diff --git a/Common/Timer.cpp b/Common/Timer.cpp
index 5f14096f4a68787e4659c95801ff4c3fc8f528da..f2218c588da2228cb6a20216e360a51c1321f2a9 100644
--- a/Common/Timer.cpp
+++ b/Common/Timer.cpp
@@ -1,3 +1,5 @@
+// $Id: Timer.cpp,v 1.4 2001-02-09 07:59:50 geuzaine Exp $
+
 #if defined(WIN32) && !defined(__CYGWIN__)
 
 long GetTime(){
diff --git a/Fltk/GUI.cpp b/Fltk/GUI.cpp
index 9f76d7b0704f54429d59a78e6455defde22b4aac..65c166d8ed2912f1d2dbf3cf4f15ec2ff0a3a7b9 100644
--- a/Fltk/GUI.cpp
+++ b/Fltk/GUI.cpp
@@ -1,4 +1,4 @@
-// $Id: GUI.cpp,v 1.41 2001-02-07 13:25:39 geuzaine Exp $
+// $Id: GUI.cpp,v 1.42 2001-02-09 07:59:50 geuzaine Exp $
 
 // To make the interface as visually consistent as possible, please:
 // - use the BH, BW, WB, IW values for button heights/widths, window borders, etc.
@@ -36,9 +36,7 @@ Fl_Menu_Item m_menubar_table[] = {
       {"GREF...",              0, (Fl_Callback *)file_save_as_gref_cb, 0},
       {"EPS simple sort...",   0, (Fl_Callback *)file_save_as_eps_simple_cb, 0},
       {"EPS accurate sort...", 0, (Fl_Callback *)file_save_as_eps_accurate_cb, 0},
-#ifndef WIN32
       {"JPEG...",              0, (Fl_Callback *)file_save_as_jpeg_cb, 0},
-#endif
       {"GIF...",               0, (Fl_Callback *)file_save_as_gif_cb, 0},
       {"GIF dithered...",      0, (Fl_Callback *)file_save_as_gif_dithered_cb, 0},
       {"GIF transparent...",   0, (Fl_Callback *)file_save_as_gif_transparent_cb, 0},
diff --git a/Graphics/CreateFile.cpp b/Graphics/CreateFile.cpp
index 42a0363678a39314b7f71c8364dc7274070bc3a8..b18e7602831af5508e5ea81ed9114231a9e881a4 100644
--- a/Graphics/CreateFile.cpp
+++ b/Graphics/CreateFile.cpp
@@ -1,4 +1,4 @@
-// $Id: CreateFile.cpp,v 1.14 2001-02-08 16:32:15 geuzaine Exp $
+// $Id: CreateFile.cpp,v 1.15 2001-02-09 07:59:50 geuzaine Exp $
 
 #include "Gmsh.h"
 #include "GmshUI.h"
@@ -21,11 +21,7 @@ extern XContext_T  XCTX;
 
 #include "gl2ps.h"
 #include "gl2gif.h"
-
-#if !defined(WIN32)
 #include "gl2jpeg.h"
-#endif
-
 #include "gl2ppm.h"
 #include "gl2yuv.h"
 
@@ -112,7 +108,6 @@ void CreateOutputFile (char *name, int format) {
     break;
 #endif
 
-#if !defined(WIN32)
   case FORMAT_JPEG :
     if(!(fp = fopen(name,"wb"))) {
       Msg(WARNING, "Unable to Open File '%s'", name); 
@@ -126,7 +121,6 @@ void CreateOutputFile (char *name, int format) {
     Msg(STATUS2, "Wrote File '%s'", name);
     fclose(fp);
     break;
-#endif
 
   case FORMAT_GIF :
     if(!(fp = fopen(name,"wb"))) {
diff --git a/Graphics/gl2jpeg.cpp b/Graphics/gl2jpeg.cpp
index fc327011cb1f8afa85eafc30928715125fe6f42f..7d412bb7bf609e96ebdfc259642633065f823f31 100644
--- a/Graphics/gl2jpeg.cpp
+++ b/Graphics/gl2jpeg.cpp
@@ -1,6 +1,4 @@
-// $Id: gl2jpeg.cpp,v 1.6 2001-01-11 16:00:28 colignon Exp $
-
-#if !defined(WIN32)
+// $Id: gl2jpeg.cpp,v 1.7 2001-02-09 07:59:50 geuzaine Exp $
 
 #include "Gmsh.h"
 #include "GmshUI.h"
@@ -60,6 +58,3 @@ void create_jpeg(FILE *outfile, int width, int height, int quality){
   Free(pixels);
 }
 
-
-#endif //if !defined(WIN32)
-
diff --git a/Makefile b/Makefile
index f80d03f982346e29fb6423a0e71ba6594cac7cee..1e8347e18a8dbff77c9a62bd7c2dcd11dc2db7cc 100644
--- a/Makefile
+++ b/Makefile
@@ -1,9 +1,9 @@
-# $Id: Makefile,v 1.53 2001-02-08 16:32:15 geuzaine Exp $
+# $Id: Makefile,v 1.54 2001-02-09 07:59:50 geuzaine Exp $
 # ----------------------------------------------------------------------
 #  Makefile for Gmsh  
 # ----------------------------------------------------------------------
 
-         GMSH_RELEASE = 1.12
+         GMSH_RELEASE = 1.13
 
                  MAKE = make
                    CC = c++
@@ -36,13 +36,11 @@ FLTK_LIB_LINUX_SCOREC = /users/develop/develop/visual/fltk/1.0/lib/x86_linux/lib
                         -L/usr/X11R6/lib -lXext -lX11
 
            THREAD_LIB = -L/usr/lib -lpthread
-             JPEG_LIB = jpeg/libjpeg.a
 
              GMSH_DIR = Adapt Common DataStr Geo Graphics Mesh Parser Motif Fltk\
                         jpeg utils
       GMSH_XMOTIF_DIR = Adapt Common DataStr Geo Graphics Mesh Parser Motif jpeg
         GMSH_FLTK_DIR = Adapt Common DataStr Geo Graphics Mesh Parser Fltk jpeg
-     GMSH_FLTKWIN_DIR = Adapt Common DataStr Geo Graphics Mesh Parser Fltk
          GMSH_BOX_DIR = Adapt Box Common DataStr Geo Mesh Parser
          GMSH_BIN_DIR = bin
          GMSH_LIB_DIR = lib
@@ -51,11 +49,9 @@ FLTK_LIB_LINUX_SCOREC = /users/develop/develop/visual/fltk/1.0/lib/x86_linux/lib
        GMSH_TUTOR_DIR = tutorial
      GMSH_ARCHIVE_DIR = archives
       GMSH_XMOTIF_LIB = -L$(GMSH_LIB_DIR) -lMotif -lGraphics -lParser -lMesh -lGeo\
-                                          -lAdapt -lCommon -lDataStr $(JPEG_LIB)
+                                          -lAdapt -lCommon -lDataStr -lJpeg
         GMSH_FLTK_LIB = -L$(GMSH_LIB_DIR) -lFltk -lParser -lGraphics -lMesh -lGeo\
-                                          -lAdapt -lCommon -lDataStr $(JPEG_LIB)
-     GMSH_FLTKWIN_LIB = -L$(GMSH_LIB_DIR) -lFltk -lParser -lGraphics -lMesh -lGeo\
-                                          -lAdapt -lCommon -lDataStr
+                                          -lAdapt -lCommon -lDataStr -lJpeg
          GMSH_BOX_LIB = -L$(GMSH_LIB_DIR) -lBox -lParser -lMesh -lGeo\
                                           -lAdapt -lCommon -lDataStr
          GMSH_ARCHIVE = $(GMSH_ARCHIVE_DIR)/gmsh-`date "+%Y.%m.%d"`
@@ -406,7 +402,7 @@ fltk_rpm: src
 	rm -f gmsh
 
 fltk_mingw: tag
-	@for i in $(GMSH_FLTKWIN_DIR); do (cd $$i && $(MAKE) \
+	@for i in $(GMSH_FLTK_DIR); do (cd $$i && $(MAKE) \
            "CC=g++ -mno-cygwin -I/mingw/include" \
            "C_FLAGS=-O2 -DWIN32" \
            "OS_FLAGS=-D_LITTLE_ENDIAN" \
@@ -414,11 +410,11 @@ fltk_mingw: tag
            "GL_INCLUDE=$(OPENGL_INC)" \
            "GUI_INCLUDE=$(FLTK_INC)" \
         ); done
-	g++ -mno-cygwin -L/mingw/lib -o $(GMSH_BIN_DIR)/gmsh.exe $(GMSH_FLTKWIN_LIB) \
+	g++ -mno-cygwin -L/mingw/lib -o $(GMSH_BIN_DIR)/gmsh.exe $(GMSH_FLTK_LIB) \
                  $(HOME)/SOURCES/fltk/lib/libfltk.a -lglu32 -lopengl32 -lgdi32 -lwsock32 -lm
 
 fltk_cygwin: tag
-	@for i in $(GMSH_FLTKWIN_DIR); do (cd $$i && $(MAKE) \
+	@for i in $(GMSH_FLTK_DIR); do (cd $$i && $(MAKE) \
            "CC=g++" \
            "C_FLAGS=-O2 -DWIN32" \
            "OS_FLAGS=-D_LITTLE_ENDIAN" \
@@ -426,6 +422,6 @@ fltk_cygwin: tag
            "GL_INCLUDE=$(OPENGL_INC)" \
            "GUI_INCLUDE=$(FLTK_INC)" \
         ); done
-	g++ -Wl,--subsystem,windows -o $(GMSH_BIN_DIR)/gmsh.exe $(GMSH_FLTKWIN_LIB) \
+	g++ -Wl,--subsystem,windows -o $(GMSH_BIN_DIR)/gmsh.exe $(GMSH_FLTK_LIB) \
                  $(HOME)/SOURCES/fltk/lib/libfltk.a -lglu32 -lopengl32 -lgdi32 -lwsock32 -lm
 	strip $(GMSH_BIN_DIR)/gmsh.exe
diff --git a/doc/Changelog b/doc/Changelog
index 02c680298e05970d42682e478a4aaabe5af77713..ce12aca11a5468fa278ab943796ee3051b8cbd73 100644
--- a/doc/Changelog
+++ b/doc/Changelog
@@ -1,6 +1,8 @@
-New in 1.12: Corrected vector lines in post-processing parsed format;
-corrected animation on Windows; Corrected file creation in scripts on
-Windows; Direct affectation of variable arrays; 
+New in 1.13: Added jpeg output for Windows version;
+
+New in 1.12: Corrected vector lines in the post-processing parsed
+format; corrected animation on Windows; corrected file creation in
+scripts on Windows; direct affectation of variable arrays;
 
 New in 1.11: Corrected included file loading problem.
 
diff --git a/doc/gmsh.1 b/doc/gmsh.1
index e77520a2ea58fd7a5181977247e8737bd4061ce4..6a773f23a5cbb35fbf8d7d263cd9cffda2aeffb3 100644
--- a/doc/gmsh.1
+++ b/doc/gmsh.1
@@ -5,7 +5,7 @@
 .\" Copyright (c) 2000-2001 J.-F. Remacle, C. Geuzaine
 .\" 
 .\" ======================================================================
-.TH Gmsh 1.12 "8 February 2001"
+.TH Gmsh 1.13 "9 February 2001"
 .UC 4
 .\" ======================================================================
 .SH NAME
@@ -215,7 +215,7 @@ Remacle (Remacle@scorec.rpi.edu).
 .SH SEE ALSO
 Gmsh homepage at \fIhttp://www.geuz.org/gmsh/\fR
 .PP
-Gmsh example files in \fI/usr/doc/gmsh-1.12/\fR
+Gmsh example files in \fI/usr/doc/gmsh-1.13/\fR
 .PP
 GetDP (a scientific computation software for the numerical solution of
 integro-differential equations, using finite element and integral type
diff --git a/jpeg/Makefile b/jpeg/Makefile
index 7109131b3a148831ea833a7a55b2c417439f26d7..f7b9ed6722d1a54b7b9268646ba980211cdffe8e 100644
--- a/jpeg/Makefile
+++ b/jpeg/Makefile
@@ -1,4 +1,4 @@
-# $Id: Makefile,v 1.5 2001-02-09 07:42:03 geuzaine Exp $
+# $Id: Makefile,v 1.6 2001-02-09 07:55:32 geuzaine Exp $
 #
 # Makefile for "libJpeg.a"
 #
@@ -22,10 +22,7 @@ CFLAGS   = $(C_FLAGS) $(OS_FLAGS) $(VERSION_FLAGS) $(INCLUDE)
 SRC = jcomapi.c jutils.c jerror.c jmemmgr.c jmemnobs.c \
       jcapi.c jcparam.c jdatadst.c jcmaster.c jcmarker.c jcmainct.c \
       jcprepct.c jccoefct.c jccolor.c jcsample.c jchuff.c jcdctmgr.c \
-      jfdctfst.c jfdctflt.c jfdctint.c \
-      jdapi.c jdatasrc.c jdmaster.c jdmarker.c jdmainct.c jdcoefct.c \
-      jdpostct.c jddctmgr.c jidctfst.c jidctflt.c jidctint.c jidctred.c \
-      jdhuff.c jdsample.c jdcolor.c jquant1.c jquant2.c jdmerge.c
+      jfdctfst.c jfdctflt.c jfdctint.c
 
 OBJ = $(SRC:.c=.o)
 
