// Gmsh - Copyright (C) 1997-2019 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.

#include <string.h>
#include "GmshConfig.h"
#include "elasticitySolver.h"
#include "linearSystemCSR.h"
#include "linearSystemPETSc.h"
#include "linearSystemGMM.h"
#include "linearSystemFull.h"
#include "Numeric.h"
#include "GModel.h"
#include "OS.h"
#include "functionSpace.h"
#include "terms.h"
#include "solverAlgorithms.h"
#include "quadratureRules.h"
#include "solverField.h"
#include "MPoint.h"
#include "gmshLevelset.h"
#if defined(HAVE_POST)
#include "PView.h"
#include "PViewData.h"
#endif

/*
static void printLinearSystem(linearSystem<double> *lsys, int size)
{
  if(!lsys->isAllocated()){printf("Linear system not allocated\n"); return;}
  double valeur;
  printf("K\n");
  for (int i = 0; i < size; i++){
    for (int j = 0; j < size; j++ ){
      lsys->getFromMatrix (i, j, valeur);
      printf ("%g ", valeur) ;
    }
    printf("\n");
  }
  printf("b\n");
  for (int i = 0; i < size; i++){
    lsys->getFromRightHandSide(i, valeur);
    printf("%g\n", valeur);
  }
  printf("x\n");
  for (int i = 0; i < size; i++){
    lsys->getFromSolution(i, valeur);
    printf("%g\n", valeur);
  }
}
*/

elasticitySolver::elasticitySolver(GModel *model, int tag)
{
  pModel = model;
  _dim = pModel->getNumRegions() ? 3 : 2;
  _tag = tag;
  pAssembler = NULL;
  if(_dim == 3) LagSpace = new VectorLagrangeFunctionSpace(_tag);
  if(_dim == 2)
    LagSpace = new VectorLagrangeFunctionSpace(
      _tag, VectorLagrangeFunctionSpace::VECTOR_X,
      VectorLagrangeFunctionSpace::VECTOR_Y);
}

void elasticitySolver::setMesh(const std::string &meshFileName, int dim)
{
  pModel = new GModel();
  pModel->readMSH(meshFileName.c_str());
  _dim = pModel->getNumRegions() ? 3 : 2;

  if(LagSpace) delete LagSpace;
  if(dim == 3 || _dim == 3)
    LagSpace = new VectorLagrangeFunctionSpace(_tag);
  else if(dim == 2 || _dim == 2)
    LagSpace = new VectorLagrangeFunctionSpace(
      _tag, VectorLagrangeFunctionSpace::VECTOR_X,
      VectorLagrangeFunctionSpace::VECTOR_Y);

  for(unsigned int i = 0; i < LagrangeMultiplierSpaces.size(); i++)
    if(LagrangeMultiplierSpaces[i]) delete LagrangeMultiplierSpaces[i];
  LagrangeMultiplierSpaces.clear();
}

void elasticitySolver::exportKb()
{
  std::string sysname = "A";
  if(!pAssembler || !pAssembler->getLinearSystem(sysname) ||
     !pAssembler->getLinearSystem(sysname)->isAllocated())
    return;
  double valeur;
  FILE *f = Fopen("K.txt", "w");
  if(f) {
    for(int i = 0; i < pAssembler->sizeOfR(); i++) {
      for(int j = 0; j < pAssembler->sizeOfR(); j++) {
        pAssembler->getLinearSystem(sysname)->getFromMatrix(i, j, valeur);
        fprintf(f, "%+e ", valeur);
      }
      fprintf(f, "\n");
    }
    fclose(f);
  }
  f = Fopen("b.txt", "w");
  if(f) {
    for(int i = 0; i < pAssembler->sizeOfR(); i++) {
      pAssembler->getLinearSystem(sysname)->getFromRightHandSide(i, valeur);
      fprintf(f, "%+e\n", valeur);
    }
    fclose(f);
  }
}

void elasticitySolver::solve()
{
  std::string sysname = "A";
  if(pAssembler && pAssembler->getLinearSystem(sysname))
    delete pAssembler->getLinearSystem(sysname);

#if defined(HAVE_PETSC)
  linearSystemPETSc<double> *lsys = new linearSystemPETSc<double>;
#elif defined(HAVE_GMM)
  linearSystemGmm<double> *lsys = new linearSystemGmm<double>;
  lsys->setNoisy(2);
#else
  linearSystemFull<double> *lsys = new linearSystemFull<double>;
#endif

  assemble(lsys);
  // printLinearSystem(lsys,pAssembler->sizeOfR());
  lsys->systemSolve();
  printf("-- done solving!\n");

  double energ = 0;
  GaussQuadrature Integ_Bulk(GaussQuadrature::GradGrad);
  for(unsigned int i = 0; i < elasticFields.size(); i++) {
    SolverField<SVector3> Field(pAssembler, LagSpace);
    IsotropicElasticTerm Eterm(Field, elasticFields[i]._E,
                               elasticFields[i]._nu);
    BilinearTermToScalarTerm Elastic_Energy_Term(Eterm);
    Assemble(Elastic_Energy_Term, elasticFields[i].g->begin(),
             elasticFields[i].g->end(), Integ_Bulk, energ);
  }
  printf("elastic energy=%f\n", energ);
}

void elasticitySolver::postSolve()
{
  GaussQuadrature Integ_Bulk(GaussQuadrature::GradGrad);

