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SUMMARY

Q1

We present a fully automatic procedure for the mesh generation of tubular geometries such as blood vessels
or airways. The procedure is implemented in the open-source Gmsh software and relies on a centerline
description of the input geometry. The presented method can generate different type of meshes: isotropic
tetrahedral meshes, anisotropic tetrahedral meshes, and mixed hexahedral/tetrahedral meshes. Additionally,
a multiple layered arterial wall can be generated with a variable thickness. All the generated meshes rely
on a mesh size field and a mesh metric that is based on centerline descriptions, namely the distance to the
centerlines and a local reference system based on the tangent and the normal directions to the centerlines.
Different examples show that the proposed method is very efficient and robust and leads to high quality
computational meshes. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays patient-specific simulations are widely used in the cardiovascular or respiratory field to
investigate either local hemodynamics or deposition fraction from inhaled respiratory aerosols. An
important but time consuming step in the modeling process is the creation of a quality computational
mesh based on the segmented geometry. This segmented geometry is a tubular geometry with
possibly several bifurcations and that is most of the times an standard triangulated language (STL) Q2
of low quality.

The pipeline leading from the segmented geometry to the computational mesh usually comprises
of the following: (i) the generation of a high quality surface mesh; (ii) the creation and meshing of
planar regions for boundary conditions; (iii) the extrusion of the surface mesh to create the geometry
and volume mesh of the solid wall; and (iv) the volume mesh generation of the lumen. The latter
step sometimes includes a boundary layer mesh in the vicinity of the lumen surface. Most known
solutions to create a computational mesh still require to perform manually those different steps. If
some of those steps (such as the tetrahedral meshing) are automated, other steps still require a large
amount of manual processing.

In this paper, we present a fully automatic procedure for the mesh generation of tubular
geometries. The procedure relies on a centerline description of the geometry that is computed using
the open source Vascular Modeling Toolkit (vmtk, www.vmtk.org). The new automatic meshing
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procedure is very efficient and robust and leads to high quality computational meshes. It is imple-
mented inside the open source meshing software Gmsh [1], and examples on how to use it can be
found on the Gmsh wiki (https://geuz.org/trac/gmsh).

The procedure is able to generate different type of meshes: isotropic tetrahedral meshes,
anisotropic tetrahedral meshes, or mixed hexahedral/tetrahedral meshes. Additionally, a multiple
layered arterial wall can be generated with a variable thickness. All the generated meshes rely on
a mesh size field and a mesh metric that is based on centerline descriptions (distance to centerlines
and local reference system based on the tangent and normal directions to the centerlines).

The anisotropic tetrahedral meshes are aligned with the dominant direction of flow (i.e., the cen-
terlines) and the mesh size is reduced close to the boundary. Therefore, those anisotropic meshes
reduce the number of elements and degrees of freedom (compared with the equivalent isotropic
mesh), leading to significant computational savings for a given level of accuracy [2–4]. We also
present a subtle way to control the tangent and normal mesh sizes for anisotropic volume meshes of
tubular geometries.

Our mixed hexahedral/tetrahedral meshes contain hexahedra in the extruded wall and tetrahe-
dra in the vessel lumen. Those meshes are based on the generation of a new quadrangular surface
mesh of the input geometry. The presented algorithm of quadrangular mesh generation is an orig-
inal approach that is a combination of a structured elliptic mesh generation approach [5] and an
indirect approach [6] that uses distances in the L1 norm as a base for inserting new points and
generates right triangles that are then recombined into quadrangles [7]. From the quadrangular sur-
face mesh, we generate an extruded boundary layer mesh as well as an unstructured tetrahedral
mesh of the lumen with pyramids as transition elements [8]. We are currently also working on
an optimal placement of the mesh vertices in the lumen for the recombination of the tetrahedra
into hexahedra [9–11], which will allow to also generate hexahedral dominant meshes. It follows
that the presented unstructured approach for hexahedral mesh generation is general and quite fast
compared with block-structured hexahedral mesh generation such as centerline-based sweeping
methods [12, 13]. Indeed, such block-structured methods require that the source and the target have
similar topology, which means that many templates for different tubular branching configurations
(trifurcation or higher-order branching) are needed.

In the example section, we define for every type of mesh quality criteria. By running our
centerline-based meshing algorithm on different arterial and lung geometries, we show that the
presented method is very efficient and robust. Moreover, we show that the method is able to gen-
erate high quality meshes that are suitable for numerical methods, such as finite element or finite
volume methods.

2. MATERIALS AND METHOD

In this section, we present the specific implementation of the pipeline of our automatic meshing
approach on the basis of centerlines. The starting point of our algorithm is the segmented triangu-
lated surface of arbitrary quality,‡ that is, a set of N mesh triangles T D fT1, : : : , TN g and a set of
M surface mesh vertices X D fx1, : : : , xM g.

2.1. Generation of centerlines

Centerlines are powerful descriptors of the shape of vessels. Although the concept of what a center-
line is more or less intuitive, their mathematical definition is not unique. A lot of methods have been
proposed in the literature for the computation of centerlines both from angiographic images and 3D
models.

