I><I><FONT COLOR="#B22222">// all geometrical entities:
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">//    &quot;If a number defines a new entity, it is enclosed between
+</FONT></I><I><FONT COLOR="#B22222">//    parentheses. If a number refers to a previously defined entity,
+</FONT></I><I><FONT COLOR="#B22222">//    it is enclosed between braces.&quot;
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// Three additional points are then defined:
+</FONT></I>
+Point(2) = {.1, 0,  0, lc} ;
+Point(3) = {.1, .3, 0, lc} ;
+Point(4) = {0,  .3, 0, lc} ;
+
+<I><FONT COLOR="#B22222">// The second elementary geometrical entity in Gmsh is the
+</FONT></I><I><FONT COLOR="#B22222">// curve. Amongst curves, straight lines are the simplest. A straight
+</FONT></I><I><FONT COLOR="#B22222">// line is defined by a list of point numbers. For example, the line 1
+</FONT></I><I><FONT COLOR="#B22222">// starts at point 1 and ends at point 2:
+</FONT></I>
+Line(1) = {1,2} ;
+Line(2) = {3,2} ;
+Line(3) = {3,4} ;
+Line(4) = {4,1} ;
+
+<I><FONT COLOR="#B22222">// The third elementary entity is the surface. In order to define a
+</FONT></I><I><FONT COLOR="#B22222">// simple rectangular surface from the four lines defined above, a
+</FONT></I><I><FONT COLOR="#B22222">// line loop has first to be defined. A line loop is a list of
+</FONT></I><I><FONT COLOR="#B22222">// connected lines, each line being associated a sign, depending of
+</FONT></I><I><FONT COLOR="#B22222">// its orientation.
+</FONT></I>
+Line Loop(5) = {4,1,-2,3} ;
+
+<I><FONT COLOR="#B22222">// The surface is then defined as a list of line loops (only one
+</FONT></I><I><FONT COLOR="#B22222">// here):
+</FONT></I>
+Plane Surface(6) = {5} ;
+
+<I><FONT COLOR="#B22222">// At this level, Gmsh knows everything to display the rectangular
+</FONT></I><I><FONT COLOR="#B22222">// surface 6 and to mesh it. But a supplementary step is needed in
+</FONT></I><I><FONT COLOR="#B22222">// order for assign region numbers to the various elements in the mesh
+</FONT></I><I><FONT COLOR="#B22222">// (the points, the lines and the triangles discretizing the points 1
+</FONT></I><I><FONT COLOR="#B22222">// to 4, the lines 1 to 4 and the surface 6). This is achieved by the
+</FONT></I><I><FONT COLOR="#B22222">// definition of Physical entities. Physical entities will group
+</FONT></I><I><FONT COLOR="#B22222">// elements belonging to several elementary entities by giving them a
+</FONT></I><I><FONT COLOR="#B22222">// common number (a region number), and specifying their orientation.
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// For example, the two points 1 and 2 can be grouped into the
+</FONT></I><I><FONT COLOR="#B22222">// physical entity 1:
+</FONT></I>
+Physical Point(1) = {1,2} ;
+
+<I><FONT COLOR="#B22222">// Consequently, two punctual elements will be saved in the output
+</FONT></I><I><FONT COLOR="#B22222">// files, both with the region number 1. The mechanism is identical
+</FONT></I><I><FONT COLOR="#B22222">// for line or surface elements:
+</FONT></I>
+Physical Line(10) = {1,2,4} ;
+Physical Surface(100) = {6} ;
+
+<I><FONT COLOR="#B22222">// All the line elements which will be created during the mesh of the
+</FONT></I><I><FONT COLOR="#B22222">// lines 1, 2 and 4 will be saved in the output file with the
+</FONT></I><I><FONT COLOR="#B22222">// associated region number 10; and all the triangular elements
+</FONT></I><I><FONT COLOR="#B22222">// resulting from the discretization of the surface 6 will be
+</FONT></I><I><FONT COLOR="#B22222">// associated the region number 100. 
+</FONT></I>
+<I><FONT COLOR="#B22222">// It is important to notice that only those elements which belong to
+</FONT></I><I><FONT COLOR="#B22222">// physical groups will be saved in the output file if the file format
+</FONT></I><I><FONT COLOR="#B22222">// is the msh format (the native mesh file format for Gmsh). For a
+</FONT></I><I><FONT COLOR="#B22222">// description of the mesh and post-processing formats, see the FORMATS
+</FONT></I><I><FONT COLOR="#B22222">// file.
+</FONT></I></PRE>
+<HR>
+<A NAME="file3">
+<H1>t2.geo 3/9</H1>
+[<A HREF="#top">top</A>][<A HREF="#file2">prev</A>][<A HREF="#file4">next</A>]
+<PRE>
+<I><FONT COLOR="#B22222">/********************************************************************* 
+ *
+ *  Gmsh tutorial 2
+ * 
+ *  Includes, Geometrical transformations, Elementary entities
+ *  (Volumes), Physical entities (Volumes)
+ *
+ *********************************************************************/</FONT></I>
+
+<I><FONT COLOR="#B22222">// The first tutorial file will serve as a basis to construct this
+</FONT></I><I><FONT COLOR="#B22222">// one: it can be included like this:
+</FONT></I>
+Include &quot;t1.geo&quot; ;
+
+<I><FONT COLOR="#B22222">// There are several possibilities to build a more complex geometry
+</FONT></I><I><FONT COLOR="#B22222">// from the one previously defined in 't1.geo'.
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// New points, lines and surfaces can first be directly defined in the
+</FONT></I><I><FONT COLOR="#B22222">// same way as in 't1.geo':
+</FONT></I>
+Point(5) = {0, .4, 0, lc} ;
+Line(5) = {4, 5} ;
+
+<I><FONT COLOR="#B22222">// But Gmsh also provides geometrical transformation mechanisms to
+</FONT></I><I><FONT COLOR="#B22222">// move (translate, rotate, ...), add (translate, rotate, ...) or
+</FONT></I><I><FONT COLOR="#B22222">// extrude (translate, rotate) elementary geometrical entities. For
+</FONT></I><I><FONT COLOR="#B22222">// example, the point 3 can be moved by 0.05 units on the left with:
+</FONT></I>
+Translate {-0.05,0,0} { Point{3} ; }
+
+<I><FONT COLOR="#B22222">// The resulting point can also be duplicated and translated by 0.1
+</FONT></I><I><FONT COLOR="#B22222">// along the y axis:
+</FONT></I>
+Translate {0,0.1,0} { Duplicata{ Point{3} ; } }
+
+<I><FONT COLOR="#B22222">// Translation, rotation and extrusion commands of course not only
+</FONT></I><I><FONT COLOR="#B22222">// apply to points, but also to lines and surfaces. The following
+</FONT></I><I><FONT COLOR="#B22222">// command extrudes the surface 6 defined in 't1.geo', as well as a
+</FONT></I><I><FONT COLOR="#B22222">// new surface 11, along the z axis by 'h':
+</FONT></I>
+h = 0.12 ;
+Extrude Surface { 6, {0, 0, h} } ;
+
+Line(7) = {3, 6} ; Line(8) = {6,5} ; Line Loop(10) = {5,-8,-7,3};
+
+Plane Surface(11) = {10};
+
+Extrude Surface { 11, {0, 0, h} } ;
+
+<I><FONT COLOR="#B22222">// All these geometrical transformations generate automatically new
+</FONT></I><I><FONT COLOR="#B22222">// elementary entities. The following commands permit to specify
+</FONT></I><I><FONT COLOR="#B22222">// manually a characteristic length for some of the automatically
+</FONT></I><I><FONT COLOR="#B22222">// created points:
+</FONT></I>
+Characteristic Length{6,22,2,3,16,12} = lc * 3 ;
+
+<I><FONT COLOR="#B22222">// If the transformation tools are handy to create complex geometries,
+</FONT></I><I><FONT COLOR="#B22222">// it is sometimes useful to be generate the flat geometry, consisting
+</FONT></I><I><FONT COLOR="#B22222">// only of the explicit list elementary entities. This can be achieved
+</FONT></I><I><FONT COLOR="#B22222">// by selecting the 'File-&gt;Print-&gt;Geo' menu or by typing
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// &gt; gmsh t2.geo -0
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// on the command line.
