diff --git a/contrib/mobile/Android/res/raw/bh_pro b/contrib/mobile/Android/res/raw/bh_pro
deleted file mode 100644
index 1458d87c831c5d7b0452af70388efdf3b3929714..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/bh_pro
+++ /dev/null
@@ -1,59 +0,0 @@
-Function{
-  // nu = 100. + 10. * exp ( 1.8 * b * b )
-  // analytical
-  nu_1a[] = 100. + 10. * Exp[1.8*SquNorm[$1]] ;
-  dnudb2_1a[] = 18. * Exp[1.8*SquNorm[$1]] ;
-  h_1a[] = nu_1a[$1]*$1 ;
-  dhdb_1a[] = TensorDiag[1,1,1] * nu_1a[$1#1] + 2*dnudb2_1a[#1] * SquDyadicProduct[#1]  ;
-  dhdb_1a_NL[] = 2*dnudb2_1a[$1] * SquDyadicProduct[$1]  ;
-
-  // interpolated
-  Mat1_h = {
-    0.0000e+00, 5.5023e+00, 1.1018e+01, 1.6562e+01, 2.2149e+01, 2.7798e+01, 3.3528e+01,
-    3.9363e+01, 4.5335e+01, 5.1479e+01, 5.7842e+01, 6.4481e+01, 7.1470e+01, 7.8906e+01,
-    8.6910e+01, 9.5644e+01, 1.0532e+02, 1.1620e+02, 1.2868e+02, 1.4322e+02, 1.6050e+02,
-    1.8139e+02, 2.0711e+02, 2.3932e+02, 2.8028e+02, 3.3314e+02, 4.0231e+02, 4.9395e+02,
-    6.1678e+02, 7.8320e+02, 1.0110e+03, 1.3257e+03, 1.7645e+03, 2.3819e+03, 3.2578e+03,
-    4.5110e+03, 6.3187e+03, 8.9478e+03, 1.2802e+04, 1.8500e+04, 2.6989e+04, 3.9739e+04,
-    5.9047e+04, 8.8520e+04, 1.3388e+05, 2.0425e+05, 3.1434e+05, 4.8796e+05, 7.6403e+05
-  } ;
-  Mat1_b = {
-    0.0000e+00, 5.0000e-02, 1.0000e-01, 1.5000e-01, 2.0000e-01, 2.5000e-01, 3.0000e-01,
-    3.5000e-01, 4.0000e-01, 4.5000e-01, 5.0000e-01, 5.5000e-01, 6.0000e-01, 6.5000e-01,
-    7.0000e-01, 7.5000e-01, 8.0000e-01, 8.5000e-01, 9.0000e-01, 9.5000e-01, 1.0000e+00,
-    1.0500e+00, 1.1000e+00, 1.1500e+00, 1.2000e+00, 1.2500e+00, 1.3000e+00, 1.3500e+00,
-    1.4000e+00, 1.4500e+00, 1.5000e+00, 1.5500e+00, 1.6000e+00, 1.6500e+00, 1.7000e+00,
-    1.7500e+00, 1.8000e+00, 1.8500e+00, 1.9000e+00, 1.9500e+00, 2.0000e+00, 2.0500e+00,
-    2.1000e+00, 2.1500e+00, 2.2000e+00, 2.2500e+00, 2.3000e+00, 2.3500e+00, 2.4000e+00
-  } ;
-  Mat1_b2 = {
-    0.0000e+00, 2.5000e-03, 1.0000e-02, 2.2500e-02, 4.0000e-02, 6.2500e-02, 9.0000e-02,
-    1.2250e-01, 1.6000e-01, 2.0250e-01, 2.5000e-01, 3.0250e-01, 3.6000e-01, 4.2250e-01,
-    4.9000e-01, 5.6250e-01, 6.4000e-01, 7.2250e-01, 8.1000e-01, 9.0250e-01, 1.0000e+00,
-    1.1025e+00, 1.2100e+00, 1.3225e+00, 1.4400e+00, 1.5625e+00, 1.6900e+00, 1.8225e+00,
-    1.9600e+00, 2.1025e+00, 2.2500e+00, 2.4025e+00, 2.5600e+00, 2.7225e+00, 2.8900e+00,
-    3.0625e+00, 3.2400e+00, 3.4225e+00, 3.6100e+00, 3.8025e+00, 4.0000e+00, 4.2025e+00,
-    4.4100e+00, 4.6225e+00, 4.8400e+00, 5.0625e+00, 5.2900e+00, 5.5225e+00, 5.7600e+00
-  } ;
-  Mat1_nu = {
-    1.1005e+02, 1.1005e+02, 1.1018e+02, 1.1041e+02, 1.1075e+02, 1.1119e+02, 1.1176e+02,
-    1.1247e+02, 1.1334e+02, 1.1440e+02, 1.1568e+02, 1.1724e+02, 1.1912e+02, 1.2139e+02,
-    1.2416e+02, 1.2752e+02, 1.3165e+02, 1.3671e+02, 1.4297e+02, 1.5076e+02, 1.6050e+02,
-    1.7275e+02, 1.8829e+02, 2.0810e+02, 2.3356e+02, 2.6651e+02, 3.0947e+02, 3.6589e+02,
-    4.4056e+02, 5.4014e+02, 6.7397e+02, 8.5528e+02, 1.1028e+03, 1.4436e+03, 1.9164e+03,
-    2.5777e+03, 3.5104e+03, 4.8366e+03, 6.7381e+03, 9.4870e+03, 1.3494e+04, 1.9385e+04,
-    2.8118e+04, 4.1172e+04, 6.0854e+04, 9.0779e+04, 1.3667e+05, 2.0764e+05, 3.1835e+05
-  } ;
-
-  Mat1_nu_b2  = ListAlt[Mat1_b2, Mat1_nu] ;
-  nu_1[] = InterpolationLinear[$1]{List[Mat1_nu_b2]} ;
-  dnudb2_1[] = dInterpolationLinear[$1]{List[Mat1_nu_b2]} ;
-  h_1[] = nu_1[(SquNorm[$1])] * $1 ;
-  dhdb_1[] = TensorDiag[1,1,1] * nu_1[SquNorm[$1]#1] + 2*dnudb2_1[#1] * SquDyadicProduct[$1]  ;
-}
-
-
-
-
-
-
diff --git a/contrib/mobile/Android/res/raw/machine_magstadyn_a_pro b/contrib/mobile/Android/res/raw/machine_magstadyn_a_pro
deleted file mode 100644
index f58a22b84a3d4258d4cb3e7100e5444ee87dc8e8..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/machine_magstadyn_a_pro
+++ /dev/null
@@ -1,938 +0,0 @@
-Group {
-  DefineGroup[ DomainM, DomainB, DomainS ];
-  DefineGroup[ DomainL, DomainNL, Dummy ];
-  DefineGroup[ Rotor_Inds, Rotor_IndsP, Rotor_IndsN, Rotor_Magnets, Rotor_Bars ];
-  DefineGroup[ Surf_bn0, Rotor_Bnd_MBaux] ;
-  DefineGroup[ Resistance_Cir, Inductance_Cir, Capacitance_Cir, DomainZt_Cir, DomainSource_Cir ];
-}
-
-Function{
-
-  DefineConstant[ Flag_Cir, Flag_NL, Flag_ParkTransformation ];
-  DefineConstant[ Term_vxb ];
-  DefineConstant[ AxialLength        = {1, Visible 0},
-                  FillFactor_Winding = {1, Visible 0},
-                  Factor_R_3DEffects = {1, Visible 0},
-                  SymmetryFactor     = {1, Visible 0} ];
-
-  Flag_Symmetry = (SymmetryFactor==1) ? 0 : 1 ;
-
-  DefineConstant[ Nb_max_iter        = {20, Visible 0},
-                  relaxation_factor  = {1, Visible 0},
-                  stop_criterion     = {1e-5, Visible 0},
-                  reltol             = {1e-7, Visible 0},
-                  abstol             = {1e-5, Visible 0} ];
-
-  DefineConstant[ II, VV, pA, pB, pC, Ie, ID, IQ, I0 ];
-  DefineFunction[ br, js, Resistance, Inductance, Capacitance ];
-  DefineFunction[ Theta_Park, Theta_Park_deg, RotorPosition, RotorPosition_deg ] ;
-
-
-  DefineConstant[ Flag_SrcType_Rotor = {0, Visible 0} ];
-
-  DefineConstant[ Clean_Results = { 1, Choices {0,1},
-    Label "Remove previous result files",
-    Path "Input/1", Visible 1 } ] ;
-
-  DefineConstant[ Flag_SaveAllSteps = {0, Label "Save all time steps",
-      Path "Input/0", Choices {0,1}} ];
-
-  DefineConstant[ my_output={"Output/40T_rotor", Visible 0}];
-
-}
-
-Include "bh.pro"; // nonlinear BH caracteristic of magnetic material
-
-Group {
-
-  Inds = Region[ {Stator_Inds, Rotor_Inds} ] ;
-
-  DomainB = Region[ {Inds} ] ;
-  DomainM = Region[ {Rotor_Magnets} ] ;
-
-  Stator  = Region[{ StatorC, StatorCC }] ;
-  Rotor   = Region[{ RotorC,  RotorCC }] ;
-
-  Rotor_Moving = Region[{ Rotor, Rotor_Air, Rotor_Airgap, Rotor_Inds, Rotor_Bnd_MBaux} ] ; // Use in ChangeOfCoordinates
-
-  MB  = MovingBand2D[ MovingBand_PhysicalNb, Stator_Bnd_MB, Rotor_Bnd_MB, SymmetryFactor] ;
-  Air = Region[{ Rotor_Air, Rotor_Airgap, Stator_Air, Stator_Airgap, MB } ] ;
-  Inds = Region[{ Rotor_Inds, Stator_Inds } ] ;
-
-  DomainV = Region[{}]; // Speed considered either with term v/\b
-  If(Term_vxb) // or not dynamics in time domain + mechanics
-    DomainV = Region[{ RotorC }];
-  EndIf
-
-  DomainCC = Region[{ Air, Inds, StatorCC, RotorCC }];
-  DomainC  = Region[{ StatorC, RotorC }];
-  Domain  = Region[{ DomainCC, DomainC }] ;
-
-  If(Flag_NL)
-    DomainNL = Region[ {Stator_Fe, Rotor_Fe } ];
-    DomainL  = Region[ {Domain,-DomainNL} ];
-  EndIf
-
-  DomainKin = #1234 ; // Dummy region number for mechanical equation
-  DomainDummy = #12345 ; // Dummy region number for mechanical equation
-}
-
-Function {
-  mu0 = 4.e-7 * Pi ;
-
-  sigma_al = 3.72e7 ; // conductivity of aluminum [S/m]
-  sigma_cu = 5.9e7  ; // conductivity of copper [S/m]
-
-  nu [#{Air, Inds, Stator_Al, Rotor_Al, Stator_Cu, Rotor_Cu, Rotor_Magnets, Rotor_Bars}]  = 1. / mu0 ;
-
-  If(!Flag_NL)
-    nu [#{Stator_Fe, Rotor_Fe }]  = 1 / (mur_fe * mu0) ;
-  EndIf
-  If(Flag_NL)
-   nu [#{Stator_Fe, Rotor_Fe }] = nu_1a[$1] ;
-  EndIf
-  dhdb_NL [ DomainNL ] = dhdb_1a_NL[$1];
-
-  sigma[#{Rotor_Fe}] = sigma_fe ;
-  sigma[#{Rotor_Al, Stator_Al}] = sigma_al ;
-  sigma[#{Rotor_Cu, Stator_Cu}] = sigma_cu ;
-  sigma[#{Inds}] = sigma_cu ;
-
-  rho[] = 1/sigma[] ;
-
-  Rb[] = Factor_R_3DEffects*AxialLength*FillFactor_Winding*NbWires[]^2/SurfCoil[]/sigma[] ;
-  Resistance[#{Stator_Inds, Rotor_Inds}] = Rb[] ;
-
-  T = 1/Freq ; // Fundamental period in s
-
-  Idir[#{Stator_IndsP, Rotor_IndsP}] =  1 ;
-  Idir[#{Stator_IndsN, Rotor_IndsN}] = -1 ;
-
-  // Functions for Park transformation
-  Idq0[] = Vector[ ID, IQ, I0 ] ;
-  Pinv[] = Tensor[ Sin[Theta_Park[]],        Cos[Theta_Park[]],        1,
-                   Sin[Theta_Park[]-2*Pi/3], Cos[Theta_Park[]-2*Pi/3], 1,
-                   Sin[Theta_Park[]+2*Pi/3], Cos[Theta_Park[]+2*Pi/3], 1 ];
-
-  P[] = 2/3 * Tensor[ Sin[Theta_Park[]], Sin[Theta_Park[]-2*Pi/3], Sin[Theta_Park[]+2*Pi/3],
-                      Cos[Theta_Park[]], Cos[Theta_Park[]-2*Pi/3], Cos[Theta_Park[]+2*Pi/3],
-                      1/2, 1/2, 1/2 ] ;
-
-  Iabc[]     = Pinv[] * Idq0[] ;
-  Flux_dq0[] = P[] * Vector[#11, #22, #33] ;
-
-  If(Flag_ParkTransformation)
-    II = 1 ;
-    IA[] = CompX[ Iabc[] ] ;
-    IB[] = CompY[ Iabc[] ] ;
-    IC[] = CompZ[ Iabc[] ] ;
-  EndIf
-  If(!Flag_ParkTransformation)
-    IA[] = F_Sin_wt_p[]{2*Pi*Freq, pA} ;
-    IB[] = F_Sin_wt_p[]{2*Pi*Freq, pB} ;
-    IC[] = F_Sin_wt_p[]{2*Pi*Freq, pC} ;
-
-    js[PhaseA] = II * NbWires[]/SurfCoil[] * IA[] * Idir[] * Vector[0, 0, 1] ;
-    js[PhaseB] = II * NbWires[]/SurfCoil[] * IB[] * Idir[] * Vector[0, 0, 1] ;
-    js[PhaseC] = II * NbWires[]/SurfCoil[] * IC[] * Idir[] * Vector[0, 0, 1] ;
-  EndIf
-
-  Velocity[] = wr*XYZ[]/\Vector[0,0,1] ;
-
-  // Maxwell stress tensor
-  T_max[] = ( SquDyadicProduct[$1] - SquNorm[$1] * TensorDiag[0.5, 0.5, 0.5] ) / mu0 ;
-  T_max_cplx[] = ( TensorV[CompX[$1]*Conj[$1],CompY[$1]*Conj[$1],CompZ[$1]*Conj[$1]] - $1*Conj[$1] * TensorDiag[0.5, 0.5, 0.5] ) / mu0 ; // Check if valid
-
-
-  AngularPosition[] = (Atan2[$Y,$X]#7 >= 0.)? #7 : #7+2*Pi ;
-
-  RotatePZ[] = Rotate[ Vector[$X,$Y,$Z], 0, 0, $1 ] ;//Watch out: Do not use XYZ[]!