The algorithm implemented in the open source vmtk [14–16] deals with the computation of
centerlines starting from surface models and has the advantage that it is well-characterized mathe-
matically and quite stable to perturbations on the surface. Centerlines are determined as the paths
defined on Voronoi diagram sheets that minimize the integral of the radius of maximal inscribed

‡e.g., a surface in STL format.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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Figure 1. Geometric models of a patient-specific bronchial airway tree (a) together with the extracted center-
lines (b). The colors and thickness of the centerlines represent the vessel radius (a centerline-based descriptor

computed within Gmsh).

spheres along the path, which is equivalent to finding the shortest paths in the radius metric. This
is performed by propagating a wave from a source point (one endpoint of the centerline) by using
the inverse of the radius as the wave speed and recording the wave arrival time on all the points of
the Voronoi diagram, and then backtracking the line from a target point (the other endpoint of the
centerline) down along the gradient of arrival times. The propagation is described by the Eikonal
equation that is computed using the fast marching method.

The script that allows to compute centerlines in vmtk is vmtkcenterlines.§ For a tubular geom-
etry, it takes as input a discrete surface (e.g., input.stl in STL format) and a specification of the
inlet and outlet boundaries of the geometry that are used to compute the source and target points
as the barycenter of those boundaries. It should be noted that prior to computing the centerlines,
flow extensions can be added with vmtk for the inlets and outlets of the tubular geometry
(inputExtended.stl), so that the computed centerlines (centerlines.vtk) extend out from the inlets
and outlets of the input tubular geometry (input.stl).

The discrete centerlines (computed by vmtk) are a set of K consecutive line segments C D
fs1, s2, : : : , sKg and L mesh vertices Xc D fxc1

, : : : , xcLg. Every line segment sk is defined by
a starting point xci and end point xcj on the centerlines sk D xci xcj . A new mesh field named
Centerline has been implemented within Gmsh that takes as input such discrete centerlines C.
From the centerline field, two geometrical descriptors are computed and three different operators
are defined.

Figure 1 shows a geometrical model of a bronchial airway tree together with the extracted center- F1
lines. Both colors and thickness of the centerlines represent the vessel radius computed as described
in the following paragraph.

2.2. Centerline-based descriptors in Gmsh

Two geometrical descriptors are computed from the centerlines C:

! The local radius.
! The local reference system.

The local radius r.xc/ of the vessel is the distance from a point on the centerline xc to the tubular
geometry. This local radius is computed efficiently by first storing all the mesh vertices of the tubu-
lar geometry in a search tree (approximate nearest neighbor, ANN) [17, 18] and by using the search
tree to compute the closest point xp 2 X . The local radius r.xc/ is the distance between xp and xc .

The local reference system is a set of three axes defined for every point in the tubular volume
x 2 R3. The local axes are the abscissa (unit vector tangent to the centerlines), the normal (a vec-
tor perpendicular to the centerlines), and the binormal that can be calculated as the cross product

§script: vmtk vmtkcenterlines - seedselector openprofiles - ifile input.stl - ofile centerlines.vtk.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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Figure 2. Centerline-based geometrical descriptors and operators used for the generation of an anisotropic
mesh of a human aorta. The local radius r.xc/ is defined at a point on the centerlines xc , and the local
reference system .et .x/, en.x/, ebn.x// is defined at a mesh point x 2 R3. The branched tree B defined
from the centerlines is made of W D 7 branches. The initial surface mesh T has been cut by disks at
four different locations (red circles) being either the tree bifurcations or locations along the long branches

(such as branch b7).

of the abscissa and the normal: .et .x/, en.x/, ebn.x//. The local reference system is computed as
follows: for a point x in the volume to be remeshed (i) compute, by using a fast search tree such
as ANN, the two closest points on the centerlines xc1 and xc2 so that et D xc2 " xc1; (ii) compute
the normal en D x " xc1; and (iii) compute the binormal as the cross product of the abscissa and
the normal. Figure 2 shows an example of the local radius r.xc/ for a point on the centerline and ofF2
a local reference system for a point x in the volume of an aortic arch. The local reference system
is uniquely defined. However, in the neighborhood of bifurcations, there will be abrupt changes in
the orientations of the axes. As will be explained in the next sections, the local reference system
enables us to define an anisotropic mesh metric to produce anisotropic meshes. The fact that there
exist abrupt changes at bifurcations is not really an issue for the anisotropic mesh generator.

2.3. Centerline-based operators in Gmsh

Besides the geometrical descriptors, three centerline-based operators are defined:

! A cut operator.
! A close-volume operator.
! A vessel wall model generation.

The cut operator can cut the initial tubular geometry T into different mesh patches Sj of moderate
geometrical aspect ratio ! D H=D, that is, the ratio between the height H and the diameter D of
the tube. As an example, Figure 2 shows 5 mesh patches, and Figure 4 shows 17 mesh patches. The
centerline-based operator is very important for the surface remeshing of the initial triangulation.
Indeed our surface (re)-meshing algorithm works as follows:

1. We compute a conformal mapping u.x/ that maps a surface patch Sj into a 2D surface S0
j

embedded in R2 and that preserves (in a least square sense) the angles between the iso-u and
iso-v lines:

x 2 Sj # R3 7! u.x/ 2 S0
j # R2. (1)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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Figure 3. A conformal mapping u.x/ D fu.x/, v.x/g that transforms continuously a 3D surface Sj 2 R3

(a tri-bifurcation) into a 2D surface S0
j

embedded in R2. The red lines on the 3D surface are the iso-u and
iso-v lines.

