diff --git a/Fltk/GUI.cpp b/Fltk/GUI.cpp index a7859defa57084793a6bceba878137a612c4aa52..7c3f81ef4790991153cbc3be35446a32a36cbcfc 100644 --- a/Fltk/GUI.cpp +++ b/Fltk/GUI.cpp @@ -1,4 +1,4 @@ -// $Id: GUI.cpp,v 1.47 2001-02-18 18:04:03 geuzaine Exp $ +// $Id: GUI.cpp,v 1.48 2001-02-18 18:43:11 geuzaine Exp $ // To make the interface as visually consistent as possible, please: // - use the BH, BW, WB, IW values for button heights/widths, window borders, etc. @@ -1109,7 +1109,7 @@ void GUI::create_mesh_options_window(){ if(!init_mesh_options_window){ init_mesh_options_window = 1 ; - int width = 29*CTX.fontsize; + int width = 25*CTX.fontsize; int height = 5*WB+9*BH ; mesh_window = new Fl_Window(width,height); @@ -1138,7 +1138,7 @@ void GUI::create_mesh_options_window(){ mesh_value[1]->minimum(0.001); mesh_value[1]->maximum(1000); mesh_value[1]->step(0.001); - mesh_value[2] = new Fl_Value_Input(2*WB, 2*WB+6*BH, IW, BH, "Characteristic length scaling factor"); + mesh_value[2] = new Fl_Value_Input(2*WB, 2*WB+6*BH, IW, BH, "Characteristic length factor"); mesh_value[2]->minimum(0.001); mesh_value[2]->maximum(1000); mesh_value[2]->step(0.001); diff --git a/tutorial/README b/tutorial/README index e87631a97220de0e71145e7ee4e9c173b25fc7ea..7f1e1295bc3171e1e83e7e0d08c803f0e90a0f3b 100644 --- a/tutorial/README +++ b/tutorial/README @@ -1,4 +1,4 @@ -$Id: README,v 1.3 2001-02-03 13:10:26 geuzaine Exp $ +$Id: README,v 1.4 2001-02-18 18:38:54 geuzaine Exp $ Here are the examples in the Gmsh tutorial. These examples are commented (both C and C++-style comments can be used in Gmsh input diff --git a/tutorial/tutorial.html b/tutorial/tutorial.html new file mode 100644 index 0000000000000000000000000000000000000000..44f7611e02a3e21f781af19c242140fede0cf524 --- /dev/null +++ b/tutorial/tutorial.html @@ -0,0 +1,1121 @@ +<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN"> +<HTML> +<HEAD> +<TITLE>Enscript Output</TITLE> +</HEAD> +<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#1F00FF" ALINK="#FF0000" VLINK="#9900DD"> +<A NAME="top"> +<H1>Contents</H1> +<OL> + <LI><A HREF="#file1">README</A> + <LI><A HREF="#file2">t1.geo</A> + <LI><A HREF="#file3">t2.geo</A> + <LI><A HREF="#file4">t3.geo</A> + <LI><A HREF="#file5">t4.geo</A> + <LI><A HREF="#file6">t5.geo</A> + <LI><A HREF="#file7">t6.geo</A> + <LI><A HREF="#file8">t7.geo</A> + <LI><A HREF="#file9">t8.geo</A> +</OL> +<HR> +<A NAME="file1"> +<H1>README 1/9</H1> +[<A HREF="#top">top</A>][prev][<A HREF="#file2">next</A>] +<PRE> +$Id: tutorial.html,v 1.6 2001-02-18 18:41:05 geuzaine Exp $ + +Here are the examples in the Gmsh tutorial. These examples are +commented (both C and C++-style comments can be used in Gmsh input +files) and should introduce new features gradually, starting with +t1.geo. + +(The tutorial does not explain the mesh and post-processing file +formats. See the FORMATS file for this.) + +There are two ways to actually run these examples with Gmsh. (The +operations to run Gmsh may vary depending on your operating system. In +the following, we will assume that you're working with a UNIX-like +shell.) The first working mode of Gmsh is the interactive graphical +mode. To launch Gmsh in interactive mode, just type + +> gmsh + +at the prompt on the command line. This will open two windows: the +graphic window (with a status bar at the bottom) and the menu window +(with a menu bar and some context dependent buttons). To open the +first tutorial file, you have to select the 'File->Open' menu, and +choose 't1.geo' in the input field. To perform the mesh generation, +you have to go to the mesh module (by selecting 'Mesh' in the module +menu) and choose the required dimension in the context-dependent +buttons ('1D' will mesh all the curves; '2D' will mesh all the +surfaces ---as well as all the curves if '1D' was not called before; +'3D' will mesh all the volumes ---and all the surfaces if '2D' was not +called before). To save the resulting mesh, select 'File->Save_Mesh' +in the menu bar. The default mesh file name is based on the name of +the first input file on the command line (or 'unnamed' if there wasn't +any input file given), with an appended extension depending on the +mesh format. + +Note: nearly all the interactive commands have shortcuts. Select +'Help->Short_Help' in the menu bar to learn about these shortcuts. + +Instead of opening the tutorial with the 'File->Open' menu, it is +often more convenient to put the file name on the command line, here +for example with: + +> gmsh t1.geo + +(The '.geo' extension can also be omitted.) + +Note: to define new geometries, if it is often handy to define the +variables and the points directly in the input files, it is almost +always simpler to define the curves, the surfaces and the volumes +interactively. To do so, just follow the context dependent buttons in +the Geometry module. For example, to create a line, select 'Geometry' +in the module menu, and then select 'Elementary, Add, Create, +Line'. You will then be asked (in the status bar of the graphic +window) to select a list of points, and to click 'e' when you're +done. Once the interactive command is completed, a string is +automatically added at the end of the currently opened project file. + + +The second operating mode for Gmsh is the non-interactive mode. In +this mode, there is no graphical user interface, and all operations +are performed without any user interaction. To mesh the first tutorial +in non-interactive mode, just type: + +> gmsh t1.geo -2 + +Several files can be loaded simultaneously in Gmsh. The first one +defines the project, while the others are appended ("merged") to this +project. You can merge such files with the 'File->Merge' menu, or by +directly specifying the names of the files on the command line. This +is most useful for post-processing purposes. For example, to merge the +post-processing views contained in the files 'view1.pos' and +'view2.pos' together with the first tutorial 't1.geo', you can type +the following line on the command line: + +> gmsh t1.geo view1.pos view2.pos + +In the Post-Processing module (select 'Post_Processing' in the module +menu), two view buttons will appear, respectively labeled "a scalar +map" and "a vector map". A left mouse click will toggle the visibility +of the selected view. A right mouse click provides access to the +view's options. If you want the modifications made to one view to +affect also all other views, select the 'Link all views' option in the +'Options->Post-Processing' menu. + +Note: all the options specified interactively can also be directly +specified in the ascii input files. The current options can be saved +into a file by selecting 'File->Save_as', or simply viewed by pressing +the '?' button in the status bar. + + +OK, that's all, folks. Enjoy the tutorial. + +</PRE> +<HR> +<A NAME="file2"> +<H1>t1.geo 2/9</H1> +[<A HREF="#top">top</A>][<A HREF="#file1">prev</A>][<A HREF="#file3">next</A>] +<PRE> +<I><FONT COLOR="#B22222">/********************************************************************* + * + * Gmsh tutorial 1 + * + * Variables, Elementary entities (Points, Lines, Surfaces), Physical + * entities (Points, Lines, Surfaces) + * + *********************************************************************/</FONT></I> + +<I><FONT COLOR="#B22222">// All geometry description in Gmsh is made by means of a special +</FONT></I><I><FONT COLOR="#B22222">// language (looking somewhat similar to C). The simplest construction +</FONT></I><I><FONT COLOR="#B22222">// of this language is the 'affectation'. +</FONT></I> +<I><FONT COLOR="#B22222">// The following command (all commands end with a semi colon) defines +</FONT></I><I><FONT COLOR="#B22222">// a variable called 'lc' and affects the value 0.007 to 'lc': +</FONT></I> +lc = 0.007 ; + +<I><FONT COLOR="#B22222">// This newly created variable can be used to define the first Gmsh +</FONT></I><I><FONT COLOR="#B22222">// elementary entity, a 'Point'. A Point is defined by a list of four +</FONT></I><I><FONT COLOR="#B22222">// numbers: its three coordinates (x, y and z), and a characteristic +</FONT></I><I><FONT COLOR="#B22222">// length, which sets the target mesh size at the point: +</FONT></I> +Point(1) = {0, 0, 0, 9.e-1 * lc} ; + +<I><FONT COLOR="#B22222">// As can be seen in this definition, more complex expressions can be +</FONT></I><I><FONT COLOR="#B22222">// constructed from variables on the fly. Here, the product of the +</FONT></I><I><FONT COLOR="#B22222">// variable 'lc' by the constant 9.e-1 is given as the fourth argument +</FONT></I><I><FONT COLOR="#B22222">// of the list defining the point. +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// The following general syntax rule is applied for the definition of +</FONT></I><I><FONT COLOR="#B22222">// all geometrical entities: +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// "If a number defines a new entity, it is enclosed between +</FONT></I><I><FONT COLOR="#B22222">// parentheses. If a number refers to a previously defined entity, +</FONT></I><I><FONT COLOR="#B22222">// it is enclosed between braces." +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// Three additional points are then defined: +</FONT></I> +Point(2) = {.1, 0, 0, lc} ; +Point(3) = {.1, .3, 0, lc} ; +Point(4) = {0, .3, 0, lc} ; + +<I><FONT COLOR="#B22222">// The second elementary geometrical entity in Gmsh is the +</FONT></I><I><FONT COLOR="#B22222">// curve. Amongst curves, straight lines are the simplest. A straight +</FONT></I><I><FONT COLOR="#B22222">// line is defined by a list of point numbers. For example, the line 1 +</FONT></I><I><FONT COLOR="#B22222">// starts at point 1 and ends at point 2: +</FONT></I> +Line(1) = {1,2} ; +Line(2) = {3,2} ; +Line(3) = {3,4} ; +Line(4) = {4,1} ; + +<I><FONT COLOR="#B22222">// The third elementary entity is the surface. In order to define a +</FONT></I><I><FONT COLOR="#B22222">// simple rectangular surface from the four lines defined above, a +</FONT></I><I><FONT COLOR="#B22222">// line loop has first to be defined. A line loop is a list of +</FONT></I><I><FONT COLOR="#B22222">// connected lines, each line being associated a sign, depending of +</FONT></I><I><FONT COLOR="#B22222">// its orientation. +</FONT></I> +Line Loop(5) = {4,1,-2,3} ; + +<I><FONT COLOR="#B22222">// The surface is then defined as a list of line loops (only one +</FONT></I><I><FONT COLOR="#B22222">// here): +</FONT></I> +Plane Surface(6) = {5} ; + +<I><FONT COLOR="#B22222">// At this level, Gmsh knows everything to display the rectangular +</FONT></I><I><FONT COLOR="#B22222">// surface 6 and to mesh it. But a supplementary step is needed in +</FONT></I><I><FONT COLOR="#B22222">// order for assign region numbers to the various elements in the mesh +</FONT></I><I><FONT COLOR="#B22222">// (the points, the lines and the triangles discretizing the points 1 +</FONT></I><I><FONT COLOR="#B22222">// to 4, the lines 1 to 4 and the surface 6). This is achieved by the +</FONT></I><I><FONT COLOR="#B22222">// definition of Physical entities. Physical entities will group +</FONT></I><I><FONT COLOR="#B22222">// elements belonging to several elementary entities by giving them a +</FONT></I><I><FONT COLOR="#B22222">// common number (a region number), and specifying their orientation. +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// For example, the two points 1 and 2 can be grouped into the +</FONT></I><I><FONT COLOR="#B22222">// physical entity 1: +</FONT></I> +Physical Point(1) = {1,2} ; + +<I><FONT COLOR="#B22222">// Consequently, two punctual elements will be saved in the output +</FONT></I><I><FONT COLOR="#B22222">// files, both with the region number 1. The mechanism is identical +</FONT></I><I><FONT COLOR="#B22222">// for line or surface elements: +</FONT></I> +Physical Line(10) = {1,2,4} ; +Physical Surface(100) = {6} ; + +<I><FONT COLOR="#B22222">// All the line elements which will be created during the mesh of the +</FONT></I><I><FONT COLOR="#B22222">// lines 1, 2 and 4 will be saved in the output file with the +</FONT></I><I><FONT COLOR="#B22222">// associated region number 10; and all the triangular elements +</FONT></I><I><FONT COLOR="#B22222">// resulting from the discretization of the surface 6 will be +</FONT></I><I><FONT COLOR="#B22222">// associated the region number 100. +</FONT></I> +<I><FONT COLOR="#B22222">// It is important to notice that only those elements which belong to +</FONT></I><I><FONT COLOR="#B22222">// physical groups will be saved in the output file if the file format +</FONT></I><I><FONT COLOR="#B22222">// is the msh format (the native mesh file format for Gmsh). For a +</FONT></I><I><FONT COLOR="#B22222">// description of the mesh and post-processing formats, see the FORMATS +</FONT></I><I><FONT COLOR="#B22222">// file. +</FONT></I></PRE> +<HR> +<A NAME="file3"> +<H1>t2.geo 3/9</H1> +[<A HREF="#top">top</A>][<A HREF="#file2">prev</A>][<A HREF="#file4">next</A>] +<PRE> +<I><FONT COLOR="#B22222">/********************************************************************* + * + * Gmsh tutorial 2 + * + * Includes, Geometrical transformations, Elementary entities + * (Volumes), Physical entities (Volumes) + * + *********************************************************************/</FONT></I> + +<I><FONT COLOR="#B22222">// The first tutorial file will serve as a basis to construct this +</FONT></I><I><FONT COLOR="#B22222">// one: it can be included like this: +</FONT></I> +Include "t1.geo" ; + +<I><FONT COLOR="#B22222">// There are several possibilities to build a more complex geometry +</FONT></I><I><FONT COLOR="#B22222">// from the one previously defined in 't1.geo'. +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// New points, lines and surfaces can first be directly defined in the +</FONT></I><I><FONT COLOR="#B22222">// same way as in 't1.geo': +</FONT></I> +Point(5) = {0, .4, 0, lc} ; +Line(5) = {4, 5} ; + +<I><FONT COLOR="#B22222">// But Gmsh also provides geometrical transformation mechanisms to +</FONT></I><I><FONT COLOR="#B22222">// move (translate, rotate, ...), add (translate, rotate, ...) or +</FONT></I><I><FONT COLOR="#B22222">// extrude (translate, rotate) elementary geometrical entities. For +</FONT></I><I><FONT COLOR="#B22222">// example, the point 3 can be moved by 0.05 units on the left with: +</FONT></I> +Translate {-0.05,0,0} { Point{3} ; } + +<I><FONT COLOR="#B22222">// The resulting point can also be duplicated and translated by 0.1 +</FONT></I><I><FONT COLOR="#B22222">// along the y axis: +</FONT></I> +Translate {0,0.1,0} { Duplicata{ Point{3} ; } } + +<I><FONT COLOR="#B22222">// Translation, rotation and extrusion commands of course not only +</FONT></I><I><FONT COLOR="#B22222">// apply to points, but also to lines and surfaces. The following +</FONT></I><I><FONT COLOR="#B22222">// command extrudes the surface 6 defined in 't1.geo', as well as a +</FONT></I><I><FONT COLOR="#B22222">// new surface 11, along the z axis by 'h': +</FONT></I> +h = 0.12 ; +Extrude Surface { 6, {0, 0, h} } ; + +Line(7) = {3, 6} ; Line(8) = {6,5} ; Line Loop(10) = {5,-8,-7,3}; + +Plane Surface(11) = {10}; + +Extrude Surface { 11, {0, 0, h} } ; + +<I><FONT COLOR="#B22222">// All these geometrical transformations generate automatically new +</FONT></I><I><FONT COLOR="#B22222">// elementary entities. The following commands permit to specify +</FONT></I><I><FONT COLOR="#B22222">// manually a characteristic length for some of the automatically +</FONT></I><I><FONT COLOR="#B22222">// created points: +</FONT></I> +Characteristic Length{6,22,2,3,16,12} = lc * 3 ; + +<I><FONT COLOR="#B22222">// If the transformation tools are handy to create complex geometries, +</FONT></I><I><FONT COLOR="#B22222">// it is sometimes useful to be generate the flat geometry, consisting +</FONT></I><I><FONT COLOR="#B22222">// only of the explicit list elementary entities. This can be achieved +</FONT></I><I><FONT COLOR="#B22222">// by selecting the 'File->Print->Geo' menu or by typing +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// > gmsh t2.geo -0 +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// on the command line. +</FONT></I> +<I><FONT COLOR="#B22222">// Volumes are the fourth type of elementary entities in Gmsh. In the +</FONT></I><I><FONT COLOR="#B22222">// same way one defines line loops to build surfaces, one has to +</FONT></I><I><FONT COLOR="#B22222">// define surface loops to build volumes. The following volumes are +</FONT></I><I><FONT COLOR="#B22222">// very simple, without holes (and thus consist of only one surface +</FONT></I><I><FONT COLOR="#B22222">// loop): +</FONT></I> +Surface Loop(145) = {121,11,131,135,139,144}; +Volume(146) = {145}; + +Surface Loop(146) = {121,6,109,113,117,122}; +Volume(147) = {146}; + +<I><FONT COLOR="#B22222">// To save all volumic (tetrahedral) elements of volume 146 and 147 +</FONT></I><I><FONT COLOR="#B22222">// with the associate region number 1, a Physical Volume must be +</FONT></I><I><FONT COLOR="#B22222">// defined: +</FONT></I> +Physical Volume (1) = {146,147} ; + +<I><FONT COLOR="#B22222">// Congratulations! You've created your first fully unstructured +</FONT></I><I><FONT COLOR="#B22222">// tetrahedral 3D mesh! +</FONT></I></PRE> +<HR> +<A NAME="file4"> +<H1>t3.geo 4/9</H1> +[<A HREF="#top">top</A>][<A HREF="#file3">prev</A>][<A HREF="#file5">next</A>] +<PRE> +<I><FONT COLOR="#B22222">/********************************************************************* + * + * Gmsh tutorial 3 + * + * Extruded meshes, Options + * + *********************************************************************/</FONT></I> + +<I><FONT COLOR="#B22222">// Again, the first tutorial example is included: +</FONT></I> +Include "t1.geo" ; + +<I><FONT COLOR="#B22222">// As in 't2.geo', an extrusion along the z axis will be performed: +</FONT></I> +h = 0.1 ; + +<I><FONT COLOR="#B22222">// But contrary to 't2.geo', not only the geometry will be extruded, +</FONT></I><I><FONT COLOR="#B22222">// but we also the 2D mesh. This is done with the same Extrude +</FONT></I><I><FONT COLOR="#B22222">// command, but by specifying the number of layers (here, there will +</FONT></I><I><FONT COLOR="#B22222">// be two layers, of respectively 2 and 4 elements in depth), with +</FONT></I><I><FONT COLOR="#B22222">// volume numbers 9000 and 9001 and respective heights of 0.33*h and +</FONT></I><I><FONT COLOR="#B22222">// 0.67*h: +</FONT></I> +Extrude Surface { 6, {0,0,h} } { Layers { {2,4}, {9000,9001}, {0.33,1} } ; } ; + +<I><FONT COLOR="#B22222">// The extrusion can also be combined with a rotation, and the +</FONT></I><I><FONT COLOR="#B22222">// extruded 3D mesh can be recombined into prisms (wedges). All +</FONT></I><I><FONT COLOR="#B22222">// rotations are specified by an axis direction ({0,1,0}), an axis +</FONT></I><I><FONT COLOR="#B22222">// point ({0,0,0}) and a rotation angle (Pi/2): +</FONT></I> +Extrude Surface { 122, {0,1,0} , {-0.1,0,0.1} , -Pi/2 } { + Recombine ; Layers { {7}, {9002}, {1} } ; +}; + +<I><FONT COLOR="#B22222">// All interactive options can also be set directly in the input file. +</FONT></I><I><FONT COLOR="#B22222">// For example, the following lines redefine the background color of +</FONT></I><I><FONT COLOR="#B22222">// the graphic window, the color of the points of the geometry, +</FONT></I><I><FONT COLOR="#B22222">// disable the display of the axes, and select an initial viewpoint in +</FONT></I><I><FONT COLOR="#B22222">// xyz mode (disabling the interactive trackball-like rotation mode): +</FONT></I> +General.Color.Background = Red; +Geometry.Color.Points = Orange; +General.Axes = 0; + +General.Trackball = 0; +General.RotationX = 10; +General.RotationY = 70; +General.TranslationX = -0.1; + +<I><FONT COLOR="#B22222">// Note: all colors can be defined literally or numerically, i.e. +</FONT></I><I><FONT COLOR="#B22222">// 'General.Color.Background = Red' is equivalent to +</FONT></I><I><FONT COLOR="#B22222">// 'General.Color.Background = {255,0,0}'. As with user-defined +</FONT></I><I><FONT COLOR="#B22222">// variables, the options can be used either as right hand or left +</FONT></I><I><FONT COLOR="#B22222">// hand sides, so that +</FONT></I> +Geometry.Color.Surfaces = Geometry.Color.Points; + +<I><FONT COLOR="#B22222">// will set the color of the surfaces in the geometry to the same +</FONT></I><I><FONT COLOR="#B22222">// color as the points. +</FONT></I> +<I><FONT COLOR="#B22222">// For UNIX versions, a click on the '?' button in status bar of the +</FONT></I><I><FONT COLOR="#B22222">// graphic window will dump all current options to the terminal. To +</FONT></I><I><FONT COLOR="#B22222">// save the options to a file, use the 'File->Save_Options_as' menu. +</FONT></I> +</PRE> +<HR> +<A NAME="file5"> +<H1>t4.geo 5/9</H1> +[<A HREF="#top">top</A>][<A HREF="#file4">prev</A>][<A HREF="#file6">next</A>] +<PRE> +<I><FONT COLOR="#B22222">/********************************************************************* + * + * Gmsh tutorial 4 + * + * Built-in functions, Holes + * + *********************************************************************/</FONT></I> + +cm = 1e-02 ; + +e1 = 4.5*cm ; e2 = 6*cm / 2 ; e3 = 5*cm / 2 ; + +h1 = 5*cm ; h2 = 10*cm ; h3 = 5*cm ; h4 = 2*cm ; h5 = 4.5*cm ; + +R1 = 1*cm ; R2 = 1.5*cm ; r = 1*cm ; + +ccos = ( -h5*R1 + e2 * Hypot(h5,Hypot(e2,R1)) ) / (h5^2 + e2^2) ; +ssin = Sqrt(1-ccos^2) ; + +Lc1 = 0.01 ; +Lc2 = 0.003 ; + +<I><FONT COLOR="#B22222">// A whole set of operators can be used, which can be combined in all +</FONT></I><I><FONT COLOR="#B22222">// the expressions. These operators are defined in a similar way to +</FONT></I><I><FONT COLOR="#B22222">// their C or C++ equivalents (with the exception of '^'): +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// '-' (in both unary and binary versions, i.e. as in '-1' and '1-2') +</FONT></I><I><FONT COLOR="#B22222">// '!' (the negation) +</FONT></I><I><FONT COLOR="#B22222">// '+' +</FONT></I><I><FONT COLOR="#B22222">// '*' +</FONT></I><I><FONT COLOR="#B22222">// '/' +</FONT></I><I><FONT COLOR="#B22222">// '%' (the rest of the integer division) +</FONT></I><I><FONT COLOR="#B22222">// '<' +</FONT></I><I><FONT COLOR="#B22222">// '>' +</FONT></I><I><FONT COLOR="#B22222">// '<=' +</FONT></I><I><FONT COLOR="#B22222">// '>=' +</FONT></I><I><FONT COLOR="#B22222">// '==' +</FONT></I><I><FONT COLOR="#B22222">// '!=' +</FONT></I><I><FONT COLOR="#B22222">// '&&' (and) +</FONT></I><I><FONT COLOR="#B22222">// '||' (or) +</FONT></I><I><FONT COLOR="#B22222">// '||' (or) +</FONT></I><I><FONT COLOR="#B22222">// '^' (power) +</FONT></I><I><FONT COLOR="#B22222">// '?' ':' (the ternary operator) +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// Grouping is done, as usual, with parentheses. +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// In addition to these operators, all C mathematical functions can +</FONT></I><I><FONT COLOR="#B22222">// also be used (note the first capital letter): +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// Exp(x) +</FONT></I><I><FONT COLOR="#B22222">// Log(x) +</FONT></I><I><FONT COLOR="#B22222">// Log10(x) +</FONT></I><I><FONT COLOR="#B22222">// Sqrt(x) +</FONT></I><I><FONT COLOR="#B22222">// Sin(x) +</FONT></I><I><FONT COLOR="#B22222">// Asin(x) +</FONT></I><I><FONT COLOR="#B22222">// Cos(x) +</FONT></I><I><FONT COLOR="#B22222">// Acos(x) +</FONT></I><I><FONT COLOR="#B22222">// Tan(x) +</FONT></I><I><FONT COLOR="#B22222">// Atan(x) +</FONT></I><I><FONT COLOR="#B22222">// Atan2(x,y) +</FONT></I><I><FONT COLOR="#B22222">// Sinh(x) +</FONT></I><I><FONT COLOR="#B22222">// Cosh(x) +</FONT></I><I><FONT COLOR="#B22222">// Tanh(x) +</FONT></I><I><FONT COLOR="#B22222">// Fabs(x) +</FONT></I><I><FONT COLOR="#B22222">// Floor(x) +</FONT></I><I><FONT COLOR="#B22222">// Ceil(x) +</FONT></I><I><FONT COLOR="#B22222">// Fmod(x,y) +</FONT></I><I><FONT COLOR="#B22222">// Hypot(x,y) +</FONT></I> +<I><FONT COLOR="#B22222">// An additional function 'Rand(x)' generates an random number in +</FONT></I><I><FONT COLOR="#B22222">// [0,x] +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// Rand(x) +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// The only predefined constant in Gmsh is Pi. +</FONT></I> +Point(1) = { -e1-e2, 0.0 , 0.0 , Lc1}; +Point(2) = { -e1-e2, h1 , 0.0 , Lc1}; +Point(3) = { -e3-r , h1 , 0.0 , Lc2}; +Point(4) = { -e3-r , h1+r , 0.0 , Lc2}; +Point(5) = { -e3 , h1+r , 0.0 , Lc2}; +Point(6) = { -e3 , h1+h2, 0.0 , Lc1}; +Point(7) = { e3 , h1+h2, 0.0 , Lc1}; +Point(8) = { e3 , h1+r , 0.0 , Lc2}; +Point(9) = { e3+r , h1+r , 0.0 , Lc2}; +Point(10)= { e3+r , h1 , 0.0 , Lc2}; +Point(11)= { e1+e2, h1 , 0.0 , Lc1}; +Point(12)= { e1+e2, 0.0 , 0.0 , Lc1}; +Point(13)= { e2 , 0.0 , 0.0 , Lc1}; + +Point(14)= { R1 / ssin , h5+R1*ccos, 0.0 , Lc2}; +Point(15)= { 0.0 , h5 , 0.0 , Lc2}; +Point(16)= { -R1 / ssin , h5+R1*ccos, 0.0 , Lc2}; +Point(17)= { -e2 , 0.0 , 0.0 , Lc1}; + +Point(18)= { -R2 , h1+h3 , 0.0 , Lc2}; +Point(19)= { -R2 , h1+h3+h4, 0.0 , Lc2}; +Point(20)= { 0.0 , h1+h3+h4, 0.0 , Lc2}; +Point(21)= { R2 , h1+h3+h4, 0.0 , Lc2}; +Point(22)= { R2 , h1+h3 , 0.0 , Lc2}; +Point(23)= { 0.0 , h1+h3 , 0.0 , Lc2}; + +Point(24)= { 0 , h1+h3+h4+R2, 0.0 , Lc2}; +Point(25)= { 0 , h1+h3-R2, 0.0 , Lc2}; + +Line(1) = {1 ,17}; +Line(2) = {17,16}; + +<I><FONT COLOR="#B22222">// All curves are not straight lines... Circles are defined by a list +</FONT></I><I><FONT COLOR="#B22222">// of three point numbers, which represent the starting point, the +</FONT></I><I><FONT COLOR="#B22222">// center and the end point, respectively. All circles have to be +</FONT></I><I><FONT COLOR="#B22222">// defined in the trigonometric (counter-clockwise) sense. Note that +</FONT></I><I><FONT COLOR="#B22222">// the 3 points should not be aligned (otherwise the plane in which +</FONT></I><I><FONT COLOR="#B22222">// the circle lies has to be defined, by 'Circle(num) = +</FONT></I><I><FONT COLOR="#B22222">// {start,center,end} Plane {nx,ny,nz}'). +</FONT></I> +Circle(3) = {14,15,16}; +Line(4) = {14,13}; +Line(5) = {13,12}; +Line(6) = {12,11}; +Line(7) = {11,10}; +Circle(8) = { 8, 9,10}; +Line(9) = { 8, 7}; +Line(10) = { 7, 6}; +Line(11) = { 6, 5}; +Circle(12) = { 3, 4, 5}; +Line(13) = { 3, 2}; +Line(14) = { 2, 1}; +Line(15) = {18,19}; +Circle(16) = {21,20,24}; +Circle(17) = {24,20,19}; +Circle(18) = {18,23,25}; +Circle(19) = {25,23,22}; +Line(20) = {21,22}; + +Line Loop(21) = {17,-15,18,19,-20,16}; +Plane Surface(22) = {21}; + +<I><FONT COLOR="#B22222">// The surface is made of two line loops, i.e. it has one hole: +</FONT></I> +Line Loop(23) = {11,-12,13,14,1,2,-3,4,5,6,7,-8,9,10}; +Plane Surface(24) = {23,21}; + +Physical Surface(1) = {22}; +Physical Surface(2) = {24}; +</PRE> +<HR> +<A NAME="file6"> +<H1>t5.geo 6/9</H1> +[<A HREF="#top">top</A>][<A HREF="#file5">prev</A>][<A HREF="#file7">next</A>] +<PRE> +<I><FONT COLOR="#B22222">/********************************************************************* + * + * Gmsh tutorial 