# Gmsh - Copyright (C) 1997-2020 C. Geuzaine, J.-F. Remacle # # See the LICENSE.txt file for license information. Please report all # issues on https://gitlab.onelab.info/gmsh/gmsh/issues. # This file defines the Gmsh Python API (v4.8.0). # # Do not edit it directly: it is automatically generated by `api/gen.py'. # # By design, the Gmsh Python API is purely functional, and only uses elementary # Python types (as well as `numpy' arrays if `numpy' is available). See # `tutorial/python' and `demos/api' for examples. from ctypes import * from ctypes.util import find_library import signal import os import platform from math import pi GMSH_API_VERSION = "4.8.0" GMSH_API_VERSION_MAJOR = 4 GMSH_API_VERSION_MINOR = 8 GMSH_API_VERSION_PATCH = 0 __version__ = GMSH_API_VERSION oldsig = signal.signal(signal.SIGINT, signal.SIG_DFL) libdir = os.path.dirname(os.path.realpath(__file__)) if platform.system() == "Windows": libpath = os.path.join(libdir, "gmsh-4.8.dll") elif platform.system() == "Darwin": libpath = os.path.join(libdir, "libgmsh.dylib") else: libpath = os.path.join(libdir, "libgmsh.so") if not os.path.exists(libpath): libpath = find_library("gmsh") lib = CDLL(libpath) use_numpy = False try: import numpy try: from weakref import finalize as weakreffinalize except: from backports.weakref import finalize as weakreffinalize use_numpy = True except: pass # Utility functions, not part of the Gmsh Python API def _ostring(s): sp = s.value.decode("utf-8") lib.gmshFree(s) return sp def _ovectorpair(ptr, size): v = list((ptr[i * 2], ptr[i * 2 + 1]) for i in range(size//2)) lib.gmshFree(ptr) return v def _ovectorint(ptr, size): if use_numpy: if size == 0 : lib.gmshFree(ptr) return numpy.ndarray((0,),numpy.int32) v = numpy.ctypeslib.as_array(ptr, (size, )) weakreffinalize(v, lib.gmshFree, ptr) else: v = list(ptr[i] for i in range(size)) lib.gmshFree(ptr) return v def _ovectorsize(ptr, size): if use_numpy: if size == 0 : lib.gmshFree(ptr) return numpy.ndarray((0,),numpy.uintp) v = numpy.ctypeslib.as_array(ptr, (size, )) weakreffinalize(v, lib.gmshFree, ptr) else: v = list(ptr[i] for i in range(size)) lib.gmshFree(ptr) return v def _ovectordouble(ptr, size): if use_numpy: if size == 0 : lib.gmshFree(ptr) return numpy.ndarray((0,),numpy.float64) v = numpy.ctypeslib.as_array(ptr, (size, )) weakreffinalize(v, lib.gmshFree, ptr) else: v = list(ptr[i] for i in range(size)) lib.gmshFree(ptr) return v def _ovectorstring(ptr, size): v = list(_ostring(cast(ptr[i], c_char_p)) for i in range(size)) lib.gmshFree(ptr) return v def _ovectorvectorint(ptr, size, n): v = [_ovectorint(pointer(ptr[i].contents), size[i]) for i in range(n.value)] lib.gmshFree(size) lib.gmshFree(ptr) return v def _ovectorvectorsize(ptr, size, n): v = [_ovectorsize(pointer(ptr[i].contents), size[i]) for i in range(n.value)] lib.gmshFree(size) lib.gmshFree(ptr) return v def _ovectorvectordouble(ptr, size, n): v = [_ovectordouble(pointer(ptr[i].contents), size[i]) for i in range(n.value)] lib.gmshFree(size) lib.gmshFree(ptr) return v def _ovectorvectorpair(ptr, size, n): v = [_ovectorpair(pointer(ptr[i].contents), size[i]) for i in range(n.value)] lib.gmshFree(size) lib.gmshFree(ptr) return v def _ivectorint(o): if use_numpy: array = numpy.ascontiguousarray(o, numpy.int32) if(len(o) and array.ndim != 1): raise Exception("Invalid data for input vector of integers") ct = array.ctypes ct.array = array return ct, c_size_t(len(o)) else: return (c_int * len(o))(*o), c_size_t(len(o)) def _ivectorsize(o): if use_numpy: array = numpy.ascontiguousarray(o, numpy.uintp) if(len(o) and array.ndim != 1): raise Exception("Invalid data for input vector of sizes") ct = array.ctypes ct.array = array return ct, c_size_t(len(o)) else: return (c_size_t * len(o))(*o), c_size_t(len(o)) def _ivectordouble(o): if use_numpy: array = numpy.ascontiguousarray(o, numpy.float64) if(len(o) and array.ndim != 1): raise Exception("Invalid data for input vector of doubles") ct = array.ctypes ct.array = array return ct, c_size_t(len(o)) else: return (c_double * len(o))(*o), c_size_t(len(o)) def _ivectorpair(o): if use_numpy: array = numpy.ascontiguousarray(o, numpy.int32) if(len(o) and (array.ndim != 2 or array.shape[1] != 2)): raise Exception("Invalid data for input vector of pairs") ct = array.ctypes ct.array = array return ct, c_size_t(len(o) * 2) else: if(len(o) and len(o[0]) != 2): raise Exception("Invalid data for input vector of pairs") return ((c_int * 2) * len(o))(*o), c_size_t(len(o) * 2) def _ivectorstring(o): return (c_char_p * len(o))(*(s.encode() for s in o)), c_size_t(len(o)) def _ivectorvectorint(os): n = len(os) parrays = [_ivectorint(o) for o in os] sizes = (c_size_t * n)(*(a[1] for a in parrays)) arrays = (POINTER(c_int) * n)(*(cast(a[0], POINTER(c_int)) for a in parrays)) arrays.ref = [a[0] for a in parrays] size = c_size_t(n) return arrays, sizes, size def _ivectorvectorsize(os): n = len(os) parrays = [_ivectorsize(o) for o in os] sizes = (c_size_t * n)(*(a[1] for a in parrays)) arrays = (POINTER(c_size_t) * n)(*(cast(a[0], POINTER(c_size_t)) for a in parrays)) arrays.ref = [a[0] for a in parrays] size = c_size_t(n) return arrays, sizes, size def _ivectorvectordouble(os): n = len(os) parrays = [_ivectordouble(o) for o in os] sizes = (c_size_t * n)(*(a[1] for a in parrays)) arrays = (POINTER(c_double) * n)(*(cast(a[0], POINTER(c_double)) for a in parrays)) arrays.ref = [a[0] for a in parrays] size = c_size_t(n) return arrays, sizes, size def _iargcargv(o): return c_int(len(o)), (c_char_p * len(o))(*(s.encode() for s in o)) # Gmsh Python API begins here def initialize(argv=[], readConfigFiles=True): """ gmsh.initialize(argv=[], readConfigFiles=True) Initialize Gmsh API. This must be called before any call to the other functions in the API. If `argc' and `argv' (or just `argv' in Python or Julia) are provided, they will be handled in the same way as the command line arguments in the Gmsh app. If `readConfigFiles' is set, read system Gmsh configuration files (gmshrc and gmsh-options). Initializing the API sets the options "General.Terminal" to 1 and "General.AbortOnError" to 2. """ api_argc_, api_argv_ = _iargcargv(argv) ierr = c_int() lib.gmshInitialize( api_argc_, api_argv_, c_int(bool(readConfigFiles)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) def finalize(): """ gmsh.finalize() Finalize the Gmsh API. This must be called when you are done using the Gmsh API. """ ierr = c_int() lib.gmshFinalize( byref(ierr)) if oldsig is not None: signal.signal(signal.SIGINT, oldsig) if ierr.value != 0: raise Exception(logger.getLastError()) def open(fileName): """ gmsh.open(fileName) Open a file. Equivalent to the `File->Open' menu in the Gmsh app. Handling of the file depends on its extension and/or its contents: opening a file with model data will create a new model. """ ierr = c_int() lib.gmshOpen( c_char_p(fileName.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) def merge(fileName): """ gmsh.merge(fileName) Merge a file. Equivalent to the `File->Merge' menu in the Gmsh app. Handling of the file depends on its extension and/or its contents. Merging a file with model data will add the data to the current model. """ ierr = c_int() lib.gmshMerge( c_char_p(fileName.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) def write(fileName): """ gmsh.write(fileName) Write a file. The export format is determined by the file extension. """ ierr = c_int() lib.gmshWrite( c_char_p(fileName.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) def clear(): """ gmsh.clear() Clear all loaded models and post-processing data, and add a new empty model. """ ierr = c_int() lib.gmshClear( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class option: """ Option handling functions """ @staticmethod def setNumber(name, value): """ gmsh.option.setNumber(name, value) Set a numerical option to `value'. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual. """ ierr = c_int() lib.gmshOptionSetNumber( c_char_p(name.encode()), c_double(value), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getNumber(name): """ gmsh.option.getNumber(name) Get the `value' of a numerical option. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual. Return `value'. """ api_value_ = c_double() ierr = c_int() lib.gmshOptionGetNumber( c_char_p(name.encode()), byref(api_value_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_value_.value @staticmethod def setString(name, value): """ gmsh.option.setString(name, value) Set a string option to `value'. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual. """ ierr = c_int() lib.gmshOptionSetString( c_char_p(name.encode()), c_char_p(value.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getString(name): """ gmsh.option.getString(name) Get the `value' of a string option. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual. Return `value'. """ api_value_ = c_char_p() ierr = c_int() lib.gmshOptionGetString( c_char_p(name.encode()), byref(api_value_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ostring(api_value_) @staticmethod def setColor(name, r, g, b, a=255): """ gmsh.option.setColor(name, r, g, b, a=255) Set a color option to the RGBA value (`r', `g', `b', `a'), where where `r', `g', `b' and `a' should be integers between 0 and 255. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual, with the "Color." middle string removed. """ ierr = c_int() lib.gmshOptionSetColor( c_char_p(name.encode()), c_int(r), c_int(g), c_int(b), c_int(a), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getColor(name): """ gmsh.option.getColor(name) Get the `r', `g', `b', `a' value of a color option. `name' is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual, with the "Color." middle string removed. Return `r', `g', `b', `a'. """ api_r_ = c_int() api_g_ = c_int() api_b_ = c_int() api_a_ = c_int() ierr = c_int() lib.gmshOptionGetColor( c_char_p(name.encode()), byref(api_r_), byref(api_g_), byref(api_b_), byref(api_a_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_r_.value, api_g_.value, api_b_.value, api_a_.value) class model: """ Model functions """ @staticmethod def add(name): """ gmsh.model.add(name) Add a new model, with name `name', and set it as the current model. """ ierr = c_int() lib.gmshModelAdd( c_char_p(name.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def remove(): """ gmsh.model.remove() Remove the current model. """ ierr = c_int() lib.gmshModelRemove( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def list(): """ gmsh.model.list() List the names of all models. Return `names'. """ api_names_, api_names_n_ = POINTER(POINTER(c_char))(), c_size_t() ierr = c_int() lib.gmshModelList( byref(api_names_), byref(api_names_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorstring(api_names_, api_names_n_.value) @staticmethod def getCurrent(): """ gmsh.model.getCurrent() Get the name of the current model. Return `name'. """ api_name_ = c_char_p() ierr = c_int() lib.gmshModelGetCurrent( byref(api_name_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ostring(api_name_) @staticmethod def setCurrent(name): """ gmsh.model.setCurrent(name) Set the current model to the model with name `name'. If several models have the same name, select the one that was added first. """ ierr = c_int() lib.gmshModelSetCurrent( c_char_p(name.