The conformal mapping u.x/ is the solution of a 2M $2M linear system [19–22] where M is
the number of surface mesh vertices of the initial triangulation. Figure 3 shows the computed F3
conformal mapping for a triangulated surface of a tri-bifurcation. As can be seen in Figure 3,
the triangles that are close to the three outlets of the tri-bifurcation becomes very small in the
parametric space. We have shown in [22] that the higher the aspect ratio of the geometry, the
closer the mesh vertices nearby the outlets in the parametric space. Moreover, we showed that
a necessary condition for avoiding indistinguishable mesh vertices in the parametric space is
to ensure that the geometrical aspect ratio remains smaller than ! D 4. This is why our cut
algorithm is of importance as it guarantees that the patches Sj are of moderate aspect ratio
.! < 4/.

2. The initial surface patch Sj can then be remeshed in the parametric space by using any 2D
mesh generation procedure with a given variable isotropic mesh size field or an anisotropic
mesh metric.

3. The new mesh is then mapped back to the original surface.

The cut operator relies on a branched tree structure of the centerlines. A branched tree is a set of
W branches B D fb1, : : : , bW g that know their children branches (see the branched tree structure
of the lung made of W D 305 branches in Figure 1(b) or the branched tree structure of the aorta
made of W D 7 branches in Figure 2). The variables of a branch bj are its length, the minimum

and maximal local radius r.xcj / of all mesh vertices of the branch X bj
c D fxc1, : : : , xcJ g, and the

children branches Bchild # B.
By using the branched tree, the cut algorithm is defined as follows: we loop over all the branches

of the tree and cut the mesh by a disk at all the tree bifurcations (junction between the parent and
the children branches) and at different lengths of the branch such that the maximal aspect ratio of
a branch never exceeds ! D 4. The cutting disk is defined by the position of the cut (vertex xcut

c /,
the radius of the vessel at the cut r.xcut

c / and the unit vector along the direction of the branch at
the cut et .xcut

c /. The radius of the cutting disk R is chosen a little bit larger than the vessel radius
R D 1.2r.xcut

c / to guarantee an exact cut of the mesh. The triangles of the mesh T D fT1, : : : , TN g
that are cut by the disk are divided into three subtriangles. Figure 4 shows an example of an initial F4
STL mesh T that has been cut by 16 disks by using the centerline-based cut operator. The resulting
mesh contains 17 different surface patches Sj than can be remeshed using the remeshing tech-
niques based on parametrizations. Figure 4(b) shows the conformal parametrization of the white
mesh patch.

The second operator is the close-volume operator. This operator creates planar faces at the inlet
and outlet of the tubular geometry. The planar faces are defined by the mean plane of the mesh ver-
tices x 2 X located at the boundaries of the input geometry. Those faces can then be subsequently
meshed by the planar mesh generators.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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b)a)

Figure 4. The cut operator on the basis of the centerlines has cut the initial tubular geometry, a cere-
bral aneurysm, into 17 different mesh surfaces Sj (a). For the remeshing of those patches, a conformal
parametrization u.x/ is computed for every mesh patch. The parametrization is shown for the white mesh

patch (b).

The last defined operator is a vessel wall model generation. In many cases, the entire wall sur-
face is not available from image segmentation and needs to be reconstructed from the lumen wall
by using, for example, a quite realistic radius-dependent wall-thickness ıW such as a percentage
of the local radius of the tubular geometry. The geometry of the wall surface can then be obtained
by extruding the lumen surface mesh in the outward direction with a radius-dependent wall thick-
ness. The extrusion is performed in Gmsh by using an advancing layer method [23–25] with a
given number of layers. The method starts from a surface mesh on which a boundary layer must be
grown. From each surface node x 2 X a direction is picked for placing the nodes of the boundary
layer mesh. The direction is computed using an estimate to the surface normal at the node by using
Gouraud shading[26], and the extrusion thickness ı is computed as a percent ˛ of the vessel radius:

ıW .x/ D ˛r .xc .x// , (2)

where xc 2 Xc is the mesh vertex on the centerlines that is closest to x. If the surface mesh is a
quadrangular mesh, the nodes are connected to form layers of hexahedra, and in the case it is a
triangular mesh, the nodes are connected to form layers of prisms that are subsequently subdivided
into tetrahedra. An example of vessel wall generation is shown in Figure 5.F5
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Figure 5. Vessel wall model generation for the geometry of cerebral aneurysm: cut-away view of the tetra-
hedral volume mesh of both the lumen (in green) and the vessel wall (in yellow). The vessel wall is built

using a radius-dependent wall thickness ıW .x/ with ˛ D 0.2 and four layers.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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MESHING TUBULAR SURFACES ON THE BASIS OF CENTERLINE 7