@@ -93,39 +90,3 @@ jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
  jpegint.h jerror.h jdct.h
 jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
  jpegint.h jerror.h jdct.h
-jdapi.o: jdapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h \
- jerror.h
-jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jerror.h
-jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h jdct.h
-jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h jdct.h
-jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h jdct.h
-jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h jdct.h
-jidctred.o: jidctred.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h jdct.h
-jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h \
- jerror.h
-jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
-jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h \
- jpegint.h jerror.h
diff --git a/jpeg/jdapi.c b/jpeg/jdapi.c
deleted file mode 100644
index b34b701c7b7331e0910efd1b3a78caed78b9c3bc..0000000000000000000000000000000000000000
--- a/jpeg/jdapi.c
+++ /dev/null
@@ -1,438 +0,0 @@
-/*
- * jdapi.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the decompression half of
- * the JPEG library.  Most of the routines intended to be called directly by
- * an application are in this file.  But also see jcomapi.c for routines
- * shared by compression and decompression.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Initialization of a JPEG decompression object.
- * The error manager must already be set up (in case memory manager fails).
- */
-
-GLOBAL void
-jpeg_create_decompress (j_decompress_ptr cinfo)
-{
-  int i;
-
-  /* For debugging purposes, zero the whole master structure.
-   * But error manager pointer is already there, so save and restore it.
-   */
-  {
-    struct jpeg_error_mgr * err = cinfo->err;
-    MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
-    cinfo->err = err;
-  }
-  cinfo->is_decompressor = TRUE;
-
-  /* Initialize a memory manager instance for this object */
-  jinit_memory_mgr((j_common_ptr) cinfo);
-
-  /* Zero out pointers to permanent structures. */
-  cinfo->progress = NULL;
-  cinfo->src = NULL;
-
-  for (i = 0; i < NUM_QUANT_TBLS; i++)
-    cinfo->quant_tbl_ptrs[i] = NULL;
-
-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
-    cinfo->dc_huff_tbl_ptrs[i] = NULL;
-    cinfo->ac_huff_tbl_ptrs[i] = NULL;
-  }
-
-  cinfo->sample_range_limit = NULL;
-
-  /* Initialize marker processor so application can override methods
-   * for COM, APPn markers before calling jpeg_read_header.
-   */
-  cinfo->marker = NULL;
-  jinit_marker_reader(cinfo);
-
-  /* OK, I'm ready */
-  cinfo->global_state = DSTATE_START;
-}
-
-
-/*
- * Destruction of a JPEG decompression object
- */
-
-GLOBAL void
-jpeg_destroy_decompress (j_decompress_ptr cinfo)
-{
-  jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Install a special processing method for COM or APPn markers.
- */
-
-GLOBAL void
-jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
-			   jpeg_marker_parser_method routine)
-{
-  if (marker_code == JPEG_COM)
-    cinfo->marker->process_COM = routine;
-  else if (marker_code >= JPEG_APP0 && marker_code <= JPEG_APP0+15)
-    cinfo->marker->process_APPn[marker_code-JPEG_APP0] = routine;
-  else
-    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
-}
-
-
-/*
- * Set default decompression parameters.
- */
-
-LOCAL void
-default_decompress_parms (j_decompress_ptr cinfo)
-{
-  /* Guess the input colorspace, and set output colorspace accordingly. */
-  /* (Wish JPEG committee had provided a real way to specify this...) */
-  /* Note application may override our guesses. */
-  switch (cinfo->num_components) {
-  case 1:
-    cinfo->jpeg_color_space = JCS_GRAYSCALE;
-    cinfo->out_color_space = JCS_GRAYSCALE;
-    break;
-    
-  case 3:
-    if (cinfo->saw_JFIF_marker) {
-      cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
-    } else if (cinfo->saw_Adobe_marker) {
-      switch (cinfo->Adobe_transform) {
-      case 0:
-	cinfo->jpeg_color_space = JCS_RGB;
-	break;
-      case 1:
-	cinfo->jpeg_color_space = JCS_YCbCr;
-	break;
-      default:
-	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
-	cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
-	break;
-      }
-    } else {
-      /* Saw no special markers, try to guess from the component IDs */
-      int cid0 = cinfo->comp_info[0].component_id;
-      int cid1 = cinfo->comp_info[1].component_id;
-      int cid2 = cinfo->comp_info[2].component_id;
-
-      if (cid0 == 1 && cid1 == 2 && cid2 == 3)
-	cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
-      else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
-	cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
-      else {
-	TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
-	cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
-      }
-    }
-    /* Always guess RGB is proper output colorspace. */
-    cinfo->out_color_space = JCS_RGB;
-    break;
-    
-  case 4:
-    if (cinfo->saw_Adobe_marker) {
-      switch (cinfo->Adobe_transform) {
-      case 0:
-	cinfo->jpeg_color_space = JCS_CMYK;
-	break;
-      case 2:
-	cinfo->jpeg_color_space = JCS_YCCK;
-	break;
-      default:
-	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
-	cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
-	break;
-      }
-    } else {
-      /* No special markers, assume straight CMYK. */
-      cinfo->jpeg_color_space = JCS_CMYK;
-    }
-    cinfo->out_color_space = JCS_CMYK;
-    break;
-    
-  default:
-    cinfo->jpeg_color_space = JCS_UNKNOWN;
-    cinfo->out_color_space = JCS_UNKNOWN;
-    break;
-  }
-
-  /* Set defaults for other decompression parameters. */
-  cinfo->scale_num = 1;		/* 1:1 scaling */
-  cinfo->scale_denom = 1;
-  cinfo->output_gamma = 1.0;
-  cinfo->raw_data_out = FALSE;
-  cinfo->quantize_colors = FALSE;
-  /* We set these in case application only sets quantize_colors. */
-  cinfo->two_pass_quantize = TRUE;
-  cinfo->dither_mode = JDITHER_FS;
-  cinfo->desired_number_of_colors = 256;
-  cinfo->colormap = NULL;
-  /* DCT algorithm preference */
-  cinfo->dct_method = JDCT_DEFAULT;
-  cinfo->do_fancy_upsampling = TRUE;
-}
-
-
-/*
- * Decompression startup: read start of JPEG datastream to see what's there.
- * Need only initialize JPEG object and supply a data source before calling.
- *
- * This routine will read as far as the first SOS marker (ie, actual start of
- * compressed data), and will save all tables and parameters in the JPEG
- * object.  It will also initialize the decompression parameters to default
- * values, and finally return JPEG_HEADER_OK.  On return, the application may
- * adjust the decompression parameters and then call jpeg_start_decompress.
- * (Or, if the application only wanted to determine the image parameters,
- * the data need not be decompressed.  In that case, call jpeg_abort or
- * jpeg_destroy to release any temporary space.)
- * If an abbreviated (tables only) datastream is presented, the routine will
- * return JPEG_HEADER_TABLES_ONLY upon reaching EOI.  The application may then
- * re-use the JPEG object to read the abbreviated image datastream(s).
- * It is unnecessary (but OK) to call jpeg_abort in this case.
- * The JPEG_SUSPENDED return code only occurs if the data source module
- * requests suspension of the decompressor.  In this case the application
- * should load more source data and then re-call jpeg_read_header to resume
- * processing.
- * If a non-suspending data source is used and require_image is TRUE, then the
- * return code need not be inspected since only JPEG_HEADER_OK is possible.
- */
-
-GLOBAL int
-jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
-{
-  int retcode;
-
-  if (cinfo->global_state == DSTATE_START) {
-    /* First-time actions: reset appropriate modules */
-    (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
-    (*cinfo->marker->reset_marker_reader) (cinfo);
-    (*cinfo->src->init_source) (cinfo);
-    cinfo->global_state = DSTATE_INHEADER;
-  } else if (cinfo->global_state != DSTATE_INHEADER) {
-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-  }
-
-  retcode = (*cinfo->marker->read_markers) (cinfo);
-
-  switch (retcode) {
-  case JPEG_HEADER_OK:		/* Found SOS, prepare to decompress */
-    /* Set up default parameters based on header data */
-    default_decompress_parms(cinfo);
-    /* Set global state: ready for start_decompress */
-    cinfo->global_state = DSTATE_READY;
-    break;
-
-  case JPEG_HEADER_TABLES_ONLY:	/* Found EOI before any SOS */
-    if (cinfo->marker->saw_SOF)
-      ERREXIT(cinfo, JERR_SOF_NO_SOS);
-    if (require_image)		/* Complain if application wants an image */
-      ERREXIT(cinfo, JERR_NO_IMAGE);
-    /* We need not do any cleanup since only permanent storage (for DQT, DHT)
-     * has been allocated.
-     */
-    /* Set global state: ready for a new datastream */
-    cinfo->global_state = DSTATE_START;
-    break;
-
-  case JPEG_SUSPENDED:		/* Had to suspend before end of headers */
-    /* no work */
-    break;
-  }
-
-  return retcode;
-}
-
-
-/*
- * Decompression initialization.
- * jpeg_read_header must be completed before calling this.
- *
- * If a multipass operating mode was selected, this will do all but the
- * last pass, and thus may take a great deal of time.
- */
-
-GLOBAL void
-jpeg_start_decompress (j_decompress_ptr cinfo)
-{
-  JDIMENSION chunk_ctr, last_chunk_ctr;
-
-  if (cinfo->global_state != DSTATE_READY)
-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-  /* Perform master selection of active modules */
-  jinit_master_decompress(cinfo);
-  /* Do all but the final (output) pass, and set up for that one. */
-  for (;;) {
-    (*cinfo->master->prepare_for_pass) (cinfo);
-    if (cinfo->master->is_last_pass)
-      break;
-    chunk_ctr = 0;
-    while (chunk_ctr < cinfo->main->num_chunks) {
-      /* Call progress monitor hook if present */
-      if (cinfo->progress != NULL) {
-	cinfo->progress->pass_counter = (long) chunk_ctr;
-	cinfo->progress->pass_limit = (long) cinfo->main->num_chunks;
-	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
-      }
-      /* Process some data */
-      last_chunk_ctr = chunk_ctr;
-      (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
-				    &chunk_ctr, (JDIMENSION) 0);
-      if (chunk_ctr == last_chunk_ctr) /* check for failure to make progress */
-	ERREXIT(cinfo, JERR_CANT_SUSPEND);
-    }
-    (*cinfo->master->finish_pass) (cinfo);
-  }
-  /* Ready for application to drive last pass through jpeg_read_scanlines
-   * or jpeg_read_raw_data.
-   */
-  cinfo->output_scanline = 0;
-  cinfo->global_state = (cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING);
-}
-
-
-/*
- * Read some scanlines of data from the JPEG decompressor.
- *
- * The return value will be the number of lines actually read.
- * This may be less than the number requested in several cases,
- * including bottom of image, data source suspension, and operating
- * modes that emit multiple scanlines at a time.
- *
- * Note: we warn about excess calls to jpeg_read_scanlines() since
- * this likely signals an application programmer error.  However,
- * an oversize buffer (max_lines > scanlines remaining) is not an error.
- */
-
-GLOBAL JDIMENSION
-jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
-		     JDIMENSION max_lines)
-{
-  JDIMENSION row_ctr;
-
-  if (cinfo->global_state != DSTATE_SCANNING)
-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-  if (cinfo->output_scanline >= cinfo->output_height)
-    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
-
-  /* Call progress monitor hook if present */
-  if (cinfo->progress != NULL) {
-    cinfo->progress->pass_counter = (long) cinfo->output_scanline;
-    cinfo->progress->pass_limit = (long) cinfo->output_height;
-    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
-  }
-
-  /* Process some data */
-  row_ctr = 0;
-  (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
-  cinfo->output_scanline += row_ctr;
-  return row_ctr;
-}
-
-
-/*
- * Alternate entry point to read raw data.
- * Processes exactly one MCU row per call.
- */
-
-GLOBAL JDIMENSION
-jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
-		    JDIMENSION max_lines)
-{
-  JDIMENSION lines_per_MCU_row;
-
-  if (cinfo->global_state != DSTATE_RAW_OK)
-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-  if (cinfo->output_scanline >= cinfo->output_height) {
-    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
-    return 0;
-  }
-
-  /* Call progress monitor hook if present */
-  if (cinfo->progress != NULL) {
-    cinfo->progress->pass_counter = (long) cinfo->output_scanline;
-    cinfo->progress->pass_limit = (long) cinfo->output_height;
-    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
-  }
-
-  /* Verify that at least one MCU row can be returned. */
-  lines_per_MCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
-  if (max_lines < lines_per_MCU_row)
-    ERREXIT(cinfo, JERR_BUFFER_SIZE);
-
-  /* Decompress directly into user's buffer. */
-  if (! (*cinfo->coef->decompress_data) (cinfo, data))
-    return 0;			/* suspension forced, can do nothing more */
-
-  /* OK, we processed one MCU row. */
-  cinfo->output_scanline += lines_per_MCU_row;
-  return lines_per_MCU_row;
-}
-
-
-/*
- * Finish JPEG decompression.
- *
- * This will normally just verify the file trailer and release temp storage.
- *
- * Returns FALSE if suspended.  The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL boolean
-jpeg_finish_decompress (j_decompress_ptr cinfo)
-{
-  if (cinfo->global_state == DSTATE_SCANNING ||
-      cinfo->global_state == DSTATE_RAW_OK) {
-    /* Terminate final pass */
-    if (cinfo->output_scanline < cinfo->output_height)
-      ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
-    (*cinfo->master->finish_pass) (cinfo);
-    cinfo->global_state = DSTATE_STOPPING;
-  } else if (cinfo->global_state != DSTATE_STOPPING) {
-    /* Repeat call after a suspension? */
-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-  }
-  /* Check for EOI in source file, unless master control already read it */
-  if (! cinfo->master->eoi_processed) {
-    switch ((*cinfo->marker->read_markers) (cinfo)) {
-    case JPEG_HEADER_OK:	/* Found SOS!? */
-      ERREXIT(cinfo, JERR_EOI_EXPECTED);
-      break;
-    case JPEG_HEADER_TABLES_ONLY: /* Found EOI, A-OK */
-      break;
-    case JPEG_SUSPENDED:	/* Suspend, come back later */
-      return FALSE;
-    }
-  }
-  /* Do final cleanup */
-  (*cinfo->src->term_source) (cinfo);
-  /* We can use jpeg_abort to release memory and reset global_state */
-  jpeg_abort((j_common_ptr) cinfo);
-  return TRUE;
-}
-
-
-/*
- * Abort processing of a JPEG decompression operation,
- * but don't destroy the object itself.
- */
-
-GLOBAL void
-jpeg_abort_decompress (j_decompress_ptr cinfo)
-{
-  jpeg_abort((j_common_ptr) cinfo); /* use common routine */
-}
diff --git a/jpeg/jdatasrc.c b/jpeg/jdatasrc.c
deleted file mode 100644
index a37bdd21ff3a87824496343bc292659939a59b74..0000000000000000000000000000000000000000
--- a/jpeg/jdatasrc.c
+++ /dev/null
@@ -1,209 +0,0 @@
-/*
- * jdatasrc.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains decompression data source routines for the case of
- * reading JPEG data from a file (or any stdio stream).  While these routines
- * are sufficient for most applications, some will want to use a different
- * source manager.
- * IMPORTANT: we assume that fread() will correctly transcribe an array of
- * JOCTETs from 8-bit-wide elements on external storage.  If char is wider
- * than 8 bits on your machine, you may need to do some tweaking.
- */
-
-/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jerror.h"
-
-
-/* Expanded data source object for stdio input */
-
-typedef struct {
-  struct jpeg_source_mgr pub;	/* public fields */
-
-  FILE * infile;		/* source stream */
-  JOCTET * buffer;		/* start of buffer */
-  boolean start_of_file;	/* have we gotten any data yet? */
-} my_source_mgr;
-
-typedef my_source_mgr * my_src_ptr;
-
-#define INPUT_BUF_SIZE  4096	/* choose an efficiently fread'able size */
-
-
-/*
- * Initialize source --- called by jpeg_read_header
- * before any data is actually read.
- */
-
-METHODDEF void
-init_source (j_decompress_ptr cinfo)
-{
-  my_src_ptr src = (my_src_ptr) cinfo->src;
-
-  /* We reset the empty-input-file flag for each image,
-   * but we don't clear the input buffer.
-   * This is correct behavior for reading a series of images from one source.
-   */
-  src->start_of_file = TRUE;
-}
-
-
-/*
- * Fill the input buffer --- called whenever buffer is emptied.
- *
- * In typical applications, this should read fresh data into the buffer
- * (ignoring the current state of next_input_byte & bytes_in_buffer),
- * reset the pointer & count to the start of the buffer, and return TRUE
- * indicating that the buffer has been reloaded.  It is not necessary to
- * fill the buffer entirely, only to obtain at least one more byte.
- *
- * There is no such thing as an EOF return.  If the end of the file has been
- * reached, the routine has a choice of ERREXIT() or inserting fake data into
- * the buffer.  In most cases, generating a warning message and inserting a
- * fake EOI marker is the best course of action --- this will allow the
- * decompressor to output however much of the image is there.  However,
- * the resulting error message is misleading if the real problem is an empty
- * input file, so we handle that case specially.
- *
- * In applications that need to be able to suspend compression due to input
- * not being available yet, a FALSE return indicates that no more data can be
- * obtained right now, but more may be forthcoming later.  In this situation,
- * the decompressor will return to its caller (with an indication of the
- * number of scanlines it has read, if any).  The application should resume
- * decompression after it has loaded more data into the input buffer.  Note
- * that there are substantial restrictions on the use of suspension --- see
- * the documentation.
- *
- * When suspending, the decompressor will back up to a convenient restart point
- * (typically the start of the current MCU). next_input_byte & bytes_in_buffer
- * indicate where the restart point will be if the current call returns FALSE.
- * Data beyond this point must be rescanned after resumption, so move it to
- * the front of the buffer rather than discarding it.
- */
-
-METHODDEF boolean
-fill_input_buffer (j_decompress_ptr cinfo)
-{
-  my_src_ptr src = (my_src_ptr) cinfo->src;
-  size_t nbytes;
-
-  nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
-
-  if (nbytes <= 0) {
-    if (src->start_of_file)	/* Treat empty input file as fatal error */
-      ERREXIT(cinfo, JERR_INPUT_EMPTY);
-    WARNMS(cinfo, JWRN_JPEG_EOF);
-    /* Insert a fake EOI marker */
-    src->buffer[0] = (JOCTET) 0xFF;
-    src->buffer[1] = (JOCTET) JPEG_EOI;
-    nbytes = 2;
-  }
-
-  src->pub.next_input_byte = src->buffer;
-  src->pub.bytes_in_buffer = nbytes;
-  src->start_of_file = FALSE;
-
-  return TRUE;
-}
-
-
-/*
- * Skip data --- used to skip over a potentially large amount of
- * uninteresting data (such as an APPn marker).
- *
- * Writers of suspendable-input applications must note that skip_input_data
- * is not granted the right to give a suspension return.  If the skip extends
- * beyond the data currently in the buffer, the buffer can be marked empty so
- * that the next read will cause a fill_input_buffer call that can suspend.
- * Arranging for additional bytes to be discarded before reloading the input
- * buffer is the application writer's problem.
- */
-
-METHODDEF void
-skip_input_data (j_decompress_ptr cinfo, long num_bytes)
-{
-  my_src_ptr src = (my_src_ptr) cinfo->src;
-
-  /* Just a dumb implementation for now.  Could use fseek() except
-   * it doesn't work on pipes.  Not clear that being smart is worth
-   * any trouble anyway --- large skips are infrequent.
-   */
-  if (num_bytes > 0) {
-    while (num_bytes > (long) src->pub.bytes_in_buffer) {
-      num_bytes -= (long) src->pub.bytes_in_buffer;
-      (void) fill_input_buffer(cinfo);
-    }
-    src->pub.next_input_byte += (size_t) num_bytes;
-    src->pub.bytes_in_buffer -= (size_t) num_bytes;
-  }
-}
-
-
-/*
- * An additional method that can be provided by data source modules is the
- * resync_to_restart method for error recovery in the presence of RST markers.
- * For the moment, this source module just uses the default resync method
- * provided by the JPEG library.  That method assumes that no backtracking
- * is possible.
- */
-
-
-/*
- * Terminate source --- called by jpeg_finish_decompress
- * after all data has been read.  Often a no-op.
- *
- * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
- * application must deal with any cleanup that should happen even
- * for error exit.
- */
-
-METHODDEF void
-term_source (j_decompress_ptr cinfo)
-{
-  /* no work necessary here */
-}
-
-
-/*
- * Prepare for input from a stdio stream.
- * The caller must have already opened the stream, and is responsible
- * for closing it after finishing decompression.
- */
-
-GLOBAL void
-jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
-{
-  my_src_ptr src;
-
-  /* The source object and input buffer are made permanent so that a series
-   * of JPEG images can be read from the same file by calling jpeg_stdio_src
-   * only before the first one.  (If we discarded the buffer at the end of
-   * one image, we'd likely lose the start of the next one.)
-   * This makes it unsafe to use this manager and a different source
-   * manager serially with the same JPEG object.  Caveat programmer.
-   */
-  if (cinfo->src == NULL) {	/* first time for this JPEG object? */
-    cinfo->src = (struct jpeg_source_mgr *)
-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
-				  SIZEOF(my_source_mgr));
-    src = (my_src_ptr) cinfo->src;
-    src->buffer = (JOCTET *)
-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
-				  INPUT_BUF_SIZE * SIZEOF(JOCTET));
-  }
-
-  src = (my_src_ptr) cinfo->src;
-  src->pub.init_source = init_source;
-  src->pub.fill_input_buffer = fill_input_buffer;
-  src->pub.skip_input_data = skip_input_data;
-  src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
-  src->pub.term_source = term_source;
-  src->infile = infile;
-  src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
-  src->pub.next_input_byte = NULL; /* until buffer loaded */
-}
diff --git a/jpeg/jdcoefct.c b/jpeg/jdcoefct.c
deleted file mode 100644
index 19790c55dea40b74c49603a25da302b1ef37bade..0000000000000000000000000000000000000000
--- a/jpeg/jdcoefct.c
+++ /dev/null
@@ -1,359 +0,0 @@
-/*
- * jdcoefct.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the coefficient buffer controller for decompression.
- * This controller is the top level of the JPEG decompressor proper.
- * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private buffer controller object */
-
-typedef struct {
-  struct jpeg_d_coef_controller pub; /* public fields */
-
-  JDIMENSION MCU_col_num;	/* saves next MCU column to process */
-  JDIMENSION MCU_row_num;	/* keep track of MCU row # within image */
-
-  /* In single-pass modes without block smoothing, it's sufficient to buffer
-   * just one MCU (although this may prove a bit slow in practice).
-   * We allocate a workspace of MAX_BLOCKS_IN_MCU coefficient blocks,
-   * and let the entropy decoder write into that workspace each time.
-   * (On 80x86, the workspace is FAR even though it's not really very big;
-   * this is to keep the module interfaces unchanged when a large coefficient
-   * buffer is necessary.)
-   * In multi-pass modes, this array points to the current MCU's blocks
-   * within the virtual arrays.
-   */
-  JBLOCKROW MCU_buffer[MAX_BLOCKS_IN_MCU];
-
-  /* In multi-pass modes, we need a virtual block array for each component. */
-  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
-} my_coef_controller;
-
-typedef my_coef_controller * my_coef_ptr;
-
-
-/* Forward declarations */
-METHODDEF boolean decompress_data
-	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-METHODDEF boolean decompress_read
-	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-METHODDEF boolean decompress_output
-	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#endif
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF void
-start_pass_coef (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
-  coef->MCU_col_num = 0;
-  coef->MCU_row_num = 0;
-
-  switch (pass_mode) {
-  case JBUF_PASS_THRU:
-    if (coef->whole_image[0] != NULL)
-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-    coef->pub.decompress_data = decompress_data;
-    break;
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-  case JBUF_SAVE_SOURCE:
-    if (coef->whole_image[0] == NULL)
-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-    coef->pub.decompress_data = decompress_read;
-    break;
-  case JBUF_CRANK_DEST:
-    if (coef->whole_image[0] == NULL)
-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-    coef->pub.decompress_data = decompress_output;
-    break;
-#endif
-  default:
-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-    break;
-  }
-}
-
-
-/*
- * Process some data in the single-pass case.
- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
- * Returns TRUE if it completed a row, FALSE if not (suspension).
- *
- * NB: output_buf contains a plane for each component in image.
- * For single pass, this is the same as the components in the scan.
- */
-
-METHODDEF boolean
-decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-  JDIMENSION MCU_col_num;	/* index of current MCU within row */
-  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
-  JDIMENSION last_MCU_row = cinfo->MCU_rows_in_scan - 1;
-  int blkn, ci, xindex, yindex, useful_width;
-  JSAMPARRAY output_ptr;
-  JDIMENSION start_col, output_col;
-  jpeg_component_info *compptr;
-  inverse_DCT_method_ptr inverse_DCT;
-
-  /* Loop to process as much as one whole MCU row */
-
-  for (MCU_col_num = coef->MCU_col_num; MCU_col_num <= last_MCU_col;
-       MCU_col_num++) {
-
-    /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
-    jzero_far((void FAR *) coef->MCU_buffer[0],
-	      (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
-    if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
-      /* Suspension forced; return with row unfinished */
-      coef->MCU_col_num = MCU_col_num; /* update my state */
-      return FALSE;
-    }
-
-    /* Determine where data should go in output_buf and do the IDCT thing.
-     * We skip dummy blocks at the right and bottom edges (but blkn gets
-     * incremented past them!).  Note the inner loop relies on having
-     * allocated the MCU_buffer[] blocks sequentially.
-     */
-    blkn = 0;			/* index of current DCT block within MCU */
-    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
-      compptr = cinfo->cur_comp_info[ci];
-      /* Don't bother to IDCT an uninteresting component. */
-      if (! compptr->component_needed) {
-	blkn += compptr->MCU_blocks;
-	continue;
-      }
-      inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
-      useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
-						  : compptr->last_col_width;
-      output_ptr = output_buf[ci];
-      start_col = MCU_col_num * compptr->MCU_sample_width;
-      for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
-	if (coef->MCU_row_num < last_MCU_row ||
-	    yindex < compptr->last_row_height) {
-	  output_col = start_col;
-	  for (xindex = 0; xindex < useful_width; xindex++) {
-	    (*inverse_DCT) (cinfo, compptr,
-			    (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
-			    output_ptr, output_col);
-	    output_col += compptr->DCT_scaled_size;
-	  }
-	}
-	blkn += compptr->MCU_width;
-	output_ptr += compptr->DCT_scaled_size;
-      }
-    }
-  }
-
-  /* We finished the row successfully */
-  coef->MCU_col_num = 0;	/* prepare for next row */
-  coef->MCU_row_num++;
-  return TRUE;
-}
-
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Process some data: handle an input pass for a multiple-scan file.
- * We read the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the scan.
- * No data is returned; we just stash it in the virtual arrays.
- *
- * Returns TRUE if it completed a row, FALSE if not (suspension).
- * Currently, the suspension case is not supported.
- */
-
-METHODDEF boolean
-decompress_read (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-  JDIMENSION MCU_col_num;	/* index of current MCU within row */
-  int blkn, ci, xindex, yindex, yoffset, num_MCU_rows;
-  JDIMENSION total_width, remaining_rows, start_col;
-  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
-  JBLOCKROW buffer_ptr;
-  jpeg_component_info *compptr;
-
-  /* Align the virtual buffers for the components used in this scan. */
-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
-    compptr = cinfo->cur_comp_info[ci];
-    buffer[ci] = (*cinfo->mem->access_virt_barray)
-      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
-       coef->MCU_row_num * compptr->v_samp_factor, TRUE);
-    /* Entropy decoder expects buffer to be zeroed. */
-    total_width = (JDIMENSION) jround_up((long) compptr->width_in_blocks,
-					 (long) compptr->h_samp_factor);
-    for (yindex = 0; yindex < compptr->v_samp_factor; yindex++) {
-      jzero_far((void FAR *) buffer[ci][yindex], 
-		(size_t) (total_width * SIZEOF(JBLOCK)));
-    }
-  }
-
-  /* In an interleaved scan, we process exactly one MCU row.
-   * In a noninterleaved scan, we need to process v_samp_factor MCU rows,
-   * each of which contains a single block row.
-   */
-  if (cinfo->comps_in_scan == 1) {
-    compptr = cinfo->cur_comp_info[0];
-    num_MCU_rows = compptr->v_samp_factor;
-    /* but watch out for the bottom of the image */
-    remaining_rows = cinfo->MCU_rows_in_scan -
-		     coef->MCU_row_num * compptr->v_samp_factor;
-    if (remaining_rows < (JDIMENSION) num_MCU_rows)
-      num_MCU_rows = (int) remaining_rows;
-  } else {
-    num_MCU_rows = 1;
-  }
-
-  /* Loop to process one whole iMCU row */
-  for (yoffset = 0; yoffset < num_MCU_rows; yoffset++) {
-    for (MCU_col_num = 0; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) {
-      /* Construct list of pointers to DCT blocks belonging to this MCU */
-      blkn = 0;			/* index of current DCT block within MCU */
-      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
-	compptr = cinfo->cur_comp_info[ci];
-	start_col = MCU_col_num * compptr->MCU_width;
-	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
-	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
-	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
-	    coef->MCU_buffer[blkn++] = buffer_ptr++;
-	  }
-	}
-      }
-      /* Try to fetch the MCU. */
-      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
-	ERREXIT(cinfo, JERR_CANT_SUSPEND); /* not supported */
-      }
-    }
-  }
-
-  coef->MCU_row_num++;
-  return TRUE;
-}
-
-
-/*
- * Process some data: output from the virtual arrays after reading is done.
- * Always emits one fully interleaved MCU row ("iMCU" row).
- * Always returns TRUE --- suspension is not possible.
- *
- * NB: output_buf contains a plane for each component in image.
- */
-
-METHODDEF boolean
-decompress_output (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-  JDIMENSION last_MCU_row = cinfo->total_iMCU_rows - 1;
-  JDIMENSION block_num;
-  int ci, block_row, block_rows;
-  JBLOCKARRAY buffer;
-  JBLOCKROW buffer_ptr;
-  JSAMPARRAY output_ptr;
-  JDIMENSION output_col;
-  jpeg_component_info *compptr;
-  inverse_DCT_method_ptr inverse_DCT;
-
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    /* Don't bother to IDCT an uninteresting component. */
-    if (! compptr->component_needed)
-      continue;
-    /* Align the virtual buffer for this component. */
-    buffer = (*cinfo->mem->access_virt_barray)
-      ((j_common_ptr) cinfo, coef->whole_image[ci],
-       coef->MCU_row_num * compptr->v_samp_factor, FALSE);
-    /* Count non-dummy DCT block rows in this iMCU row. */
-    if (coef->MCU_row_num < last_MCU_row)
-      block_rows = compptr->v_samp_factor;
-    else {
-      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
-      if (block_rows == 0) block_rows = compptr->v_samp_factor;
-    }
-    inverse_DCT = cinfo->idct->inverse_DCT[ci];
-    output_ptr = output_buf[ci];
-    /* Loop over all DCT blocks to be processed. */
-    for (block_row = 0; block_row < block_rows; block_row++) {
-      buffer_ptr = buffer[block_row];
-      output_col = 0;
-      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
-	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
-			output_ptr, output_col);
-	buffer_ptr++;
-	output_col += compptr->DCT_scaled_size;
-      }
-      output_ptr += compptr->DCT_scaled_size;
-    }
-  }
-
-  coef->MCU_row_num++;
-  return TRUE;
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-
-/*
- * Initialize coefficient buffer controller.
- */
-
-GLOBAL void
-jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
-  my_coef_ptr coef;
-  int ci, i;
-  jpeg_component_info *compptr;
-  JBLOCKROW buffer;
-
-  coef = (my_coef_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_coef_controller));
-  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
-  coef->pub.start_pass = start_pass_coef;
-
-  /* Create the coefficient buffer. */
-  if (need_full_buffer) {
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-    /* Allocate a full-image virtual array for each component, */
-    /* padded to a multiple of samp_factor DCT blocks in each direction. */
-    /* Note memmgr implicitly pads the vertical direction. */
-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-	 ci++, compptr++) {
-      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
-	((j_common_ptr) cinfo, JPOOL_IMAGE,
-	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
-				(long) compptr->h_samp_factor),
-	 compptr->height_in_blocks,
-	 (JDIMENSION) compptr->v_samp_factor);
-    }
-#else
-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif
-  } else {
-    /* We only need a single-MCU buffer. */
-    buffer = (JBLOCKROW)
-      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				  MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
-    for (i = 0; i < MAX_BLOCKS_IN_MCU; i++) {
-      coef->MCU_buffer[i] = buffer + i;
-    }
-    coef->whole_image[0] = NULL; /* flag for no virtual arrays */
-  }
-}
diff --git a/jpeg/jdcolor.c b/jpeg/jdcolor.c
deleted file mode 100644
index d7d0c2aa0cf456a70d805d20c79a0c2caf64e63c..0000000000000000000000000000000000000000
--- a/jpeg/jdcolor.c
+++ /dev/null
@@ -1,374 +0,0 @@
-/*
- * jdcolor.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains output colorspace conversion routines.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private subobject */
-
-typedef struct {
-  struct jpeg_color_deconverter pub; /* public fields */
-
-  /* Private state for YCC->RGB conversion */
-  int * Cr_r_tab;		/* => table for Cr to R conversion */
-  int * Cb_b_tab;		/* => table for Cb to B conversion */
-  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */
-  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */
-} my_color_deconverter;
-
-typedef my_color_deconverter * my_cconvert_ptr;
-
-
-/**************** YCbCr -> RGB conversion: most common case **************/
-
-/*
- * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
- * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
- * The conversion equations to be implemented are therefore
- *	R = Y                + 1.40200 * Cr
- *	G = Y - 0.34414 * Cb - 0.71414 * Cr
- *	B = Y + 1.77200 * Cb
- * where Cb and Cr represent the incoming values less MAXJSAMPLE/2.
- * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
- *
- * To avoid floating-point arithmetic, we represent the fractional constants
- * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
- * the products by 2^16, with appropriate rounding, to get the correct answer.
- * Notice that Y, being an integral input, does not contribute any fraction
- * so it need not participate in the rounding.
- *
- * For even more speed, we avoid doing any multiplications in the inner loop
- * by precalculating the constants times Cb and Cr for all possible values.
- * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
- * for 12-bit samples it is still acceptable.  It's not very reasonable for
- * 16-bit samples, but if you want lossless storage you shouldn't be changing
- * colorspace anyway.
- * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
- * values for the G calculation are left scaled up, since we must add them
- * together before rounding.
- */
-
-#define SCALEBITS	16	/* speediest right-shift on some machines */
-#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
-#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-
-/*
- * Initialize for YCC->RGB colorspace conversion.
- */
-
-METHODDEF void
-ycc_rgb_start (j_decompress_ptr cinfo)
-{
-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
-  INT32 i, x2;
-  SHIFT_TEMPS
-
-  cconvert->Cr_r_tab = (int *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				(MAXJSAMPLE+1) * SIZEOF(int));
-  cconvert->Cb_b_tab = (int *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				(MAXJSAMPLE+1) * SIZEOF(int));
-  cconvert->Cr_g_tab = (INT32 *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				(MAXJSAMPLE+1) * SIZEOF(INT32));
-  cconvert->Cb_g_tab = (INT32 *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				(MAXJSAMPLE+1) * SIZEOF(INT32));
-
-  for (i = 0; i <= MAXJSAMPLE; i++) {
-    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
-    /* The Cb or Cr value we are thinking of is x = i - MAXJSAMPLE/2 */
-    x2 = 2*i - MAXJSAMPLE;	/* twice x */
-    /* Cr=>R value is nearest int to 1.40200 * x */
-    cconvert->Cr_r_tab[i] = (int)
-		    RIGHT_SHIFT(FIX(1.40200/2) * x2 + ONE_HALF, SCALEBITS);
-    /* Cb=>B value is nearest int to 1.77200 * x */
-    cconvert->Cb_b_tab[i] = (int)
-		    RIGHT_SHIFT(FIX(1.77200/2) * x2 + ONE_HALF, SCALEBITS);
-    /* Cr=>G value is scaled-up -0.71414 * x */
-    cconvert->Cr_g_tab[i] = (- FIX(0.71414/2)) * x2;
-    /* Cb=>G value is scaled-up -0.34414 * x */
-    /* We also add in ONE_HALF so that need not do it in inner loop */
-    cconvert->Cb_g_tab[i] = (- FIX(0.34414/2)) * x2 + ONE_HALF;
-  }
-}
-
-
-/*
- * Convert some rows of samples to the output colorspace.
- *
- * Note that we change from noninterleaved, one-plane-per-component format
- * to interleaved-pixel format.  The output buffer is therefore three times
- * as wide as the input buffer.
- * A starting row offset is provided only for the input buffer.  The caller
- * can easily adjust the passed output_buf value to accommodate any row
- * offset required on that side.
- */
-
-METHODDEF void
-ycc_rgb_convert (j_decompress_ptr cinfo,
-		 JSAMPIMAGE input_buf, JDIMENSION input_row,
-		 JSAMPARRAY output_buf, int num_rows)
-{
-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
-  register int y, cb, cr;
-  register JSAMPROW outptr;
-  register JSAMPROW inptr0, inptr1, inptr2;
-  register JDIMENSION col;
-  JDIMENSION num_cols = cinfo->output_width;
-  /* copy these pointers into registers if possible */
-  register JSAMPLE * range_limit = cinfo->sample_range_limit;
-  register int * Crrtab = cconvert->Cr_r_tab;
-  register int * Cbbtab = cconvert->Cb_b_tab;
-  register INT32 * Crgtab = cconvert->Cr_g_tab;
-  register INT32 * Cbgtab = cconvert->Cb_g_tab;
-  SHIFT_TEMPS
-
-  while (--num_rows >= 0) {
-    inptr0 = input_buf[0][input_row];
-    inptr1 = input_buf[1][input_row];
-    inptr2 = input_buf[2][input_row];
-    input_row++;
-    outptr = *output_buf++;
-    for (col = 0; col < num_cols; col++) {
-      y  = GETJSAMPLE(inptr0[col]);
-      cb = GETJSAMPLE(inptr1[col]);
-      cr = GETJSAMPLE(inptr2[col]);
-      /* Note: if the inputs were computed directly from RGB values,
-       * range-limiting would be unnecessary here; but due to possible
-       * noise in the DCT/IDCT phase, we do need to apply range limits.
-       */
-      outptr[RGB_RED] =   range_limit[y + Crrtab[cr]];
-      outptr[RGB_GREEN] = range_limit[y +
-			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
-						 SCALEBITS))];
-      outptr[RGB_BLUE] =  range_limit[y + Cbbtab[cb]];
-      outptr += RGB_PIXELSIZE;
-    }
-  }
-}
-
-
-/**************** Cases other than YCbCr -> RGB **************/
-
-
-/*
- * Color conversion for no colorspace change: just copy the data,
- * converting from separate-planes to interleaved representation.
- */
-
-METHODDEF void
-null_convert (j_decompress_ptr cinfo,
-	      JSAMPIMAGE input_buf, JDIMENSION input_row,
-	      JSAMPARRAY output_buf, int num_rows)
-{
-  register JSAMPROW inptr, outptr;
-  register JDIMENSION count;
-  register int num_components = cinfo->output_components;
-  JDIMENSION num_cols = cinfo->output_width;
-  int ci;
-
-  while (--num_rows >= 0) {
-    for (ci = 0; ci < num_components; ci++) {
-      inptr = input_buf[ci][input_row];
-      outptr = output_buf[0] + ci;
-      for (count = num_cols; count > 0; count--) {
-	*outptr = *inptr++;	/* needn't bother with GETJSAMPLE() here */
-	outptr += num_components;
-      }
-    }
-    input_row++;
-    output_buf++;
-  }
-}
-
-
-/*
- * Color conversion for grayscale: just copy the data.
- * This also works for YCbCr -> grayscale conversion, in which
- * we just copy the Y (luminance) component and ignore chrominance.
- */
-
-METHODDEF void
-grayscale_convert (j_decompress_ptr cinfo,
-		   JSAMPIMAGE input_buf, JDIMENSION input_row,
-		   JSAMPARRAY output_buf, int num_rows)
-{
-  jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
-		    num_rows, cinfo->output_width);
-}
-
-
-/*
- * Adobe-style YCCK->CMYK conversion.
- * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
- * conversion as above, while passing K (black) unchanged.
- * We assume ycc_rgb_start has been called.
- */
-
-METHODDEF void
-ycck_cmyk_convert (j_decompress_ptr cinfo,
-		   JSAMPIMAGE input_buf, JDIMENSION input_row,
-		   JSAMPARRAY output_buf, int num_rows)
-{
-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
-  register int y, cb, cr;
-  register JSAMPROW outptr;
-  register JSAMPROW inptr0, inptr1, inptr2, inptr3;
-  register JDIMENSION col;
-  JDIMENSION num_cols = cinfo->output_width;
-  /* copy these pointers into registers if possible */
-  register JSAMPLE * range_limit = cinfo->sample_range_limit;
-  register int * Crrtab = cconvert->Cr_r_tab;
-  register int * Cbbtab = cconvert->Cb_b_tab;
-  register INT32 * Crgtab = cconvert->Cr_g_tab;
-  register INT32 * Cbgtab = cconvert->Cb_g_tab;
-  SHIFT_TEMPS
-
-  while (--num_rows >= 0) {
-    inptr0 = input_buf[0][input_row];
-    inptr1 = input_buf[1][input_row];
-    inptr2 = input_buf[2][input_row];
-    inptr3 = input_buf[3][input_row];
-    input_row++;
-    outptr = *output_buf++;
-    for (col = 0; col < num_cols; col++) {
-      y  = GETJSAMPLE(inptr0[col]);
-      cb = GETJSAMPLE(inptr1[col]);
-      cr = GETJSAMPLE(inptr2[col]);
-      /* Note: if the inputs were computed directly from RGB values,
-       * range-limiting would be unnecessary here; but due to possible
-       * noise in the DCT/IDCT phase, we do need to apply range limits.
-       */
-      outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])];	/* red */
-      outptr[1] = range_limit[MAXJSAMPLE - (y +			/* green */
-			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
-						 SCALEBITS)))];
-      outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])];	/* blue */
-      /* K passes through unchanged */
-      outptr[3] = inptr3[col];	/* don't need GETJSAMPLE here */
-      outptr += 4;
-    }
-  }
-}
-
-
-/*
- * Empty method for start_pass.
- */
-
-METHODDEF void
-null_method (j_decompress_ptr cinfo)
-{
-  /* no work needed */
-}
-
-
-/*
- * Module initialization routine for output colorspace conversion.
- */
-
-GLOBAL void
-jinit_color_deconverter (j_decompress_ptr cinfo)
-{
-  my_cconvert_ptr cconvert;
-  int ci;
-
-  cconvert = (my_cconvert_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_color_deconverter));
-  cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
-  /* set start_pass to null method until we find out differently */
-  cconvert->pub.start_pass = null_method;
-
-  /* Make sure num_components agrees with jpeg_color_space */
-  switch (cinfo->jpeg_color_space) {
-  case JCS_GRAYSCALE:
-    if (cinfo->num_components != 1)
-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
-    break;
-
-  case JCS_RGB:
-  case JCS_YCbCr:
-    if (cinfo->num_components != 3)
-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
-    break;
-
-  case JCS_CMYK:
-  case JCS_YCCK:
-    if (cinfo->num_components != 4)
-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
-    break;
-
-  default:			/* JCS_UNKNOWN can be anything */
-    if (cinfo->num_components < 1)
-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
-    break;
-  }
-
-  /* Set out_color_components and conversion method based on requested space.
-   * Also clear the component_needed flags for any unused components,
-   * so that earlier pipeline stages can avoid useless computation.
-   */
-
-  switch (cinfo->out_color_space) {
-  case JCS_GRAYSCALE:
-    cinfo->out_color_components = 1;
-    if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
-	cinfo->jpeg_color_space == JCS_YCbCr) {
-      cconvert->pub.color_convert = grayscale_convert;
-      /* For color->grayscale conversion, only the Y (0) component is needed */
-      for (ci = 1; ci < cinfo->num_components; ci++)
-	cinfo->comp_info[ci].component_needed = FALSE;
-    } else
-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
-    break;
-
-  case JCS_RGB:
-    cinfo->out_color_components = RGB_PIXELSIZE;
-    if (cinfo->jpeg_color_space == JCS_YCbCr) {
-      cconvert->pub.start_pass = ycc_rgb_start;
-      cconvert->pub.color_convert = ycc_rgb_convert;
-    } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
-      cconvert->pub.color_convert = null_convert;
-    } else
-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
-    break;
-
-  case JCS_CMYK:
-    cinfo->out_color_components = 4;
-    if (cinfo->jpeg_color_space == JCS_YCCK) {
-      cconvert->pub.start_pass = ycc_rgb_start;
-      cconvert->pub.color_convert = ycck_cmyk_convert;
-    } else if (cinfo->jpeg_color_space == JCS_CMYK) {
-      cconvert->pub.color_convert = null_convert;
-    } else
-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
-    break;
-
-  default:
-    /* Permit null conversion to same output space */
-    if (cinfo->out_color_space == cinfo->jpeg_color_space) {
-      cinfo->out_color_components = cinfo->num_components;
-      cconvert->pub.color_convert = null_convert;
-    } else			/* unsupported non-null conversion */
-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
-    break;
-  }
-
-  if (cinfo->quantize_colors)
-    cinfo->output_components = 1; /* single colormapped output component */
-  else
-    cinfo->output_components = cinfo->out_color_components;
-}
diff --git a/jpeg/jddctmgr.c b/jpeg/jddctmgr.c
deleted file mode 100644
index 0dd7716281123de60ad3d6038efee007f78485e5..0000000000000000000000000000000000000000
--- a/jpeg/jddctmgr.c
+++ /dev/null
@@ -1,282 +0,0 @@
-/*
- * jddctmgr.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the inverse-DCT management logic.
- * This code selects a particular IDCT implementation to be used,
- * and it performs related housekeeping chores.  No code in this file
- * is executed per IDCT step, only during pass setup.
- *
- * Note that the IDCT routines are responsible for performing coefficient
- * dequantization as well as the IDCT proper.  This module sets up the
- * dequantization multiplier table needed by the IDCT routine.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h"		/* Private declarations for DCT subsystem */
-
-
-/* Private subobject for this module */
-
-typedef struct {
-  struct jpeg_inverse_dct pub;	/* public fields */
-
-  /* Record the IDCT method type actually selected for each component */
-  J_DCT_METHOD real_method[MAX_COMPONENTS];
-} my_idct_controller;
-
-typedef my_idct_controller * my_idct_ptr;
-
-
-/* ZIG[i] is the zigzag-order position of the i'th element of a DCT block */
-/* read in natural order (left to right, top to bottom). */
-static const int ZIG[DCTSIZE2] = {
-     0,  1,  5,  6, 14, 15, 27, 28,
-     2,  4,  7, 13, 16, 26, 29, 42,
-     3,  8, 12, 17, 25, 30, 41, 43,
-     9, 11, 18, 24, 31, 40, 44, 53,
-    10, 19, 23, 32, 39, 45, 52, 54,
-    20, 22, 33, 38, 46, 51, 55, 60,
-    21, 34, 37, 47, 50, 56, 59, 61,
-    35, 36, 48, 49, 57, 58, 62, 63
-};
-
-
-/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
- * so be sure to compile that code if either ISLOW or SCALING is requested.
- */
-#ifdef DCT_ISLOW_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#else
-#ifdef IDCT_SCALING_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#endif
-#endif
-
-
-/*
- * Initialize for an input scan.
- *
- * Verify that all referenced Q-tables are present, and set up
- * the multiplier table for each one.
- * With a multiple-scan JPEG file, this is called during each input scan,
- * NOT during the final output pass where the IDCT is actually done.
- * The purpose is to save away the current Q-table contents just in case
- * the encoder changes tables between scans.  This decoder will dequantize
- * any component using the Q-table which was current at the start of the
- * first scan using that component.
- */
-
-METHODDEF void
-start_input_pass (j_decompress_ptr cinfo)
-{
-  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
-  int ci, qtblno, i;
-  jpeg_component_info *compptr;
-  JQUANT_TBL * qtbl;
-
-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
-    compptr = cinfo->cur_comp_info[ci];
-    qtblno = compptr->quant_tbl_no;
-    /* Make sure specified quantization table is present */
-    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
-	cinfo->quant_tbl_ptrs[qtblno] == NULL)
-      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
-    qtbl = cinfo->quant_tbl_ptrs[qtblno];
-    /* Create multiplier table from quant table, unless we already did so. */
-    if (compptr->dct_table != NULL)
-      continue;
-    switch (idct->real_method[compptr->component_index]) {
-#ifdef PROVIDE_ISLOW_TABLES
-    case JDCT_ISLOW:
-      {
-	/* For LL&M IDCT method, multipliers are equal to raw quantization
-	 * coefficients, but are stored in natural order as ints.
-	 */
-	ISLOW_MULT_TYPE * ismtbl;
-	compptr->dct_table =
-	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				      DCTSIZE2 * SIZEOF(ISLOW_MULT_TYPE));
-	ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
-	for (i = 0; i < DCTSIZE2; i++) {
-	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[ZIG[i]];
-	}
-      }
-      break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
-    case JDCT_IFAST:
-      {
-	/* For AA&N IDCT method, multipliers are equal to quantization
-	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
-	 *   scalefactor[0] = 1
-	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