+</FONT></I>
+<I><FONT COLOR="#B22222">// Volumes are the fourth type of elementary entities in Gmsh. In the
+</FONT></I><I><FONT COLOR="#B22222">// same way one defines line loops to build surfaces, one has to
+</FONT></I><I><FONT COLOR="#B22222">// define surface loops to build volumes. The following volumes are
+</FONT></I><I><FONT COLOR="#B22222">// very simple, without holes (and thus consist of only one surface
+</FONT></I><I><FONT COLOR="#B22222">// loop):
+</FONT></I>
+Surface Loop(145) = {121,11,131,135,139,144};
+Volume(146) = {145};
+
+Surface Loop(146) = {121,6,109,113,117,122};
+Volume(147) = {146};
+
+<I><FONT COLOR="#B22222">// To save all volumic (tetrahedral) elements of volume 146 and 147
+</FONT></I><I><FONT COLOR="#B22222">// with the associate region number 1, a Physical Volume must be
+</FONT></I><I><FONT COLOR="#B22222">// defined:
+</FONT></I>
+Physical Volume (1) = {146,147} ;
+
+<I><FONT COLOR="#B22222">// Congratulations! You've created your first fully unstructured
+</FONT></I><I><FONT COLOR="#B22222">// tetrahedral 3D mesh!
+</FONT></I></PRE>
+<HR>
+<A NAME="file4">
+<H1>t3.geo 4/9</H1>
+[<A HREF="#top">top</A>][<A HREF="#file3">prev</A>][<A HREF="#file5">next</A>]
+<PRE>
+<I><FONT COLOR="#B22222">/********************************************************************* 
+ *
+ *  Gmsh tutorial 3
+ * 
+ *  Extruded meshes, Options
+ *
+ *********************************************************************/</FONT></I>
+
+<I><FONT COLOR="#B22222">// Again, the first tutorial example is included:
+</FONT></I>
+Include &quot;t1.geo&quot; ;
+
+<I><FONT COLOR="#B22222">// As in 't2.geo', an extrusion along the z axis will be performed:
+</FONT></I>
+h = 0.1 ;
+
+<I><FONT COLOR="#B22222">// But contrary to 't2.geo', not only the geometry will be extruded,
+</FONT></I><I><FONT COLOR="#B22222">// but we also the 2D mesh. This is done with the same Extrude
+</FONT></I><I><FONT COLOR="#B22222">// command, but by specifying the number of layers (here, there will
+</FONT></I><I><FONT COLOR="#B22222">// be two layers, of respectively 2 and 4 elements in depth), with
+</FONT></I><I><FONT COLOR="#B22222">// volume numbers 9000 and 9001 and respective heights of 0.33*h and
+</FONT></I><I><FONT COLOR="#B22222">// 0.67*h:
+</FONT></I>
+Extrude Surface { 6, {0,0,h} } { Layers { {2,4}, {9000,9001}, {0.33,1} } ; } ;
+
+<I><FONT COLOR="#B22222">// The extrusion can also be combined with a rotation, and the
+</FONT></I><I><FONT COLOR="#B22222">// extruded 3D mesh can be recombined into prisms (wedges). All
+</FONT></I><I><FONT COLOR="#B22222">// rotations are specified by an axis direction ({0,1,0}), an axis
+</FONT></I><I><FONT COLOR="#B22222">// point ({0,0,0}) and a rotation angle (Pi/2):
+</FONT></I>
+Extrude Surface { 122, {0,1,0} , {-0.1,0,0.1} , -Pi/2 } { 
+  Recombine ; Layers { {7}, {9002}, {1} } ; 
+};
+
+<I><FONT COLOR="#B22222">// All interactive options can also be set directly in the input file.
+</FONT></I><I><FONT COLOR="#B22222">// For example, the following lines redefine the background color of
+</FONT></I><I><FONT COLOR="#B22222">// the graphic window, the color of the points of the geometry,
+</FONT></I><I><FONT COLOR="#B22222">// disable the display of the axes, and select an initial viewpoint in
+</FONT></I><I><FONT COLOR="#B22222">// xyz mode (disabling the interactive trackball-like rotation mode):
+</FONT></I>
+General.Color.Background = Red;
+Geometry.Color.Points = Orange;
+General.Axes = 0;
+
+General.Trackball = 0;
+General.RotationX = 10;
+General.RotationY = 70;
+General.TranslationX = -0.1;
+
+<I><FONT COLOR="#B22222">// Note: all colors can be defined literally or numerically, i.e.
+</FONT></I><I><FONT COLOR="#B22222">// 'General.Color.Background = Red' is equivalent to
+</FONT></I><I><FONT COLOR="#B22222">// 'General.Color.Background = {255,0,0}'. As with user-defined
+</FONT></I><I><FONT COLOR="#B22222">// variables, the options can be used either as right hand or left
+</FONT></I><I><FONT COLOR="#B22222">// hand sides, so that
+</FONT></I>
+Geometry.Color.Surfaces = Geometry.Color.Points;
+
+<I><FONT COLOR="#B22222">// will set the color of the surfaces in the geometry to the same
+</FONT></I><I><FONT COLOR="#B22222">// color as the points.
+</FONT></I>
+<I><FONT COLOR="#B22222">// For UNIX versions, a click on the '?'  button in status bar of the
+</FONT></I><I><FONT COLOR="#B22222">// graphic window will dump all current options to the terminal. To
+</FONT></I><I><FONT COLOR="#B22222">// save the options to a file, use the 'File-&gt;Save_Options_as' menu.
+</FONT></I>
+</PRE>
+<HR>
+<A NAME="file5">
+<H1>t4.geo 5/9</H1>
+[<A HREF="#top">top</A>][<A HREF="#file4">prev</A>][<A HREF="#file6">next</A>]
+<PRE>
+<I><FONT COLOR="#B22222">/********************************************************************* 
+ *
+ *  Gmsh tutorial 4
+ * 
+ *  Built-in functions, Holes
+ *
+ *********************************************************************/</FONT></I>
+
+cm = 1e-02 ;
+
+e1 = 4.5*cm ; e2 = 6*cm / 2 ; e3 =  5*cm / 2 ;
+
+h1 = 5*cm ; h2 = 10*cm ; h3 = 5*cm ; h4 = 2*cm ; h5 = 4.5*cm ;
+
+R1 = 1*cm ; R2 = 1.5*cm ; r = 1*cm ;
+
+ccos = ( -h5*R1 + e2 * Hypot(h5,Hypot(e2,R1)) ) / (h5^2 + e2^2) ;
+ssin = Sqrt(1-ccos^2) ;
+
+Lc1 = 0.01 ;
+Lc2 = 0.003 ;
+
+<I><FONT COLOR="#B22222">// A whole set of operators can be used, which can be combined in all
+</FONT></I><I><FONT COLOR="#B22222">// the expressions. These operators are defined in a similar way to
+</FONT></I><I><FONT COLOR="#B22222">// their C or C++ equivalents (with the exception of '^'):
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">//   '-' (in both unary and binary versions, i.e. as in '-1' and '1-2')
+</FONT></I><I><FONT COLOR="#B22222">//   '!' (the negation)
+</FONT></I><I><FONT COLOR="#B22222">//   '+'
+</FONT></I><I><FONT COLOR="#B22222">//   '*'
+</FONT></I><I><FONT COLOR="#B22222">//   '/'
+</FONT></I><I><FONT COLOR="#B22222">//   '%' (the rest of the integer division)
+</FONT></I><I><FONT COLOR="#B22222">//   '&lt;'
+</FONT></I><I><FONT COLOR="#B22222">//   '&gt;'
+</FONT></I><I><FONT COLOR="#B22222">//   '&lt;='
+</FONT></I><I><FONT COLOR="#B22222">//   '&gt;='
+</FONT></I><I><FONT COLOR="#B22222">//   '=='
+</FONT></I><I><FONT COLOR="#B22222">//   '!='
+</FONT></I><I><FONT COLOR="#B22222">//   '&amp;&amp;' (and)
+</FONT></I><I><FONT COLOR="#B22222">//   '||' (or)
+</FONT></I><I><FONT COLOR="#B22222">//   '||' (or)
+</FONT></I><I><FONT COLOR="#B22222">//   '^' (power)
+</FONT></I><I><FONT COLOR="#B22222">//   '?' ':' (the ternary operator)
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// Grouping is done, as usual, with parentheses.