2.4. Defining mesh metrics for anisotropic meshes

It has been shown in Section 2.2 how to compute a local reference system on the basis of the center-
lines .et , en, ebn/. For simple tubular geometries, this local reference system is such that the normal
vector en is close to the surface normal n and that the tangent vector et is close to the eigenvector t1
corresponding to the smallest eigenvalue of the curvature tensor W computed at the surface. How-
ever, at geometric singularities (singular points of the centerlines such as at the bifurcations), this is
not always the case. This problem is addressed by taking two different local reference systems: close
to centerlines the centerline-based local reference system is chosen .et , en, ebn/, and in the vicinity
of the surface (in a CFD boundary layer of thickness ı), a local reference system is computed from
the eigenvectors of the curvature tensor .t1, t2, n/. Here, the curvature tensor is computed per face
on the discrete tubular surface by using the method proposed by S. Rusinkiewicz [27]. The method
of Rusinkiewicz computes first the vertex curvatures by taking a weighted average of the adjacent
faces’ normal vectors. The curvatures per face are then defined in terms of the directional derivative
of the surface points and their normals. The minimal normal curvature "1 and the maximal normal
curvature "2 (also called principal curvatures) are obtained as eigenvalues of the curvature tensor
W . The associated eigenvectors t1 and t2 are the two principal tangent directions that are always
perpendicular to each other. The normal vector n is the cross-product of t1 and t2.

To create a 3D anisotropic computational mesh from an input geometry, we need to define three
mesh size fields hi in the axis directions of the chosen local reference system. The following mesh
metric M.x/ can then computed:

M.x/ D RT

0
@

h!2
1 0 0

0 h!2
2 0

0 0 h!2
3

1
AR, (3)

where R is a matrix whose columns are the vectors of the reference system. This mesh metric can
then be used by the different 1D, 2D, and 3D anisotropic meshing algorithms.

There are several criteria than can be applied to assign the different mesh sizes at each point x.
Let us first look at the mesh metric in the vicinity of the surface.

! If one is willing to build a CFD boundary layer mesh inside the lumen inside the lumen, the
normal mesh size can be computed as [28]:

hn.x/ D h0
n C d.x/ ln ˇ, (4)

where d.x/ is the distance to the tubular geometry T that is again computed efficiently by using
an ANN [17, 18], ˇ > 1 is the normal growth of the boundary layer, that is, the ratio between
two successive element sizes in the normal direction and h0

n is the normal size at the wall. This
normal size can be for example a function of the vessel radius at the wall: h0

n D ˛r.xc/.
! Some control on the geometrical accuracy of the mesh should be ensured. For that, mesh sizes

ht1 and ht2 should depend on the curvature of the surface in directions t1 and t2. Typically, we
choose for the mesh points on the wall:

h0
t1 D 2 $0

t1

Np
and h0

t2 D 2%$0
t2

Np
(5)

with Np a control parameter that is the number of mesh points per circumference and
$t1 D 1="1 and $t2 D 1="2 the radii of curvature of the surface in both directions t1 and
t2. When we leave the surface, the tangent mesh size is allowed to grow as follows:

ht1.x/ D h0
t1 C d.x/ ln ˇ. (6)

However, we will show that a more subtle control (more subtle than Equation (5)) on the tangent
mesh size fields has to be performed to avoid large variations of mesh sizes. Let us consider a
2D geometrical domain & of boundary ' with radius of curvature $0 (see Figure 6). A boundary F6
layer mesh of thickness ı is constructed with a prescribed ‘normal to the wall’ mesh size hn

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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Figure 6. Defining the mesh sizes ht and hn on a 2D geometry of boundary ' with the radius of curvature
$0. The boundary layer thickness ı is sufficiently thin so that $% $0 in the boundary layer.

(Equation (4)). The boundary layer thickness ı is sufficiently thin to $ % $0. We raise here the
following question: is it possible to choose freely the ‘tangent to the wall’ mesh size h0

t ? In most
mesh generation procedures, a smoothing smoothing step is applied to the metric field to avoid large
variation of mesh sizes. A smoothing ratio ˇ > 1 is defined as the maximum ratio of two adjacent
edge lengths. Let us demonstrate in 2D that mesh size ht .x/ is indeed constrained by ˇ, hn, and
$0 and should therefore not be given using (5). In what follows, we will drop the superscript 0 for
denoting the tangent h0

t and the normal h0
n mesh size to the wall.

At point x1, the 2D metric field can be written as

M.x1/ D
!

h!2
t 0

0 h!2
n

"
.

At point x2, the metric is rotated at an angle ( :

M.x2/ D
!

cos ( " sin (
sin ( cos (

" !
h!2

t 0

0 h!2
n

" !
cos ( sin (

" sin ( cos (

"

D 1

h2
nh2

t

 
h2

n cos2 ( C h2
t sin2 (

#
h2

n " h2
t

$
cos ( sin (#

h2
n " h2

t

$
cos ( sin ( h2

t cos2 ( C h2
n sin2 (

!
.

(7)

Assuming ( D ht=$0 & 1, we have

cos2 ( ' 1 " h2
t

$2
0

and sin2 ( ' h2
t

$2
0

.

and the mesh size hx in the x direction at point x2 is computed as

1

h2
x

D 1

h2
nh2

t

#
h2

n cos2 ( C h2
t sin2 (

$
' 1

h2
t

C 1

$2
0

!
h2

t

h2
n

" 1

"
.