-	 * For integer operation, the multiplier table is to be scaled by
-	 * IFAST_SCALE_BITS.  The multipliers are stored in natural order.
-	 */
-	IFAST_MULT_TYPE * ifmtbl;
-#define CONST_BITS 14
-	static const INT16 aanscales[DCTSIZE2] = {
-	  /* precomputed values scaled up by 14 bits */
-	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
-	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
-	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
-	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
-	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
-	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
-	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
-	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
-	};
-	SHIFT_TEMPS
-
-	compptr->dct_table =
-	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				      DCTSIZE2 * SIZEOF(IFAST_MULT_TYPE));
-	ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
-	for (i = 0; i < DCTSIZE2; i++) {
-	  ifmtbl[i] = (IFAST_MULT_TYPE)
-	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[ZIG[i]],
-				  (INT32) aanscales[i]),
-		    CONST_BITS-IFAST_SCALE_BITS);
-	}
-      }
-      break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
-    case JDCT_FLOAT:
-      {
-	/* For float AA&N IDCT method, multipliers are equal to quantization
-	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
-	 *   scalefactor[0] = 1
-	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
-	 * The multipliers are stored in natural order.
-	 */
-	FLOAT_MULT_TYPE * fmtbl;
-	int row, col;
-	static const double aanscalefactor[DCTSIZE] = {
-	  1.0, 1.387039845, 1.306562965, 1.175875602,
-	  1.0, 0.785694958, 0.541196100, 0.275899379
-	};
-
-	compptr->dct_table =
-	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				      DCTSIZE2 * SIZEOF(FLOAT_MULT_TYPE));
-	fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
-	i = 0;
-	for (row = 0; row < DCTSIZE; row++) {
-	  for (col = 0; col < DCTSIZE; col++) {
-	    fmtbl[i] = (FLOAT_MULT_TYPE)
-	      ((double) qtbl->quantval[ZIG[i]] *
-	       aanscalefactor[row] * aanscalefactor[col]);
-	    i++;
-	  }
-	}
-      }
-      break;
-#endif
-    default:
-      ERREXIT(cinfo, JERR_NOT_COMPILED);
-      break;
-    }
-  }
-}
-
-
-/*
- * Prepare for an output pass that will actually perform IDCTs.
- *
- * start_input_pass should already have been done for all components
- * of interest; we need only verify that this is true.
- * Note that uninteresting components are not required to have loaded tables.
- * This allows the master controller to stop before reading the whole file
- * if it has obtained the data for the interesting component(s).
- */
-
-METHODDEF void
-start_output_pass (j_decompress_ptr cinfo)
-{
-  jpeg_component_info *compptr;
-  int ci;
-
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    if (! compptr->component_needed)
-      continue;
-    if (compptr->dct_table == NULL)
-      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, compptr->quant_tbl_no);
-  }
-}
-
-
-/*
- * Initialize IDCT manager.
- */
-
-GLOBAL void
-jinit_inverse_dct (j_decompress_ptr cinfo)
-{
-  my_idct_ptr idct;
-  int ci;
-  jpeg_component_info *compptr;
-
-  idct = (my_idct_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_idct_controller));
-  cinfo->idct = (struct jpeg_inverse_dct *) idct;
-  idct->pub.start_input_pass = start_input_pass;
-  idct->pub.start_output_pass = start_output_pass;
-
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    compptr->dct_table = NULL;	/* initialize tables to "not prepared" */
-    switch (compptr->DCT_scaled_size) {
-#ifdef IDCT_SCALING_SUPPORTED
-    case 1:
-      idct->pub.inverse_DCT[ci] = jpeg_idct_1x1;
-      idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
-      break;
-    case 2:
-      idct->pub.inverse_DCT[ci] = jpeg_idct_2x2;
-      idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
-      break;
-    case 4:
-      idct->pub.inverse_DCT[ci] = jpeg_idct_4x4;
-      idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
-      break;
-#endif
-    case DCTSIZE:
-      switch (cinfo->dct_method) {
-#ifdef DCT_ISLOW_SUPPORTED
-      case JDCT_ISLOW:
-	idct->pub.inverse_DCT[ci] = jpeg_idct_islow;
-	idct->real_method[ci] = JDCT_ISLOW;
-	break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
-      case JDCT_IFAST:
-	idct->pub.inverse_DCT[ci] = jpeg_idct_ifast;
-	idct->real_method[ci] = JDCT_IFAST;
-	break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
-      case JDCT_FLOAT:
-	idct->pub.inverse_DCT[ci] = jpeg_idct_float;
-	idct->real_method[ci] = JDCT_FLOAT;
-	break;
-#endif
-      default:
-	ERREXIT(cinfo, JERR_NOT_COMPILED);
-	break;
-      }
-      break;
-    default:
-      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
-      break;
-    }
-  }
-}
diff --git a/jpeg/jdhuff.c b/jpeg/jdhuff.c
deleted file mode 100644
index e92ad9a6013a3c2d0bbf9658208e39bd134e232b..0000000000000000000000000000000000000000
--- a/jpeg/jdhuff.c
+++ /dev/null
@@ -1,687 +0,0 @@
-/*
- * jdhuff.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy decoding routines.
- *
- * Much of the complexity here has to do with supporting input suspension.
- * If the data source module demands suspension, we want to be able to back
- * up to the start of the current MCU.  To do this, we copy state variables
- * into local working storage, and update them back to the permanent JPEG
- * objects only upon successful completion of an MCU.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Derived data constructed for each Huffman table */
-
-#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */
-
-typedef struct {
-  /* Basic tables: (element [0] of each array is unused) */
-  INT32 mincode[17];		/* smallest code of length k */
-  INT32 maxcode[18];		/* largest code of length k (-1 if none) */
-  /* (maxcode[17] is a sentinel to ensure huff_DECODE terminates) */
-  int valptr[17];		/* huffval[] index of 1st symbol of length k */
-
-  /* Back link to public Huffman table (needed only in slow_DECODE) */
-  JHUFF_TBL *pub;
-
-  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
-   * the input data stream.  If the next Huffman code is no more
-   * than HUFF_LOOKAHEAD bits long, we can obtain its length and
-   * the corresponding symbol directly from these tables.
-   */
-  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
-  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
-} D_DERIVED_TBL;
-
-/* Expanded entropy decoder object for Huffman decoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
-
-typedef struct {
-  INT32 get_buffer;		/* current bit-extraction buffer */
-  int bits_left;		/* # of unused bits in it */
-  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-} savable_state;
-
-/* This macro is to work around compilers with missing or broken
- * structure assignment.  You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
-
-#ifndef NO_STRUCT_ASSIGN
-#define ASSIGN_STATE(dest,src)  ((dest) = (src))
-#else
-#if MAX_COMPS_IN_SCAN == 4
-#define ASSIGN_STATE(dest,src)  \
-	((dest).get_buffer = (src).get_buffer, \
-	 (dest).bits_left = (src).bits_left, \
-	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
-	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
-	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
-	 (dest).last_dc_val[3] = (src).last_dc_val[3])
-#endif
-#endif
-
-
-typedef struct {
-  struct jpeg_entropy_decoder pub; /* public fields */
-
-  savable_state saved;		/* Bit buffer & DC state at start of MCU */
-
-  /* These fields are NOT loaded into local working state. */
-  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
-  boolean printed_eod;		/* flag to suppress extra end-of-data msgs */
-
-  /* Pointers to derived tables (these workspaces have image lifespan) */
-  D_DERIVED_TBL * dc_derived_tbls[NUM_HUFF_TBLS];
-  D_DERIVED_TBL * ac_derived_tbls[NUM_HUFF_TBLS];
-} huff_entropy_decoder;
-
-typedef huff_entropy_decoder * huff_entropy_ptr;
-
-/* Working state while scanning an MCU.
- * This struct contains all the fields that are needed by subroutines.
- */
-
-typedef struct {
-  int unread_marker;		/* nonzero if we have hit a marker */
-  const JOCTET * next_input_byte; /* => next byte to read from source */
-  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
-  savable_state cur;		/* Current bit buffer & DC state */
-  j_decompress_ptr cinfo;	/* fill_bit_buffer needs access to this */
-} working_state;
-
-
-/* Forward declarations */
-LOCAL void fix_huff_tbl JPP((j_decompress_ptr cinfo, JHUFF_TBL * htbl,
-			     D_DERIVED_TBL ** pdtbl));
-
-
-/*
- * Initialize for a Huffman-compressed scan.
- */
-
-METHODDEF void
-start_pass_huff_decoder (j_decompress_ptr cinfo)
-{
-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
-  int ci, dctbl, actbl;
-  jpeg_component_info * compptr;
-
-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
-    compptr = cinfo->cur_comp_info[ci];
-    dctbl = compptr->dc_tbl_no;
-    actbl = compptr->ac_tbl_no;
-    /* Make sure requested tables are present */
-    if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS ||
-	cinfo->dc_huff_tbl_ptrs[dctbl] == NULL)
-      ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
-    if (actbl < 0 || actbl >= NUM_HUFF_TBLS ||
-	cinfo->ac_huff_tbl_ptrs[actbl] == NULL)
-      ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
-    /* Compute derived values for Huffman tables */
-    /* We may do this more than once for a table, but it's not expensive */
-    fix_huff_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
-		 & entropy->dc_derived_tbls[dctbl]);
-    fix_huff_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
-		 & entropy->ac_derived_tbls[actbl]);
-    /* Initialize DC predictions to 0 */
-    entropy->saved.last_dc_val[ci] = 0;
-  }
-
-  /* Initialize private state variables */
-  entropy->saved.bits_left = 0;
-  entropy->printed_eod = FALSE;
-
-  /* Initialize restart counter */
-  entropy->restarts_to_go = cinfo->restart_interval;
-}
-
-
-LOCAL void
-fix_huff_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl, D_DERIVED_TBL ** pdtbl)
-/* Compute the derived values for a Huffman table */
-{
-  D_DERIVED_TBL *dtbl;
-  int p, i, l, si;
-  int lookbits, ctr;
-  char huffsize[257];
-  unsigned int huffcode[257];
-  unsigned int code;
-
-  /* Allocate a workspace if we haven't already done so. */
-  if (*pdtbl == NULL)
-    *pdtbl = (D_DERIVED_TBL *)
-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				  SIZEOF(D_DERIVED_TBL));
-  dtbl = *pdtbl;
-  dtbl->pub = htbl;		/* fill in back link */
-  
-  /* Figure C.1: make table of Huffman code length for each symbol */
-  /* Note that this is in code-length order. */
-
-  p = 0;
-  for (l = 1; l <= 16; l++) {
-    for (i = 1; i <= (int) htbl->bits[l]; i++)
-      huffsize[p++] = (char) l;
-  }
-  huffsize[p] = 0;
-  
-  /* Figure C.2: generate the codes themselves */
-  /* Note that this is in code-length order. */
-  
-  code = 0;
-  si = huffsize[0];
-  p = 0;
-  while (huffsize[p]) {
-    while (((int) huffsize[p]) == si) {
-      huffcode[p++] = code;
-      code++;
-    }
-    code <<= 1;
-    si++;
-  }
-
-  /* Figure F.15: generate decoding tables for bit-sequential decoding */
-
-  p = 0;
-  for (l = 1; l <= 16; l++) {
-    if (htbl->bits[l]) {
-      dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */
-      dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */
-      p += htbl->bits[l];
-      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
-    } else {
-      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
-    }
-  }
-  dtbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */
-
-  /* Compute lookahead tables to speed up decoding.
-   * First we set all the table entries to 0, indicating "too long";
-   * then we iterate through the Huffman codes that are short enough and
-   * fill in all the entries that correspond to bit sequences starting
-   * with that code.
-   */
-
-  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
-
-  p = 0;
-  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
-    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
-      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
-      /* Generate left-justified code followed by all possible bit sequences */
-      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
-      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
-	dtbl->look_nbits[lookbits] = l;
-	dtbl->look_sym[lookbits] = htbl->huffval[p];
-	lookbits++;
-      }
-    }
-  }
-}
-
-
-/*
- * Code for extracting the next N bits from the input stream.
- * (N never exceeds 15 for JPEG data.)
- * This needs to go as fast as possible!
- *
- * We read source bytes into get_buffer and dole out bits as needed.
- * If get_buffer already contains enough bits, they are fetched in-line
- * by the macros check_bit_buffer and get_bits.  When there aren't enough
- * bits, fill_bit_buffer is called; it will attempt to fill get_buffer to
- * the "high water mark" (not just to the number of bits needed; this reduces
- * the function-call overhead cost of entering fill_bit_buffer).
- * Note that fill_bit_buffer may return FALSE to indicate suspension.
- * On TRUE return, fill_bit_buffer guarantees that get_buffer contains
- * at least the requested number of bits --- dummy zeroes are inserted if
- * necessary.
- *
- * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
- * of get_buffer to be used.  (On machines with wider words, an even larger
- * buffer could be used.)  However, on some machines 32-bit shifts are
- * quite slow and take time proportional to the number of places shifted.
- * (This is true with most PC compilers, for instance.)  In this case it may
- * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
- * average shift distance at the cost of more calls to fill_bit_buffer.
- */
-
-#ifdef SLOW_SHIFT_32
-#define MIN_GET_BITS  15	/* minimum allowable value */
-#else
-#define MIN_GET_BITS  25	/* max value for 32-bit get_buffer */
-#endif
-
-
-LOCAL boolean
-fill_bit_buffer (working_state * state, int nbits)
-/* Load up the bit buffer to a depth of at least nbits */
-{
-  /* Copy heavily used state fields into locals (hopefully registers) */
-  register const JOCTET * next_input_byte = state->next_input_byte;
-  register size_t bytes_in_buffer = state->bytes_in_buffer;
-  register INT32 get_buffer = state->cur.get_buffer;
-  register int bits_left = state->cur.bits_left;
-  register int c;
-
-  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
-  /* (It is assumed that no request will be for more than that many bits.) */
-
-  while (bits_left < MIN_GET_BITS) {
-    /* Attempt to read a byte */
-    if (state->unread_marker != 0)
-      goto no_more_data;	/* can't advance past a marker */
-
-    if (bytes_in_buffer == 0) {
-      if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
-	return FALSE;
-      next_input_byte = state->cinfo->src->next_input_byte;
-      bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
-    }
-    bytes_in_buffer--;
-    c = GETJOCTET(*next_input_byte++);
-
-    /* If it's 0xFF, check and discard stuffed zero byte */
-    if (c == 0xFF) {
-      do {
-	if (bytes_in_buffer == 0) {
-	  if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
-	    return FALSE;
-	  next_input_byte = state->cinfo->src->next_input_byte;
-	  bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
-	}
-	bytes_in_buffer--;
-	c = GETJOCTET(*next_input_byte++);
-      } while (c == 0xFF);
-
-      if (c == 0) {
-	/* Found FF/00, which represents an FF data byte */
-	c = 0xFF;
-      } else {
-	/* Oops, it's actually a marker indicating end of compressed data. */
-	/* Better put it back for use later */
-	state->unread_marker = c;
-
-      no_more_data:
-	/* There should be enough bits still left in the data segment; */
-	/* if so, just break out of the outer while loop. */
-	if (bits_left >= nbits)
-	  break;
-	/* Uh-oh.  Report corrupted data to user and stuff zeroes into
-	 * the data stream, so that we can produce some kind of image.
-	 * Note that this will be repeated for each byte demanded for the
-	 * rest of the segment; this is slow but not unreasonably so.
-	 * The main thing is to avoid getting a zillion warnings, hence
-	 * we use a flag to ensure that only one warning appears.
-	 */
-	if (! ((huff_entropy_ptr) state->cinfo->entropy)->printed_eod) {
-	  WARNMS(state->cinfo, JWRN_HIT_MARKER);
-	  ((huff_entropy_ptr) state->cinfo->entropy)->printed_eod = TRUE;
-	}
-	c = 0;			/* insert a zero byte into bit buffer */
-      }
-    }
-
-    /* OK, load c into get_buffer */
-    get_buffer = (get_buffer << 8) | c;
-    bits_left += 8;
-  }
-
-  /* Unload the local registers */
-  state->next_input_byte = next_input_byte;
-  state->bytes_in_buffer = bytes_in_buffer;
-  state->cur.get_buffer = get_buffer;
-  state->cur.bits_left = bits_left;
-
-  return TRUE;
-}
-
-
-/*
- * These macros provide the in-line portion of bit fetching.
- * Use check_bit_buffer to ensure there are N bits in get_buffer
- * before using get_bits, peek_bits, or drop_bits.
- *	check_bit_buffer(state,n,action);
- *		Ensure there are N bits in get_buffer; if suspend, take action.
- *      val = get_bits(state,n);
- *		Fetch next N bits.
- *      val = peek_bits(state,n);
- *		Fetch next N bits without removing them from the buffer.
- *	drop_bits(state,n);
- *		Discard next N bits.
- * The value N should be a simple variable, not an expression, because it
- * is evaluated multiple times.
- */
-
-#define check_bit_buffer(state,nbits,action) \
-	{ if ((state).cur.bits_left < (nbits))  \
-	    if (! fill_bit_buffer(&(state), nbits))  \
-	      { action; } }
-
-#define get_bits(state,nbits) \
-	(((int) ((state).cur.get_buffer >> ((state).cur.bits_left -= (nbits)))) & ((1<<(nbits))-1))
-
-#define peek_bits(state,nbits) \
-	(((int) ((state).cur.get_buffer >> ((state).cur.bits_left -  (nbits)))) & ((1<<(nbits))-1))
-
-#define drop_bits(state,nbits) \
-	((state).cur.bits_left -= (nbits))
-
-
-/*
- * Code for extracting next Huffman-coded symbol from input bit stream.
- * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
- * without looping.  Usually, more than 95% of the Huffman codes will be 8
- * or fewer bits long.  The few overlength codes are handled with a loop.
- * The primary case is made a macro for speed reasons; the secondary
- * routine slow_DECODE is rarely entered and need not be inline code.
- *
- * Notes about the huff_DECODE macro:
- * 1. Near the end of the data segment, we may fail to get enough bits
- *    for a lookahead.  In that case, we do it the hard way.
- * 2. If the lookahead table contains no entry, the next code must be
- *    more than HUFF_LOOKAHEAD bits long.
- * 3. slow_DECODE returns -1 if forced to suspend.
- */
-
-#define huff_DECODE(result,state,htbl,donelabel) \
-{ if (state.cur.bits_left < HUFF_LOOKAHEAD) {  \
-    if (! fill_bit_buffer(&state, 0)) return FALSE;  \
-    if (state.cur.bits_left < HUFF_LOOKAHEAD) {  \
-      if ((result = slow_DECODE(&state, htbl, 1)) < 0) return FALSE;  \
-      goto donelabel;  \
-    }  \
-  }  \
-  { register int nb, look;  \
-    look = peek_bits(state, HUFF_LOOKAHEAD);  \
-    if ((nb = htbl->look_nbits[look]) != 0) {  \
-      drop_bits(state, nb);  \
-      result = htbl->look_sym[look];  \
-    } else {  \
-      if ((result = slow_DECODE(&state, htbl, HUFF_LOOKAHEAD+1)) < 0)  \
-	return FALSE;  \
-    }  \
-  }  \
-donelabel:;  \
-}
-
-  
-LOCAL int
-slow_DECODE (working_state * state, D_DERIVED_TBL * htbl, int min_bits)
-{
-  register int l = min_bits;
-  register INT32 code;
-
-  /* huff_DECODE has determined that the code is at least min_bits */
-  /* bits long, so fetch that many bits in one swoop. */
-
-  check_bit_buffer(*state, l, return -1);
-  code = get_bits(*state, l);
-
-  /* Collect the rest of the Huffman code one bit at a time. */
-  /* This is per Figure F.16 in the JPEG spec. */
-
-  while (code > htbl->maxcode[l]) {
-    code <<= 1;
-    check_bit_buffer(*state, 1, return -1);
-    code |= get_bits(*state, 1);
-    l++;
-  }
-
-  /* With garbage input we may reach the sentinel value l = 17. */
-
-  if (l > 16) {
-    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
-    return 0;			/* fake a zero as the safest result */
-  }
-
-  return htbl->pub->huffval[ htbl->valptr[l] +
-			    ((int) (code - htbl->mincode[l])) ];
-}
-
-
-/* Figure F.12: extend sign bit.
- * On some machines, a shift and add will be faster than a table lookup.
- */
-
-#ifdef AVOID_TABLES
-
-#define huff_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
-
-#else
-
-#define huff_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
-
-static const int extend_test[16] =   /* entry n is 2**(n-1) */
-  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
-    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
-
-static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
-  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
-    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
-    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
-    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
-
-#endif /* AVOID_TABLES */
-
-
-/*
- * Check for a restart marker & resynchronize decoder.
- * Returns FALSE if must suspend.
- */
-
-LOCAL boolean
-process_restart (j_decompress_ptr cinfo)
-{
-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
-  int ci;
-
-  /* Throw away any unused bits remaining in bit buffer; */
-  /* include any full bytes in next_marker's count of discarded bytes */
-  cinfo->marker->discarded_bytes += entropy->saved.bits_left / 8;
-  entropy->saved.bits_left = 0;
-
-  /* Advance past the RSTn marker */
-  if (! (*cinfo->marker->read_restart_marker) (cinfo))
-    return FALSE;
-
-  /* Re-initialize DC predictions to 0 */
-  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
-    entropy->saved.last_dc_val[ci] = 0;
-
-  /* Reset restart counter */
-  entropy->restarts_to_go = cinfo->restart_interval;
-
-  entropy->printed_eod = FALSE; /* next segment can get another warning */
-
-  return TRUE;
-}
-
-
-/* ZAG[i] is the natural-order position of the i'th element of zigzag order.
- * If the incoming data is corrupted, decode_mcu could attempt to
- * reference values beyond the end of the array.  To avoid a wild store,
- * we put some extra zeroes after the real entries.
- */
-
-static const int ZAG[DCTSIZE2+16] = {
-  0,  1,  8, 16,  9,  2,  3, 10,
- 17, 24, 32, 25, 18, 11,  4,  5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13,  6,  7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
-  0,  0,  0,  0,  0,  0,  0,  0, /* extra entries in case k>63 below */
-  0,  0,  0,  0,  0,  0,  0,  0
-};
-
-
-/*
- * Decode and return one MCU's worth of Huffman-compressed coefficients.
- * The coefficients are reordered from zigzag order into natural array order,
- * but are not dequantized.
- *
- * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
- * (Wholesale zeroing is usually a little faster than retail...)
- *
- * Returns FALSE if data source requested suspension.  In that case no
- * changes have been made to permanent state.  (Exception: some output
- * coefficients may already have been assigned.  This is harmless for
- * this module, but would not work for decoding progressive JPEG.)
- */
-
-METHODDEF boolean
-decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
-  register int s, k, r;
-  int blkn, ci;
-  JBLOCKROW block;
-  working_state state;
-  D_DERIVED_TBL * dctbl;
-  D_DERIVED_TBL * actbl;
-  jpeg_component_info * compptr;
-
-  /* Process restart marker if needed; may have to suspend */
-  if (cinfo->restart_interval) {
-    if (entropy->restarts_to_go == 0)
-      if (! process_restart(cinfo))
-	return FALSE;
-  }
-
-  /* Load up working state */
-  state.unread_marker = cinfo->unread_marker;
-  state.next_input_byte = cinfo->src->next_input_byte;
-  state.bytes_in_buffer = cinfo->src->bytes_in_buffer;
-  ASSIGN_STATE(state.cur, entropy->saved);
-  state.cinfo = cinfo;
-
-  /* Outer loop handles each block in the MCU */
-
-  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
-    block = MCU_data[blkn];
-    ci = cinfo->MCU_membership[blkn];
-    compptr = cinfo->cur_comp_info[ci];
-    dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
-    actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
-
-    /* Decode a single block's worth of coefficients */
-
-    /* Section F.2.2.1: decode the DC coefficient difference */
-    huff_DECODE(s, state, dctbl, label1);
-    if (s) {
-      check_bit_buffer(state, s, return FALSE);
-      r = get_bits(state, s);
-      s = huff_EXTEND(r, s);
-    }
-
-    /* Shortcut if component's values are not interesting */
-    if (! compptr->component_needed)
-      goto skip_ACs;
-
-    /* Convert DC difference to actual value, update last_dc_val */
-    s += state.cur.last_dc_val[ci];
-    state.cur.last_dc_val[ci] = s;
-    /* Output the DC coefficient (assumes ZAG[0] = 0) */
-    (*block)[0] = (JCOEF) s;
-
-    /* Do we need to decode the AC coefficients for this component? */
-    if (compptr->DCT_scaled_size > 1) {
-
-      /* Section F.2.2.2: decode the AC coefficients */
-      /* Since zeroes are skipped, output area must be cleared beforehand */
-      for (k = 1; k < DCTSIZE2; k++) {
-	huff_DECODE(s, state, actbl, label2);
-      
-	r = s >> 4;
-	s &= 15;
-      
-	if (s) {
-	  k += r;
-	  check_bit_buffer(state, s, return FALSE);
-	  r = get_bits(state, s);
-	  s = huff_EXTEND(r, s);
-	  /* Output coefficient in natural (dezigzagged) order */
-	  (*block)[ZAG[k]] = (JCOEF) s;
-	} else {
-	  if (r != 15)
-	    break;
-	  k += 15;
-	}
-      }
-
-    } else {
-skip_ACs:
-
-      /* Section F.2.2.2: decode the AC coefficients */
-      /* In this path we just discard the values */
-      for (k = 1; k < DCTSIZE2; k++) {
-	huff_DECODE(s, state, actbl, label3);
-      
-	r = s >> 4;
-	s &= 15;
-      
-	if (s) {
-	  k += r;
-	  check_bit_buffer(state, s, return FALSE);
-	  drop_bits(state, s);
-	} else {
-	  if (r != 15)
-	    break;
-	  k += 15;
-	}
-      }
-
-    }
-  }
-
-  /* Completed MCU, so update state */
-  cinfo->unread_marker = state.unread_marker;
-  cinfo->src->next_input_byte = state.next_input_byte;
-  cinfo->src->bytes_in_buffer = state.bytes_in_buffer;
-  ASSIGN_STATE(entropy->saved, state.cur);
-
-  /* Account for restart interval (no-op if not using restarts) */
-  entropy->restarts_to_go--;
-
-  return TRUE;
-}
-
-
-/*
- * Module initialization routine for Huffman entropy decoding.
- */
-
-GLOBAL void
-jinit_huff_decoder (j_decompress_ptr cinfo)
-{
-  huff_entropy_ptr entropy;
-  int i;
-
-  entropy = (huff_entropy_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(huff_entropy_decoder));
-  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
-  entropy->pub.start_pass = start_pass_huff_decoder;
-  entropy->pub.decode_mcu = decode_mcu;
-
-  /* Mark tables unallocated */
-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
-    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
-  }
-}
diff --git a/jpeg/jdmainct.c b/jpeg/jdmainct.c
deleted file mode 100644
index f9abbad99a11a5fc2fa7d5525cd09f2ebe8fab89..0000000000000000000000000000000000000000
--- a/jpeg/jdmainct.c
+++ /dev/null
@@ -1,531 +0,0 @@
-/*
- * jdmainct.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the main buffer controller for decompression.
- * The main buffer lies between the JPEG decompressor proper and the
- * post-processor; it holds downsampled data in the JPEG colorspace.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * In the current system design, the main buffer need never be a full-image
- * buffer; any full-height buffers will be found inside the coefficient or
- * postprocessing controllers.  Nonetheless, the main controller is not
- * trivial.  Its responsibility is to provide context rows for upsampling/
- * rescaling, and doing this in an efficient fashion is a bit tricky.
- *
- * Postprocessor input data is counted in "row groups".  A row group
- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
- * sample rows of each component.  (We require DCT_scaled_size values to be
- * chosen such that these numbers are integers.  In practice DCT_scaled_size
- * values will likely be powers of two, so we actually have the stronger
- * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
- * Upsampling will typically produce max_v_samp_factor pixel rows from each
- * row group (times any additional scale factor that the upsampler is
- * applying).
- *
- * The coefficient controller will deliver data to us one iMCU row at a time;
- * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
- * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds
- * to one row of MCUs when the image is fully interleaved.)  Note that the
- * number of sample rows varies across components, but the number of row
- * groups does not.  Some garbage sample rows may be included in the last iMCU
- * row at the bottom of the image.
- *
- * Depending on the vertical scaling algorithm used, the upsampler may need
- * access to the sample row(s) above and below its current input row group.
- * The upsampler is required to set need_context_rows TRUE at global selection
- * time if so.  When need_context_rows is FALSE, this controller can simply
- * obtain one iMCU row at a time from the coefficient controller and dole it
- * out as row groups to the postprocessor.
- *
- * When need_context_rows is TRUE, this controller guarantees that the buffer
- * passed to postprocessing contains at least one row group's worth of samples
- * above and below the row group(s) being processed.  Note that the context
- * rows "above" the first passed row group appear at negative row offsets in
- * the passed buffer.  At the top and bottom of the image, the required
- * context rows are manufactured by duplicating the first or last real sample
- * row; this avoids having special cases in the upsampling inner loops.
- *
- * The amount of context is fixed at one row group just because that's a
- * convenient number for this controller to work with.  The existing
- * upsamplers really only need one sample row of context.  An upsampler
- * supporting arbitrary output rescaling might wish for more than one row
- * group of context when shrinking the image; tough, we don't handle that.
- * (This is justified by the assumption that downsizing will be handled mostly
- * by adjusting the DCT_scaled_size values, so that the actual scale factor at
- * the upsample step needn't be much less than one.)
- *
- * To provide the desired context, we have to retain the last two row groups
- * of one iMCU row while reading in the next iMCU row.  (The last row group
- * can't be processed until we have another row group for its below-context,
- * and so we have to save the next-to-last group too for its above-context.)
- * We could do this most simply by copying data around in our buffer, but
- * that'd be very slow.  We can avoid copying any data by creating a rather
- * strange pointer structure.  Here's how it works.  We allocate a workspace
- * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
- * of row groups per iMCU row).  We create two sets of redundant pointers to
- * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
- * pointer lists look like this:
- *                   M+1                          M-1
- * master pointer --> 0         master pointer --> 0
- *                    1                            1
- *                   ...                          ...
- *                   M-3                          M-3
- *                   M-2                           M
- *                   M-1                          M+1
- *                    M                           M-2
- *                   M+1                          M-1
- *                    0                            0
- * We read alternate iMCU rows using each master pointer; thus the last two
- * row groups of the previous iMCU row remain un-overwritten in the workspace.
- * The pointer lists are set up so that the required context rows appear to
- * be adjacent to the proper places when we pass the pointer lists to the
- * upsampler.
- *
- * The above pictures describe the normal state of the pointer lists.
- * At top and bottom of the image, we diddle the pointer lists to duplicate
- * the first or last sample row as necessary (this is cheaper than copying
- * sample rows around).
- *
- * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that
- * situation each iMCU row provides only one row group so the buffering logic
- * must be different (eg, we must read two iMCU rows before we can emit the
- * first row group).  For now, we simply do not support providing context
- * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to
- * be worth providing --- if someone wants a 1/8th-size preview, they probably
- * want it quick and dirty, so a context-free upsampler is sufficient.
- */
-
-
-/* Private buffer controller object */
-
-typedef struct {
-  struct jpeg_d_main_controller pub; /* public fields */
-
-  /* Pointer to allocated workspace (M or M+2 row groups). */
-  JSAMPARRAY buffer[MAX_COMPONENTS];
-
-  boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */
-  JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */
-
-  /* Remaining fields are only used in the context case. */
-
-  /* These are the master pointers to the funny-order pointer lists. */
-  JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */
-
-  int whichptr;			/* indicates which pointer set is now in use */
-  int context_state;		/* process_data state machine status */
-  JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */
-  JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */
-} my_main_controller;
-
-typedef my_main_controller * my_main_ptr;
-
-/* context_state values: */
-#define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */
-#define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */
-#define CTX_POSTPONED_ROW	2	/* feeding postponed row group */
-
-
-/* Forward declarations */
-METHODDEF void process_data_simple_main
-	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
-	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-METHODDEF void process_data_context_main
-	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
-	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-METHODDEF void process_data_input_only
-	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
-	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#endif
-#ifdef QUANT_2PASS_SUPPORTED
-METHODDEF void process_data_crank_post
-	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
-	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#endif
-
-
-LOCAL void
-make_funny_pointers (j_decompress_ptr cinfo)
-/* Create the funny pointer lists discussed in the comments above.
- * The actual workspace is already allocated (in main->buffer),
- * we just have to make the curiously ordered lists.
- */
-{
-  my_main_ptr main = (my_main_ptr) cinfo->main;
-  int ci, i, rgroup;
-  int M = cinfo->min_DCT_scaled_size;
-  jpeg_component_info *compptr;
-  JSAMPARRAY buf, xbuf0, xbuf1;
-
-  /* Get top-level space for component array pointers.
-   * We alloc both arrays with one call to save a few cycles.
-   */
-  main->xbuffer[0] = (JSAMPIMAGE)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
-  main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
-
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
-      cinfo->min_DCT_scaled_size; /* height of a row group of component */
-    /* Get space for pointer lists --- M+4 row groups in each list.
-     * We alloc both pointer lists with one call to save a few cycles.
-     */
-    xbuf0 = (JSAMPARRAY)
-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				  2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
-    xbuf0 += rgroup;		/* want one row group at negative offsets */
-    main->xbuffer[0][ci] = xbuf0;
-    xbuf1 = xbuf0 + (rgroup * (M + 4));
-    main->xbuffer[1][ci] = xbuf1;
-    /* First copy the workspace pointers as-is */
-    buf = main->buffer[ci];
-    for (i = 0; i < rgroup * (M + 2); i++) {
-      xbuf0[i] = xbuf1[i] = buf[i];
-    }
-    /* In the second list, put the last four row groups in swapped order */
-    for (i = 0; i < rgroup * 2; i++) {
-      xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
-      xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
-    }
-    /* The wraparound pointers at top and bottom will be filled later
-     * (see set_wraparound_pointers, below).  Initially we want the "above"
-     * pointers to duplicate the first actual data line.  This only needs
-     * to happen in xbuffer[0].
-     */
-    for (i = 0; i < rgroup; i++) {
-      xbuf0[i - rgroup] = xbuf0[0];
-    }
-  }
-}
-
-
-LOCAL void
-set_wraparound_pointers (j_decompress_ptr cinfo)
-/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
- * This changes the pointer list state from top-of-image to the normal state.
- */
-{
-  my_main_ptr main = (my_main_ptr) cinfo->main;
-  int ci, i, rgroup;
-  int M = cinfo->min_DCT_scaled_size;
-  jpeg_component_info *compptr;
-  JSAMPARRAY xbuf0, xbuf1;
-
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
-      cinfo->min_DCT_scaled_size; /* height of a row group of component */
-    xbuf0 = main->xbuffer[0][ci];
-    xbuf1 = main->xbuffer[1][ci];
-    for (i = 0; i < rgroup; i++) {
-      xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
-      xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
-      xbuf0[rgroup*(M+2) + i] = xbuf0[i];
-      xbuf1[rgroup*(M+2) + i] = xbuf1[i];
-    }
-  }
-}
-
-
-LOCAL void
-set_bottom_pointers (j_decompress_ptr cinfo)
-/* Change the pointer lists to duplicate the last sample row at the bottom
- * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
- * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
- */
-{
-  my_main_ptr main = (my_main_ptr) cinfo->main;
-  int ci, i, rgroup, iMCUheight, rows_left;
-  jpeg_component_info *compptr;
-  JSAMPARRAY xbuf;
-
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    /* Count sample rows in one iMCU row and in one row group */
-    iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
-    rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
-    /* Count nondummy sample rows remaining for this component */
-    rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
-    if (rows_left == 0) rows_left = iMCUheight;
-    /* Count nondummy row groups.  Should get same answer for each component,
-     * so we need only do it once.
-     */
-    if (ci == 0) {
-      main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
-    }
-    /* Duplicate the last real sample row rgroup*2 times; this pads out the
-     * last partial rowgroup and ensures at least one full rowgroup of context.
-     */
-    xbuf = main->xbuffer[main->whichptr][ci];
-    for (i = 0; i < rgroup * 2; i++) {
-      xbuf[rows_left + i] = xbuf[rows_left-1];
-    }
-  }
-}
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF void
-start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
-  my_main_ptr main = (my_main_ptr) cinfo->main;
-
-  /* Processing chunks are output rows except in JBUF_CRANK_SOURCE mode. */
-  main->pub.num_chunks = cinfo->output_height;
-
-  switch (pass_mode) {
-  case JBUF_PASS_THRU:
-    /* Do nothing if raw-data mode. */
-    if (cinfo->raw_data_out)
-      return;
-    if (cinfo->upsample->need_context_rows) {
-      main->pub.process_data = process_data_context_main;
-      make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
-      main->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */
-      main->context_state = CTX_PREPARE_FOR_IMCU;
-      main->iMCU_row_ctr = 0;
-    } else {
-      /* Simple case with no context needed */
-      main->pub.process_data = process_data_simple_main;
-    }
-    main->buffer_full = FALSE;	/* Mark buffer empty */
-    main->rowgroup_ctr = 0;
-    break;
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-  case JBUF_CRANK_SOURCE:
-    /* Reading a multi-scan file, just crank the decompressor */
-    main->pub.process_data = process_data_input_only;
-    /* decompressor needs to be called once for each (equivalent) iMCU row */
-    main->pub.num_chunks = cinfo->total_iMCU_rows;
-    break;
-#endif
-#ifdef QUANT_2PASS_SUPPORTED
-  case JBUF_CRANK_DEST:
-    /* For last pass of 2-pass quantization, just crank the postprocessor */
-    main->pub.process_data = process_data_crank_post;
-    break;
-#endif
-  default:
-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-    break;
-  }
-}
-
-
-/*
- * Process some data.
- * This handles the simple case where no context is required.
- */
-
-METHODDEF void
-process_data_simple_main (j_decompress_ptr cinfo,
-			  JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-			  JDIMENSION out_rows_avail)
-{
-  my_main_ptr main = (my_main_ptr) cinfo->main;
-  JDIMENSION rowgroups_avail;
-
-  /* Read input data if we haven't filled the main buffer yet */
-  if (! main->buffer_full) {
-    if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
-      return;			/* suspension forced, can do nothing more */
-    main->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
-  }
-
-  /* There are always min_DCT_scaled_size row groups in an iMCU row. */
-  rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
-  /* Note: at the bottom of the image, we may pass extra garbage row groups
-   * to the postprocessor.  The postprocessor has to check for bottom
-   * of image anyway (at row resolution), so no point in us doing it too.
-   */
-
-  /* Feed the postprocessor */
-  (*cinfo->post->post_process_data) (cinfo, main->buffer,
-				     &main->rowgroup_ctr, rowgroups_avail,
-				     output_buf, out_row_ctr, out_rows_avail);
-
-  /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
-  if (main->rowgroup_ctr >= rowgroups_avail) {
-    main->buffer_full = FALSE;
-    main->rowgroup_ctr = 0;
-  }
-}
-
-
-/*
- * Process some data.
- * This handles the case where context rows must be provided.
- */
-
-METHODDEF void
-process_data_context_main (j_decompress_ptr cinfo,
-			   JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-			   JDIMENSION out_rows_avail)
-{
-  my_main_ptr main = (my_main_ptr) cinfo->main;
-
-  /* Read input data if we haven't filled the main buffer yet */
-  if (! main->buffer_full) {
-    if (! (*cinfo->coef->decompress_data) (cinfo,
-					   main->xbuffer[main->whichptr]))
-      return;			/* suspension forced, can do nothing more */
-    main->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
-    main->iMCU_row_ctr++;	/* count rows received */
-  }
-
-  /* Postprocessor typically will not swallow all the input data it is handed
-   * in one call (due to filling the output buffer first).  Must be prepared
-   * to exit and restart.  This switch lets us keep track of how far we got.
-   * Note that each case falls through to the next on successful completion.
-   */
-  switch (main->context_state) {
-  case CTX_POSTPONED_ROW:
-    /* Call postprocessor using previously set pointers for postponed row */
-    (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
-			&main->rowgroup_ctr, main->rowgroups_avail,
-			output_buf, out_row_ctr, out_rows_avail);
-    if (main->rowgroup_ctr < main->rowgroups_avail)
-      return;			/* Need to suspend */
-    main->context_state = CTX_PREPARE_FOR_IMCU;
-    if (*out_row_ctr >= out_rows_avail)
-      return;			/* Postprocessor exactly filled output buf */
-    /*FALLTHROUGH*/
-  case CTX_PREPARE_FOR_IMCU:
-    /* Prepare to process first M-1 row groups of this iMCU row */
-    main->rowgroup_ctr = 0;
-    main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
-    /* Check for bottom of image: if so, tweak pointers to "duplicate"
-     * the last sample row, and adjust rowgroups_avail to ignore padding rows.
-     */
-    if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
-      set_bottom_pointers(cinfo);
-    main->context_state = CTX_PROCESS_IMCU;
-    /*FALLTHROUGH*/
-  case CTX_PROCESS_IMCU:
-    /* Call postprocessor using previously set pointers */
-    (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
-			&main->rowgroup_ctr, main->rowgroups_avail,
-			output_buf, out_row_ctr, out_rows_avail);
-    if (main->rowgroup_ctr < main->rowgroups_avail)
-      return;			/* Need to suspend */
-    /* After the first iMCU, change wraparound pointers to normal state */
-    if (main->iMCU_row_ctr == 1)
-      set_wraparound_pointers(cinfo);
-    /* Prepare to load new iMCU row using other xbuffer list */
-    main->whichptr ^= 1;	/* 0=>1 or 1=>0 */
-    main->buffer_full = FALSE;
-    /* Still need to process last row group of this iMCU row, */
-    /* which is saved at index M+1 of the other xbuffer */
-    main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
-    main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
-    main->context_state = CTX_POSTPONED_ROW;
-  }
-}
-
-
-/*
- * Process some data.
- * Initial passes in a multiple-scan file: just call the decompressor,
- * which will save data in its internal buffer, but return nothing.
- */
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-METHODDEF void
-process_data_input_only (j_decompress_ptr cinfo,
-			 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-			 JDIMENSION out_rows_avail)
-{
-  if (! (*cinfo->coef->decompress_data) (cinfo, (JSAMPIMAGE) NULL))
-    return;			/* suspension forced, can do nothing more */
-  *out_row_ctr += 1;		/* OK, we did one iMCU row */
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-
-/*
- * Process some data.
- * Final pass of two-pass quantization: just call the postprocessor.
- * Source data will be the postprocessor controller's internal buffer.
- */
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-METHODDEF void
-process_data_crank_post (j_decompress_ptr cinfo,
-			 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-			 JDIMENSION out_rows_avail)
-{
-  (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
-				     (JDIMENSION *) NULL, (JDIMENSION) 0,
-				     output_buf, out_row_ctr, out_rows_avail);
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
-
-
-/*
- * Initialize main buffer controller.
- */
-
-GLOBAL void
-jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
-  my_main_ptr main;
-  int ci, rgroup, ngroups;
-  jpeg_component_info *compptr;
-
-  main = (my_main_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_main_controller));
-  cinfo->main = (struct jpeg_d_main_controller *) main;
-  main->pub.start_pass = start_pass_main;
-
-  if (need_full_buffer)		/* shouldn't happen */
-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
-  /* In raw-data mode, we don't need a workspace.  This module doesn't
-   * do anything useful in that mode, except pass calls through to the
-   * coef controller in CRANK_SOURCE mode (ie, reading a multiscan file).
-   */
-  if (cinfo->raw_data_out)
-    return;
-
-  /* Allocate the workspace.
-   * ngroups is the number of row groups we need.
-   */
-  if (cinfo->upsample->need_context_rows) {
-    if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
-      ERREXIT(cinfo, JERR_NOTIMPL);
-    ngroups = cinfo->min_DCT_scaled_size + 2;
-  } else {
-    ngroups = cinfo->min_DCT_scaled_size;
-  }
-
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
-      cinfo->min_DCT_scaled_size; /* height of a row group of component */
-    main->buffer[ci] = (*cinfo->mem->alloc_sarray)
-			((j_common_ptr) cinfo, JPOOL_IMAGE,
-			 compptr->width_in_blocks * compptr->DCT_scaled_size,
-			 (JDIMENSION) (rgroup * ngroups));
-  }
-}
diff --git a/jpeg/jdmarker.c b/jpeg/jdmarker.c
deleted file mode 100644
index d42d4b9ba3d7199abbbe3960944b94c33dd8016e..0000000000000000000000000000000000000000
--- a/jpeg/jdmarker.c
+++ /dev/null
@@ -1,1052 +0,0 @@
-/*
- * jdmarker.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains routines to decode JPEG datastream markers.
- * Most of the complexity arises from our desire to support input
- * suspension: if not all of the data for a marker is available,
- * we must exit back to the application.  On resumption, we reprocess
- * the marker.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-typedef enum {			/* JPEG marker codes */
-  M_SOF0  = 0xc0,
-  M_SOF1  = 0xc1,
-  M_SOF2  = 0xc2,
-  M_SOF3  = 0xc3,
-  
-  M_SOF5  = 0xc5,
-  M_SOF6  = 0xc6,
-  M_SOF7  = 0xc7,
-  
-  M_JPG   = 0xc8,
-  M_SOF9  = 0xc9,
-  M_SOF10 = 0xca,
-  M_SOF11 = 0xcb,
-  
-  M_SOF13 = 0xcd,
-  M_SOF14 = 0xce,
-  M_SOF15 = 0xcf,
-  
-  M_DHT   = 0xc4,
-  
-  M_DAC   = 0xcc,
-  
-  M_RST0  = 0xd0,
-  M_RST1  = 0xd1,
-  M_RST2  = 0xd2,
-  M_RST3  = 0xd3,
-  M_RST4  = 0xd4,
-  M_RST5  = 0xd5,
-  M_RST6  = 0xd6,
-  M_RST7  = 0xd7,
-  
-  M_SOI   = 0xd8,
-  M_EOI   = 0xd9,
-  M_SOS   = 0xda,
-  M_DQT   = 0xdb,
-  M_DNL   = 0xdc,
-  M_DRI   = 0xdd,
-  M_DHP   = 0xde,
-  M_EXP   = 0xdf,
-  
-  M_APP0  = 0xe0,
-  M_APP1  = 0xe1,
-  M_APP2  = 0xe2,
-  M_APP3  = 0xe3,
-  M_APP4  = 0xe4,
-  M_APP5  = 0xe5,
-  M_APP6  = 0xe6,
-  M_APP7  = 0xe7,
-  M_APP8  = 0xe8,
-  M_APP9  = 0xe9,
-  M_APP10 = 0xea,
-  M_APP11 = 0xeb,
-  M_APP12 = 0xec,
-  M_APP13 = 0xed,
-  M_APP14 = 0xee,
-  M_APP15 = 0xef,
-  
-  M_JPG0  = 0xf0,
-  M_JPG13 = 0xfd,
-  M_COM   = 0xfe,
-  
-  M_TEM   = 0x01,
-  
-  M_ERROR = 0x100
-} JPEG_MARKER;
-
-
-/*
- * Macros for fetching data from the data source module.
- *
- * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
- * the current restart point; we update them only when we have reached a
- * suitable place to restart if a suspension occurs.
- */
-
-/* Declare and initialize local copies of input pointer/count */
-#define INPUT_VARS(cinfo)  \
-	struct jpeg_source_mgr * datasrc = (cinfo)->src;  \
-	const JOCTET * next_input_byte = datasrc->next_input_byte;  \
-	size_t bytes_in_buffer = datasrc->bytes_in_buffer
-
-/* Unload the local copies --- do this only at a restart boundary */
-#define INPUT_SYNC(cinfo)  \
-	( datasrc->next_input_byte = next_input_byte,  \
-	  datasrc->bytes_in_buffer = bytes_in_buffer )
-
-/* Reload the local copies --- seldom used except in MAKE_BYTE_AVAIL */
-#define INPUT_RELOAD(cinfo)  \
-	( next_input_byte = datasrc->next_input_byte,  \
-	  bytes_in_buffer = datasrc->bytes_in_buffer )
-
-/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
- * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
- * but we must reload the local copies after a successful fill.
- */
-#define MAKE_BYTE_AVAIL(cinfo,action)  \
-	if (bytes_in_buffer == 0) {  \
-	  if (! (*datasrc->fill_input_buffer) (cinfo))  \
-	    { action; }  \
-	  INPUT_RELOAD(cinfo);  \
-	}  \
-	bytes_in_buffer--
-
-/* Read a byte into variable V.
- * If must suspend, take the specified action (typically "return FALSE").
- */
-#define INPUT_BYTE(cinfo,V,action)  \
-	MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
-		  V = GETJOCTET(*next_input_byte++); )
-
-/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
- * V should be declared unsigned int or perhaps INT32.
- */
-#define INPUT_2BYTES(cinfo,V,action)  \
-	MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
-		  V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