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getEntities(dim=-1): """ gmsh.model.getEntities(dim=-1) Get all the entities in the current model. If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0). The entities are returned as a vector of (dim, tag) integer pairs. Return `dimTags'. """ api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGetEntities( byref(api_dimTags_), byref(api_dimTags_n_), c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_dimTags_, api_dimTags_n_.value) @staticmethod def setEntityName(dim, tag, name): """ gmsh.model.setEntityName(dim, tag, name) Set the name of the entity of dimension `dim' and tag `tag'. """ ierr = c_int() lib.gmshModelSetEntityName( c_int(dim), c_int(tag), c_char_p(name.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getEntityName(dim, tag): """ gmsh.model.getEntityName(dim, tag) Get the name of the entity of dimension `dim' and tag `tag'. Return `name'. """ api_name_ = c_char_p() ierr = c_int() lib.gmshModelGetEntityName( c_int(dim), c_int(tag), byref(api_name_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ostring(api_name_) @staticmethod def getPhysicalGroups(dim=-1): """ gmsh.model.getPhysicalGroups(dim=-1) Get all the physical groups in the current model. If `dim' is >= 0, return only the entities of the specified dimension (e.g. physical points if `dim' == 0). The entities are returned as a vector of (dim, tag) integer pairs. Return `dimTags'. """ api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGetPhysicalGroups( byref(api_dimTags_), byref(api_dimTags_n_), c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_dimTags_, api_dimTags_n_.value) @staticmethod def getEntitiesForPhysicalGroup(dim, tag): """ gmsh.model.getEntitiesForPhysicalGroup(dim, tag) Get the tags of the model entities making up the physical group of dimension `dim' and tag `tag'. Return `tags'. """ api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGetEntitiesForPhysicalGroup( c_int(dim), c_int(tag), byref(api_tags_), byref(api_tags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_tags_, api_tags_n_.value) @staticmethod def getPhysicalGroupsForEntity(dim, tag): """ gmsh.model.getPhysicalGroupsForEntity(dim, tag) Get the tags of the physical groups (if any) to which the model entity of dimension `dim' and tag `tag' belongs. Return `physicalTags'. """ api_physicalTags_, api_physicalTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGetPhysicalGroupsForEntity( c_int(dim), c_int(tag), byref(api_physicalTags_), byref(api_physicalTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_physicalTags_, api_physicalTags_n_.value) @staticmethod def addPhysicalGroup(dim, tags, tag=-1): """ gmsh.model.addPhysicalGroup(dim, tags, tag=-1) Add a physical group of dimension `dim', grouping the model entities with tags `tags'. Return the tag of the physical group, equal to `tag' if `tag' is positive, or a new tag if `tag' < 0. Return an integer value. """ api_tags_, api_tags_n_ = _ivectorint(tags) ierr = c_int() api_result_ = lib.gmshModelAddPhysicalGroup( c_int(dim), api_tags_, api_tags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def removePhysicalGroups(dimTags=[]): """ gmsh.model.removePhysicalGroups(dimTags=[]) Remove the physical groups `dimTags' from the current model. If `dimTags' is empty, remove all groups. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelRemovePhysicalGroups( api_dimTags_, api_dimTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setPhysicalName(dim, tag, name): """ gmsh.model.setPhysicalName(dim, tag, name) Set the name of the physical group of dimension `dim' and tag `tag'. """ ierr = c_int() lib.gmshModelSetPhysicalName( c_int(dim), c_int(tag), c_char_p(name.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def removePhysicalName(name): """ gmsh.model.removePhysicalName(name) Remove the physical name `name' from the current model. """ ierr = c_int() lib.gmshModelRemovePhysicalName( c_char_p(name.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getPhysicalName(dim, tag): """ gmsh.model.getPhysicalName(dim, tag) Get the name of the physical group of dimension `dim' and tag `tag'. Return `name'. """ api_name_ = c_char_p() ierr = c_int() lib.gmshModelGetPhysicalName( c_int(dim), c_int(tag), byref(api_name_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ostring(api_name_) @staticmethod def getBoundary(dimTags, combined=True, oriented=True, recursive=False): """ gmsh.model.getBoundary(dimTags, combined=True, oriented=True, recursive=False) Get the boundary of the model entities `dimTags'. Return in `outDimTags' the boundary of the individual entities (if `combined' is false) or the boundary of the combined geometrical shape formed by all input entities (if `combined' is true). Return tags multiplied by the sign of the boundary entity if `oriented' is true. Apply the boundary operator recursively down to dimension 0 (i.e. to points) if `recursive' is true. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGetBoundary( api_dimTags_, api_dimTags_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), c_int(bool(combined)), c_int(bool(oriented)), c_int(bool(recursive)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def getAdjacencies(dim, tag): """ gmsh.model.getAdjacencies(dim, tag) Get the upward and downward adjacencies of the model entity of dimension `dim' and tag `tag'. The `upward' vector returns the adjacent entities of dimension `dim' + 1; the `downward' vector returns the adjacent entities of dimension `dim' - 1. Return `upward', `downward'. """ api_upward_, api_upward_n_ = POINTER(c_int)(), c_size_t() api_downward_, api_downward_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGetAdjacencies( c_int(dim), c_int(tag), byref(api_upward_), byref(api_upward_n_), byref(api_downward_), byref(api_downward_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorint(api_upward_, api_upward_n_.value), _ovectorint(api_downward_, api_downward_n_.value)) @staticmethod def getEntitiesInBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax, dim=-1): """ gmsh.model.getEntitiesInBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax, dim=-1) Get the model entities in the bounding box defined by the two points (`xmin', `ymin', `zmin') and (`xmax', `ymax', `zmax'). If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0). Return `tags'. """ api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGetEntitiesInBoundingBox( c_double(xmin), c_double(ymin), c_double(zmin), c_double(xmax), c_double(ymax), c_double(zmax), byref(api_tags_), byref(api_tags_n_), c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_tags_, api_tags_n_.value) @staticmethod def getBoundingBox(dim, tag): """ gmsh.model.getBoundingBox(dim, tag) Get the bounding box (`xmin', `ymin', `zmin'), (`xmax', `ymax', `zmax') of the model entity of dimension `dim' and tag `tag'. If `dim' and `tag' are negative, get the bounding box of the whole model. Return `xmin', `ymin', `zmin', `xmax', `ymax', `zmax'. """ api_xmin_ = c_double() api_ymin_ = c_double() api_zmin_ = c_double() api_xmax_ = c_double() api_ymax_ = c_double() api_zmax_ = c_double() ierr = c_int() lib.gmshModelGetBoundingBox( c_int(dim), c_int(tag), byref(api_xmin_), byref(api_ymin_), byref(api_zmin_), byref(api_xmax_), byref(api_ymax_), byref(api_zmax_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_xmin_.value, api_ymin_.value, api_zmin_.value, api_xmax_.value, api_ymax_.value, api_zmax_.value) @staticmethod def getDimension(): """ gmsh.model.getDimension() Get the geometrical dimension of the current model. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelGetDimension( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addDiscreteEntity(dim, tag=-1, boundary=[]): """ gmsh.model.addDiscreteEntity(dim, tag=-1, boundary=[]) Add a discrete model entity (defined by a mesh) of dimension `dim' in the current model. Return the tag of the new discrete entity, equal to `tag' if `tag' is positive, or a new tag if `tag' < 0. `boundary' specifies the tags of the entities on the boundary of the discrete entity, if any. Specifying `boundary' allows Gmsh to construct the topology of the overall model. Return an integer value. """ api_boundary_, api_boundary_n_ = _ivectorint(boundary) ierr = c_int() api_result_ = lib.gmshModelAddDiscreteEntity( c_int(dim), c_int(tag), api_boundary_, api_boundary_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def removeEntities(dimTags, recursive=False): """ gmsh.model.removeEntities(dimTags, recursive=False) Remove the entities `dimTags' of the current model. If `recursive' is true, remove all the entities on their boundaries, down to dimension 0. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelRemoveEntities( api_dimTags_, api_dimTags_n_, c_int(bool(recursive)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def removeEntityName(name): """ gmsh.model.removeEntityName(name) Remove the entity name `name' from the current model. """ ierr = c_int() lib.gmshModelRemoveEntityName( c_char_p(name.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getType(dim, tag): """ gmsh.model.getType(dim, tag) Get the type of the entity of dimension `dim' and tag `tag'. Return `entityType'. """ api_entityType_ = c_char_p() ierr = c_int() lib.gmshModelGetType( c_int(dim), c_int(tag), byref(api_entityType_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ostring(api_entityType_) @staticmethod def getParent(dim, tag): """ gmsh.model.getParent(dim, tag) In a partitioned model, get the parent of the entity of dimension `dim' and tag `tag', i.e. from which the entity is a part of, if any. `parentDim' and `parentTag' are set to -1 if the entity has no parent. Return `parentDim', `parentTag'. """ api_parentDim_ = c_int() api_parentTag_ = c_int() ierr = c_int() lib.gmshModelGetParent( c_int(dim), c_int(tag), byref(api_parentDim_), byref(api_parentTag_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_parentDim_.value, api_parentTag_.value) @staticmethod def getPartitions(dim, tag): """ gmsh.model.getPartitions(dim, tag) In a partitioned model, return the tags of the partition(s) to which the entity belongs. Return `partitions'. """ api_partitions_, api_partitions_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGetPartitions( c_int(dim), c_int(tag), byref(api_partitions_), byref(api_partitions_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_partitions_, api_partitions_n_.value) @staticmethod def getValue(dim, tag, parametricCoord): """ gmsh.model.getValue(dim, tag, parametricCoord) Evaluate the parametrization of the entity of dimension `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim' equal to 0 (with empty `parametricCoord'), 1 (with `parametricCoord' containing parametric coordinates on the curve) or 2 (with `parametricCoord' containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). Return triplets of x, y, z coordinates in `coord', concatenated: [p1x, p1y, p1z, p2x, ...]