It is now possible to correct mesh ht in direction x at point x1 by using the relation ht D ˇhx ,
that is,

ˇ2

h2
t

D 1

h2
t

C 1

$2
0

!
h2

t

h2
n

" 1

"
. (8)

Providing that 1

h2
t

is positive, (8) has the unique solution

1

h2
t

D 1

2$2
0.ˇ2 " 1/

0
@
s

1 C 4$2
0.ˇ2 " 1/

h2
n

" 1

1
A . (9)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
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MESHING TUBULAR SURFACES ON THE BASIS OF CENTERLINE 9

Mesh size ht is then an upper bound of the mesh size in the tangent direction: for example, if $ is
very large, then the tangent mesh size can be chosen arbitrarily. If ˇ D 1, then Equation (8) has the
solution ht D hn, which means that no anisotropy is possible in a uniform mesh.

Let us now look at definition of the mesh sizes outside the boundary layer, where we would like to
have mesh elements aligned with the centerlines. A mesh size field ht in the direction et is defined
that grows linearly from h0

t1 at the surface boundary to hc at the center of the tubular geometry. The
mesh size field in the two other directions (en, ebn) are given by Equation (4).

By using the anisotropic mesh metric (3), we can compute the length of a path given by a mesh
edge e D xi xj by using the straight line parametrization x.t/ D xi C t xi " xj , t 2 Œ0, 1):

lM D
Z 1

0

k*.t/kdt D
Z 1

0

q
eT M.x.t//e dt . (10)

For the surface remeshing of the tubular geometry, we however do not remesh in the 3D space but
remesh in the parametric space thanks to the conformal parametrization (Figure 3). This enables us
to use any available 2D meshers and in particular the 2D anisotropic mesh generator bidimensional
anisotropic mesh generator [29] developed by F. Hecht and integrated within Gmsh. The length of
the edge on the mesh patch Sj can then be computed from the length in the parametric space e0 as
follows: e D x,ue0 so that the length of the edge with respect to the mesh metric can be computed as
follows:

lMx D
Z 1

0

vuute0T #
xT

,uM.x/x,u
$

„ ƒ‚ …
M.x/0

e0 dt , (11)

where M.x/0 is the mesh metric that needs to be given to the anisotropic 2D mesh generators.
For our piecewise linear conformal mapping u.x/, the derivatives x,u can be computed quite easily
(see [22] for more details).

2.5. Quadrangular and hexahedral mesh generation

The first step for our hexahedral mesh generation algorithm is the generation of a quadrangular mesh
of the initial geometry. The presented algorithm of quadrangular mesh generation is an original
approach that combines a structured approach and an indirect unstructured approach. The mesh
patches that are created by our centerline-based cut operator can be classified into two types of
patches: annular patches and bifurcation patches. The annular mesh patches are then remeshed using
a structured approach, whereas the bifurcation patches (tri-bifurcations or higher order bifurcations)
are meshed with an indirect approach.

The structured meshes are built using an elliptic mesh generation method [5]. The elliptic grid
generator relies on the conformal mapping u.x/ (Equation (1)) of the physical domain onto the
parametric domain and on a second mapping u.!/ that maps a periodic rectangular computational
domain onto the parametric domain (see Figure 7). F7

The different steps involved in the structured quadrangular mesh generator of an annular patch
are the following:

1. Create N mesh vertices on the edges of the model, that is, the inlet ring e1 and the outlet ring
e2 (see the the black dots in the right Figure 7). The number of mesh vertices on a ring is a
user-defined parameter.

2. Create a regular grid in the parametric domain u.x/ (see the green dots in the parametric
domain). To create a regular grid, we choose an arbitrarily vertex v1 on e1 and find v0, the
closest vertex to v1 on e2 in the parametric domain. Then, compute the number M of mesh
vertices for edge e0 as follows: M D

ˇ̌
ex

0

ˇ̌
=.2 r=N /, where

ˇ̌
ex

0

ˇ̌
is the length of edge e0 in the

physical domain.¶ Create in the parametric domain M uniformly distributed mesh vertices on
edge e0 and repeat this operation for the other edges joining the vertices of edges e1 and e2.

¶This length is computed by numerical integration.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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Figure 7. Structured mesh generation for annular patches for which the mapping u.x/ has already been
computed. The elliptic mesh generation method relies on the computation of a second mapping u.!/ that

maps a regular computational domain to the parametric domain.

3. Since the mapping u.x/ does not preserve the lengths, the new vertices which are uniformly
distributed in the parametric space, are not uniformly distributed in the physical domain
(see bottom left Figure 8). The idea is then to move the new created mesh vertices in theF8
parametric domain (u, v) in such a way that those mesh vertices are uniformly distributed in
the physical domain (see right Figure 8). Such locations of mesh vertices can be found by com-
puting a second mapping !.u/ that maps the parametric domain onto a periodic rectangular
domain of size M $ N . The mapping can be computed by solving the two following Laplace
(elliptic) PDEs:

@2+

@u2
C @2+

@v2
D 0,

@2!

@u2
C @2!