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// In addition to these operators, all C mathematical functions can
+</FONT></I><I><FONT COLOR="#B22222">// also be used (note the first capital letter):
+</FONT></I><I><FONT COLOR="#B22222">// 
+</FONT></I><I><FONT COLOR="#B22222">//   Exp(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Log(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Log10(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Sqrt(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Sin(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Asin(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Cos(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Acos(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Tan(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Atan(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Atan2(x,y)
+</FONT></I><I><FONT COLOR="#B22222">//   Sinh(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Cosh(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Tanh(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Fabs(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Floor(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Ceil(x)
+</FONT></I><I><FONT COLOR="#B22222">//   Fmod(x,y)
+</FONT></I><I><FONT COLOR="#B22222">//   Hypot(x,y)
+</FONT></I>
+<I><FONT COLOR="#B22222">// An additional function 'Rand(x)' generates an random number in
+</FONT></I><I><FONT COLOR="#B22222">// [0,x]
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">//   Rand(x)
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// The only predefined constant in Gmsh is Pi.
+</FONT></I>
+Point(1) = { -e1-e2, 0.0  , 0.0 , Lc1};
+Point(2) = { -e1-e2, h1   , 0.0 , Lc1};
+Point(3) = { -e3-r , h1   , 0.0 , Lc2};
+Point(4) = { -e3-r , h1+r , 0.0 , Lc2};
+Point(5) = { -e3   , h1+r , 0.0 , Lc2};
+Point(6) = { -e3   , h1+h2, 0.0 , Lc1};
+Point(7) = {  e3   , h1+h2, 0.0 , Lc1};
+Point(8) = {  e3   , h1+r , 0.0 , Lc2};
+Point(9) = {  e3+r , h1+r , 0.0 , Lc2};
+Point(10)= {  e3+r , h1   , 0.0 , Lc2};
+Point(11)= {  e1+e2, h1   , 0.0 , Lc1};
+Point(12)= {  e1+e2, 0.0  , 0.0 , Lc1};
+Point(13)= {  e2   , 0.0  , 0.0 , Lc1};
+
+Point(14)= {  R1 / ssin , h5+R1*ccos, 0.0 , Lc2};
+Point(15)= {  0.0       , h5        , 0.0 , Lc2};
+Point(16)= { -R1 / ssin , h5+R1*ccos, 0.0 , Lc2};
+Point(17)= { -e2        , 0.0       , 0.0 , Lc1};
+
+Point(18)= { -R2  , h1+h3   , 0.0 , Lc2};
+Point(19)= { -R2  , h1+h3+h4, 0.0 , Lc2};
+Point(20)= {  0.0 , h1+h3+h4, 0.0 , Lc2};
+Point(21)= {  R2  , h1+h3+h4, 0.0 , Lc2};
+Point(22)= {  R2  , h1+h3   , 0.0 , Lc2};
+Point(23)= {  0.0 , h1+h3   , 0.0 , Lc2};
+
+Point(24)= {  0 , h1+h3+h4+R2, 0.0 , Lc2};
+Point(25)= {  0 , h1+h3-R2,    0.0 , Lc2};
+
+Line(1)  = {1 ,17};
+Line(2)  = {17,16};
+
+<I><FONT COLOR="#B22222">// All curves are not straight lines... Circles are defined by a list
+</FONT></I><I><FONT COLOR="#B22222">// of three point numbers, which represent the starting point, the
+</FONT></I><I><FONT COLOR="#B22222">// center and the end point, respectively. All circles have to be
+</FONT></I><I><FONT COLOR="#B22222">// defined in the trigonometric (counter-clockwise) sense.  Note that
+</FONT></I><I><FONT COLOR="#B22222">// the 3 points should not be aligned (otherwise the plane in which
+</FONT></I><I><FONT COLOR="#B22222">// the circle lies has to be defined, by 'Circle(num) =
+</FONT></I><I><FONT COLOR="#B22222">// {start,center,end} Plane {nx,ny,nz}').
+</FONT></I>
+Circle(3) = {14,15,16};
+Line(4)  = {14,13};
+Line(5)  = {13,12};
+Line(6)  = {12,11};
+Line(7)  = {11,10};
+Circle(8) = { 8, 9,10};
+Line(9)  = { 8, 7};
+Line(10) = { 7, 6};
+Line(11) = { 6, 5};
+Circle(12) = { 3, 4, 5};
+Line(13) = { 3, 2};
+Line(14) = { 2, 1};
+Line(15) = {18,19};
+Circle(16) = {21,20,24};
+Circle(17) = {24,20,19};
+Circle(18) = {18,23,25};
+Circle(19) = {25,23,22};
+Line(20) = {21,22};
+
+Line Loop(21) = {17,-15,18,19,-20,16};
+Plane Surface(22) = {21};
+
+<I><FONT COLOR="#B22222">// The surface is made of two line loops, i.e. it has one hole:
+</FONT></I>
+Line Loop(23) = {11,-12,13,14,1,2,-3,4,5,6,7,-8,9,10};
+Plane Surface(24) = {23,21};
+
+Physical Surface(1) = {22};
+Physical Surface(2) = {24};
+</PRE>
+<HR>
+<A NAME="file6">
+<H1>t5.geo 6/9</H1>
+[<A HREF="#top">top</A>][<A HREF="#file5">prev</A>][<A HREF="#file7">next</A>]
+<PRE>
+<I><FONT COLOR="#B22222">/********************************************************************* 
+ *
+ *  Gmsh tutorial 5
+ * 
+ *  Characteristic lengths, Arrays of variables, Functions, Loops
+ *
+ *********************************************************************/</FONT></I>
+
+<I><FONT COLOR="#B22222">// This defines some characteristic lengths:
+</FONT></I>
+lcar1 = .1;
+lcar2 = .0005;
+lcar3 = .075;
+
+<I><FONT COLOR="#B22222">// In order to change these lengths globally (without changing the
+</FONT></I><I><FONT COLOR="#B22222">// file), a global scaling factor for all characteristic lengths can
+</FONT></I><I><FONT COLOR="#B22222">// be specified on the command line with the option '-clscale'. For
+</FONT></I><I><FONT COLOR="#B22222">// example, with:
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// &gt; gmsh t5 -clscale 1
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// this example produces a mesh of approximately 2000 nodes and
+</FONT></I><I><FONT COLOR="#B22222">// 10,000 tetrahedra (in 3 seconds on an alpha workstation running at
+</FONT></I><I><FONT COLOR="#B22222">// 666MHz). With 
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// &gt; gmsh t5 -clscale 0.2
+</FONT></I><I><FONT COLOR="#B22222">//
+</FONT></I><I><FONT COLOR="#B22222">// (i.e. with all characteristic lengths divided by 5), the mesh
+</FONT></I><I><FONT COLOR="#B22222">// counts approximately 170,000 nodes and one million tetrahedra
+</FONT></I><I><FONT COLOR="#B22222">// (and the computation takes 16 minutes on the same machine :-( So
+</FONT></I><I><FONT COLOR="#B22222">// there is still a lot of work to do to achieve decent performance
+</FONT></I><I><FONT COLOR="#B22222">// with Gmsh...)