-
-  // Kinematics
-  Inertia = 8.3e-3 ; //87
-  Friction[] = 0 ;
-
-  Fmag[] = #55 ; // Computed in postprocessing
-}
-
-//-------------------------------------------------------------------------------------
-
-Jacobian {
-  { Name Vol; Case { { Region All ; Jacobian Vol; } } }
-}
-
-Integration {
-  { Name I1 ; Case {
-      { Type Gauss ;
-        Case {
-          { GeoElement Triangle   ; NumberOfPoints  6 ; }
-	  { GeoElement Quadrangle ; NumberOfPoints  4 ; }
-	  { GeoElement Line       ; NumberOfPoints  13 ; }
-        }
-      }
-    }
-  }
-}
-
-//-------------------------------------------------------------------------------------
-
-Constraint {
-
-  { Name MVP_2D ;
-    Case {
-      { Region Surf_Inf ; Type Assign; Value 0. ; }
-      { Region Surf_bn0 ; Type Assign; Value 0. ; }
-
-      If(Flag_Symmetry)
-        { Region Surf_cutA1; SubRegion Region[{Surf_Inf,Surf_bn0}]; Type Link;
-          RegionRef Surf_cutA0; SubRegionRef Region[{Surf_Inf,Surf_bn0}];
-          Coefficient (NbrPoles%2)?-1:1 ; Function RotatePZ[-NbrPoles*2*Pi/NbrPolesTot]; }
-        { Region Surf_cutA1; Type Link; RegionRef Surf_cutA0;
-          Coefficient (NbrPoles%2)?-1:1 ; Function RotatePZ[-NbrPoles*2*Pi/NbrPolesTot]; }
-
-        //For the moving band
-        For k In {1:SymmetryFactor-1}
-        { Region Rotor_Bnd_MB~{k+1} ; SubRegion Rotor_Bnd_MB~{(k!=SymmetryFactor-1)?k+2:1}; Type Link;
-          RegionRef Rotor_Bnd_MB_1; SubRegionRef Rotor_Bnd_MB_2;
-          Coefficient ((NbrPoles%2)?-1:1)^(k); Function RotatePZ[-k*NbrPoles*2*Pi/NbrPolesTot]; }
-        EndFor
-
-      EndIf
-    }
-  }
-
-  { Name Current_2D ;
-    Case {
-      If(Flag_SrcType_Stator==1)
-        { Region PhaseA     ; Value II*Idir[] ; TimeFunction IA[]; }
-        { Region PhaseB     ; Value II*Idir[] ; TimeFunction IB[]; }
-        { Region PhaseC     ; Value II*Idir[] ; TimeFunction IC[]; }
-      EndIf
-      If(Flag_SrcType_Rotor==1)
-        { Region Rotor_Inds ; Value Ie*Idir[] ; }
-      EndIf
-    }
-  }
-
-  { Name Voltage_2D ;
-    Case {
-      { Region RotorC  ; Value 0. ; } // Not needed if Global equation not in formulation
-      { Region StatorC ; Value 0. ; } // Not needed if Global equation not in formulation
-    }
-  }
-
-  { Name Current_Cir ;
-    Case {
-      If(Flag_Cir && Flag_SrcType_Stator==1)
-        { Region Input1  ; Value II  ; TimeFunction IA[]; }
-        { Region Input2  ; Value II  ; TimeFunction IB[]; }
-        { Region Input3  ; Value II  ; TimeFunction IC[]; }
-      EndIf
-    }
-  }
-
-  { Name Voltage_Cir ; // Example induction machine
-    Case {
-      If(Flag_Cir && Flag_SrcType_Stator==2 && !Flag_NL)
-        { Region Input1  ; Value VV  ; TimeFunction IA[]; }
-        { Region Input2  ; Value VV  ; TimeFunction IB[]; }
-        { Region Input3  ; Value VV  ; TimeFunction IC[]; }
-      EndIf
-      If(Flag_Cir && Flag_SrcType_Stator==2 && Flag_NL)
-        { Region Input1  ; Value VV  ; TimeFunction IA[]*Frelax[]; }
-        { Region Input2  ; Value VV  ; TimeFunction IB[]*Frelax[]; }
-        { Region Input3  ; Value VV  ; TimeFunction IC[]*Frelax[]; }
-      EndIf
-    }
-  }
-
-
-  //Kinetics
-  { Name CurrentPosition ;
-    Case {
-      { Region DomainKin ; Type Init ; Value 0.#66 ; }
-    }
-  }
-
-  { Name CurrentVelocity ;
-    Case {
-      { Region DomainKin ; Type Init ; Value wr ; } // wr in [0,1200] rad/s
-    }
-  }
-
-}
-
-//-----------------------------------------------------------------------------------------------
-
-FunctionSpace {
-
-  { Name Hcurl_a_2D ; Type Form1P ;
-    BasisFunction {
-      { Name se1 ; NameOfCoef ae1 ; Function BF_PerpendicularEdge ;
-        Support Region[{ Domain, Rotor_Bnd_MBaux }] ; Entity NodesOf [ All ] ; }
-   }
-    Constraint {
-      { NameOfCoef ae1 ; EntityType NodesOf ; NameOfConstraint MVP_2D ; }
-    }
-  }
-
-  // Gradient of Electric scalar potential (2D)
-  { Name Hregion_u_Mag_2D ; Type Form1P ;
-    BasisFunction {
-      { Name sr ; NameOfCoef ur ; Function BF_RegionZ ;
-        Support DomainC ; Entity DomainC ; }
-    }
-    GlobalQuantity {
-      { Name U ; Type AliasOf        ; NameOfCoef ur ; }
-      { Name I ; Type AssociatedWith ; NameOfCoef ur ; }
-    }
-    Constraint {
-      { NameOfCoef U ; EntityType GroupsOfNodesOf ; NameOfConstraint Voltage_2D ; }
-      { NameOfCoef I ; EntityType GroupsOfNodesOf ; NameOfConstraint Current_2D ; }
-    }
-  }
-
-  { Name Hregion_i_Mag_2D ; Type Vector ;
-    BasisFunction {
-      { Name sr ; NameOfCoef ir ; Function BF_RegionZ ;
-        Support DomainB ; Entity DomainB ; }
-    }
-    GlobalQuantity {
-      { Name Ib ; Type AliasOf        ; NameOfCoef ir ; }
-      { Name Ub ; Type AssociatedWith ; NameOfCoef ir ; }
-    }
-    Constraint {
-      { NameOfCoef Ub ; EntityType Region ; NameOfConstraint Voltage_2D ; }
-      { NameOfCoef Ib ; EntityType Region ; NameOfConstraint Current_2D ; }
-    }
-  }
-
-  { Name Hregion_Z ; Type Scalar ; // Circuit equations
-    BasisFunction {
-      { Name sr ; NameOfCoef ir ; Function BF_Region ;
-        Support DomainZt_Cir ; Entity DomainZt_Cir ; }
-    }
-    GlobalQuantity {
-      { Name Iz ; Type AliasOf        ; NameOfCoef ir ; }
-      { Name Uz ; Type AssociatedWith ; NameOfCoef ir ; }
-    }
-    Constraint {
-      { NameOfCoef Uz ; EntityType Region ; NameOfConstraint Voltage_Cir ; }
-      { NameOfCoef Iz ; EntityType Region ; NameOfConstraint Current_Cir ; }
-    }
-  }
-
-  // For use in Mechanical equation
-  { Name Position ; Type Scalar ;
-    BasisFunction {
-      { Name sr ; NameOfCoef ir ; Function BF_Region ;
-        Support DomainKin ; Entity DomainKin ; }
-    }
-    GlobalQuantity {
-      { Name P ; Type AliasOf  ; NameOfCoef ir ; }
-    }
-    Constraint {
-      { NameOfCoef P ; EntityType Region ; NameOfConstraint CurrentPosition ; }
-    }
-  }
-
-
-  { Name Velocity ; Type Scalar ;
-    BasisFunction {
-      { Name sr ; NameOfCoef ir ; Function BF_Region ;
-        Support DomainKin ; Entity DomainKin ; } }
-    GlobalQuantity {
-      { Name V ; Type AliasOf ; NameOfCoef ir ; }
-    }
-    Constraint {
-      { NameOfCoef V ; EntityType Region ; NameOfConstraint CurrentVelocity ; }
-    }
-  }
-
-}
-
-//-----------------------------------------------------------------------------------------------
-
-Formulation {
-
-  { Name MagSta_a_2D ; Type FemEquation ;
-    Quantity {
-      { Name a  ; Type Local  ; NameOfSpace Hcurl_a_2D ; }
-
-      { Name ir ; Type Local  ; NameOfSpace Hregion_i_Mag_2D ; }
-      { Name Ub ; Type Global ; NameOfSpace Hregion_i_Mag_2D [Ub] ; }
-      { Name Ib ; Type Global ; NameOfSpace Hregion_i_Mag_2D [Ib] ; }
-
-      { Name Uz ; Type Global ; NameOfSpace Hregion_Z [Uz] ; }
-      { Name Iz ; Type Global ; NameOfSpace Hregion_Z [Iz] ; }
-    }
-
-    Equation {
-      Galerkin { [ nu[{d a}] * Dof{d a}  , {d a} ] ;
-        In Domain ; Jacobian Vol ; Integration I1 ; }
-      Galerkin { JacNL [ dhdb_NL[{d a}] * Dof{d a} , {d a} ] ;
-        In DomainNL ; Jacobian Vol ; Integration I1 ; }
-
-      Galerkin {  [  0*Dof{d a} , {d a} ]  ; // DO NOT REMOVE!!! - Keeping track of Dofs in auxiliary line of MB if Symmetry=1
-        In Rotor_Bnd_MBaux; Jacobian Vol; Integration I1; }
-
-      Galerkin { [ -nu[] * br[] , {d a} ] ;
-        In DomainM ; Jacobian Vol ; Integration I1 ; }
-
-      Galerkin { [ -js[] , {a} ] ;
-        In DomainS ; Jacobian Vol ; Integration I1 ; }
-
-      Galerkin { [ -NbWires[]/SurfCoil[] * Dof{ir} , {a} ] ;
-        In DomainB ; Jacobian Vol ; Integration I1 ; }
-      Galerkin { DtDof [ AxialLength * NbWires[]/SurfCoil[] * Dof{a} , {ir} ] ;
-        In DomainB ; Jacobian Vol ; Integration I1 ; }
-      GlobalTerm { [ Dof{Ub}/SymmetryFactor, {Ib} ] ; In DomainB ; }
-      Galerkin { [ Rb[]/SurfCoil[]* Dof{ir} , {ir} ] ;
-        In DomainB ; Jacobian Vol ; Integration I1 ; }
-
-      // GlobalTerm { [ Resistance[]  * Dof{Ib} , {Ib} ] ; In DomainB ; }
-      // The above term can replace:
-      // Galerkin{ [ NbWires[]/SurfCoil[] / sigma[] * NbWires[]/SurfCoil[] * Dof{ir}, {ir} ]
-      // if we have an estimation of the resistance of DomainB, via e.g. measurements
-
-      If(Flag_Cir)
-	GlobalTerm { NeverDt[ Dof{Uz}                , {Iz} ] ; In Resistance_Cir ; }
-        GlobalTerm { NeverDt[ Resistance[] * Dof{Iz} , {Iz} ] ; In Resistance_Cir ; }
-
-	GlobalTerm { [ 0. * Dof{Iz} , {Iz} ] ; In DomainSource_Cir ; }
-        GlobalTerm { [ 0. * Dof{Uz} , {Iz} ] ; In DomainZt_Cir ; }
-
-        GlobalEquation {
-          Type Network ; NameOfConstraint ElectricalCircuit ;
-          { Node {Iz}; Loop {Uz}; Equation {Uz}; In DomainZt_Cir ; }
-          { Node {Ib}; Loop {Ub}; Equation {Ub}; In DomainB ; }
-         }
-      EndIf
-    }
-  }
-
-  { Name MagDyn_a_2D ; Type FemEquation ;
-    Quantity {
-      { Name a  ; Type Local  ; NameOfSpace Hcurl_a_2D ; }
-      { Name ur ; Type Local  ; NameOfSpace Hregion_u_Mag_2D ; }
-      { Name I  ; Type Global ; NameOfSpace Hregion_u_Mag_2D [I] ; }
-      { Name U  ; Type Global ; NameOfSpace Hregion_u_Mag_2D [U] ; }
-
-      { Name ir ; Type Local  ; NameOfSpace Hregion_i_Mag_2D ; }
-      { Name Ub ; Type Global ; NameOfSpace Hregion_i_Mag_2D [Ub] ; }
-      { Name Ib ; Type Global ; NameOfSpace Hregion_i_Mag_2D [Ib] ; }
-
-      { Name Uz ; Type Global ; NameOfSpace Hregion_Z [Uz] ; }
-      { Name Iz ; Type Global ; NameOfSpace Hregion_Z [Iz] ; }
-    }
-    Equation {
-      Galerkin { [ nu[{d a}] * Dof{d a}  , {d a} ] ;
-        In Domain ; Jacobian Vol ; Integration I1 ; }
-      Galerkin { JacNL [ dhdb_NL[{d a}] * Dof{d a} , {d a} ] ;
-        In DomainNL ; Jacobian Vol ; Integration I1 ; }
-
-      Galerkin {  [  0*Dof{d a} , {d a} ]  ; // DO NOT REMOVE!!! - Keeping track of Dofs in auxiliary line of MB if Symmetry=1
-        In Rotor_Bnd_MBaux; Jacobian Vol; Integration I1; }
-
-      Galerkin { [ -nu[] * br[] , {d a} ] ;
-        In DomainM ; Jacobian Vol ; Integration I1 ; }
-
-      Galerkin { DtDof[ sigma[] * Dof{a} , {a} ] ;
-        In DomainC ; Jacobian Vol ; Integration I1 ; }
-      Galerkin { [ sigma[] * Dof{ur}, {a} ] ;
-        In DomainC ; Jacobian Vol ; Integration I1 ; }
-
-      Galerkin { [ -sigma[] * (Velocity[] *^ Dof{d a}) , {a} ] ;
-        In DomainV ; Jacobian Vol ; Integration I1 ; }
-
-      Galerkin { [ -js[] , {a} ] ;
-        In DomainS ; Jacobian Vol ; Integration I1 ; }
-
-      Galerkin { DtDof[ sigma[] * Dof{a} , {ur} ] ;
-        In DomainC ; Jacobian Vol ; Integration I1 ; }
-      Galerkin { [ sigma[] * Dof{ur} , {ur} ] ;
-        In DomainC ; Jacobian Vol ; Integration I1 ; }
-      GlobalTerm { [ Dof{I} , {U} ] ; In DomainC ; }
-
-      Galerkin { [ -NbWires[]/SurfCoil[] * Dof{ir} , {a} ] ;
-        In DomainB ; Jacobian Vol ; Integration I1 ; }
-      Galerkin { DtDof [ AxialLength * NbWires[]/SurfCoil[] * Dof{a} , {ir} ] ;
-        In DomainB ; Jacobian Vol ; Integration I1 ; }
-      GlobalTerm { [ Dof{Ub}/SymmetryFactor , {Ib} ] ; In DomainB ; }
-      Galerkin { [ Rb[]/SurfCoil[]* Dof{ir} , {ir} ] ;
-        In DomainB ; Jacobian Vol ; Integration I1 ; } // Resistance term
-
-      // GlobalTerm { [ Resistance[]  * Dof{Ib} , {Ib} ] ; In DomainB ; }
-      // The above term can replace the resistance term:
-      // if we have an estimation of the resistance of DomainB, via e.g. measurements
-      // which is better to account for the end windings...