  double energ = 0;
  for(unsigned int i = 0; i < elasticFields.size(); i++) {
    SolverField<SVector3> Field(pAssembler, LagSpace);
    IsotropicElasticTerm Eterm(Field, elasticFields[i]._E,
                               elasticFields[i]._nu);
    BilinearTermToScalarTerm Elastic_Energy_Term(Eterm);
    Assemble(Elastic_Energy_Term, elasticFields[i].g->begin(),
             elasticFields[i].g->end(), Integ_Bulk, energ);
  }
  printf("elastic energy=%f\n", energ);
}

void elasticitySolver::readInputFile(const std::string &fn)
{
  FILE *f = Fopen(fn.c_str(), "r");
  if(!f) {
    Msg::Error("Could not open file '%s'", fn.c_str());
    return;
  }
  char what[256];
  while(!feof(f)) {
    if(fscanf(f, "%s", what) != 1) {
      fclose(f);
      return;
    }
    if(what[0] == '#') {
      char buffer[1024];
      if(fgets(buffer, sizeof(buffer), f) == NULL)
        Msg::Error("Cannot read line.");
    }
    else if(!strcmp(what, "ElasticDomain")) {
      elasticField field;
      int physical;
      if(fscanf(f, "%d %lf %lf", &physical, &field._E, &field._nu) != 3) {
        fclose(f);
        return;
      }
      field._tag = _tag;
      field.g = new groupOfElements(_dim, physical);
      elasticFields.push_back(field);
    }
    else if(!strcmp(what, "LagrangeMultipliers")) {
      LagrangeMultiplierField field;
      int physical;
      double d1, d2, d3, val;
      if(fscanf(f, "%d %lf %lf %lf %lf %lf %d", &physical, &field._tau, &d1,
                &d2, &d3, &val, &field._tag) != 7) {
        fclose(f);
        return;
      }
      SVector3 sv(d1, d2, d3);
      field._d = sv.unit();
      field._f = new simpleFunction<double>(val);
      field.g = new groupOfElements(_dim - 1, physical);
      LagrangeMultiplierFields.push_back(field);
      LagrangeMultiplierSpaces.push_back(
        new ScalarLagrangeFunctionSpaceOfElement(field._tag));
    }
    else if(!strcmp(what, "Void")) {
      elasticField field;
      int physical;
      if(fscanf(f, "%d", &physical) != 1) {
        fclose(f);
        return;
      }
      field._E = field._nu = 0;
      field.g = new groupOfElements(_dim, physical);
      field._tag = 0;
      elasticFields.push_back(field);
    }
    else if(!strcmp(what, "NodeDisplacement")) {
      double val;
      int node, comp;
      if(fscanf(f, "%d %d %lf", &node, &comp, &val) != 3) {
        fclose(f);
        return;
      }
      dirichletBC diri;
      diri.g = new groupOfElements(0, node);
      diri._f = new simpleFunction<double>(val);
      diri._comp = comp;
      diri._tag = node;
      diri.onWhat = BoundaryCondition::ON_VERTEX;
      allDirichlet.push_back(diri);
    }
    else if(!strcmp(what, "EdgeDisplacement")) {
      double val;
      int edge, comp;
      if(fscanf(f, "%d %d %lf", &edge, &comp, &val) != 3) {
        fclose(f);
        return;
      }
      dirichletBC diri;
      diri.g = new groupOfElements(1, edge);
      diri._f = new simpleFunction<double>(val);
      diri._comp = comp;
      diri._tag = edge;
      diri.onWhat = BoundaryCondition::ON_EDGE;
      allDirichlet.push_back(diri);
    }
    else if(!strcmp(what, "FaceDisplacement")) {
      double val;
      int face, comp;
      if(fscanf(f, "%d %d %lf", &face, &comp, &val) != 3) {
        fclose(f);
        return;
      }
      dirichletBC diri;
      diri.g = new groupOfElements(2, face);
      diri._f = new simpleFunction<double>(val);
      diri._comp = comp;
      diri._tag = face;
      diri.onWhat = BoundaryCondition::ON_FACE;
      allDirichlet.push_back(diri);
    }
    else if(!strcmp(what, "NodeForce")) {
      double val1, val2, val3;
      int node;
      if(fscanf(f, "%d %lf %lf %lf", &node, &val1, &val2, &val3) != 4) {
        fclose(f);
        return;
      }
      neumannBC neu;
      neu.g = new groupOfElements(0, node);
      neu._f = new simpleFunction<SVector3>(SVector3(val1, val2, val3));
      neu._tag = node;
      neu.onWhat = BoundaryCondition::ON_VERTEX;
      allNeumann.push_back(neu);
    }
    else if(!strcmp(what, "EdgeForce")) {
      double val1, val2, val3;
      int edge;
      if(fscanf(f, "%d %lf %lf %lf", &edge, &val1, &val2, &val3) != 4) {
        fclose(f);
        return;
      }
      neumannBC neu;
      neu.g = new groupOfElements(1, edge);
      neu._f = new simpleFunction<SVector3>(SVector3(val1, val2, val3));
      neu._tag = edge;
      neu.onWhat = BoundaryCondition::ON_EDGE;
      allNeumann.push_back(neu);
    }
    else if(!strcmp(what, "FaceForce")) {
      double val1, val2, val3;
      int face;
      if(fscanf(f, "%d %lf %lf %lf", &face, &val1, &val2, &val3) != 4) {
        fclose(f);
        return;
      }
      neumannBC neu;
      neu.g = new groupOfElements(2, face);
      neu._f = new simpleFunction<SVector3>(SVector3(val1, val2, val3));
      neu._tag = face;
      neu.onWhat = BoundaryCondition::ON_FACE;
      allNeumann.push_back(neu);
    }
    else if(!strcmp(what, "VolumeForce")) {
      double val1, val2, val3;
      int volume;
      if(fscanf(f, "%d %lf %lf %lf", &volume, &val1, &val2, &val3) != 4) {
        fclose(f);
        return;
      }
      neumannBC neu;
      neu.g = new groupOfElements(3, volume);
      neu._f = new simpleFunction<SVector3>(SVector3(val1, val2, val3));
      neu._tag = volume;
      neu.onWhat = BoundaryCondition::ON_VOLUME;
      allNeumann.push_back(neu);
    }
    else if(!strcmp(what, "MeshFile")) {
      char name[245];
      if(fscanf(f, "%s", name) != 1) {
        fclose(f);
        return;
      }
      setMesh(name);
    }
    else if(!strcmp(what, "CutMeshPlane")) {
      double a, b, c, d;
      if(fscanf(f, "%lf %lf %lf %lf", &a, &b, &c, &d) != 4) {
        fclose(f);
        return;
      }
      int tag = 1;
      gLevelsetPlane ls(a, b, c, d, tag);
      pModel = pModel->buildCutGModel(&ls);
      pModel->writeMSH("cutMesh.msh");
    }
    else if(!strcmp(what, "CutMeshSphere")) {
      double x, y, z, r;
      if(fscanf(f, "%lf %lf %lf %lf", &x, &y, &z, &r) != 4) {
        fclose(f);
        return;
      }
      int tag = 1;
      gLevelsetSphere ls(x, y, z, r, tag);
      pModel = pModel->buildCutGModel(&ls);
      pModel->writeMSH("cutMesh.msh");
    }
    else if(!strcmp(what, "CutMeshMathExpr")) {
      char expr[256];
      if(fscanf(f, "%s", expr) != 1) {
        fclose(f);
        return;
      }
      std::string exprS(expr);
      int tag = 1;
      gLevelsetMathEval ls(exprS, tag);
      pModel = pModel->buildCutGModel(&ls);
      pModel->writeMSH("cutMesh.msh");
    }
    else {
      Msg::Error("Invalid input : '%s'", what);
    }
  }
  fclose(f);
}