5 + * + * Characteristic lengths, Arrays of variables, Functions, Loops + * + *********************************************************************/</FONT></I> + +<I><FONT COLOR="#B22222">// This defines some characteristic lengths: +</FONT></I> +lcar1 = .1; +lcar2 = .0005; +lcar3 = .075; + +<I><FONT COLOR="#B22222">// In order to change these lengths globally (without changing the +</FONT></I><I><FONT COLOR="#B22222">// file), a global scaling factor for all characteristic lengths can +</FONT></I><I><FONT COLOR="#B22222">// be specified on the command line with the option '-clscale'. For +</FONT></I><I><FONT COLOR="#B22222">// example, with: +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// > gmsh t5 -clscale 1 +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// this example produces a mesh of approximately 2000 nodes and +</FONT></I><I><FONT COLOR="#B22222">// 10,000 tetrahedra (in 3 seconds on an alpha workstation running at +</FONT></I><I><FONT COLOR="#B22222">// 666MHz). With +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// > gmsh t5 -clscale 0.2 +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// (i.e. with all characteristic lengths divided by 5), the mesh +</FONT></I><I><FONT COLOR="#B22222">// counts approximately 170,000 nodes and one million tetrahedra +</FONT></I><I><FONT COLOR="#B22222">// (and the computation takes 16 minutes on the same machine :-( So +</FONT></I><I><FONT COLOR="#B22222">// there is still a lot of work to do to achieve decent performance +</FONT></I><I><FONT COLOR="#B22222">// with Gmsh...) +</FONT></I> +Point(1) = {0.5,0.5,0.5,lcar2}; Point(2) = {0.5,0.5,0,lcar1}; +Point(3) = {0,0.5,0.5,lcar1}; Point(4) = {0,0,0.5,lcar1}; +Point(5) = {0.5,0,0.5,lcar1}; Point(6) = {0.5,0,0,lcar1}; +Point(7) = {0,0.5,0,lcar1}; Point(8) = {0,1,0,lcar1}; +Point(9) = {1,1,0,lcar1}; Point(10) = {0,0,1,lcar1}; +Point(11) = {0,1,1,lcar1}; Point(12) = {1,1,1,lcar1}; +Point(13) = {1,0,1,lcar1}; Point(14) = {1,0,0,lcar1}; + +Line(1) = {8,9}; Line(2) = {9,12}; Line(3) = {12,11}; +Line(4) = {11,8}; Line(5) = {9,14}; Line(6) = {14,13}; +Line(7) = {13,12}; Line(8) = {11,10}; Line(9) = {10,13}; +Line(10) = {10,4}; Line(11) = {4,5}; Line(12) = {5,6}; +Line(13) = {6,2}; Line(14) = {2,1}; Line(15) = {1,3}; +Line(16) = {3,7}; Line(17) = {7,2}; Line(18) = {3,4}; +Line(19) = {5,1}; Line(20) = {7,8}; Line(21) = {6,14}; + +Line Loop(22) = {11,19,15,18}; Plane Surface(23) = {22}; +Line Loop(24) = {16,17,14,15}; Plane Surface(25) = {24}; +Line Loop(26) = {-17,20,1,5,-21,13}; Plane Surface(27) = {26}; +Line Loop(28) = {4,1,2,3}; Plane Surface(29) = {28}; +Line Loop(30) = {7,-2,5,6}; Plane Surface(31) = {30}; +Line Loop(32) = {6,-9,10,11,12,21}; Plane Surface(33) = {32}; +Line Loop(34) = {7,3,8,9}; Plane Surface(35) = {34}; +Line Loop(36) = {10,-18,16,20,-4,8}; Plane Surface(37) = {36}; +Line Loop(38) = {-14,-13,-12,19}; Plane Surface(39) = {38}; + +<I><FONT COLOR="#B22222">// Instead of using included files, one can also define functions. In +</FONT></I><I><FONT COLOR="#B22222">// the following function, the reserved variable 'newp' is used, which +</FONT></I><I><FONT COLOR="#B22222">// automatically selects a new point number. This number is chosen as +</FONT></I><I><FONT COLOR="#B22222">// the highest current point number, plus one. Analogously to 'newp', +</FONT></I><I><FONT COLOR="#B22222">// there exists a variable 'newreg' which selects the highest number +</FONT></I><I><FONT COLOR="#B22222">// of all entities other than points, plus one. +</FONT></I> +<I><FONT COLOR="#B22222">// Note: there are no local variables. This will be changed in a +</FONT></I><I><FONT COLOR="#B22222">// future version of Gmsh. +</FONT></I> +Function CheeseHole + + p1 = newp; Point(p1) = {x, y, z, lcar3} ; + p2 = newp; Point(p2) = {x+r,y, z, lcar3} ; + p3 = newp; Point(p3) = {x, y+r,z, lcar3} ; + p4 = newp; Point(p4) = {x, y, z+r,lcar3} ; + p5 = newp; Point(p5) = {x-r,y, z, lcar3} ; + p6 = newp; Point(p6) = {x, y-r,z, lcar3} ; + p7 = newp; Point(p7) = {x, y, z-r,lcar3} ; + + c1 = newreg; Circle(c1) = {p2,p1,p7}; + c2 = newreg; Circle(c2) = {p7,p1,p5}; + c3 = newreg; Circle(c3) = {p5,p1,p4}; + c4 = newreg; Circle(c4) = {p4,p1,p2}; + c5 = newreg; Circle(c5) = {p2,p1,p3}; + c6 = newreg; Circle(c6) = {p3,p1,p5}; + c7 = newreg; Circle(c7) = {p5,p1,p6}; + c8 = newreg; Circle(c8) = {p6,p1,p2}; + c9 = newreg; Circle(c9) = {p7,p1,p3}; + c10 = newreg; Circle(c10) = {p3,p1,p4}; + c11 = newreg; Circle(c11) = {p4,p1,p6}; + c12 = newreg; Circle(c12) = {p6,p1,p7}; + +<I><FONT COLOR="#B22222">// All surfaces are not plane... Here is the way to define ruled +</FONT></I><I><FONT COLOR="#B22222">// surfaces (which have 3 or 4 borders): +</FONT></I> + l1 = newreg; Line Loop(l1) = {c5,c10,c4}; Ruled Surface(newreg) = {l1}; + l2 = newreg; Line Loop(l2) = {c9,-c5,c1}; Ruled Surface(newreg) = {l2}; + l3 = newreg; Line Loop(l3) = {-c12,c8,c1}; Ruled Surface(newreg) = {l3}; + l4 = newreg; Line Loop(l4) = {c8,-c4,c11}; Ruled Surface(newreg) = {l4}; + l5 = newreg; Line Loop(l5) = {-c10,c6,c3}; Ruled Surface(newreg) = {l5}; + l6 = newreg; Line Loop(l6) = {-c11,-c3,c7}; Ruled Surface(newreg) = {l6}; + l7 = newreg; Line Loop(l7) = {c2,c7,c12}; Ruled Surface(newreg) = {l7}; + l8 = newreg; Line Loop(l8) = {-c6,-c9,c2}; Ruled Surface(newreg) = {l8}; + +<I><FONT COLOR="#B22222">// Arrays of variables can be manipulated in the same way as classical +</FONT></I><I><FONT COLOR="#B22222">// variables. Warning: accessing an uninitialized element in an array +</FONT></I><I><FONT COLOR="#B22222">// will produce an unpredictable result. Note that whole arrays can +</FONT></I><I><FONT COLOR="#B22222">// also be initialized on the fly (e.g. l[]={1,2,7} is valid). +</FONT></I> + theloops[t] = newreg ; + + Surface Loop(theloops[t]) = {l8+1, l5+1, l1+1, l2+1, -(l3+1), -(l7+1), l6+1, l4+1}; + + thehole = newreg ; + Volume(thehole) = theloops[t] ; + +Return + + +x = 0 ; y = 0.75 ; z = 0 ; r = 0.09 ; + +<I><FONT COLOR="#B22222">// A For loop is used to generate five holes in the cube: +</FONT></I> +For t In {1:5} + + x += 0.166 ; + z += 0.166 ; + +<I><FONT COLOR="#B22222">// This command calls the function CheeseHole. Note that, instead of +</FONT></I><I><FONT COLOR="#B22222">// defining a function, we could have define a file containing the +</FONT></I><I><FONT COLOR="#B22222">// same code, and used the Include command to include this file. +</FONT></I> + Call CheeseHole ; + +<I><FONT COLOR="#B22222">// A physical volume is defined for each cheese hole +</FONT></I> + Physical Volume (t) = thehole ; + +<I><FONT COLOR="#B22222">// The Printf function permits to print the value of variables on the +</FONT></I><I><FONT COLOR="#B22222">// terminal, in a way similar to