-
-      If(Flag_Cir)
-	GlobalTerm { NeverDt[ Dof{Uz}                , {Iz} ] ; In Resistance_Cir ; }
-        GlobalTerm { NeverDt[ Resistance[] * Dof{Iz} , {Iz} ] ; In Resistance_Cir ; }
-
-	GlobalTerm { [ Dof{Uz}                      , {Iz} ] ; In Inductance_Cir ; }
-	GlobalTerm { DtDof [ Inductance[] * Dof{Iz} , {Iz} ] ; In Inductance_Cir ; }
-
-	GlobalTerm { NeverDt[ Dof{Iz}        , {Iz} ] ; In Capacitance_Cir ; }
-	GlobalTerm { DtDof [ Capacitance[] * Dof{Uz} , {Iz} ] ; In Capacitance_Cir ; }
-
-	GlobalTerm { [ 0. * Dof{Iz} , {Iz} ] ; In DomainZt_Cir ; }
-        GlobalTerm { [ 0. * Dof{Uz} , {Iz} ] ; In DomainZt_Cir ; }
-
-        GlobalEquation {
-          Type Network ; NameOfConstraint ElectricalCircuit ;
-          { Node {I};  Loop {U};  Equation {I};  In DomainC ; }
-          { Node {Ib}; Loop {Ub}; Equation {Ub}; In DomainB ; }
-          { Node {Iz}; Loop {Uz}; Equation {Uz}; In DomainZt_Cir ; }
-         }
-      EndIf
-    }
-  }
-
-
- //--------------------------------------------------------------------------
-  // Mechanics
-  //--------------------------------------------------------------------------
-  { Name Mechanical ; Type FemEquation ;
-    Quantity {
-      { Name V ; Type Global ; NameOfSpace Velocity [V] ; } // velocity
-      { Name P ; Type Global ; NameOfSpace Position [P] ; } // position
-    }
-    Equation {
-      GlobalTerm { DtDof [ Inertia * Dof{V} , {V} ] ; In DomainKin ; }
-      GlobalTerm { [ Friction[] * Dof{V} , {V} ] ; In DomainKin ; }
-      GlobalTerm { [             -Fmag[] , {V} ] ; In DomainKin ; }
-
-      GlobalTerm { DtDof [ Dof{P} , {P} ] ; In DomainKin ; }
-      GlobalTerm {       [-Dof{V} , {P} ] ; In DomainKin ; }
-    }
-  }
-
-}
-
-//-----------------------------------------------------------------------------------------------
-
-Resolution {
-
-  { Name TimeDomain ;
-    System {
-      { Name A ; NameOfFormulation MagDyn_a_2D ; }
-    }
-    Operation {
-      CreateDir["res/"];
-      If[ Clean_Results==1 ]{
-        DeleteFile["res/temp.dat"];
-        DeleteFile["res/Tr.dat"]; DeleteFile["res/Ts.dat"]; DeleteFile["res/Tmb.dat"];
-        DeleteFile["res/Ua.dat"]; DeleteFile["res/Ub.dat"]; DeleteFile["res/Uc.dat"];
-        DeleteFile["res/Ia.dat"]; DeleteFile["res/Ib.dat"]; DeleteFile["res/Ic.dat"];
-        DeleteFile["res/Flux_a.dat"]; DeleteFile["res/Flux_b.dat"]; DeleteFile["res/Flux_c.dat"];
-        DeleteFile["res/Flux_d.dat"]; DeleteFile["res/Flux_q.dat"]; DeleteFile["res/Flux_0.dat"];
-      }
-      InitMovingBand2D[MB] ;
-      MeshMovingBand2D[MB] ;
-      InitSolution[A] ;
-      If[Flag_ParkTransformation && Flag_SrcType_Stator==1]{ PostOperation[ThetaPark_IABC] ; }
-      If[!Flag_NL]{
-        Generate[A] ; Solve[A] ;
-      }
-      Else{
-        //IterativeLoop[Nb_max_iter, stop_criterion, relaxation_factor]
-        // { GenerateJac[A] ; SolveJac[A] ; }
-        IterativeLoopN[ Nb_max_iter, relaxation_factor,
-                        System { {A, reltol, abstol, Solution MeanL2Norm}} ]
-          { GenerateJac[A] ; SolveJac[A] ; }
-      }
-      SaveSolution[A] ;
-      PostOperation[Get_LocalFields] ;
-      PostOperation[Get_GlobalQuantities] ;
-    }
-  }
-
-  { Name TimeDomain_Loop ;
-    System {
-      { Name A ; NameOfFormulation MagDyn_a_2D ; }
-    }
-    Operation {
-      CreateDir["res/"];
-      If[ Clean_Results==1 ]{
-        DeleteFile["res/temp.dat"];
-        DeleteFile["res/Tr.dat"]; DeleteFile["res/Ts.dat"]; DeleteFile["res/Tmb.dat"];
-        DeleteFile["res/Ua.dat"]; DeleteFile["res/Ub.dat"]; DeleteFile["res/Uc.dat"];
-        DeleteFile["res/Ia.dat"]; DeleteFile["res/Ib.dat"]; DeleteFile["res/Ic.dat"];
-        DeleteFile["res/Flux_a.dat"]; DeleteFile["res/Flux_b.dat"]; DeleteFile["res/Flux_c.dat"];
-        DeleteFile["res/Flux_d.dat"]; DeleteFile["res/Flux_q.dat"]; DeleteFile["res/Flux_0.dat"];
-      }
-      InitMovingBand2D[MB] ;
-      MeshMovingBand2D[MB] ;
-      InitSolution[A] ;
-      TimeLoopTheta[time0, timemax, delta_time, 1.]{ // Euler implicit (1) -- Crank-Nicolson (0.5)
-        If[Flag_ParkTransformation && Flag_SrcType_Stator==1]{ PostOperation[ThetaPark_IABC] ; }
-        If[!Flag_NL]{
-	  Generate[A]; Solve[A];
-        }
-        Else{
-          // IterativeLoop[Nb_max_iter, stop_criterion, relaxation_factor] {
-            //  GenerateJac[A] ; SolveJac[A] ; }
-          IterativeLoopN[
-            Nb_max_iter, relaxation_factor, System { {A, reltol, abstol, Solution MeanL2Norm}} ]{
-            GenerateJac[A] ; SolveJac[A] ; }
-        }
-        SaveSolution[A];
-
-        PostOperation[Get_LocalFields] ;
-        If[ $TimeStep > 1 ]{
-          PostOperation[Get_GlobalQuantities] ;
-        }
-        ChangeOfCoordinates[ NodesOf[Rotor_Moving], RotatePZ[delta_theta]] ;
-        MeshMovingBand2D[MB] ;
-      }
-    }
-  }
-
-  { Name FrequencyDomain ;
-    System {
-      { Name A ; NameOfFormulation MagDyn_a_2D ; Type ComplexValue ; Frequency Freq ; }
-    }
-    Operation {
-      If[ Clean_Results==1 && wr == 0.]{
-        DeleteFile["res/Tr.dat"]; DeleteFile["res/Ts.dat"]; DeleteFile["res/Tmb.dat"];
-        DeleteFile["res/Ua.dat"]; DeleteFile["res/Ub.dat"]; DeleteFile["res/Uc.dat"];
-        DeleteFile["res/Ia.dat"]; DeleteFile["res/Ib.dat"]; DeleteFile["res/Ic.dat"];
-      }
-      SetTime[wr];
-      InitMovingBand2D[MB] ;
-      MeshMovingBand2D[MB] ;
-      Generate[A] ; Solve[A] ; SaveSolution[A];
-      PostOperation[Map_LocalFields] ;
-      PostOperation[Torque_Emf_Flux] ;
-    }
-  }
-
-  /*
-  { Name  MagDyn_Kin ;
-    System {
-      { Name A ; NameOfFormulation MagDyn_a_2D ; }
-      { Name M ; NameOfFormulation Mechanical ; }
-    }
-    Operation {
-      ChangeOfCoordinates [ NodesOf[Rotor_Moving], RotatePZ[theta0] ] ; // Initial position (supposing initial mesh with angleR=0)
-      InitMovingBand2D[MB] ; MeshMovingBand2D[MB] ;
-
-      InitSolution[A] ; SaveSolution[A] ;
-      InitSolution[M] ; SaveSolution[M] ;
-
-      TimeLoopTheta[time0, timemax, delta_time, 1.]{
-	Generate[A] ; Solve[A] ;  SaveSolution[A] ;
-        PostOperation[MagDyn_a_2D] ;
-
-        Generate[M] ; Solve[M] ; SaveSolution[M] ;
-        PostOperation[Mechanical] ;
-
-        ChangeOfCoordinates [ NodesOf[Rotor_Moving], RotatePZ[#77-#66] ] ;
-        Evaluate[ #77#66 ] ; //Keep track of previous angular position
-        MeshMovingBand2D[MB] ;
-      }
-    }
-  }
-  */
-
-}
-
-//-----------------------------------------------------------------------------------------------
-
-PostProcessing {
-
- { Name MagSta_a_2D ; NameOfFormulation MagSta_a_2D ;
-   PostQuantity {
-     { Name a ; Value { Term { [  {a} ]   ; In Domain ; Jacobian Vol ; } } }
-     { Name az ; Value { Term { [  CompZ[{a}] ]   ; In Domain ; Jacobian Vol ; } } }
-     { Name b  ; Value { Term { [ {d a} ] ; In Domain ; Jacobian Vol ; } } }
-     { Name boundary  ; Value { Term { [ {d a} ] ; In Dummy ; Jacobian Vol ; } } }
-     { Name br  ; Value { Term { [ br[] ] ; In DomainM ; Jacobian Vol ; } } }
-
-     { Name Flux ; Value { Integral { [ SymmetryFactor*AxialLength*Idir[]*NbWires[]/SurfCoil[]* CompZ[{a}] ] ;
-           In Inds  ; Jacobian Vol ; Integration I1 ; } } }
-     { Name Force_vw ; Value {
-         Integral { Type Global ; [ 0.5 * nu[] * VirtualWork [{d a}] * AxialLength ];
-           In ElementsOf[Rotor_Airgap, OnOneSideOf Rotor_Bnd_MB];
-           Jacobian Vol ; Integration I1 ; } } }
-
-     { Name Torque_Maxwell ;  Value {
-         Integral {
-           [ CompZ [ XYZ[] /\ (T_max[{d a}] * XYZ[]) ]*2*Pi*AxialLength/SurfaceArea[]  ] ;
-           In Domain ; Jacobian Vol  ; Integration I1; } } }
-
-     { Name Torque_vw ; Value {
-         Integral { Type Global ;
-           [ CompZ[ 0.5 * nu[] * XYZ[] /\ VirtualWork[{d a}] ] * AxialLength ];
-           In ElementsOf[Rotor_Airgap, OnOneSideOf Rotor_Bnd_MB];
-           Jacobian Vol ; Integration I1 ; } } }
-
-     { Name U ; Value {
-         Term { [ {Ub} ]  ; In DomainB ; }
-         Term { [ {Uz} ]  ; In DomainZt_Cir ; }
-     } }
-
-     { Name I ; Value {
-         Term { [ {Ib} ]  ; In DomainB ; }
-         Term { [ {Iz} ]  ; In DomainZt_Cir ; }
-     } }
-
-   }
- }
-
- { Name MagDyn_a_2D ; NameOfFormulation MagDyn_a_2D ;
-   PostQuantity {
-     { Name a  ; Value { Term { [ {a} ] ; In Domain ; Jacobian Vol ; } } }
-     { Name az ; Value { Term { [ CompZ[{a}] ] ; In Domain ; Jacobian Vol ; } } }
-
-     { Name b  ; Value { Term { [ {d a} ] ; In Domain ; Jacobian Vol ; } } }
-     { Name boundary  ; Value { Term { [ 1 ] ; In Dummy ; Jacobian Vol ; } } } // Dummy quantity
-     { Name b_radial  ; Value { Term { [ {d a}* Vector[  Cos[AngularPosition[]#4], Sin[#4], 0.] ] ; In Domain ; Jacobian Vol ; } } }
-     { Name b_tangent ; Value { Term { [ {d a}* Vector[ -Sin[AngularPosition[]#4], Cos[#4], 0.] ] ; In Domain ; Jacobian Vol ; } } }
-
-     { Name js ; Value { Term { [ js[] ] ; In DomainS ; Jacobian Vol ; } } }
-     { Name br ; Value { Term { [ br[] ] ; In DomainM ; Jacobian Vol ; } } }
-
-     { Name j  ; Value {
-         Term { [ -sigma[]*(Dt[{a}]+{ur}) ]        ; In DomainC ; Jacobian Vol ; }
-         Term { [  sigma[]*(Velocity[] *^ {d a}) ] ; In DomainV ; Jacobian Vol ; }
-       }
-     }
-     { Name ir ; Value { Term { [ {ir} ] ; In Inds ; Jacobian Vol ; } } }
-
-     { Name jz ; Value {
-         Term { [ CompZ[-sigma[]*(Dt[{a}]+{ur})] ]       ; In DomainC ; Jacobian Vol ; }
-         Term { [ CompZ[ sigma[]*(Velocity[]*^{d a}) ] ] ; In DomainV ; Jacobian Vol ; }
-       }
-     }
-
-     { Name rhoj2 ;
-       Value {
-         Term { [ sigma[]*SquNorm[ Dt[{a}]+{ur}] ] ; In Region[{DomainC,-DomainV}] ; Jacobian Vol ; }
-         Term { [ sigma[]*SquNorm[ Dt[{a}]+{ur}-Velocity[]*^{d a} ] ] ; In DomainV ; Jacobian Vol ; }
-         Term { [ 1./sigma[]*SquNorm[ IA[]*{ir} ] ] ; In PhaseA  ; Jacobian Vol ; }
-         Term { [ 1./sigma[]*SquNorm[ IB[]*{ir} ] ] ; In PhaseB  ; Jacobian Vol ; }
-         Term { [ 1./sigma[]*SquNorm[ IC[]*{ir} ] ] ; In PhaseC  ; Jacobian Vol ; }
-       }
-     }
-
-     { Name JouleLosses ;
-       Value {
-         Integral { [ sigma[] * SquNorm[ Dt[{a}]+{ur}-Velocity[]*^{d a} ] ]   ; In Region[{DomainC,-DomainV}] ; Jacobian Vol ; Integration I1 ; }
-         Integral { [ sigma[] * SquNorm[ Dt[{a}]+{ur}-Velocity[]*^{d a} ] ]   ; In DomainV ; Jacobian Vol ; Integration I1 ; }
-         Integral { [ 1./sigma[]*SquNorm[ IA[]*{ir} ] ] ; In PhaseA  ; Jacobian Vol ; Integration I1 ; }
-         Integral { [ 1./sigma[]*SquNorm[ IB[]*{ir} ] ] ; In PhaseB  ; Jacobian Vol ; Integration I1 ; }
-         Integral { [ 1./sigma[]*SquNorm[ IC[]*{ir} ] ] ; In PhaseC  ; Jacobian Vol ; Integration I1 ; }
-       }
-     }
-
-     { Name Flux ; Value { Integral { [ SymmetryFactor*AxialLength*Idir[]*NbWires[]/SurfCoil[]* CompZ[{a}] ] ;
-           In Inds  ; Jacobian Vol ; Integration I1 ; } } }
-
-     { Name Force_vw ; // Force computation by Virtual Works
-       Value {
-         Integral {
-           Type Global ; [ 0.5 * nu[] * VirtualWork [{d a}] * AxialLength ];
-           In ElementsOf[Rotor_Airgap, OnOneSideOf Rotor_Bnd_MB]; Jacobian Vol ; Integration I1 ; }
-       }
-     }
-
-     { Name Torque_vw ; Value { // Torque computation via Virtual Works
-         Integral { Type Global ;
-           [ CompZ[ 0.5 * nu[] * XYZ[] /\ VirtualWork[{d a}] ] * AxialLength ];
-           In ElementsOf[Rotor_Airgap, OnOneSideOf Rotor_Bnd_MB]; Jacobian Vol ; Integration I1 ; }
-       }
-     }
-
-
-     { Name Torque_Maxwell ; // Torque computation via Maxwell stress tensor
-       Value {
-         Integral {
-           [ CompZ [ XYZ[] /\ (T_max[{d a}] * XYZ[]) ] * 2*Pi*AxialLength/SurfaceArea[] ] ;
-           In Domain ; Jacobian Vol  ; Integration I1; }
-       }
-     }
-
-     { Name Torque_Maxwell_cplx ; // Torque computation via Maxwell stress tensor
-       Value {
-         Integral {
-           [ CompZ [ XYZ[] /\ (T_max_cplx[{d a}] * XYZ[]) ] * 2*Pi*AxialLength/SurfaceArea[] ] ;
-           In Domain ; Jacobian Vol  ; Integration I1; }
-       }
-     }
-
-     { Name ComplexPower ; // S = P + i*Q
-       Value {
-         Integral { [ Complex[ sigma[]*SquNorm[Dt[{a}]+{ur}], nu[]*SquNorm[{d a}] ] ] ;
-           In Region[{DomainC,-DomainV}] ; Jacobian Vol ; Integration I1 ; }
-         Integral { [ Complex[ sigma[]*SquNorm[Dt[{a}]+{ur}-Velocity[]*^{d a}], nu[]*SquNorm[{d a}] ] ] ;
-           In DomainV ; Jacobian Vol ; Integration I1 ; }
-       }
-     }
-
-     { Name U ; Value {
-         Term { [ {U} ]   ; In DomainC ; }
-         Term { [ {Ub} ]  ; In DomainB ; }
-         Term { [ {Uz} ]  ; In DomainZt_Cir ; }
-     } }
-
-     { Name I ; Value {
-         Term { [ {I} ]   ; In DomainC ; }
-         Term { [ {Ib} ]  ; In DomainB ; }
-         Term { [ {Iz} ]  ; In DomainZt_Cir ; }
-     } }
-
-     { Name S ; Value {
-         Term { [ {U}*Conj[{I}] ]    ; In DomainC ; }
-         Term { [ {Ub}*Conj[{Ib}] ]  ; In DomainB ; }
-         Term { [ {Uz}*Conj[{Iz}] ]  ; In DomainZt_Cir ; }
-     } }
-
-     { Name Velocity  ; Value {
-         Term { [ Velocity[] ] ; In Domain ; Jacobian Vol ; }
-       }
-     }
-
-     // For getting the value of some functions:
-     { Name RotorPosition_deg ; Value { Term { Type Global; [ RotorPosition_deg[] ] ; In DomainDummy ; } } }
-     { Name Theta_Park_deg    ; Value { Term { Type Global; [ Theta_Park_deg[] ] ; In DomainDummy ; } } }
-     { Name IA  ; Value { Term { Type Global; [ IA[] ] ; In DomainDummy ; } } }
-     { Name IB  ; Value { Term { Type Global; [ IB[] ] ; In DomainDummy ; } } }
-     { Name IC  ; Value { Term { Type Global; [ IC[] ] ; In DomainDummy ; } } }
-
-     { Name Flux_d  ; Value { Term { Type Global; [ CompX[Flux_dq0[]] ] ; In DomainDummy ; } } }
-     { Name Flux_q  ; Value { Term { Type Global; [ CompY[Flux_dq0[]] ] ; In DomainDummy ; } } }
-     { Name Flux_0  ; Value { Term { Type Global; [ CompZ[Flux_dq0[]] ] ; In DomainDummy ; } } }
-   }
- }
-
- { Name Mechanical ; NameOfFormulation Mechanical ;
-   PostQuantity {
-     { Name P ; Value { Term { [ {P} ]  ; In DomainKin ; } } } //Position
-     { Name V ; Value { Term { [ {V} ]  ; In DomainKin ; } } } //Velocity
-     { Name Vrpm ; Value { Term { [ {V}*30/Pi ]  ; In DomainKin ; } } } //Velocity in rpm
-   }
- }
-
-}
-
-//-----------------------------------------------------------------------------------------------
-//-----------------------------------------------------------------------------------------------
-
-If (Flag_ParkTransformation)
-PostOperation ThetaPark_IABC UsingPost MagDyn_a_2D {
-  Print[ RotorPosition_deg, OnRegion DomainDummy, Format Table, LastTimeStepOnly, File StrCat[Dir, StrCat["temp",ExtGnuplot]],
-         SendToServer "Output/1RotorPosition", Color "LightYellow" ];
-  Print[ Theta_Park_deg, OnRegion DomainDummy, Format Table, LastTimeStepOnly, File StrCat[Dir, StrCat["temp",ExtGnuplot]],
-         SendToServer "Output/1Theta_Park", Color "LightYellow" ];