void elasticitySolver::cutMesh(gLevelset *ls)
{
  pModel = pModel->buildCutGModel(ls);
  pModel->writeMSH("cutMesh.msh");
}

void elasticitySolver::setElasticDomain(int phys, double E, double nu)
{
  elasticField field;
  field._E = E;
  field._nu = nu;
  field._tag = _tag;
  field.g = new groupOfElements(_dim, phys);
  elasticFields.push_back(field);
}

void elasticitySolver::setLagrangeMultipliers(int phys, double tau, SVector3 d,
                                              int tag,
                                              simpleFunction<double> *f)
{
  LagrangeMultiplierField field;
  field._tau = tau;
  field._tag = tag;
  field._f = f;
  field._d = d.unit();
  field.g = new groupOfElements(
    _dim - 1, phys); // LM applied on entity of dimension = dim-1!
  LagrangeMultiplierFields.push_back(field);
  LagrangeMultiplierSpaces.push_back(
    new ScalarLagrangeFunctionSpaceOfElement(tag));
}

void elasticitySolver::changeLMTau(int tag, double tau)
{
  for(unsigned int i = 0; i < LagrangeMultiplierFields.size(); i++) {
    if(LagrangeMultiplierFields[i]._tag == tag) {
      LagrangeMultiplierFields[i]._tau = tau;
    }
  }
}

void elasticitySolver::setEdgeDisp(int edge, int comp,
                                   simpleFunction<double> *f)
{
  dirichletBC diri;
  diri.g = new groupOfElements(1, edge);
  diri._f = f;
  diri._comp = comp;
  diri._tag = edge;
  diri.onWhat = BoundaryCondition::ON_EDGE;
  allDirichlet.push_back(diri);
}

void elasticitySolver::addDirichletBC(int dim, int entityId, int component,
                                      double value)
{
  dirichletBC diri;
  diri.g = new groupOfElements(dim, entityId);
  diri._f = new simpleFunction<double>(value);
  diri._comp = component;
  diri._tag = entityId;
  switch(dim) {
  case 0: diri.onWhat = BoundaryCondition::ON_VERTEX; break;
  case 1: diri.onWhat = BoundaryCondition::ON_EDGE; break;
  case 2: diri.onWhat = BoundaryCondition::ON_FACE; break;
  default:
    {
      delete diri.g;
      delete diri._f;
      return;
    }
  }
  allDirichlet.push_back(diri);
}

void elasticitySolver::addDirichletBC(int dim, std::string phys, int component,
                                      double value)
{
  int entityId = pModel->getPhysicalNumber(dim, phys);
  addDirichletBC(dim, entityId, component, value);
}

void elasticitySolver::addNeumannBC(int dim, int entityId,
                                    const std::vector<double> value)
{
  if(value.size() != 3) return;
  neumannBC neu;
  neu.g = new groupOfElements(dim, entityId);
  neu._f = new simpleFunction<SVector3>(SVector3(value[0], value[1], value[2]));
  neu._tag = entityId;
  switch(dim) {
  case 0: neu.onWhat = BoundaryCondition::ON_VERTEX; break;
  case 1: neu.onWhat = BoundaryCondition::ON_EDGE; break;
  case 2: neu.onWhat = BoundaryCondition::ON_FACE; break;
  default:
    {
      delete neu.g;
      delete neu._f;
      return;
    }
  }
  allNeumann.push_back(neu);
}