. Return `coord'. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetValue( c_int(dim), c_int(tag), api_parametricCoord_, api_parametricCoord_n_, byref(api_coord_), byref(api_coord_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_coord_, api_coord_n_.value) @staticmethod def getDerivative(dim, tag, parametricCoord): """ gmsh.model.getDerivative(dim, tag, parametricCoord) Evaluate the derivative of the parametrization of the entity of dimension `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim' equal to 1 (with `parametricCoord' containing parametric coordinates on the curve) or 2 (with `parametricCoord' containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). For `dim' equal to 1 return the x, y, z components of the derivative with respect to u [d1ux, d1uy, d1uz, d2ux, ...]; for `dim' equal to 2 return the x, y, z components of the derivative with respect to u and v: [d1ux, d1uy, d1uz, d1vx, d1vy, d1vz, d2ux, ...]. Return `derivatives'. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) api_derivatives_, api_derivatives_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetDerivative( c_int(dim), c_int(tag), api_parametricCoord_, api_parametricCoord_n_, byref(api_derivatives_), byref(api_derivatives_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_derivatives_, api_derivatives_n_.value) @staticmethod def getSecondDerivative(dim, tag, parametricCoord): """ gmsh.model.getSecondDerivative(dim, tag, parametricCoord) Evaluate the second derivative of the parametrization of the entity of dimension `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim' equal to 1 (with `parametricCoord' containing parametric coordinates on the curve) or 2 (with `parametricCoord' containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). For `dim' equal to 1 return the x, y, z components of the second derivative with respect to u [d1uux, d1uuy, d1uuz, d2uux, ...]; for `dim' equal to 2 return the x, y, z components of the second derivative with respect to u and v, and the mixed derivative with respect to u and v: [d1uux, d1uuy, d1uuz, d1vvx, d1vvy, d1vvz, d1uvx, d1uvy, d1uvz, d2uux, ...]. Return `derivatives'. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) api_derivatives_, api_derivatives_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetSecondDerivative( c_int(dim), c_int(tag), api_parametricCoord_, api_parametricCoord_n_, byref(api_derivatives_), byref(api_derivatives_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_derivatives_, api_derivatives_n_.value) @staticmethod def getCurvature(dim, tag, parametricCoord): """ gmsh.model.getCurvature(dim, tag, parametricCoord) Evaluate the (maximum) curvature of the entity of dimension `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim' equal to 1 (with `parametricCoord' containing parametric coordinates on the curve) or 2 (with `parametricCoord' containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). Return `curvatures'. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) api_curvatures_, api_curvatures_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetCurvature( c_int(dim), c_int(tag), api_parametricCoord_, api_parametricCoord_n_, byref(api_curvatures_), byref(api_curvatures_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_curvatures_, api_curvatures_n_.value) @staticmethod def getPrincipalCurvatures(tag, parametricCoord): """ gmsh.model.getPrincipalCurvatures(tag, parametricCoord) Evaluate the principal curvatures of the surface with tag `tag' at the parametric coordinates `parametricCoord', as well as their respective directions. `parametricCoord' are given by pair of u and v coordinates, concatenated: [p1u, p1v, p2u, ...]. Return `curvatureMax', `curvatureMin', `directionMax', `directionMin'. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) api_curvatureMax_, api_curvatureMax_n_ = POINTER(c_double)(), c_size_t() api_curvatureMin_, api_curvatureMin_n_ = POINTER(c_double)(), c_size_t() api_directionMax_, api_directionMax_n_ = POINTER(c_double)(), c_size_t() api_directionMin_, api_directionMin_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetPrincipalCurvatures( c_int(tag), api_parametricCoord_, api_parametricCoord_n_, byref(api_curvatureMax_), byref(api_curvatureMax_n_), byref(api_curvatureMin_), byref(api_curvatureMin_n_), byref(api_directionMax_), byref(api_directionMax_n_), byref(api_directionMin_), byref(api_directionMin_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectordouble(api_curvatureMax_, api_curvatureMax_n_.value), _ovectordouble(api_curvatureMin_, api_curvatureMin_n_.value), _ovectordouble(api_directionMax_, api_directionMax_n_.value), _ovectordouble(api_directionMin_, api_directionMin_n_.value)) @staticmethod def getNormal(tag, parametricCoord): """ gmsh.model.getNormal(tag, parametricCoord) Get the normal to the surface with tag `tag' at the parametric coordinates `parametricCoord'. `parametricCoord' are given by pairs of u and v coordinates, concatenated: [p1u, p1v, p2u, ...]. `normals' are returned as triplets of x, y, z components, concatenated: [n1x, n1y, n1z, n2x, ...]. Return `normals'. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) api_normals_, api_normals_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetNormal( c_int(tag), api_parametricCoord_, api_parametricCoord_n_, byref(api_normals_), byref(api_normals_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_normals_, api_normals_n_.value) @staticmethod def getParametrization(dim, tag, coord): """ gmsh.model.getParametrization(dim, tag, coord) Get the parametric coordinates `parametricCoord' for the points `coord' on the entity of dimension `dim' and tag `tag'. `coord' are given as triplets of x, y, z coordinates, concatenated: [p1x, p1y, p1z, p2x, ...]. `parametricCoord' returns the parametric coordinates t on the curve (if `dim' = 1) or pairs of u and v coordinates concatenated on the surface (if `dim' = 2), i.e. [p1t, p2t, ...] or [p1u, p1v, p2u, ...]. Return `parametricCoord'. """ api_coord_, api_coord_n_ = _ivectordouble(coord) api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetParametrization( c_int(dim), c_int(tag), api_coord_, api_coord_n_, byref(api_parametricCoord_), byref(api_parametricCoord_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value) @staticmethod def getParametrizationBounds(dim, tag): """ gmsh.model.getParametrizationBounds(dim, tag) Get the `min' and `max' bounds of the parametric coordinates for the entity of dimension `dim' and tag `tag'. Return `min', `max'. """ api_min_, api_min_n_ = POINTER(c_double)(), c_size_t() api_max_, api_max_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetParametrizationBounds( c_int(dim), c_int(tag), byref(api_min_), byref(api_min_n_), byref(api_max_), byref(api_max_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectordouble(api_min_, api_min_n_.value), _ovectordouble(api_max_, api_max_n_.value)) @staticmethod def isInside(dim, tag, parametricCoord): """ gmsh.model.isInside(dim, tag, parametricCoord) Check if the parametric coordinates provided in `parametricCoord' correspond to points inside the entitiy of dimension `dim' and tag `tag', and return the number of points inside. This feature is only available for a subset of curves and surfaces, depending on the underyling geometrical representation. Return an integer value. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) ierr = c_int() api_result_ = lib.gmshModelIsInside( c_int(dim), c_int(tag), api_parametricCoord_, api_parametricCoord_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def getClosestPoint(dim, tag, coord): """ gmsh.model.getClosestPoint(dim, tag, coord) Get the points `closestCoord' on the entity of dimension `dim' and tag `tag' to the points `coord', by orthogonal projection. `coord' and `closestCoord' are given as triplets of x, y, z coordinates, concatenated: [p1x, p1y, p1z, p2x, ...]. `parametricCoord' returns the parametric coordinates t on the curve (if `dim' = 1) or pairs of u and v coordinates concatenated on the surface (if `dim' = 2), i.e. [p1t, p2t, ...] or [p1u, p1v, p2u, ...]. Return `closestCoord', `parametricCoord'. """ api_coord_, api_coord_n_ = _ivectordouble(coord) api_closestCoord_, api_closestCoord_n_ = POINTER(c_double)(), c_size_t() api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelGetClosestPoint( c_int(dim), c_int(tag), api_coord_, api_coord_n_, byref(api_closestCoord_), byref(api_closestCoord_n_), byref(api_parametricCoord_), byref(api_parametricCoord_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectordouble(api_closestCoord_, api_closestCoord_n_.value), _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value)) @staticmethod def reparametrizeOnSurface(dim, tag, parametricCoord, surfaceTag, which=0): """ gmsh.model.reparametrizeOnSurface(dim, tag, parametricCoord, surfaceTag, which=0) Reparametrize the boundary entity (point or curve, i.e. with `dim' == 0 or `dim' == 1) of tag `tag' on the surface `surfaceTag'. If `dim' == 1, reparametrize all the points corresponding to the parametric coordinates `parametricCoord'. Multiple matches in case of periodic surfaces can be selected with `which'. This feature is only available for a subset of entities, depending on the underyling geometrical representation. Return `surfaceParametricCoord'. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) api_surfaceParametricCoord_, api_surfaceParametricCoord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelReparametrizeOnSurface( c_int(dim), c_int(tag), api_parametricCoord_, api_parametricCoord_n_, c_int(surfaceTag), byref(api_surfaceParametricCoord_), byref(api_surfaceParametricCoord_n_), c_int(which), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_surfaceParametricCoord_, api_surfaceParametricCoord_n_.value) @staticmethod def setVisibility(dimTags, value, recursive=False): """ gmsh.model.setVisibility(dimTags, value, recursive=False) Set the visibility of the model entities `dimTags' to `value'. Apply the visibility setting recursively if `recursive' is true. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelSetVisibility( api_dimTags_, api_dimTags_n_, c_int(value), c_int(bool(recursive)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getVisibility(dim, tag): """ gmsh.model.getVisibility(dim, tag) Get the visibility of the model entity of dimension `dim' and tag `tag'. Return `value'. """ api_value_ = c_int() ierr = c_int() lib.gmshModelGetVisibility( c_int(dim), c_int(tag), byref(api_value_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_value_.value @staticmethod def setVisibilityPerWindow(value, windowIndex=0): """ gmsh.model.setVisibilityPerWindow(value, windowIndex=0) Set the global visibility of the model per window to `value', where `windowIndex' identifies the window in the window list. """ ierr = c_int() lib.gmshModelSetVisibilityPerWindow( c_int(value), c_int(windowIndex), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setColor(dimTags, r, g, b, a=255, recursive=False): """ gmsh.model.setColor(dimTags, r, g, b, a=255, recursive=False) Set the color of the model entities `dimTags' to the RGBA value (`r', `g', `b', `a'), where `r', `g', `b' and `a' should be integers between 0 and 255. Apply the color setting recursively if `recursive' is true. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelSetColor( api_dimTags_, api_dimTags_n_, c_int(r), c_int(g), c_int(b), c_int(a), c_int(bool(recursive)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getColor(dim, tag): """ gmsh.model.getColor(dim, tag) Get the color of the model entity of dimension `dim' and tag `tag'. Return `r', `g', `b', `a'. """ api_r_ = c_int() api_g_ = c_int() api_b_ = c_int() api_a_ = c_int() ierr = c_int() lib.gmshModelGetColor( c_int(dim), c_int(tag), byref(api_r_), byref(api_g_), byref(api_b_), byref(api_a_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_r_.value, api_g_.value, api_b_.value, api_a_.value) @staticmethod def setCoordinates(tag, x, y, z): """ gmsh.model.setCoordinates(tag, x, y, z) Set the `x', `y', `z' coordinates of a geometrical point. """ ierr = c_int() lib.gmshModelSetCoordinates( c_int(tag), c_double(x), c_double(y), c_double(z), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class mesh: """ Mesh functions """ @staticmethod def generate(dim=3): """ gmsh.model.mesh.generate(dim=3) Generate a mesh of the current model, up to dimension `dim' (0, 1, 2 or 3). """ ierr = c_int() lib.gmshModelMeshGenerate( c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def partition(numPart): """ gmsh.model.mesh.partition(numPart) Partition the mesh of the current model into `numPart' partitions. """ ierr = c_int() lib.gmshModelMeshPartition( c_int(numPart), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def unpartition(): """ gmsh.model.mesh.unpartition() Unpartition the mesh of the current model. """ ierr = c_int() lib.gmshModelMeshUnpartition( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def optimize(method, force=False, niter=1, dimTags=[]): """ gmsh.model.mesh.optimize(method, force=False, niter=1, dimTags=[]) Optimize the mesh of the current model using `method' (empty for default tetrahedral mesh optimizer, "Netgen" for Netgen optimizer, "HighOrder" for direct high-order mesh optimizer, "HighOrderElastic" for high-order elastic smoother, "HighOrderFastCurving" for fast curving algorithm, "Laplace2D" for Laplace smoothing, "Relocate2D" and "Relocate3D" for node relocation). If `force' is set apply the optimization also to discrete entities. If `dimTags' is given, only apply the optimizer to the given entities. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelMeshOptimize( c_char_p(method.encode()), c_int(bool(force)), c_int(niter), api_dimTags_, api_dimTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def recombine(): """ gmsh.model.mesh.recombine() Recombine the mesh of the current model. """ ierr = c_int() lib.gmshModelMeshRecombine( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def refine(): """ gmsh.model.mesh.refine() Refine the mesh of the current model by uniformly splitting the elements. """ ierr = c_int() lib.gmshModelMeshRefine( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setOrder(order): """ gmsh.model.mesh.setOrder(order) Set the order of the elements in the mesh of the current model to `order'. """ ierr = c_int() lib.gmshModelMeshSetOrder( c_int(order), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getLastEntityError(): """ gmsh.model.mesh.getLastEntityError() Get the last entities (if any) where a meshing error occurred. Currently only populated by the new 3D meshing algorithms. Return `dimTags'. """ api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetLastEntityError( byref(api_dimTags_), byref(api_dimTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_dimTags_, api_dimTags_n_.value) @staticmethod def getLastNodeError(): """ gmsh.model.mesh.getLastNodeError() Get the last nodes (if any) where a meshing error occurred. Currently only populated by the new 3D meshing algorithms. Return `nodeTags'. """ api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetLastNodeError( byref(api_nodeTags_), byref(api_nodeTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorsize(api_nodeTags_, api_nodeTags_n_.value) @staticmethod def clear(dimTags=[]): """ gmsh.model.mesh.clear(dimTags=[]) Clear the mesh, i.e. delete all the nodes and elements, for the entities `dimTags'. if `dimTags' is empty, clear the whole mesh. Note that the mesh of an entity can only be cleared if this entity is not on the boundary of another entity with a non-empty mesh. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelMeshClear( api_dimTags_, api_dimTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getNodes(dim=-1, tag=-1, includeBoundary=False, returnParametricCoord=True): """ gmsh.model.mesh.getNodes(dim=-1, tag=-1, includeBoundary=False, returnParametricCoord=True) Get the nodes classified on the entity of dimension `dim' and tag `tag'. If `tag' < 0, get the nodes for all entities of dimension `dim'. If `dim' and `tag' are negative, get all the nodes in the mesh. `nodeTags' contains the node tags (their unique, strictly positive identification numbers). `coord' is a vector of length 3 times the length of `nodeTags' that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. If `dim' >= 0 and `returnParamtricCoord' is set, `parametricCoord' contains the parametric coordinates ([u1, u2, ...] or [u1, v1, u2, ...]) of the nodes, if available. The length of `parametricCoord' can be 0 or `dim' times the length of `nodeTags'. If `includeBoundary' is set, also return the nodes classified on the boundary of the entity (which will be reparametrized on the entity if `dim' >= 0 in order to compute their parametric coordinates). Return `nodeTags', `coord', `parametricCoord'. """ api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetNodes( byref(api_nodeTags_), byref(api_nodeTags_n_), byref(api_coord_), byref(api_coord_n_), byref(api_parametricCoord_), byref(api_parametricCoord_n_), c_int(dim), c_int(tag), c_int(bool(includeBoundary)), c_int(bool(returnParametricCoord)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorsize(api_nodeTags_, api_nodeTags_n_.value), _ovectordouble(api_coord_, api_coord_n_.value), _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value)) @staticmethod def getNodesByElementType(elementType, tag=-1, returnParametricCoord=True): """ gmsh.model.mesh.getNodesByElementType(elementType, tag=-1, returnParametricCoord=True) Get the nodes classified on the entity of tag `tag', for all the elements of type `elementType'. The other arguments are treated as in `getNodes'. Return `nodeTags', `coord', `parametricCoord'. """ api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetNodesByElementType( c_int(elementType), byref(api_nodeTags_), byref(api_nodeTags_n_), byref(api_coord_), byref(api_coord_n_), byref(api_parametricCoord_), byref(api_parametricCoord_n_), c_int(tag), c_int(bool(returnParametricCoord)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorsize(api_nodeTags_, api_nodeTags_n_.value), _ovectordouble(api_coord_, api_coord_n_.value), _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value)) @staticmethod def getNode(nodeTag): """ gmsh.model.mesh.getNode(nodeTag) Get the coordinates and the parametric coordinates (if any) of the node with tag `tag'. This function relies on an internal cache (a vector in case of dense node numbering, a map otherwise); for large meshes accessing nodes in bulk is often preferable. Return `coord', `parametricCoord'. """ api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetNode( c_size_t(nodeTag), byref(api_coord_), byref(api_coord_n_), byref(api_parametricCoord_), byref(api_parametricCoord_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectordouble(api_coord_, api_coord_n_.value), _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value)) @staticmethod def setNode(nodeTag, coord, parametricCoord): """ gmsh.model.mesh.setNode(nodeTag, coord, parametricCoord) Set the coordinates and the parametric coordinates (if any) of the node with tag `tag'. This function relies on an internal cache (a vector in case of dense node numbering, a map otherwise); for large meshes accessing nodes in bulk is often preferable. """ api_coord_, api_coord_n_ = _ivectordouble(coord) api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) ierr = c_int() lib.gmshModelMeshSetNode( c_size_t(nodeTag), api_coord_, api_coord_n_, api_parametricCoord_, api_parametricCoord_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def rebuildNodeCache(onlyIfNecessary=True): """ gmsh.model.mesh.rebuildNodeCache(onlyIfNecessary=True) Rebuild the node cache. """ ierr = c_int() lib.gmshModelMeshRebuildNodeCache( c_int(bool(onlyIfNecessary)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def rebuildElementCache(onlyIfNecessary=True): """ gmsh.model.mesh.rebuildElementCache(onlyIfNecessary=True) Rebuild the element cache. """ ierr = c_int() lib.gmshModelMeshRebuildElementCache( c_int(bool(onlyIfNecessary)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getNodesForPhysicalGroup(dim, tag): """ gmsh.model.mesh.getNodesForPhysicalGroup(dim, tag) Get the nodes from all the elements belonging to the physical group of dimension `dim' and tag `tag'. `nodeTags' contains the node tags; `coord' is a vector of length 3 times the length of `nodeTags' that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. Return `nodeTags', `coord'. """ api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetNodesForPhysicalGroup( c_int(dim), c_int(tag), byref(api_nodeTags_), byref(api_nodeTags_n_), byref(api_coord_), byref(api_coord_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorsize(api_nodeTags_, api_nodeTags_n_.value), _ovectordouble(api_coord_, api_coord_n_.value)) @staticmethod def addNodes(dim, tag, nodeTags, coord, parametricCoord=[]): """ gmsh.model.mesh.addNodes(dim, tag, nodeTags, coord, parametricCoord=[]) Add nodes classified on the model entity of dimension `dim' and tag `tag'. `nodeTags' contains the node tags (their unique, strictly positive identification numbers). `coord' is a vector of length 3 times the length of `nodeTags' that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. The optional `parametricCoord' vector contains the parametric coordinates of the nodes, if any. The length of `parametricCoord' can be 0 or `dim' times the length of `nodeTags'. If the `nodeTags' vector is empty, new tags are automatically assigned to the nodes. """ api_nodeTags_, api_nodeTags_n_ = _ivectorsize(nodeTags) api_coord_, api_coord_n_ = _ivectordouble(coord) api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) ierr = c_int() lib.gmshModelMeshAddNodes( c_int(dim), c_int(tag), api_nodeTags_, api_nodeTags_n_, api_coord_, api_coord_n_, api_parametricCoord_, api_parametricCoord_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def reclassifyNodes(): """ gmsh.model.mesh.reclassifyNodes() Reclassify all nodes on their associated model entity, based on the elements. Can be used when importing nodes in bulk (e.g. by associating them