-  Print[ IA, OnRegion DomainDummy, Format Table, LastTimeStepOnly, File StrCat[Dir, StrCat["temp",ExtGnuplot]], SendToServer "Output/2IA", Color "Pink" ];
-  Print[ IB, OnRegion DomainDummy, Format Table, LastTimeStepOnly, File StrCat[Dir, StrCat["temp",ExtGnuplot]], SendToServer "Output/2IB", Color "Yellow" ];
-  Print[ IC, OnRegion DomainDummy, Format Table, LastTimeStepOnly, File StrCat[Dir, StrCat["temp",ExtGnuplot]], SendToServer "Output/2IC", Color "LightGreen"  ];
-}
-EndIf
-PostOperation Get_LocalFields UsingPost MagDyn_a_2D {
-  Print[ ir, OnElementsOf Stator_Inds, File StrCat[Dir, StrCat["ir_stator",ExtGmsh]], LastTimeStepOnly, AppendTimeStepToFileName Flag_SaveAllSteps] ;
-  Print[ ir, OnElementsOf Rotor_Inds,  File StrCat[Dir, StrCat["ir_rotor",ExtGmsh]], LastTimeStepOnly, AppendTimeStepToFileName Flag_SaveAllSteps] ;
-  //Print[ br,  OnElementsOf #{DomainM}, File StrCat[Dir, StrCat["b",ExtGmsh]], LastTimeStepOnly, AppendTimeStepToFileName Flag_SaveAllSteps] ;
-  Print[ b,  OnElementsOf Domain, File StrCat[Dir, StrCat["b",ExtGmsh]], LastTimeStepOnly, AppendTimeStepToFileName Flag_SaveAllSteps] ;
-  Print[ boundary, OnElementsOf Dummy,  File StrCat[Dir, StrCat["bnd",ExtGmsh]], LastTimeStepOnly, AppendTimeStepToFileName Flag_SaveAllSteps] ;
-  Print[ az, OnElementsOf Domain, File StrCat[Dir, StrCat["a",ExtGmsh]], LastTimeStepOnly, AppendTimeStepToFileName Flag_SaveAllSteps ] ;
-}
-
-PostOperation Get_GlobalQuantities UsingPost MagDyn_a_2D {
-  If(!Flag_Cir)
-  If(!Flag_ParkTransformation)
-    Print[ I, OnRegion PhaseA_pos, Format Table,
-           File > StrCat[Dir, StrCat["Ia",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IA", Color "Pink" ];
-    Print[ I, OnRegion PhaseB_pos, Format Table,
-           File > StrCat[Dir, StrCat["Ib",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IB", Color "Yellow" ];
-    Print[ I, OnRegion PhaseC_pos, Format Table,
-           File > StrCat[Dir, StrCat["Ic",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IC", Color "LightGreen" ];
-  EndIf
-
-  Print[ U, OnRegion PhaseA_pos, Format Table,
-         File > StrCat[Dir, StrCat["Ua",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/30UA", Color "Pink" ];
-  Print[ U, OnRegion PhaseB_pos, Format Table,
-         File > StrCat[Dir, StrCat["Ub",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/31UB", Color "Yellow" ];
-  Print[ U, OnRegion PhaseC_pos, Format Table,
-         File > StrCat[Dir, StrCat["Uc",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/32UC", Color "LightGreen" ];
-  EndIf
-  If(Flag_Cir && Flag_SrcType_Stator==2)
-    Print[ I, OnRegion Input1, Format Table,
-           File > StrCat[Dir, StrCat["Ia",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IA", Color "Pink" ];
-    Print[ I, OnRegion Input2, Format Table,
-           File > StrCat[Dir, StrCat["Ib",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IB", Color "Yellow" ];
-    Print[ I, OnRegion Input3, Format Table,
-           File > StrCat[Dir, StrCat["Ic",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IC", Color "LightGreen" ];
-    Print[ U, OnRegion Input1, Format Table,
-           File > StrCat[Dir, StrCat["Ua",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/30UA", Color "Pink" ];
-    Print[ U, OnRegion Input2, Format Table,
-           File > StrCat[Dir, StrCat["Ub",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/31UB", Color "Yellow" ];
-    Print[ U, OnRegion Input3, Format Table,
-           File > StrCat[Dir, StrCat["Uc",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/32UC", Color "LightGreen" ];
-  EndIf
-  If(Flag_Cir && Flag_SrcType_Stator==0)
-    Print[ I, OnRegion R1, Format Table,
-           File > StrCat[Dir, StrCat["Ia",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IA", Color "Pink" ];
-    Print[ I, OnRegion R2, Format Table,
-           File > StrCat[Dir, StrCat["Ib",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IB", Color "Yellow" ];
-    Print[ I, OnRegion R3, Format Table,
-           File > StrCat[Dir, StrCat["Ic",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2IC", Color "LightGreen" ];
-    Print[ U, OnRegion R1, Format Table,
-           File > StrCat[Dir, StrCat["Ua",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/30UA", Color "Pink" ];
-    Print[ U, OnRegion R2, Format Table,
-           File > StrCat[Dir, StrCat["Ub",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/31UB", Color "Yellow" ];
-    Print[ U, OnRegion R3, Format Table,
-           File > StrCat[Dir, StrCat["Uc",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/32UC", Color "LightGreen" ];
-  EndIf
-
-
-  Print[ I, OnRegion RotorC, Format Table,
-         File > StrCat[Dir, StrCat["Irotor",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/2Ir", Color "LightYellow" ];
-
-  Print[ Torque_Maxwell[Rotor_Airgap], OnGlobal, Format TimeTable,
-         File > StrCat[Dir, StrCat["Tr",ExtGnuplot]], LastTimeStepOnly, Store 54, SendToServer my_output, Color "LightYellow" ];
-  Print[ Torque_Maxwell[Stator_Airgap], OnGlobal, Format TimeTable,
-         File > StrCat[Dir, StrCat["Ts",ExtGnuplot]], LastTimeStepOnly, Store 55, SendToServer "Output/41T_stator", Color "LightYellow" ];
-  Print[ Torque_Maxwell[MB], OnGlobal, Format TimeTable,
-         File > StrCat[Dir, StrCat["Tmb",ExtGnuplot]], LastTimeStepOnly, Store 56, SendToServer "Output/42T_mb", Color "LightYellow" ];
-  //Print[ Torque_vw, OnRegion NodesOf[Rotor_Bnd_MB], Format RegionValue,
-  //       File > StrCat[Dir, StrCat["Tr_vw",ExtGnuplot]], LastTimeStepOnly, Store 54, SendToServer "Output/1T_rotor_vw" ];
-
-  If(Flag_SrcType_Stator)
-  Print[ Flux[PhaseA], OnGlobal, Format TimeTable,
-         File > StrCat[Dir, StrCat["Flux_a",ExtGnuplot]], LastTimeStepOnly, Store 11, SendToServer "Output/50Flux_a",  Color "Pink" ];
-  Print[ Flux[PhaseB], OnGlobal, Format TimeTable,
-         File > StrCat[Dir, StrCat["Flux_b",ExtGnuplot]], LastTimeStepOnly, Store 22, SendToServer "Output/51Flux_b",  Color "Yellow" ];
-  Print[ Flux[PhaseC], OnGlobal, Format TimeTable,
-         File > StrCat[Dir, StrCat["Flux_c",ExtGnuplot]], LastTimeStepOnly, Store 33, SendToServer "Output/52Flux_c", Color "LightGreen"];
-
-  If(Flag_ParkTransformation && Flag_SrcType_Stator)
-    Print[ Flux_d, OnRegion DomainDummy, Format TimeTable,
-           File > StrCat[Dir, StrCat["Flux_d",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/60Flux_d", Color "LightYellow" ];
-    Print[ Flux_q, OnRegion DomainDummy, Format TimeTable,
-           File > StrCat[Dir, StrCat["Flux_q",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/61Flux_q", Color "LightYellow" ];
-    Print[ Flux_0, OnRegion DomainDummy, Format TimeTable,
-           File > StrCat[Dir, StrCat["Flux_0",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/62Flux_0", Color "LightYellow" ];
-  EndIf
-  EndIf
-}
-
-
-PostOperation Joule_Losses UsingPost MagDyn_a_2D {
-  Print[ JouleLosses[Rotor], OnGlobal, Format TimeTable,
-         File > StrCat[Dir, StrCat["P",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/3P_rotor" ];
-  Print[ JouleLosses[Rotor_Fe], OnGlobal, Format TimeTable,
-         File > StrCat[Dir, StrCat["P_Fe",ExtGnuplot]], LastTimeStepOnly, SendToServer "Output/3P_rotor_fe" ];
-}
-
-/*
-PostOperation Mechanical UsingPost Mechanical {
-  Print[ P, OnRegion DomainKin, File > StrCat[Dir, StrCat["P", ExtGnuplot]],
-         Format Table, Store 77, LastTimeStepOnly, SendToServer "Output/3Position"] ;
-  Print[ V, OnRegion DomainKin, File > StrCat[Dir, StrCat["V", ExtGnuplot]],
-         Format Table, LastTimeStepOnly, SendToServer "Output/4Velocity"] ;
-}
-*/
diff --git a/contrib/mobile/Android/res/raw/magnet_data_pro b/contrib/mobile/Android/res/raw/magnet_data_pro
deleted file mode 100644
index 3e0a76ce5234d4b1e4e68260a702de10db21ee4c..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/magnet_data_pro
+++ /dev/null
@@ -1,16 +0,0 @@
-
-DefineConstant[ Val_Rint = {0.15, Min 0.2, Max 1, Step 0.1,
-                            Path "Parameters/Geometry/1",
-                            Label "Internal shell radius (m)"} ];
-
-DefineConstant[ Val_Rext = {0.25, Min Val_Rint, Max 0.5, Step 0.1,
-                            Path "Parameters/Geometry/2",
-                            Label "External shell radius (m)"}];
-
-AIR = 100;
-AIR_INF = 101;
-AIR_GAP = 102;
-MAGNET = 103;
-CORE = 104;
-LINE_INF = 105;
-LINE_X = 106;
diff --git a/contrib/mobile/Android/res/raw/magnet_geo b/contrib/mobile/Android/res/raw/magnet_geo
deleted file mode 100644
index c0c7815711709f5b24c1a07a0057a045bb8df0c6..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/magnet_geo
+++ /dev/null
@@ -1,93 +0,0 @@
-Include "magnet_data.pro";
-
-DefineConstant[ h = {0.14, Min 0.1, Max 0.2, Step 0.01,
-                     Path "Parameters/Geometry",
-                     Label "Core height (m)"} ] ;
-
-DefineConstant[ l = {0.14, Min 0.05, Max 0.2, Step 0.01,
-                     Path "Parameters/Geometry",
-                     Label "Core width (m)"} ] ;
-
-DefineConstant[ d = {0.03, Min 0.01, Max 0.05, Step 0.002,
-                     Path "Parameters/Geometry",
-                     Label "Core tickness (m)"} ] ;
-
-DefineConstant[ e = {5e-3, Min 5e-4, Max d, Step 1e-3,
-                     Path "Parameters/Geometry",
-                     Label "Air gap (m)", Highlight "LightYellow"} ] ;
-
-DefineConstant[ ha = {0.03, Min 0.01, Max 0.1, Step 0.01,
-                     Path "Parameters/Geometry",
-                     Label "Magnet height (m)"} ] ;
-
-lc0 = d / 5 ;
-lc1 = e / 2 ;
-lc2 = (Val_Rext - Val_Rint) / 8. ;
-
-Point(1) = {0, 0, 0, lc0};
-Point(2) = {-l/2, 0, 0, lc0};
-Point(3) = {-l/2, h/2, 0, lc0};
-Point(4) = {l/2, 0, 0, lc1};
-Point(5) = {l/2, h/2, 0, lc0};
-Point(6) = {-l/2, ha/2, 0, lc0};
-Point(7) = {-l/2+d, ha/2, 0, lc0};
-Point(8) = {-l/2+d, 0, 0, lc0};
-Point(9) = {l/2-d, 0, 0, lc1};
-Point(10) = {l/2-d, h/2-d, 0, lc0};
-Point(11) = {-l/2+d, h/2-d, 0, lc0};
-Point(12) = {l/2, e/2, 0, lc1};
-Point(13) = {l/2-d, e/2, 0, lc1};
-
-Point(30) = {Val_Rint, 0, 0, lc2};
-Point(31) = {Val_Rext, 0, 0, lc2};
-Point(32) = {0, Val_Rint, 0, lc2};
-Point(33) = {0, Val_Rext, 0, lc2};
-Point(34) = {-Val_Rext, 0, 0, lc2};
-Point(35) = {-Val_Rint, 0, 0, lc2};
-
-Line(1) = {34, 35};
-Line(2) = {35, 2};
-Line(3) = {2, 8};
-Line(4) = {8, 1};
-Line(5) = {1, 9};
-Line(6) = {9, 4};
-Line(7) = {4, 30};
-Line(8) = {30, 31};
-Line(9) = {2, 6};
-Line(10) = {6, 3};
-Line(11) = {3, 5};
-Line(12) = {5, 12};
-Line(13) = {12, 4};
-Line(14) = {9, 13};
-Line(15) = {13, 10};
-Line(16) = {10, 11};
-Line(17) = {11, 7};
-Line(18) = {7, 8};
-Line(19) = {7, 6};
-Line(20) = {13, 12};
-Circle(21) = {35, 1, 32};
-Circle(22) = {32, 1, 30};
-Circle(23) = {34, 1, 33};
-Circle(24) = {33, 1, 31};
-
-Line Loop(25) = {21, 22, 8, -24, -23, 1};
-Plane Surface(26) = {25};
-Line Loop(27) = - {22, -7, -13, -12, -11, -10, -9, -2, 21};
-Plane Surface(28) = {27};
-Line Loop(29) = - {11, 12, -20, 15, 16, 17, 19, 10};
-Plane Surface(30) = {29};
-Line Loop(31) = {19, -9, 3, -18};
-Plane Surface(32) = {31};
-Line Loop(33) = - {20, 13, -6, 14};
-Plane Surface(34) = {33};
-Line Loop(35) = {15, 16, 17, 18, 4, 5, 14};
-Plane Surface(36) = {35};
-
-// physical entities (for which elements will be saved)
-Physical Surface(AIR) = {28, 36};
-Physical Surface(AIR_INF) = {26};
-Physical Surface(AIR_GAP) = {34};
-Physical Surface(MAGNET) = {32};
-Physical Surface(CORE) = {30};
-Physical Line(LINE_INF) = {23, 24};
-Physical Line(LINE_X) = {1:8};
diff --git a/contrib/mobile/Android/res/raw/magnet_pro b/contrib/mobile/Android/res/raw/magnet_pro
deleted file mode 100644
index a18c7cdf4f64bfd69453b51477cbb2e8721eccff..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/magnet_pro
+++ /dev/null
@@ -1,69 +0,0 @@
-/*
-   To solve the problem
-   with scalar potential, type 'getdp test -solve MagSta_phi -pos phi'
-   with vector potential, type 'getdp test -solve MagSta_a -pos a'
-*/
-
-Include "magnet_data.pro";
-
-Group {
-  // AIR, AIR_INF, etc. are variables defined in core.txt, and correspond to the
-  // tags of physical regions in the mesh
-  Air     = Region[ AIR ];
-  AirInf  = Region[ AIR_INF ];
-  Core    = Region[ CORE ];
-  AirGap  = Region[ AIR_GAP ];
-  Magnet  = Region[ MAGNET ];
-
-  // These are the generic group names that are used in "Magnetostatics.pro"
-  Domain_S = Region[ {} ] ;
-  Domain_Inf = Region[ AirInf ] ;
-  Domain_M   = Region[ Magnet ] ;
-  Domain_Mag = Region[ {Air, Core, AirGap} ] ;
-  Dirichlet_a_0   = Region[ LINE_INF ] ;
-  Dirichlet_phi_0 = Region[ {LINE_X, LINE_INF} ] ;
-}
-
-Function {
-  mu0 = 4.e-7 * Pi ;
-
-  // DefineConstant is used to define a default value for murCore; this value
-  // can be changed interactively by the ONELAB server
-  DefineConstant[ murCore = {200., Min 1, Max 1000, Step 10,
-                             Label "Core relative permeability",
-                             Path "Parameters/Materials"} ];
-
-  nu [ Region[{Air, AirInf, AirGap, Magnet}] ] = 1. / mu0 ;
-  nu [ Core ]  = 1. / (murCore * mu0) ;
-
-  mu [ Region[{Air, AirInf, AirGap, Magnet}] ] = mu0 ;
-  mu [ Core ]  = murCore * mu0;
-
-  DefineConstant[ Hc = {920000, Label "Magnet coercive field (A/m)",
-                        Path "Parameters/Materials"} ];
-  hc [ Magnet ] = Vector[0., Hc, 0.] ;
-}
-
-Include "magnetostatics.pro"
-
-eps = 1.e-5 ;
-
-Printf[ "murCore: %f",murCore ] ;
-
-PostOperation {
-  { Name phi ; NameOfPostProcessing MagSta_phi;
-    Operation {
-      Print[ phi, OnElementsOf Domain, File "phi.pos" ] ;
-      Print[ b, OnElementsOf Domain, File "b_phi.pos" ] ;
-      Print[ b, OnLine {{-0.07,eps,0}{0.09,eps,0}} {500}, File "b_phi.txt", Format Table ] ;
-    }
-  }
-  { Name a ; NameOfPostProcessing MagSta_a;
-    Operation {
-      Print[ a, OnElementsOf Domain, File "a.pos"] ;
-      Print[ b, OnElementsOf Domain, File "b_a.pos" ] ;
-      Print[ h, OnElementsOf Domain, File "h_a.pos" ] ;
-      Print[ b, OnLine {{-0.07,eps,0}{0.09,eps,0}} {500}, File "b_a.txt" , Format Table ] ;
-    }
-  }
-}
diff --git a/contrib/mobile/Android/res/raw/magnetostatics_pro b/contrib/mobile/Android/res/raw/magnetostatics_pro
deleted file mode 100644
index 4c9c07d5c55c12586069e061c1d6fe867fecb106..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/magnetostatics_pro
+++ /dev/null
@@ -1,209 +0,0 @@
-Group {
-  // Input groups:
-  DefineGroup[ Domain_M = {{}, Label "Permanent magnets",
-                           Path "Regions/0Sources"},
-               Domain_S = {{}, Label "Inductor (imposed j_s)",
-                           Path "Regions/0Sources"},
-               Domain_Inf = {{}, Label "Infinite domain (spherical shell)",
-                             Path "Regions/0Special regions", Closed "1"},
-               Domain_Mag = {{}, Label "Passive magnetic regions",
-                             Path "Regions/Other regions"},