void elasticitySolver::addNeumannBC(int dim, std::string phys,
                                    const std::vector<double> value)
{
  int entityId = pModel->getPhysicalNumber(dim, phys);
  addNeumannBC(dim, entityId, value);
}

void elasticitySolver::addElasticDomain(int physical, double e, double nu)
{
  elasticField field;
  field._tag = _tag;
  field._E = e;
  field._nu = nu;
  field.g = new groupOfElements(_dim, physical);
  elasticFields.push_back(field);
}

void elasticitySolver::addElasticDomain(std::string phys, double e, double nu)
{
  int entityId = pModel->getPhysicalNumber(_dim, phys);
  addElasticDomain(entityId, e, nu);
}

void elasticitySolver::assemble(linearSystem<double> *lsys)
{
  if(pAssembler) delete pAssembler;
  pAssembler = new dofManager<double>(lsys);

  // we first do all fixations. the behavior of the dofManager is to
  // give priority to fixations : when a dof is fixed, it cannot be
  // numbered afterwards

  // Dirichlet conditions
  for(unsigned int i = 0; i < allDirichlet.size(); i++) {
    FilterDofComponent filter(allDirichlet[i]._comp);
    FixNodalDofs(*LagSpace, allDirichlet[i].g->begin(),
                 allDirichlet[i].g->end(), *pAssembler, *allDirichlet[i]._f,
                 filter);
  }
  // LagrangeMultipliers
  for(unsigned int i = 0; i < LagrangeMultiplierFields.size(); ++i) {
    unsigned int j = 0;
    for(; j < LagrangeMultiplierSpaces.size(); j++)
      if(LagrangeMultiplierSpaces[j]->getId() ==
         LagrangeMultiplierFields[i]._tag)
        break;
    NumberDofs(*(LagrangeMultiplierSpaces[j]),
               LagrangeMultiplierFields[i].g->begin(),
               LagrangeMultiplierFields[i].g->end(), *pAssembler);
  }
  // Elastic Fields
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    if(elasticFields[i]._E != 0.)
      NumberDofs(*LagSpace, elasticFields[i].g->begin(),
                 elasticFields[i].g->end(), *pAssembler);
  }
  // Voids
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    if(elasticFields[i]._E == 0.)
      FixVoidNodalDofs(*LagSpace, elasticFields[i].g->begin(),
                       elasticFields[i].g->end(), *pAssembler);
  }
  // Neumann conditions
  GaussQuadrature Integ_Boundary(GaussQuadrature::Val);

  for(unsigned int i = 0; i < allNeumann.size(); i++) {
    LoadTerm<SVector3> Lterm(*LagSpace, allNeumann[i]._f);
    Assemble(Lterm, *LagSpace, allNeumann[i].g->begin(), allNeumann[i].g->end(),
             Integ_Boundary, *pAssembler);
  }
  // Assemble cross term, laplace term and rhs term for LM
  GaussQuadrature Integ_LagrangeMult(GaussQuadrature::ValVal);
  GaussQuadrature Integ_Laplace(GaussQuadrature::GradGrad);
  for(unsigned int i = 0; i < LagrangeMultiplierFields.size(); i++) {
    unsigned int j = 0;
    for(; j < LagrangeMultiplierSpaces.size(); j++)
      if(LagrangeMultiplierSpaces[j]->getId() ==
         LagrangeMultiplierFields[i]._tag)
        break;
    printf("Lagrange Mult Lag\n");
    LagrangeMultiplierTerm<SVector3> LagTerm(*LagSpace,
                                             *(LagrangeMultiplierSpaces[j]),
                                             LagrangeMultiplierFields[i]._d);
    Assemble(LagTerm, *LagSpace, *(LagrangeMultiplierSpaces[j]),
             LagrangeMultiplierFields[i].g->begin(),
             LagrangeMultiplierFields[i].g->end(), Integ_LagrangeMult,
             *pAssembler);

    printf("Lagrange Mult Lap\n");
    LaplaceTerm<double, double> LapTerm(*(LagrangeMultiplierSpaces[j]),
                                        -LagrangeMultiplierFields[i]._tau);
    Assemble(LapTerm, *(LagrangeMultiplierSpaces[j]),
             LagrangeMultiplierFields[i].g->begin(),
             LagrangeMultiplierFields[i].g->end(), Integ_Laplace, *pAssembler);

    printf("Lagrange Mult Load\n");
    LoadTermOnBorder<double> Lterm(*(LagrangeMultiplierSpaces[j]),
                                   LagrangeMultiplierFields[i]._f);
    Assemble(Lterm, *(LagrangeMultiplierSpaces[j]),
             LagrangeMultiplierFields[i].g->begin(),
             LagrangeMultiplierFields[i].g->end(), Integ_Boundary, *pAssembler);
  }
  // Assemble elastic term for
  GaussQuadrature Integ_Bulk(GaussQuadrature::GradGrad);
  for(unsigned int i = 0; i < elasticFields.size(); i++) {
    printf("Elastic\n");
    IsotropicElasticTerm Eterm(*LagSpace, elasticFields[i]._E,
                               elasticFields[i]._nu);
    Assemble(Eterm, *LagSpace, elasticFields[i].g->begin(),
             elasticFields[i].g->end(), Integ_Bulk, *pAssembler);
  }