@v2
D 0 (12)

with appropriate Dirichlet and Neumann boundary conditions.
4. The problem (12) is solved using finite differences in the space of (+ , !), and the unknowns

are the positions (u, v) in the parametric space. The resulting nonlinear system is solved
iteratively by point-Jacobi iterations. For the first iteration .k D 0/, the positions

%
u0

i ,j , v0
i ,j

&

are the uniformly distributed parametric points. For each point-Jacobi iteration, the new
positions can be found as follows (see [30] for more details):

˛ D 1

4

%#
ui ,j C1 " ui ,j !1

$2 C
#
vi ,j C1 " vi ,j !1

$2
&

* D 1

4

%#
uiC1,j " ui!1,j

$2 C
#
viC1,j " vi!1,j

$2
&

ˇ D 1

16

##
uiC1,j " ui!1,j

$ #
ui ,j C1 " ui ,j !1

$
C

#
viC1,j " vi!1,j

$ #
vi ,j C1 " vi ,j !1

$$

uk
i ,j D 1

2.˛ C */

#
˛.uiC1,j C ui!1,j / C *.ui ,j C1 C ui ,j !1/

"2ˇ.uiC1,j C1 " ui!1,j C1 " uiC1,j !1 C ui!1,j !1/
$

vk
i ,j D 1

2.˛ C */

#
˛.viC1,j C vi!1,j / C *.vi ,j C1 C vi ,j !1

"2ˇ.viC1,j C1 " vi!1,j C1 " viC1,j !1 C vi!1,j !1

$
.

(13)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
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Figure 8. Elliptic grid generation of a tubular mesh patch (the mesh patch corresponds to the blue mesh
patch of the aorta presented in Figure 2). (a) Initial structured grid in parametric domain (top) and in
physical domain (bottom); and (b) final mesh points and quad mesh obtained with the elliptic smoother

in both parametric and physical domain.

5. At convergence, the parametric points
%
uk

i ,j , vk
i ,j

&
that are mapped (by using the mapping

x.u/) to the physical domain are uniformly distributed and can be used to create regular quad-
rangles. Figure 8(b) shows after 100 iterations the final points (red points) in the parametric
space as well as the resulting mapped mesh in the physical space.

The indirect way of producing quad meshes comprises three steps: (i) the triangulation is
tailored with the aim of producing right triangles in the domain by using the infinity norm to compute
distances in the meshing process [6]; (ii) the triangles are recombined into quads by using the well-
known Blossom algorithm of graph theory that computes the minimum cost perfect matching in
a graph in polynomial time [7]; and (iii) local and global mesh cleanup operations are performed,
such as Guy Bunin’s one-defect remeshing operation [31] to reduce irregular nodes in the mesh.

Once the quadrangular surface mesh has been generated, we generate an extruded boundary
layer mesh as well as an unstructured tetrahedral mesh of the lumen with pyramids as transition
elements [8]. We are currently also working on an optimal placement of the mesh vertices in the
lumen for the recombination of the tetrahedra into hexahedra [9–11], which will allow to also
generate hexahedral dominant meshes.

3. EXAMPLES

In this section, we have run our new automatic meshing algorithm on different medical tubular
geometries including cerebral aneurysm, carotid arteries, and airways. Different types of computa-
tional meshes are generated: isotropic tetrahedral meshes, anisotropic tetrahedral meshes, or mixed
meshes. Some of the meshes include a vessel wall.

Timings as well as mesh qualities are given for the different meshes. The computations are
performed on a MacBook Pro 2.66 GHz 4 GB RAM Intel Core i7 Q3.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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12 E. MARCHANDISE, C. GEUZAINE AND J. F. REMACLE

Table I. Mean and minimum quality ( N*T , N*! , and *min
! ), number of mesh elements # and timings (in s) for

the generation of isotropic tetrahedral meshes starting from tubular geometries.

STL Surface mesh Volume mesh Time (s) Time (s) Time (s)

Geometry # N*T # N*T # *min
! N*! C field 2D mesh 3D mesh

Aorta 4 103 0.73 12 103 0.97 58 103 0.21 0.69 0.08 0.78 2.26
Aneurysm 38 103 0.94 27 103 0.97 104 103 0.19 0.65 3.30 3.60 4.20
Airways 493 103 0.87 168 103 0.93 587 103 0.06 0.68 410.10 25.90 35.11

STL, standard triangulated language.

3.1. Isotropic tetrahedral computational meshes

Let us first look at isotropic tetrahedral computational meshes. We define two quality criteria: one
quality *T for the triangles T of the surface mesh [32] and one quality *! for the tetrahedra , of the
volume [32, 33].

*T D ˛
$in

$out
(14)

*! D 2
p

6 $

h
. (15)

Here ˛ is a constant, $in is the radius of the inner circle/sphere of the mesh element, $out is the
radius of the circumscribed circle/sphere of the element and h is the length of the longest edge of the
tetrahedron. With those definitions, the regular triangle/tetrahedron has * D 1 and the degenerated
(zero surface/volume) mesh element has * D 0.

Table I shows the mean triangle and tetrahedra quality ( N*T , N*! ), the minimum tetrahedral qualityT1
(*min
! ), the number of mesh elements # and the timings (in s) for the generation of different isotropic

tetrahedral meshes starting from tubular geometries (STL triangulations). The tubular geometries
are the aorta shown in Figure 2, the cerebral aneurysm shown in Figure 4 and the airways in
Figure 1. The meshes are obtained using the 2D frontal Delaunay|| algorithm [34] and the 3D
Delaunay algorithm. The timing for the computation of the centerline field (i.e., the timing for the
computation of the centerline-based descriptors and operators described in Section 2) is given. For
isotropic tetrahedral meshes, the only computed descriptor is the local radius, and the two computed
operators are the cut operator and the close-volume operator. The timings are also given for the 2D
and 3D mesh generation (including mesh optimization).