-               Dirichlet_phi_0 = {{}, Label "h_t = 0", Closed "1",
-                                  Path "Regions/0Boundary conditions"},
-               Dirichlet_a_0 = {{}, Label "b_n = 0",
-                                Path "Regions/0Boundary conditions"} ];
-
-  DefineGroup[ Domain = {{Domain_Mag, Domain_M, Domain_S, Domain_Inf},
-                         Label "Computational domain", Path "Regions", Visible 0} ];
-}
-
-Function{
-  // Input constants:
-  DefineConstant[ Val_Rint, Val_Rext // interior/exterior radius of Domain_Inf
-                  ];
-
-  // Input functions:
-  DefineFunction[ mu, // magnetic permeability
-                  nu, // magnetic reluctivity
-                  hc, // coercive magnetic field
-                  js // source current density
-                  ];
-
-  // remove this: only for demo
-  //DefineConstant[ hcx = {0, Label "Coercive field h_x", Path "Sources"}];
-  //DefineConstant[ hcy = {1000, Label "Coercive field h_y", Path "Sources"}];
-  //hc[] = Vector[hcx,hcy,0];
-  //mu[] = 4*Pi*10^-7;
-  //nu[] = 1/mu[];
-}
-
-Jacobian {
-  { Name JVol ;
-    Case {
-      { Region Domain_Inf ; Jacobian VolSphShell{Val_Rint, Val_Rext} ; }
-      { Region All ; Jacobian Vol ; }
-    }
-  }
-}
-
-Integration {
-  { Name I1 ;
-    Case {
-      { Type Gauss ;
-        Case {
-	  { GeoElement Triangle ; NumberOfPoints 4 ; }
-	  { GeoElement Quadrangle  ; NumberOfPoints 4 ; }
-	}
-      }
-    }
-  }
-}
-
-
-/* --------------------------------------------------------------------------
-   MagSta_phi : Magnetic scalar potential phi formulation
-   -------------------------------------------------------------------------- */
-
-Constraint {
-  { Name phi ;
-    Case {
-      { Region Dirichlet_phi_0 ; Value 0. ; }
-    }
-  }
-}
-
-FunctionSpace {
-  { Name Hgrad_phi ; Type Form0 ;
-    BasisFunction {
-      { Name sn ; NameOfCoef phin ; Function BF_Node ;
-        Support Domain ; Entity NodesOf[ All ] ; }
-    }
-    Constraint {
-      { NameOfCoef phin ; EntityType NodesOf ; NameOfConstraint phi ; }
-    }
-  }
-}
-
-Formulation {
-  { Name MagSta_phi ; Type FemEquation ;
-    Quantity {
-      { Name phi ; Type Local ; NameOfSpace Hgrad_phi ; }
-    }
-    Equation {
-      Galerkin { [ - mu[] * Dof{d phi} , {d phi} ] ;
-                 In Domain ; Jacobian JVol ; Integration I1 ; }
-
-      Galerkin { [ - mu[] * hc[] , {d phi} ] ;
-                 In Domain_M ; Jacobian JVol ; Integration I1 ; }
-    }
-  }
-}
-
-Resolution {
-  { Name MagSta_phi ;
-    System {
-      { Name A ; NameOfFormulation MagSta_phi ; }
-    }
-    Operation {
-      Generate[A] ; Solve[A] ; SaveSolution[A] ;
-    }
-  }
-}
-
-PostProcessing {
-  { Name MagSta_phi ; NameOfFormulation MagSta_phi ;
-    Quantity {
-      { Name b   ; Value { Local { [ - mu[] * {d phi} ] ; In Domain ; Jacobian JVol ; }
-                           Local { [ - mu[] * hc[] ]    ; In Domain_M ; Jacobian JVol ; } } }
-      { Name h   ; Value { Local { [ - {d phi} ]        ; In Domain ; Jacobian JVol ; } } }
-      { Name phi ; Value { Local { [ {phi} ]            ; In Domain ; Jacobian JVol ; } } }
-    }
-  }
-}
-
-PostOperation {
-  { Name MagSta_phi ; NameOfPostProcessing MagSta_phi;
-    Operation {
-      Print[ b, OnElementsOf Domain, File "MagSta_phi_b.pos" ] ;
-      Print[ h, OnElementsOf Domain, File "MagSta_phi_h.pos" ] ;
-      Print[ phi, OnElementsOf Domain, File "MagSta_phi_phi.pos" ] ;
-    }
-  }
-}
-
-/* --------------------------------------------------------------------------
-   MagSta_a : Magnetic vector potential a formulation (2D)
-   -------------------------------------------------------------------------- */
-
-Constraint {
-  { Name a ;
-    Case {
-      { Region Dirichlet_a_0 ; Value 0. ; }
-    }
-  }
-}
-
-FunctionSpace {
-
-  { Name Hcurl_a ; Type Form1P ;
-    BasisFunction {
-      { Name se ; NameOfCoef ae ; Function BF_PerpendicularEdge ;
-        Support Domain ; Entity NodesOf[ All ] ; }
-    }
-    Constraint {
-      { NameOfCoef ae ; EntityType NodesOf ; NameOfConstraint a ; }
-    }
-  }
-
-}
-
-Formulation {
-  { Name MagSta_a ; Type FemEquation ;
-    Quantity {
-      { Name a  ; Type Local ; NameOfSpace Hcurl_a ; }
-    }
-    Equation {
-      Galerkin { [ nu[] * Dof{d a} , {d a} ] ;
-                 In Domain ; Jacobian JVol ; Integration I1 ; }
-
-      Galerkin { [ hc[] , {d a} ] ;
-                 In Domain_M ; Jacobian JVol ; Integration I1 ; }
-
-      Galerkin { [ -js[] , {a} ] ;
-                 In Domain_S ; Jacobian JVol ; Integration I1 ; }
-    }
-  }
-}
-
-Resolution {
-  { Name MagSta_a ;
-    System {
-      { Name A ; NameOfFormulation MagSta_a ; }
-    }
-    Operation {
-      Generate[A] ; Solve[A] ; SaveSolution[A];
-    }
-  }
-}
-
-PostProcessing {
-  { Name MagSta_a ; NameOfFormulation MagSta_a ;
-    Quantity {
-      { Name a ; Value { Local { [ CompZ[{a}] ]   ; In Domain ; Jacobian JVol ; } } }
-      { Name b ; Value { Local { [ {d a} ]        ; In Domain ; Jacobian JVol ; } } }
-      { Name a ; Value { Local { [ {a} ]          ; In Domain ; Jacobian JVol ; } } }
-      { Name h ; Value { Local { [ nu[] * {d a} ] ; In Domain ; Jacobian JVol ; }
-                         Local { [ hc[] ]         ; In Domain_M ; Jacobian JVol ; } } }
-    }
-  }
-}
-
-PostOperation {
-  { Name MagSta_a ; NameOfPostProcessing MagSta_a;
-    Operation {
-      Print[ b, OnElementsOf Domain, File "MagSta_a_b.pos" ] ;
-      Print[ h, OnElementsOf Domain, File "MagSta_a_h.pos" ] ;
-      Print[ a, OnElementsOf Domain, File "MagSta_a_a.pos" ] ;
-    }
-  }
-}
diff --git a/contrib/mobile/Android/res/raw/models.zip b/contrib/mobile/Android/res/raw/models.zip
new file mode 100644
index 0000000000000000000000000000000000000000..de8f6ff724bec17b9e76ab05fdbd88d6f17e3578
Binary files /dev/null and b/contrib/mobile/Android/res/raw/models.zip differ
diff --git a/contrib/mobile/Android/res/raw/pmsm_8p_circuit_pro b/contrib/mobile/Android/res/raw/pmsm_8p_circuit_pro
deleted file mode 100644
index 37e1ac3756b8d223e7fda6adf651dfafc861216d..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/pmsm_8p_circuit_pro
+++ /dev/null
@@ -1,123 +0,0 @@
-//
-// Circuit for Permanent Magnet Synchronous Generator - cbmag
-//
-
-Group{
-  // Dummy numbers for circuit definition
-  R1 = #55551 ;
-  R2 = #55552 ;
-  R3 = #55553 ;
-
-  Input1 = #10001 ;
-  Input2 = #10002 ;
-  Input3 = #10003 ;
-  Input4 = #10004 ;
-
-  Resistance_Cir  = Region[{R1, R2, R3}];
-  DomainZ_Cir = Region[ {Resistance_Cir} ];
-
-  DomainSource_Cir = Region[ {} ] ;
-  If(Flag_SrcType_Stator>1)
-    DomainSource_Cir += Region[ {Input1, Input2, Input3} ] ;
-  EndIf
-
-  DomainZt_Cir    = Region[ {DomainZ_Cir, DomainSource_Cir} ];
-}
-
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-
-Function {
-  // Open circuit - load - short circuit
-  DefineConstant[ ZR = {200,
-      Choices{1e-8, 200, 1e8}, Label "Load resistance",  Path "Input/", Highlight "AliceBlue"} ];
-  Resistance[#{R1, R2, R3}]  = ZR ;
-}
-
-// --------------------------------------------------------------------------
-
-Constraint {
-
-  If (SymmetryFactor<8)
-    If(Flag_SrcType_Stator==0)
-      { Name ElectricalCircuit ; Type Network ;
-        Case Circuit1 {
-          { Region Stator_Ind_Ap ; Branch {100,102} ; }
-          { Region Stator_Ind_Am ; Branch {103,102} ; }
-          { Region R1            ; Branch {103,100} ; }
-        }
-        Case Circuit2 {
-          { Region Stator_Ind_Bp ; Branch {200,202} ; }
-          { Region Stator_Ind_Bm ; Branch {203,202} ; }
-          { Region R2            ; Branch {203,200} ; }
-        }
-        Case Circuit3 {
-          { Region Stator_Ind_Cp ; Branch {300,302} ; }
-          { Region Stator_Ind_Cm ; Branch {303,302} ; }
-          { Region R3            ; Branch {303,300} ; }
-        }
-      }
-    EndIf
-    If (Flag_SrcType_Stator==2)
-      { Name ElectricalCircuit ; Type Network ;
-        Case Circuit1 {
-          { Region Input1        ; Branch {100,101} ; }
-          { Region Stator_Ind_Ap ; Branch {101,102} ; }
-          { Region Stator_Ind_Am ; Branch {103,102} ; }
-          { Region R1            ; Branch {103,100} ; }
-        }
-        Case Circuit2 {
-          { Region Input2        ; Branch {200,201} ; }
-          { Region Stator_Ind_Bp ; Branch {201,202} ; }
-          { Region Stator_Ind_Bm ; Branch {203,202} ; }
-          { Region R2            ; Branch {203,200} ; }
-        }
-        Case Circuit3 {
-          { Region Input3        ; Branch {300,301} ; }
-          { Region Stator_Ind_Cp ; Branch {301,302} ; }
-          { Region Stator_Ind_Cm ; Branch {303,302} ; }
-          { Region R3            ; Branch {303,300} ; }
-        }
-      }
-    EndIf
-  EndIf
-
-  If(SymmetryFactor==8)
-    If(Flag_SrcType_Stator==0) // Only one physical region in geo allow per branch
-      { Name ElectricalCircuit ; Type Network ;
-        Case Circuit1 {
-          { Region PhaseA        ; Branch {100,102} ; }
-          { Region R1            ; Branch {102,100} ; }
-        }
-        Case Circuit2 {
-          { Region PhaseB        ; Branch {200,202} ; }
-          { Region R2            ; Branch {202,200} ; }
-        }
-        Case Circuit3 {
-          { Region PhaseC        ; Branch {300,302} ; }
-          { Region R3            ; Branch {302,300} ; }
-        }
-      }
-    EndIf
-    If(Flag_SrcType_Stator==2) // Only one physical region in geo allow per branch
-      { Name ElectricalCircuit ; Type Network ;
-        Case Circuit1 {
-          { Region Input1        ; Branch {100,101} ; }
-          { Region PhaseA        ; Branch {101,102} ; }
-          { Region R1            ; Branch {102,100} ; }
-        }
-        Case Circuit2 {
-          { Region Input2        ; Branch {200,201} ; }
-          { Region PhaseB        ; Branch {201,202} ; }
-          { Region R2            ; Branch {202,200} ; }
-        }
-        Case Circuit3 {
-          { Region Input3        ; Branch {300,301} ; }
-          { Region PhaseC        ; Branch {302,301} ; }
-          { Region R3            ; Branch {302,300} ; }
-        }
-      }
-    EndIf
-  EndIf
-}
-
diff --git a/contrib/mobile/Android/res/raw/pmsm_data_geo b/contrib/mobile/Android/res/raw/pmsm_data_geo
deleted file mode 100644
index c2760986cf88f4c497dd8c8c9257314770d99072..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/pmsm_data_geo
+++ /dev/null
@@ -1,104 +0,0 @@
-// Permanent magnet synchronous machine
-// Example of Prof. Dr. Mauricio Valencia Ferreira da Luz (Florianopolis, August 23, 2010)
-
-// Modified and customised for Onelab by Ruth V. Sabariego (February, 2013)
-
-mm = 1e-3 ;
-deg2rad = Pi/180 ;
-
-DefineConstant[ NbrPoles = { 1, Choices {1="1",
-                                         2="2",
-                                         4="4",
-                                         8="8"},
-                             Label "Number of poles in FE model",
-                             Path "Input/1", Highlight "Blue", Visible 1} ] ;
-
-DefineConstant[ InitialRotorAngle_deg = {7.5, Label "Start rotor angle", Path "Input/20", Highlight "AliceBlue"} ];
-
-//--------------------------------------------------------------------------------
-
-InitialRotorAngle = InitialRotorAngle_deg*deg2rad ; // initial rotor angle, 0 if aligned
-
-AxialLength = 35*mm ;
-
-//------------------------------------------------
-//------------------------------------------------
-NbrPolesTot = 8 ; // number of poles in complete cross-section
-
-SymmetryFactor = NbrPolesTot/NbrPoles ;
-Flag_Symmetry = (SymmetryFactor==1)?0:1 ;
-
-NbrSectTot = NbrPolesTot ; // number of "rotor teeth"
-NbrSect = NbrSectTot*NbrPoles/NbrPolesTot ; // number of "rotor teeth" in FE model
-//--------------------------------------------------------------------------------
-
-//------------------------------------------------
-// Stator
-//------------------------------------------------
-NbrSectTotStator  = 24; // number of stator teeth
-NbrSectStator   = NbrSectTotStator*NbrPoles/NbrPolesTot; // number of stator teeth in FE model
-//--------------------------------------------------------------------------------
-
-lm = 2.352*mm ; // magnet height
-Th_magnet = 32.67 *deg2rad ;  // angle in degrees 0 < Th_magnet < 45
-
-//--------------------------------------------------------------------------------
-
-rRext = 25.6*mm;
-rR1 = 10.5*mm;
-rR2 = (rRext-lm); //23.243e-03;
-rR3 = (rRext-0.7389*lm); //23.862e-03;
-rR4 = (rRext-0.72278*lm); //23.9e-03;
-rR5 = rRext; //25.6e-03;
-
-rS1 = 26.02*mm;
-rS2 = 26.62*mm;
-rS3 = 26.96*mm;
-rS4 = 38.16*mm;
-rS5 = 38.27*mm;
-rS6 = 40.02*mm;
-rS7 = 46.00*mm;
-
-Gap = rS1-rR5;
-
-rB1  = rR5+Gap/3;
-rB1b = rB1;
-rB2  = rR5+Gap*2/3;
-
-
-A0 =  45 * deg2rad ; // with this choice, axis A of stator is at 30 degrees with regard to horizontal axis
-A1 =   0 * deg2rad ; // Rotor initial aligned position, current position in angRot
-
-// ----------------------------------------------------
-// Numbers for physical regions in .geo and .pro files
-// ----------------------------------------------------
-// Rotor
-ROTOR_FE     = 1000 ;
-ROTOR_AIR    = 1001 ;
-ROTOR_AIRGAP = 1002 ;
-ROTOR_MAGNET = 1010 ; // Index for first Magnet (1/8 model->1; full model->8)
-
-ROTOR_BND_MOVING_BAND = 1100 ; // Index for first line (1/8 model->1; full model->8)
-ROTOR_BND_A0 = 1200 ;
-ROTOR_BND_A1 = 1201 ;
-SURF_INT     = 1202 ;
-
-// Stator
-STATOR_FE     = 2000 ;
-STATOR_AIR    = 2001 ;
-STATOR_AIRGAP = 2002 ;
-
-STATOR_BND_MOVING_BAND = 2100 ;// Index for first line (1/8 model->1; full model->8)
-STATOR_BND_A0          = 2200 ;
-STATOR_BND_A1          = 2201 ;
-
-STATOR_IND = 2300 ; //Index for first Ind (1/8 model->3; full model->24)
-STATOR_IND_AP = STATOR_IND + 1 ; STATOR_IND_BM = STATOR_IND + 2 ;STATOR_IND_CP = STATOR_IND + 3 ;
-STATOR_IND_AM = STATOR_IND + 4 ; STATOR_IND_BP = STATOR_IND + 5 ;STATOR_IND_CM = STATOR_IND + 6 ;
-
-SURF_EXT = 3000 ; // outer boundary
-
-
-MOVING_BAND = 9999 ;
-
-NICEPOS = 111111 ;
diff --git a/contrib/mobile/Android/res/raw/pmsm_geo b/contrib/mobile/Android/res/raw/pmsm_geo
deleted file mode 100644
index efade112ec7041f40cae86e572324f99da649652..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/pmsm_geo
+++ /dev/null
@@ -1,95 +0,0 @@
-Include "pmsm_data.geo";
-
-Mesh.Algorithm = 1;
-Geometry.CopyMeshingMethod = 1;
-
-Mesh.CharacteristicLengthFactor = 1.5 ;
-
-
-// Mesh characteristic lengths
-s = 0.4 ;
-pR1=(rR2-rR1)/6.*s;
-pR2=(rR2-rR1)/6.*s;
-
-pS1=(rS7-rS1)/7.*s;
-pS2=(rS7-rS1)/12.*s;
-pS3=(rS6-rS3)/10.*s;
-
-NbrDivMB = 2*Ceil[2*Pi*rRext/8/pR1]; //1/8 Moving band
-
-//--------------------------------------------------------------------------------
-//--------------------------------------------------------------------------------
-
-cen = newp ; Point(cen)={0,0,0,pR1};
-nicepos_rotor[] = {};
-nicepos_stator[] = {};
-
-Include "pmsm_rotor.geo";
-Include "pmsm_stator.geo";
-
-
-// For nice visualisation...