  printf("nDofs=%d\n", pAssembler->sizeOfR());
  printf("nFixed=%d\n", pAssembler->sizeOfF());
}

void elasticitySolver::computeEffectiveStiffness(std::vector<double> stiff)
{
  double st[6] = {0., 0., 0., 0., 0., 0.};
  double volTot = 0.;
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    double E = elasticFields[i]._E;
    double nu = elasticFields[i]._nu;
    SolverField<SVector3> Field(pAssembler, LagSpace);
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      double vol = e->getVolume() * e->getVolumeSign();
      int nbVertex = e->getNumVertices();
      std::vector<SVector3> val(nbVertex);

      double valx[256];
      double valy[256];
      double valz[256];
      for(int k = 0; k < nbVertex; k++) {
        MVertex *v = e->getVertex(k);
        MPoint p(v);
        Field.f(&p, 0, 0, 0, val[k]);
        valx[k] = val[k](0);
        valy[k] = val[k](1);
        valz[k] = val[k](2);
      }

      double gradux[3];
      double graduy[3];
      double graduz[3];
      SPoint3 center = e->barycenterUVW();
      double u = center.x(), v = center.y(), w = center.z();
      e->interpolateGrad(valx, u, v, w, gradux);
      e->interpolateGrad(valy, u, v, w, graduy);
      e->interpolateGrad(valz, u, v, w, graduz);

      double eps[6] = {gradux[0],
                       graduy[1],
                       graduz[2],
                       0.5 * (gradux[1] + graduy[0]),
                       0.5 * (gradux[2] + graduz[0]),
                       0.5 * (graduy[2] + graduz[1])};

      double A = E / (1. + nu);
      double B = A * (nu / (1. - 2 * nu));
      double trace = eps[0] + eps[1] + eps[2];
      st[0] += (A * eps[0] + B * trace) * vol;
      st[1] += (A * eps[1] + B * trace) * vol;
      st[2] += (A * eps[2] + B * trace) * vol;
      st[3] += (A * eps[3]) * vol;
      st[4] += (A * eps[4]) * vol;
      st[5] += (A * eps[5]) * vol;
      volTot += vol;
    }
  }
  for(int i = 0; i < 6; i++) stiff[i] = st[i] / volTot;
}

void elasticitySolver::computeEffectiveStrain(std::vector<double> strain)
{
  double st[6] = {0., 0., 0., 0., 0., 0.};
  double volTot = 0.;
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    SolverField<SVector3> Field(pAssembler, LagSpace);
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      double vol = e->getVolume() * e->getVolumeSign();
      int nbVertex = e->getNumVertices();
      std::vector<SVector3> val(nbVertex);

      double valx[256];
      double valy[256];
      double valz[256];
      for(int k = 0; k < nbVertex; k++) {
        MVertex *v = e->getVertex(k);
        MPoint p(v);
        Field.f(&p, 0, 0, 0, val[k]);
        valx[k] = val[k](0);
        valy[k] = val[k](1);
        valz[k] = val[k](2);
      }

      double gradux[3];
      double graduy[3];
      double graduz[3];
      SPoint3 center = e->barycenterUVW();
      double u = center.x(), v = center.y(), w = center.z();
      e->interpolateGrad(valx, u, v, w, gradux);
      e->interpolateGrad(valy, u, v, w, graduy);
      e->interpolateGrad(valz, u, v, w, graduz);

      st[0] += gradux[0] * vol;
      st[1] += graduy[1] * vol;
      st[2] += graduz[2] * vol;
      st[3] += 0.5 * (gradux[1] + graduy[0]) * vol;
      st[4] += 0.5 * (gradux[2] + graduz[0]) * vol;
      st[5] += 0.5 * (graduy[2] + graduz[1]) * vol;
      volTot += vol;
    }
  }
  for(int i = 0; i < 6; i++) strain[i] = st[i] / volTot;
}

double elasticitySolver::computeDisplacementError(simpleFunction<double> *f0,
                                                  simpleFunction<double> *f1,
                                                  simpleFunction<double> *f2)
{
  std::cout << "compute displacement error" << std::endl;
  double err = 0.;
  std::set<MVertex *> v;
  std::map<MVertex *, MElement *> vCut;
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    if(elasticFields[i]._E == 0.) continue;
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      if(e->getParent()) {
        for(std::size_t j = 0; j < e->getNumVertices(); ++j) {
          if(vCut.find(e->getVertex(j)) == vCut.end())
            vCut[e->getVertex(j)] = e->getParent();
        }
      }
      else {
        for(std::size_t j = 0; j < e->getNumVertices(); ++j)
          v.insert(e->getVertex(j));
      }
    }
  }
  SolverField<SVector3> Field(pAssembler, LagSpace);
  for(std::set<MVertex *>::iterator it = v.begin(); it != v.end(); ++it) {
    SVector3 val;
    MPoint p(*it);
    Field.f(&p, 0, 0, 0, val);
    SVector3 sol((*f0)((*it)->x(), (*it)->y(), (*it)->z()),
                 (*f1)((*it)->x(), (*it)->y(), (*it)->z()),
                 (*f2)((*it)->x(), (*it)->y(), (*it)->z()));
    double diff = normSq(sol - val);
    err += diff;
  }
  for(std::map<MVertex *, MElement *>::iterator it = vCut.begin();
      it != vCut.end(); ++it) {
    SVector3 val;
    double uvw[3];
    double xyz[3] = {it->first->x(), it->first->y(), it->first->z()};
    it->second->xyz2uvw(xyz, uvw);
    Field.f(it->second, uvw[0], uvw[1], uvw[2], val);
    SVector3 sol((*f0)(xyz[0], xyz[1], xyz[2]), (*f1)(xyz[0], xyz[1], xyz[2]),
                 (*f2)(xyz[0], xyz[1], xyz[2]));
    double diff = normSq(sol - val);
    err += diff;
  }
  printf("Displacement Error = %g\n", sqrt(err));
  return sqrt(err);
}