all to a single volume), to reclassify them correctly on model surfaces, curves, etc. after the elements have been set. """ ierr = c_int() lib.gmshModelMeshReclassifyNodes( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def relocateNodes(dim=-1, tag=-1): """ gmsh.model.mesh.relocateNodes(dim=-1, tag=-1) Relocate the nodes classified on the entity of dimension `dim' and tag `tag' using their parametric coordinates. If `tag' < 0, relocate the nodes for all entities of dimension `dim'. If `dim' and `tag' are negative, relocate all the nodes in the mesh. """ ierr = c_int() lib.gmshModelMeshRelocateNodes( c_int(dim), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getElements(dim=-1, tag=-1): """ gmsh.model.mesh.getElements(dim=-1, tag=-1) Get the elements classified on the entity of dimension `dim' and tag `tag'. If `tag' < 0, get the elements for all entities of dimension `dim'. If `dim' and `tag' are negative, get all the elements in the mesh. `elementTypes' contains the MSH types of the elements (e.g. `2' for 3-node triangles: see `getElementProperties' to obtain the properties for a given element type). `elementTags' is a vector of the same length as `elementTypes'; each entry is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. `nodeTags' is also a vector of the same length as `elementTypes'; each entry is a vector of length equal to the number of elements of the given type times the number N of nodes for this type of element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. Return `elementTypes', `elementTags', `nodeTags'. """ api_elementTypes_, api_elementTypes_n_ = POINTER(c_int)(), c_size_t() api_elementTags_, api_elementTags_n_, api_elementTags_nn_ = POINTER(POINTER(c_size_t))(), POINTER(c_size_t)(), c_size_t() api_nodeTags_, api_nodeTags_n_, api_nodeTags_nn_ = POINTER(POINTER(c_size_t))(), POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetElements( byref(api_elementTypes_), byref(api_elementTypes_n_), byref(api_elementTags_), byref(api_elementTags_n_), byref(api_elementTags_nn_), byref(api_nodeTags_), byref(api_nodeTags_n_), byref(api_nodeTags_nn_), c_int(dim), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorint(api_elementTypes_, api_elementTypes_n_.value), _ovectorvectorsize(api_elementTags_, api_elementTags_n_, api_elementTags_nn_), _ovectorvectorsize(api_nodeTags_, api_nodeTags_n_, api_nodeTags_nn_)) @staticmethod def getElement(elementTag): """ gmsh.model.mesh.getElement(elementTag) Get the type and node tags of the element with tag `tag'. This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing elements in bulk is often preferable. Return `elementType', `nodeTags'. """ api_elementType_ = c_int() api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetElement( c_size_t(elementTag), byref(api_elementType_), byref(api_nodeTags_), byref(api_nodeTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_elementType_.value, _ovectorsize(api_nodeTags_, api_nodeTags_n_.value)) @staticmethod def getElementByCoordinates(x, y, z, dim=-1, strict=False): """ gmsh.model.mesh.getElementByCoordinates(x, y, z, dim=-1, strict=False) Search the mesh for an element located at coordinates (`x', `y', `z'). This function performs a search in a spatial octree. If an element is found, return its tag, type and node tags, as well as the local coordinates (`u', `v', `w') within the reference element corresponding to search location. If `dim' is >= 0, only search for elements of the given dimension. If `strict' is not set, use a tolerance to find elements near the search location. Return `elementTag', `elementType', `nodeTags', `u', `v', `w'. """ api_elementTag_ = c_size_t() api_elementType_ = c_int() api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() api_u_ = c_double() api_v_ = c_double() api_w_ = c_double() ierr = c_int() lib.gmshModelMeshGetElementByCoordinates( c_double(x), c_double(y), c_double(z), byref(api_elementTag_), byref(api_elementType_), byref(api_nodeTags_), byref(api_nodeTags_n_), byref(api_u_), byref(api_v_), byref(api_w_), c_int(dim), c_int(bool(strict)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_elementTag_.value, api_elementType_.value, _ovectorsize(api_nodeTags_, api_nodeTags_n_.value), api_u_.value, api_v_.value, api_w_.value) @staticmethod def getElementsByCoordinates(x, y, z, dim=-1, strict=False): """ gmsh.model.mesh.getElementsByCoordinates(x, y, z, dim=-1, strict=False) Search the mesh for element(s) located at coordinates (`x', `y', `z'). This function performs a search in a spatial octree. Return the tags of all found elements in `elementTags'. Additional information about the elements can be accessed through `getElement' and `getLocalCoordinatesInElement'. If `dim' is >= 0, only search for elements of the given dimension. If `strict' is not set, use a tolerance to find elements near the search location. Return `elementTags'. """ api_elementTags_, api_elementTags_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetElementsByCoordinates( c_double(x), c_double(y), c_double(z), byref(api_elementTags_), byref(api_elementTags_n_), c_int(dim), c_int(bool(strict)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorsize(api_elementTags_, api_elementTags_n_.value) @staticmethod def getLocalCoordinatesInElement(elementTag, x, y, z): """ gmsh.model.mesh.getLocalCoordinatesInElement(elementTag, x, y, z) Return the local coordinates (`u', `v', `w') within the element `elementTag' corresponding to the model coordinates (`x', `y', `z'). This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing elements in bulk is often preferable. Return `u', `v', `w'. """ api_u_ = c_double() api_v_ = c_double() api_w_ = c_double() ierr = c_int() lib.gmshModelMeshGetLocalCoordinatesInElement( c_size_t(elementTag), c_double(x), c_double(y), c_double(z), byref(api_u_), byref(api_v_), byref(api_w_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_u_.value, api_v_.value, api_w_.value) @staticmethod def getElementTypes(dim=-1, tag=-1): """ gmsh.model.mesh.getElementTypes(dim=-1, tag=-1) Get the types of elements in the entity of dimension `dim' and tag `tag'. If `tag' < 0, get the types for all entities of dimension `dim'. If `dim' and `tag' are negative, get all the types in the mesh. Return `elementTypes'. """ api_elementTypes_, api_elementTypes_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetElementTypes( byref(api_elementTypes_), byref(api_elementTypes_n_), c_int(dim), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_elementTypes_, api_elementTypes_n_.value) @staticmethod def getElementType(familyName, order, serendip=False): """ gmsh.model.mesh.getElementType(familyName, order, serendip=False) Return an element type given its family name `familyName' ("Point", "Line", "Triangle", "Quadrangle", "Tetrahedron", "Pyramid", "Prism", "Hexahedron") and polynomial order `order'. If `serendip' is true, return the corresponding serendip element type (element without interior nodes). Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelMeshGetElementType( c_char_p(familyName.encode()), c_int(order), c_int(bool(serendip)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def getElementProperties(elementType): """ gmsh.model.mesh.getElementProperties(elementType) Get the properties of an element of type `elementType': its name (`elementName'), dimension (`dim'), order (`order'), number of nodes (`numNodes'), local coordinates of the nodes in the reference element (`localNodeCoord' vector, of length `dim' times `numNodes') and number of primary (first order) nodes (`numPrimaryNodes'). Return `elementName', `dim', `order', `numNodes', `localNodeCoord', `numPrimaryNodes'. """ api_elementName_ = c_char_p() api_dim_ = c_int() api_order_ = c_int() api_numNodes_ = c_int() api_localNodeCoord_, api_localNodeCoord_n_ = POINTER(c_double)(), c_size_t() api_numPrimaryNodes_ = c_int() ierr = c_int() lib.gmshModelMeshGetElementProperties( c_int(elementType), byref(api_elementName_), byref(api_dim_), byref(api_order_), byref(api_numNodes_), byref(api_localNodeCoord_), byref(api_localNodeCoord_n_), byref(api_numPrimaryNodes_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ostring(api_elementName_), api_dim_.value, api_order_.value, api_numNodes_.value, _ovectordouble(api_localNodeCoord_, api_localNodeCoord_n_.value), api_numPrimaryNodes_.value) @staticmethod def getElementsByType(elementType, tag=-1, task=0, numTasks=1): """ gmsh.model.mesh.getElementsByType(elementType, tag=-1, task=0, numTasks=1) Get the elements of type `elementType' classified on the entity of tag `tag'. If `tag' < 0, get the elements for all entities. `elementTags' is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. `nodeTags' is a vector of length equal to the number of elements of the given type times the number N of nodes for this type of element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. If `numTasks' > 1, only compute and return the part of the data indexed by `task'. Return `elementTags', `nodeTags'. """ api_elementTags_, api_elementTags_n_ = POINTER(c_size_t)(), c_size_t() api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetElementsByType( c_int(elementType), byref(api_elementTags_), byref(api_elementTags_n_), byref(api_nodeTags_), byref(api_nodeTags_n_), c_int(tag), c_size_t(task), c_size_t(numTasks), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorsize(api_elementTags_, api_elementTags_n_.value), _ovectorsize(api_nodeTags_, api_nodeTags_n_.value)) @staticmethod def addElements(dim, tag, elementTypes, elementTags, nodeTags): """ gmsh.model.mesh.addElements(dim, tag, elementTypes, elementTags, nodeTags) Add elements classified on the entity of dimension `dim' and tag `tag'. `types' contains the MSH types of the elements (e.g. `2' for 3-node triangles: see the Gmsh reference manual). `elementTags' is a vector of the same length as `types'; each entry is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. `nodeTags' is also a vector of the same length as `types'; each entry is a vector of length equal to the number of elements of the given type times the number N of nodes per element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. """ api_elementTypes_, api_elementTypes_n_ = _ivectorint(elementTypes) api_elementTags_, api_elementTags_n_, api_elementTags_nn_ = _ivectorvectorsize(elementTags) api_nodeTags_, api_nodeTags_n_, api_nodeTags_nn_ = _ivectorvectorsize(nodeTags) ierr = c_int() lib.gmshModelMeshAddElements( c_int(dim), c_int(tag), api_elementTypes_, api_elementTypes_n_, api_elementTags_, api_elementTags_n_, api_elementTags_nn_, api_nodeTags_, api_nodeTags_n_, api_nodeTags_nn_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def addElementsByType(tag, elementType, elementTags, nodeTags): """ gmsh.model.mesh.addElementsByType(tag, elementType, elementTags, nodeTags) Add elements of type `elementType' classified on the entity of tag `tag'. `elementTags' contains the tags (unique, strictly positive identifiers) of the elements of the corresponding type. `nodeTags' is a vector of length equal to the number of elements times the number N of