+</FONT></I>
+Point(1) = {0.5,0.5,0.5,lcar2}; Point(2) = {0.5,0.5,0,lcar1};
+Point(3) = {0,0.5,0.5,lcar1};   Point(4) = {0,0,0.5,lcar1}; 
+Point(5) = {0.5,0,0.5,lcar1};   Point(6) = {0.5,0,0,lcar1};
+Point(7) = {0,0.5,0,lcar1};     Point(8) = {0,1,0,lcar1};
+Point(9) = {1,1,0,lcar1};       Point(10) = {0,0,1,lcar1};
+Point(11) = {0,1,1,lcar1};      Point(12) = {1,1,1,lcar1};
+Point(13) = {1,0,1,lcar1};      Point(14) = {1,0,0,lcar1};
+
+Line(1) = {8,9};    Line(2) = {9,12};  Line(3) = {12,11};
+Line(4) = {11,8};   Line(5) = {9,14};  Line(6) = {14,13};
+Line(7) = {13,12};  Line(8) = {11,10}; Line(9) = {10,13};
+Line(10) = {10,4};  Line(11) = {4,5};  Line(12) = {5,6};
+Line(13) = {6,2};   Line(14) = {2,1};  Line(15) = {1,3};
+Line(16) = {3,7};   Line(17) = {7,2};  Line(18) = {3,4};
+Line(19) = {5,1};   Line(20) = {7,8};  Line(21) = {6,14};
+
+Line Loop(22) = {11,19,15,18};       Plane Surface(23) = {22};
+Line Loop(24) = {16,17,14,15};       Plane Surface(25) = {24};
+Line Loop(26) = {-17,20,1,5,-21,13}; Plane Surface(27) = {26};
+Line Loop(28) = {4,1,2,3};           Plane Surface(29) = {28};
+Line Loop(30) = {7,-2,5,6};          Plane Surface(31) = {30};
+Line Loop(32) = {6,-9,10,11,12,21};  Plane Surface(33) = {32};
+Line Loop(34) = {7,3,8,9};           Plane Surface(35) = {34};
+Line Loop(36) = {10,-18,16,20,-4,8}; Plane Surface(37) = {36};
+Line Loop(38) = {-14,-13,-12,19};    Plane Surface(39) = {38};
+
+<I><FONT COLOR="#B22222">// Instead of using included files, one can also define functions. In
+</FONT></I><I><FONT COLOR="#B22222">// the following function, the reserved variable 'newp' is used, which
+</FONT></I><I><FONT COLOR="#B22222">// automatically selects a new point number. This number is chosen as
+</FONT></I><I><FONT COLOR="#B22222">// the highest current point number, plus one. Analogously to 'newp',
+</FONT></I><I><FONT COLOR="#B22222">// there exists a variable 'newreg' which selects the highest number
+</FONT></I><I><FONT COLOR="#B22222">// of all entities other than points, plus one.
+</FONT></I>
+<I><FONT COLOR="#B22222">// Note: there are no local variables. This will be changed in a
+</FONT></I><I><FONT COLOR="#B22222">// future version of Gmsh.
+</FONT></I>
+Function CheeseHole 
+
+  p1 = newp; Point(p1) = {x,  y,  z,  lcar3} ;
+  p2 = newp; Point(p2) = {x+r,y,  z,  lcar3} ;
+  p3 = newp; Point(p3) = {x,  y+r,z,  lcar3} ;
+  p4 = newp; Point(p4) = {x,  y,  z+r,lcar3} ;
+  p5 = newp; Point(p5) = {x-r,y,  z,  lcar3} ;
+  p6 = newp; Point(p6) = {x,  y-r,z,  lcar3} ;
+  p7 = newp; Point(p7) = {x,  y,  z-r,lcar3} ;
+
+  c1 = newreg; Circle(c1) = {p2,p1,p7};
+  c2 = newreg; Circle(c2) = {p7,p1,p5};
+  c3 = newreg; Circle(c3) = {p5,p1,p4};
+  c4 = newreg; Circle(c4) = {p4,p1,p2};
+  c5 = newreg; Circle(c5) = {p2,p1,p3};
+  c6 = newreg; Circle(c6) = {p3,p1,p5};
+  c7 = newreg; Circle(c7) = {p5,p1,p6};
+  c8 = newreg; Circle(c8) = {p6,p1,p2};
+  c9 = newreg; Circle(c9) = {p7,p1,p3};
+  c10 = newreg; Circle(c10) = {p3,p1,p4};
+  c11 = newreg; Circle(c11) = {p4,p1,p6};
+  c12 = newreg; Circle(c12) = {p6,p1,p7};
+
+<I><FONT COLOR="#B22222">// All surfaces are not plane... Here is the way to define ruled
+</FONT></I><I><FONT COLOR="#B22222">// surfaces (which have 3 or 4 borders):
+</FONT></I>
+  l1 = newreg; Line Loop(l1) = {c5,c10,c4};   Ruled Surface(newreg) = {l1};
+  l2 = newreg; Line Loop(l2) = {c9,-c5,c1};   Ruled Surface(newreg) = {l2};
+  l3 = newreg; Line Loop(l3) = {-c12,c8,c1};  Ruled Surface(newreg) = {l3};
+  l4 = newreg; Line Loop(l4) = {c8,-c4,c11};  Ruled Surface(newreg) = {l4};
+  l5 = newreg; Line Loop(l5) = {-c10,c6,c3};  Ruled Surface(newreg) = {l5};
+  l6 = newreg; Line Loop(l6) = {-c11,-c3,c7}; Ruled Surface(newreg) = {l6};
+  l7 = newreg; Line Loop(l7) = {c2,c7,c12};   Ruled Surface(newreg) = {l7};
+  l8 = newreg; Line Loop(l8) = {-c6,-c9,c2};  Ruled Surface(newreg) = {l8};
+
+<I><FONT COLOR="#B22222">// Arrays of variables can be manipulated in the same way as classical
+</FONT></I><I><FONT COLOR="#B22222">// variables. Warning: accessing an uninitialized element in an array
+</FONT></I><I><FONT COLOR="#B22222">// will produce an unpredictable result. Note that whole arrays can
+</FONT></I><I><FONT COLOR="#B22222">// also be initialized on the fly (e.g. l[]={1,2,7} is valid).