double elasticitySolver::computeL2Norm(simpleFunction<double> *f0,
                                       simpleFunction<double> *f1,
                                       simpleFunction<double> *f2)
{
  double val = 0.0;
  SolverField<SVector3> solField(pAssembler, LagSpace);
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      int npts;
      IntPt *GP;
      double jac[3][3];
      int integrationOrder = 2 * (e->getPolynomialOrder() + 5);
      e->getIntegrationPoints(integrationOrder, &npts, &GP);
      for(int j = 0; j < npts; j++) {
        double u = GP[j].pt[0];
        double v = GP[j].pt[1];
        double w = GP[j].pt[2];
        double weight = GP[j].weight;
        double detJ = fabs(e->getJacobian(u, v, w, jac));
        SPoint3 p;
        e->pnt(u, v, w, p);
        SVector3 FEMVALUE;
        solField.f(e, u, v, w, FEMVALUE);
        SVector3 sol((*f0)(p.x(), p.y(), p.z()), (*f1)(p.x(), p.y(), p.z()),
                     (*f2)(p.x(), p.y(), p.z()));
        double diff = normSq(sol - FEMVALUE);
        val += diff * detJ * weight;
      }
    }
  }
  printf("L2Norm = %g\n", sqrt(val));
  return sqrt(val);
}

double elasticitySolver::computeLagNorm(int tag, simpleFunction<double> *sol)
{
  return 0;
}

#if defined(HAVE_POST)

PView *elasticitySolver::buildErrorView(const std::string postFileName,
                                        simpleFunction<double> *f0,
                                        simpleFunction<double> *f1,
                                        simpleFunction<double> *f2)
{
  std::cout << "build Error View" << std::endl;
  std::map<int, std::vector<double> > data;

  SolverField<SVector3> solField(pAssembler, LagSpace);
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      int npts;
      IntPt *GP;
      double jac[3][3];
      int integrationOrder = 2 * (e->getPolynomialOrder() + 5);
      e->getIntegrationPoints(integrationOrder, &npts, &GP);
      double val = 0.0;
      for(int j = 0; j < npts; j++) {
        double u = GP[j].pt[0];
        double v = GP[j].pt[1];
        double w = GP[j].pt[2];
        double weight = GP[j].weight;
        double detJ = fabs(e->getJacobian(u, v, w, jac));
        SPoint3 p;
        e->pnt(u, v, w, p);
        SVector3 FEMVALUE;
        solField.f(e, u, v, w, FEMVALUE);
        SVector3 sol((*f0)(p.x(), p.y(), p.z()), (*f1)(p.x(), p.y(), p.z()),
                     (*f2)(p.x(), p.y(), p.z()));
        double diff = normSq(sol - FEMVALUE);
        val += diff * detJ * weight;
      }
      std::vector<double> vec;
      vec.push_back(sqrt(val));
      data[e->getNum()] = vec;
    }
  }

  PView *pv = new PView(postFileName, "ElementData", pModel, data, 0.0, 1);
  return pv;
}

PView *elasticitySolver::buildDisplacementView(const std::string postFileName)
{
  std::cout << "build Displacement View" << std::endl;
  std::set<MVertex *> v;
  std::map<MVertex *, MElement *> vCut;
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    if(elasticFields[i]._E == 0.) continue;
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      if(e->getParent()) {
        for(std::size_t j = 0; j < e->getNumVertices(); ++j) {
          if(vCut.find(e->getVertex(j)) == vCut.end())
            vCut[e->getVertex(j)] = e->getParent();
        }
      }
      else {
        for(std::size_t j = 0; j < e->getNumVertices(); ++j)
          v.insert(e->getVertex(j));
      }
    }
  }
  std::map<int, std::vector<double> > data;
  SolverField<SVector3> Field(pAssembler, LagSpace);
  for(std::set<MVertex *>::iterator it = v.begin(); it != v.end(); ++it) {
    SVector3 val;
    MPoint p(*it);
    Field.f(&p, 0, 0, 0, val);
    std::vector<double> vec(3);
    vec[0] = val(0);
    vec[1] = val(1);
    vec[2] = val(2);
    data[(*it)->getNum()] = vec;
  }
  for(std::map<MVertex *, MElement *>::iterator it = vCut.begin();
      it != vCut.end(); ++it) {
    SVector3 val;
    double uvw[3];
    double xyz[3] = {it->first->x(), it->first->y(), it->first->z()};
    it->second->xyz2uvw(xyz, uvw);
    Field.f(it->second, uvw[0], uvw[1], uvw[2], val);
    std::vector<double> vec(3);
    vec[0] = val(0);
    vec[1] = val(1);
    vec[2] = val(2);
    data[it->first->getNum()] = vec;
  }
  PView *pv = new PView(postFileName, "NodeData", pModel, data, 0.0);
  return pv;
}