the 'printf' C function: +</FONT></I> + Printf("The cheese hole %g (center = {%g,%g,%g}, radius = %g) has number %g!", + t, x, y, z, r, thehole) ; + +<I><FONT COLOR="#B22222">// Note: All Gmsh variables are treated internally as double precision +</FONT></I><I><FONT COLOR="#B22222">// numbers. The format string should thus only contain valid double +</FONT></I><I><FONT COLOR="#B22222">// precision number format specifiers (see the C or C++ language +</FONT></I><I><FONT COLOR="#B22222">// reference for more details). +</FONT></I> +EndFor + +<I><FONT COLOR="#B22222">// This is the surface loop for the exterior surface of the cube: +</FONT></I> +theloops[0] = newreg ; + +Surface Loop(theloops[0]) = {35,31,29,37,33,23,39,25,27} ; + +<I><FONT COLOR="#B22222">// The volume of the cube, without the 5 cheese holes, is defined by 6 +</FONT></I><I><FONT COLOR="#B22222">// surface loops (the exterior surface and the five interior loops). +</FONT></I><I><FONT COLOR="#B22222">// To reference an array of variables, its identifier is followed by +</FONT></I><I><FONT COLOR="#B22222">// '[]': +</FONT></I> +Volume(186) = {theloops[]} ; + +<I><FONT COLOR="#B22222">// This physical volume assigns the region number 10 to the tetrahedra +</FONT></I><I><FONT COLOR="#B22222">// paving the cube (but not the holes, whose elements were tagged from +</FONT></I><I><FONT COLOR="#B22222">// 1 to 5 in the 'For' loop) +</FONT></I> +Physical Volume (10) = 186 ; + +</PRE> +<HR> +<A NAME="file7"> +<H1>t6.geo 7/9</H1> +[<A HREF="#top">top</A>][<A HREF="#file6">prev</A>][<A HREF="#file8">next</A>] +<PRE> +<I><FONT COLOR="#B22222">/********************************************************************* + * + * Gmsh tutorial 6 + * + * Transfinite meshes + * + *********************************************************************/</FONT></I> + +r_int = 0.05 ; +r_ext = 0.051 ; +r_far = 0.125 ; +r_inf = 0.4 ; +phi1 = 30. * (Pi/180.) ; +angl = 45. * (Pi/180.) ; + +nbpt_phi = 5 ; nbpt_int = 20 ; +nbpt_arc1 = 10 ; nbpt_arc2 = 10 ; +nbpt_shell = 10 ; nbpt_far = 25 ; nbpt_inf = 15 ; + +lc0 = 0.1 ; lc1 = 0.1 ; lc2 = 0.3 ; + +Point(1) = {0, 0, 0, lc0} ; +Point(2) = {r_int, 0, 0, lc0} ; +Point(3) = {r_ext, 0, 0, lc1} ; +Point(4) = {r_far, 0, 0, lc2} ; +Point(5) = {r_inf, 0, 0, lc2} ; +Point(6) = {0, 0, r_int, lc0} ; +Point(7) = {0, 0, r_ext, lc1} ; +Point(8) = {0, 0, r_far, lc2} ; +Point(9) = {0, 0, r_inf, lc2} ; + +Point(10) = {r_int*Cos(phi1), r_int*Sin(phi1), 0, lc0} ; +Point(11) = {r_ext*Cos(phi1), r_ext*Sin(phi1), 0, lc1} ; +Point(12) = {r_far*Cos(phi1), r_far*Sin(phi1), 0, lc2} ; +Point(13) = {r_inf*Cos(phi1), r_inf*Sin(phi1), 0, lc2} ; + +Point(14) = {r_int/2, 0, 0, lc2} ; +Point(15) = {r_int/2*Cos(phi1), r_int/2*Sin(phi1), 0, lc2} ; +Point(16) = {r_int/2, 0, r_int/2, lc2} ; +Point(17) = {r_int/2*Cos(phi1), r_int/2*Sin(phi1), r_int/2, lc2} ; +Point(18) = {0, 0, r_int/2, lc2} ; +Point(19) = {r_int*Cos(angl), 0, r_int*Sin(angl), lc2} ; +Point(20) = {r_int*Cos(angl)*Cos(phi1), r_int*Cos(angl)*Sin(phi1), r_int*Sin(angl), lc2} ; +Point(21) = {r_ext*Cos(angl), 0, r_ext*Sin(angl), lc2} ; +Point(22) = {r_ext*Cos(angl)*Cos(phi1), r_ext*Cos(angl)*Sin(phi1), r_ext*Sin(angl), lc2} ; +Point(23) = {r_far*Cos(angl), 0, r_far*Sin(angl), lc2} ; +Point(24) = {r_far*Cos(angl)*Cos(phi1), r_far*Cos(angl)*Sin(phi1), r_far*Sin(angl), lc2} ; +Point(25) = {r_inf, 0, r_inf, lc2} ; +Point(26) = {r_inf*Cos(phi1), r_inf*Sin(phi1), r_inf, lc2} ; + +Circle(1) = {2,1,19}; Circle(2) = {19,1,6}; Circle(3) = {3,1,21}; +Circle(4) = {21,1,7}; Circle(5) = {4,1,23}; Circle(6) = {23,1,8}; +Line(7) = {5,25}; Line(8) = {25,9}; +Circle(9) = {10,1,20}; Circle(10) = {20,1,6}; Circle(11) = {11,1,22}; +Circle(12) = {22,1,7}; Circle(13) = {12,1,24}; Circle(14) = {24,1,8}; +Line(15) = {13,26}; Line(16) = {26,9}; +Circle(17) = {19,1,20}; Circle(18) = {21,1,22}; Circle(19) = {23,1,24}; +Circle(20) = {25,1,26}; Circle(21) = {2,1,10}; Circle(22) = {3,1,11}; +Circle(23) = {4,1,12}; Circle(24) = {5,1,13}; + +Line(25) = {1,14}; Line(26) = {14,2}; Line(27) = {2,3}; Line(28) = {3,4}; +Line(29) = {4,5}; Line(30) = {1,15}; Line(31) = {15,10}; Line(32) = {10,11}; +Line(33) = {11,12}; Line(34) = {12,13}; Line(35) = {14,15}; Line(36) = {14,16}; +Line(37) = {15,17}; Line(38) = {16,17}; Line(39) = {18,16}; Line(40) = {18,17}; +Line(41) = {1,18}; Line(42) = {18,6}; Line(43) = {6,7}; Line(44) = {16,19}; +Line(45) = {19,21}; Line(46) = {21,23}; Line(47) = {23,25}; Line(48) = {17,20}; +Line(49) = {20,22}; Line(50) = {22,24}; Line(51) = {24,26}; Line(52) = {7,8}; +Line(53) = {8,9}; + +Line Loop(54) = {39,-36,-25,41}; Ruled Surface(55) = {54}; +Line Loop(56) = {44,-1,-26,36}; Ruled Surface(57) = {56}; +Line Loop(58) = {3,-45,-1,27}; Ruled Surface(59) = {58}; +Line Loop(60) = {5,-46,-3,28}; Ruled Surface(61) = {60}; +Line Loop(62) = {7,-47,-5,29}; Ruled Surface(63) = {62}; +Line Loop(64) = {-2,-44,-39,42}; Ruled Surface(65) = {64}; +Line Loop(66) = {-4,-45,2,43}; Ruled Surface(67) = {66}; +Line Loop(68) = {-6,-46,4,52}; Ruled Surface(69) = {68}; +Line Loop(70) = {-8,-47,6,53}; Ruled Surface(71) = {70}; +Line Loop(72) = {-40,-41,30,37}; Ruled Surface(73) = {72}; +Line Loop(74) = {48,-9,-31,37}; Ruled Surface(75) = {74}; +Line Loop(76) = {49,-11,-32,9}; Ruled Surface(77) = {76}; +Line Loop(78) = {-50,-11,33,13}; Ruled Surface(79) = {78}; +Line Loop(80) = {-51,-13,34,15}; Ruled Surface(81) = {80}; +Line Loop(82) = {10,-42,40,48}; Ruled Surface(83) = {82}; +Line Loop(84) = {12,-43,-10,49}; Ruled Surface(85) = {84}; +Line Loop(86) = {14,-52,-12,50}; Ruled Surface(87) = {86}; +Line Loop(88) = {16,-53,-14,51}; Ruled Surface(89) = {88}; +Line Loop(90) = {-30,25,35}; Ruled Surface(91) = {90}; +Line Loop(92) = {-40,39,38}; Ruled Surface(93) = {92}; +Line Loop(94) = {37,-38,-36,35}; Ruled Surface(95) = {94}; +Line Loop(96) = {-48,-38,44,17}; Ruled Surface(97) = {96}; +Line Loop(98) = {18,-49,-17,45}; Ruled Surface(99) = {98}; +Line Loop(100) = {19,-50,-18,46}; Ruled Surface(101) = {100}; +Line Loop(102) = {20,-51,-19,47}; Ruled Surface(103) = {102}; +Line Loop(104) = {-2,17,10}; Ruled Surface(105) = {104}; +Line Loop(106) = {-9,-21,1,17}; Ruled Surface(107) = {106}; +Line Loop(108) = {-4,18,12}; Ruled Surface(109) = {108}; +Line Loop(110) = {-11,-22,3,18}; Ruled Surface(111) = {110}; +Line Loop(112) = {-13,-23,5,19}; Ruled Surface(113) = {112}; +Line Loop(114) = {-6,19,14}; Ruled Surface(115) = {114}; +Line Loop(116) = {-15,-24,7,20}; Ruled Surface(117) = {116}; +Line Loop(118) = {-8,20,16}; Ruled Surface(119) = {118}; +Line Loop(120) = {-31,-35,26,21}; Ruled Surface(121) = {120}; +Line Loop(122) = {32,-22,-27,21}; Ruled Surface(123) = {122}; +Line Loop(124) = {33,-23,-28,22}; Ruled Surface(125) = {124}; +Line Loop(126) = {34,-24,-29,23}; Ruled