+</FONT></I>
+  theloops[t] = newreg ; 
+
+  Surface Loop(theloops[t]) = {l8+1, l5+1, l1+1, l2+1, -(l3+1), -(l7+1), l6+1, l4+1};
+
+  thehole = newreg ; 
+  Volume(thehole) = theloops[t] ;
+
+Return
+
+
+x = 0 ; y = 0.75 ; z = 0 ; r = 0.09 ;
+
+<I><FONT COLOR="#B22222">// A For loop is used to generate five holes in the cube:
+</FONT></I>
+For t In {1:5}
+
+  x += 0.166 ; 
+  z += 0.166 ; 
+
+<I><FONT COLOR="#B22222">// This command calls the function CheeseHole. Note that, instead of
+</FONT></I><I><FONT COLOR="#B22222">// defining a function, we could have define a file containing the
+</FONT></I><I><FONT COLOR="#B22222">// same code, and used the Include command to include this file.
+</FONT></I>
+  Call CheeseHole ;
+
+<I><FONT COLOR="#B22222">// A physical volume is defined for each cheese hole
+</FONT></I>
+  Physical Volume (t) = thehole ;
+ 
+<I><FONT COLOR="#B22222">// The Printf function permits to print the value of variables on the
+</FONT></I><I><FONT COLOR="#B22222">// terminal, in a way similar to the 'printf' C function:
+</FONT></I>
+  Printf(&quot;The cheese hole %g (center = {%g,%g,%g}, radius = %g) has number %g!&quot;,
+	 t, x, y, z, r, thehole) ;
+
+<I><FONT COLOR="#B22222">// Note: All Gmsh variables are treated internally as double precision
+</FONT></I><I><FONT COLOR="#B22222">// numbers. The format string should thus only contain valid double
+</FONT></I><I><FONT COLOR="#B22222">// precision number format specifiers (see the C or C++ language
+</FONT></I><I><FONT COLOR="#B22222">// reference for more details).
+</FONT></I>
+EndFor
+
+<I><FONT COLOR="#B22222">// This is the surface loop for the exterior surface of the cube:
+</FONT></I>
+theloops[0] = newreg ;
+
+Surface Loop(theloops[0]) = {35,31,29,37,33,23,39,25,27} ;
+
+<I><FONT COLOR="#B22222">// The volume of the cube, without the 5 cheese holes, is defined by 6
+</FONT></I><I><FONT COLOR="#B22222">// surface loops (the exterior surface and the five interior loops).
+</FONT></I><I><FONT COLOR="#B22222">// To reference an array of variables, its identifier is followed by
+</FONT></I><I><FONT COLOR="#B22222">// '[]':
+</FONT></I>
+Volume(186) = {theloops[]} ;
+
+<I><FONT COLOR="#B22222">// This physical volume assigns the region number 10 to the tetrahedra
+</FONT></I><I><FONT COLOR="#B22222">// paving the cube (but not the holes, whose elements were tagged from
+</FONT></I><I><FONT COLOR="#B22222">// 1 to 5 in the 'For' loop)
+</FONT></I>
+Physical Volume (10) = 186 ;
+
+</PRE>
+<HR>
+<A NAME="file7">
+<H1>t6.geo 7/9</H1>
+[<A HREF="#top">top</A>][<A HREF="#file6">prev</A>][<A HREF="#file8">next</A>]
+<PRE>
+<I><FONT COLOR="#B22222">/********************************************************************* 
+ *
+ *  Gmsh tutorial 6
+ * 
+ *  Transfinite meshes
+ *
+ *********************************************************************/</FONT></I>
+
+r_int  = 0.05 ;
+r_ext  = 0.051 ;
+r_far  = 0.125 ;
+r_inf  = 0.4 ;
+phi1   = 30. * (Pi/180.) ;
+angl   = 45. * (Pi/180.) ;
+
+nbpt_phi   = 5 ; nbpt_int   = 20 ;
+nbpt_arc1  = 10 ; nbpt_arc2  = 10 ;
+nbpt_shell = 10 ; nbpt_far   = 25 ; nbpt_inf = 15 ;
+
+lc0 = 0.1 ; lc1 = 0.1 ; lc2 = 0.3 ;
+
+Point(1) = {0,     0, 0, lc0} ;
+Point(2) = {r_int, 0, 0, lc0} ;
+Point(3) = {r_ext, 0, 0, lc1} ;
+Point(4) = {r_far, 0, 0, lc2} ;
+Point(5) = {r_inf, 0, 0, lc2} ;
+Point(6) = {0, 0,  r_int, lc0} ;
+Point(7) = {0, 0,  r_ext, lc1} ;
+Point(8) = {0, 0,  r_far, lc2} ;
+Point(9) = {0, 0,  r_inf, lc2} ;
+
+Point(10) = {r_int*Cos(phi1), r_int*Sin(phi1), 0, lc0} ;
+Point(11) = {r_ext*Cos(phi1), r_ext*Sin(phi1), 0, lc1} ;
+Point(12) = {r_far*Cos(phi1), r_far*Sin(phi1), 0, lc2} ;
+Point(13) = {r_inf*Cos(phi1), r_inf*Sin(phi1), 0, lc2} ;
+
+Point(14) = {r_int/2,           0,   0,               lc2} ;
+Point(15) = {r_int/2*Cos(phi1), r_int/2*Sin(phi1), 0, lc2} ;
+Point(16) = {r_int/2,           0,                 r_int/2, lc2} ;
+Point(17) = {r_int/2*Cos(phi1), r_int/2*Sin(phi1), r_int/2, lc2} ;
+Point(18) = {0, 0,  r_int/2, lc2} ;
+Point(19) = {r_int*Cos(angl),           0,                         r_int*Sin(angl), lc2} ;
+Point(20) = {r_int*Cos(angl)*Cos(phi1), r_int*Cos(angl)*Sin(phi1), r_int*Sin(angl), lc2} ;
+Point(21) = {r_ext*Cos(angl),           0,                         r_ext*Sin(angl), lc2} ;
+Point(22) = {r_ext*Cos(angl)*Cos(phi1), r_ext*Cos(angl)*Sin(phi1), r_ext*Sin(angl), lc2} ;
+Point(23) = {r_far*Cos(angl),           0,                         r_far*Sin(angl), lc2} ;
+Point(24) = {r_far*Cos(angl)*Cos(phi1), r_far*Cos(angl)*Sin(phi1), r_far*Sin(angl), lc2} ;
+Point(25) = {r_inf,           0,                r_inf, lc2} ;
+Point(26) = {r_inf*Cos(phi1), r_inf*Sin(phi1),  r_inf, lc2} ;
+
+Circle(1) = {2,1,19};   Circle(2) = {19,1,6};   Circle(3) = {3,1,21};
+Circle(4) = {21,1,7};   Circle(5) = {4,1,23};   Circle(6) = {23,1,8};   
+Line(7) = {5,25};   Line(8) = {25,9};
+Circle(9) = {10,1,20};  Circle(10) = {20,1,6};  Circle(11) = {11,1,22};
+Circle(12) = {22,1,7};  Circle(13) = {12,1,24}; Circle(14) = {24,1,8};
+Line(15) = {13,26}; Line(16) = {26,9};
+Circle(17) = {19,1,20}; Circle(18) = {21,1,22}; Circle(19) = {23,1,24};