-		  MAKE_BYTE_AVAIL(cinfo,action); \
-		  V += GETJOCTET(*next_input_byte++); )
-
-
-/*
- * Routines to process JPEG markers.
- *
- * Entry condition: JPEG marker itself has been read and its code saved
- *   in cinfo->unread_marker; input restart point is just after the marker.
- *
- * Exit: if return TRUE, have read and processed any parameters, and have
- *   updated the restart point to point after the parameters.
- *   If return FALSE, was forced to suspend before reaching end of
- *   marker parameters; restart point has not been moved.  Same routine
- *   will be called again after application supplies more input data.
- *
- * This approach to suspension assumes that all of a marker's parameters can
- * fit into a single input bufferload.  This should hold for "normal"
- * markers.  Some COM/APPn markers might have large parameter segments,
- * but we use skip_input_data to get past those, and thereby put the problem
- * on the source manager's shoulders.
- *
- * Note that we don't bother to avoid duplicate trace messages if a
- * suspension occurs within marker parameters.  Other side effects
- * require more care.
- */
-
-
-LOCAL boolean
-get_soi (j_decompress_ptr cinfo)
-/* Process an SOI marker */
-{
-  int i;
-  
-  TRACEMS(cinfo, 1, JTRC_SOI);
-
-  if (cinfo->marker->saw_SOI)
-    ERREXIT(cinfo, JERR_SOI_DUPLICATE);
-
-  /* Reset all parameters that are defined to be reset by SOI */
-
-  for (i = 0; i < NUM_ARITH_TBLS; i++) {
-    cinfo->arith_dc_L[i] = 0;
-    cinfo->arith_dc_U[i] = 1;
-    cinfo->arith_ac_K[i] = 5;
-  }
-  cinfo->restart_interval = 0;
-
-  /* Set initial assumptions for colorspace etc */
-
-  cinfo->jpeg_color_space = JCS_UNKNOWN;
-  cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
-
-  cinfo->saw_JFIF_marker = FALSE;
-  cinfo->density_unit = 0;	/* set default JFIF APP0 values */
-  cinfo->X_density = 1;
-  cinfo->Y_density = 1;
-  cinfo->saw_Adobe_marker = FALSE;
-  cinfo->Adobe_transform = 0;
-
-  cinfo->marker->saw_SOI = TRUE;
-
-  return TRUE;
-}
-
-
-LOCAL boolean
-get_sof (j_decompress_ptr cinfo)
-/* Process a SOFn marker */
-{
-  INT32 length;
-  int c, ci;
-  jpeg_component_info * compptr;
-  INPUT_VARS(cinfo);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-
-  INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
-  INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE);
-  INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE);
-  INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
-
-  length -= 8;
-
-  TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
-	   (int) cinfo->image_width, (int) cinfo->image_height,
-	   cinfo->num_components);
-
-  if (cinfo->marker->saw_SOF)
-    ERREXIT(cinfo, JERR_SOF_DUPLICATE);
-
-  /* We don't support files in which the image height is initially specified */
-  /* as 0 and is later redefined by DNL.  As long as we have to check that,  */
-  /* might as well have a general sanity check. */
-  if (cinfo->image_height <= 0 || cinfo->image_width <= 0
-      || cinfo->num_components <= 0)
-    ERREXIT(cinfo, JERR_EMPTY_IMAGE);
-
-  /* Make sure image isn't bigger than I can handle */
-  if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
-      (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
-    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
-
-  /* For now, precision must match compiled-in value... */
-  if (cinfo->data_precision != BITS_IN_JSAMPLE)
-    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
-
-  /* Check that number of components won't exceed internal array sizes */
-  if (cinfo->num_components > MAX_COMPONENTS)
-    ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
-	     MAX_COMPONENTS);
-
-  if (length != (cinfo->num_components * 3))
-    ERREXIT(cinfo, JERR_BAD_LENGTH);
-
-  if (cinfo->comp_info == NULL)	/* do only once, even if suspend */
-    cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
-			((j_common_ptr) cinfo, JPOOL_IMAGE,
-			 cinfo->num_components * SIZEOF(jpeg_component_info));
-  
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    compptr->component_index = ci;
-    INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
-    INPUT_BYTE(cinfo, c, return FALSE);
-    compptr->h_samp_factor = (c >> 4) & 15;
-    compptr->v_samp_factor = (c     ) & 15;
-    INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
-
-    TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
-	     compptr->component_id, compptr->h_samp_factor,
-	     compptr->v_samp_factor, compptr->quant_tbl_no);
-  }
-
-  cinfo->marker->saw_SOF = TRUE;
-
-  INPUT_SYNC(cinfo);
-  return TRUE;
-}
-
-
-LOCAL boolean
-get_sos (j_decompress_ptr cinfo)
-/* Process a SOS marker */
-{
-  INT32 length;
-  int i, ci, n, c, cc, ccc;
-  jpeg_component_info * compptr;
-  INPUT_VARS(cinfo);
-
-  if (! cinfo->marker->saw_SOF)
-    ERREXIT(cinfo, JERR_SOS_NO_SOF);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-
-  INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
-
-  if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN)
-    ERREXIT(cinfo, JERR_BAD_LENGTH);
-
-  TRACEMS1(cinfo, 1, JTRC_SOS, n);
-
-  cinfo->comps_in_scan = n;
-
-  /* Collect the component-spec parameters */
-
-  for (i = 0; i < n; i++) {
-    INPUT_BYTE(cinfo, cc, return FALSE);
-    INPUT_BYTE(cinfo, c, return FALSE);
-    
-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-	 ci++, compptr++) {
-      if (cc == compptr->component_id)
-	goto id_found;
-    }
-
-    ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
-
-  id_found:
-
-    cinfo->cur_comp_info[i] = compptr;
-    compptr->dc_tbl_no = (c >> 4) & 15;
-    compptr->ac_tbl_no = (c     ) & 15;
-    
-    TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
-	     compptr->dc_tbl_no, compptr->ac_tbl_no);
-  }
-
-  /* Collect the additional scan parameters Ss, Se, Ah/Al.
-   * Currently we just validate that they are right for sequential JPEG.
-   * This ought to be an error condition, but we make it a warning because
-   * there are some baseline files out there with all zeroes in these bytes.
-   * (Thank you, Logitech :-(.)
-   */
-  INPUT_BYTE(cinfo, c, return FALSE);
-  INPUT_BYTE(cinfo, cc, return FALSE);
-  INPUT_BYTE(cinfo, ccc, return FALSE);
-  if (c != 0 || cc != DCTSIZE2-1 || ccc != 0)
-    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
-
-  /* Prepare to scan data & restart markers */
-  cinfo->marker->next_restart_num = 0;
-
-  INPUT_SYNC(cinfo);
-  return TRUE;
-}
-
-
-METHODDEF boolean
-get_app0 (j_decompress_ptr cinfo)
-/* Process an APP0 marker */
-{
-#define JFIF_LEN 14
-  INT32 length;
-  UINT8 b[JFIF_LEN];
-  int buffp;
-  INPUT_VARS(cinfo);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-  length -= 2;
-
-  /* See if a JFIF APP0 marker is present */
-
-  if (length >= JFIF_LEN) {
-    for (buffp = 0; buffp < JFIF_LEN; buffp++)
-      INPUT_BYTE(cinfo, b[buffp], return FALSE);
-    length -= JFIF_LEN;
-
-    if (b[0]==0x4A && b[1]==0x46 && b[2]==0x49 && b[3]==0x46 && b[4]==0) {
-      /* Found JFIF APP0 marker: check version */
-      /* Major version must be 1 */
-      if (b[5] != 1)
-	ERREXIT2(cinfo, JERR_JFIF_MAJOR, b[5], b[6]);
-      /* Minor version should be 0..2, but try to process anyway if newer */
-      if (b[6] > 2)
-	TRACEMS2(cinfo, 1, JTRC_JFIF_MINOR, b[5], b[6]);
-      /* Save info */
-      cinfo->saw_JFIF_marker = TRUE;
-      cinfo->density_unit = b[7];
-      cinfo->X_density = (b[8] << 8) + b[9];
-      cinfo->Y_density = (b[10] << 8) + b[11];
-      TRACEMS3(cinfo, 1, JTRC_JFIF,
-	       cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
-      if (b[12] | b[13])
-	TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL, b[12], b[13]);
-      if (length != ((INT32) b[12] * (INT32) b[13] * (INT32) 3))
-	TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) length);
-    } else {
-      /* Start of APP0 does not match "JFIF" */
-      TRACEMS1(cinfo, 1, JTRC_APP0, (int) length + JFIF_LEN);
-    }
-  } else {
-    /* Too short to be JFIF marker */
-    TRACEMS1(cinfo, 1, JTRC_APP0, (int) length);
-  }
-
-  INPUT_SYNC(cinfo);
-  if (length > 0)		/* skip any remaining data -- could be lots */
-    (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
-  return TRUE;
-}
-
-
-METHODDEF boolean
-get_app14 (j_decompress_ptr cinfo)
-/* Process an APP14 marker */
-{
-#define ADOBE_LEN 12
-  INT32 length;
-  UINT8 b[ADOBE_LEN];
-  int buffp;
-  unsigned int version, flags0, flags1, transform;
-  INPUT_VARS(cinfo);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-  length -= 2;
-
-  /* See if an Adobe APP14 marker is present */
-
-  if (length >= ADOBE_LEN) {
-    for (buffp = 0; buffp < ADOBE_LEN; buffp++)
-      INPUT_BYTE(cinfo, b[buffp], return FALSE);
-    length -= ADOBE_LEN;
-
-    if (b[0]==0x41 && b[1]==0x64 && b[2]==0x6F && b[3]==0x62 && b[4]==0x65) {
-      /* Found Adobe APP14 marker */
-      version = (b[5] << 8) + b[6];
-      flags0 = (b[7] << 8) + b[8];
-      flags1 = (b[9] << 8) + b[10];
-      transform = b[11];
-      TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
-      cinfo->saw_Adobe_marker = TRUE;
-      cinfo->Adobe_transform = (UINT8) transform;
-    } else {
-      /* Start of APP14 does not match "Adobe" */
-      TRACEMS1(cinfo, 1, JTRC_APP14, (int) length + ADOBE_LEN);
-    }
-  } else {
-    /* Too short to be Adobe marker */
-    TRACEMS1(cinfo, 1, JTRC_APP14, (int) length);
-  }
-
-  INPUT_SYNC(cinfo);
-  if (length > 0)		/* skip any remaining data -- could be lots */
-    (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
-  return TRUE;
-}
-
-
-LOCAL boolean
-get_dac (j_decompress_ptr cinfo)
-/* Process a DAC marker */
-{
-  INT32 length;
-  int index, val;
-  INPUT_VARS(cinfo);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-  length -= 2;
-  
-  while (length > 0) {
-    INPUT_BYTE(cinfo, index, return FALSE);
-    INPUT_BYTE(cinfo, val, return FALSE);
-
-    length -= 2;
-
-    TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
-
-    if (index < 0 || index >= (2*NUM_ARITH_TBLS))
-      ERREXIT1(cinfo, JERR_DAC_INDEX, index);
-
-    if (index >= NUM_ARITH_TBLS) { /* define AC table */
-      cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
-    } else {			/* define DC table */
-      cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
-      cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
-      if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
-	ERREXIT1(cinfo, JERR_DAC_VALUE, val);
-    }
-  }
-
-  INPUT_SYNC(cinfo);
-  return TRUE;
-}
-
-
-LOCAL boolean
-get_dht (j_decompress_ptr cinfo)
-/* Process a DHT marker */
-{
-  INT32 length;
-  UINT8 bits[17];
-  UINT8 huffval[256];
-  int i, index, count;
-  JHUFF_TBL **htblptr;
-  INPUT_VARS(cinfo);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-  length -= 2;
-  
-  while (length > 0) {
-    INPUT_BYTE(cinfo, index, return FALSE);
-
-    TRACEMS1(cinfo, 1, JTRC_DHT, index);
-      
-    bits[0] = 0;
-    count = 0;
-    for (i = 1; i <= 16; i++) {
-      INPUT_BYTE(cinfo, bits[i], return FALSE);
-      count += bits[i];
-    }
-
-    length -= 1 + 16;
-
-    TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
-	     bits[1], bits[2], bits[3], bits[4],
-	     bits[5], bits[6], bits[7], bits[8]);
-    TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
-	     bits[9], bits[10], bits[11], bits[12],
-	     bits[13], bits[14], bits[15], bits[16]);
-
-    if (count > 256 || ((INT32) count) > length)
-      ERREXIT(cinfo, JERR_DHT_COUNTS);
-
-    for (i = 0; i < count; i++)
-      INPUT_BYTE(cinfo, huffval[i], return FALSE);
-
-    length -= count;
-
-    if (index & 0x10) {		/* AC table definition */
-      index -= 0x10;
-      htblptr = &cinfo->ac_huff_tbl_ptrs[index];
-    } else {			/* DC table definition */
-      htblptr = &cinfo->dc_huff_tbl_ptrs[index];
-    }
-
-    if (index < 0 || index >= NUM_HUFF_TBLS)
-      ERREXIT1(cinfo, JERR_DHT_INDEX, index);
-
-    if (*htblptr == NULL)
-      *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
-  
-    MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
-    MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
-  }
-
-  INPUT_SYNC(cinfo);
-  return TRUE;
-}
-
-
-LOCAL boolean
-get_dqt (j_decompress_ptr cinfo)
-/* Process a DQT marker */
-{
-  INT32 length;
-  int n, i, prec;
-  unsigned int tmp;
-  JQUANT_TBL *quant_ptr;
-  INPUT_VARS(cinfo);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-  length -= 2;
-
-  while (length > 0) {
-    INPUT_BYTE(cinfo, n, return FALSE);
-    prec = n >> 4;
-    n &= 0x0F;
-
-    TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
-
-    if (n >= NUM_QUANT_TBLS)
-      ERREXIT1(cinfo, JERR_DQT_INDEX, n);
-      
-    if (cinfo->quant_tbl_ptrs[n] == NULL)
-      cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
-    quant_ptr = cinfo->quant_tbl_ptrs[n];
-
-    for (i = 0; i < DCTSIZE2; i++) {
-      if (prec)
-	INPUT_2BYTES(cinfo, tmp, return FALSE);
-      else
-	INPUT_BYTE(cinfo, tmp, return FALSE);
-      quant_ptr->quantval[i] = (UINT16) tmp;
-    }
-
-    for (i = 0; i < DCTSIZE2; i += 8) {
-      TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
-	       quant_ptr->quantval[i  ], quant_ptr->quantval[i+1],
-	       quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
-	       quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
-	       quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
-    }
-
-    length -= DCTSIZE2+1;
-    if (prec) length -= DCTSIZE2;
-  }
-
-  INPUT_SYNC(cinfo);
-  return TRUE;
-}
-
-
-LOCAL boolean
-get_dri (j_decompress_ptr cinfo)
-/* Process a DRI marker */
-{
-  INT32 length;
-  unsigned int tmp;
-  INPUT_VARS(cinfo);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-  
-  if (length != 4)
-    ERREXIT(cinfo, JERR_BAD_LENGTH);
-
-  INPUT_2BYTES(cinfo, tmp, return FALSE);
-
-  TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
-
-  cinfo->restart_interval = tmp;
-
-  INPUT_SYNC(cinfo);
-  return TRUE;
-}
-
-
-METHODDEF boolean
-skip_variable (j_decompress_ptr cinfo)
-/* Skip over an unknown or uninteresting variable-length marker */
-{
-  INT32 length;
-  INPUT_VARS(cinfo);
-
-  INPUT_2BYTES(cinfo, length, return FALSE);
-  
-  TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
-
-  INPUT_SYNC(cinfo);		/* do before skip_input_data */
-  (*cinfo->src->skip_input_data) (cinfo, (long) length - 2L);
-
-  return TRUE;
-}
-
-
-/*
- * Find the next JPEG marker, save it in cinfo->unread_marker.
- * Returns FALSE if had to suspend before reaching a marker;
- * in that case cinfo->unread_marker is unchanged.
- *
- * Note that the result might not be a valid marker code,
- * but it will never be 0 or FF.
- */
-
-LOCAL boolean
-next_marker (j_decompress_ptr cinfo)
-{
-  int c;
-  INPUT_VARS(cinfo);
-
-  for (;;) {
-    INPUT_BYTE(cinfo, c, return FALSE);
-    /* Skip any non-FF bytes.
-     * This may look a bit inefficient, but it will not occur in a valid file.
-     * We sync after each discarded byte so that a suspending data source
-     * can discard the byte from its buffer.
-     */
-    while (c != 0xFF) {
-      cinfo->marker->discarded_bytes++;
-      INPUT_SYNC(cinfo);
-      INPUT_BYTE(cinfo, c, return FALSE);
-    }
-    /* This loop swallows any duplicate FF bytes.  Extra FFs are legal as
-     * pad bytes, so don't count them in discarded_bytes.  We assume there
-     * will not be so many consecutive FF bytes as to overflow a suspending
-     * data source's input buffer.
-     */
-    do {
-      INPUT_BYTE(cinfo, c, return FALSE);
-    } while (c == 0xFF);
-    if (c != 0)
-      break;			/* found a valid marker, exit loop */
-    /* Reach here if we found a stuffed-zero data sequence (FF/00).
-     * Discard it and loop back to try again.
-     */
-    cinfo->marker->discarded_bytes += 2;
-    INPUT_SYNC(cinfo);
-  }
-
-  if (cinfo->marker->discarded_bytes != 0) {
-    WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
-    cinfo->marker->discarded_bytes = 0;
-  }
-
-  cinfo->unread_marker = c;
-
-  INPUT_SYNC(cinfo);
-  return TRUE;
-}
-
-
-LOCAL boolean
-first_marker (j_decompress_ptr cinfo)
-/* Like next_marker, but used to obtain the initial SOI marker. */
-/* For this marker, we do not allow preceding garbage or fill; otherwise,
- * we might well scan an entire input file before realizing it ain't JPEG.
- * If an application wants to process non-JFIF files, it must seek to the
- * SOI before calling the JPEG library.
- */
-{
-  int c, c2;
-  INPUT_VARS(cinfo);
-
-  INPUT_BYTE(cinfo, c, return FALSE);
-  INPUT_BYTE(cinfo, c2, return FALSE);
-  if (c != 0xFF || c2 != (int) M_SOI)
-    ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
-
-  cinfo->unread_marker = c2;
-
-  INPUT_SYNC(cinfo);
-  return TRUE;
-}
-
-
-/*
- * Read markers until SOS or EOI.
- *
- * Returns same codes as are defined for jpeg_read_header,
- * but HEADER_OK and HEADER_TABLES_ONLY merely indicate which marker type
- * stopped the scan --- they do not necessarily mean the file is valid.
- */
-
-METHODDEF int
-read_markers (j_decompress_ptr cinfo)
-{
-  /* Outer loop repeats once for each marker. */
-  for (;;) {
-    /* Collect the marker proper, unless we already did. */
-    /* NB: first_marker() enforces the requirement that SOI appear first. */
-    if (cinfo->unread_marker == 0) {
-      if (! cinfo->marker->saw_SOI) {
-	if (! first_marker(cinfo))
-	  return JPEG_SUSPENDED;
-      } else {
-	if (! next_marker(cinfo))
-	  return JPEG_SUSPENDED;
-      }
-    }
-    /* At this point cinfo->unread_marker contains the marker code and the
-     * input point is just past the marker proper, but before any parameters.
-     * A suspension will cause us to return with this state still true.
-     */
-    switch (cinfo->unread_marker) {
-    case M_SOI:
-      if (! get_soi(cinfo))
-	return JPEG_SUSPENDED;
-      break;
-
-    case M_SOF0:		/* Baseline */
-    case M_SOF1:		/* Extended sequential, Huffman */
-      cinfo->arith_code = FALSE;
-      if (! get_sof(cinfo))
-	return JPEG_SUSPENDED;
-      break;
-
-    case M_SOF9:		/* Extended sequential, arithmetic */
-      cinfo->arith_code = TRUE;
-      if (! get_sof(cinfo))
-	return JPEG_SUSPENDED;
-      break;
-
-    /* Currently unsupported SOFn types */
-    case M_SOF2:		/* Progressive, Huffman */
-    case M_SOF3:		/* Lossless, Huffman */
-    case M_SOF5:		/* Differential sequential, Huffman */
-    case M_SOF6:		/* Differential progressive, Huffman */
-    case M_SOF7:		/* Differential lossless, Huffman */
-    case M_JPG:			/* Reserved for JPEG extensions */
-    case M_SOF10:		/* Progressive, arithmetic */
-    case M_SOF11:		/* Lossless, arithmetic */
-    case M_SOF13:		/* Differential sequential, arithmetic */
-    case M_SOF14:		/* Differential progressive, arithmetic */
-    case M_SOF15:		/* Differential lossless, arithmetic */
-      ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
-      break;
-
-    case M_SOS:
-      if (! get_sos(cinfo))
-	return JPEG_SUSPENDED;
-      cinfo->unread_marker = 0;	/* processed the marker */
-      return JPEG_HEADER_OK;	/* return value for SOS found */
-    
-    case M_EOI:
-      TRACEMS(cinfo, 1, JTRC_EOI);
-      cinfo->unread_marker = 0;	/* processed the marker */
-      return JPEG_HEADER_TABLES_ONLY; /* return value for EOI found */
-      
-    case M_DAC:
-      if (! get_dac(cinfo))
-	return JPEG_SUSPENDED;
-      break;
-      
-    case M_DHT:
-      if (! get_dht(cinfo))
-	return JPEG_SUSPENDED;
-      break;
-      
-    case M_DQT:
-      if (! get_dqt(cinfo))
-	return JPEG_SUSPENDED;
-      break;
-      
-    case M_DRI:
-      if (! get_dri(cinfo))
-	return JPEG_SUSPENDED;
-      break;
-      
-    case M_APP0:
-    case M_APP1:
-    case M_APP2:
-    case M_APP3:
-    case M_APP4:
-    case M_APP5:
-    case M_APP6:
-    case M_APP7:
-    case M_APP8:
-    case M_APP9:
-    case M_APP10:
-    case M_APP11:
-    case M_APP12:
-    case M_APP13:
-    case M_APP14:
-    case M_APP15:
-      if (! (*cinfo->marker->process_APPn[cinfo->unread_marker - (int) M_APP0]) (cinfo))
-	return JPEG_SUSPENDED;
-      break;
-      
-    case M_COM:
-      if (! (*cinfo->marker->process_COM) (cinfo))
-	return JPEG_SUSPENDED;
-      break;
-
-    case M_RST0:		/* these are all parameterless */
-    case M_RST1:
-    case M_RST2:
-    case M_RST3:
-    case M_RST4:
-    case M_RST5:
-    case M_RST6:
-    case M_RST7:
-    case M_TEM:
-      TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
-      break;
-
-    case M_DNL:			/* Ignore DNL ... perhaps the wrong thing */
-      if (! skip_variable(cinfo))
-	return JPEG_SUSPENDED;
-      break;
-
-    default:			/* must be DHP, EXP, JPGn, or RESn */
-      /* For now, we treat the reserved markers as fatal errors since they are
-       * likely to be used to signal incompatible JPEG Part 3 extensions.
-       * Once the JPEG 3 version-number marker is well defined, this code
-       * ought to change!
-       */
-      ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
-      break;
-    }
-    /* Successfully processed marker, so reset state variable */
-    cinfo->unread_marker = 0;
-  } /* end loop */
-}
-
-
-/*
- * Read a restart marker, which is expected to appear next in the datastream;
- * if the marker is not there, take appropriate recovery action.
- * Returns FALSE if suspension is required.
- *
- * This is called by the entropy decoder after it has read an appropriate
- * number of MCUs.  cinfo->unread_marker may be nonzero if the entropy decoder
- * has already read a marker from the data source.  Under normal conditions
- * cinfo->unread_marker will be reset to 0 before returning; if not reset,
- * it holds a marker which the decoder will be unable to read past.
- */
-
-METHODDEF boolean
-read_restart_marker (j_decompress_ptr cinfo)
-{
-  /* Obtain a marker unless we already did. */
-  /* Note that next_marker will complain if it skips any data. */
-  if (cinfo->unread_marker == 0) {
-    if (! next_marker(cinfo))
-      return FALSE;
-  }
-
-  if (cinfo->unread_marker ==
-      ((int) M_RST0 + cinfo->marker->next_restart_num)) {
-    /* Normal case --- swallow the marker and let entropy decoder continue */
-    TRACEMS1(cinfo, 2, JTRC_RST, cinfo->marker->next_restart_num);
-    cinfo->unread_marker = 0;
-  } else {
-    /* Uh-oh, the restart markers have been messed up. */
-    /* Let the data source manager determine how to resync. */
-    if (! (*cinfo->src->resync_to_restart) (cinfo))
-      return FALSE;
-  }
-
-  /* Update next-restart state */
-  cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
-
-  return TRUE;
-}
-
-
-/*
- * This is the default resync_to_restart method for data source managers
- * to use if they don't have any better approach.  Some data source managers
- * may be able to back up, or may have additional knowledge about the data
- * which permits a more intelligent recovery strategy; such managers would
- * presumably supply their own resync method.
- *
- * read_restart_marker calls resync_to_restart if it finds a marker other than
- * the restart marker it was expecting.  (This code is *not* used unless
- * a nonzero restart interval has been declared.)  cinfo->unread_marker is
- * the marker code actually found (might be anything, except 0 or FF).
- * The desired restart marker is indicated by cinfo->marker->next_restart_num.
- * This routine is supposed to apply whatever error recovery strategy seems
- * appropriate in order to position the input stream to the next data segment.
- * Note that cinfo->unread_marker is treated as a marker appearing before
- * the current data-source input point; usually it should be reset to zero
- * before returning.
- * Returns FALSE if suspension is required.
- *
- * This implementation is substantially constrained by wanting to treat the
- * input as a data stream; this means we can't back up.  Therefore, we have
- * only the following actions to work with:
- *   1. Simply discard the marker and let the entropy decoder resume at next
- *      byte of file.
- *   2. Read forward until we find another marker, discarding intervening
- *      data.  (In theory we could look ahead within the current bufferload,
- *      without having to discard data if we don't find the desired marker.
- *      This idea is not implemented here, in part because it makes behavior
- *      dependent on buffer size and chance buffer-boundary positions.)
- *   3. Leave the marker unread (by failing to zero cinfo->unread_marker).
- *      This will cause the entropy decoder to process an empty data segment,
- *      inserting dummy zeroes, and then we will reprocess the marker.
- *
- * #2 is appropriate if we think the desired marker lies ahead, while #3 is
- * appropriate if the found marker is a future restart marker (indicating
- * that we have missed the desired restart marker, probably because it got
- * corrupted).
- * We apply #2 or #3 if the found marker is a restart marker no more than
- * two counts behind or ahead of the expected one.  We also apply #2 if the
- * found marker is not a legal JPEG marker code (it's certainly bogus data).
- * If the found marker is a restart marker more than 2 counts away, we do #1
- * (too much risk that the marker is erroneous; with luck we will be able to
- * resync at some future point).
- * For any valid non-restart JPEG marker, we apply #3.  This keeps us from
- * overrunning the end of a scan.  An implementation limited to single-scan
- * files might find it better to apply #2 for markers other than EOI, since
- * any other marker would have to be bogus data in that case.
- */
-
-GLOBAL boolean
-jpeg_resync_to_restart (j_decompress_ptr cinfo)
-{
-  int marker = cinfo->unread_marker;
-  int desired = cinfo->marker->next_restart_num;
-  int action = 1;
-  
-  /* Always put up a warning. */
-  WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
-  
-  /* Outer loop handles repeated decision after scanning forward. */
-  for (;;) {
-    if (marker < (int) M_SOF0)
-      action = 2;		/* invalid marker */
-    else if (marker < (int) M_RST0 || marker > (int) M_RST7)
-      action = 3;		/* valid non-restart marker */
-    else {
-      if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
-	  marker == ((int) M_RST0 + ((desired+2) & 7)))
-	action = 3;		/* one of the next two expected restarts */
-      else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
-	       marker == ((int) M_RST0 + ((desired-2) & 7)))
-	action = 2;		/* a prior restart, so advance */
-      else
-	action = 1;		/* desired restart or too far away */
-    }
-    TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
-    switch (action) {
-    case 1:
-      /* Discard marker and let entropy decoder resume processing. */
-      cinfo->unread_marker = 0;
-      return TRUE;
-    case 2:
-      /* Scan to the next marker, and repeat the decision loop. */
-      if (! next_marker(cinfo))
-	return FALSE;
-      marker = cinfo->unread_marker;
-      break;
-    case 3:
-      /* Return without advancing past this marker. */
-      /* Entropy decoder will be forced to process an empty segment. */
-      return TRUE;
-    }
-  } /* end loop */
-}
-
-
-/*
- * Reset marker processing state to begin a fresh datastream.
- */
-
-METHODDEF void
-reset_marker_reader (j_decompress_ptr cinfo)
-{
-  cinfo->unread_marker = 0;	    /* no pending marker */
-  cinfo->marker->saw_SOI = FALSE;   /* set internal state too */
-  cinfo->marker->saw_SOF = FALSE;
-  cinfo->marker->discarded_bytes = 0;
-  cinfo->comp_info = NULL;	    /* until allocated by get_sof */
-}
-
-
-/*
- * Initialize the marker reader module.
- */
-
-GLOBAL void
-jinit_marker_reader (j_decompress_ptr cinfo)
-{
-  int i;
-
-  /* Create subobject in permanent pool */
-  if (cinfo->marker == NULL) {	/* first time for this JPEG object? */
-    cinfo->marker = (struct jpeg_marker_reader *)
-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
-				  SIZEOF(struct jpeg_marker_reader));
-  }
-  /* Initialize method pointers */
-  cinfo->marker->reset_marker_reader = reset_marker_reader;
-  cinfo->marker->read_markers = read_markers;
-  cinfo->marker->read_restart_marker = read_restart_marker;
-  cinfo->marker->process_COM = skip_variable;
-  for (i = 0; i < 16; i++)
-    cinfo->marker->process_APPn[i] = skip_variable;
-  cinfo->marker->process_APPn[0] = get_app0;
-  cinfo->marker->process_APPn[14] = get_app14;
-  /* Reset marker processing state */
-  reset_marker_reader(cinfo);
-}
diff --git a/jpeg/jdmaster.c b/jpeg/jdmaster.c
deleted file mode 100644
index ca579da53b6ebf69dfada2c3b79dd071f41fd80f..0000000000000000000000000000000000000000
--- a/jpeg/jdmaster.c
+++ /dev/null
@@ -1,648 +0,0 @@
-/*
- * jdmaster.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains master control logic for the JPEG decompressor.
- * These routines are concerned with selecting the modules to be executed
- * and with determining the number of passes and the work to be done in each
- * pass.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef enum {
-	main_pass,		/* read and process a single-scan file */
-	preread_pass,		/* read one scan of a multi-scan file */
-	output_pass,		/* primary processing pass for multi-scan */
-	post_pass		/* optional post-pass for 2-pass quant. */
-} D_PASS_TYPE;
-
-typedef struct {
-  struct jpeg_decomp_master pub; /* public fields */
-
-  boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
-
-  D_PASS_TYPE pass_type;	/* the type of the current pass */
-
-  int pass_number;		/* # of passes completed */
-  int total_passes;		/* estimated total # of passes needed */
-
-  boolean need_post_pass;	/* are we using full two-pass quantization? */
-} my_decomp_master;
-
-typedef my_decomp_master * my_master_ptr;
-
-
-/*
- * Determine whether merged upsample/color conversion should be used.
- * CRUCIAL: this must match the actual capabilities of jdmerge.c!
- */
-
-LOCAL boolean
-use_merged_upsample (j_decompress_ptr cinfo)
-{
-#ifdef UPSAMPLE_MERGING_SUPPORTED
-  /* Merging is the equivalent of plain box-filter upsampling */
-  if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
-    return FALSE;
-  /* jdmerge.c only supports YCC=>RGB color conversion */
-  if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
-      cinfo->out_color_space != JCS_RGB ||
-      cinfo->out_color_components != RGB_PIXELSIZE)
-    return FALSE;
-  /* and it only handles 2h1v or 2h2v sampling ratios */
-  if (cinfo->comp_info[0].h_samp_factor != 2 ||
-      cinfo->comp_info[1].h_samp_factor != 1 ||
-      cinfo->comp_info[2].h_samp_factor != 1 ||
-      cinfo->comp_info[0].v_samp_factor >  2 ||
-      cinfo->comp_info[1].v_samp_factor != 1 ||
-      cinfo->comp_info[2].v_samp_factor != 1)
-    return FALSE;
-  /* furthermore, it doesn't work if we've scaled the IDCTs differently */
-  if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
-      cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
-      cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
-    return FALSE;
-  /* ??? also need to test for upsample-time rescaling, when & if supported */
-  /* by golly, it'll work... */
-  return TRUE;
-#else
-  return FALSE;
-#endif
-}
-
-
-/*
- * Support routines that do various essential calculations.
- *
- * jpeg_calc_output_dimensions is exported for possible use by application.
- * Hence it mustn't do anything that can't be done twice.
- */
-
-GLOBAL void
-jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
-/* Do computations that are needed before master selection phase */
-{
-  int ci;
-  jpeg_component_info *compptr;
-
-  /* Compute maximum sampling factors; check factor validity */
-  cinfo->max_h_samp_factor = 1;
-  cinfo->max_v_samp_factor = 1;
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
-	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
-      ERREXIT(cinfo, JERR_BAD_SAMPLING);
-    cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
-				   compptr->h_samp_factor);
-    cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
-				   compptr->v_samp_factor);
-  }
-
-  /* Compute actual output image dimensions and DCT scaling choices. */
-#ifdef IDCT_SCALING_SUPPORTED
-  if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
-    /* Provide 1/8 scaling */
-    cinfo->output_width = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_width, 8L);
-    cinfo->output_height = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_height, 8L);
-    cinfo->min_DCT_scaled_size = 1;
-  } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
-    /* Provide 1/4 scaling */
-    cinfo->output_width = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_width, 4L);
-    cinfo->output_height = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_height, 4L);
-    cinfo->min_DCT_scaled_size = 2;
-  } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
-    /* Provide 1/2 scaling */
-    cinfo->output_width = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_width, 2L);
-    cinfo->output_height = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_height, 2L);
-    cinfo->min_DCT_scaled_size = 4;
-  } else {
-    /* Provide 1/1 scaling */
-    cinfo->output_width = cinfo->image_width;
-    cinfo->output_height = cinfo->image_height;
-    cinfo->min_DCT_scaled_size = DCTSIZE;
-  }
-  /* In selecting the actual DCT scaling for each component, we try to
-   * scale up the chroma components via IDCT scaling rather than upsampling.
-   * This saves time if the upsampler gets to use 1:1 scaling.
-   * Note this code assumes that the supported DCT scalings are powers of 2.
-   */
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    int ssize = cinfo->min_DCT_scaled_size;
-    while (ssize < DCTSIZE &&
-	   (compptr->h_samp_factor * ssize * 2 <=
-	    cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
-	   (compptr->v_samp_factor * ssize * 2 <=
-	    cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
-      ssize = ssize * 2;
-    }
-    compptr->DCT_scaled_size = ssize;
-  }
-#else /* !IDCT_SCALING_SUPPORTED */
-  /* Hardwire it to "no scaling" */
-  cinfo->output_width = cinfo->image_width;
-  cinfo->output_height = cinfo->image_height;
-  cinfo->min_DCT_scaled_size = DCTSIZE;
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    compptr->DCT_scaled_size = DCTSIZE;
-  }
-#endif /* IDCT_SCALING_SUPPORTED */
-
-  /* Report number of components in selected colorspace. */
-  /* Probably this should be in the color conversion module... */
-  switch (cinfo->out_color_space) {
-  case JCS_GRAYSCALE:
-    cinfo->out_color_components = 1;
-    break;
-  case JCS_RGB:
-#if RGB_PIXELSIZE != 3
-    cinfo->out_color_components = RGB_PIXELSIZE;
-    break;
-#endif /* else share code with YCbCr */
-  case JCS_YCbCr:
-    cinfo->out_color_components = 3;
-    break;
-  case JCS_CMYK:
-  case JCS_YCCK:
-    cinfo->out_color_components = 4;
-    break;
-  default:			/* else must be same colorspace as in file */
-    cinfo->out_color_components = cinfo->num_components;
-    break;
-  }
-  cinfo->output_components = (cinfo->quantize_colors ? 1 :
-			      cinfo->out_color_components);
-
-  /* See if upsampler will want to emit more than one row at a time */
-  if (use_merged_upsample(cinfo))
-    cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
-  else
-    cinfo->rec_outbuf_height = 1;
-
-  /* Compute various sampling-related dimensions.
-   * Some of these are of interest to the application if it is dealing with
-   * "raw" (not upsampled) output, so we do the calculations here.
-   */
-
-  /* Compute dimensions of components */
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    /* Size in DCT blocks */
-    compptr->width_in_blocks = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
-		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
-    compptr->height_in_blocks = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
-		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
-    /* Size in samples, after IDCT scaling */
-    compptr->downsampled_width = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_width *
-		    (long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
-		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
-    compptr->downsampled_height = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_height *
-		    (long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
-		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
-    /* Mark component needed, until color conversion says otherwise */
-    compptr->component_needed = TRUE;
-  }
-
-  /* Compute number of fully interleaved MCU rows (number of times that
-   * main controller will call coefficient controller).
-   */
-  cinfo->total_iMCU_rows = (JDIMENSION)
-    jdiv_round_up((long) cinfo->image_height,
-		  (long) (cinfo->max_v_samp_factor*DCTSIZE));
-}
-
-
-LOCAL void
-per_scan_setup (j_decompress_ptr cinfo)
-/* Do computations that are needed before processing a JPEG scan */
-/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
-{
-  int ci, mcublks, tmp;
-  jpeg_component_info *compptr;
-  
-  if (cinfo->comps_in_scan == 1) {
-    
-    /* Noninterleaved (single-component) scan */
-    compptr = cinfo->cur_comp_info[0];
-    
-    /* Overall image size in MCUs */
-    cinfo->MCUs_per_row = compptr->width_in_blocks;
-    cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
-    
-    /* For noninterleaved scan, always one block per MCU */
-    compptr->MCU_width = 1;
-    compptr->MCU_height = 1;
-    compptr->MCU_blocks = 1;
-    compptr->MCU_sample_width = compptr->DCT_scaled_size;
-    compptr->last_col_width = 1;
-    compptr->last_row_height = 1;
-    
-    /* Prepare array describing MCU composition */
-    cinfo->blocks_in_MCU = 1;
-    cinfo->MCU_membership[0] = 0;
-    
-  } else {
-    
-    /* Interleaved (multi-component) scan */
-    if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
-      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
-	       MAX_COMPS_IN_SCAN);
-    
-    /* Overall image size in MCUs */
-    cinfo->MCUs_per_row = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_width,
-		    (long) (cinfo->max_h_samp_factor*DCTSIZE));
-    cinfo->MCU_rows_in_scan = (JDIMENSION)
-      jdiv_round_up((long) cinfo->image_height,
-		    (long) (cinfo->max_v_samp_factor*DCTSIZE));
-    
-    cinfo->blocks_in_MCU = 0;
-    
-    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
-      compptr = cinfo->cur_comp_info[ci];
-      /* Sampling factors give # of blocks of component in each MCU */
-      compptr->MCU_width = compptr->h_samp_factor;
-      compptr->MCU_height = compptr->v_samp_factor;
-      compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
-      compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
-      /* Figure number of non-dummy blocks in last MCU column & row */
-      tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
-      if (tmp == 0) tmp = compptr->MCU_width;
-      compptr->last_col_width = tmp;
-      tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
-      if (tmp == 0) tmp = compptr->MCU_height;
-      compptr->last_row_height = tmp;
-      /* Prepare array describing MCU composition */
-      mcublks = compptr->MCU_blocks;
-      if (cinfo->blocks_in_MCU + mcublks > MAX_BLOCKS_IN_MCU)
-	ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
-      while (mcublks-- > 0) {
-	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
-      }
-    }
-    
-  }
-}
-
-
-/*
- * Several decompression processes need to range-limit values to the range
- * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
- * due to noise introduced by quantization, roundoff error, etc.  These
- * processes are inner loops and need to be as fast as possible.  On most
- * machines, particularly CPUs with pipelines or instruction prefetch,
- * a (subscript-check-less) C table lookup
- *		x = sample_range_limit[x];
- * is faster than explicit tests
- *		if (x < 0)  x = 0;
- *		else if (x > MAXJSAMPLE)  x = MAXJSAMPLE;
- * These processes all use a common table prepared by the routine below.
- *
- * For most steps we can mathematically guarantee that the initial value
- * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
- * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient.  But for the initial
- * limiting step (just after the IDCT), a wildly out-of-range value is 
- * possible if the input data is corrupt.  To avoid any chance of indexing
- * off the end of memory and getting a bad-pointer trap, we perform the
- * post-IDCT limiting thus:
- *		x = range_limit[x & MASK];
- * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
- * samples.  Under normal circumstances this is more than enough range and
- * a correct output will be generated; with bogus input data the mask will
- * cause wraparound, and we will safely generate a bogus-but-in-range output.
- * For the post-IDCT step, we want to convert the data from signed to unsigned
- * representation by adding CENTERJSAMPLE at the same time that we limit it.
- * So the post-IDCT limiting table ends up looking like this:
- *   CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
- *   MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
- *   0          (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
- *   0,1,...,CENTERJSAMPLE-1
- * Negative inputs select values from the upper half of the table after
- * masking.
- *
- * We can save some space by overlapping the start of the post-IDCT table
- * with the simpler range limiting table.  The post-IDCT table begins at
- * sample_range_limit + CENTERJSAMPLE.
- *
- * Note that the table is allocated in near data space on PCs; it's small
- * enough and used often enough to justify this.
- */
-
-LOCAL void
-prepare_range_limit_table (j_decompress_ptr cinfo)
-/* Allocate and fill in the sample_range_limit table */
-{
-  JSAMPLE * table;
-  int i;
-
-  table = (JSAMPLE *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-		(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
-  table += (MAXJSAMPLE+1);	/* allow negative subscripts of simple table */
-  cinfo->sample_range_limit = table;
-  /* First segment of "simple" table: limit[x] = 0 for x < 0 */
-  MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
-  /* Main part of "simple" table: limit[x] = x */
-  for (i = 0; i <= MAXJSAMPLE; i++)
-    table[i] = (JSAMPLE) i;
-  table += CENTERJSAMPLE;	/* Point to where post-IDCT table starts */
-  /* End of simple table, rest of first half of post-IDCT table */
-  for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
-    table[i] = MAXJSAMPLE;
-  /* Second half of post-IDCT table */
-  MEMZERO(table + (2 * (MAXJSAMPLE+1)),
-	  (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
-  MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
-	  cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
-}
-
-
-/*
- * Master selection of decompression modules.
- * This is done once at the start of processing an image.  We determine
- * which modules will be used and give them appropriate initialization calls.
- *
- * Note that this is called only after jpeg_read_header has finished.
- * We therefore know what is in the SOF and (first) SOS markers.
- */
-
-LOCAL void
-master_selection (j_decompress_ptr cinfo)
-{
-  my_master_ptr master = (my_master_ptr) cinfo->master;
-  long samplesperrow;
-  JDIMENSION jd_samplesperrow;
-
-  /* Initialize dimensions and other stuff */
-  jpeg_calc_output_dimensions(cinfo);
-  prepare_range_limit_table(cinfo);
-
-  /* Width of an output scanline must be representable as JDIMENSION. */
-  samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
-  jd_samplesperrow = (JDIMENSION) samplesperrow;
-  if ((long) jd_samplesperrow != samplesperrow)
-    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
-
-  /* Initialize my private state */
-  master->pub.eoi_processed = FALSE;
-  master->pass_number = 0;
-  master->need_post_pass = FALSE;
-  if (cinfo->comps_in_scan == cinfo->num_components) {
-    master->pass_type = main_pass;
-    master->total_passes = 1;
-  } else {
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-    master->pass_type = preread_pass;
-    /* Assume there is a separate scan for each component; */
-    /* if partially interleaved, we'll increment pass_number appropriately */
-    master->total_passes = cinfo->num_components + 1;
-#else
-    ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
-  }
-  master->using_merged_upsample = use_merged_upsample(cinfo);
-
-  /* There's not a lot of smarts here right now, but it'll get more
-   * complicated when we have multiple implementations available...
-   */
-
-  /* Color quantizer selection */
-  if (cinfo->quantize_colors) {
-    if (cinfo->raw_data_out)
-      ERREXIT(cinfo, JERR_NOTIMPL);
-#ifdef QUANT_2PASS_SUPPORTED
-    /* 2-pass quantizer only works in 3-component color space.
-     * We use the "2-pass" code in a single pass if a colormap is given.
-     */
-    if (cinfo->out_color_components != 3)
-      cinfo->two_pass_quantize = FALSE;
-    else if (cinfo->colormap != NULL)
-      cinfo->two_pass_quantize = TRUE;
-#else
-    /* Force 1-pass quantize if we don't have 2-pass code compiled. */
-    cinfo->two_pass_quantize = FALSE;
-#endif
-
-    if (cinfo->two_pass_quantize) {
-#ifdef QUANT_2PASS_SUPPORTED
-      if (cinfo->colormap == NULL) {
-	master->need_post_pass = TRUE;
-	master->total_passes++;
-      }
-      jinit_2pass_quantizer(cinfo);
-#else
-      ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
-    } else {
-#ifdef QUANT_1PASS_SUPPORTED
-      jinit_1pass_quantizer(cinfo);
-#else
-      ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
-    }
-  }
-
-  /* Post-processing: in particular, color conversion first */
-  if (! cinfo->raw_data_out) {
-    if (master->using_merged_upsample) {
-#ifdef UPSAMPLE_MERGING_SUPPORTED
-      jinit_merged_upsampler(cinfo); /* does color conversion too */
-#else
-      ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
-    } else {
-      jinit_color_deconverter(cinfo);
-      jinit_upsampler(cinfo);
-    }
-    jinit_d_post_controller(cinfo, master->need_post_pass);
-  }
-  /* Inverse DCT */
-  jinit_inverse_dct(cinfo);
-  /* Entropy decoding: either Huffman or arithmetic coding. */
-  if (cinfo->arith_code) {
-#ifdef D_ARITH_CODING_SUPPORTED
-    jinit_arith_decoder(cinfo);
-#else
-    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
-#endif
-  } else
-    jinit_huff_decoder(cinfo);
-
-  jinit_d_coef_controller(cinfo, (master->pass_type == preread_pass));
-  jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
-  /* Note that main controller is initialized even in raw-data mode. */
-
-  /* We can now tell the memory manager to allocate virtual arrays. */
-  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-}
-
-
-/*
- * Per-pass setup.
- * This is called at the beginning of each pass.  We determine which modules
- * will be active during this pass and give them appropriate start_pass calls.
- * We also set is_last_pass to indicate whether any more passes will be
- * required.
- */
-
-METHODDEF void
-prepare_for_pass (j_decompress_ptr cinfo)
-{
-  my_master_ptr master = (my_master_ptr) cinfo->master;
-
-  switch (master->pass_type) {
-  case main_pass:
-    /* Set up to read and decompress single-scan file in one pass */
-    per_scan_setup(cinfo);
-    master->pub.is_last_pass = ! master->need_post_pass;
-    if (! cinfo->raw_data_out) {
-      if (! master->using_merged_upsample)
-	(*cinfo->cconvert->start_pass) (cinfo);
-      (*cinfo->upsample->start_pass) (cinfo);
-      if (cinfo->quantize_colors)
-	(*cinfo->cquantize->start_pass) (cinfo, master->need_post_pass);
-      (*cinfo->post->start_pass) (cinfo,
-	    (master->need_post_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
-    }
-    (*cinfo->idct->start_input_pass) (cinfo);
-    (*cinfo->idct->start_output_pass) (cinfo);
-    (*cinfo->entropy->start_pass) (cinfo);
-    (*cinfo->coef->start_pass) (cinfo, JBUF_PASS_THRU);
-    (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
-    break;
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-  case preread_pass:
-    /* Read (another) scan of a multi-scan file */
-    per_scan_setup(cinfo);
-    master->pub.is_last_pass = FALSE;
-    (*cinfo->idct->start_input_pass) (cinfo);
-    (*cinfo->entropy->start_pass) (cinfo);
-    (*cinfo->coef->start_pass) (cinfo, JBUF_SAVE_SOURCE);
-    (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_SOURCE);
-    break;
-  case output_pass:
-    /* All scans read, now do the IDCT and subsequent processing */
-    master->pub.is_last_pass = ! master->need_post_pass;
-    if (! cinfo->raw_data_out) {
-      if (! master->using_merged_upsample)
-	(*cinfo->cconvert->start_pass) (cinfo);
-      (*cinfo->upsample->start_pass) (cinfo);
-      if (cinfo->quantize_colors)
-	(*cinfo->cquantize->start_pass) (cinfo, master->need_post_pass);
-      (*cinfo->post->start_pass) (cinfo,
-	    (master->need_post_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
-    }
-    (*cinfo->idct->start_output_pass) (cinfo);
-    (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
-    (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
-    break;
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-#ifdef QUANT_2PASS_SUPPORTED
-  case post_pass:
-    /* Final pass of 2-pass quantization */
-    master->pub.is_last_pass = TRUE;
-    (*cinfo->cquantize->start_pass) (cinfo, FALSE);
-    (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
-    (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
-    break;
-#endif /* QUANT_2PASS_SUPPORTED */
-  default:
-    ERREXIT(cinfo, JERR_NOT_COMPILED);
-  }
-
-  /* Set up progress monitor's pass info if present */
-  if (cinfo->progress != NULL) {
-    cinfo->progress->completed_passes = master->pass_number;
-    cinfo->progress->total_passes = master->total_passes;
-  }
-}
-
-
-/*
- * Finish up at end of pass.
- * In multi-scan mode, we must read next scan header and set the next
- * pass_type correctly for prepare_for_pass.
- */
-
-METHODDEF void
-finish_pass_master (j_decompress_ptr cinfo)
-{
-  my_master_ptr master = (my_master_ptr) cinfo->master;
-
-  switch (master->pass_type) {
-  case main_pass:
-  case output_pass:
-    if (cinfo->quantize_colors)
-      (*cinfo->cquantize->finish_pass) (cinfo);
-    master->pass_number++;
-    master->pass_type = post_pass; /* in case need_post_pass is true */
-    break;
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-  case preread_pass:
-    /* Count one pass done for each component in this scan */
-    master->pass_number += cinfo->comps_in_scan;
-    switch ((*cinfo->marker->read_markers) (cinfo)) {
-    case JPEG_HEADER_OK:	/* Found SOS, do another preread pass */
-      break;
-    case JPEG_HEADER_TABLES_ONLY: /* Found EOI, no more preread passes */
-      master->pub.eoi_processed = TRUE;
-      master->pass_type = output_pass;
-      break;
-    case JPEG_SUSPENDED:
-      ERREXIT(cinfo, JERR_CANT_SUSPEND);
-    }
-    break;
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-#ifdef QUANT_2PASS_SUPPORTED
-  case post_pass:
-    (*cinfo->cquantize->finish_pass) (cinfo);
-    /* there will be no more passes, don't bother to change state */
-    break;