Figure 9 shows the generated isotropic tetrahedral mesh for the lung on the basis of the centerlineF9
field. As can be seen, the mesh size is a function of the vessel radius, reducing therefore consid-
erably the total number of mesh elements compared with a uniform tetrahedral mesh.Q4 (Figure 10)F10

3.2. Mixed hexahedral/tetrahedral/pyramidal computational meshes

We first define a quality measure for quadrilateral elements. Consider a quadrilateral element q and
its four internal angles ˛k , k D 1, 2, 3, 4. We define the quality !q as follows:

!q D max
!

1 " 2

 
max

k

%ˇ̌
ˇ 
2

" ˛k

ˇ̌
ˇ
&

, 0

"
. (16)

This quality measure is ! D 1 if the element is a perfect quadrilateral and is ! D 0 if one of those
angles is either 6 0 or >  . For the hexahedral mesh elements, we define the equi-skew angle mesh
quality -H as a normalized measure of skewness ranging from -H D 1 (best) to -H D 0 (worst)

||It was indeed shown in [21] that optimal isotropic tetrahedral meshes (i.e., with the highest mesh quality) can be obtained
by combining a conformal parametrization with a frontal mesher.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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Figure 9. Isotropic tetrahedral mesh of the airways created using the centerline operators. The colors
correspond to the different mesh patches that have been created by the cut operator.
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Figure 10. Quadrangular surface mesh of the cerebral arterial tree and hexahedral mesh of the arterial wall
(in yellow) of the carotid bifurcation. The blue mesh patches (tri-bifurcations or higher-order bifurcations)
on the right figures correspond to the quad meshes obtained using the indirect approach, whereas the red

patches correspond to the direct quad approach.

that depends on the angle formed between the faces’s edges of each cell in the mesh (-H D 1
corresponds to a perfectly equiangular hexahedra) [12]:

-H D 1 " 2

 
max

h%
(max "  

2

&
,
% 

2
" (min

&i
, (17)

where (max and (min are the largest and smallest angle in the hexahedra.
Table II shows the minimum and quality (!min

q , N!q , -min
H , and N-H ), the number of mesh elements T2

# and the timings (in s) for the generation of the mixed hexahedral/tetrahedral meshes starting
from different tubular geometries. The parameters for the extruded hexahedral mesh are four layers
of total thickness ıW D 0.2r.xc/. For the volume elements, we only show the statistics for the

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm
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14 E. MARCHANDISE, C. GEUZAINE AND J. F. REMACLE

Table II. Minimum and mean quality (!min
q , N!q , N-min

H , and -H ), number of mesh elements # and timings
(in s) for the generation of mixed hexahedral/tetrahedral meshes starting from tubular geometries.

Quad surface mesh Hex volume mesh Time (s) Time (s) ă Time (s) 3D

Geometry # N!min
q N!q # -min

H
N-H 2D mesh 3D hex mesh mixed mesh

Aorta 3 103 0.21 0.85 11 103 0.28 0.83 7.9 0.6 2.3
Carotid 5 103 0.22 0.91 16 103 0.33 0.86 4.3 0.3 2.5
Cerebral 27 103 0.19 0.89 99 103 0.28 0.85 29.2 2.5 20.0
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Figure 11. Mixed mesh of the carotid geometry. Hexahedra are in green, tetrahedra are in blue, and pyramids
are in orange. The mesh is composed of 58,046 tetrahedra, 16,500 hexahedra, and 4,236 pyramids.

hexahedra of the mixed meshes. The timings presented in Table II are quite fast compared with
the timings for the generation of block-structured hexahedral meshes (timings of several hours to
generate about 5000 tetrahedra in [12]).

Mixed three dimensional meshes can be generated that are composed of a mixture of tetrahedra,
hexahedra, and pyramids. Figure 11 shows an image of a hybrid 3D mesh of the carotid.F11

3.3. Anisotropic tetrahedral computational meshes

The anisotropic meshes are built using first a 2D and then a 3D anisotropic mesh procedure. From
the initial triangulation, we first generate a new isotropic triangular surface mesh by using a confor-
mal mapping of the surface mesh (see Equation (1)). Then, given the mapped surface mesh and the
discrete metric tensor (11), the anisotropic surface mesh is generated in the parametric space by the
bidimensional anisotropic mesh generator [29] integrated within Gmsh. Then, from this anisotropic
surface mesh, an initial volume Delaunay tetrahedral mesh is created using TetGen [35] without
adding any new points on the surface mesh during the tetrahedralization. The initial tetrahedral
mesh is then given as input to mmg3d [36, 37], a 3D Delaunay-based anisotropic mesh adapta-
tion library. This library, also integrated in Gmsh, produces quasi-uniform meshes with respect
to a metric tensor field by using local mesh modifications and a Delaunay kernel to adapt the
initial mesh.