+Circle(20) = {25,1,26}; Circle(21) = {2,1,10};  Circle(22) = {3,1,11};  
+Circle(23) = {4,1,12};  Circle(24) = {5,1,13};
+
+Line(25) = {1,14};  Line(26) = {14,2};  Line(27) = {2,3};   Line(28) = {3,4};
+Line(29) = {4,5};   Line(30) = {1,15};  Line(31) = {15,10}; Line(32) = {10,11};
+Line(33) = {11,12}; Line(34) = {12,13}; Line(35) = {14,15}; Line(36) = {14,16};
+Line(37) = {15,17}; Line(38) = {16,17}; Line(39) = {18,16}; Line(40) = {18,17};
+Line(41) = {1,18};  Line(42) = {18,6};  Line(43) = {6,7};   Line(44) = {16,19};
+Line(45) = {19,21}; Line(46) = {21,23}; Line(47) = {23,25}; Line(48) = {17,20};
+Line(49) = {20,22}; Line(50) = {22,24}; Line(51) = {24,26}; Line(52) = {7,8};
+Line(53) = {8,9};
+
+Line Loop(54) = {39,-36,-25,41};  Ruled Surface(55) = {54};
+Line Loop(56) = {44,-1,-26,36};   Ruled Surface(57) = {56};
+Line Loop(58) = {3,-45,-1,27};    Ruled Surface(59) = {58};
+Line Loop(60) = {5,-46,-3,28};    Ruled Surface(61) = {60};
+Line Loop(62) = {7,-47,-5,29};    Ruled Surface(63) = {62};
+Line Loop(64) = {-2,-44,-39,42};  Ruled Surface(65) = {64};
+Line Loop(66) = {-4,-45,2,43};    Ruled Surface(67) = {66};
+Line Loop(68) = {-6,-46,4,52};    Ruled Surface(69) = {68};
+Line Loop(70) = {-8,-47,6,53};    Ruled Surface(71) = {70};
+Line Loop(72) = {-40,-41,30,37};  Ruled Surface(73) = {72};
+Line Loop(74) = {48,-9,-31,37};   Ruled Surface(75) = {74};
+Line Loop(76) = {49,-11,-32,9};   Ruled Surface(77) = {76};
+Line Loop(78) = {-50,-11,33,13};  Ruled Surface(79) = {78};
+Line Loop(80) = {-51,-13,34,15};  Ruled Surface(81) = {80};
+Line Loop(82) = {10,-42,40,48};   Ruled Surface(83) = {82};
+Line Loop(84) = {12,-43,-10,49};  Ruled Surface(85) = {84};
+Line Loop(86) = {14,-52,-12,50};  Ruled Surface(87) = {86};
+Line Loop(88) = {16,-53,-14,51};  Ruled Surface(89) = {88};
+Line Loop(90) = {-30,25,35};      Ruled Surface(91) = {90};
+Line Loop(92) = {-40,39,38};      Ruled Surface(93) = {92};
+Line Loop(94) = {37,-38,-36,35};  Ruled Surface(95) = {94};
+Line Loop(96) = {-48,-38,44,17};  Ruled Surface(97) = {96};
+Line Loop(98) = {18,-49,-17,45};  Ruled Surface(99) = {98};
+Line Loop(100) = {19,-50,-18,46}; Ruled Surface(101) = {100};
+Line Loop(102) = {20,-51,-19,47}; Ruled Surface(103) = {102};
+Line Loop(104) = {-2,17,10};      Ruled Surface(105) = {104};
+Line Loop(106) = {-9,-21,1,17};   Ruled Surface(107) = {106};
+Line Loop(108) = {-4,18,12};      Ruled Surface(109) = {108};
+Line Loop(110) = {-11,-22,3,18};  Ruled Surface(111) = {110};
+Line Loop(112) = {-13,-23,5,19};  Ruled Surface(113) = {112};
+Line Loop(114) = {-6,19,14};      Ruled Surface(115) = {114};
+Line Loop(116) = {-15,-24,7,20};  Ruled Surface(117) = {116};
+Line Loop(118) = {-8,20,16};      Ruled Surface(119) = {118};
+Line Loop(120) = {-31,-35,26,21}; Ruled Surface(121) = {120};
+Line Loop(122) = {32,-22,-27,21}; Ruled Surface(123) = {122};
+Line Loop(124) = {33,-23,-28,22}; Ruled Surface(125) = {124};
+Line Loop(126) = {34,-24,-29,23}; Ruled Surface(127) = {126};
+
+Surface Loop(128) = {93,-73,-55,95,-91};         Volume(129) = {128}; <I><FONT COLOR="#B22222">// int
+</FONT></I>Surface Loop(130) = {107,-75,-97,95,57,121};     Volume(131) = {130}; <I><FONT COLOR="#B22222">// int b
+</FONT></I>Surface Loop(132) = {105,-65,-97,-83,-93};       Volume(133) = {132}; <I><FONT COLOR="#B22222">// int h
+</FONT></I>Surface Loop(134) = {99,-111,77,123,59,107};     Volume(135) = {134}; <I><FONT COLOR="#B22222">// shell b
+</FONT></I>Surface Loop(136) = {99,-109,67,105,85};         Volume(137) = {136}; <I><FONT COLOR="#B22222">// shell h
+</FONT></I>Surface Loop(138) = {113,79,-101,-111,-125,-61}; Volume(139) = {138}; <I><FONT COLOR="#B22222">// ext b
+</FONT></I>Surface Loop(140) = {115,-69,-101,-87,-109};     Volume(141) = {140}; <I><FONT COLOR="#B22222">// ext h
+</FONT></I>Surface Loop(142) = {103,-117,-81,113,127,63};   Volume(143) = {142}; <I><FONT COLOR="#B22222">// inf b
+</FONT></I>Surface Loop(144) = {89,-119,71,103,115};        Volume(145) = {144}; <I><FONT COLOR="#B22222">// inf h
+</FONT></I>
+<I><FONT COLOR="#B22222">// Transfinite line commands explicitly specify the number of points
+</FONT></I><I><FONT COLOR="#B22222">// and their distribution. A minus sign in the argument list of the
+</FONT></I><I><FONT COLOR="#B22222">// transfinite command will produce the reversed mesh.
+</FONT></I>
+Transfinite Line{35,21,22,23,24,38,17,18,19,20}   = nbpt_phi ;
+Transfinite Line{31,26,48,44,42}                  = nbpt_int Using Progression 0.95;
+Transfinite Line{41,37,36,9,11,1,3,13,5,15,7}     = nbpt_arc1 ;
+Transfinite Line{30,25,40,39,10,2,12,4,14,6,16,8} = nbpt_arc2 ;
+Transfinite Line{32,27,49,45,43}                  = nbpt_shell ;
+Transfinite Line{33,28,46,50,52}                  = nbpt_far Using Progression 1.05 ;
+Transfinite Line{34,29,51,47,53}                  = nbpt_inf Using Progression 0.01;
+
+<I><FONT COLOR="#B22222">// *All* 2D and 3D transfinite entities are defined in respect to
+</FONT></I><I><FONT COLOR="#B22222">// points. The ordering of the points defines the ordering of the mesh
+</FONT></I><I><FONT COLOR="#B22222">// elements.