-#endif /* QUANT_2PASS_SUPPORTED */
-  default:
-    ERREXIT(cinfo, JERR_NOT_COMPILED);
-  }
-}
-
-
-/*
- * Initialize master decompression control.
- * This creates my own subrecord and also performs the master selection phase,
- * which causes other modules to create their subrecords.
- */
-
-GLOBAL void
-jinit_master_decompress (j_decompress_ptr cinfo)
-{
-  my_master_ptr master;
-
-  master = (my_master_ptr)
-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				  SIZEOF(my_decomp_master));
-  cinfo->master = (struct jpeg_decomp_master *) master;
-  master->pub.prepare_for_pass = prepare_for_pass;
-  master->pub.finish_pass = finish_pass_master;
-
-  master_selection(cinfo);
-}
diff --git a/jpeg/jdmerge.c b/jpeg/jdmerge.c
deleted file mode 100644
index a0b9cae9cabf678c5e2966ac4dad2bdb5b35c16e..0000000000000000000000000000000000000000
--- a/jpeg/jdmerge.c
+++ /dev/null
@@ -1,389 +0,0 @@
-/*
- * jdmerge.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains code for merged upsampling/color conversion.
- *
- * This file combines functions from jdsample.c and jdcolor.c;
- * read those files first to understand what's going on.
- *
- * When the chroma components are to be upsampled by simple replication
- * (ie, box filtering), we can save some work in color conversion by
- * calculating all the output pixels corresponding to a pair of chroma
- * samples at one time.  In the conversion equations
- *	R = Y           + K1 * Cr
- *	G = Y + K2 * Cb + K3 * Cr
- *	B = Y + K4 * Cb
- * only the Y term varies among the group of pixels corresponding to a pair
- * of chroma samples, so the rest of the terms can be calculated just once.
- * At typical sampling ratios, this eliminates half or three-quarters of the
- * multiplications needed for color conversion.
- *
- * This file currently provides implementations for the following cases:
- *	YCbCr => RGB color conversion only.
- *	Sampling ratios of 2h1v or 2h2v.
- *	No scaling needed at upsample time.
- *	Corner-aligned (non-CCIR601) sampling alignment.
- * Other special cases could be added, but in most applications these are
- * the only common cases.  (For uncommon cases we fall back on the more
- * general code in jdsample.c and jdcolor.c.)
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-#ifdef UPSAMPLE_MERGING_SUPPORTED
-
-
-/* Private subobject */
-
-typedef struct {
-  struct jpeg_upsampler pub;	/* public fields */
-
-  /* Pointer to routine to do actual upsampling/conversion of one row group */
-  JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
-			   JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
-			   JSAMPARRAY output_buf));
-
-  /* Private state for YCC->RGB conversion */
-  int * Cr_r_tab;		/* => table for Cr to R conversion */
-  int * Cb_b_tab;		/* => table for Cb to B conversion */
-  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */
-  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */
-
-  /* For 2:1 vertical sampling, we produce two output rows at a time.
-   * We need a "spare" row buffer to hold the second output row if the
-   * application provides just a one-row buffer; we also use the spare
-   * to discard the dummy last row if the image height is odd.
-   */
-  JSAMPROW spare_row;
-  boolean spare_full;		/* T if spare buffer is occupied */
-
-  JDIMENSION out_row_width;	/* samples per output row */
-  JDIMENSION rows_to_go;	/* counts rows remaining in image */
-} my_upsampler;
-
-typedef my_upsampler * my_upsample_ptr;
-
-#define SCALEBITS	16	/* speediest right-shift on some machines */
-#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
-#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-
-/*
- * Initialize for an upsampling pass.
- */
-
-METHODDEF void
-start_pass_merged_upsample (j_decompress_ptr cinfo)
-{
-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-  INT32 i, x2;
-  SHIFT_TEMPS
-
-  /* Mark the spare buffer empty */
-  upsample->spare_full = FALSE;
-  /* Initialize total-height counter for detecting bottom of image */
-  upsample->rows_to_go = cinfo->output_height;
-
-  /* Initialize the YCC=>RGB conversion tables.
-   * This is taken directly from jdcolor.c; see that file for more info.
-   */
-  upsample->Cr_r_tab = (int *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				(MAXJSAMPLE+1) * SIZEOF(int));
-  upsample->Cb_b_tab = (int *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				(MAXJSAMPLE+1) * SIZEOF(int));
-  upsample->Cr_g_tab = (INT32 *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				(MAXJSAMPLE+1) * SIZEOF(INT32));
-  upsample->Cb_g_tab = (INT32 *)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				(MAXJSAMPLE+1) * SIZEOF(INT32));
-
-  for (i = 0; i <= MAXJSAMPLE; i++) {
-    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
-    /* The Cb or Cr value we are thinking of is x = i - MAXJSAMPLE/2 */
-    x2 = 2*i - MAXJSAMPLE;	/* twice x */
-    /* Cr=>R value is nearest int to 1.40200 * x */
-    upsample->Cr_r_tab[i] = (int)
-		    RIGHT_SHIFT(FIX(1.40200/2) * x2 + ONE_HALF, SCALEBITS);
-    /* Cb=>B value is nearest int to 1.77200 * x */
-    upsample->Cb_b_tab[i] = (int)
-		    RIGHT_SHIFT(FIX(1.77200/2) * x2 + ONE_HALF, SCALEBITS);
-    /* Cr=>G value is scaled-up -0.71414 * x */
-    upsample->Cr_g_tab[i] = (- FIX(0.71414/2)) * x2;
-    /* Cb=>G value is scaled-up -0.34414 * x */
-    /* We also add in ONE_HALF so that need not do it in inner loop */
-    upsample->Cb_g_tab[i] = (- FIX(0.34414/2)) * x2 + ONE_HALF;
-  }
-}
-
-
-/*
- * Control routine to do upsampling (and color conversion).
- *
- * The control routine just handles the row buffering considerations.
- */
-
-METHODDEF void
-merged_2v_upsample (j_decompress_ptr cinfo,
-		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-		    JDIMENSION in_row_groups_avail,
-		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-		    JDIMENSION out_rows_avail)
-/* 2:1 vertical sampling case: may need a spare row. */
-{
-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-  JSAMPROW work_ptrs[2];
-  JDIMENSION num_rows;		/* number of rows returned to caller */
-
-  if (upsample->spare_full) {
-    /* If we have a spare row saved from a previous cycle, just return it. */
-    jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
-		      1, upsample->out_row_width);
-    num_rows = 1;
-    upsample->spare_full = FALSE;
-  } else {
-    /* Figure number of rows to return to caller. */
-    num_rows = 2;
-    /* Not more than the distance to the end of the image. */
-    if (num_rows > upsample->rows_to_go)
-      num_rows = upsample->rows_to_go;
-    /* And not more than what the client can accept: */
-    out_rows_avail -= *out_row_ctr;
-    if (num_rows > out_rows_avail)
-      num_rows = out_rows_avail;
-    /* Create output pointer array for upsampler. */
-    work_ptrs[0] = output_buf[*out_row_ctr];
-    if (num_rows > 1) {
-      work_ptrs[1] = output_buf[*out_row_ctr + 1];
-    } else {
-      work_ptrs[1] = upsample->spare_row;
-      upsample->spare_full = TRUE;
-    }
-    /* Now do the upsampling. */
-    (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
-  }
-
-  /* Adjust counts */
-  *out_row_ctr += num_rows;
-  upsample->rows_to_go -= num_rows;
-  /* When the buffer is emptied, declare this input row group consumed */
-  if (! upsample->spare_full)
-    (*in_row_group_ctr)++;
-}
-
-
-METHODDEF void
-merged_1v_upsample (j_decompress_ptr cinfo,
-		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-		    JDIMENSION in_row_groups_avail,
-		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-		    JDIMENSION out_rows_avail)
-/* 1:1 vertical sampling case: much easier, never need a spare row. */
-{
-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
-  /* Just do the upsampling. */
-  (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
-			 output_buf + *out_row_ctr);
-  /* Adjust counts */
-  (*out_row_ctr)++;
-  (*in_row_group_ctr)++;
-}
-
-
-/*
- * These are the routines invoked by the control routines to do
- * the actual upsampling/conversion.  One row group is processed per call.
- *
- * Note: since we may be writing directly into application-supplied buffers,
- * we have to be honest about the output width; we can't assume the buffer
- * has been rounded up to an even width.
- */
-
-
-/*
- * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
- */
-
-METHODDEF void
-h2v1_merged_upsample (j_decompress_ptr cinfo,
-		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
-		      JSAMPARRAY output_buf)
-{
-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-  register int y, cred, cgreen, cblue;
-  int cb, cr;
-  register JSAMPROW outptr;
-  JSAMPROW inptr0, inptr1, inptr2;
-  JDIMENSION col;
-  /* copy these pointers into registers if possible */
-  register JSAMPLE * range_limit = cinfo->sample_range_limit;
-  int * Crrtab = upsample->Cr_r_tab;
-  int * Cbbtab = upsample->Cb_b_tab;
-  INT32 * Crgtab = upsample->Cr_g_tab;
-  INT32 * Cbgtab = upsample->Cb_g_tab;
-  SHIFT_TEMPS
-
-  inptr0 = input_buf[0][in_row_group_ctr];
-  inptr1 = input_buf[1][in_row_group_ctr];
-  inptr2 = input_buf[2][in_row_group_ctr];
-  outptr = output_buf[0];
-  /* Loop for each pair of output pixels */
-  for (col = cinfo->output_width >> 1; col > 0; col--) {
-    /* Do the chroma part of the calculation */
-    cb = GETJSAMPLE(*inptr1++);
-    cr = GETJSAMPLE(*inptr2++);
-    cred = Crrtab[cr];
-    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
-    cblue = Cbbtab[cb];
-    /* Fetch 2 Y values and emit 2 pixels */
-    y  = GETJSAMPLE(*inptr0++);
-    outptr[RGB_RED] =   range_limit[y + cred];
-    outptr[RGB_GREEN] = range_limit[y + cgreen];
-    outptr[RGB_BLUE] =  range_limit[y + cblue];
-    outptr += RGB_PIXELSIZE;
-    y  = GETJSAMPLE(*inptr0++);
-    outptr[RGB_RED] =   range_limit[y + cred];
-    outptr[RGB_GREEN] = range_limit[y + cgreen];
-    outptr[RGB_BLUE] =  range_limit[y + cblue];
-    outptr += RGB_PIXELSIZE;
-  }
-  /* If image width is odd, do the last output column separately */
-  if (cinfo->output_width & 1) {
-    cb = GETJSAMPLE(*inptr1);
-    cr = GETJSAMPLE(*inptr2);
-    cred = Crrtab[cr];
-    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
-    cblue = Cbbtab[cb];
-    y  = GETJSAMPLE(*inptr0);
-    outptr[RGB_RED] =   range_limit[y + cred];
-    outptr[RGB_GREEN] = range_limit[y + cgreen];
-    outptr[RGB_BLUE] =  range_limit[y + cblue];
-  }
-}
-
-
-/*
- * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
- */
-
-METHODDEF void
-h2v2_merged_upsample (j_decompress_ptr cinfo,
-		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
-		      JSAMPARRAY output_buf)
-{
-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-  register int y, cred, cgreen, cblue;
-  int cb, cr;
-  register JSAMPROW outptr0, outptr1;
-  JSAMPROW inptr00, inptr01, inptr1, inptr2;
-  JDIMENSION col;
-  /* copy these pointers into registers if possible */
-  register JSAMPLE * range_limit = cinfo->sample_range_limit;
-  int * Crrtab = upsample->Cr_r_tab;
-  int * Cbbtab = upsample->Cb_b_tab;
-  INT32 * Crgtab = upsample->Cr_g_tab;
-  INT32 * Cbgtab = upsample->Cb_g_tab;
-  SHIFT_TEMPS
-
-  inptr00 = input_buf[0][in_row_group_ctr*2];
-  inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
-  inptr1 = input_buf[1][in_row_group_ctr];
-  inptr2 = input_buf[2][in_row_group_ctr];
-  outptr0 = output_buf[0];
-  outptr1 = output_buf[1];
-  /* Loop for each group of output pixels */
-  for (col = cinfo->output_width >> 1; col > 0; col--) {
-    /* Do the chroma part of the calculation */
-    cb = GETJSAMPLE(*inptr1++);
-    cr = GETJSAMPLE(*inptr2++);
-    cred = Crrtab[cr];
-    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
-    cblue = Cbbtab[cb];
-    /* Fetch 4 Y values and emit 4 pixels */
-    y  = GETJSAMPLE(*inptr00++);
-    outptr0[RGB_RED] =   range_limit[y + cred];
-    outptr0[RGB_GREEN] = range_limit[y + cgreen];
-    outptr0[RGB_BLUE] =  range_limit[y + cblue];
-    outptr0 += RGB_PIXELSIZE;
-    y  = GETJSAMPLE(*inptr00++);
-    outptr0[RGB_RED] =   range_limit[y + cred];
-    outptr0[RGB_GREEN] = range_limit[y + cgreen];
-    outptr0[RGB_BLUE] =  range_limit[y + cblue];
-    outptr0 += RGB_PIXELSIZE;
-    y  = GETJSAMPLE(*inptr01++);
-    outptr1[RGB_RED] =   range_limit[y + cred];
-    outptr1[RGB_GREEN] = range_limit[y + cgreen];
-    outptr1[RGB_BLUE] =  range_limit[y + cblue];
-    outptr1 += RGB_PIXELSIZE;
-    y  = GETJSAMPLE(*inptr01++);
-    outptr1[RGB_RED] =   range_limit[y + cred];
-    outptr1[RGB_GREEN] = range_limit[y + cgreen];
-    outptr1[RGB_BLUE] =  range_limit[y + cblue];
-    outptr1 += RGB_PIXELSIZE;
-  }
-  /* If image width is odd, do the last output column separately */
-  if (cinfo->output_width & 1) {
-    cb = GETJSAMPLE(*inptr1);
-    cr = GETJSAMPLE(*inptr2);
-    cred = Crrtab[cr];
-    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
-    cblue = Cbbtab[cb];
-    y  = GETJSAMPLE(*inptr00);
-    outptr0[RGB_RED] =   range_limit[y + cred];
-    outptr0[RGB_GREEN] = range_limit[y + cgreen];
-    outptr0[RGB_BLUE] =  range_limit[y + cblue];
-    y  = GETJSAMPLE(*inptr01);
-    outptr1[RGB_RED] =   range_limit[y + cred];
-    outptr1[RGB_GREEN] = range_limit[y + cgreen];
-    outptr1[RGB_BLUE] =  range_limit[y + cblue];
-  }
-}
-
-
-/*
- * Module initialization routine for merged upsampling/color conversion.
- *
- * NB: this is called under the conditions determined by use_merged_upsample()
- * in jdmaster.c.  That routine MUST correspond to the actual capabilities
- * of this module; no safety checks are made here.
- */
-
-GLOBAL void
-jinit_merged_upsampler (j_decompress_ptr cinfo)
-{
-  my_upsample_ptr upsample;
-
-  upsample = (my_upsample_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_upsampler));
-  cinfo->upsample = (struct jpeg_upsampler *) upsample;
-  upsample->pub.start_pass = start_pass_merged_upsample;
-  upsample->pub.need_context_rows = FALSE;
-
-  upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
-
-  if (cinfo->max_v_samp_factor == 2) {
-    upsample->pub.upsample = merged_2v_upsample;
-    upsample->upmethod = h2v2_merged_upsample;
-    /* Allocate a spare row buffer */
-    upsample->spare_row = (JSAMPROW)
-      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-		(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
-  } else {
-    upsample->pub.upsample = merged_1v_upsample;
-    upsample->upmethod = h2v1_merged_upsample;
-    /* No spare row needed */
-    upsample->spare_row = NULL;
-  }
-}
-
-#endif /* UPSAMPLE_MERGING_SUPPORTED */
diff --git a/jpeg/jdpostct.c b/jpeg/jdpostct.c
deleted file mode 100644
index d6fa61a4b8a632cddadd6f7009d1667c11113129..0000000000000000000000000000000000000000
--- a/jpeg/jdpostct.c
+++ /dev/null
@@ -1,275 +0,0 @@
-/*
- * jdpostct.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the decompression postprocessing controller.
- * This controller manages the upsampling, color conversion, and color
- * quantization/reduction steps; specifically, it controls the buffering
- * between upsample/color conversion and color quantization/reduction.
- *
- * If no color quantization/reduction is required, then this module has no
- * work to do, and it just hands off to the upsample/color conversion code.
- * An integrated upsample/convert/quantize process would replace this module
- * entirely.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private buffer controller object */
-
-typedef struct {
-  struct jpeg_d_post_controller pub; /* public fields */
-
-  /* Color quantization source buffer: this holds output data from
-   * the upsample/color conversion step to be passed to the quantizer.
-   * For two-pass color quantization, we need a full-image buffer;
-   * for one-pass operation, a strip buffer is sufficient.
-   */
-  jvirt_sarray_ptr whole_image;	/* virtual array, or NULL if one-pass */
-  JSAMPARRAY buffer;		/* strip buffer, or current strip of virtual */
-  JDIMENSION strip_height;	/* buffer size in rows */
-  /* for two-pass mode only: */
-  JDIMENSION starting_row;	/* row # of first row in current strip */
-  JDIMENSION next_row;		/* index of next row to fill/empty in strip */
-} my_post_controller;
-
-typedef my_post_controller * my_post_ptr;
-
-
-/* Forward declarations */
-METHODDEF void post_process_1pass
-	JPP((j_decompress_ptr cinfo,
-	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-	     JDIMENSION in_row_groups_avail,
-	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-	     JDIMENSION out_rows_avail));
-#ifdef QUANT_2PASS_SUPPORTED
-METHODDEF void post_process_prepass
-	JPP((j_decompress_ptr cinfo,
-	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-	     JDIMENSION in_row_groups_avail,
-	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-	     JDIMENSION out_rows_avail));
-METHODDEF void post_process_2pass
-	JPP((j_decompress_ptr cinfo,
-	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-	     JDIMENSION in_row_groups_avail,
-	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-	     JDIMENSION out_rows_avail));
-#endif
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF void
-start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
-  my_post_ptr post = (my_post_ptr) cinfo->post;
-
-  switch (pass_mode) {
-  case JBUF_PASS_THRU:
-    if (cinfo->quantize_colors) {
-      /* Single-pass processing with color quantization. */
-      post->pub.post_process_data = post_process_1pass;
-    } else {
-      /* For single-pass processing without color quantization,
-       * I have no work to do; just call the upsampler directly.
-       */
-      post->pub.post_process_data = cinfo->upsample->upsample;
-    }
-    break;
-#ifdef QUANT_2PASS_SUPPORTED
-  case JBUF_SAVE_AND_PASS:
-    /* First pass of 2-pass quantization */
-    if (post->whole_image == NULL)
-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-    post->pub.post_process_data = post_process_prepass;
-    break;
-  case JBUF_CRANK_DEST:
-    /* Second pass of 2-pass quantization */
-    if (post->whole_image == NULL)
-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-    post->pub.post_process_data = post_process_2pass;
-    break;
-#endif /* QUANT_2PASS_SUPPORTED */
-  default:
-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-    break;
-  }
-  post->starting_row = post->next_row = 0;
-}
-
-
-/*
- * Process some data in the one-pass (strip buffer) case.
- * This is used for color precision reduction as well as one-pass quantization.
- */
-
-METHODDEF void
-post_process_1pass (j_decompress_ptr cinfo,
-		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-		    JDIMENSION in_row_groups_avail,
-		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-		    JDIMENSION out_rows_avail)
-{
-  my_post_ptr post = (my_post_ptr) cinfo->post;
-  JDIMENSION num_rows, max_rows;
-
-  /* Fill the buffer, but not more than what we can dump out in one go. */
-  /* Note we rely on the upsampler to detect bottom of image. */
-  max_rows = out_rows_avail - *out_row_ctr;
-  if (max_rows > post->strip_height)
-    max_rows = post->strip_height;
-  num_rows = 0;
-  (*cinfo->upsample->upsample) (cinfo,
-		input_buf, in_row_group_ctr, in_row_groups_avail,
-		post->buffer, &num_rows, max_rows);
-  /* Quantize and emit data. */
-  (*cinfo->cquantize->color_quantize) (cinfo,
-		post->buffer, output_buf + *out_row_ctr, (int) num_rows);
-  *out_row_ctr += num_rows;
-}
-
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-/*
- * Process some data in the first pass of 2-pass quantization.
- */
-
-METHODDEF void
-post_process_prepass (j_decompress_ptr cinfo,
-		      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-		      JDIMENSION in_row_groups_avail,
-		      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-		      JDIMENSION out_rows_avail)
-{
-  my_post_ptr post = (my_post_ptr) cinfo->post;
-  JDIMENSION old_next_row, num_rows;
-
-  /* Reposition virtual buffer if at start of strip. */
-  if (post->next_row == 0) {
-    post->buffer = (*cinfo->mem->access_virt_sarray)
-	((j_common_ptr) cinfo, post->whole_image, post->starting_row, TRUE);
-  }
-
-  /* Upsample some data (up to a strip height's worth). */
-  old_next_row = post->next_row;
-  (*cinfo->upsample->upsample) (cinfo,
-		input_buf, in_row_group_ctr, in_row_groups_avail,
-		post->buffer, &post->next_row, post->strip_height);
-
-  /* Allow quantizer to scan new data.  No data is emitted, */
-  /* but we advance out_row_ctr so outer loop can tell when we're done. */
-  if (post->next_row > old_next_row) {
-    num_rows = post->next_row - old_next_row;
-    (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
-					 (JSAMPARRAY) NULL, (int) num_rows);
-    *out_row_ctr += num_rows;
-  }
-
-  /* Advance if we filled the strip. */
-  if (post->next_row >= post->strip_height) {
-    post->starting_row += post->strip_height;
-    post->next_row = 0;
-  }
-}
-
-
-/*
- * Process some data in the second pass of 2-pass quantization.
- */
-
-METHODDEF void
-post_process_2pass (j_decompress_ptr cinfo,
-		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-		    JDIMENSION in_row_groups_avail,
-		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-		    JDIMENSION out_rows_avail)
-{
-  my_post_ptr post = (my_post_ptr) cinfo->post;
-  JDIMENSION num_rows, max_rows;
-
-  /* Reposition virtual buffer if at start of strip. */
-  if (post->next_row == 0) {
-    post->buffer = (*cinfo->mem->access_virt_sarray)
-	((j_common_ptr) cinfo, post->whole_image, post->starting_row, FALSE);
-  }
-
-  /* Determine number of rows to emit. */
-  num_rows = post->strip_height - post->next_row; /* available in strip */
-  max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
-  if (num_rows > max_rows)
-    num_rows = max_rows;
-  /* We have to check bottom of image here, can't depend on upsampler. */
-  max_rows = cinfo->output_height - post->starting_row;
-  if (num_rows > max_rows)
-    num_rows = max_rows;
-
-  /* Quantize and emit data. */
-  (*cinfo->cquantize->color_quantize) (cinfo,
-		post->buffer + post->next_row, output_buf + *out_row_ctr,
-		(int) num_rows);
-  *out_row_ctr += num_rows;
-
-  /* Advance if we filled the strip. */
-  post->next_row += num_rows;
-  if (post->next_row >= post->strip_height) {
-    post->starting_row += post->strip_height;
-    post->next_row = 0;
-  }
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
-
-
-/*
- * Initialize postprocessing controller.
- */
-
-GLOBAL void
-jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
-  my_post_ptr post;
-
-  post = (my_post_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_post_controller));
-  cinfo->post = (struct jpeg_d_post_controller *) post;
-  post->pub.start_pass = start_pass_dpost;
-  post->whole_image = NULL;	/* flag for no virtual arrays */
-
-  /* Create the quantization buffer, if needed */
-  if (cinfo->quantize_colors) {
-    /* The buffer strip height is max_v_samp_factor, which is typically
-     * an efficient number of rows for upsampling to return.
-     * (In the presence of output rescaling, we might want to be smarter?)
-     */
-    post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
-    if (need_full_buffer) {
-      /* Two-pass color quantization: need full-image storage. */
-#ifdef QUANT_2PASS_SUPPORTED
-      post->whole_image = (*cinfo->mem->request_virt_sarray)
-	((j_common_ptr) cinfo, JPOOL_IMAGE,
-	 cinfo->output_width * cinfo->out_color_components,
-	 cinfo->output_height, post->strip_height);
-#else
-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif /* QUANT_2PASS_SUPPORTED */
-    } else {
-      /* One-pass color quantization: just make a strip buffer. */
-      post->buffer = (*cinfo->mem->alloc_sarray)
-	((j_common_ptr) cinfo, JPOOL_IMAGE,
-	 cinfo->output_width * cinfo->out_color_components,
-	 post->strip_height);
-    }
-  }
-}
diff --git a/jpeg/jdsample.c b/jpeg/jdsample.c
deleted file mode 100644
index 661e198dceb5dc130b6bc65f856619036dacb1c7..0000000000000000000000000000000000000000
--- a/jpeg/jdsample.c
+++ /dev/null
@@ -1,478 +0,0 @@
-/*
- * jdsample.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains upsampling routines.
- *
- * Upsampling input data is counted in "row groups".  A row group
- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
- * sample rows of each component.  Upsampling will normally produce
- * max_v_samp_factor pixel rows from each row group (but this could vary
- * if the upsampler is applying a scale factor of its own).
- *
- * An excellent reference for image resampling is
- *   Digital Image Warping, George Wolberg, 1990.
- *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Pointer to routine to upsample a single component */
-typedef JMETHOD(void, upsample1_ptr,
-		(j_decompress_ptr cinfo, jpeg_component_info * compptr,
-		 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
-
-/* Private subobject */
-
-typedef struct {
-  struct jpeg_upsampler pub;	/* public fields */
-
-  /* Color conversion buffer.  When using separate upsampling and color
-   * conversion steps, this buffer holds one upsampled row group until it
-   * has been color converted and output.
-   * Note: we do not allocate any storage for component(s) which are full-size,
-   * ie do not need rescaling.  The corresponding entry of color_buf[] is
-   * simply set to point to the input data array, thereby avoiding copying.
-   */
-  JSAMPARRAY color_buf[MAX_COMPONENTS];
-
-  /* Per-component upsampling method pointers */
-  upsample1_ptr methods[MAX_COMPONENTS];
-
-  int next_row_out;		/* counts rows emitted from color_buf */
-  JDIMENSION rows_to_go;	/* counts rows remaining in image */
-
-  /* Height of an input row group for each component. */
-  int rowgroup_height[MAX_COMPONENTS];
-
-  /* These arrays save pixel expansion factors so that int_expand need not
-   * recompute them each time.  They are unused for other upsampling methods.
-   */
-  UINT8 h_expand[MAX_COMPONENTS];
-  UINT8 v_expand[MAX_COMPONENTS];
-} my_upsampler;
-
-typedef my_upsampler * my_upsample_ptr;
-
-
-/*
- * Initialize for an upsampling pass.
- */
-
-METHODDEF void
-start_pass_upsample (j_decompress_ptr cinfo)
-{
-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
-  /* Mark the conversion buffer empty */
-  upsample->next_row_out = cinfo->max_v_samp_factor;
-  /* Initialize total-height counter for detecting bottom of image */
-  upsample->rows_to_go = cinfo->output_height;
-}
-
-
-/*
- * Control routine to do upsampling (and color conversion).
- *
- * In this version we upsample each component independently.
- * We upsample one row group into the conversion buffer, then apply
- * color conversion a row at a time.
- */
-
-METHODDEF void
-sep_upsample (j_decompress_ptr cinfo,
-	      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
-	      JDIMENSION in_row_groups_avail,
-	      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
-	      JDIMENSION out_rows_avail)
-{
-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-  int ci;
-  jpeg_component_info * compptr;
-  JDIMENSION num_rows;
-
-  /* Fill the conversion buffer, if it's empty */
-  if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-	 ci++, compptr++) {
-      /* Invoke per-component upsample method.  Notice we pass a POINTER
-       * to color_buf[ci], so that fullsize_upsample can change it.
-       */
-      (*upsample->methods[ci]) (cinfo, compptr,
-	input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
-	upsample->color_buf + ci);
-    }
-    upsample->next_row_out = 0;
-  }
-
-  /* Color-convert and emit rows */
-
-  /* How many we have in the buffer: */
-  num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
-  /* Not more than the distance to the end of the image.  Need this test
-   * in case the image height is not a multiple of max_v_samp_factor:
-   */
-  if (num_rows > upsample->rows_to_go) 
-    num_rows = upsample->rows_to_go;
-  /* And not more than what the client can accept: */
-  out_rows_avail -= *out_row_ctr;
-  if (num_rows > out_rows_avail)
-    num_rows = out_rows_avail;
-
-  (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
-				     (JDIMENSION) upsample->next_row_out,
-				     output_buf + *out_row_ctr,
-				     (int) num_rows);
-
-  /* Adjust counts */
-  *out_row_ctr += num_rows;
-  upsample->rows_to_go -= num_rows;
-  upsample->next_row_out += num_rows;
-  /* When the buffer is emptied, declare this input row group consumed */
-  if (upsample->next_row_out >= cinfo->max_v_samp_factor)
-    (*in_row_group_ctr)++;
-}
-
-
-/*
- * These are the routines invoked by sep_upsample to upsample pixel values
- * of a single component.  One row group is processed per call.
- */
-
-
-/*
- * For full-size components, we just make color_buf[ci] point at the
- * input buffer, and thus avoid copying any data.  Note that this is
- * safe only because sep_upsample doesn't declare the input row group
- * "consumed" until we are done color converting and emitting it.
- */
-
-METHODDEF void
-fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-		   JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
-  *output_data_ptr = input_data;
-}
-
-
-/*
- * This is a no-op version used for "uninteresting" components.
- * These components will not be referenced by color conversion.
- */
-
-METHODDEF void
-noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
-  *output_data_ptr = NULL;	/* safety check */
-}
-
-
-/*
- * This version handles any integral sampling ratios.
- * This is not used for typical JPEG files, so it need not be fast.
- * Nor, for that matter, is it particularly accurate: the algorithm is
- * simple replication of the input pixel onto the corresponding output
- * pixels.  The hi-falutin sampling literature refers to this as a
- * "box filter".  A box filter tends to introduce visible artifacts,
- * so if you are actually going to use 3:1 or 4:1 sampling ratios
- * you would be well advised to improve this code.
- */
-
-METHODDEF void
-int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-	      JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-  JSAMPARRAY output_data = *output_data_ptr;
-  register JSAMPROW inptr, outptr;
-  register JSAMPLE invalue;
-  register int h;
-  JSAMPROW outend;
-  int h_expand, v_expand;
-  int inrow, outrow;
-
-  h_expand = upsample->h_expand[compptr->component_index];
-  v_expand = upsample->v_expand[compptr->component_index];
-
-  inrow = outrow = 0;
-  while (outrow < cinfo->max_v_samp_factor) {
-    /* Generate one output row with proper horizontal expansion */
-    inptr = input_data[inrow];
-    outptr = output_data[outrow];
-    outend = outptr + cinfo->output_width;
-    while (outptr < outend) {
-      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
-      for (h = h_expand; h > 0; h--) {
-	*outptr++ = invalue;
-      }
-    }
-    /* Generate any additional output rows by duplicating the first one */
-    if (v_expand > 1) {
-      jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
-			v_expand-1, cinfo->output_width);
-    }
-    inrow++;
-    outrow += v_expand;
-  }
-}
-
-
-/*
- * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
- * It's still a box filter.
- */
-
-METHODDEF void
-h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
-  JSAMPARRAY output_data = *output_data_ptr;
-  register JSAMPROW inptr, outptr;
-  register JSAMPLE invalue;
-  JSAMPROW outend;
-  int inrow;
-
-  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
-    inptr = input_data[inrow];
-    outptr = output_data[inrow];
-    outend = outptr + cinfo->output_width;
-    while (outptr < outend) {
-      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
-      *outptr++ = invalue;
-      *outptr++ = invalue;
-    }
-  }
-}
-
-
-/*
- * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
- * It's still a box filter.
- */
-
-METHODDEF void
-h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
-  JSAMPARRAY output_data = *output_data_ptr;
-  register JSAMPROW inptr, outptr;
-  register JSAMPLE invalue;
-  JSAMPROW outend;
-  int inrow, outrow;
-
-  inrow = outrow = 0;
-  while (outrow < cinfo->max_v_samp_factor) {
-    inptr = input_data[inrow];
-    outptr = output_data[outrow];
-    outend = outptr + cinfo->output_width;
-    while (outptr < outend) {
-      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
-      *outptr++ = invalue;
-      *outptr++ = invalue;
-    }
-    jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
-		      1, cinfo->output_width);
-    inrow++;
-    outrow += 2;
-  }
-}
-
-
-/*
- * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
- *
- * The upsampling algorithm is linear interpolation between pixel centers,
- * also known as a "triangle filter".  This is a good compromise between
- * speed and visual quality.  The centers of the output pixels are 1/4 and 3/4
- * of the way between input pixel centers.
- *
- * A note about the "bias" calculations: when rounding fractional values to
- * integer, we do not want to always round 0.5 up to the next integer.
- * If we did that, we'd introduce a noticeable bias towards larger values.
- * Instead, this code is arranged so that 0.5 will be rounded up or down at
- * alternate pixel locations (a simple ordered dither pattern).
- */
-
-METHODDEF void
-h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
-  JSAMPARRAY output_data = *output_data_ptr;
-  register JSAMPROW inptr, outptr;
-  register int invalue;
-  register JDIMENSION colctr;
-  int inrow;
-
-  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
-    inptr = input_data[inrow];
-    outptr = output_data[inrow];
-    /* Special case for first column */
-    invalue = GETJSAMPLE(*inptr++);
-    *outptr++ = (JSAMPLE) invalue;
-    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
-
-    for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
-      /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
-      invalue = GETJSAMPLE(*inptr++) * 3;
-      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
-      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
-    }
-
-    /* Special case for last column */
-    invalue = GETJSAMPLE(*inptr);
-    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
-    *outptr++ = (JSAMPLE) invalue;
-  }
-}
-
-
-/*
- * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
- * Again a triangle filter; see comments for h2v1 case, above.
- *
- * It is OK for us to reference the adjacent input rows because we demanded
- * context from the main buffer controller (see initialization code).
- */
-
-METHODDEF void
-h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
-  JSAMPARRAY output_data = *output_data_ptr;
-  register JSAMPROW inptr0, inptr1, outptr;
-#if BITS_IN_JSAMPLE == 8
-  register int thiscolsum, lastcolsum, nextcolsum;
-#else
-  register INT32 thiscolsum, lastcolsum, nextcolsum;
-#endif
-  register JDIMENSION colctr;
-  int inrow, outrow, v;
-
-  inrow = outrow = 0;
-  while (outrow < cinfo->max_v_samp_factor) {
-    for (v = 0; v < 2; v++) {
-      /* inptr0 points to nearest input row, inptr1 points to next nearest */
-      inptr0 = input_data[inrow];
-      if (v == 0)		/* next nearest is row above */
-	inptr1 = input_data[inrow-1];
-      else			/* next nearest is row below */
-	inptr1 = input_data[inrow+1];
-      outptr = output_data[outrow++];
-
-      /* Special case for first column */
-      thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
-      nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
-      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
-      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
-      lastcolsum = thiscolsum; thiscolsum = nextcolsum;
-
-      for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
-	/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
-	/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
-	nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
-	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
-	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
-	lastcolsum = thiscolsum; thiscolsum = nextcolsum;
-      }
-
-      /* Special case for last column */
-      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
-      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
-    }
-    inrow++;
-  }
-}
-
-
-/*
- * Module initialization routine for upsampling.
- */
-
-GLOBAL void
-jinit_upsampler (j_decompress_ptr cinfo)
-{
-  my_upsample_ptr upsample;
-  int ci;
-  jpeg_component_info * compptr;
-  boolean need_buffer, do_fancy;
-  int h_in_group, v_in_group, h_out_group, v_out_group;
-
-  upsample = (my_upsample_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_upsampler));
-  cinfo->upsample = (struct jpeg_upsampler *) upsample;
-  upsample->pub.start_pass = start_pass_upsample;
-  upsample->pub.upsample = sep_upsample;
-  upsample->pub.need_context_rows = FALSE; /* until we find out differently */
-
-  if (cinfo->CCIR601_sampling)	/* this isn't supported */
-    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
-
-  /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
-   * so don't ask for it.
-   */
-  do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
-
-  /* Verify we can handle the sampling factors, select per-component methods,
-   * and create storage as needed.
-   */
-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
-       ci++, compptr++) {
-    /* Compute size of an "input group" after IDCT scaling.  This many samples
-     * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
-     */
-    h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
-		 cinfo->min_DCT_scaled_size;
-    v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
-		 cinfo->min_DCT_scaled_size;
-    h_out_group = cinfo->max_h_samp_factor;
-    v_out_group = cinfo->max_v_samp_factor;
-    upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
-    need_buffer = TRUE;
-    if (! compptr->component_needed) {
-      /* Don't bother to upsample an uninteresting component. */
-      upsample->methods[ci] = noop_upsample;
-      need_buffer = FALSE;
-    } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
-      /* Fullsize components can be processed without any work. */
-      upsample->methods[ci] = fullsize_upsample;
-      need_buffer = FALSE;
-    } else if (h_in_group * 2 == h_out_group &&
-	       v_in_group == v_out_group) {
-      /* Special cases for 2h1v upsampling */
-      if (do_fancy && compptr->downsampled_width > 2)
-	upsample->methods[ci] = h2v1_fancy_upsample;
-      else
-	upsample->methods[ci] = h2v1_upsample;
-    } else if (h_in_group * 2 == h_out_group &&
-	       v_in_group * 2 == v_out_group) {
-      /* Special cases for 2h2v upsampling */
-      if (do_fancy && compptr->downsampled_width > 2) {
-	upsample->methods[ci] = h2v2_fancy_upsample;
-	upsample->pub.need_context_rows = TRUE;
-      } else
-	upsample->methods[ci] = h2v2_upsample;
-    } else if ((h_out_group % h_in_group) == 0 &&
-	       (v_out_group % v_in_group) == 0) {
-      /* Generic integral-factors upsampling method */
-      upsample->methods[ci] = int_upsample;
-      upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
-      upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
-    } else
-      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
-    if (need_buffer) {
-      upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
-	((j_common_ptr) cinfo, JPOOL_IMAGE,
-	 (JDIMENSION) jround_up((long) cinfo->output_width,
-				(long) cinfo->max_h_samp_factor),
-	 (JDIMENSION) cinfo->max_v_samp_factor);
-    }
-  }
-}
diff --git a/jpeg/jidctflt.c b/jpeg/jidctflt.c
deleted file mode 100644
index 847919eefb87b58175ec0ab6c7eb958d0e30ac0c..0000000000000000000000000000000000000000
--- a/jpeg/jidctflt.c
+++ /dev/null
@@ -1,241 +0,0 @@
-/*
- * jidctflt.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a floating-point implementation of the
- * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * This implementation should be more accurate than either of the integer
- * IDCT implementations.  However, it may not give the same results on all
- * machines because of differences in roundoff behavior.  Speed will depend
- * on the hardware's floating point capacity.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time).  Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README).  The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs.  These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with a fixed-point
- * implementation, accuracy is lost due to imprecise representation of the
- * scaled quantization values.  However, that problem does not arise if
- * we use floating point arithmetic.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h"		/* Private declarations for DCT subsystem */
-
-#ifdef DCT_FLOAT_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce a float result.
- */
-
-#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL void
-jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-		 JCOEFPTR coef_block,
-		 JSAMPARRAY output_buf, JDIMENSION output_col)
-{
-  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
-  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
-  FAST_FLOAT z5, z10, z11, z12, z13;
-  JCOEFPTR inptr;
-  FLOAT_MULT_TYPE * quantptr;
-  FAST_FLOAT * wsptr;
-  JSAMPROW outptr;
-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
-  int ctr;
-  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
-  SHIFT_TEMPS
-
-  /* Pass 1: process columns from input, store into work array. */
-
-  inptr = coef_block;
-  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
-  wsptr = workspace;
-  for (ctr = DCTSIZE; ctr > 0; ctr--) {
-    /* Due to quantization, we will usually find that many of the input
-     * coefficients are zero, especially the AC terms.  We can exploit this
-     * by short-circuiting the IDCT calculation for any column in which all
-     * the AC terms are zero.  In that case each output is equal to the
-     * DC coefficient (with scale factor as needed).
-     * With typical images and quantization tables, half or more of the
-     * column DCT calculations can be simplified this way.
-     */
-    
-    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
-	 inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
-	 inptr[DCTSIZE*7]) == 0) {
-      /* AC terms all zero */
-      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-      
-      wsptr[DCTSIZE*0] = dcval;
-      wsptr[DCTSIZE*1] = dcval;
-      wsptr[DCTSIZE*2] = dcval;
-      wsptr[DCTSIZE*3] = dcval;
-      wsptr[DCTSIZE*4] = dcval;
-      wsptr[DCTSIZE*5] = dcval;
-      wsptr[DCTSIZE*6] = dcval;
-      wsptr[DCTSIZE*7] = dcval;
-      
-      inptr++;			/* advance pointers to next column */
-      quantptr++;
-      wsptr++;
-      continue;
-    }
-    
-    /* Even part */
-
-    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
-    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
-    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
-    tmp10 = tmp0 + tmp2;	/* phase 3 */
-    tmp11 = tmp0 - tmp2;
-
-    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
-    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
-
-    tmp0 = tmp10 + tmp13;	/* phase 2 */
-    tmp3 = tmp10 - tmp13;
-    tmp1 = tmp11 + tmp12;
-    tmp2 = tmp11 - tmp12;
-    
-    /* Odd part */
-
-    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
-    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
-    z13 = tmp6 + tmp5;		/* phase 6 */
-    z10 = tmp6 - tmp5;
-    z11 = tmp4 + tmp7;
-    z12 = tmp4 - tmp7;
-
-    tmp7 = z11 + z13;		/* phase 5 */
-    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
-
-    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
-    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
-    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
-
-    tmp6 = tmp12 - tmp7;	/* phase 2 */
-    tmp5 = tmp11 - tmp6;
-    tmp4 = tmp10 + tmp5;
-
-    wsptr[DCTSIZE*0] = tmp0 + tmp7;
-    wsptr[DCTSIZE*7] = tmp0 - tmp7;
-    wsptr[DCTSIZE*1] = tmp1 + tmp6;
-    wsptr[DCTSIZE*6] = tmp1 - tmp6;
-    wsptr[DCTSIZE*2] = tmp2 + tmp5;
-    wsptr[DCTSIZE*5] = tmp2 - tmp5;
-    wsptr[DCTSIZE*4] = tmp3 + tmp4;
-    wsptr[DCTSIZE*3] = tmp3 - tmp4;
-
-    inptr++;			/* advance pointers to next column */
-    quantptr++;
-    wsptr++;
-  }
-  
-  /* Pass 2: process rows from work array, store into output array. */
-  /* Note that we must descale the results by a factor of 8 == 2**3. */
-
-  wsptr = workspace;
-  for (ctr = 0; ctr < DCTSIZE; ctr++) {
-    outptr = output_buf[ctr] + output_col;
-    /* Rows of zeroes can be exploited in the same way as we did with columns.
-     * However, the column calculation has created many nonzero AC terms, so
-     * the simplification applies less often (typically 5% to 10% of the time).
-     * And testing floats for zero is relatively expensive, so we don't bother.
-     */
-    
-    /* Even part */
-
-    tmp10 = wsptr[0] + wsptr[4];
-    tmp11 = wsptr[0] - wsptr[4];
-
-    tmp13 = wsptr[2] + wsptr[6];
-    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
-
-    tmp0 = tmp10 + tmp13;
-    tmp3 = tmp10 - tmp13;
-    tmp1 = tmp11 + tmp12;
-    tmp2 = tmp11 - tmp12;
-
-    /* Odd part */
-
-    z13 = wsptr[5] + wsptr[3];
-    z10 = wsptr[5] - wsptr[3];
-    z11 = wsptr[1] + wsptr[7];
-    z12 = wsptr[1] - wsptr[7];
-
-    tmp7 = z11 + z13;
-    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
-
-    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
-    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
-    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
-
-    tmp6 = tmp12 - tmp7;
-    tmp5 = tmp11 - tmp6;
-    tmp4 = tmp10 + tmp5;
-
-    /* Final output stage: scale down by a factor of 8 and range-limit */
-
-    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
-			    & RANGE_MASK];
-    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
-			    & RANGE_MASK];
-    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
-			    & RANGE_MASK];
-    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
-			    & RANGE_MASK];
-    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
-			    & RANGE_MASK];
-    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
-			    & RANGE_MASK];
-    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
-			    & RANGE_MASK];
-    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
-			    & RANGE_MASK];
-    
-    wsptr += DCTSIZE;		/* advance pointer to next row */
-  }
-}
-
-#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/jpeg/jidctfst.c b/jpeg/jidctfst.c
deleted file mode 100644
index f13d14d3017ec8bb486ba1b286dd5c1ee85b0b93..0000000000000000000000000000000000000000
--- a/jpeg/jidctfst.c
+++ /dev/null
@@ -1,362 +0,0 @@
-/*
- * jidctfst.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a fast, not so accurate integer implementation of the
- * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time).  Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README).  The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs.  These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with fixed-point math,
- * accuracy is lost due to imprecise representation of the scaled
- * quantization values.  The smaller the quantization table entry, the less
- * precise the scaled value, so this implementation does worse with high-
- * quality-setting files than with low-quality ones.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h"		/* Private declarations for DCT subsystem */
-
-#ifdef DCT_IFAST_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Scaling decisions are generally the same as in the LL&M algorithm;
- * see jidctint.c for more details.  However, we choose to descale
- * (right shift) multiplication products as soon as they are formed,
- * rather than carrying additional fractional bits into subsequent additions.
- * This compromises accuracy slightly, but it lets us save a few shifts.
- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- * everywhere except in the multiplications proper; this saves a good deal
- * of work on 16-bit-int machines.
- *
- * The dequantized coefficients are not integers because the AA&N scaling
- * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
- * so that the first and second IDCT rounds have the same input scaling.
- * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
- * avoid a descaling shift; this compromises accuracy rather drastically
- * for small quantization table entries, but it saves a lot of shifts.
- * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
- * so we use a much larger scaling factor to preserve accuracy.
- *
- * A final compromise is to represent the multiplicative constants to only
- * 8 fractional bits, rather than 13.  This saves some shifting work on some
- * machines, and may also reduce the cost of multiplication (since there
- * are fewer one-bits in the constants).
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS  8
-#define PASS1_BITS  2
-#else
-#define CONST_BITS  8
-#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 8
-#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
-#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
-#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
-#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
-#else
-#define FIX_1_082392200  FIX(1.082392200)
-#define FIX_1_414213562  FIX(1.414213562)
-#define FIX_1_847759065  FIX(1.847759065)
-#define FIX_2_613125930  FIX(2.613125930)
-#endif
-
-
-/* We can gain a little more speed, with a further compromise in accuracy,
- * by omitting the addition in a descaling shift.  This yields an incorrectly
- * rounded result half the time...
- */
-
-#ifndef USE_ACCURATE_ROUNDING
-#undef DESCALE
-#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
-#endif
-
-
-/* Multiply a DCTELEM variable by an INT32 constant, and immediately
- * descale to yield a DCTELEM result.
- */
-
-#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
- * multiplication will do.  For 12-bit data, the multiplier table is
- * declared INT32, so a 32-bit multiply will be used.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
-#else
-#define DEQUANTIZE(coef,quantval)  \
-	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
-#endif
-
-
-/* Like DESCALE, but applies to a DCTELEM and produces an int.
- * We assume that int right shift is unsigned if INT32 right shift is.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define ISHIFT_TEMPS	DCTELEM ishift_temp;
-#define IRIGHT_SHIFT(x,shft)  \
-	((ishift_temp = (x)) < 0 ? \
-	 (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (32-(shft))) : \
-	 (ishift_temp >> (shft)))
-#else
-#define ISHIFT_TEMPS
-#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
-#endif
-
-#ifdef USE_ACCURATE_ROUNDING
-#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
-#else
-#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
-#endif
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL void
-jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-		 JCOEFPTR coef_block,
-		 JSAMPARRAY output_buf, JDIMENSION output_col)
-{
-  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
-  DCTELEM tmp10, tmp11, tmp12, tmp13;
-  DCTELEM z5, z10, z11, z12, z13;
-  JCOEFPTR inptr;
-  IFAST_MULT_TYPE * quantptr;
-  int * wsptr;