-Mesh.Light = 0 ;
-//Mesh.SurfaceFaces = 1; Mesh.SurfaceEdges=0;
-
-Hide { Point{ Point '*' }; }
-Hide { Line{ Line '*' }; }
-Show { Line{ nicepos_rotor[], nicepos_stator[] }; }
-
-Physical Line(NICEPOS) = { nicepos_rotor[], nicepos_stator[] };
-
-//For post-processing...
-View[0].Light = 0;
-View[0].NbIso = 25; // Number of intervals
-View[0].IntervalsType = 1;
-
-DefineConstant[ Flag_AddInfo = {0, Choices{0,1},
-                               Label "Add info about phases and axis",
-                               Path "Input/1"} ];
-
-For i In {PostProcessing.NbViews-1 : 0 : -1}
-  If(StrFind(View[i].Attributes, "tmp"))
-    Delete View[i];
-  EndIf
-EndFor
-
-If(Flag_AddInfo)
-  rr = 1.25 * rS3 ;
-  For k In {0:NbrPoles-1}
-    xa[] += rr*Cos(1*Pi/24+k*Pi/4) ; ya[] += rr*Sin(1*Pi/24+k*Pi/4) ;
-    xb[] += rr*Cos(3*Pi/24+k*Pi/4) ; yb[] += rr*Sin(3*Pi/24+k*Pi/4) ;
-    xc[] += rr*Cos(5*Pi/24+k*Pi/4) ; yc[] += rr*Sin(5*Pi/24+k*Pi/4) ;
-  EndFor
-
-  // Adding some axes
-  rr0 = 0.3 * rS7 ;
-  rr1 = 1.3 * rS7 ;
-  th_d = InitialRotorAngle ;
-  th_q = th_d + 22.5 * deg2rad ;
-
-  th_a = 30 * deg2rad ;
-  th_b = (30 + 120/4) * deg2rad ;
-  th_c = (30 + 240/4) * deg2rad ;
-
-  ff = 0.9;
-
-  xd[0] = rr0*Cos(th_d) ;    yd[0] = rr0*Sin(th_d) ;
-  xd[1] = ff*rr1*Cos(th_d) ; yd[1] = ff*rr1*Sin(th_d) ;
-  xq[0] = rr0*Cos(th_q) ;    yq[0] = rr0*Sin(th_q) ;
-  xq[1] = ff*rr1*Cos(th_q) ; yq[1] = ff*rr1*Sin(th_q) ;
-
-  xaa[0] = rr0*Cos(th_a) ; yaa[0] = rr0*Sin(th_a) ;
-  xaa[1] = rr1*Cos(th_a) ; yaa[1] = rr1*Sin(th_a) ;
-  xbb[0] = rr0*Cos(th_b) ; ybb[0] = rr0*Sin(th_b) ;
-  xbb[1] = rr1*Cos(th_b) ; ybb[1] = rr1*Sin(th_b) ;
-  xcc[0] = rr0*Cos(th_c) ; ycc[0] = rr0*Sin(th_c) ;
-  xcc[1] = rr1*Cos(th_c) ; ycc[1] = rr1*Sin(th_c) ;
-
-
-  Include "info_view.geo";
-
-EndIf
-
-
-
-
diff --git a/contrib/mobile/Android/res/raw/pmsm_geo_pro b/contrib/mobile/Android/res/raw/pmsm_geo_pro
deleted file mode 100644
index 225b29dd4fb482e800a1000ae94132e261b3d1e9..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/pmsm_geo_pro
+++ /dev/null
@@ -1,211 +0,0 @@
-//
-// Permanent Magnet Synchronous Generator
-//
-
-Include "pmsm_data.geo";
-
-DefineConstant[ Flag_NL = {0,
-    Choices{ 0="Linear",
-             1="Nonlinear BH curve"},
-    Label "Fe magnetic law",
-    Path "Input/3", Highlight "Blue"} ] ;
-
-DefineConstant[ Flag_SrcType_Stator = {0,
-    Choices{ 0="None",
-      1="Current" },
-    Label "Source Type in Stator",
-    Path "Input/4", Highlight "Blue", Visible 1} ] ;
-
-DefineConstant[ Flag_SrcType_Rotor = {0,
-    Choices{ 0="None",
-      1="Current" },
-    Label "Source Type in Rotor",
-    Path "Input/5", Highlight "Blue", Visible 0} ] ;
-
-DefineConstant[ Flag_Cir = {!Flag_SrcType_Stator, Choices{0,1},
-    Label "Use circuit in Stator", ReadOnly 1, Visible 0} ] ;
-
-Group {
-  Stator_Fe     = #STATOR_FE ;
-  Stator_Al     = #{};
-  Stator_Cu     = #{};
-  Stator_Air    = #STATOR_AIR ;
-  Stator_Airgap = #STATOR_AIRGAP ;
-
-  Stator_Bnd_A0 = #STATOR_BND_A0 ;
-  Stator_Bnd_A1 = #STATOR_BND_A1 ;
-
-  Rotor_Fe     = #ROTOR_FE ;
-  Rotor_Al     = #{};
-  Rotor_Cu     = #{};
-  Stator_Air    = #STATOR_AIR ;
-  Stator_Airgap = #STATOR_AIRGAP ;
-  Stator_Bnd_MB = #STATOR_BND_MOVING_BAND ;
-  Stator_Bnd_A0 = #STATOR_BND_A0 ;
-  Stator_Bnd_A1 = #STATOR_BND_A1 ;
-
-  Rotor_Fe     = #ROTOR_FE ;
-  Rotor_Air    = #ROTOR_AIR ;
-  Rotor_Airgap = #ROTOR_AIRGAP ;
-
-  Rotor_Bnd_A0 = #ROTOR_BND_A0 ;
-  Rotor_Bnd_A1 = #ROTOR_BND_A1 ;
-
-  MovingBand_PhysicalNb = #MOVING_BAND ;  // Fictitious number for moving band, not in the geo file
-  Surf_Inf = #SURF_EXT ;
-  Surf_bn0 = #SURF_INT ;
-  Surf_cutA0 = #{STATOR_BND_A0, ROTOR_BND_A0};
-  Surf_cutA1 = #{STATOR_BND_A1, ROTOR_BND_A1};
-
-  Dummy = #NICEPOS;
-
-  nbMagnets = NbrPolesTot/SymmetryFactor ;
-  For k In {1:nbMagnets}
-    Rotor_Magnet~{k} = Region[ (ROTOR_MAGNET+k-1) ];
-    Rotor_Magnets += Region[ Rotor_Magnet~{k} ];
-  EndFor
-
-  nbInds = (Flag_Symmetry) ? NbrPoles*NbrSectTotStator/NbrPolesTot : NbrSectTotStator ;
-  Printf("NbrPoles=%g, nbInds=%g SymmetryFactor=%g", NbrPoles, nbInds, SymmetryFactor);
-
-  Stator_Ind_Ap = #{};              Stator_Ind_Am = #{STATOR_IND_AM};
-  Stator_Ind_Bp = #{};              Stator_Ind_Bm = #{STATOR_IND_BM};
-  Stator_Ind_Cp = #{STATOR_IND_CP}; Stator_Ind_Cm = #{};
-  If(NbrPoles > 1)
-    Stator_Ind_Ap += #STATOR_IND_AP;
-    Stator_Ind_Bp += #STATOR_IND_BP;
-    Stator_Ind_Cm += #STATOR_IND_CM;
-  EndIf
-
-  PhaseA = Region[{ Stator_Ind_Ap, Stator_Ind_Am }];
-  PhaseB = Region[{ Stator_Ind_Bp, Stator_Ind_Bm }];
-  PhaseC = Region[{ Stator_Ind_Cp, Stator_Ind_Cm }];
-
-  // Provisional: Just one physical region for nice graph in Onelab
-  PhaseA_pos = Region[{ Stator_Ind_Am }];
-  PhaseB_pos = Region[{ Stator_Ind_Bm }];
-  PhaseC_pos = Region[{ Stator_Ind_Cp }];
-
-  Stator_IndsP = Region[{ Stator_Ind_Ap, Stator_Ind_Bp, Stator_Ind_Cp }];
-  Stator_IndsN = Region[{ Stator_Ind_Am, Stator_Ind_Bm, Stator_Ind_Cm }];
-
-  Stator_Inds = Region[ {PhaseA, PhaseB, PhaseC} ] ;
-  Rotor_Inds  = Region[ {} ] ;
-
-  StatorC  = Region[{ }] ;
-  StatorCC = Region[{ Stator_Fe }] ;
-  RotorC   = Region[{ }] ;
-  RotorCC  = Region[{ Rotor_Fe, Rotor_Magnets }] ;
-
-  // Moving band:  with or without symmetry, these BND lines must be complete
-  Stator_Bnd_MB = #STATOR_BND_MOVING_BAND;
-  For k In {1:SymmetryFactor}
-    Rotor_Bnd_MB~{k} = Region[ (ROTOR_BND_MOVING_BAND+k-1) ];
-    Rotor_Bnd_MB += Region[ Rotor_Bnd_MB~{k} ];
-  EndFor
-  Rotor_Bnd_MBaux = Region[ {Rotor_Bnd_MB, -Rotor_Bnd_MB~{1}}];
-
-}
-
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-
-Function {
-
-  mur_fe = 1000 ;
-  sigma_fe = 0 ;
-
-  NbrPhases = 3 ;
-  NbrPolePairs = NbrPolesTot/2 ;
-
-  DefineConstant[ b_remanent = { 1.2, Label "Remanent induction", Path "Input/3", Highlight "AliceBlue"} ] ;
-  // For a radial remanent b
-  For k In {1:nbMagnets}
-    br[ Rotor_Magnet~{k} ] = (-1)^(k-1) * b_remanent * Vector[ Cos[Atan2[Y[],X[]]], Sin[Atan2[Y[],X[]]], 0 ];
-  EndFor
-
-  Inominal = 3.9 ; // Nominal current
-  Tnominal = 2.5 ; // Nominal torque
-
-  //Data for modeling a stranded inductor
-  NbWires[]  = 104 ; // Number of wires per slot
-  // STATOR_IND_AM comprises all the slots in that phase, we need thus to divide by the number of slots
-  nbSlots[] = Ceil[nbInds/NbrPhases/2] ;
-  SurfCoil[] = SurfaceArea[]{STATOR_IND_AM}/nbSlots[] ;//All inductors have the same surface
-
-  FillFactor_Winding = 0.5 ; // percentage of Cu in the surface coil side, smaller than 1
-  Factor_R_3DEffects = 1.5 ; // bigger than Adding 50% of resistance
-
-  DefineConstant[ rpm = { 500,
-                          Label "speed in rpm",
-                          Path "Input/7", Highlight "AliceBlue"} ]; // speed in rpm
-  wr = rpm/60*2*Pi ; // speed in rad_mec/s
-
-  // supply at fixed position
-  DefineConstant[ Freq = {wr*NbrPolePairs/(2*Pi), ReadOnly 1,
-                          Path "Output/1", Highlight "LightYellow" } ];
-  Omega = 2*Pi*Freq ;
-  T = 1/Freq ;
-
-  DefineConstant[ thetaMax_deg = { 180, Label "End rotor angle (loop)",
-      Path "Input/21", Highlight "AliceBlue" } ];
-
-  theta0   = InitialRotorAngle + 0. ;
-  thetaMax = thetaMax_deg * deg2rad ; // end rotor angle (used in doing a loop)
-
-  DefineConstant[ NbTurns  = { (thetaMax-theta0)/(2*Pi), Label "Number of revolutions",
-      Path "Input/24", Highlight "LightGrey", ReadOnly 1} ];
-
-  DefineConstant[ delta_theta_deg = { 1., Label "step in degrees",
-      Path "Input/22", Highlight "AliceBlue"} ];
-
-  delta_theta = delta_theta_deg * deg2rad ;
-
-  time0 = 0 ; // at initial rotor position
-  delta_time = delta_theta/wr;
-  timemax = thetaMax/wr;
-
-  DefineConstant[ NbSteps = { Ceil[(timemax-time0)/delta_time], Label "Number of steps",
-      Path "Input/23", Highlight "LightGrey", ReadOnly 1} ];
-
-  RotorPosition[] = InitialRotorAngle + $Time * wr ;
-  RotorPosition_deg[] = RotorPosition[]*180/Pi;
-
-  Flag_ParkTransformation = 1 ;
-  Theta_Park[] = ((RotorPosition[] + Pi/8) - Pi/6) * NbrPolePairs; // electrical degrees
-  Theta_Park_deg[] = Theta_Park[]*180/Pi;
-
-  DefineConstant[ ID = { 0, Path "Input/60", Label "Id stator current", Highlight "AliceBlue"},
-    IQ = { Inominal, Path "Input/61", Label "Iq stator current", Highlight "AliceBlue"},
-    I0 = { 0, Visible 0} ] ;
-
-  If(Flag_SrcType_Stator==0)
-    UndefineConstant["Input/60ID"];
-    UndefineConstant["Input/61IQ"];
-  EndIf
-}
-
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-
-Dir="res/";
-ExtGmsh     = ".pos";
-ExtGnuplot  = ".dat";
-
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-
-If(Flag_SrcType_Stator==1)
-    UndefineConstant["Input/ZR"];
-EndIf
-
-If(Flag_Cir)
-  Include "pmsm_8p_circuit.pro" ;
-EndIf
-Include "machine_magstadyn_a.pro" ;
-
-DefineConstant[ ResolutionChoices    = {"TimeDomain_Loop", Path "GetDP/1"} ];
-DefineConstant[ PostOperationChoices = {"Map_LocalFields", Path "GetDP/2"} ];
-DefineConstant[ ComputeCommand       = {"-solve -v 1 -v2", Path "GetDP/9"} ];
diff --git a/contrib/mobile/Android/res/raw/pmsm_pro b/contrib/mobile/Android/res/raw/pmsm_pro
deleted file mode 100644
index b9ee5ce16ab353f10ca3891a9ccb123b345922bc..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/pmsm_pro
+++ /dev/null
@@ -1,211 +0,0 @@
-//
-// Permanent Magnet Synchronous Generator
-//
-
-Include "pmsm_data.geo";
-
-DefineConstant[ Flag_NL = {0,
-    Choices{ 0="Linear",
-             1="Nonlinear BH curve"},
-    Label "Fe magnetic law",
-    Path "Input/3", Highlight "Blue"} ] ;
-
-DefineConstant[ Flag_SrcType_Stator = {1,
-    Choices{ 0="None",
-      1="Current" },
-    Label "Source Type in Stator",
-    Path "Input/4", Highlight "Blue", Visible 1} ] ;
-
-DefineConstant[ Flag_SrcType_Rotor = {0,
-    Choices{ 0="None",
-      1="Current" },
-    Label "Source Type in Rotor",
-    Path "Input/5", Highlight "Blue", Visible 0} ] ;
-
-DefineConstant[ Flag_Cir = {!Flag_SrcType_Stator, Choices{0,1},
-    Label "Use circuit in Stator", ReadOnly 1, Visible 0} ] ;
-
-Group {
-  Stator_Fe     = #STATOR_FE ;
-  Stator_Al     = #{};
-  Stator_Cu     = #{};
-  Stator_Air    = #STATOR_AIR ;
-  Stator_Airgap = #STATOR_AIRGAP ;
-
-  Stator_Bnd_A0 = #STATOR_BND_A0 ;
-  Stator_Bnd_A1 = #STATOR_BND_A1 ;
-
-  Rotor_Fe     = #ROTOR_FE ;
-  Rotor_Al     = #{};
-  Rotor_Cu     = #{};
-  Stator_Air    = #STATOR_AIR ;
-  Stator_Airgap = #STATOR_AIRGAP ;
-  Stator_Bnd_MB = #STATOR_BND_MOVING_BAND ;
-  Stator_Bnd_A0 = #STATOR_BND_A0 ;
-  Stator_Bnd_A1 = #STATOR_BND_A1 ;
-
-  Rotor_Fe     = #ROTOR_FE ;
-  Rotor_Air    = #ROTOR_AIR ;
-  Rotor_Airgap = #ROTOR_AIRGAP ;
-
-  Rotor_Bnd_A0 = #ROTOR_BND_A0 ;
-  Rotor_Bnd_A1 = #ROTOR_BND_A1 ;
-
-  MovingBand_PhysicalNb = #MOVING_BAND ;  // Fictitious number for moving band, not in the geo file
-  Surf_Inf = #SURF_EXT ;
-  Surf_bn0 = #SURF_INT ;
-  Surf_cutA0 = #{STATOR_BND_A0, ROTOR_BND_A0};
-  Surf_cutA1 = #{STATOR_BND_A1, ROTOR_BND_A1};
-
-  Dummy = #NICEPOS;
-
-  nbMagnets = NbrPolesTot/SymmetryFactor ;
-  For k In {1:nbMagnets}
-    Rotor_Magnet~{k} = Region[ (ROTOR_MAGNET+k-1) ];
-    Rotor_Magnets += Region[ Rotor_Magnet~{k} ];
-  EndFor
-
-  nbInds = (Flag_Symmetry) ? NbrPoles*NbrSectTotStator/NbrPolesTot : NbrSectTotStator ;
-  Printf("NbrPoles=%g, nbInds=%g SymmetryFactor=%g", NbrPoles, nbInds, SymmetryFactor);
-