+</FONT></I>
+Transfinite Surface{55} = {1,14,16,18};
+Transfinite Surface{57} = {14,2,19,16};
+Transfinite Surface{59} = {2,3,21,19};
+Transfinite Surface{61} = {3,4,23,21};
+Transfinite Surface{63} = {4,5,25,23};
+Transfinite Surface{73} = {1,15,17,18};
+Transfinite Surface{75} = {15,10,20,17};
+Transfinite Surface{77} = {10,11,22,20};
+Transfinite Surface{79} = {11,12,24,22};
+Transfinite Surface{81} = {12,13,26,24};
+Transfinite Surface{65} = {18,16,19,6};
+Transfinite Surface{67} = {6,19,21,7};
+Transfinite Surface{69} = {7,21,23,8};
+Transfinite Surface{71} = {8,23,25,9};
+Transfinite Surface{83} = {17,18,6,20};
+Transfinite Surface{85} = {20,6,7,22};
+Transfinite Surface{87} = {22,7,8,24};
+Transfinite Surface{89} = {24,8,9,26};
+Transfinite Surface{91} = {1,14,15};
+Transfinite Surface{95} = {15,14,16,17};
+Transfinite Surface{93} = {18,16,17};
+Transfinite Surface{121} = {15,14,2,10};
+Transfinite Surface{97} = {17,16,19,20};
+Transfinite Surface{123} = {10,2,3,11};
+Transfinite Surface{99} = {20,19,21,22};
+Transfinite Surface{107} = {10,2,19,20};
+Transfinite Surface{105} = {6,20,19};
+Transfinite Surface{109} = {7,22,21};
+Transfinite Surface{111} = {11,3,21,22};
+Transfinite Surface{101} = {22,21,23,24};
+Transfinite Surface{125} = {11,3,4,12};
+Transfinite Surface{115} = {8,24,23};
+Transfinite Surface{113} = {24,12,4,23};
+Transfinite Surface{127} = {12,13,5,4};
+Transfinite Surface{103} = {24,23,25,26};
+Transfinite Surface{119} = {9,26,25};
+Transfinite Surface{117} = {13,5,25,26};
+
+<I><FONT COLOR="#B22222">// As with Extruded meshes, the Recombine command tells Gmsh to
+</FONT></I><I><FONT COLOR="#B22222">// recombine the simplices into quadrangles, prisms or hexahedra when
+</FONT></I><I><FONT COLOR="#B22222">// possible. A colon in a list acts as in the 'For' loop: all surfaces
+</FONT></I><I><FONT COLOR="#B22222">// having numbers between 55 and 127 are considered.
+</FONT></I>
+Recombine Surface {55:127};
+
+<I><FONT COLOR="#B22222">// *All* 2D and 3D transfinite entities are defined in respect to
+</FONT></I><I><FONT COLOR="#B22222">// points. The ordering of the points defines the ordering of the mesh
+</FONT></I><I><FONT COLOR="#B22222">// elements.
+</FONT></I>
+Transfinite Volume{129} = {1,14,15,18,16,17};
+Transfinite Volume{131} = {17,16,14,15,20,19,2,10};
+Transfinite Volume{133} = {18,17,16,6,20,19};
+Transfinite Volume{135} = {10,2,19,20,11,3,21,22};
+Transfinite Volume{137} = {6,20,19,7,22,21};
+Transfinite Volume{139} = {11,3,4,12,22,21,23,24};
+Transfinite Volume{141} = {7,22,21,8,24,23};
+Transfinite Volume{143} = {12,4,5,13,24,23,25,26};
+Transfinite Volume{145} = {8,24,23,9,26,25};
+
+VolInt           = 1000 ;
+SurfIntPhi0      = 1001 ;
+SurfIntPhi1      = 1002 ;
+SurfIntZ0        = 1003 ;
+
+VolShell         = 2000 ;
+SurfShellInt     = 2001 ;
+SurfShellExt     = 2002 ;
+SurfShellPhi0    = 2003 ;
+SurfShellPhi1    = 2004 ;
+SurfShellZ0      = 2005 ;
+LineShellIntPhi0 = 2006 ;
+LineShellIntPhi1 = 2007 ;
+LineShellIntZ0   = 2008 ;
+PointShellInt    = 2009 ;
+
+VolExt           = 3000 ;
+VolInf           = 3001 ;
+SurfInf          = 3002 ;
+SurfExtInfPhi0   = 3003 ;
+SurfExtInfPhi1   = 3004 ;
+SurfExtInfZ0     = 3005 ;
+SurfInfRight     = 3006 ;
+SurfInfTop       = 3007 ;
+
+Physical Volume  (VolInt)           = {129,131,133} ;
+Physical Surface (SurfIntPhi0)      = {55,57,65} ;
+Physical Surface (SurfIntPhi1)      = {73,75,83} ;
+Physical Surface (SurfIntZ0)        = {91,121} ;
+
+Physical Volume  (VolShell)         = {135,137} ;
+Physical Surface (SurfShellInt)     = {105,107} ;
+Physical Surface (SurfShellExt)     = {109,111} ;
+Physical Surface (SurfShellPhi0)    = {59,67} ;
+Physical Surface (SurfShellPhi1)    = {77,85} ;
+Physical Surface (SurfShellZ0)      = {123} ;
+Physical Line    (LineShellIntPhi0) = {1,2} ;
+Physical Line    (LineShellIntPhi1) = {9,10} ;
+Physical Line    (LineShellIntZ0)   = 21 ;
+Physical Point   (PointShellInt)    = 6 ;
+
+Physical Volume  (VolExt)           = {139,141} ;
+Physical Volume  (VolInf)           = {143,145} ;
+Physical Surface (SurfExtInfPhi0)   = {61,63,69,71} ;
+Physical Surface (SurfExtInfPhi1)   = {79,87,81,89} ;
+Physical Surface (SurfExtInfZ0)     = {125,127} ;
+Physical Surface (SurfInfRight)     = {117} ;
+Physical Surface (SurfInfTop)       = {119} ;
+</PRE>
+<HR>
+<A NAME="file8">
+<H1>t7.geo 8/9</H1>
+[<A HREF="#top">top</A>][<A HREF="#file7">prev</A>][<A HREF="#file9">next</A>]
+<PRE>
+<I><FONT COLOR="#B22222">/********************************************************************* 
+ *
+ *  Gmsh tutorial 7
+ * 
+ *  Anisotropic meshes, Attractors
+ *
+ *********************************************************************/</FONT></I>
+
+<I><FONT COLOR="#B22222">// The new anisotropic 2D mesh generator can be selected with:
+</FONT></I>
+Mesh.Algorithm = 2 ;
+
+<I><FONT COLOR="#B22222">// One can force a 4 step Laplacian smoothing of the mesh with:
+</FONT></I>
+Mesh.Smoothing = 4 ;
+
+lc = .1;
+
+Point(1) = {0.0,0.0,0,lc};
+Point(2) = {1,0.0,0,lc};
+Point(3) = {1,1,0,lc};
+Point(4) = {0,1,0,lc};
+
+Line(1) = {3,2};
+Line(2) = {2,1};
+Line(3) = {1,4};
+Line(4) = {4,3};
+
+Line Loop(5) = {1,2,3,4};
+Plane Surface(6) = {5};
+
+Point(5) = {0.1,0.2,0,lc};
+Point(11) = {0.5,0.5,-1,lc};
+Point(22) = {0.6,0.6,1,lc};
+
+Line(5) = {11,22};
+
+<I><FONT COLOR="#B22222">// Anisotropic attractors can be defined on points and lines:
+</FONT></I>
+Attractor Line{5} = {1, 0.1, 7};
+
+Attractor Point{5} = {0.1, 0.5, 3};
+</PRE>
+<HR>
+<A NAME="file9">
+<H1>t8.geo 9/9</H1>
+[<A HREF="#top">top</A>][<A HREF="#file8">prev</A>][next]
+<PRE>
+<I><FONT COLOR="#B22222">/********************************************************************* 
+ *
+ *  Gmsh tutorial 8
+ * 
+ *  Post-Processing, Scripting, Animations, Options
+ *
+ *********************************************************************/</FONT></I>
+
+<I><FONT COLOR="#B22222">// The first example is included, as well as two post-processing maps
+</FONT></I><I><FONT COLOR="#B22222">// (for the format of the post-processing maps, see the FORMATS file):
+</FONT></I>
+Include &quot;t1.geo&quot; ;
+Include &quot;view1.pos&quot; ;
+Include &quot;view1.pos&quot; ;
+
+<I><FONT COLOR="#B22222">// Some general options are set (all the options specified
+</FONT></I><I><FONT COLOR="#B22222">// interactively can be directly specified in the ascii input
+</FONT></I><I><FONT COLOR="#B22222">// files. The current options can be saved into a file by selecting
+</FONT></I><I><FONT COLOR="#B22222">// 'File-&gt;Save_Options_as')...