-  JSAMPROW outptr;
-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
-  int ctr;
-  int workspace[DCTSIZE2];	/* buffers data between passes */
-  SHIFT_TEMPS			/* for DESCALE */
-  ISHIFT_TEMPS			/* for IDESCALE */
-
-  /* Pass 1: process columns from input, store into work array. */
-
-  inptr = coef_block;
-  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
-  wsptr = workspace;
-  for (ctr = DCTSIZE; ctr > 0; ctr--) {
-    /* Due to quantization, we will usually find that many of the input
-     * coefficients are zero, especially the AC terms.  We can exploit this
-     * by short-circuiting the IDCT calculation for any column in which all
-     * the AC terms are zero.  In that case each output is equal to the
-     * DC coefficient (with scale factor as needed).
-     * With typical images and quantization tables, half or more of the
-     * column DCT calculations can be simplified this way.
-     */
-    
-    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
-	 inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
-	 inptr[DCTSIZE*7]) == 0) {
-      /* AC terms all zero */
-      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-
-      wsptr[DCTSIZE*0] = dcval;
-      wsptr[DCTSIZE*1] = dcval;
-      wsptr[DCTSIZE*2] = dcval;
-      wsptr[DCTSIZE*3] = dcval;
-      wsptr[DCTSIZE*4] = dcval;
-      wsptr[DCTSIZE*5] = dcval;
-      wsptr[DCTSIZE*6] = dcval;
-      wsptr[DCTSIZE*7] = dcval;
-      
-      inptr++;			/* advance pointers to next column */
-      quantptr++;
-      wsptr++;
-      continue;
-    }
-    
-    /* Even part */
-
-    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
-    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
-    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
-    tmp10 = tmp0 + tmp2;	/* phase 3 */
-    tmp11 = tmp0 - tmp2;
-
-    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
-    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
-
-    tmp0 = tmp10 + tmp13;	/* phase 2 */
-    tmp3 = tmp10 - tmp13;
-    tmp1 = tmp11 + tmp12;
-    tmp2 = tmp11 - tmp12;
-    
-    /* Odd part */
-
-    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
-    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
-    z13 = tmp6 + tmp5;		/* phase 6 */
-    z10 = tmp6 - tmp5;
-    z11 = tmp4 + tmp7;
-    z12 = tmp4 - tmp7;
-
-    tmp7 = z11 + z13;		/* phase 5 */
-    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
-
-    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
-    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
-    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
-
-    tmp6 = tmp12 - tmp7;	/* phase 2 */
-    tmp5 = tmp11 - tmp6;
-    tmp4 = tmp10 + tmp5;
-
-    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
-    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
-    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
-    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
-    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
-    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
-    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
-    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
-
-    inptr++;			/* advance pointers to next column */
-    quantptr++;
-    wsptr++;
-  }
-  
-  /* Pass 2: process rows from work array, store into output array. */
-  /* Note that we must descale the results by a factor of 8 == 2**3, */
-  /* and also undo the PASS1_BITS scaling. */
-
-  wsptr = workspace;
-  for (ctr = 0; ctr < DCTSIZE; ctr++) {
-    outptr = output_buf[ctr] + output_col;
-    /* Rows of zeroes can be exploited in the same way as we did with columns.
-     * However, the column calculation has created many nonzero AC terms, so
-     * the simplification applies less often (typically 5% to 10% of the time).
-     * On machines with very fast multiplication, it's possible that the
-     * test takes more time than it's worth.  In that case this section
-     * may be commented out.
-     */
-    
-#ifndef NO_ZERO_ROW_TEST
-    if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
-	 wsptr[7]) == 0) {
-      /* AC terms all zero */
-      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
-				  & RANGE_MASK];
-      
-      outptr[0] = dcval;
-      outptr[1] = dcval;
-      outptr[2] = dcval;
-      outptr[3] = dcval;
-      outptr[4] = dcval;
-      outptr[5] = dcval;
-      outptr[6] = dcval;
-      outptr[7] = dcval;
-
-      wsptr += DCTSIZE;		/* advance pointer to next row */
-      continue;
-    }
-#endif
-    
-    /* Even part */
-
-    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
-    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
-
-    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
-    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
-	    - tmp13;
-
-    tmp0 = tmp10 + tmp13;
-    tmp3 = tmp10 - tmp13;
-    tmp1 = tmp11 + tmp12;
-    tmp2 = tmp11 - tmp12;
-
-    /* Odd part */
-
-    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
-    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
-    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
-    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
-
-    tmp7 = z11 + z13;		/* phase 5 */
-    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
-
-    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
-    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
-    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
-
-    tmp6 = tmp12 - tmp7;	/* phase 2 */
-    tmp5 = tmp11 - tmp6;
-    tmp4 = tmp10 + tmp5;
-
-    /* Final output stage: scale down by a factor of 8 and range-limit */
-
-    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
-			    & RANGE_MASK];
-
-    wsptr += DCTSIZE;		/* advance pointer to next row */
-  }
-}
-
-#endif /* DCT_IFAST_SUPPORTED */
diff --git a/jpeg/jidctint.c b/jpeg/jidctint.c
deleted file mode 100644
index f25b08de1de3aac230d05d3228f4a5cccbc11524..0000000000000000000000000000000000000000
--- a/jpeg/jidctint.c
+++ /dev/null
@@ -1,388 +0,0 @@
-/*
- * jidctint.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a slow-but-accurate integer implementation of the
- * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time).  Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h"		/* Private declarations for DCT subsystem */
-
-#ifdef DCT_ISLOW_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/*
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
- * larger than the true IDCT outputs.  The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm.  The advantage of
- * this arrangement is that we save two multiplications per 1-D IDCT,
- * because the y0 and y4 inputs need not be divided by sqrt(N).
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic.  We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants).  After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output.  This division can be done
- * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision.  These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling.  (To scale up 12-bit sample data further, an
- * intermediate INT32 array would be needed.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
- * shows that the values given below are the most effective.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS  13
-#define PASS1_BITS  2
-#else
-#define CONST_BITS  13
-#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 13
-#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
-#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
-#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
-#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
-#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
-#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
-#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
-#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
-#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
-#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
-#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
-#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
-#else
-#define FIX_0_298631336  FIX(0.298631336)
-#define FIX_0_390180644  FIX(0.390180644)
-#define FIX_0_541196100  FIX(0.541196100)
-#define FIX_0_765366865  FIX(0.765366865)
-#define FIX_0_899976223  FIX(0.899976223)
-#define FIX_1_175875602  FIX(1.175875602)
-#define FIX_1_501321110  FIX(1.501321110)
-#define FIX_1_847759065  FIX(1.847759065)
-#define FIX_1_961570560  FIX(1.961570560)
-#define FIX_2_053119869  FIX(2.053119869)
-#define FIX_2_562915447  FIX(2.562915447)
-#define FIX_3_072711026  FIX(3.072711026)
-#endif
-
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
-#else
-#define MULTIPLY(var,const)  ((var) * (const))
-#endif
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce an int result.  In this module, both inputs and result
- * are 16 bits or less, so either int or short multiply will work.
- */
-
-#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL void
-jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-		 JCOEFPTR coef_block,
-		 JSAMPARRAY output_buf, JDIMENSION output_col)
-{
-  INT32 tmp0, tmp1, tmp2, tmp3;
-  INT32 tmp10, tmp11, tmp12, tmp13;
-  INT32 z1, z2, z3, z4, z5;
-  JCOEFPTR inptr;
-  ISLOW_MULT_TYPE * quantptr;
-  int * wsptr;
-  JSAMPROW outptr;
-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
-  int ctr;
-  int workspace[DCTSIZE2];	/* buffers data between passes */
-  SHIFT_TEMPS
-
-  /* Pass 1: process columns from input, store into work array. */
-  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
-  /* furthermore, we scale the results by 2**PASS1_BITS. */
-
-  inptr = coef_block;
-  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
-  wsptr = workspace;
-  for (ctr = DCTSIZE; ctr > 0; ctr--) {
-    /* Due to quantization, we will usually find that many of the input
-     * coefficients are zero, especially the AC terms.  We can exploit this
-     * by short-circuiting the IDCT calculation for any column in which all
-     * the AC terms are zero.  In that case each output is equal to the
-     * DC coefficient (with scale factor as needed).
-     * With typical images and quantization tables, half or more of the
-     * column DCT calculations can be simplified this way.
-     */
-    
-    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
-	 inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
-	 inptr[DCTSIZE*7]) == 0) {
-      /* AC terms all zero */
-      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-      
-      wsptr[DCTSIZE*0] = dcval;
-      wsptr[DCTSIZE*1] = dcval;
-      wsptr[DCTSIZE*2] = dcval;
-      wsptr[DCTSIZE*3] = dcval;
-      wsptr[DCTSIZE*4] = dcval;
-      wsptr[DCTSIZE*5] = dcval;
-      wsptr[DCTSIZE*6] = dcval;
-      wsptr[DCTSIZE*7] = dcval;
-      
-      inptr++;			/* advance pointers to next column */
-      quantptr++;
-      wsptr++;
-      continue;
-    }
-    
-    /* Even part: reverse the even part of the forward DCT. */
-    /* The rotator is sqrt(2)*c(-6). */
-    
-    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
-    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-    
-    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
-    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
-    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
-    
-    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
-
-    tmp0 = (z2 + z3) << CONST_BITS;
-    tmp1 = (z2 - z3) << CONST_BITS;
-    
-    tmp10 = tmp0 + tmp3;
-    tmp13 = tmp0 - tmp3;
-    tmp11 = tmp1 + tmp2;
-    tmp12 = tmp1 - tmp2;
-    
-    /* Odd part per figure 8; the matrix is unitary and hence its
-     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
-     */
-    
-    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
-    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-    
-    z1 = tmp0 + tmp3;
-    z2 = tmp1 + tmp2;
-    z3 = tmp0 + tmp2;
-    z4 = tmp1 + tmp3;
-    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
-    
-    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
-    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
-    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
-    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
-    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
-    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
-    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
-    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
-    
-    z3 += z5;
-    z4 += z5;
-    
-    tmp0 += z1 + z3;
-    tmp1 += z2 + z4;
-    tmp2 += z2 + z3;
-    tmp3 += z1 + z4;
-    
-    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-    
-    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
-    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
-    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
-    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
-    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
-    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
-    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
-    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
-    
-    inptr++;			/* advance pointers to next column */
-    quantptr++;
-    wsptr++;
-  }
-  
-  /* Pass 2: process rows from work array, store into output array. */
-  /* Note that we must descale the results by a factor of 8 == 2**3, */
-  /* and also undo the PASS1_BITS scaling. */
-
-  wsptr = workspace;
-  for (ctr = 0; ctr < DCTSIZE; ctr++) {
-    outptr = output_buf[ctr] + output_col;
-    /* Rows of zeroes can be exploited in the same way as we did with columns.
-     * However, the column calculation has created many nonzero AC terms, so
-     * the simplification applies less often (typically 5% to 10% of the time).
-     * On machines with very fast multiplication, it's possible that the
-     * test takes more time than it's worth.  In that case this section
-     * may be commented out.
-     */
-    
-#ifndef NO_ZERO_ROW_TEST
-    if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
-	 wsptr[7]) == 0) {
-      /* AC terms all zero */
-      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
-				  & RANGE_MASK];
-      
-      outptr[0] = dcval;
-      outptr[1] = dcval;
-      outptr[2] = dcval;
-      outptr[3] = dcval;
-      outptr[4] = dcval;
-      outptr[5] = dcval;
-      outptr[6] = dcval;
-      outptr[7] = dcval;
-
-      wsptr += DCTSIZE;		/* advance pointer to next row */
-      continue;
-    }
-#endif
-    
-    /* Even part: reverse the even part of the forward DCT. */
-    /* The rotator is sqrt(2)*c(-6). */
-    
-    z2 = (INT32) wsptr[2];
-    z3 = (INT32) wsptr[6];
-    
-    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
-    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
-    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
-    
-    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
-    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
-    
-    tmp10 = tmp0 + tmp3;
-    tmp13 = tmp0 - tmp3;
-    tmp11 = tmp1 + tmp2;
-    tmp12 = tmp1 - tmp2;
-    
-    /* Odd part per figure 8; the matrix is unitary and hence its
-     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
-     */
-    
-    tmp0 = (INT32) wsptr[7];
-    tmp1 = (INT32) wsptr[5];
-    tmp2 = (INT32) wsptr[3];
-    tmp3 = (INT32) wsptr[1];
-    
-    z1 = tmp0 + tmp3;
-    z2 = tmp1 + tmp2;
-    z3 = tmp0 + tmp2;
-    z4 = tmp1 + tmp3;
-    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
-    
-    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
-    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
-    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
-    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
-    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
-    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
-    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
-    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
-    
-    z3 += z5;
-    z4 += z5;
-    
-    tmp0 += z1 + z3;
-    tmp1 += z2 + z4;
-    tmp2 += z2 + z3;
-    tmp3 += z1 + z4;
-    
-    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-    
-    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
-					  CONST_BITS+PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
-					  CONST_BITS+PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
-					  CONST_BITS+PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
-					  CONST_BITS+PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
-					  CONST_BITS+PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
-					  CONST_BITS+PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
-					  CONST_BITS+PASS1_BITS+3)
-			    & RANGE_MASK];
-    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
-					  CONST_BITS+PASS1_BITS+3)
-			    & RANGE_MASK];
-    
-    wsptr += DCTSIZE;		/* advance pointer to next row */
-  }
-}
-
-#endif /* DCT_ISLOW_SUPPORTED */
diff --git a/jpeg/jidctred.c b/jpeg/jidctred.c
deleted file mode 100644
index 019c339ccb760572f87b3d854b090c7ced41673f..0000000000000000000000000000000000000000
--- a/jpeg/jidctred.c
+++ /dev/null
@@ -1,397 +0,0 @@
-/*
- * jidctred.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains inverse-DCT routines that produce reduced-size output:
- * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
- *
- * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
- * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
- * with an 8-to-4 step that produces the four averages of two adjacent outputs
- * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
- * These steps were derived by computing the corresponding values at the end
- * of the normal LL&M code, then simplifying as much as possible.
- *
- * 1x1 is trivial: just take the DC coefficient divided by 8.
- *
- * See jidctint.c for additional comments.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h"		/* Private declarations for DCT subsystem */
-
-#ifdef IDCT_SCALING_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Scaling is the same as in jidctint.c. */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS  13
-#define PASS1_BITS  2
-#else
-#define CONST_BITS  13
-#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 13
-#define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */
-#define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */
-#define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */
-#define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */
-#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
-#define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */
-#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
-#define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */
-#define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */
-#define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */
-#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
-#define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */
-#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
-#define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */
-#else
-#define FIX_0_211164243  FIX(0.211164243)
-#define FIX_0_509795579  FIX(0.509795579)
-#define FIX_0_601344887  FIX(0.601344887)
-#define FIX_0_720959822  FIX(0.720959822)
-#define FIX_0_765366865  FIX(0.765366865)
-#define FIX_0_850430095  FIX(0.850430095)
-#define FIX_0_899976223  FIX(0.899976223)
-#define FIX_1_061594337  FIX(1.061594337)
-#define FIX_1_272758580  FIX(1.272758580)
-#define FIX_1_451774981  FIX(1.451774981)
-#define FIX_1_847759065  FIX(1.847759065)
-#define FIX_2_172734803  FIX(2.172734803)
-#define FIX_2_562915447  FIX(2.562915447)
-#define FIX_3_624509785  FIX(3.624509785)
-#endif
-
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
-#else
-#define MULTIPLY(var,const)  ((var) * (const))
-#endif
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce an int result.  In this module, both inputs and result
- * are 16 bits or less, so either int or short multiply will work.
- */
-
-#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 4x4 output block.
- */
-
-GLOBAL void
-jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-	       JCOEFPTR coef_block,
-	       JSAMPARRAY output_buf, JDIMENSION output_col)
-{
-  INT32 tmp0, tmp2, tmp10, tmp12;
-  INT32 z1, z2, z3, z4;
-  JCOEFPTR inptr;
-  ISLOW_MULT_TYPE * quantptr;
-  int * wsptr;
-  JSAMPROW outptr;
-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
-  int ctr;
-  int workspace[DCTSIZE*4];	/* buffers data between passes */
-  SHIFT_TEMPS
-
-  /* Pass 1: process columns from input, store into work array. */
-
-  inptr = coef_block;
-  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
-  wsptr = workspace;
-  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
-    /* Don't bother to process column 4, because second pass won't use it */
-    if (ctr == DCTSIZE-4)
-      continue;
-    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
-	 inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | inptr[DCTSIZE*7]) == 0) {
-      /* AC terms all zero; we need not examine term 4 for 4x4 output */
-      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-      
-      wsptr[DCTSIZE*0] = dcval;
-      wsptr[DCTSIZE*1] = dcval;
-      wsptr[DCTSIZE*2] = dcval;
-      wsptr[DCTSIZE*3] = dcval;
-      
-      continue;
-    }
-    
-    /* Even part */
-    
-    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-    tmp0 <<= (CONST_BITS+1);
-    
-    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
-    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
-    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
-    
-    tmp10 = tmp0 + tmp2;
-    tmp12 = tmp0 - tmp2;
-    
-    /* Odd part */
-    
-    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
-    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-    
-    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
-	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
-	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
-	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
-    
-    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
-	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
-	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
-	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
-
-    /* Final output stage */
-    
-    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
-    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
-    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
-    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
-  }
-  
-  /* Pass 2: process 4 rows from work array, store into output array. */
-
-  wsptr = workspace;
-  for (ctr = 0; ctr < 4; ctr++) {
-    outptr = output_buf[ctr] + output_col;
-    /* It's not clear whether a zero row test is worthwhile here ... */
-
-#ifndef NO_ZERO_ROW_TEST
-    if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[5] | wsptr[6] |
-	 wsptr[7]) == 0) {
-      /* AC terms all zero */
-      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
-				  & RANGE_MASK];
-      
-      outptr[0] = dcval;
-      outptr[1] = dcval;
-      outptr[2] = dcval;
-      outptr[3] = dcval;
-      
-      wsptr += DCTSIZE;		/* advance pointer to next row */
-      continue;
-    }
-#endif
-    
-    /* Even part */
-    
-    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
-    
-    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
-	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
-    
-    tmp10 = tmp0 + tmp2;
-    tmp12 = tmp0 - tmp2;
-    
-    /* Odd part */
-    
-    z1 = (INT32) wsptr[7];
-    z2 = (INT32) wsptr[5];
-    z3 = (INT32) wsptr[3];
-    z4 = (INT32) wsptr[1];
-    
-    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
-	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
-	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
-	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
-    
-    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
-	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
-	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
-	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
-
-    /* Final output stage */
-    
-    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
-					  CONST_BITS+PASS1_BITS+3+1)
-			    & RANGE_MASK];
-    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
-					  CONST_BITS+PASS1_BITS+3+1)
-			    & RANGE_MASK];
-    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
-					  CONST_BITS+PASS1_BITS+3+1)
-			    & RANGE_MASK];
-    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
-					  CONST_BITS+PASS1_BITS+3+1)
-			    & RANGE_MASK];
-    
-    wsptr += DCTSIZE;		/* advance pointer to next row */
-  }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 2x2 output block.
- */
-
-GLOBAL void
-jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-	       JCOEFPTR coef_block,
-	       JSAMPARRAY output_buf, JDIMENSION output_col)
-{
-  INT32 tmp0, tmp10, z1;
-  JCOEFPTR inptr;
-  ISLOW_MULT_TYPE * quantptr;
-  int * wsptr;
-  JSAMPROW outptr;
-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
-  int ctr;
-  int workspace[DCTSIZE*2];	/* buffers data between passes */
-  SHIFT_TEMPS
-
-  /* Pass 1: process columns from input, store into work array. */
-
-  inptr = coef_block;
-  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
-  wsptr = workspace;
-  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
-    /* Don't bother to process columns 2,4,6 */
-    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
-      continue;
-    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*3] |
-	 inptr[DCTSIZE*5] | inptr[DCTSIZE*7]) == 0) {
-      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
-      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-      
-      wsptr[DCTSIZE*0] = dcval;
-      wsptr[DCTSIZE*1] = dcval;
-      
-      continue;
-    }
-    
-    /* Even part */
-    
-    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-    tmp10 = z1 << (CONST_BITS+2);
-    
-    /* Odd part */
-
-    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
-    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
-    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
-    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
-    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
-    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
-
-    /* Final output stage */
-    
-    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
-    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
-  }
-  
-  /* Pass 2: process 2 rows from work array, store into output array. */
-
-  wsptr = workspace;
-  for (ctr = 0; ctr < 2; ctr++) {
-    outptr = output_buf[ctr] + output_col;
-    /* It's not clear whether a zero row test is worthwhile here ... */
-
-#ifndef NO_ZERO_ROW_TEST
-    if ((wsptr[1] | wsptr[3] | wsptr[5] | wsptr[7]) == 0) {
-      /* AC terms all zero */
-      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
-				  & RANGE_MASK];
-      
-      outptr[0] = dcval;
-      outptr[1] = dcval;
-      
-      wsptr += DCTSIZE;		/* advance pointer to next row */
-      continue;
-    }
-#endif
-    
-    /* Even part */
-    
-    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
-    
-    /* Odd part */
-
-    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
-	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
-	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
-	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
-
-    /* Final output stage */
-    
-    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
-					  CONST_BITS+PASS1_BITS+3+2)
-			    & RANGE_MASK];
-    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
-					  CONST_BITS+PASS1_BITS+3+2)
-			    & RANGE_MASK];
-    
-    wsptr += DCTSIZE;		/* advance pointer to next row */
-  }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 1x1 output block.
- */
-
-GLOBAL void
-jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
-	       JCOEFPTR coef_block,
-	       JSAMPARRAY output_buf, JDIMENSION output_col)
-{
-  int dcval;
-  ISLOW_MULT_TYPE * quantptr;
-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
-  SHIFT_TEMPS
-
-  /* We hardly need an inverse DCT routine for this: just take the
-   * average pixel value, which is one-eighth of the DC coefficient.
-   */
-  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
-  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
-  dcval = (int) DESCALE((INT32) dcval, 3);
-
-  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
-}
-
-#endif /* IDCT_SCALING_SUPPORTED */
diff --git a/jpeg/jquant1.c b/jpeg/jquant1.c
deleted file mode 100644
index a68f3e78f2048ce7fc1af7566fa043085a83f164..0000000000000000000000000000000000000000
--- a/jpeg/jquant1.c
+++ /dev/null
@@ -1,710 +0,0 @@
-/*
- * jquant1.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains 1-pass color quantization (color mapping) routines.
- * These routines provide mapping to a fixed color map using equally spaced
- * color values.  Optional Floyd-Steinberg or ordered dithering is available.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-#ifdef QUANT_1PASS_SUPPORTED
-
-
-/*
- * The main purpose of 1-pass quantization is to provide a fast, if not very
- * high quality, colormapped output capability.  A 2-pass quantizer usually
- * gives better visual quality; however, for quantized grayscale output this
- * quantizer is perfectly adequate.  Dithering is highly recommended with this
- * quantizer, though you can turn it off if you really want to.
- *
- * In 1-pass quantization the colormap must be chosen in advance of seeing the
- * image.  We use a map consisting of all combinations of Ncolors[i] color
- * values for the i'th component.  The Ncolors[] values are chosen so that
- * their product, the total number of colors, is no more than that requested.
- * (In most cases, the product will be somewhat less.)
- *
- * Since the colormap is orthogonal, the representative value for each color
- * component can be determined without considering the other components;
- * then these indexes can be combined into a colormap index by a standard
- * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
- * can be precalculated and stored in the lookup table colorindex[].
- * colorindex[i][j] maps pixel value j in component i to the nearest
- * representative value (grid plane) for that component; this index is
- * multiplied by the array stride for component i, so that the
- * index of the colormap entry closest to a given pixel value is just
- *    sum( colorindex[component-number][pixel-component-value] )
- * Aside from being fast, this scheme allows for variable spacing between
- * representative values with no additional lookup cost.
- *
- * If gamma correction has been applied in color conversion, it might be wise
- * to adjust the color grid spacing so that the representative colors are
- * equidistant in linear space.  At this writing, gamma correction is not
- * implemented by jdcolor, so nothing is done here.
- */
-
-
-/* Declarations for ordered dithering.
- *
- * We use a standard 4x4 ordered dither array.  The basic concept of ordered
- * dithering is described in many references, for instance Dale Schumacher's
- * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
- * In place of Schumacher's comparisons against a "threshold" value, we add a
- * "dither" value to the input pixel and then round the result to the nearest
- * output value.  The dither value is equivalent to (0.5 - threshold) times
- * the distance between output values.  For ordered dithering, we assume that
- * the output colors are equally spaced; if not, results will probably be
- * worse, since the dither may be too much or too little at a given point.
- *
- * The normal calculation would be to form pixel value + dither, range-limit
- * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
- * We can skip the separate range-limiting step by extending the colorindex
- * table in both directions.
- */
-
-#define ODITHER_SIZE  4		/* dimension of dither matrix */
-#define ODITHER_CELLS (4*4)	/* number of cells in dither matrix */
-#define ODITHER_MASK  3		/* mask for wrapping around dither counters */
-
-typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
-
-
-/* Declarations for Floyd-Steinberg dithering.
- *
- * Errors are accumulated into the array fserrors[], at a resolution of
- * 1/16th of a pixel count.  The error at a given pixel is propagated
- * to its not-yet-processed neighbors using the standard F-S fractions,
- *		...	(here)	7/16
- *		3/16	5/16	1/16
- * We work left-to-right on even rows, right-to-left on odd rows.
- *
- * We can get away with a single array (holding one row's worth of errors)
- * by using it to store the current row's errors at pixel columns not yet
- * processed, but the next row's errors at columns already processed.  We
- * need only a few extra variables to hold the errors immediately around the
- * current column.  (If we are lucky, those variables are in registers, but
- * even if not, they're probably cheaper to access than array elements are.)
- *
- * The fserrors[] array is indexed [component#][position].
- * We provide (#columns + 2) entries per component; the extra entry at each
- * end saves us from special-casing the first and last pixels.
- *
- * Note: on a wide image, we might not have enough room in a PC's near data
- * segment to hold the error array; so it is allocated with alloc_large.
- */
-
-#if BITS_IN_JSAMPLE == 8
-typedef INT16 FSERROR;		/* 16 bits should be enough */
-typedef int LOCFSERROR;		/* use 'int' for calculation temps */
-#else
-typedef INT32 FSERROR;		/* may need more than 16 bits */
-typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
-#endif
-
-typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
-
-
-/* Private subobject */
-
-#define MAX_Q_COMPS 4		/* max components I can handle */
-
-typedef struct {
-  struct jpeg_color_quantizer pub; /* public fields */
-
-  JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
-  /* colorindex[i][j] = index of color closest to pixel value j in component i,
-   * premultiplied as described above.  Since colormap indexes must fit into
-   * JSAMPLEs, the entries of this array will too.
-   */
-
-  /* Variables for ordered dithering */
-  int row_index;		/* cur row's vertical index in dither matrix */
-  ODITHER_MATRIX *odither;	/* one dither array per component */
-
-  /* Variables for Floyd-Steinberg dithering */
-  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
-  boolean on_odd_row;		/* flag to remember which row we are on */
-} my_cquantizer;
-
-typedef my_cquantizer * my_cquantize_ptr;
-
-
-/*
- * Policy-making subroutines for create_colormap: these routines determine
- * the colormap to be used.  The rest of the module only assumes that the
- * colormap is orthogonal.
- *
- *  * select_ncolors decides how to divvy up the available colors
- *    among the components.
- *  * output_value defines the set of representative values for a component.
- *  * largest_input_value defines the mapping from input values to
- *    representative values for a component.
- * Note that the latter two routines may impose different policies for
- * different components, though this is not currently done.
- */
-
-
-LOCAL int
-select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
-/* Determine allocation of desired colors to components, */
-/* and fill in Ncolors[] array to indicate choice. */
-/* Return value is total number of colors (product of Ncolors[] values). */
-{
-  int nc = cinfo->out_color_components; /* number of color components */
-  int max_colors = cinfo->desired_number_of_colors;
-  int total_colors, iroot, i, j;
-  long temp;
-  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
-
-  /* We can allocate at least the nc'th root of max_colors per component. */
-  /* Compute floor(nc'th root of max_colors). */
-  iroot = 1;
-  do {
-    iroot++;
-    temp = iroot;		/* set temp = iroot ** nc */
-    for (i = 1; i < nc; i++)
-      temp *= iroot;
-  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
-  iroot--;			/* now iroot = floor(root) */
-
-  /* Must have at least 2 color values per component */
-  if (iroot < 2)
-    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
-
-  /* Initialize to iroot color values for each component */
-  total_colors = 1;
-  for (i = 0; i < nc; i++) {
-    Ncolors[i] = iroot;
-    total_colors *= iroot;
-  }
-  /* We may be able to increment the count for one or more components without
-   * exceeding max_colors, though we know not all can be incremented.
-   * In RGB colorspace, try to increment G first, then R, then B.
-   */
-  for (i = 0; i < nc; i++) {
-    j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
-    /* calculate new total_colors if Ncolors[j] is incremented */
-    temp = total_colors / Ncolors[j];
-    temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
-    if (temp > (long) max_colors)
-      break;			/* won't fit, done */
-    Ncolors[j]++;		/* OK, apply the increment */
-    total_colors = (int) temp;
-  }
-
-  return total_colors;
-}
-
-
-LOCAL int
-output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
-/* Return j'th output value, where j will range from 0 to maxj */
-/* The output values must fall in 0..MAXJSAMPLE in increasing order */
-{
-  /* We always provide values 0 and MAXJSAMPLE for each component;
-   * any additional values are equally spaced between these limits.
-   * (Forcing the upper and lower values to the limits ensures that
-   * dithering can't produce a color outside the selected gamut.)
-   */
-  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
-}
-
-
-LOCAL int
-largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
-/* Return largest input value that should map to j'th output value */
-/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
-{
-  /* Breakpoints are halfway between values returned by output_value */
-  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
-}
-
-
-/*
- * Create the colormap and color index table.
- * Also creates the ordered-dither tables, if required.
- */
-
-LOCAL void
-create_colormap (j_decompress_ptr cinfo)
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  JSAMPARRAY colormap;		/* Created colormap */
-  JSAMPROW indexptr;
-  int total_colors;		/* Number of distinct output colors */
-  int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
-  ODITHER_MATRIX *odither;
-  int i,j,k, nci, blksize, blkdist, ptr, val, pad;
-
-  /* Select number of colors for each component */
-  total_colors = select_ncolors(cinfo, Ncolors);
-
-  /* Report selected color counts */
-  if (cinfo->out_color_components == 3)
-    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
-	     total_colors, Ncolors[0], Ncolors[1], Ncolors[2]);
-  else
-    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
-
-  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
-   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
-   * This is not necessary in the other dithering modes.
-   */
-  pad = (cinfo->dither_mode == JDITHER_ORDERED) ? MAXJSAMPLE*2 : 0;
-
-  /* Allocate and fill in the colormap and color index. */
-  /* The colors are ordered in the map in standard row-major order, */
-  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
-
-  colormap = (*cinfo->mem->alloc_sarray)
-    ((j_common_ptr) cinfo, JPOOL_IMAGE,
-     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
-  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
-    ((j_common_ptr) cinfo, JPOOL_IMAGE,
-     (JDIMENSION) (MAXJSAMPLE+1 + pad),
-     (JDIMENSION) cinfo->out_color_components);
-
-  /* blksize is number of adjacent repeated entries for a component */
-  /* blkdist is distance between groups of identical entries for a component */
-  blkdist = total_colors;
-
-  for (i = 0; i < cinfo->out_color_components; i++) {
-    /* fill in colormap entries for i'th color component */
-    nci = Ncolors[i];		/* # of distinct values for this color */
-    blksize = blkdist / nci;
-    for (j = 0; j < nci; j++) {
-      /* Compute j'th output value (out of nci) for component */
-      val = output_value(cinfo, i, j, nci-1);
-      /* Fill in all colormap entries that have this value of this component */
-      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
-	/* fill in blksize entries beginning at ptr */
-	for (k = 0; k < blksize; k++)
-	  colormap[i][ptr+k] = (JSAMPLE) val;
-      }
-    }
-    blkdist = blksize;		/* blksize of this color is blkdist of next */
-
-    /* adjust colorindex pointers to provide padding at negative indexes. */
-    if (pad)
-      cquantize->colorindex[i] += MAXJSAMPLE;
-
-    /* fill in colorindex entries for i'th color component */
-    /* in loop, val = index of current output value, */
-    /* and k = largest j that maps to current val */
-    indexptr = cquantize->colorindex[i];
-    val = 0;
-    k = largest_input_value(cinfo, i, 0, nci-1);
-    for (j = 0; j <= MAXJSAMPLE; j++) {
-      while (j > k)		/* advance val if past boundary */
-	k = largest_input_value(cinfo, i, ++val, nci-1);
-      /* premultiply so that no multiplication needed in main processing */
-      indexptr[j] = (JSAMPLE) (val * blksize);
-    }
-    /* Pad at both ends if necessary */
-    if (pad)
-      for (j = 1; j <= MAXJSAMPLE; j++) {
-	indexptr[-j] = indexptr[0];
-	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
-      }
-  }
-
-  /* Make the colormap available to the application. */
-  cinfo->colormap = colormap;
-  cinfo->actual_number_of_colors = total_colors;
-
-  if (cinfo->dither_mode == JDITHER_ORDERED) {
-    /* Allocate and fill in the ordered-dither tables. */
-    odither = (ODITHER_MATRIX *)
-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-			cinfo->out_color_components * SIZEOF(ODITHER_MATRIX));
-    cquantize->odither = odither;
-    for (i = 0; i < cinfo->out_color_components; i++) {
-      nci = Ncolors[i];		/* # of distinct values for this color */
-      /* The inter-value distance for this color is MAXJSAMPLE/(nci-1).
-       * Hence the dither value for the matrix cell with fill order j
-       * (j=1..N) should be (N+1-2*j)/(2*(N+1)) * MAXJSAMPLE/(nci-1).
-       */
-      val = 2 * (ODITHER_CELLS + 1) * (nci - 1); /* denominator */
-      /* Macro is coded to ensure round towards zero despite C's
-       * lack of consistency in integer division...
-       */
-#define ODITHER_DIV(num,den)  ((num)<0 ? -((-(num))/(den)) : (num)/(den))
-#define ODITHER_VAL(j)  ODITHER_DIV((ODITHER_CELLS+1-2*j)*MAXJSAMPLE, val)
-      /* Traditional fill order for 4x4 dither; see Schumacher's figure 4. */
-      odither[0][0][0] = ODITHER_VAL(1);
-      odither[0][0][1] = ODITHER_VAL(9);
-      odither[0][0][2] = ODITHER_VAL(3);
-      odither[0][0][3] = ODITHER_VAL(11);
-      odither[0][1][0] = ODITHER_VAL(13);
-      odither[0][1][1] = ODITHER_VAL(5);
-      odither[0][1][2] = ODITHER_VAL(15);
-      odither[0][1][3] = ODITHER_VAL(7);
-      odither[0][2][0] = ODITHER_VAL(4);
-      odither[0][2][1] = ODITHER_VAL(12);
-      odither[0][2][2] = ODITHER_VAL(2);
-      odither[0][2][3] = ODITHER_VAL(10);
-      odither[0][3][0] = ODITHER_VAL(16);
-      odither[0][3][1] = ODITHER_VAL(8);
-      odither[0][3][2] = ODITHER_VAL(14);
-      odither[0][3][3] = ODITHER_VAL(6);
-      odither++;		/* advance to next matrix */
-    }
-  }
-}
-
-
-/*
- * Map some rows of pixels to the output colormapped representation.
- */
-
-METHODDEF void
-color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
-		JSAMPARRAY output_buf, int num_rows)
-/* General case, no dithering */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  JSAMPARRAY colorindex = cquantize->colorindex;
-  register int pixcode, ci;
-  register JSAMPROW ptrin, ptrout;
-  int row;
-  JDIMENSION col;
-  JDIMENSION width = cinfo->output_width;
-  register int nc = cinfo->out_color_components;
-
-  for (row = 0; row < num_rows; row++) {
-    ptrin = input_buf[row];
-    ptrout = output_buf[row];
-    for (col = width; col > 0; col--) {
-      pixcode = 0;
-      for (ci = 0; ci < nc; ci++) {
-	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
-      }
-      *ptrout++ = (JSAMPLE) pixcode;
-    }
-  }
-}
-
-
-METHODDEF void
-color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
-		 JSAMPARRAY output_buf, int num_rows)
-/* Fast path for out_color_components==3, no dithering */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  register int pixcode;
-  register JSAMPROW ptrin, ptrout;
-  JSAMPROW colorindex0 = cquantize->colorindex[0];
-  JSAMPROW colorindex1 = cquantize->colorindex[1];
-  JSAMPROW colorindex2 = cquantize->colorindex[2];
-  int row;
-  JDIMENSION col;
-  JDIMENSION width = cinfo->output_width;
-
-  for (row = 0; row < num_rows; row++) {
-    ptrin = input_buf[row];
-    ptrout = output_buf[row];
-    for (col = width; col > 0; col--) {
-      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
-      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
-      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
-      *ptrout++ = (JSAMPLE) pixcode;
-    }
-  }
-}
-
-
-METHODDEF void
-quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
-		     JSAMPARRAY output_buf, int num_rows)
-/* General case, with ordered dithering */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  register JSAMPROW input_ptr;
-  register JSAMPROW output_ptr;
-  JSAMPROW colorindex_ci;
-  int * dither;			/* points to active row of dither matrix */
-  int row_index, col_index;	/* current indexes into dither matrix */
-  int nc = cinfo->out_color_components;
-  int ci;
-  int row;
-  JDIMENSION col;
-  JDIMENSION width = cinfo->output_width;
-
-  for (row = 0; row < num_rows; row++) {
-    /* Initialize output values to 0 so can process components separately */
-    jzero_far((void FAR *) output_buf[row],
-	      (size_t) (width * SIZEOF(JSAMPLE)));
-    row_index = cquantize->row_index;
-    for (ci = 0; ci < nc; ci++) {
-      input_ptr = input_buf[row] + ci;
-      output_ptr = output_buf[row];
-      colorindex_ci = cquantize->colorindex[ci];
-      dither = cquantize->odither[ci][row_index];
-      col_index = 0;
-
-      for (col = width; col > 0; col--) {
-	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
-	 * select output value, accumulate into output code for this pixel.
-	 * Range-limiting need not be done explicitly, as we have extended
-	 * the colorindex table to produce the right answers for out-of-range
-	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
-	 * required amount of padding.
-	 */
-	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
-	input_ptr += nc;
-	output_ptr++;
-	col_index = (col_index + 1) & ODITHER_MASK;
-      }
-    }
-    /* Advance row index for next row */
-    row_index = (row_index + 1) & ODITHER_MASK;
-    cquantize->row_index = row_index;
-  }
-}
-
-
-METHODDEF void
-quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
-		      JSAMPARRAY output_buf, int num_rows)
-/* Fast path for out_color_components==3, with ordered dithering */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  register int pixcode;
-  register JSAMPROW input_ptr;
-  register JSAMPROW output_ptr;
-  JSAMPROW colorindex0 = cquantize->colorindex[0];
-  JSAMPROW colorindex1 = cquantize->colorindex[1];
-  JSAMPROW colorindex2 = cquantize->colorindex[2];
-  int * dither0;		/* points to active row of dither matrix */
-  int * dither1;
-  int * dither2;
-  int row_index, col_index;	/* current indexes into dither matrix */
-  int row;
-  JDIMENSION col;
-  JDIMENSION width = cinfo->output_width;
-
-  for (row = 0; row < num_rows; row++) {
-    row_index = cquantize->row_index;
-    input_ptr = input_buf[row];
-    output_ptr = output_buf[row];
-    dither0 = cquantize->odither[0][row_index];
-    dither1 = cquantize->odither[1][row_index];
-    dither2 = cquantize->odither[2][row_index];
-    col_index = 0;
-
-    for (col = width; col > 0; col--) {
-      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
-					dither0[col_index]]);
-      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
-					dither1[col_index]]);
-      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
-					dither2[col_index]]);
-      *output_ptr++ = (JSAMPLE) pixcode;
-      col_index = (col_index + 1) & ODITHER_MASK;
-    }
-    row_index = (row_index + 1) & ODITHER_MASK;
-    cquantize->row_index = row_index;
-  }
-}
-
-
-METHODDEF void
-quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
-		    JSAMPARRAY output_buf, int num_rows)
-/* General case, with Floyd-Steinberg dithering */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  register LOCFSERROR cur;	/* current error or pixel value */
-  LOCFSERROR belowerr;		/* error for pixel below cur */
-  LOCFSERROR bpreverr;		/* error for below/prev col */
-  LOCFSERROR bnexterr;		/* error for below/next col */
-  LOCFSERROR delta;
-  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
-  register JSAMPROW input_ptr;
-  register JSAMPROW output_ptr;
-  JSAMPROW colorindex_ci;
-  JSAMPROW colormap_ci;
-  int pixcode;
-  int nc = cinfo->out_color_components;
-  int dir;			/* 1 for left-to-right, -1 for right-to-left */
-  int dirnc;			/* dir * nc */
-  int ci;
-  int row;
-  JDIMENSION col;
-  JDIMENSION width = cinfo->output_width;
-  JSAMPLE *range_limit = cinfo->sample_range_limit;
-  SHIFT_TEMPS
-
-  for (row = 0; row < num_rows; row++) {
-    /* Initialize output values to 0 so can process components separately */
-    jzero_far((void FAR *) output_buf[row],
-	      (size_t) (width * SIZEOF(JSAMPLE)));
-    for (ci = 0; ci < nc; ci++) {
-      input_ptr = input_buf[row] + ci;
-      output_ptr = output_buf[row];
-      if (cquantize->on_odd_row) {
-	/* work right to left in this row */
-	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
-	output_ptr += width-1;
-	dir = -1;
-	dirnc = -nc;
-	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
-      } else {
-	/* work left to right in this row */
-	dir = 1;
-	dirnc = nc;
-	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
-      }
-      colorindex_ci = cquantize->colorindex[ci];
-      colormap_ci = cinfo->colormap[ci];
-      /* Preset error values: no error propagated to first pixel from left */
-      cur = 0;
-      /* and no error propagated to row below yet */
-      belowerr = bpreverr = 0;
-
-      for (col = width; col > 0; col--) {
-	/* cur holds the error propagated from the previous pixel on the
-	 * current line.  Add the error propagated from the previous line
-	 * to form the complete error correction term for this pixel, and
-	 * round the error term (which is expressed * 16) to an integer.
-	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
-	 * for either sign of the error value.
-	 * Note: errorptr points to *previous* column's array entry.
-	 */
-	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
-	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
-	 * The maximum error is +- MAXJSAMPLE; this sets the required size
-	 * of the range_limit array.
-	 */
-	cur += GETJSAMPLE(*input_ptr);