Surface(127) = {126}; + +Surface Loop(128) = {93,-73,-55,95,-91}; Volume(129) = {128}; <I><FONT COLOR="#B22222">// int +</FONT></I>Surface Loop(130) = {107,-75,-97,95,57,121}; Volume(131) = {130}; <I><FONT COLOR="#B22222">// int b +</FONT></I>Surface Loop(132) = {105,-65,-97,-83,-93}; Volume(133) = {132}; <I><FONT COLOR="#B22222">// int h +</FONT></I>Surface Loop(134) = {99,-111,77,123,59,107}; Volume(135) = {134}; <I><FONT COLOR="#B22222">// shell b +</FONT></I>Surface Loop(136) = {99,-109,67,105,85}; Volume(137) = {136}; <I><FONT COLOR="#B22222">// shell h +</FONT></I>Surface Loop(138) = {113,79,-101,-111,-125,-61}; Volume(139) = {138}; <I><FONT COLOR="#B22222">// ext b +</FONT></I>Surface Loop(140) = {115,-69,-101,-87,-109}; Volume(141) = {140}; <I><FONT COLOR="#B22222">// ext h +</FONT></I>Surface Loop(142) = {103,-117,-81,113,127,63}; Volume(143) = {142}; <I><FONT COLOR="#B22222">// inf b +</FONT></I>Surface Loop(144) = {89,-119,71,103,115}; Volume(145) = {144}; <I><FONT COLOR="#B22222">// inf h +</FONT></I> +<I><FONT COLOR="#B22222">// Transfinite line commands explicitly specify the number of points +</FONT></I><I><FONT COLOR="#B22222">// and their distribution. A minus sign in the argument list of the +</FONT></I><I><FONT COLOR="#B22222">// transfinite command will produce the reversed mesh. +</FONT></I> +Transfinite Line{35,21,22,23,24,38,17,18,19,20} = nbpt_phi ; +Transfinite Line{31,26,48,44,42} = nbpt_int Using Progression 0.95; +Transfinite Line{41,37,36,9,11,1,3,13,5,15,7} = nbpt_arc1 ; +Transfinite Line{30,25,40,39,10,2,12,4,14,6,16,8} = nbpt_arc2 ; +Transfinite Line{32,27,49,45,43} = nbpt_shell ; +Transfinite Line{33,28,46,50,52} = nbpt_far Using Progression 1.05 ; +Transfinite Line{34,29,51,47,53} = nbpt_inf Using Progression 0.01; + +<I><FONT COLOR="#B22222">// *All* 2D and 3D transfinite entities are defined in respect to +</FONT></I><I><FONT COLOR="#B22222">// points. The ordering of the points defines the ordering of the mesh +</FONT></I><I><FONT COLOR="#B22222">// elements. +</FONT></I> +Transfinite Surface{55} = {1,14,16,18}; +Transfinite Surface{57} = {14,2,19,16}; +Transfinite Surface{59} = {2,3,21,19}; +Transfinite Surface{61} = {3,4,23,21}; +Transfinite Surface{63} = {4,5,25,23}; +Transfinite Surface{73} = {1,15,17,18}; +Transfinite Surface{75} = {15,10,20,17}; +Transfinite Surface{77} = {10,11,22,20}; +Transfinite Surface{79} = {11,12,24,22}; +Transfinite Surface{81} = {12,13,26,24}; +Transfinite Surface{65} = {18,16,19,6}; +Transfinite Surface{67} = {6,19,21,7}; +Transfinite Surface{69} = {7,21,23,8}; +Transfinite Surface{71} = {8,23,25,9}; +Transfinite Surface{83} = {17,18,6,20}; +Transfinite Surface{85} = {20,6,7,22}; +Transfinite Surface{87} = {22,7,8,24}; +Transfinite Surface{89} = {24,8,9,26}; +Transfinite Surface{91} = {1,14,15}; +Transfinite Surface{95} = {15,14,16,17}; +Transfinite Surface{93} = {18,16,17}; +Transfinite Surface{121} = {15,14,2,10}; +Transfinite Surface{97} = {17,16,19,20}; +Transfinite Surface{123} = {10,2,3,11}; +Transfinite Surface{99} = {20,19,21,22}; +Transfinite Surface{107} = {10,2,19,20}; +Transfinite Surface{105} = {6,20,19}; +Transfinite Surface{109} = {7,22,21}; +Transfinite Surface{111} = {11,3,21,22}; +Transfinite Surface{101} = {22,21,23,24}; +Transfinite Surface{125} = {11,3,4,12}; +Transfinite Surface{115} = {8,24,23}; +Transfinite Surface{113} = {24,12,4,23}; +Transfinite Surface{127} = {12,13,5,4}; +Transfinite Surface{103} = {24,23,25,26}; +Transfinite Surface{119} = {9,26,25}; +Transfinite Surface{117} = {13,5,25,26}; + +<I><FONT COLOR="#B22222">// As with Extruded meshes, the Recombine command tells Gmsh to +</FONT></I><I><FONT COLOR="#B22222">// recombine the simplices into quadrangles, prisms or hexahedra when +</FONT></I><I><FONT COLOR="#B22222">// possible. A colon in a list acts as in the 'For' loop: all surfaces +</FONT></I><I><FONT COLOR="#B22222">// having numbers between 55 and 127 are considered. +</FONT></I> +Recombine Surface {55:127}; + +<I><FONT COLOR="#B22222">// *All* 2D and 3D transfinite entities are defined in respect to +</FONT></I><I><FONT COLOR="#B22222">// points. The ordering of the points defines the ordering of the mesh +</FONT></I><I><FONT COLOR="#B22222">// elements. +</FONT></I> +Transfinite Volume{129} = {1,14,15,18,16,17}; +Transfinite Volume{131} = {17,16,14,15,20,19,2,10}; +Transfinite Volume{133} = {18,17,16,6,20,19}; +Transfinite Volume{135} = {10,2,19,20,11,3,21,22}; +Transfinite Volume{137} = {6,20,19,7,22,21}; +Transfinite Volume{139} = {11,3,4,12,22,21,23,24}; +Transfinite Volume{141} = {7,22,21,8,24,23}; +Transfinite Volume{143} = {12,4,5,13,24,23,25,26}; +Transfinite Volume{145} = {8,24,23,9,26,25}; + +VolInt = 1000 ; +SurfIntPhi0 = 1001 ; +SurfIntPhi1 = 1002 ; +SurfIntZ0 = 1003 ; + +VolShell = 2000 ; +SurfShellInt = 2001 ; +SurfShellExt = 2002 ; +SurfShellPhi0 = 2003 ; +SurfShellPhi1 = 2004 ; +SurfShellZ0 = 2005 ; +LineShellIntPhi0 = 2006 ; +LineShellIntPhi1 = 2007 ; +LineShellIntZ0 = 2008 ; +PointShellInt = 2009 ; + +VolExt = 3000 ; +VolInf = 3001 ; +SurfInf = 3002 ; +SurfExtInfPhi0 = 3003 ; +SurfExtInfPhi1 = 3004 ; +SurfExtInfZ0 = 3005 ; +SurfInfRight = 3006 ; +SurfInfTop = 3007 ; + +Physical Volume (VolInt) = {129,131,133} ; +Physical Surface (SurfIntPhi0) = {55,57,65} ; +Physical Surface (SurfIntPhi1) = {73,75,83} ; +Physical Surface (SurfIntZ0) = {91,121} ; + +Physical Volume (VolShell) = {135,137} ; +Physical Surface (SurfShellInt) = {105,107} ; +Physical Surface (SurfShellExt) = {109,111} ; +Physical Surface (SurfShellPhi0) = {59,67} ; +Physical Surface (SurfShellPhi1) = {77,85} ; +Physical Surface (SurfShellZ0) = {123} ; +Physical Line (LineShellIntPhi0) = {1,2} ; +Physical Line (LineShellIntPhi1) = {9,10} ; +Physical Line (LineShellIntZ0) = 21 ; +Physical Point (PointShellInt) = 6 ; + +Physical Volume (VolExt) = {139,141} ; +Physical Volume (VolInf) = {143,145} ; +Physical Surface (SurfExtInfPhi0) = {61,63,69,71} ; +Physical Surface (SurfExtInfPhi1) = {79,87,81,89} ; +Physical Surface (SurfExtInfZ0) = {125,127} ; +Physical Surface (SurfInfRight) = {117} ; +Physical Surface (SurfInfTop) = {119} ; +</PRE> +<HR> +<A NAME="file8"> +<H1>t7.geo 8/9</H1> +[<A HREF="#top">top</A>][<A HREF="#file7">prev</A>][<A HREF="#file9">next</A>] +<PRE> +<I><FONT COLOR="#B22222">/********************************************************************* + * + * Gmsh tutorial 7 + * + * Anisotropic meshes, Attractors + * + *********************************************************************/</FONT></I> + +<I><FONT COLOR="#B22222">// The new anisotropic 2D mesh generator can be selected with: +</FONT></I> +Mesh.Algorithm = 2 ; + +<I><FONT COLOR="#B22222">// One can force a 4 step Laplacian smoothing of the mesh