-  Stator_Ind_Ap = #{};              Stator_Ind_Am = #{STATOR_IND_AM};
-  Stator_Ind_Bp = #{};              Stator_Ind_Bm = #{STATOR_IND_BM};
-  Stator_Ind_Cp = #{STATOR_IND_CP}; Stator_Ind_Cm = #{};
-  If(NbrPoles > 1)
-    Stator_Ind_Ap += #STATOR_IND_AP;
-    Stator_Ind_Bp += #STATOR_IND_BP;
-    Stator_Ind_Cm += #STATOR_IND_CM;
-  EndIf
-
-  PhaseA = Region[{ Stator_Ind_Ap, Stator_Ind_Am }];
-  PhaseB = Region[{ Stator_Ind_Bp, Stator_Ind_Bm }];
-  PhaseC = Region[{ Stator_Ind_Cp, Stator_Ind_Cm }];
-
-  // Provisional: Just one physical region for nice graph in Onelab
-  PhaseA_pos = Region[{ Stator_Ind_Am }];
-  PhaseB_pos = Region[{ Stator_Ind_Bm }];
-  PhaseC_pos = Region[{ Stator_Ind_Cp }];
-
-  Stator_IndsP = Region[{ Stator_Ind_Ap, Stator_Ind_Bp, Stator_Ind_Cp }];
-  Stator_IndsN = Region[{ Stator_Ind_Am, Stator_Ind_Bm, Stator_Ind_Cm }];
-
-  Stator_Inds = Region[ {PhaseA, PhaseB, PhaseC} ] ;
-  Rotor_Inds  = Region[ {} ] ;
-
-  StatorC  = Region[{ }] ;
-  StatorCC = Region[{ Stator_Fe }] ;
-  RotorC   = Region[{ }] ;
-  RotorCC  = Region[{ Rotor_Fe, Rotor_Magnets }] ;
-
-  // Moving band:  with or without symmetry, these BND lines must be complete
-  Stator_Bnd_MB = #STATOR_BND_MOVING_BAND;
-  For k In {1:SymmetryFactor}
-    Rotor_Bnd_MB~{k} = Region[ (ROTOR_BND_MOVING_BAND+k-1) ];
-    Rotor_Bnd_MB += Region[ Rotor_Bnd_MB~{k} ];
-  EndFor
-  Rotor_Bnd_MBaux = Region[ {Rotor_Bnd_MB, -Rotor_Bnd_MB~{1}}];
-
-}
-
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-
-Function {
-
-  mur_fe = 1000 ;
-  sigma_fe = 0 ;
-
-  NbrPhases = 3 ;
-  NbrPolePairs = NbrPolesTot/2 ;
-
-  DefineConstant[ b_remanent = { 1.2, Label "Remanent induction", Path "Input/3", Highlight "AliceBlue"} ] ;
-  // For a radial remanent b
-  For k In {1:nbMagnets}
-    br[ Rotor_Magnet~{k} ] = (-1)^(k-1) * b_remanent * Vector[ Cos[Atan2[Y[],X[]]], Sin[Atan2[Y[],X[]]], 0 ];
-  EndFor
-
-  Inominal = 3.9 ; // Nominal current
-  Tnominal = 2.5 ; // Nominal torque
-
-  //Data for modeling a stranded inductor
-  NbWires[]  = 104 ; // Number of wires per slot
-  // STATOR_IND_AM comprises all the slots in that phase, we need thus to divide by the number of slots
-  nbSlots[] = Ceil[nbInds/NbrPhases/2] ;
-  SurfCoil[] = SurfaceArea[]{STATOR_IND_AM}/nbSlots[] ;//All inductors have the same surface
-
-  FillFactor_Winding = 0.5 ; // percentage of Cu in the surface coil side, smaller than 1
-  Factor_R_3DEffects = 1.5 ; // bigger than Adding 50% of resistance
-
-  DefineConstant[ rpm = { 500,
-                          Label "speed in rpm",
-                          Path "Input/7", Highlight "AliceBlue"} ]; // speed in rpm
-  wr = rpm/60*2*Pi ; // speed in rad_mec/s
-
-  // supply at fixed position
-  DefineConstant[ Freq = {wr*NbrPolePairs/(2*Pi), ReadOnly 1,
-                          Path "Output/1", Highlight "LightYellow" } ];
-  Omega = 2*Pi*Freq ;
-  T = 1/Freq ;
-
-  DefineConstant[ thetaMax_deg = { 180, Label "End rotor angle (loop)",
-      Path "Input/21", Highlight "AliceBlue" } ];
-
-  theta0   = InitialRotorAngle + 0. ;
-  thetaMax = thetaMax_deg * deg2rad ; // end rotor angle (used in doing a loop)
-
-  DefineConstant[ NbTurns  = { (thetaMax-theta0)/(2*Pi), Label "Number of revolutions",
-      Path "Input/24", Highlight "LightGrey", ReadOnly 1} ];
-
-  DefineConstant[ delta_theta_deg = { 1., Label "step in degrees",
-      Path "Input/22", Highlight "AliceBlue"} ];
-
-  delta_theta = delta_theta_deg * deg2rad ;
-
-  time0 = 0 ; // at initial rotor position
-  delta_time = delta_theta/wr;
-  timemax = thetaMax/wr;
-
-  DefineConstant[ NbSteps = { Ceil[(timemax-time0)/delta_time], Label "Number of steps",
-      Path "Input/23", Highlight "LightGrey", ReadOnly 1} ];
-
-  RotorPosition[] = InitialRotorAngle + $Time * wr ;
-  RotorPosition_deg[] = RotorPosition[]*180/Pi;
-
-  Flag_ParkTransformation = 1 ;
-  Theta_Park[] = ((RotorPosition[] + Pi/8) - Pi/6) * NbrPolePairs; // electrical degrees
-  Theta_Park_deg[] = Theta_Park[]*180/Pi;
-
-  DefineConstant[ ID = { 0, Path "Input/60", Label "Id stator current", Highlight "AliceBlue"},
-    IQ = { Inominal, Path "Input/61", Label "Iq stator current", Highlight "AliceBlue"},
-    I0 = { 0, Visible 0} ] ;
-
-  If(Flag_SrcType_Stator==0)
-    UndefineConstant["Input/60ID"];
-    UndefineConstant["Input/61IQ"];
-  EndIf
-}
-
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-
-Dir="res/";
-ExtGmsh     = ".pos";
-ExtGnuplot  = ".dat";
-
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-// --------------------------------------------------------------------------
-
-If(Flag_SrcType_Stator==1)
-    UndefineConstant["Input/ZR"];
-EndIf
-
-If(Flag_Cir)
-  Include "pmsm_8p_circuit.pro" ;
-EndIf
-Include "machine_magstadyn_a.pro" ;
-
-DefineConstant[ ResolutionChoices    = {"TimeDomain_Loop", Path "GetDP/1"} ];
-DefineConstant[ PostOperationChoices = {"Map_LocalFields", Path "GetDP/2"} ];
-DefineConstant[ ComputeCommand       = {"-solve -v 1 -v2", Path "GetDP/9"} ];
diff --git a/contrib/mobile/Android/res/raw/pmsm_rotor_geo b/contrib/mobile/Android/res/raw/pmsm_rotor_geo
deleted file mode 100644
index c051cf1a6da52b733f73e0548acccf70858e1fd4..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/pmsm_rotor_geo
+++ /dev/null
@@ -1,163 +0,0 @@
-//--------------------------------------------------------------------------------
-// Rotor PMSM
-//--------------------------------------------------------------------------------
-A = InitialRotorAngle-45/2*deg2rad + A1; // with Theta_Park
-
-sinA = Sin(A); cosA = Cos(A);
-pntR[]+=newp; Point(newp)={rR1*cosA, rR1*sinA, 0, pR1};
-pntR[]+=newp; Point(newp)={rR2*cosA, rR2*sinA, 0, pR1};
-pntR[]+=newp; Point(newp)={rR4*cosA, rR4*sinA, 0, pR1};
-pntR[]+=newp; Point(newp)={rR5*cosA, rR5*sinA, 0, pR1};
-pntR[]+=newp; Point(newp)={rB1*cosA, rB1*sinA, 0, pR2};
-
-For k In {0:#pntR[]-2}
- linR0[]+=newl; Line(newl) = {pntR[k], pntR[k+1]};
-EndFor
-
-Transfinite Line{linR0[0]} = Ceil[(rR2-rR1)/pR1] ;
-Transfinite Line{linR0[1]} = Ceil[(rR4-rR2)/pR1] ;
-Transfinite Line{linR0[2]} = Ceil[(rR5-rR4)/pR1] ;
-Transfinite Line{linR0[3]} = Ceil[(rB1-rR5)/pR1] ;
-
-For k In {0:#linR0[]-1}
- linR1[] += Rotate {{0, 0, 1}, {0, 0, 0}, A0+A1} { Duplicata{Line{linR0[k]};} };
-EndFor
-
-AA[] = {(A0-Th_magnet)/2+A1, Th_magnet, (A0-Th_magnet)/2+A1} ;
-
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[0]} { Point{pntR[0]}; };
-cirR[]+=lin[1];
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[1]} { Point{lin[0]}; };
-cirR[]+=lin[1];
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[2]} { Point{lin[0]}; };
-cirR[]+=lin[1];
-
-surfint[]=cirR[{0,1,2}] ; // boundary conditions
-
-pMagnet[] = Rotate {{0, 0, 1}, {0, 0, 0}, AA[0]} { Duplicata{Point{pntR[1]};} };
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[1]} { Point{pMagnet[0]}; };
-pMagnet[] += lin[0];
-cirR[] += lin[1] ;
-
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[0]} { Point{pntR[2]}; };
-cirR[]+=lin[1]; pMagnet[] += lin[0];
-pMagnet[] += Rotate {{0, 0, 1}, {0, 0, 0}, AA[1]} { Duplicata{Point{lin[0]};} };
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[2]} { Point{pMagnet[3]}; };
-cirR[]+=lin[1];
-
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[0]} { Point{pntR[3]}; };
-cirR[]+=lin[1];
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[1]} { Point{lin[0]}; };
-cirR[]+=lin[1];
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, AA[2]} { Point{lin[0]}; };
-cirR[]+=lin[1];
-
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, A0+A1} { Point{pntR[4]}; };
-cirR[]+=lin[1];
-
-linR2[] = Rotate {{0, 0, 1}, {0, 0, 0}, (A0-Th_magnet)/2+A1} { Duplicata{Line{linR0[{1,2}]};} };
-linR3[] = Rotate {{0, 0, 1}, {0, 0, 0},-(A0-Th_magnet)/2+A1} { Duplicata{Line{linR1[{1,2}]};} };
-
-// surfaces rotor
-Line Loop(newll) = {linR0[{0,1}], cirR[4], -linR2[0], cirR[3], linR3[0], cirR[5], -linR1[{1,0}], -cirR[{2,1,0}]};
-srotor[0]=news; Plane Surface(srotor[0]) = {newll-1};
-
-Line Loop(newl) = {linR2[1], cirR[7], -linR3[{1,0}], -cirR[3], linR2[0]};
-smagnet[0]=news; Plane Surface(smagnet[0]) = {newll-1};
-
-nn = #cirR[]-1 ;
-Line Loop(newll) = {cirR[{nn-5}], linR2[1], -cirR[{nn-3}], -linR0[2]};
-sairrotor[]+=news; Plane Surface(news) = {newll-1};
-Line Loop(newll) = {cirR[{nn-4}], linR1[2], -cirR[{nn-1}], -linR3[1]};
-sairrotor[]+=news; Plane Surface(news) = {newll-1};
-
-Line Loop(newll) = {linR0[3], cirR[nn], -linR1[3], -cirR[{nn-1:nn-3:-1}]};
-sairrotormb[]+=news; Plane Surface(news) = {newll-1};
-
-// -------------------------------------------------------------------------------
-// Moving band == AirGap rotor side
-// -------------------------------------------------------------------------------
-Transfinite Line{cirR[nn]} = NbrDivMB+1 ;
-
-//Filling the gap for the whole 2*Pi
-lineMBrotor[]=cirR[{nn}];
-For k In {1:NbrPolesTot-1}
-  lineMBrotoraux[]+=Rotate {{0, 0, 1}, {0, 0, 0}, k*A0} { Duplicata{Line{lineMBrotor[]};} };
-EndFor
-
-// -------------------------------------------------------------------------------
-// -------------------------------------------------------------------------------
-If(SymmetryFactor<8)
-// FULL MODEL ==> Rotation of NbrPolesTot*Pi/4
-// For simplicity: rotating first the interior and exterior boundaries
-
-  If (SymmetryFactor>1)
-    For k In {0:#linR1[]-1}
-      linR1_[] += Rotate {{0, 0, 1}, {0, 0, 0}, 2*Pi/SymmetryFactor-Pi/4} { Duplicata{Line{linR1[k]};} };
-    EndFor
-    linR1[] = linR1_[];
-  EndIf
-
-  For k In {1:NbrPoles-1}
-    surfint[] += Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Line{surfint[{0:2}]};} };
-  EndFor
-  For k In {1:NbrPoles-1}
-    srotor[] += Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Surface{srotor[0]};} };
-    smagnet[]+= Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Surface{smagnet[0]};} };
-    sairrotor[]  += Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Surface{sairrotor[{0,1}]};} };
-    sairrotormb[]+= Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Surface{sairrotormb[0]};} };
-  EndFor
-EndIf
-
-
-// -------------------------------------------------------------------------------
-// Physical regions
-// -------------------------------------------------------------------------------
-
-Physical Surface(ROTOR_FE)     = {srotor[]};     // Rotor
-Physical Surface(ROTOR_AIR)    = {sairrotor[]};  // AirRotor
-Physical Surface(ROTOR_AIRGAP) = {sairrotormb[]};// AirRotor for possible torque computation with Maxwell stress tensor
-
-NN = (Flag_Symmetry)?NbrPoles:NbrPolesTot;
-For k In {0:NN-1}
-  Physical Surface(ROTOR_MAGNET+k) = {smagnet[k]}; // Magnets
-EndFor
-
-Physical Line(SURF_INT) = {surfint[]}; // SurfInt
-
-
-If(Flag_Symmetry)  //Lines for symmetry link
-  Physical Line(ROTOR_BND_A0)  = linR0[];
-  Physical Line(ROTOR_BND_A1)  = linR1[];
-EndIf
-
-lineMBrotor[] += lineMBrotoraux[] ;
-If(!Flag_Symmetry)
-  Physical Line(ROTOR_BND_MOVING_BAND)  = {lineMBrotor[]};
-EndIf
-If(Flag_Symmetry)
-  nr = #lineMBrotor[];
-  nnp = nr/(NbrPolesTot/NbrSect) ;
-  For k In {1:Floor[NbrPolesTot/NbrSect]}
-    kk= ((k*nnp-1) > nr) ? nr-1 : k*nnp-1 ;
-    Physical Line(ROTOR_BND_MOVING_BAND+k-1) = lineMBrotor[{(k-1)*nnp:kk}] ;
-  EndFor
-  k1 = Floor[NbrPolesTot/NbrSect];
-  k2 = Ceil[NbrPolesTot/NbrSect];
-  If (k2 > k1)
-    Physical Line(ROTOR_BND_MOVING_BAND+k2-1) = lineMBrotor[{(k2-1)*nnp:#lineMBrotor[]-1}] ;
-  EndIf
-EndIf
-
-// For nice visualisation...