-	cur = GETJSAMPLE(range_limit[cur]);
-	/* Select output value, accumulate into output code for this pixel */
-	pixcode = GETJSAMPLE(colorindex_ci[cur]);
-	*output_ptr += (JSAMPLE) pixcode;
-	/* Compute actual representation error at this pixel */
-	/* Note: we can do this even though we don't have the final */
-	/* pixel code, because the colormap is orthogonal. */
-	cur -= GETJSAMPLE(colormap_ci[pixcode]);
-	/* Compute error fractions to be propagated to adjacent pixels.
-	 * Add these into the running sums, and simultaneously shift the
-	 * next-line error sums left by 1 column.
-	 */
-	bnexterr = cur;
-	delta = cur * 2;
-	cur += delta;		/* form error * 3 */
-	errorptr[0] = (FSERROR) (bpreverr + cur);
-	cur += delta;		/* form error * 5 */
-	bpreverr = belowerr + cur;
-	belowerr = bnexterr;
-	cur += delta;		/* form error * 7 */
-	/* At this point cur contains the 7/16 error value to be propagated
-	 * to the next pixel on the current line, and all the errors for the
-	 * next line have been shifted over. We are therefore ready to move on.
-	 */
-	input_ptr += dirnc;	/* advance input ptr to next column */
-	output_ptr += dir;	/* advance output ptr to next column */
-	errorptr += dir;	/* advance errorptr to current column */
-      }
-      /* Post-loop cleanup: we must unload the final error value into the
-       * final fserrors[] entry.  Note we need not unload belowerr because
-       * it is for the dummy column before or after the actual array.
-       */
-      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
-    }
-    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
-  }
-}
-
-
-/*
- * Initialize for one-pass color quantization.
- */
-
-METHODDEF void
-start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
-{
-  /* no work in 1-pass case */
-}
-
-
-/*
- * Finish up at the end of the pass.
- */
-
-METHODDEF void
-finish_pass_1_quant (j_decompress_ptr cinfo)
-{
-  /* no work in 1-pass case */
-}
-
-
-/*
- * Module initialization routine for 1-pass color quantization.
- */
-
-GLOBAL void
-jinit_1pass_quantizer (j_decompress_ptr cinfo)
-{
-  my_cquantize_ptr cquantize;
-  size_t arraysize;
-  int i;
-
-  cquantize = (my_cquantize_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_cquantizer));
-  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
-  cquantize->pub.start_pass = start_pass_1_quant;
-  cquantize->pub.finish_pass = finish_pass_1_quant;
-
-  /* Make sure my internal arrays won't overflow */
-  if (cinfo->out_color_components > MAX_Q_COMPS)
-    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
-  /* Make sure colormap indexes can be represented by JSAMPLEs */
-  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
-    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
-
-  /* Initialize for desired dithering mode. */
-  switch (cinfo->dither_mode) {
-  case JDITHER_NONE:
-    if (cinfo->out_color_components == 3)
-      cquantize->pub.color_quantize = color_quantize3;
-    else
-      cquantize->pub.color_quantize = color_quantize;
-    break;
-  case JDITHER_ORDERED:
-    if (cinfo->out_color_components == 3)
-      cquantize->pub.color_quantize = quantize3_ord_dither;
-    else
-      cquantize->pub.color_quantize = quantize_ord_dither;
-    cquantize->row_index = 0;	/* initialize state for ordered dither */
-    break;
-  case JDITHER_FS:
-    cquantize->pub.color_quantize = quantize_fs_dither;
-    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
-    /* Allocate Floyd-Steinberg workspace if necessary. */
-    /* We do this now since it is FAR storage and may affect the memory */
-    /* manager's space calculations. */
-    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
-    for (i = 0; i < cinfo->out_color_components; i++) {
-      cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large)
-	((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
-      /* Initialize the propagated errors to zero. */
-      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
-    }
-    break;
-  default:
-    ERREXIT(cinfo, JERR_NOT_COMPILED);
-    break;
-  }
-
-  /* Create the colormap. */
-  create_colormap(cinfo);
-}
-
-#endif /* QUANT_1PASS_SUPPORTED */
diff --git a/jpeg/jquant2.c b/jpeg/jquant2.c
deleted file mode 100644
index 7984f5800f00fd8496abc6e09bb3d246e1916743..0000000000000000000000000000000000000000
--- a/jpeg/jquant2.c
+++ /dev/null
@@ -1,1253 +0,0 @@
-/*
- * jquant2.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains 2-pass color quantization (color mapping) routines.
- * These routines provide selection of a custom color map for an image,
- * followed by mapping of the image to that color map, with optional
- * Floyd-Steinberg dithering.
- * It is also possible to use just the second pass to map to an arbitrary
- * externally-given color map.
- *
- * Note: ordered dithering is not supported, since there isn't any fast
- * way to compute intercolor distances; it's unclear that ordered dither's
- * fundamental assumptions even hold with an irregularly spaced color map.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-
-/*
- * This module implements the well-known Heckbert paradigm for color
- * quantization.  Most of the ideas used here can be traced back to
- * Heckbert's seminal paper
- *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
- *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
- *
- * In the first pass over the image, we accumulate a histogram showing the
- * usage count of each possible color.  To keep the histogram to a reasonable
- * size, we reduce the precision of the input; typical practice is to retain
- * 5 or 6 bits per color, so that 8 or 4 different input values are counted
- * in the same histogram cell.
- *
- * Next, the color-selection step begins with a box representing the whole
- * color space, and repeatedly splits the "largest" remaining box until we
- * have as many boxes as desired colors.  Then the mean color in each
- * remaining box becomes one of the possible output colors.
- * 
- * The second pass over the image maps each input pixel to the closest output
- * color (optionally after applying a Floyd-Steinberg dithering correction).
- * This mapping is logically trivial, but making it go fast enough requires
- * considerable care.
- *
- * Heckbert-style quantizers vary a good deal in their policies for choosing
- * the "largest" box and deciding where to cut it.  The particular policies
- * used here have proved out well in experimental comparisons, but better ones
- * may yet be found.
- *
- * In earlier versions of the IJG code, this module quantized in YCbCr color
- * space, processing the raw upsampled data without a color conversion step.
- * This allowed the color conversion math to be done only once per colormap
- * entry, not once per pixel.  However, that optimization precluded other
- * useful optimizations (such as merging color conversion with upsampling)
- * and it also interfered with desired capabilities such as quantizing to an
- * externally-supplied colormap.  We have therefore abandoned that approach.
- * The present code works in the post-conversion color space, typically RGB.
- *
- * To improve the visual quality of the results, we actually work in scaled
- * RGB space, giving G distances more weight than R, and R in turn more than
- * B.  To do everything in integer math, we must use integer scale factors.
- * The 2/3/1 scale factors used here correspond loosely to the relative
- * weights of the colors in the NTSC grayscale equation.
- * If you want to use this code to quantize a non-RGB color space, you'll
- * probably need to change these scale factors.
- */
-
-#define R_SCALE 2		/* scale R distances by this much */
-#define G_SCALE 3		/* scale G distances by this much */
-#define B_SCALE 1		/* and B by this much */
-
-/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
- * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
- * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
- * you'll get compile errors until you extend this logic.  In that case
- * you'll probably want to tweak the histogram sizes too.
- */
-
-#if RGB_RED == 0
-#define C0_SCALE R_SCALE
-#endif
-#if RGB_BLUE == 0
-#define C0_SCALE B_SCALE
-#endif
-#if RGB_GREEN == 1
-#define C1_SCALE G_SCALE
-#endif
-#if RGB_RED == 2
-#define C2_SCALE R_SCALE
-#endif
-#if RGB_BLUE == 2
-#define C2_SCALE B_SCALE
-#endif
-
-
-/*
- * First we have the histogram data structure and routines for creating it.
- *
- * The number of bits of precision can be adjusted by changing these symbols.
- * We recommend keeping 6 bits for G and 5 each for R and B.
- * If you have plenty of memory and cycles, 6 bits all around gives marginally
- * better results; if you are short of memory, 5 bits all around will save
- * some space but degrade the results.
- * To maintain a fully accurate histogram, we'd need to allocate a "long"
- * (preferably unsigned long) for each cell.  In practice this is overkill;
- * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
- * and clamping those that do overflow to the maximum value will give close-
- * enough results.  This reduces the recommended histogram size from 256Kb
- * to 128Kb, which is a useful savings on PC-class machines.
- * (In the second pass the histogram space is re-used for pixel mapping data;
- * in that capacity, each cell must be able to store zero to the number of
- * desired colors.  16 bits/cell is plenty for that too.)
- * Since the JPEG code is intended to run in small memory model on 80x86
- * machines, we can't just allocate the histogram in one chunk.  Instead
- * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
- * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
- * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
- * on 80x86 machines, the pointer row is in near memory but the actual
- * arrays are in far memory (same arrangement as we use for image arrays).
- */
-
-#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
-
-/* These will do the right thing for either R,G,B or B,G,R color order,
- * but you may not like the results for other color orders.
- */
-#define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
-#define HIST_C1_BITS  6		/* bits of precision in G histogram */
-#define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
-
-/* Number of elements along histogram axes. */
-#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
-#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
-#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
-
-/* These are the amounts to shift an input value to get a histogram index. */
-#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
-#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
-#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
-
-
-typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
-
-typedef histcell FAR * histptr;	/* for pointers to histogram cells */
-
-typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
-typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
-typedef hist2d * hist3d;	/* type for top-level pointer */
-
-
-/* Declarations for Floyd-Steinberg dithering.
- *
- * Errors are accumulated into the array fserrors[], at a resolution of
- * 1/16th of a pixel count.  The error at a given pixel is propagated
- * to its not-yet-processed neighbors using the standard F-S fractions,
- *		...	(here)	7/16
- *		3/16	5/16	1/16
- * We work left-to-right on even rows, right-to-left on odd rows.
- *
- * We can get away with a single array (holding one row's worth of errors)
- * by using it to store the current row's errors at pixel columns not yet
- * processed, but the next row's errors at columns already processed.  We
- * need only a few extra variables to hold the errors immediately around the
- * current column.  (If we are lucky, those variables are in registers, but
- * even if not, they're probably cheaper to access than array elements are.)
- *
- * The fserrors[] array has (#columns + 2) entries; the extra entry at
- * each end saves us from special-casing the first and last pixels.
- * Each entry is three values long, one value for each color component.
- *
- * Note: on a wide image, we might not have enough room in a PC's near data
- * segment to hold the error array; so it is allocated with alloc_large.
- */
-
-#if BITS_IN_JSAMPLE == 8
-typedef INT16 FSERROR;		/* 16 bits should be enough */
-typedef int LOCFSERROR;		/* use 'int' for calculation temps */
-#else
-typedef INT32 FSERROR;		/* may need more than 16 bits */
-typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
-#endif
-
-typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
-
-
-/* Private subobject */
-
-typedef struct {
-  struct jpeg_color_quantizer pub; /* public fields */
-
-  /* Variables for accumulating image statistics */
-  hist3d histogram;		/* pointer to the histogram */
-
-  /* Variables for Floyd-Steinberg dithering */
-  FSERRPTR fserrors;		/* accumulated errors */
-  boolean on_odd_row;		/* flag to remember which row we are on */
-  int * error_limiter;		/* table for clamping the applied error */
-} my_cquantizer;
-
-typedef my_cquantizer * my_cquantize_ptr;
-
-
-/*
- * Prescan some rows of pixels.
- * In this module the prescan simply updates the histogram, which has been
- * initialized to zeroes by start_pass.
- * An output_buf parameter is required by the method signature, but no data
- * is actually output (in fact the buffer controller is probably passing a
- * NULL pointer).
- */
-
-METHODDEF void
-prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
-		  JSAMPARRAY output_buf, int num_rows)
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  register JSAMPROW ptr;
-  register histptr histp;
-  register hist3d histogram = cquantize->histogram;
-  int row;
-  JDIMENSION col;
-  JDIMENSION width = cinfo->output_width;
-
-  for (row = 0; row < num_rows; row++) {
-    ptr = input_buf[row];
-    for (col = width; col > 0; col--) {
-      /* get pixel value and index into the histogram */
-      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
-			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
-			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
-      /* increment, check for overflow and undo increment if so. */
-      if (++(*histp) <= 0)
-	(*histp)--;
-      ptr += 3;
-    }
-  }
-}
-
-
-/*
- * Next we have the really interesting routines: selection of a colormap
- * given the completed histogram.
- * These routines work with a list of "boxes", each representing a rectangular
- * subset of the input color space (to histogram precision).
- */
-
-typedef struct {
-  /* The bounds of the box (inclusive); expressed as histogram indexes */
-  int c0min, c0max;
-  int c1min, c1max;
-  int c2min, c2max;
-  /* The volume (actually 2-norm) of the box */
-  INT32 volume;
-  /* The number of nonzero histogram cells within this box */
-  long colorcount;
-} box;
-
-typedef box * boxptr;
-
-
-LOCAL boxptr
-find_biggest_color_pop (boxptr boxlist, int numboxes)
-/* Find the splittable box with the largest color population */
-/* Returns NULL if no splittable boxes remain */
-{
-  register boxptr boxp;
-  register int i;
-  register long maxc = 0;
-  boxptr which = NULL;
-  
-  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
-    if (boxp->colorcount > maxc && boxp->volume > 0) {
-      which = boxp;
-      maxc = boxp->colorcount;
-    }
-  }
-  return which;
-}
-
-
-LOCAL boxptr
-find_biggest_volume (boxptr boxlist, int numboxes)
-/* Find the splittable box with the largest (scaled) volume */
-/* Returns NULL if no splittable boxes remain */
-{
-  register boxptr boxp;
-  register int i;
-  register INT32 maxv = 0;
-  boxptr which = NULL;
-  
-  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
-    if (boxp->volume > maxv) {
-      which = boxp;
-      maxv = boxp->volume;
-    }
-  }
-  return which;
-}
-
-
-LOCAL void
-update_box (j_decompress_ptr cinfo, boxptr boxp)
-/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
-/* and recompute its volume and population */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  hist3d histogram = cquantize->histogram;
-  histptr histp;
-  int c0,c1,c2;
-  int c0min,c0max,c1min,c1max,c2min,c2max;
-  INT32 dist0,dist1,dist2;
-  long ccount;
-  
-  c0min = boxp->c0min;  c0max = boxp->c0max;
-  c1min = boxp->c1min;  c1max = boxp->c1max;
-  c2min = boxp->c2min;  c2max = boxp->c2max;
-  
-  if (c0max > c0min)
-    for (c0 = c0min; c0 <= c0max; c0++)
-      for (c1 = c1min; c1 <= c1max; c1++) {
-	histp = & histogram[c0][c1][c2min];
-	for (c2 = c2min; c2 <= c2max; c2++)
-	  if (*histp++ != 0) {
-	    boxp->c0min = c0min = c0;
-	    goto have_c0min;
-	  }
-      }
- have_c0min:
-  if (c0max > c0min)
-    for (c0 = c0max; c0 >= c0min; c0--)
-      for (c1 = c1min; c1 <= c1max; c1++) {
-	histp = & histogram[c0][c1][c2min];
-	for (c2 = c2min; c2 <= c2max; c2++)
-	  if (*histp++ != 0) {
-	    boxp->c0max = c0max = c0;
-	    goto have_c0max;
-	  }
-      }
- have_c0max:
-  if (c1max > c1min)
-    for (c1 = c1min; c1 <= c1max; c1++)
-      for (c0 = c0min; c0 <= c0max; c0++) {
-	histp = & histogram[c0][c1][c2min];
-	for (c2 = c2min; c2 <= c2max; c2++)
-	  if (*histp++ != 0) {
-	    boxp->c1min = c1min = c1;
-	    goto have_c1min;
-	  }
-      }
- have_c1min:
-  if (c1max > c1min)
-    for (c1 = c1max; c1 >= c1min; c1--)
-      for (c0 = c0min; c0 <= c0max; c0++) {
-	histp = & histogram[c0][c1][c2min];
-	for (c2 = c2min; c2 <= c2max; c2++)
-	  if (*histp++ != 0) {
-	    boxp->c1max = c1max = c1;
-	    goto have_c1max;
-	  }
-      }
- have_c1max:
-  if (c2max > c2min)
-    for (c2 = c2min; c2 <= c2max; c2++)
-      for (c0 = c0min; c0 <= c0max; c0++) {
-	histp = & histogram[c0][c1min][c2];
-	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
-	  if (*histp != 0) {
-	    boxp->c2min = c2min = c2;
-	    goto have_c2min;
-	  }
-      }
- have_c2min:
-  if (c2max > c2min)
-    for (c2 = c2max; c2 >= c2min; c2--)
-      for (c0 = c0min; c0 <= c0max; c0++) {
-	histp = & histogram[c0][c1min][c2];
-	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
-	  if (*histp != 0) {
-	    boxp->c2max = c2max = c2;
-	    goto have_c2max;
-	  }
-      }
- have_c2max:
-
-  /* Update box volume.
-   * We use 2-norm rather than real volume here; this biases the method
-   * against making long narrow boxes, and it has the side benefit that
-   * a box is splittable iff norm > 0.
-   * Since the differences are expressed in histogram-cell units,
-   * we have to shift back to JSAMPLE units to get consistent distances;
-   * after which, we scale according to the selected distance scale factors.
-   */
-  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
-  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
-  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
-  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
-  
-  /* Now scan remaining volume of box and compute population */
-  ccount = 0;
-  for (c0 = c0min; c0 <= c0max; c0++)
-    for (c1 = c1min; c1 <= c1max; c1++) {
-      histp = & histogram[c0][c1][c2min];
-      for (c2 = c2min; c2 <= c2max; c2++, histp++)
-	if (*histp != 0) {
-	  ccount++;
-	}
-    }
-  boxp->colorcount = ccount;
-}
-
-
-LOCAL int
-median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
-	    int desired_colors)
-/* Repeatedly select and split the largest box until we have enough boxes */
-{
-  int n,lb;
-  int c0,c1,c2,cmax;
-  register boxptr b1,b2;
-
-  while (numboxes < desired_colors) {
-    /* Select box to split.
-     * Current algorithm: by population for first half, then by volume.
-     */
-    if (numboxes*2 <= desired_colors) {
-      b1 = find_biggest_color_pop(boxlist, numboxes);
-    } else {
-      b1 = find_biggest_volume(boxlist, numboxes);
-    }
-    if (b1 == NULL)		/* no splittable boxes left! */
-      break;
-    b2 = &boxlist[numboxes];	/* where new box will go */
-    /* Copy the color bounds to the new box. */
-    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
-    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
-    /* Choose which axis to split the box on.
-     * Current algorithm: longest scaled axis.
-     * See notes in update_box about scaling distances.
-     */
-    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
-    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
-    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
-    /* We want to break any ties in favor of green, then red, blue last.
-     * This code does the right thing for R,G,B or B,G,R color orders only.
-     */
-#if RGB_RED == 0
-    cmax = c1; n = 1;
-    if (c0 > cmax) { cmax = c0; n = 0; }
-    if (c2 > cmax) { n = 2; }
-#else
-    cmax = c1; n = 1;
-    if (c2 > cmax) { cmax = c2; n = 2; }
-    if (c0 > cmax) { n = 0; }
-#endif
-    /* Choose split point along selected axis, and update box bounds.
-     * Current algorithm: split at halfway point.
-     * (Since the box has been shrunk to minimum volume,
-     * any split will produce two nonempty subboxes.)
-     * Note that lb value is max for lower box, so must be < old max.
-     */
-    switch (n) {
-    case 0:
-      lb = (b1->c0max + b1->c0min) / 2;
-      b1->c0max = lb;
-      b2->c0min = lb+1;
-      break;
-    case 1:
-      lb = (b1->c1max + b1->c1min) / 2;
-      b1->c1max = lb;
-      b2->c1min = lb+1;
-      break;
-    case 2:
-      lb = (b1->c2max + b1->c2min) / 2;
-      b1->c2max = lb;
-      b2->c2min = lb+1;
-      break;
-    }
-    /* Update stats for boxes */
-    update_box(cinfo, b1);
-    update_box(cinfo, b2);
-    numboxes++;
-  }
-  return numboxes;
-}
-
-
-LOCAL void
-compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
-/* Compute representative color for a box, put it in colormap[icolor] */
-{
-  /* Current algorithm: mean weighted by pixels (not colors) */
-  /* Note it is important to get the rounding correct! */
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  hist3d histogram = cquantize->histogram;
-  histptr histp;
-  int c0,c1,c2;
-  int c0min,c0max,c1min,c1max,c2min,c2max;
-  long count;
-  long total = 0;
-  long c0total = 0;
-  long c1total = 0;
-  long c2total = 0;
-  
-  c0min = boxp->c0min;  c0max = boxp->c0max;
-  c1min = boxp->c1min;  c1max = boxp->c1max;
-  c2min = boxp->c2min;  c2max = boxp->c2max;
-  
-  for (c0 = c0min; c0 <= c0max; c0++)
-    for (c1 = c1min; c1 <= c1max; c1++) {
-      histp = & histogram[c0][c1][c2min];
-      for (c2 = c2min; c2 <= c2max; c2++) {
-	if ((count = *histp++) != 0) {
-	  total += count;
-	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
-	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
-	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
-	}
-      }
-    }
-  
-  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
-  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
-  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
-}
-
-
-LOCAL void
-select_colors (j_decompress_ptr cinfo)
-/* Master routine for color selection */
-{
-  boxptr boxlist;
-  int numboxes;
-  int desired = cinfo->desired_number_of_colors;
-  int i;
-
-  /* Allocate workspace for box list */
-  boxlist = (boxptr) (*cinfo->mem->alloc_small)
-    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired * SIZEOF(box));
-  /* Initialize one box containing whole space */
-  numboxes = 1;
-  boxlist[0].c0min = 0;
-  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
-  boxlist[0].c1min = 0;
-  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
-  boxlist[0].c2min = 0;
-  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
-  /* Shrink it to actually-used volume and set its statistics */
-  update_box(cinfo, & boxlist[0]);
-  /* Perform median-cut to produce final box list */
-  numboxes = median_cut(cinfo, boxlist, numboxes, desired);
-  /* Compute the representative color for each box, fill colormap */
-  for (i = 0; i < numboxes; i++)
-    compute_color(cinfo, & boxlist[i], i);
-  cinfo->actual_number_of_colors = numboxes;
-  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
-}
-
-
-/*
- * These routines are concerned with the time-critical task of mapping input
- * colors to the nearest color in the selected colormap.
- *
- * We re-use the histogram space as an "inverse color map", essentially a
- * cache for the results of nearest-color searches.  All colors within a
- * histogram cell will be mapped to the same colormap entry, namely the one
- * closest to the cell's center.  This may not be quite the closest entry to
- * the actual input color, but it's almost as good.  A zero in the cache
- * indicates we haven't found the nearest color for that cell yet; the array
- * is cleared to zeroes before starting the mapping pass.  When we find the
- * nearest color for a cell, its colormap index plus one is recorded in the
- * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
- * when they need to use an unfilled entry in the cache.
- *
- * Our method of efficiently finding nearest colors is based on the "locally
- * sorted search" idea described by Heckbert and on the incremental distance
- * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
- * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
- * the distances from a given colormap entry to each cell of the histogram can
- * be computed quickly using an incremental method: the differences between
- * distances to adjacent cells themselves differ by a constant.  This allows a
- * fairly fast implementation of the "brute force" approach of computing the
- * distance from every colormap entry to every histogram cell.  Unfortunately,
- * it needs a work array to hold the best-distance-so-far for each histogram
- * cell (because the inner loop has to be over cells, not colormap entries).
- * The work array elements have to be INT32s, so the work array would need
- * 256Kb at our recommended precision.  This is not feasible in DOS machines.
- *
- * To get around these problems, we apply Thomas' method to compute the
- * nearest colors for only the cells within a small subbox of the histogram.
- * The work array need be only as big as the subbox, so the memory usage
- * problem is solved.  Furthermore, we need not fill subboxes that are never
- * referenced in pass2; many images use only part of the color gamut, so a
- * fair amount of work is saved.  An additional advantage of this
- * approach is that we can apply Heckbert's locality criterion to quickly
- * eliminate colormap entries that are far away from the subbox; typically
- * three-fourths of the colormap entries are rejected by Heckbert's criterion,
- * and we need not compute their distances to individual cells in the subbox.
- * The speed of this approach is heavily influenced by the subbox size: too
- * small means too much overhead, too big loses because Heckbert's criterion
- * can't eliminate as many colormap entries.  Empirically the best subbox
- * size seems to be about 1/512th of the histogram (1/8th in each direction).
- *
- * Thomas' article also describes a refined method which is asymptotically
- * faster than the brute-force method, but it is also far more complex and
- * cannot efficiently be applied to small subboxes.  It is therefore not
- * useful for programs intended to be portable to DOS machines.  On machines
- * with plenty of memory, filling the whole histogram in one shot with Thomas'
- * refined method might be faster than the present code --- but then again,
- * it might not be any faster, and it's certainly more complicated.
- */
-
-
-/* log2(histogram cells in update box) for each axis; this can be adjusted */
-#define BOX_C0_LOG  (HIST_C0_BITS-3)
-#define BOX_C1_LOG  (HIST_C1_BITS-3)
-#define BOX_C2_LOG  (HIST_C2_BITS-3)
-
-#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
-#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
-#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
-
-#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
-#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
-#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
-
-
-/*
- * The next three routines implement inverse colormap filling.  They could
- * all be folded into one big routine, but splitting them up this way saves
- * some stack space (the mindist[] and bestdist[] arrays need not coexist)
- * and may allow some compilers to produce better code by registerizing more
- * inner-loop variables.
- */
-
-LOCAL int
-find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
-		    JSAMPLE colorlist[])
-/* Locate the colormap entries close enough to an update box to be candidates
- * for the nearest entry to some cell(s) in the update box.  The update box
- * is specified by the center coordinates of its first cell.  The number of
- * candidate colormap entries is returned, and their colormap indexes are
- * placed in colorlist[].
- * This routine uses Heckbert's "locally sorted search" criterion to select
- * the colors that need further consideration.
- */
-{
-  int numcolors = cinfo->actual_number_of_colors;
-  int maxc0, maxc1, maxc2;
-  int centerc0, centerc1, centerc2;
-  int i, x, ncolors;
-  INT32 minmaxdist, min_dist, max_dist, tdist;
-  INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
-
-  /* Compute true coordinates of update box's upper corner and center.
-   * Actually we compute the coordinates of the center of the upper-corner
-   * histogram cell, which are the upper bounds of the volume we care about.
-   * Note that since ">>" rounds down, the "center" values may be closer to
-   * min than to max; hence comparisons to them must be "<=", not "<".
-   */
-  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
-  centerc0 = (minc0 + maxc0) >> 1;
-  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
-  centerc1 = (minc1 + maxc1) >> 1;
-  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
-  centerc2 = (minc2 + maxc2) >> 1;
-
-  /* For each color in colormap, find:
-   *  1. its minimum squared-distance to any point in the update box
-   *     (zero if color is within update box);
-   *  2. its maximum squared-distance to any point in the update box.
-   * Both of these can be found by considering only the corners of the box.
-   * We save the minimum distance for each color in mindist[];
-   * only the smallest maximum distance is of interest.
-   */
-  minmaxdist = 0x7FFFFFFFL;
-
-  for (i = 0; i < numcolors; i++) {
-    /* We compute the squared-c0-distance term, then add in the other two. */
-    x = GETJSAMPLE(cinfo->colormap[0][i]);
-    if (x < minc0) {
-      tdist = (x - minc0) * C0_SCALE;
-      min_dist = tdist*tdist;
-      tdist = (x - maxc0) * C0_SCALE;
-      max_dist = tdist*tdist;
-    } else if (x > maxc0) {
-      tdist = (x - maxc0) * C0_SCALE;
-      min_dist = tdist*tdist;
-      tdist = (x - minc0) * C0_SCALE;
-      max_dist = tdist*tdist;
-    } else {
-      /* within cell range so no contribution to min_dist */
-      min_dist = 0;
-      if (x <= centerc0) {
-	tdist = (x - maxc0) * C0_SCALE;
-	max_dist = tdist*tdist;
-      } else {
-	tdist = (x - minc0) * C0_SCALE;
-	max_dist = tdist*tdist;
-      }
-    }
-
-    x = GETJSAMPLE(cinfo->colormap[1][i]);
-    if (x < minc1) {
-      tdist = (x - minc1) * C1_SCALE;
-      min_dist += tdist*tdist;
-      tdist = (x - maxc1) * C1_SCALE;
-      max_dist += tdist*tdist;
-    } else if (x > maxc1) {
-      tdist = (x - maxc1) * C1_SCALE;
-      min_dist += tdist*tdist;
-      tdist = (x - minc1) * C1_SCALE;
-      max_dist += tdist*tdist;
-    } else {
-      /* within cell range so no contribution to min_dist */
-      if (x <= centerc1) {
-	tdist = (x - maxc1) * C1_SCALE;
-	max_dist += tdist*tdist;
-      } else {
-	tdist = (x - minc1) * C1_SCALE;
-	max_dist += tdist*tdist;
-      }
-    }
-
-    x = GETJSAMPLE(cinfo->colormap[2][i]);
-    if (x < minc2) {
-      tdist = (x - minc2) * C2_SCALE;
-      min_dist += tdist*tdist;
-      tdist = (x - maxc2) * C2_SCALE;
-      max_dist += tdist*tdist;
-    } else if (x > maxc2) {
-      tdist = (x - maxc2) * C2_SCALE;
-      min_dist += tdist*tdist;
-      tdist = (x - minc2) * C2_SCALE;
-      max_dist += tdist*tdist;
-    } else {
-      /* within cell range so no contribution to min_dist */
-      if (x <= centerc2) {
-	tdist = (x - maxc2) * C2_SCALE;
-	max_dist += tdist*tdist;
-      } else {
-	tdist = (x - minc2) * C2_SCALE;
-	max_dist += tdist*tdist;
-      }
-    }
-
-    mindist[i] = min_dist;	/* save away the results */
-    if (max_dist < minmaxdist)
-      minmaxdist = max_dist;
-  }
-
-  /* Now we know that no cell in the update box is more than minmaxdist
-   * away from some colormap entry.  Therefore, only colors that are
-   * within minmaxdist of some part of the box need be considered.
-   */
-  ncolors = 0;
-  for (i = 0; i < numcolors; i++) {
-    if (mindist[i] <= minmaxdist)
-      colorlist[ncolors++] = (JSAMPLE) i;
-  }
-  return ncolors;
-}
-
-
-LOCAL void
-find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
-		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
-/* Find the closest colormap entry for each cell in the update box,
- * given the list of candidate colors prepared by find_nearby_colors.
- * Return the indexes of the closest entries in the bestcolor[] array.
- * This routine uses Thomas' incremental distance calculation method to
- * find the distance from a colormap entry to successive cells in the box.
- */
-{
-  int ic0, ic1, ic2;
-  int i, icolor;
-  register INT32 * bptr;	/* pointer into bestdist[] array */
-  JSAMPLE * cptr;		/* pointer into bestcolor[] array */
-  INT32 dist0, dist1;		/* initial distance values */
-  register INT32 dist2;		/* current distance in inner loop */
-  INT32 xx0, xx1;		/* distance increments */
-  register INT32 xx2;
-  INT32 inc0, inc1, inc2;	/* initial values for increments */
-  /* This array holds the distance to the nearest-so-far color for each cell */
-  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
-
-  /* Initialize best-distance for each cell of the update box */
-  bptr = bestdist;
-  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
-    *bptr++ = 0x7FFFFFFFL;
-  
-  /* For each color selected by find_nearby_colors,
-   * compute its distance to the center of each cell in the box.
-   * If that's less than best-so-far, update best distance and color number.
-   */
-  
-  /* Nominal steps between cell centers ("x" in Thomas article) */
-#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
-#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
-#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
-  
-  for (i = 0; i < numcolors; i++) {
-    icolor = GETJSAMPLE(colorlist[i]);
-    /* Compute (square of) distance from minc0/c1/c2 to this color */
-    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
-    dist0 = inc0*inc0;
-    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
-    dist0 += inc1*inc1;
-    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
-    dist0 += inc2*inc2;
-    /* Form the initial difference increments */
-    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
-    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
-    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
-    /* Now loop over all cells in box, updating distance per Thomas method */
-    bptr = bestdist;
-    cptr = bestcolor;
-    xx0 = inc0;
-    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
-      dist1 = dist0;
-      xx1 = inc1;
-      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
-	dist2 = dist1;
-	xx2 = inc2;
-	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
-	  if (dist2 < *bptr) {
-	    *bptr = dist2;
-	    *cptr = (JSAMPLE) icolor;
-	  }
-	  dist2 += xx2;
-	  xx2 += 2 * STEP_C2 * STEP_C2;
-	  bptr++;
-	  cptr++;
-	}
-	dist1 += xx1;
-	xx1 += 2 * STEP_C1 * STEP_C1;
-      }
-      dist0 += xx0;
-      xx0 += 2 * STEP_C0 * STEP_C0;
-    }
-  }
-}
-
-
-LOCAL void
-fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
-/* Fill the inverse-colormap entries in the update box that contains */
-/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
-/* we can fill as many others as we wish.) */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  hist3d histogram = cquantize->histogram;
-  int minc0, minc1, minc2;	/* lower left corner of update box */
-  int ic0, ic1, ic2;
-  register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
-  register histptr cachep;	/* pointer into main cache array */
-  /* This array lists the candidate colormap indexes. */
-  JSAMPLE colorlist[MAXNUMCOLORS];
-  int numcolors;		/* number of candidate colors */
-  /* This array holds the actually closest colormap index for each cell. */
-  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
-
-  /* Convert cell coordinates to update box ID */
-  c0 >>= BOX_C0_LOG;
-  c1 >>= BOX_C1_LOG;
-  c2 >>= BOX_C2_LOG;
-
-  /* Compute true coordinates of update box's origin corner.
-   * Actually we compute the coordinates of the center of the corner
-   * histogram cell, which are the lower bounds of the volume we care about.
-   */
-  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
-  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
-  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
-  
-  /* Determine which colormap entries are close enough to be candidates
-   * for the nearest entry to some cell in the update box.
-   */
-  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
-
-  /* Determine the actually nearest colors. */
-  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
-		   bestcolor);
-
-  /* Save the best color numbers (plus 1) in the main cache array */
-  c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
-  c1 <<= BOX_C1_LOG;
-  c2 <<= BOX_C2_LOG;
-  cptr = bestcolor;
-  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
-    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
-      cachep = & histogram[c0+ic0][c1+ic1][c2];
-      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
-	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
-      }
-    }
-  }
-}
-
-
-/*
- * Map some rows of pixels to the output colormapped representation.
- */
-
-METHODDEF void
-pass2_no_dither (j_decompress_ptr cinfo,
-		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
-/* This version performs no dithering */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  hist3d histogram = cquantize->histogram;
-  register JSAMPROW inptr, outptr;
-  register histptr cachep;
-  register int c0, c1, c2;
-  int row;
-  JDIMENSION col;
-  JDIMENSION width = cinfo->output_width;
-
-  for (row = 0; row < num_rows; row++) {
-    inptr = input_buf[row];
-    outptr = output_buf[row];
-    for (col = width; col > 0; col--) {
-      /* get pixel value and index into the cache */
-      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
-      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
-      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
-      cachep = & histogram[c0][c1][c2];
-      /* If we have not seen this color before, find nearest colormap entry */
-      /* and update the cache */
-      if (*cachep == 0)
-	fill_inverse_cmap(cinfo, c0,c1,c2);
-      /* Now emit the colormap index for this cell */
-      *outptr++ = (JSAMPLE) (*cachep - 1);
-    }
-  }
-}
-
-
-METHODDEF void
-pass2_fs_dither (j_decompress_ptr cinfo,
-		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
-/* This version performs Floyd-Steinberg dithering */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  hist3d histogram = cquantize->histogram;
-  register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
-  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
-  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
-  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
-  JSAMPROW inptr;		/* => current input pixel */
-  JSAMPROW outptr;		/* => current output pixel */
-  histptr cachep;
-  int dir;			/* +1 or -1 depending on direction */
-  int dir3;			/* 3*dir, for advancing inptr & errorptr */
-  int row;
-  JDIMENSION col;
-  JDIMENSION width = cinfo->output_width;
-  JSAMPLE *range_limit = cinfo->sample_range_limit;
-  int *error_limit = cquantize->error_limiter;
-  JSAMPROW colormap0 = cinfo->colormap[0];
-  JSAMPROW colormap1 = cinfo->colormap[1];
-  JSAMPROW colormap2 = cinfo->colormap[2];
-  SHIFT_TEMPS
-
-  for (row = 0; row < num_rows; row++) {
-    inptr = input_buf[row];
-    outptr = output_buf[row];
-    if (cquantize->on_odd_row) {
-      /* work right to left in this row */
-      inptr += (width-1) * 3;	/* so point to rightmost pixel */
-      outptr += width-1;
-      dir = -1;
-      dir3 = -3;
-      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
-      cquantize->on_odd_row = FALSE; /* flip for next time */
-    } else {
-      /* work left to right in this row */
-      dir = 1;
-      dir3 = 3;
-      errorptr = cquantize->fserrors; /* => entry before first real column */
-      cquantize->on_odd_row = TRUE; /* flip for next time */
-    }
-    /* Preset error values: no error propagated to first pixel from left */
-    cur0 = cur1 = cur2 = 0;
-    /* and no error propagated to row below yet */
-    belowerr0 = belowerr1 = belowerr2 = 0;
-    bpreverr0 = bpreverr1 = bpreverr2 = 0;
-
-    for (col = width; col > 0; col--) {
-      /* curN holds the error propagated from the previous pixel on the
-       * current line.  Add the error propagated from the previous line
-       * to form the complete error correction term for this pixel, and
-       * round the error term (which is expressed * 16) to an integer.
-       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
-       * for either sign of the error value.
-       * Note: errorptr points to *previous* column's array entry.
-       */
-      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
-      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
-      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
-      /* Limit the error using transfer function set by init_error_limit.
-       * See comments with init_error_limit for rationale.
-       */
-      cur0 = error_limit[cur0];
-      cur1 = error_limit[cur1];
-      cur2 = error_limit[cur2];
-      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
-       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
-       * this sets the required size of the range_limit array.
-       */
-      cur0 += GETJSAMPLE(inptr[0]);
-      cur1 += GETJSAMPLE(inptr[1]);
-      cur2 += GETJSAMPLE(inptr[2]);
-      cur0 = GETJSAMPLE(range_limit[cur0]);
-      cur1 = GETJSAMPLE(range_limit[cur1]);
-      cur2 = GETJSAMPLE(range_limit[cur2]);
-      /* Index into the cache with adjusted pixel value */
-      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
-      /* If we have not seen this color before, find nearest colormap */
-      /* entry and update the cache */
-      if (*cachep == 0)
-	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
-      /* Now emit the colormap index for this cell */
-      { register int pixcode = *cachep - 1;
-	*outptr = (JSAMPLE) pixcode;
-	/* Compute representation error for this pixel */
-	cur0 -= GETJSAMPLE(colormap0[pixcode]);
-	cur1 -= GETJSAMPLE(colormap1[pixcode]);
-	cur2 -= GETJSAMPLE(colormap2[pixcode]);
-      }
-      /* Compute error fractions to be propagated to adjacent pixels.
-       * Add these into the running sums, and simultaneously shift the
-       * next-line error sums left by 1 column.
-       */
-      { register LOCFSERROR bnexterr, delta;
-
-	bnexterr = cur0;	/* Process component 0 */
-	delta = cur0 * 2;
-	cur0 += delta;		/* form error * 3 */
-	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
-	cur0 += delta;		/* form error * 5 */
-	bpreverr0 = belowerr0 + cur0;
-	belowerr0 = bnexterr;
-	cur0 += delta;		/* form error * 7 */
-	bnexterr = cur1;	/* Process component 1 */
-	delta = cur1 * 2;
-	cur1 += delta;		/* form error * 3 */
-	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
-	cur1 += delta;		/* form error * 5 */
-	bpreverr1 = belowerr1 + cur1;
-	belowerr1 = bnexterr;
-	cur1 += delta;		/* form error * 7 */
-	bnexterr = cur2;	/* Process component 2 */
-	delta = cur2 * 2;
-	cur2 += delta;		/* form error * 3 */
-	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
-	cur2 += delta;		/* form error * 5 */
-	bpreverr2 = belowerr2 + cur2;
-	belowerr2 = bnexterr;
-	cur2 += delta;		/* form error * 7 */
-      }
-      /* At this point curN contains the 7/16 error value to be propagated
-       * to the next pixel on the current line, and all the errors for the
-       * next line have been shifted over.  We are therefore ready to move on.
-       */
-      inptr += dir3;		/* Advance pixel pointers to next column */
-      outptr += dir;
-      errorptr += dir3;		/* advance errorptr to current column */
-    }
-    /* Post-loop cleanup: we must unload the final error values into the
-     * final fserrors[] entry.  Note we need not unload belowerrN because
-     * it is for the dummy column before or after the actual array.
-     */
-    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
-    errorptr[1] = (FSERROR) bpreverr1;
-    errorptr[2] = (FSERROR) bpreverr2;
-  }
-}
-
-
-/*
- * Initialize the error-limiting transfer function (lookup table).
- * The raw F-S error computation can potentially compute error values of up to
- * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
- * much less, otherwise obviously wrong pixels will be created.  (Typical
- * effects include weird fringes at color-area boundaries, isolated bright
- * pixels in a dark area, etc.)  The standard advice for avoiding this problem
- * is to ensure that the "corners" of the color cube are allocated as output
- * colors; then repeated errors in the same direction cannot cause cascading
- * error buildup.  However, that only prevents the error from getting
- * completely out of hand; Aaron Giles reports that error limiting improves
- * the results even with corner colors allocated.
- * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
- * well, but the smoother transfer function used below is even better.  Thanks
- * to Aaron Giles for this idea.
- */
-
-LOCAL void
-init_error_limit (j_decompress_ptr cinfo)
-/* Allocate and fill in the error_limiter table */
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  int * table;
-  int in, out;
-
-  table = (int *) (*cinfo->mem->alloc_small)
-    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
-  table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
-  cquantize->error_limiter = table;
-
-#define STEPSIZE ((MAXJSAMPLE+1)/16)
-  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
-  out = 0;
-  for (in = 0; in < STEPSIZE; in++, out++) {
-    table[in] = out; table[-in] = -out;
-  }
-  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
-  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
-    table[in] = out; table[-in] = -out;
-  }
-  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
-  for (; in <= MAXJSAMPLE; in++) {
-    table[in] = out; table[-in] = -out;
-  }
-#undef STEPSIZE
-}
-
-
-/*
- * Finish up at the end of each pass.
- */
-
-METHODDEF void
-finish_pass1 (j_decompress_ptr cinfo)
-{
-  /* Select the representative colors and fill in cinfo->colormap */
-  select_colors(cinfo);
-}
-
-
-METHODDEF void
-finish_pass2 (j_decompress_ptr cinfo)
-{
-  /* no work */
-}
-
-
-/*
- * Initialize for each processing pass.
- */
-
-METHODDEF void
-start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
-{
-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
-  hist3d histogram = cquantize->histogram;
-  int i;
-
-  if (is_pre_scan) {
-    /* Set up method pointers */
-    cquantize->pub.color_quantize = prescan_quantize;
-    cquantize->pub.finish_pass = finish_pass1;
-  } else {
-    /* Set up method pointers */
-    if (cinfo->dither_mode == JDITHER_FS)
-      cquantize->pub.color_quantize = pass2_fs_dither;
-    else
-      cquantize->pub.color_quantize = pass2_no_dither;
-    cquantize->pub.finish_pass = finish_pass2;
-  }
-  /* Zero the histogram or inverse color map */
-  for (i = 0; i < HIST_C0_ELEMS; i++) {
-    jzero_far((void FAR *) histogram[i],
-	      HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
-  }
-}
-
-
-/*
- * Module initialization routine for 2-pass color quantization.
- */
-
-GLOBAL void
-jinit_2pass_quantizer (j_decompress_ptr cinfo)
-{
-  my_cquantize_ptr cquantize;
-  int i;
-
-  cquantize = (my_cquantize_ptr)
-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
-				SIZEOF(my_cquantizer));
-  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
-  cquantize->pub.start_pass = start_pass_2_quant;
-
-  /* Make sure jdmaster didn't give me a case I can't handle */
-  if (cinfo->out_color_components != 3)
-    ERREXIT(cinfo, JERR_NOTIMPL);
-
-  /* Only F-S dithering or no dithering is supported. */
-  /* If user asks for ordered dither, give him F-S. */
-  if (cinfo->dither_mode != JDITHER_NONE)
-    cinfo->dither_mode = JDITHER_FS;
-
-  /* Make sure color count is acceptable */
-  i = (cinfo->colormap != NULL) ? cinfo->actual_number_of_colors
-				: cinfo->desired_number_of_colors;
-  /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
-  if (i < 8)
-    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
-  /* Make sure colormap indexes can be represented by JSAMPLEs */
-  if (i > MAXNUMCOLORS)
-    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
-
-  /* Allocate the histogram/inverse colormap storage */
-  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
-    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
-  for (i = 0; i < HIST_C0_ELEMS; i++) {
-    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
-      ((j_common_ptr) cinfo, JPOOL_IMAGE,
-       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
-  }
-
-  /* Allocate storage for the completed colormap,
-   * unless it has been supplied by the application.
-   * We do this now since it is FAR storage and may affect
-   * the memory manager's space calculations.
-   */
-  if (cinfo->colormap == NULL) {
-    cinfo->colormap = (*cinfo->mem->alloc_sarray)
-      ((j_common_ptr) cinfo, JPOOL_IMAGE,
-       (JDIMENSION) cinfo->desired_number_of_colors, (JDIMENSION) 3);
-  }
-
-  /* Allocate Floyd-Steinberg workspace if necessary. */
-  /* This isn't needed until pass 2, but again it is FAR storage. */
-  if (cinfo->dither_mode == JDITHER_FS) {
-    size_t arraysize = (size_t) ((cinfo->output_width + 2) *
-				 (3 * SIZEOF(FSERROR)));
-
-    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
-      ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
-    /* Initialize the propagated errors to zero. */
-    jzero_far((void FAR *) cquantize->fserrors, arraysize);
-    cquantize->on_odd_row = FALSE;
-    init_error_limit(cinfo);
-  }
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
diff --git a/utils/build_machines b/utils/build_machines
index aaa56f1c1754face948ebb6fee7c42c7b7d58fd8..e2ed21a0fb5085f7b51f5a5ad0b0ce8cd6ea40d1 100644
--- a/utils/build_machines
+++ b/utils/build_machines
@@ -10,5 +10,6 @@ Where to change the version number?
 1) Makfile
 2) utils/gmsh.spec (2 occurrences)
 3) doc/gmsh.1 (2 occurrences)
-4) www/gmsh.html (several occurrences)
+4) doc/Changelog (1 occurrence)
+5) www/gmsh.html (several occurrences)
 