+</FONT></I>
+General.Trackball = 0 ;
+General.RotationX = 0 ;
+General.RotationY = 0 ;
+General.RotationZ = 0 ;
+General.Color.Background = White ;
+General.Color.Text = Black ;
+General.Orthographic = 0 ;
+General.Axes = 0 ;
+
+<I><FONT COLOR="#B22222">// ...as well as some options for each post-processing view...
+</FONT></I>
+View[0].Name = &quot;This is a very stupid demonstration...&quot; ;
+View[0].IntervalsType = 2 ;
+View[0].OffsetZ = 0.05 ;
+View[0].RaiseZ = 0 ;
+View[0].Light = 1 ;
+
+View[1].Name = &quot;...of Gmsh's scripting capabilities&quot; ;
+View[1].IntervalsType = 1 ;
+View[1].ColorTable = { Green, Blue } ;
+View[1].NbIso = 10 ;
+
+<I><FONT COLOR="#B22222">// ...and loop from 1 to 255 with a step of 1 is performed (to use a
+</FONT></I><I><FONT COLOR="#B22222">// step different from 1, just add a third argument in the list,
+</FONT></I><I><FONT COLOR="#B22222">// e.g. 'For num In {0.5:1.5:0.1}' increments num from 0.5 to 1.5 with
+</FONT></I><I><FONT COLOR="#B22222">// a step of 0.1):
+</FONT></I>
+t = 0 ;
+
+For num In {1:255}
+
+  View[0].TimeStep = t ;
+  View[1].TimeStep = t ;
+
+  t = (View[0].TimeStep &lt; View[0].NbTimeStep-1) ? t+1 : 0 ;
+  
+  View[0].RaiseZ += 0.001*t ;
+
+  If (num == 3)
+    <I><FONT COLOR="#B22222">// We want to use mpeg_encode to create a nice 320x240 animation
+</FONT></I>    <I><FONT COLOR="#B22222">// for all frames when num==3:
+</FONT></I>    General.GraphicsWidth = 320 ; 
+    General.GraphicsHeight = 240 ;
+  EndIf
+
+  <I><FONT COLOR="#B22222">// It is possible to nest loops:
+</FONT></I>
+  For num2 In {1:50}
+
+    General.RotationX += 10 ;
+    General.RotationY = General.RotationX / 3 ;
+    General.RotationZ += 0.1 ;
+ 
+    Sleep 0.01; <I><FONT COLOR="#B22222">// sleep for 0.01 second
+</FONT></I>    Draw; <I><FONT COLOR="#B22222">// draw the scene
+</FONT></I>
+    If ((num == 3) &amp;&amp; (num2 &lt; 10))
+      <I><FONT COLOR="#B22222">// The Sprintf function permits to create complex strings using
+</FONT></I>      <I><FONT COLOR="#B22222">// variables (since all Gmsh variables are treated internally as
+</FONT></I>      <I><FONT COLOR="#B22222">// double precision numbers, the format should only contain valid
+</FONT></I>      <I><FONT COLOR="#B22222">// double precision number format specifiers):
+</FONT></I>      Print Sprintf(&quot;t8-0%g.jpg&quot;, num2);
+    EndIf
+
+    If ((num == 3) &amp;&amp; (num2 &gt;= 10))
+      Print Sprintf(&quot;t8-%g.jpg&quot;, num2);
+    EndIf
+
+  EndFor
+
+  If(num == 3)
+    <I><FONT COLOR="#B22222">// We make a system call to generate the mpeg
+</FONT></I>    System &quot;mpeg_encode t8.par&quot; ;    
+  EndIf
+
+EndFor
+
+
+<I><FONT COLOR="#B22222">// Here is the list of available scripting commands:
+</FONT></I><I><FONT COLOR="#B22222">//  
+</FONT></I><I><FONT COLOR="#B22222">//  Merge string;     (to merge a file)
+</FONT></I><I><FONT COLOR="#B22222">//  Draw;             (to draw the scene)
+</FONT></I><I><FONT COLOR="#B22222">//  Mesh int;         (to perform the mesh generation; 'int' = 0, 1, 2 or 3)
+</FONT></I><I><FONT COLOR="#B22222">//  Save string;      (to save the mesh)
+</FONT></I><I><FONT COLOR="#B22222">//  Print string;     (to print the graphic window)
+</FONT></I><I><FONT COLOR="#B22222">//  Sleep expr;       (to sleep during expr seconds)
+</FONT></I><I><FONT COLOR="#B22222">//  Delete View[int]; (to free the view int)
+</FONT></I><I><FONT COLOR="#B22222">//  Delete Meshes;    (to free all meshes)
+</FONT></I><I><FONT COLOR="#B22222">//  System string;    (to execute a system call)
+</FONT></I></PRE>
+<HR>
+<ADDRESS>Generated by <A HREF="http://www.iki.fi/~mtr/genscript/">GNU enscript 1.6.1</A>.</ADDRESS>
+</BODY>
+</HTML>
diff --git a/utils/gmsh_fltk.spec b/utils/gmsh_fltk.spec
index aaadb970f6d87b4994c3becbe87244cd0c9500ef..138135d9765029958d37f100bc0ab953f1fe0ed1 100644
--- a/utils/gmsh_fltk.spec
+++ b/utils/gmsh_fltk.spec
@@ -1,7 +1,7 @@
 Summary: A 3D mesh generator with pre- and post-processing facilities
 Name: gmsh
-Version: 1.13
-Source: gmsh-1.13.tar.gz
+Version: 1.14
+Source: gmsh-1.14.tar.gz
 Release: 1
 Copyright: distributable
 Group: Applications/Engineering
diff --git a/utils/tut2html b/utils/tut2html
index f436a3dcfdf4c858c493244cf17fdbb53390a579..b67e85a9df4414a05e62f3ccbb26a5ffc012a884 100644
--- a/utils/tut2html
+++ b/utils/tut2html
@@ -6,7 +6,7 @@
 #fi
 
 #enscript -Ecpp --color -Whtml --toc -pt.html $*
-enscript -Ecpp --color -Whtml --toc -pt.html README.txt *.geo
+enscript -Ecpp --color -Whtml --toc -pt.html README *.geo
 
 cat t.html | \
 sed "s/<FONT COLOR=\"#BC8F8F\"><B>//g" | \
diff --git a/www/gmsh.html b/www/gmsh.html
index df58e5cb9f74039b31709032b3f48617db4fe947..f1fdce85be6df07e29a18b018d1c3e5b0eae5ff5 100644
--- a/www/gmsh.html
+++ b/www/gmsh.html
@@ -51,7 +51,7 @@ ENDSCRIPT--->
 This page is a mirror of <a href="/gmsh/">/gmsh/</a><p>
 ENDMIRROR--->
 
-<!---BEGINDATE$Date: 2001-02-18 18:11:42 $ENDDATE--->
+<!---BEGINDATE$Date: 2001-02-18 18:38:54 $ENDDATE--->
 
 Copyright &copy; 1998-2001<br>
 J.-F. Remacle<br>
@@ -251,7 +251,7 @@ description.
 
   <td bgcolor="#ededed"><font face="Helvetica, Arial" size=-1>
 
-<b>Development Release: 1.14 (February 19, 2001)</b>
+<b>Latest Release: 1.14 (February 19, 2001)</b>
 <p>
 The development release of Gmsh is available for Linux and
 Windows. All executables are dynamically linked with OpenGL.