-linRotor[]  = CombinedBoundary{Surface{srotor[]};};
-linMagnet[] = Boundary{Surface{smagnet[]};};
-
-nicepos_rotor[] += { linRotor[], linMagnet[] };
-
-Color SteelBlue {Surface{srotor[]};}
-Color SkyBlue {Surface{sairrotor[], sairrotormb[]};}
-Color Orchid {Surface{smagnet[{0:#smagnet[]-1:2}]};}
-If(#smagnet[]>1)
-Color Purple {Surface{smagnet[{1:#smagnet[]-1:2}]};}
-EndIf
diff --git a/contrib/mobile/Android/res/raw/pmsm_stator_geo b/contrib/mobile/Android/res/raw/pmsm_stator_geo
deleted file mode 100644
index e928a4a055c5b8f9809365103aabcbf2046b4f96..0000000000000000000000000000000000000000
--- a/contrib/mobile/Android/res/raw/pmsm_stator_geo
+++ /dev/null
@@ -1,215 +0,0 @@
-// -------------------------------------------------------------------------------
-// Moving band == AirGap stator side
-// -------------------------------------------------------------------------------
-pntG[]+=newp; Point(newp) = {rB2, 0., 0., pS1}; // aligned with the stator
-circ[] = Extrude {{0, 0, 1}, {0, 0, 0}, A0} { Point{pntG[0]}; };
-pntG[]+=circ[0];
-lineMBstator[]=circ[1];
-Transfinite Line{lineMBstator[0]} = NbrDivMB+1 ;
-
-//Filling the gap for the whole 2*Pi
-For k In {1:NbrPolesTot-1}
-  lineMBstatoraux[]+= Rotate {{0, 0, 1}, {0, 0, 0}, k*A0} { Duplicata{Line{lineMBstator[0]};} };
-EndFor
-
-// -------------------------------------------------------------------------------
-// Stator
-// -------------------------------------------------------------------------------
-
-pntS[] = newp; Point(newp)={rS1, 0, 0, pS1};
-linS[] = newl; Line(newl) = {pntG[0], pntS[0]};
-linS[]+= Rotate {{0, 0, 1}, {0, 0, 0}, A0} { Duplicata{Line{linS[0]};} };
-
-pntS[]+=newp; Point(newp)={rS7,0,0,pS2};
-points[]=Boundary{Line{linS[1]};};
-pntS[]+=points[1];
-
-lin[] = Extrude {{0, 0, 1}, {0, 0, 0}, A0} { Point{pntS[1]}; };
-cirS[]= lin[1]; pntS[]+=lin[0];
-
-linS[]+=newl; Line(newl) = {pntS[0], pntS[1]};
-linS[]+=newl; Line(newl) = {pntS[2], pntS[3]};
-
-// -------------------------------------------------------------------------------
-// Slots
-// -------------------------------------------------------------------------------
-
-A2 = 0.0;
-AA[]=deg2rad*{2.77+A2, 4.0+A2, 5.52+A2, 5.56+A2, 5.65+A2, 9.35+A2, 9.44+A2, 9.48+A2, 11+A2, 12.23+A2} ;
-
-For k In {0:#AA[]-1}
-  cosAA[]+=Cos(AA[k]); sinAA[]+=Sin(AA[k]);
-EndFor
-
-pntSlot[]+=newp; Point(newp)={rS5*cosAA[0], rS5*sinAA[0], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS3*cosAA[1], rS3*sinAA[1], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS1*cosAA[2], rS1*sinAA[2], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS2*cosAA[3], rS2*sinAA[3], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS4*cosAA[3], rS4*sinAA[3], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS6*cosAA[4], rS6*sinAA[4], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS6*cosAA[5], rS6*sinAA[5], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS4*cosAA[6], rS4*sinAA[6], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS2*cosAA[6], rS2*sinAA[6], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS1*cosAA[7], rS1*sinAA[7], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS3*cosAA[8], rS3*sinAA[8], 0., pS3};
-pntSlot[]+=newp; Point(newp)={rS5*cosAA[9], rS5*sinAA[9], 0., pS3};
-
-// air slot 1
-linASlot[]+=newl ; Line(newl)={pntSlot[2], pntSlot[3]};
-linASlot[]+=newl ; Line(newl)={pntSlot[3], pntSlot[1]};
-linASlot[]+=newl ; Circle(newl)={pntSlot[1], cen, pntSlot[10]};
-linASlot[]+=newl ; Line(newl)={pntSlot[10], pntSlot[8]};
-linASlot[]+=newl ; Line(newl)={pntSlot[8], pntSlot[9]};
-linASlot[]+=newl ; Circle(newl)={pntSlot[9], cen, pntSlot[2]};
-
-Line Loop(newll) = {linASlot[]};
-sairslot[] += news ; Plane Surface(sairslot[0]) = {newll-1};
-
-// coil slot 1
-linSlot[]+=newl ; Line(newl)={pntSlot[1], pntSlot[0]};
-linSlot[]+=newl ; Circle(newl)= {pntSlot[0], pntSlot[4], pntSlot[5]};
-linSlot[]+=newl ; Line(newl)={pntSlot[5], pntSlot[6]};
-linSlot[]+=newl ; Circle(newl)={pntSlot[6], pntSlot[7],pntSlot[11]};
-linSlot[]+=newl ; Line(newl)={pntSlot[11], pntSlot[10]};
-
-Line Loop(newll) = {-linASlot[2],linSlot[]};
-sslot[] += news ; Plane Surface(sslot[0]) = {newll-1};
-
-// slots 2 and 3
-A2 = 15*deg2rad;
-
-pntSlot0[0] = pntSlot[2];
-pntSlot1[0] = pntSlot[9];
-For k In{1:2}
-  pntSlot0[] += Rotate {{0, 0, 1}, {0, 0, 0}, A2} { Duplicata{Point{pntSlot0[k-1]};} };
-  pntSlot1[] += Rotate {{0, 0, 1}, {0, 0, 0}, A2} { Duplicata{Point{pntSlot1[k-1]};} };
-EndFor
-
-For k In{1:2}
-  sslot[] += Rotate {{0, 0, 1}, {0, 0, 0}, A2} { Duplicata{Surface{sslot[k-1]};} };
-  sairslot[] += Rotate {{0, 0, 1}, {0, 0, 0}, A2} { Duplicata{Surface{sairslot[k-1]};} };
-EndFor
-
-cSlot[]+=newl; Circle(newl) = {pntS[0], cen, pntSlot[2]};
-cSlot[]+=newl; Circle(newl) = {pntSlot1[0], cen, pntSlot0[1]};
-cSlot[]+=newl; Circle(newl) = {pntSlot1[1], cen, pntSlot0[2]};
-cSlot[]+=newl; Circle(newl) = {pntSlot1[2], cen, pntS[2]};
-
-linesslot0[] = CombinedBoundary{ Surface{ sslot[0], sairslot[0] } ;};
-linesslot1[] = CombinedBoundary{ Surface{ sslot[1], sairslot[1] } ;};
-linesslot2[] = CombinedBoundary{ Surface{ sslot[2], sairslot[2] } ;};
-
-Line Loop(newll) = {-lineMBstator[0],linS[0], cSlot[0],-linesslot0[{4}],
-                    cSlot[1],-linesslot1[{9}],
-                    cSlot[2],-linesslot2[{9}], cSlot[3], -linS[1]};
-sairgapS[0]=news; Plane Surface(sairgapS[0]) = {newll-1};
-
-linesslot0[] -= linesslot0[{4}];
-linesslot1[] -= linesslot1[{9}];
-linesslot2[] -= linesslot2[{9}];
-Line Loop(newll) = { cSlot[0], linesslot0[],
-                     cSlot[1], linesslot1[],
-                     cSlot[2], linesslot2[],
-                     cSlot[3], linS[3], -cirS[0], -linS[2]};
-sstator[0]=news; Plane Surface(sstator[0]) = {newll-1};
-
-// -------------------------------------------------------------------------------
-// -------------------------------------------------------------------------------
-
-auxlink[]=linS[{1,3}]; // A1
-
-If(SymmetryFactor<8)
-  // FULL MODEL ==> Rotation of NbrPolesTot*Pi/4
-  // For simplicity: rotating the interior and exterior boundaries
-
- If (SymmetryFactor>1)
-    For k In {0:#auxlink[]-1}
-      auxlink_[] += Rotate {{0, 0, 1}, {0, 0, 0}, 2*Pi/SymmetryFactor-Pi/4} { Duplicata{Line{auxlink[k]};} };
-    EndFor
-    auxlink[] = auxlink_[];
-  EndIf
-
-  For k In {1:NbrPoles-1}
-    cirS[] += Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Line{cirS[{0}]};} };
-  EndFor
-  For k In {1:NbrPoles-1}
-    sstator[]+= Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Surface{sstator[0]};} };
-    sairgapS[]+= Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Surface{sairgapS[0]};} };
-    sairslot[]+= Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Surface{sairslot[{0:2}]};} };
-    sslot[]+= Rotate {{0, 0, 1}, {0, 0, 0}, k*Pi/4} { Duplicata{ Surface{sslot[{0:2}]};} };
-  EndFor
-EndIf
-
-
-
-// -------------------------------------------------------------------------------
-// -------------------------------------------------------------------------------
-// Physical regions
-// -------------------------------------------------------------------------------
-// -------------------------------------------------------------------------------
-
-Physical Surface(STATOR_FE)     = {sstator[]};  // Stator
-Physical Surface(STATOR_AIR)    = {sairslot[]}; // AirStator
-Physical Surface(STATOR_AIRGAP) = {sairgapS[]}; // AirStator for possible torque computation with Maxwell stress tensor
-
-NN = (Flag_Symmetry)?NbrSectStator:NbrSectTotStator;
-//For k In {0:NN-1}
-//  Physical Surface(STATOR_IND+k) = {sslot[k]}; //Inds
-//EndFor
-
-Physical Surface(STATOR_IND_AM) = {sslot[{0:NN-1:6}]};
-Physical Surface(STATOR_IND_CP) = {sslot[{1:NN-1:6}]};
-Physical Surface(STATOR_IND_BM) = {sslot[{2:NN-1:6}]};
-If(NbrSectStator>2)
-  Physical Surface(STATOR_IND_AP) = {sslot[{3:NN-1:6}]};
-  Physical Surface(STATOR_IND_CM) = {sslot[{4:NN-1:6}]};
-  Physical Surface(STATOR_IND_BP) = {sslot[{5:NN-1:6}]};
-EndIf
-
-Color Pink         {Surface{ sslot[{0:NN-1:6}] };} // A-
-Color ForestGreen  {Surface{ sslot[{1:NN-1:6}] };} // C+
-Color PaleGoldenrod{Surface{ sslot[{2:NN-1:6}] };} // B-
-If (#sslot[]>=6)
-Color Red        {Surface{ sslot[{3:NN-1:6}] };} // A+
-Color SpringGreen{Surface{ sslot[{4:NN-1:6}] };} // C-
-Color Gold       {Surface{ sslot[{5:NN-1:6}] };} // B+
-EndIf
-
-
-Physical Line(SURF_EXT) = {cirS[]}; // SurfExt
-
-If(Flag_Symmetry) //Lines for symmetry link
-  Physical Line(STATOR_BND_A0) = linS[{0,2}];
-  Physical Line(STATOR_BND_A1) = auxlink[] ;
-EndIf
-
-
-lineMBstator[] += lineMBstatoraux[] ;
-If(!Flag_Symmetry)
-  Physical Line(STATOR_BND_MOVING_BAND) = {lineMBstator[]};
-EndIf
-If(Flag_Symmetry)
-ns = #lineMBstator[];
-nns = ns/SymmetryFactor ;
-For k In {1:SymmetryFactor}
-  kk= ((k*nns-1) > ns) ? ns-1 : k*nns-1 ;
-  Physical Line(STATOR_BND_MOVING_BAND+k-1) = {lineMBstator[{(k-1)*nns:kk}]};
-EndFor
-  k1 = Floor[NbrPolesTot/NbrSect];
-  k2 = Ceil[NbrPolesTot/NbrSect];
-  If (k2 > k1)
-    Physical Line(STATOR_BND_MOVING_BAND+k2-1) = lineMBstator[{(k2-1)*nns:#lineMBstator[]-1}] ;
-  EndIf
-EndIf
-
-
-// For nice visualisation...
-linStator[] = CombinedBoundary{Surface{sstator[]};};
-linSlot[] = CombinedBoundary{Surface{sslot[]};};
-
-nicepos_stator[] += {linStator[],linSlot[] };
-
-Color SteelBlue {Surface{sstator[]};}
-Color SkyBlue {Surface{sairslot[],sairgapS[]};}
-
-
diff --git a/contrib/mobile/Android/src/org/geuz/onelab/ModelList.java b/contrib/mobile/Android/src/org/geuz/onelab/ModelList.java
index 87f177f177515eddc432daa5f499149264db51d3..1f0a1c6d81209610b946ed21018aa140b7192fd4 100644
--- a/contrib/mobile/Android/src/org/geuz/onelab/ModelList.java
+++ b/contrib/mobile/Android/src/org/geuz/onelab/ModelList.java
@@ -41,7 +41,7 @@ public class ModelList extends Activity {
     	ListView list = new ListView(this);
     	Button loadSD = new Button(this);
     	loadSD.setText(R.string.button_open_external_file);
-    	loadSD.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,LayoutParams.WRAP_CONTENT));
+    	loadSD.setLayoutParams(new ListView.LayoutParams(LayoutParams.MATCH_PARENT, ListView.LayoutParams.WRAP_CONTENT));
     	loadSD.setOnClickListener(new View.OnClickListener() {
 			
 			public void onClick(View v) {
diff --git a/contrib/mobile/Android/src/org/geuz/onelab/SplashScreen.java b/contrib/mobile/Android/src/org/geuz/onelab/SplashScreen.java
index 21c8bb726137771e248d7d0c684a4c2172a252a3..56653765f13986820805fa4574c87a1af5b7185f 100644
--- a/contrib/mobile/Android/src/org/geuz/onelab/SplashScreen.java
+++ b/contrib/mobile/Android/src/org/geuz/onelab/SplashScreen.java
@@ -1,9 +1,10 @@
 package org.geuz.onelab;
 
+import java.io.BufferedInputStream;
 import java.io.FileOutputStream;
 import java.io.IOException;
-import java.io.InputStream;
-import java.lang.reflect.Field;
+import java.util.zip.ZipEntry;
+import java.util.zip.ZipInputStream;
 
 import android.app.Activity;
 import android.content.Context;
@@ -59,34 +60,19 @@ public class SplashScreen extends Activity{
      */
     private void loadNative()
     {
-    	for( Field f : R.raw.class.getFields()) {
-    		try {
-				int Msh = f.getInt(null), i;
-				String androidName = getResources().getResourceEntryName(Msh);
-				StringBuilder tmp = new StringBuilder(androidName);
-				tmp.setCharAt(androidName.lastIndexOf('_'), '.');
-				String nativeName = tmp.toString();
-				/*if(new File(getFilesDir().toString()+"/"+nativeName).exists()){
-					//TODO check if the files are the same
-					continue;
-				}*/
-				InputStream mshFile = getResources().openRawResource(Msh);
-		    	
-		    	FileOutputStream outputStream = openFileOutput(nativeName, Context.MODE_WORLD_READABLE);
-		    	byte[] buffer = new byte[2048];
-		    	
-		    	while ((i = mshFile.read(buffer, 0, buffer.length)) > 0) 
+    	try {
+    		ZipInputStream zipStream = new ZipInputStream(new BufferedInputStream(getResources().openRawResource(R.raw.models)));
+			ZipEntry entry;
+		     while ((entry = zipStream.getNextEntry()) != null) {
+				FileOutputStream outputStream = openFileOutput(entry.getName(), Context.MODE_PRIVATE);
+				byte[] buffer = new byte[2048];
+				for (int i = zipStream.read(buffer, 0, buffer.length); i > 0;i = zipStream.read(buffer, 0, buffer.length)) 
 					outputStream.write(buffer,0,i);
-
-			} catch (IllegalArgumentException e) {
-				Log.e("Load files", "Error " + e.toString());
-				
-			} catch (IllegalAccessException e) {
-				Log.e("Load files", "Error " + e.toString());
-				
-			} catch (IOException e) {
-				Log.e("Load files", "Error " + e.toString());
-			}
-    	}
+				Log.d("Load files", "Add " + entry.getName() + " from the zip file");
+		     }
+		     zipStream.close();
+		} catch (IOException e1) {
+			e1.printStackTrace();
+		}
     }
 }