diff --git a/utils/gmsh_fltk.spec b/utils/gmsh_fltk.spec
index 006500a742c22e758311fd7a56e76b0f292d6523..aaadb970f6d87b4994c3becbe87244cd0c9500ef 100644
--- a/utils/gmsh_fltk.spec
+++ b/utils/gmsh_fltk.spec
@@ -1,7 +1,7 @@
 Summary: A 3D mesh generator with pre- and post-processing facilities
 Name: gmsh
-Version: 1.12
-Source: gmsh-1.12.tar.gz
+Version: 1.13
+Source: gmsh-1.13.tar.gz
 Release: 1
 Copyright: distributable
 Group: Applications/Engineering
diff --git a/www/gmsh.html b/www/gmsh.html
index 0a8a62757cd308708376403c3621717d7f54ab3b..5908427153b66e44f50cf2b0a4466ea3ee37cb3b 100644
--- a/www/gmsh.html
+++ b/www/gmsh.html
@@ -51,7 +51,7 @@ ENDSCRIPT--->
 This page is a mirror of <a href="/gmsh/">/gmsh/</a><p>
 ENDMIRROR--->
 
-<!---BEGINDATE$Date: 2001-02-08 16:32:16 $ENDDATE--->
+<!---BEGINDATE$Date: 2001-02-09 07:59:51 $ENDDATE--->
 
 Copyright &copy; 1998-2001<br>
 J.-F. Remacle<br>
@@ -251,13 +251,13 @@ description.
 
   <td bgcolor="#ededed"><font face="Helvetica, Arial" size=-1>
 
-<b>Development Release: 1.12 (February 8, 2001)</b>
+<b>Development Release: 1.13 (February 9, 2001)</b>
 <p>
 The development release of Gmsh is available for Linux and
 Windows. All executables are dynamically linked with OpenGL.
 <ul>
 <li><A href="/gmsh/latest/gmsh-win.zip">Windows zip archive (95/98/NT)</A>
-<li><A href="/gmsh/latest/gmsh-1.12-1.i386.rpm">Linux RPM (Red Hat 6.2 and compatible, i386, glibc 2.1)</A> 
+<li><A href="/gmsh/latest/gmsh-1.13-1.i386.rpm">Linux RPM (Red Hat 6.2 and compatible, i386, glibc 2.1)</A> 
 </ul>
 
 <p><br>