with: +</FONT></I> +Mesh.Smoothing = 4 ; + +lc = .1; + +Point(1) = {0.0,0.0,0,lc}; +Point(2) = {1,0.0,0,lc}; +Point(3) = {1,1,0,lc}; +Point(4) = {0,1,0,lc}; + +Line(1) = {3,2}; +Line(2) = {2,1}; +Line(3) = {1,4}; +Line(4) = {4,3}; + +Line Loop(5) = {1,2,3,4}; +Plane Surface(6) = {5}; + +Point(5) = {0.1,0.2,0,lc}; +Point(11) = {0.5,0.5,-1,lc}; +Point(22) = {0.6,0.6,1,lc}; + +Line(5) = {11,22}; + +<I><FONT COLOR="#B22222">// Anisotropic attractors can be defined on points and lines: +</FONT></I> +Attractor Line{5} = {1, 0.1, 7}; + +Attractor Point{5} = {0.1, 0.5, 3}; +</PRE> +<HR> +<A NAME="file9"> +<H1>t8.geo 9/9</H1> +[<A HREF="#top">top</A>][<A HREF="#file8">prev</A>][next] +<PRE> +<I><FONT COLOR="#B22222">/********************************************************************* + * + * Gmsh tutorial 8 + * + * Post-Processing, Scripting, Animations, Options + * + *********************************************************************/</FONT></I> + +<I><FONT COLOR="#B22222">// The first example is included, as well as two post-processing maps +</FONT></I><I><FONT COLOR="#B22222">// (for the format of the post-processing maps, see the FORMATS file): +</FONT></I> +Include "t1.geo" ; +Include "view1.pos" ; +Include "view1.pos" ; + +<I><FONT COLOR="#B22222">// Some general options are set (all the options specified +</FONT></I><I><FONT COLOR="#B22222">// interactively can be directly specified in the ascii input +</FONT></I><I><FONT COLOR="#B22222">// files. The current options can be saved into a file by selecting +</FONT></I><I><FONT COLOR="#B22222">// 'File->Save_Options_as')... +</FONT></I> +General.Trackball = 0 ; +General.RotationX = 0 ; +General.RotationY = 0 ; +General.RotationZ = 0 ; +General.Color.Background = White ; +General.Color.Text = Black ; +General.Orthographic = 0 ; +General.Axes = 0 ; + +<I><FONT COLOR="#B22222">// ...as well as some options for each post-processing view... +</FONT></I> +View[0].Name = "This is a very stupid demonstration..." ; +View[0].IntervalsType = 2 ; +View[0].OffsetZ = 0.05 ; +View[0].RaiseZ = 0 ; +View[0].Light = 1 ; + +View[1].Name = "...of Gmsh's scripting capabilities" ; +View[1].IntervalsType = 1 ; +View[1].ColorTable = { Green, Blue } ; +View[1].NbIso = 10 ; + +<I><FONT COLOR="#B22222">// ...and loop from 1 to 255 with a step of 1 is performed (to use a +</FONT></I><I><FONT COLOR="#B22222">// step different from 1, just add a third argument in the list, +</FONT></I><I><FONT COLOR="#B22222">// e.g. 'For num In {0.5:1.5:0.1}' increments num from 0.5 to 1.5 with +</FONT></I><I><FONT COLOR="#B22222">// a step of 0.1): +</FONT></I> +t = 0 ; + +For num In {1:255} + + View[0].TimeStep = t ; + View[1].TimeStep = t ; + + t = (View[0].TimeStep < View[0].NbTimeStep-1) ? t+1 : 0 ; + + View[0].RaiseZ += 0.001*t ; + + If (num == 3) + <I><FONT COLOR="#B22222">// We want to use mpeg_encode to create a nice 320x240 animation +</FONT></I> <I><FONT COLOR="#B22222">// for all frames when num==3: +</FONT></I> General.GraphicsWidth = 320 ; + General.GraphicsHeight = 240 ; + EndIf + + <I><FONT COLOR="#B22222">// It is possible to nest loops: +</FONT></I> + For num2 In {1:50} + + General.RotationX += 10 ; + General.RotationY = General.RotationX / 3 ; + General.RotationZ += 0.1 ; + + Sleep 0.01; <I><FONT COLOR="#B22222">// sleep for 0.01 second +</FONT></I> Draw; <I><FONT COLOR="#B22222">// draw the scene +</FONT></I> + If ((num == 3) && (num2 < 10)) + <I><FONT COLOR="#B22222">// The Sprintf function permits to create complex strings using +</FONT></I> <I><FONT COLOR="#B22222">// variables (since all Gmsh variables are treated internally as +</FONT></I> <I><FONT COLOR="#B22222">// double precision numbers, the format should only contain valid +</FONT></I> <I><FONT COLOR="#B22222">// double precision number format specifiers): +</FONT></I> Print Sprintf("t8-0%g.jpg", num2); + EndIf + + If ((num == 3) && (num2 >= 10)) + Print Sprintf("t8-%g.jpg", num2); + EndIf + + EndFor + + If(num == 3) + <I><FONT COLOR="#B22222">// We make a system call to generate the mpeg +</FONT></I> System "mpeg_encode t8.par" ; + EndIf + +EndFor + + +<I><FONT COLOR="#B22222">// Here is the list of available scripting commands: +</FONT></I><I><FONT COLOR="#B22222">// +</FONT></I><I><FONT COLOR="#B22222">// Merge string; (to merge a file) +</FONT></I><I><FONT COLOR="#B22222">// Draw; (to draw the scene) +</FONT></I><I><FONT COLOR="#B22222">// Mesh int; (to perform the mesh generation; 'int' = 0, 1, 2 or 3) +</FONT></I><I><FONT COLOR="#B22222">// Save string; (to save the mesh) +</FONT></I><I><FONT COLOR="#B22222">// Print string; (to print the graphic window) +</FONT></I><I><FONT COLOR="#B22222">// Sleep expr; (to sleep during expr seconds) +</FONT></I><I><FONT COLOR="#B22222">// Delete View[int]; (to free the view int) +</FONT></I><I><FONT COLOR="#B22222">// Delete Meshes; (to free all meshes) +</FONT></I><I><FONT COLOR="#B22222">// System string; (to execute a system call) +</FONT></I></PRE> +<HR> +<ADDRESS>Generated by <A HREF="http://www.iki.fi/~mtr/genscript/">GNU enscript 1.6.1</A>.</ADDRESS> +</BODY> +</HTML> diff --git a/utils/gmsh_fltk.spec b/utils/gmsh_fltk.spec index aaadb970f6d87b4994c3becbe87244cd0c9500ef..138135d9765029958d37f100bc0ab953f1fe0ed1 100644 --- a/utils/gmsh_fltk.spec +++ b/utils/gmsh_fltk.spec @@ -1,7 +1,7 @@ Summary: A 3D mesh generator with pre- and post-processing facilities Name: gmsh -Version: 1.13 -Source: gmsh-1.13.tar.gz +Version: 1.14 +Source: gmsh-1.14.tar.gz Release: 1 Copyright: distributable Group: Applications/Engineering diff --git a/utils/tut2html b/utils/tut2html index f436a3dcfdf4c858c493244cf17fdbb53390a579..b67e85a9df4414a05e62f3ccbb26a5ffc012a884 100644 --- a/utils/tut2html +++ b/utils/tut2html @@ -6,7 +6,7 @@ #fi #enscript -Ecpp --color -Whtml --toc -pt.html $* -enscript -Ecpp --color -Whtml --toc -pt.html README.txt *.geo +enscript -Ecpp --color -Whtml --toc -pt.html README *.geo cat t.html | \ sed "s/<FONT COLOR=\"#BC8F8F\"><B>//g" | \ diff --git a/www/gmsh.html b/www/gmsh.html index df58e5cb9f74039b31709032b3f48617db4fe947..f1fdce85be6df07e29a18b018d1c3e5b0eae5ff5 100644 --- a/www/gmsh.html +++ b/www/gmsh.html @@ -51,7 +51,7 @@ ENDSCRIPT---> This page is a mirror of <a href="/gmsh/">/gmsh/</a><p> ENDMIRROR---> -<!---BEGINDATE$Date: 2001-02-18 18:11:42 $ENDDATE---> +<!---BEGINDATE$Date: 2001-02-18 18:38:54 $ENDDATE---> Copyright © 1998-2001<br> J.-F. Remacle<br> @@ -251,7 +251,7 @@ description. <td bgcolor="#ededed"><font face="Helvetica, Arial" size=-1> -<b>Development Release: 1.14 (February 19, 2001)</b> +<b>Latest Release: 1.14 (February 19, 2001)</b> <p> The development release of Gmsh is available for Linux and Windows. All executables are dynamically linked with OpenGL.