PView *elasticitySolver::buildStressesView(const std::string postFileName)
{
  double sti[6] = {0., 0., 0., 0., 0., 0.};
  double str[6] = {0., 0., 0., 0., 0., 0.};
  double volTot = 0.;
  std::cout << "build stresses view" << std::endl;
  std::map<int, std::vector<double> > data;
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    double E = elasticFields[i]._E;
    double nu = elasticFields[i]._nu;
    SolverField<SVector3> Field(pAssembler, LagSpace);
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      double vol = e->getVolume() * e->getVolumeSign();
      int nbVertex = e->getNumVertices();
      std::vector<SVector3> val(nbVertex);

      double valx[256];
      double valy[256];
      double valz[256];
      for(int k = 0; k < nbVertex; k++) {
        MVertex *v = e->getVertex(k);
        MPoint p(v);
        Field.f(&p, 0, 0, 0, val[k]);
        valx[k] = val[k](0);
        valy[k] = val[k](1);
        valz[k] = val[k](2);
      }

      double gradux[3];
      double graduy[3];
      double graduz[3];
      SPoint3 center = e->barycenterUVW();
      double u = center.x(), v = center.y(), w = center.z();
      e->interpolateGrad(valx, u, v, w, gradux);
      e->interpolateGrad(valy, u, v, w, graduy);
      e->interpolateGrad(valz, u, v, w, graduz);

      double eps[6] = {gradux[0],
                       graduy[1],
                       graduz[2],
                       0.5 * (gradux[1] + graduy[0]),
                       0.5 * (gradux[2] + graduz[0]),
                       0.5 * (graduy[2] + graduz[1])};

      double A = E / (1. + nu);
      double B = A * (nu / (1. - 2 * nu));
      double trace = eps[0] + eps[1] + eps[2];
      double sxx = A * eps[0] + B * trace;
      double syy = A * eps[1] + B * trace;
      double szz = A * eps[2] + B * trace;
      double sxy = A * eps[3];
      double sxz = A * eps[4];
      double syz = A * eps[5];

      std::vector<double> vec(9);
      vec[0] = sxx;
      vec[1] = sxy;
      vec[2] = sxz;
      vec[3] = sxy;
      vec[4] = syy;
      vec[5] = syz;
      vec[6] = sxz;
      vec[7] = syz;
      vec[8] = szz;

      data[e->getNum()] = vec;

      for(int k = 0; k < 6; k++) str[k] += eps[k] * vol;
      sti[0] += sxx * vol;
      sti[1] += syy * vol;
      sti[2] += szz * vol;
      sti[3] += sxy * vol;
      sti[4] += sxz * vol;
      sti[5] += syz * vol;
      volTot += vol;
    }
  }
  for(int i = 0; i < 6; i++) {
    str[i] = str[i] / volTot;
    sti[i] = sti[i] / volTot;
  }
  printf("effective stiffn = ");
  for(int i = 0; i < 6; i++) printf("%g ", sti[i]);
  printf("\n");
  printf("effective strain = ");
  for(int i = 0; i < 6; i++) printf("%g ", str[i]);
  printf("\n");

  PView *pv = new PView(postFileName, "ElementData", pModel, data, 0.0);
  return pv;
}

PView *elasticitySolver::buildStrainView(const std::string postFileName)
{
  std::cout << "build strain view" << std::endl;
  std::map<int, std::vector<double> > data;
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    SolverField<SVector3> Field(pAssembler, LagSpace);
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      int nbVertex = e->getNumVertices();
      std::vector<SVector3> val(nbVertex);

      double valx[256];
      double valy[256];
      double valz[256];
      for(int k = 0; k < nbVertex; k++) {
        MVertex *v = e->getVertex(k);
        MPoint p(v);
        Field.f(&p, 0, 0, 0, val[k]);
        valx[k] = val[k](0);
        valy[k] = val[k](1);
        valz[k] = val[k](2);
      }

      double gradux[3];
      double graduy[3];
      double graduz[3];
      double u = 0.33, v = 0.33, w = 0.0;
      e->interpolateGrad(valx, u, v, w, gradux);
      e->interpolateGrad(valy, u, v, w, graduy);
      e->interpolateGrad(valz, u, v, w, graduz);

      std::vector<double> vec(9);
      vec[0] = gradux[0];
      vec[4] = graduy[1];
      vec[8] = graduy[2];
      vec[1] = vec[3] = 0.5 * (gradux[0] + graduy[1]);
      vec[2] = vec[6] = 0.5 * (gradux[0] + graduz[2]);
      vec[5] = vec[7] = 0.5 * (gradux[1] + graduz[2]);

      data[e->getNum()] = vec;
    }
  }
  PView *pv = new PView(postFileName, "ElementData", pModel, data, 0.0);
  return pv;
}

PView *
elasticitySolver::buildLagrangeMultiplierView(const std::string postFileName,
                                              int tag)
{
  std::cout << "build Lagrange Multiplier View" << std::endl;
  unsigned int t = 0;
  if(tag != -1)
    for(; t < LagrangeMultiplierSpaces.size(); t++)
      if(LagrangeMultiplierSpaces[t]->getId() == tag) break;
  if(t == LagrangeMultiplierSpaces.size()) return new PView();
  std::set<MVertex *> v;
  for(unsigned int i = 0; i < LagrangeMultiplierFields.size(); ++i) {
    for(groupOfElements::elementContainer::const_iterator it =
          LagrangeMultiplierFields[i].g->begin();
        it != LagrangeMultiplierFields[i].g->end(); ++it) {
      MElement *e = *it;
      for(std::size_t j = 0; j < e->getNumVertices(); ++j)
        v.insert(e->getVertex(j));
    }
  }
  std::map<int, std::vector<double> > data;
  SolverField<double> Field(pAssembler, LagrangeMultiplierSpaces[t]);
  for(std::set<MVertex *>::iterator it = v.begin(); it != v.end(); ++it) {
    double val;
    MPoint p(*it);
    Field.f(&p, 0, 0, 0, val);
    std::vector<double> vec;
    vec.push_back(val);
    data[(*it)->getNum()] = vec;
  }
  PView *pv = new PView(postFileName, "NodeData", pModel, data, 0.0);
  return pv;
}