Given the metric tensor M (Equation (3)), we define the following criteria [37] that measures
how well an anisotropic tetrahedron matches the metric specification, both in terms of size (edge
lengths) and of shape (aspect ratio):

Q! D

%P6
iD0 eT

i
NMei

&3=2

V!

q
det. NM/. (18)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
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Figure 10 shows the quadrangular surface mesh of both the carotid bifurcation and the cerebral arterial tree. The blue patches are obtained with the indirect approach, while the red patches are generated with the direct approach.
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Table III. Mean and minimum quality ( NQ! , Qmin
! ), efficiency index , , number of mesh elements # and

timings (s) for the generation of anisotropic tetrahedral meshes starting from the tubular geometries.

Volume mesh Time (s)

Geometry # NQ! Qmin
! 1 < Q! < 3.%/ , 2D mesh 3D mesh

Aorta 323 103 1.6 11 0.98 0.836 7.2 96
Aneurysm 477 103 1.5 17 0.96 0.821 17 145
Bypass 342 103 1.5 12 0.97 0.829 11 67
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Figure 12. Anisotropic tetrahedral mesh of the aneurysm.

Here, V! is the volume of the tetrahedron, ei are the unit vectors along the edges of the tetrahe-
dron, and NM is the average metric of the tetrahedron computed from the metric at the four vertices
of the tetrahedron:

NM D 1

4

 
4X

iD1

M!1
i

!!1

.

With this definition Q! 2 Œ1, C1), with a high quality value indicating a degenerated tetrahedron. In
numerical simulations, optimal meshes should have more than 90% of the tetrahedra with a quality
measure better than 3, that is, 1 < Q! < 3 [37, 38].

In addition, we define an efficiency index , that provides a single scalar value to evaluate how
well the tetrahedral mesh complies with the metric requirements:

, D exp

0
@ 1

ne

X
1<i<ne

lM.ei /

1
A,

'
lM.ei / D lM.ei / " 1 if lM.ei / < 1

lM.ei / D l!1
M .ei / " 1 otherwise,

(19)

where ne denotes the total number of mesh edges, and the edge length lM.ei / is given by
Equation (10). Optimal meshes have an efficiency index , close to the optimal value of 1. In
numerical simulations, a value of , > 0.80 is considered as an acceptable lower bound [37, 38].

Table III shows the quality of different anisotropic tetrahedral meshes together with meshing T3
timings. We present the mean quality index NQ! , the percent of elements that have a good quality
measure 1 < Q! < 3, as well as the efficiency index , . The geometries are STL triangulations
of three different artery trees: an abdominal aorta and a cerebral aneurysm described in Table I as
well as an arterial bypass.** For the different examples, we have chosen a boundary layer thickness
ı D 0.3r.xc/, a mesh size normal to the wall h0

n D ı=20, a boundary layer growth ratio ˇ D 1.2 in
the boundary layer, and ˇ D 2.8 outside.

**This geometry has been downloaded from the Simbios web site https://simtk.org/frs/download.php?file_id=183.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2013)
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Figure 13. Magnified views of the anisotropic tetrahedral mesh of the bypass.

Figure 12 shows the surface and a cut of the volume mesh of the anisotropic mesh of the geometryF12
of the aneurysm presented in the left Figure 4 and Figure 13 shows the surface and a cut of theF13
volume mesh of the anisotropic mesh of the geometry of the bypass.

4. CONCLUSION

We have presented a new automatic meshing algorithm for the generation of computational
meshes from a segmented tubular geometry. The proposed methodology is based on different
centerline-based descriptors and operators.

Different types of computational meshes can be generated with this method: isotropic tetrahedral
meshes, anisotropic tetrahedral meshes, or mixed hexahedral/tetrahedral meshes as well as boundary
layer meshes for the lumen wall. The mesh size field is a function of the centerline-based descriptor.

Besides the original centerline-based meshing algorithms, two important contributions are
included in this paper:

! A subtle control on the tangent and the normal mesh sizes for the generation of anisotropic
CFD boundary layer meshes.

! A flexible and fast approach for hexahedral mesh generation. The proposed approach relies
on the generation of a quadrangular surface mesh that combines a structured elliptic grid
generator together with an indirect quadrangular meshing approach. Structured hexahedral
meshes are then created for the vessel wall and connected to the tetrahedra of the lumen
with pyramids.

We are currently working on several hexahedral meshing algorithms that will enable us to gener-
ate also dominant hexahedral meshes in a close future by using the presented method for hexahedral
mesh generation.

The presented automatic meshing algorithm is implemented in the open-source mesh generator
Gmsh [32] and examples can be found on the Gmsh wiki.††
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Research Article

Cardiovascular and lung mesh generation based on centerlines

E. Marchandise, C. Geuzaine, and J. F. Remacle

This paper presents a new automatic meshing algorithm for the generation of computational
meshes from a segmented tubular geometry. The proposed methodology is based on different
centerline-based descriptors and operators. Different types of computational meshes can be gen-
erated with this method: isotropic tetrahedral meshes, anisotropic tetrahedral meshes, or mixed
hexahedral/tetrahedral meshes as well as boundary layer meshes for the lumen wall. The mesh size
field is a function of the centerline-based descriptor.
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