PView *elasticitySolver::buildElasticEnergyView(const std::string postFileName)
{
  std::cout << "build Elastic Energy View" << std::endl;
  std::map<int, std::vector<double> > data;
  GaussQuadrature Integ_Bulk(GaussQuadrature::GradGrad);
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    if(elasticFields[i]._E == 0.) continue;
    SolverField<SVector3> Field(pAssembler, LagSpace);
    IsotropicElasticTerm Eterm(Field, elasticFields[i]._E,
                               elasticFields[i]._nu);
    BilinearTermToScalarTerm Elastic_Energy_Term(Eterm);
    ScalarTermConstant<double> One(1.0);
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      double energ;
      double vol;
      IntPt *GP;
      int npts = Integ_Bulk.getIntPoints(e, &GP);
      Elastic_Energy_Term.get(e, npts, GP, energ);
      One.get(e, npts, GP, vol);
      std::vector<double> vec;
      vec.push_back(energ / vol);
      data[e->getNum()] = vec;
    }
  }
  PView *pv = new PView(postFileName, "ElementData", pModel, data, 0.0);
  return pv;
}

PView *elasticitySolver::buildVolumeView(const std::string postFileName)
{
  std::cout << "build Volume View";
  std::map<int, std::vector<double> > data;
  double voltot = 0;
  double length = 0;
  GaussQuadrature Integ_Vol(GaussQuadrature::Val);
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    ScalarTermConstant<double> One(1.0);
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      double vol;
      IntPt *GP;
      int npts = Integ_Vol.getIntPoints(e, &GP);
      One.get(e, npts, GP, vol);
      voltot += vol;
      std::vector<double> vec;
      vec.push_back(vol);
      data[e->getNum()] = vec;
    }
  }
  for(unsigned int i = 0; i < LagrangeMultiplierFields.size(); ++i) {
    ScalarTermConstant<double> One(1.0);
    for(groupOfElements::elementContainer::const_iterator it =
          LagrangeMultiplierFields[i].g->begin();
        it != LagrangeMultiplierFields[i].g->end(); ++it) {
      MElement *e = *it;
      double l;
      IntPt *GP;
      int npts = Integ_Vol.getIntPoints(e, &GP);
      One.get(e, npts, GP, l);
      length += l;
    }
    std::cout << " : length " << LagrangeMultiplierFields[i]._tag << " = "
              << length;
    length = 0;
  }
  PView *pv = new PView(postFileName, "ElementData", pModel, data, 0.0, 1);
  std::cout << " / total vol = " << voltot << std::endl;
  return pv;
}

PView *elasticitySolver::buildVonMisesView(const std::string postFileName)
{
  std::cout << "build elastic view" << std::endl;
  std::map<int, std::vector<double> > data;
  GaussQuadrature Integ_Bulk(GaussQuadrature::GradGrad);
  for(unsigned int i = 0; i < elasticFields.size(); ++i) {
    SolverField<SVector3> Field(pAssembler, LagSpace);
    IsotropicElasticTerm Eterm(Field, elasticFields[i]._E,
                               elasticFields[i]._nu);
    BilinearTermToScalarTerm Elastic_Energy_Term(Eterm);
    for(groupOfElements::elementContainer::const_iterator it =
          elasticFields[i].g->begin();
        it != elasticFields[i].g->end(); ++it) {
      MElement *e = *it;
      double energ;
      IntPt *GP;
      int npts = Integ_Bulk.getIntPoints(e, &GP);
      Elastic_Energy_Term.get(e, npts, GP, energ);
      std::vector<double> vec;
      vec.push_back(energ);
      data[(*it)->getNum()] = vec;
    }
  }
  PView *pv = new PView(postFileName, "ElementData", pModel, data, 0.0);
  return pv;
}

#else

PView *elasticitySolver::buildErrorView(int comp, simpleFunction<double> *sol,
                                        const std::string postFileName)
{
  Msg::Error("Post-pro module not available");
  return 0;
}

PView *elasticitySolver::buildDisplacementView(const std::string postFileName)
{
  Msg::Error("Post-pro module not available");
  return 0;
}

PView *elasticitySolver::buildStrainView(const std::string postFileName)
{
  Msg::Error("Post-pro module not available");
  return 0;
}

PView *
elasticitySolver::buildLagrangeMultiplierView(const std::string postFileName)
{
  Msg::Error("Post-pro module not available");
  return 0;
}

PView *elasticitySolver::buildElasticEnergyView(const std::string postFileName)
{
  Msg::Error("Post-pro module not available");
  return 0;
}

PView *elasticitySolver::buildVonMisesView(const std::string postFileName)
{
  Msg::Error("Post-pro module not available");
  return 0;
}

PView *elasticitySolver::buildStressesView(const std::string postFileName)
{
  Msg::Error("Post-pro module not available");
  return 0;
}
PView *elasticitySolver::buildVolumeView(const std::string postFileName)
{
  Msg::Error("Post-pro module not available");
  return 0;
}

#endif