nodes per element, that contains the node tags of all the elements, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. If the `elementTag' vector is empty, new tags are automatically assigned to the elements. """ api_elementTags_, api_elementTags_n_ = _ivectorsize(elementTags) api_nodeTags_, api_nodeTags_n_ = _ivectorsize(nodeTags) ierr = c_int() lib.gmshModelMeshAddElementsByType( c_int(tag), c_int(elementType), api_elementTags_, api_elementTags_n_, api_nodeTags_, api_nodeTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getIntegrationPoints(elementType, integrationType): """ gmsh.model.mesh.getIntegrationPoints(elementType, integrationType) Get the numerical quadrature information for the given element type `elementType' and integration rule `integrationType' (e.g. "Gauss4" for a Gauss quadrature suited for integrating 4th order polynomials). `localCoord' contains the u, v, w coordinates of the G integration points in the reference element: [g1u, g1v, g1w, ..., gGu, gGv, gGw]. `weights' contains the associated weights: [g1q, ..., gGq]. Return `localCoord', `weights'. """ api_localCoord_, api_localCoord_n_ = POINTER(c_double)(), c_size_t() api_weights_, api_weights_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetIntegrationPoints( c_int(elementType), c_char_p(integrationType.encode()), byref(api_localCoord_), byref(api_localCoord_n_), byref(api_weights_), byref(api_weights_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectordouble(api_localCoord_, api_localCoord_n_.value), _ovectordouble(api_weights_, api_weights_n_.value)) @staticmethod def getJacobians(elementType, localCoord, tag=-1, task=0, numTasks=1): """ gmsh.model.mesh.getJacobians(elementType, localCoord, tag=-1, task=0, numTasks=1) Get the Jacobians of all the elements of type `elementType' classified on the entity of tag `tag', at the G evaluation points `localCoord' given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]. Data is returned by element, with elements in the same order as in `getElements' and `getElementsByType'. `jacobians' contains for each element the 9 entries of the 3x3 Jacobian matrix at each evaluation point. The matrix is returned by column: [e1g1Jxu, e1g1Jyu, e1g1Jzu, e1g1Jxv, ..., e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with Jxu=dx/du, Jyu=dy/du, etc. `determinants' contains for each element the determinant of the Jacobian matrix at each evaluation point: [e1g1, e1g2, ... e1gG, e2g1, ...]. `coord' contains for each element the x, y, z coordinates of the evaluation points. If `tag' < 0, get the Jacobian data for all entities. If `numTasks' > 1, only compute and return the part of the data indexed by `task'. Return `jacobians', `determinants', `coord'. """ api_localCoord_, api_localCoord_n_ = _ivectordouble(localCoord) api_jacobians_, api_jacobians_n_ = POINTER(c_double)(), c_size_t() api_determinants_, api_determinants_n_ = POINTER(c_double)(), c_size_t() api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetJacobians( c_int(elementType), api_localCoord_, api_localCoord_n_, byref(api_jacobians_), byref(api_jacobians_n_), byref(api_determinants_), byref(api_determinants_n_), byref(api_coord_), byref(api_coord_n_), c_int(tag), c_size_t(task), c_size_t(numTasks), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectordouble(api_jacobians_, api_jacobians_n_.value), _ovectordouble(api_determinants_, api_determinants_n_.value), _ovectordouble(api_coord_, api_coord_n_.value)) @staticmethod def getJacobian(elementTag, localCoord): """ gmsh.model.mesh.getJacobian(elementTag, localCoord) Get the Jacobian for a single element `elementTag', at the G evaluation points `localCoord' given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]. `jacobians' contains the 9 entries of the 3x3 Jacobian matrix at each evaluation point. The matrix is returned by column: [e1g1Jxu, e1g1Jyu, e1g1Jzu, e1g1Jxv, ..., e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with Jxu=dx/du, Jyu=dy/du, etc. `determinants' contains the determinant of the Jacobian matrix at each evaluation point. `coord' contains the x, y, z coordinates of the evaluation points. This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing Jacobians in bulk is often preferable. Return `jacobians', `determinants', `coord'. """ api_localCoord_, api_localCoord_n_ = _ivectordouble(localCoord) api_jacobians_, api_jacobians_n_ = POINTER(c_double)(), c_size_t() api_determinants_, api_determinants_n_ = POINTER(c_double)(), c_size_t() api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetJacobian( c_size_t(elementTag), api_localCoord_, api_localCoord_n_, byref(api_jacobians_), byref(api_jacobians_n_), byref(api_determinants_), byref(api_determinants_n_), byref(api_coord_), byref(api_coord_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectordouble(api_jacobians_, api_jacobians_n_.value), _ovectordouble(api_determinants_, api_determinants_n_.value), _ovectordouble(api_coord_, api_coord_n_.value)) @staticmethod def getBasisFunctions(elementType, localCoord, functionSpaceType, wantedOrientations=[]): """ gmsh.model.mesh.getBasisFunctions(elementType, localCoord, functionSpaceType, wantedOrientations=[]) Get the basis functions of the element of type `elementType' at the evaluation points `localCoord' (given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]), for the function space `functionSpaceType' (e.g. "Lagrange" or "GradLagrange" for Lagrange basis functions or their gradient, in the u, v, w coordinates of the reference element; or "H1Legendre3" or "GradH1Legendre3" for 3rd order hierarchical H1 Legendre functions). `numComponents' returns the number C of components of a basis function. `basisFunctions' returns the value of the N basis functions at the evaluation points, i.e. [g1f1, g1f2, ..., g1fN, g2f1, ...] when C == 1 or [g1f1u, g1f1v, g1f1w, g1f2u, ..., g1fNw, g2f1u, ...] when C == 3. For basis functions that depend on the orientation of the elements, all values for the first orientation are returned first, followed by values for the second, etc. `numOrientations' returns the overall number of orientations. If `wantedOrientations' is not empty, only return the values for the desired orientation indices. Return `numComponents', `basisFunctions', `numOrientations'. """ api_localCoord_, api_localCoord_n_ = _ivectordouble(localCoord) api_numComponents_ = c_int() api_basisFunctions_, api_basisFunctions_n_ = POINTER(c_double)(), c_size_t() api_numOrientations_ = c_int() api_wantedOrientations_, api_wantedOrientations_n_ = _ivectorint(wantedOrientations) ierr = c_int() lib.gmshModelMeshGetBasisFunctions( c_int(elementType), api_localCoord_, api_localCoord_n_, c_char_p(functionSpaceType.encode()), byref(api_numComponents_), byref(api_basisFunctions_), byref(api_basisFunctions_n_), byref(api_numOrientations_), api_wantedOrientations_, api_wantedOrientations_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_numComponents_.value, _ovectordouble(api_basisFunctions_, api_basisFunctions_n_.value), api_numOrientations_.value) @staticmethod def getBasisFunctionsOrientationForElements(elementType, functionSpaceType, tag=-1, task=0, numTasks=1): """ gmsh.model.mesh.getBasisFunctionsOrientationForElements(elementType, functionSpaceType, tag=-1, task=0, numTasks=1) Get the orientation index of the elements of type `elementType' in the entity of tag `tag'. The arguments have the same meaning as in `getBasisFunctions'. `basisFunctionsOrientation' is a vector giving for each element the orientation index in the values returned by `getBasisFunctions'. For Lagrange basis functions the call is superfluous as it will return a vector of zeros. Return `basisFunctionsOrientation'. """ api_basisFunctionsOrientation_, api_basisFunctionsOrientation_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetBasisFunctionsOrientationForElements( c_int(elementType), c_char_p(functionSpaceType.encode()), byref(api_basisFunctionsOrientation_), byref(api_basisFunctionsOrientation_n_), c_int(tag), c_size_t(task), c_size_t(numTasks), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_basisFunctionsOrientation_, api_basisFunctionsOrientation_n_.value) @staticmethod def getBasisFunctionsOrientationForElement(elementTag, functionSpaceType): """ gmsh.model.mesh.getBasisFunctionsOrientationForElement(elementTag, functionSpaceType) Get the orientation of a single element `elementTag'. Return `basisFunctionsOrientation'. """ api_basisFunctionsOrientation_ = c_int() ierr = c_int() lib.gmshModelMeshGetBasisFunctionsOrientationForElement( c_size_t(elementTag), c_char_p(functionSpaceType.encode()), byref(api_basisFunctionsOrientation_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_basisFunctionsOrientation_.value @staticmethod def getNumberOfOrientations(elementType, functionSpaceType): """ gmsh.model.mesh.getNumberOfOrientations(elementType, functionSpaceType) Get the number of possible orientations for elements of type `elementType' and function space named `functionSpaceType'. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelMeshGetNumberOfOrientations( c_int(elementType), c_char_p(functionSpaceType.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def getEdgeNumber(edgeNodes): """ gmsh.model.mesh.getEdgeNumber(edgeNodes) Get the global edge identifier `edgeNum' for an input list of node pairs, concatenated in the vector `edgeNodes'. Warning: this is an experimental feature and will probably change in a future release. Return `edgeNum'. """ api_edgeNodes_, api_edgeNodes_n_ = _ivectorint(edgeNodes) api_edgeNum_, api_edgeNum_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetEdgeNumber( api_edgeNodes_, api_edgeNodes_n_, byref(api_edgeNum_), byref(api_edgeNum_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_edgeNum_, api_edgeNum_n_.value) @staticmethod def getLocalMultipliersForHcurl0(elementType, tag=-1): """ gmsh.model.mesh.getLocalMultipliersForHcurl0(elementType, tag=-1) Get the local multipliers (to guarantee H(curl)-conformity) of the order 0 H(curl) basis functions. Warning: this is an experimental feature and will probably change in a future release. Return `localMultipliers'. """ api_localMultipliers_, api_localMultipliers_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetLocalMultipliersForHcurl0( c_int(elementType), byref(api_localMultipliers_), byref(api_localMultipliers_n_), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_localMultipliers_, api_localMultipliers_n_.value) @staticmethod def getKeysForElements(elementType, functionSpaceType, tag=-1, returnCoord=True): """ gmsh.model.mesh.getKeysForElements(elementType, functionSpaceType, tag=-1, returnCoord=True) Generate the `keys' for the elements of type `elementType' in the entity of tag `tag', for the `functionSpaceType' function space. Each key uniquely identifies a basis function in the function space. If `returnCoord' is set, the `coord' vector contains the x, y, z coordinates locating basis functions for sorting purposes. Warning: this is an experimental feature and will probably change in a future release. Return `keys', `coord'. """ api_keys_, api_keys_n_ = POINTER(c_int)(), c_size_t() api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetKeysForElements( c_int(elementType), c_char_p(functionSpaceType.encode()), byref(api_keys_), byref(api_keys_n_), byref(api_coord_), byref(api_coord_n_), c_int(tag), c_int(bool(returnCoord)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorpair(api_keys_, api_keys_n_.value), _ovectordouble(api_coord_, api_coord_n_.value)) @staticmethod def getKeysForElement(elementTag, functionSpaceType, returnCoord=True): """ gmsh.model.mesh.getKeysForElement(elementTag, functionSpaceType, returnCoord=True) Get the keys for a single element `elementTag'. Return `keys', `coord'. """ api_keys_, api_keys_n_ = POINTER(c_int)(), c_size_t() api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetKeysForElement( c_size_t(elementTag), c_char_p(functionSpaceType.encode()), byref(api_keys_), byref(api_keys_n_), byref(api_coord_), byref(api_coord_n_), c_int(bool(returnCoord)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorpair(api_keys_, api_keys_n_.value), _ovectordouble(api_coord_, api_coord_n_.value)) @staticmethod def getNumberOfKeysForElements(elementType, functionSpaceType): """ gmsh.model.mesh.getNumberOfKeysForElements(elementType, functionSpaceType) Get the number of keys by elements of type `elementType' for function space named `functionSpaceType'. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelMeshGetNumberOfKeysForElements( c_int(elementType), c_char_p(functionSpaceType.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def getInformationForElements(keys, elementType, functionSpaceType): """ gmsh.model.mesh.getInformationForElements(keys, elementType, functionSpaceType) Get information about the `keys'. `infoKeys' returns information about the functions associated with the `keys'. `infoKeys[0].first' describes the type of function (0 for vertex function, 1 for edge function, 2 for face function and 3 for bubble function). `infoKeys[0].second' gives the order of the function associated with the key. Warning: this is an experimental feature and will probably change in a future release. Return `infoKeys'. """ api_keys_, api_keys_n_ = _ivectorpair(keys) api_infoKeys_, api_infoKeys_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetInformationForElements( api_keys_, api_keys_n_, c_int(elementType), c_char_p(functionSpaceType.encode()), byref(api_infoKeys_), byref(api_infoKeys_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_infoKeys_, api_infoKeys_n_.value) @staticmethod def getBarycenters(elementType, tag, fast, primary, task=0, numTasks=1): """ gmsh.model.mesh.getBarycenters(elementType, tag, fast, primary, task=0, numTasks=1) Get the barycenters of all elements of type `elementType' classified on the entity of tag `tag'. If `primary' is set, only the primary nodes of the elements are taken into account for the barycenter calculation. If `fast' is set, the function returns the sum of the primary node coordinates (without normalizing by the number of nodes). If `tag' < 0, get the barycenters for all entities. If `numTasks' > 1, only compute and return the part of the data indexed by `task'. Return `barycenters'. """ api_barycenters_, api_barycenters_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetBarycenters( c_int(elementType), c_int(tag), c_int(bool(fast)), c_int(bool(primary)), byref(api_barycenters_), byref(api_barycenters_n_), c_size_t(task), c_size_t(numTasks), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_barycenters_, api_barycenters_n_.value) @staticmethod def getElementEdgeNodes(elementType, tag=-1, primary=False, task=0, numTasks=1): """ gmsh.model.mesh.getElementEdgeNodes(elementType, tag=-1, primary=False, task=0, numTasks=1) Get the nodes on the edges of all elements of type `elementType' classified on the entity of tag `tag'. `nodeTags' contains the node tags of the edges for all the elements: [e1a1n1, e1a1n2, e1a2n1, ...]. Data is returned by element, with elements in the same order as in `getElements' and `getElementsByType'. If `primary' is set, only the primary (begin/end) nodes of the edges are returned. If `tag' < 0, get the edge nodes for all entities. If `numTasks' > 1, only compute and return the part of the data indexed by `task'. Return `nodeTags'. """ api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetElementEdgeNodes( c_int(elementType), byref(api_nodeTags_), byref(api_nodeTags_n_), c_int(tag), c_int(bool(primary)), c_size_t(task), c_size_t(numTasks), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorsize(api_nodeTags_, api_nodeTags_n_.value) @staticmethod def getElementFaceNodes(elementType, faceType, tag=-1, primary=False, task=0, numTasks=1): """ gmsh.model.mesh.getElementFaceNodes(elementType, faceType, tag=-1, primary=False, task=0, numTasks=1) Get the nodes on the faces of type `faceType' (3 for triangular faces, 4 for quadrangular faces) of all elements of type `elementType' classified on the entity of tag `tag'. `nodeTags' contains the node tags of the faces for all elements: [e1f1n1, ..., e1f1nFaceType, e1f2n1, ...]. Data is returned by element, with elements in the same order as in `getElements' and `getElementsByType'. If `primary' is set, only the primary (corner) nodes of the faces are returned. If `tag' < 0, get the face nodes for all entities. If `numTasks' > 1, only compute and return the part of the data indexed by `task'. Return `nodeTags'. """ api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetElementFaceNodes( c_int(elementType), c_int(faceType), byref(api_nodeTags_), byref(api_nodeTags_n_), c_int(tag), c_int(bool(primary)), c_size_t(task), c_size_t(numTasks), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorsize(api_nodeTags_, api_nodeTags_n_.value) @staticmethod def getGhostElements(dim, tag): """ gmsh.model.mesh.getGhostElements(dim, tag) Get the ghost elements `elementTags' and their associated `partitions' stored in the ghost entity of dimension `dim' and tag `tag'. Return `elementTags', `partitions'. """ api_elementTags_, api_elementTags_n_ = POINTER(c_size_t)(), c_size_t() api_partitions_, api_partitions_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetGhostElements( c_int(dim), c_int(tag), byref(api_elementTags_), byref(api_elementTags_n_), byref(api_partitions_), byref(api_partitions_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorsize(api_elementTags_, api_elementTags_n_.value), _ovectorint(api_partitions_, api_partitions_n_.value)) @staticmethod def setSize(dimTags, size): """ gmsh.model.mesh.setSize(dimTags, size) Set a mesh size constraint on the model entities `dimTags'. Currently only entities of dimension 0 (points) are handled. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelMeshSetSize( api_dimTags_, api_dimTags_n_, c_double(size), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setSizeAtParametricPoints(dim, tag, parametricCoord, sizes): """ gmsh.model.mesh.setSizeAtParametricPoints(dim, tag, parametricCoord, sizes) Set mesh size constraints at the given parametric points `parametricCoord' on the model entity of dimension `dim' and tag `tag'. Currently only entities of dimension 1 (lines) are handled. """ api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord) api_sizes_, api_sizes_n_ = _ivectordouble(sizes) ierr = c_int() lib.gmshModelMeshSetSizeAtParametricPoints( c_int(dim), c_int(tag), api_parametricCoord_, api_parametricCoord_n_, api_sizes_, api_sizes_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setSizeCallback(callback): """ gmsh.model.mesh.setSizeCallback(callback) Set a global mesh size callback. The callback should take 5 arguments (`dim', `tag', `x', `y' and `z') and return the value of the mesh size at coordinates (`x', `y', `z'). """ global api_callback_type_ api_callback_type_ = CFUNCTYPE(c_double, c_int, c_int, c_double, c_double, c_double, c_void_p) global api_callback_ api_callback_ = api_callback_type_(lambda dim, tag, x, y, z, _ : callback(dim, tag, x, y, z)) ierr = c_int() lib.gmshModelMeshSetSizeCallback( api_callback_, None, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def removeSizeCallback(): """ gmsh.model.mesh.removeSizeCallback() Remove the global mesh size callback. """ ierr = c_int() lib.gmshModelMeshRemoveSizeCallback( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setTransfiniteCurve(tag, numNodes, meshType="Progression", coef=1.): """ gmsh.model.mesh.setTransfiniteCurve(tag, numNodes, meshType="Progression", coef=1.) Set a transfinite meshing constraint on the curve `tag', with `numNodes' nodes distributed according to `meshType' and `coef'. Currently supported types are "Progression" (geometrical progression with power `coef'), "Bump" (refinement toward both extremities of the curve) and "Beta" (beta law). """ ierr = c_int() lib.gmshModelMeshSetTransfiniteCurve( c_int(tag), c_int(numNodes), c_char_p(meshType.encode()), c_double(coef), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setTransfiniteSurface(tag, arrangement="Left", cornerTags=[]): """ gmsh.model.mesh.setTransfiniteSurface(tag, arrangement="Left", cornerTags=[]) Set a transfinite meshing constraint on the surface `tag'. `arrangement' describes the arrangement of the triangles when the surface is not flagged as recombined: currently supported values are "Left", "Right", "AlternateLeft" and "AlternateRight". `cornerTags' can be used to specify the (3 or 4) corners of the transfinite interpolation explicitly; specifying the corners explicitly is mandatory if the surface has more that 3 or 4 points on its boundary. """ api_cornerTags_, api_cornerTags_n_ = _ivectorint(cornerTags) ierr = c_int() lib.gmshModelMeshSetTransfiniteSurface( c_int(tag), c_char_p(arrangement.encode()), api_cornerTags_, api_cornerTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setTransfiniteVolume(tag, cornerTags=[]): """ gmsh.model.mesh.setTransfiniteVolume(tag, cornerTags=[]) Set a transfinite meshing constraint on the surface `tag'. `cornerTags' can be used to specify the (6 or 8) corners of the transfinite interpolation explicitly. """ api_cornerTags_, api_cornerTags_n_ = _ivectorint(cornerTags) ierr = c_int() lib.gmshModelMeshSetTransfiniteVolume( c_int(tag), api_cornerTags_, api_cornerTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setTransfiniteAutomatic(dimTags=[], cornerAngle=2.35, recombine=True): """ gmsh.model.mesh.setTransfiniteAutomatic(dimTags=[], cornerAngle=2.35, recombine=True) Set transfinite meshing constraints on the model entities in `dimTag'. Transfinite meshing constraints are added to the curves of the quadrangular surfaces and to the faces of 6-sided volumes. Quadragular faces with a corner angle superior to `cornerAngle' (in radians) are ignored. The number of points is automatically determined from the sizing constraints. If `dimTag' is empty, the constraints are applied to all entities in the model. If `recombine' is true, the recombine flag is automatically set on the transfinite surfaces. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelMeshSetTransfiniteAutomatic( api_dimTags_, api_dimTags_n_, c_double(cornerAngle), c_int(bool(recombine)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setRecombine(dim, tag): """ gmsh.model.mesh.setRecombine(dim, tag) Set a recombination meshing constraint on the model entity of dimension `dim' and tag `tag'. Currently only entities of dimension 2 (to recombine triangles into quadrangles) are supported. """ ierr = c_int() lib.gmshModelMeshSetRecombine( c_int(dim), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setSmoothing(dim, tag, val): """ gmsh.model.mesh.setSmoothing(dim, tag, val) Set a smoothing meshing constraint on the model entity of dimension `dim' and tag `tag'. `val' iterations of a Laplace smoother are applied. """ ierr = c_int() lib.gmshModelMeshSetSmoothing( c_int(dim), c_int(tag), c_int(val), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setReverse(dim, tag, val=True): """ gmsh.model.mesh.setReverse(dim, tag, val=True) Set a reverse meshing constraint on the model entity of dimension `dim' and tag `tag'. If `val' is true, the mesh orientation will be reversed with respect to the natural mesh orientation (i.e. the orientation consistent with the orientation of the geometry). If `val' is false, the mesh is left as-is. """ ierr = c_int() lib.gmshModelMeshSetReverse( c_int(dim), c_int(tag), c_int(bool(val)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setAlgorithm(dim, tag, val): """ gmsh.model.mesh.setAlgorithm(dim, tag, val) Set the meshing algorithm on the model entity of dimension `dim' and tag `tag'. Currently only supported for `dim' == 2. """ ierr = c_int() lib.gmshModelMeshSetAlgorithm( c_int(dim), c_int(tag), c_int(val), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setSizeFromBoundary(dim, tag, val): """ gmsh.model.mesh.setSizeFromBoundary(dim, tag, val) Force the mesh size to be extended from the boundary, or not, for the model entity of dimension `dim' and tag `tag'. Currently only supported for `dim' == 2. """ ierr = c_int() lib.gmshModelMeshSetSizeFromBoundary( c_int(dim), c_int(tag), c_int(val), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setCompound(dim, tags): """ gmsh.model.mesh.setCompound(dim, tags) Set a compound meshing constraint on the model entities of dimension `dim' and tags `tags'. During meshing, compound entities are treated as a single discrete entity, which is automatically reparametrized. """ api_tags_, api_tags_n_ = _ivectorint(tags) ierr = c_int() lib.gmshModelMeshSetCompound( c_int(dim), api_tags_, api_tags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setOutwardOrientation(tag): """ gmsh.model.mesh.setOutwardOrientation(tag) Set meshing constraints on the bounding surfaces of the volume of tag `tag' so that all surfaces are oriented with outward pointing normals. Currently only available with the OpenCASCADE kernel, as it relies on the STL triangulation. """ ierr = c_int() lib.gmshModelMeshSetOutwardOrientation( c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def embed(dim, tags, inDim, inTag): """ gmsh.model.mesh.embed(dim, tags, inDim, inTag) Embed the model entities of dimension `dim' and tags `tags' in the (`inDim', `inTag') model entity. The dimension `dim' can 0, 1 or 2 and must be strictly smaller than `inDim', which must be either 2 or 3. The embedded entities should not be part of the boundary of the entity `inTag', whose mesh will conform to the mesh of the embedded entities. """ api_tags_, api_tags_n_ = _ivectorint(tags) ierr = c_int() lib.gmshModelMeshEmbed( c_int(dim), api_tags_, api_tags_n_, c_int(inDim), c_int(inTag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def removeEmbedded(dimTags, dim=-1): """ gmsh.model.mesh.removeEmbedded(dimTags, dim=-1) Remove embedded entities from the model entities `dimTags'. if `dim' is >= 0, only remove embedded entities of the given dimension (e.g. embedded points if `dim' == 0). """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelMeshRemoveEmbedded( api_dimTags_, api_dimTags_n_, c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def reorderElements(elementType, tag, ordering): """ gmsh.model.mesh.reorderElements(elementType, tag, ordering) Reorder the elements of type `elementType' classified on the entity of tag `tag' according to `ordering'. """ api_ordering_, api_ordering_n_ = _ivectorsize(ordering) ierr = c_int() lib.gmshModelMeshReorderElements( c_int(elementType), c_int(tag), api_ordering_, api_ordering_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def renumberNodes(): """ gmsh.model.mesh.renumberNodes() Renumber the node tags in a continuous sequence. """ ierr = c_int() lib.gmshModelMeshRenumberNodes( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def renumberElements(): """ gmsh.model.mesh.renumberElements() Renumber the element tags in a continuous sequence. """ ierr = c_int() lib.gmshModelMeshRenumberElements( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setPeriodic(dim, tags, tagsMaster, affineTransform): """ gmsh.model.mesh.setPeriodic(dim, tags, tagsMaster, affineTransform) Set the meshes of the entities of dimension `dim' and tag `tags' as periodic copies of the meshes of entities `tagsMaster', using the affine transformation specified in `affineTransformation' (16 entries of a 4x4 matrix, by row). If used after meshing, generate the periodic node correspondence information assuming the meshes of entities `tags' effectively match the meshes of entities `tagsMaster' (useful for structured and extruded meshes). Currently only available for @code{dim} == 1 and @code{dim} == 2. """ api_tags_, api_tags_n_ = _ivectorint(tags) api_tagsMaster_, api_tagsMaster_n_ = _ivectorint(tagsMaster) api_affineTransform_, api_affineTransform_n_ = _ivectordouble(affineTransform) ierr = c_int() lib.gmshModelMeshSetPeriodic( c_int(dim), api_tags_, api_tags_n_, api_tagsMaster_, api_tagsMaster_n_, api_affineTransform_, api_affineTransform_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getPeriodicNodes(dim, tag, includeHighOrderNodes=False): """ gmsh.model.mesh.getPeriodicNodes(dim, tag, includeHighOrderNodes=False) Get the master entity `tagMaster', the node tags `nodeTags' and their corresponding master node tags `nodeTagsMaster', and the affine transform `affineTransform' for the entity of dimension `dim' and tag `tag'. If `includeHighOrderNodes' is set, include high-order nodes in the returned data. Return `tagMaster', `nodeTags', `nodeTagsMaster', `affineTransform'. """ api_tagMaster_ = c_int() api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t() api_nodeTagsMaster_, api_nodeTagsMaster_n_ = POINTER(c_size_t)(), c_size_t() api_affineTransform_, api_affineTransform_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelMeshGetPeriodicNodes( c_int(dim), c_int(tag), byref(api_tagMaster_), byref(api_nodeTags_), byref(api_nodeTags_n_), byref(api_nodeTagsMaster_), byref(api_nodeTagsMaster_n_), byref(api_affineTransform_), byref(api_affineTransform_n_), c_int(bool(includeHighOrderNodes)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_tagMaster_.value, _ovectorsize(api_nodeTags_, api_nodeTags_n_.value), _ovectorsize(api_nodeTagsMaster_, api_nodeTagsMaster_n_.value), _ovectordouble(api_affineTransform_, api_affineTransform_n_.value)) @staticmethod def removeDuplicateNodes(): """ gmsh.model.mesh.removeDuplicateNodes() Remove duplicate nodes in the mesh of the current model. """ ierr = c_int() lib.gmshModelMeshRemoveDuplicateNodes( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def splitQuadrangles(quality=1., tag=-1): """ gmsh.model.mesh.splitQuadrangles(quality=1., tag=-1) Split (into two triangles) all quadrangles in surface `tag' whose quality is lower than `quality'. If `tag' < 0, split quadrangles in all surfaces. """ ierr = c_int() lib.gmshModelMeshSplitQuadrangles( c_double(quality), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def classifySurfaces(angle, boundary=True, forReparametrization=False, curveAngle=pi): """ gmsh.model.mesh.classifySurfaces(angle, boundary=True, forReparametrization=False, curveAngle=pi) Classify ("color") the surface mesh based on the angle threshold `angle' (in radians), and create new discrete surfaces, curves and points accordingly. If `boundary' is set, also create discrete curves on the boundary if the surface is open. If `forReparametrization' is set, create edges and surfaces that can be reparametrized using a single map. If `curveAngle' is less than Pi, also force curves to be split according to `curveAngle'. """ ierr = c_int() lib.gmshModelMeshClassifySurfaces( c_double(angle), c_int(bool(boundary)), c_int(bool(forReparametrization)), c_double(curveAngle), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def createGeometry(dimTags=[]): """ gmsh.model.mesh.createGeometry(dimTags=[]) Create a geometry for the discrete entities `dimTags' (represented solely by a mesh, without an underlying CAD description), i.e. create a parametrization for discrete curves and surfaces, assuming that each can be parametrized with a single map. If `dimTags' is empty, create a geometry for all the discrete entities. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelMeshCreateGeometry( api_dimTags_, api_dimTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def createTopology(makeSimplyConnected=True, exportDiscrete=True): """ gmsh.model.mesh.createTopology(makeSimplyConnected=True, exportDiscrete=True) Create a boundary representation from the mesh if the model does not have one (e.g. when imported from mesh file formats with no BRep representation of the underlying model). If `makeSimplyConnected' is set, enforce simply connected discrete surfaces and volumes. If `exportDiscrete' is set, clear any built-in CAD kernel entities and export the discrete entities in the built-in CAD kernel. """ ierr = c_int() lib.gmshModelMeshCreateTopology( c_int(bool(makeSimplyConnected)), c_int(bool(exportDiscrete)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def computeHomology(domainTags=[], subdomainTags=[], dims=[]): """ gmsh.model.mesh.computeHomology(domainTags=[], subdomainTags=[], dims=[]) Compute a basis representation for homology spaces after a mesh has been generated. The computation domain is given in a list of physical group tags `domainTags'; if empty, the whole mesh is the domain. The computation subdomain for relative homology computation is given in a list of physical group tags `subdomainTags'; if empty, absolute homology is computed. The dimensions homology bases to be computed are given in the list `dim'; if empty, all bases are computed. Resulting basis representation chains are stored as physical groups in the mesh. """ api_domainTags_, api_domainTags_n_ = _ivectorint(domainTags) api_subdomainTags_, api_subdomainTags_n_ = _ivectorint(subdomainTags) api_dims_, api_dims_n_ = _ivectorint(dims) ierr = c_int() lib.gmshModelMeshComputeHomology( api_domainTags_, api_domainTags_n_, api_subdomainTags_, api_subdomainTags_n_, api_dims_, api_dims_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def computeCohomology(domainTags=[], subdomainTags=[], dims=[]): """ gmsh.model.mesh.computeCohomology(domainTags=[], subdomainTags=[], dims=[]) Compute a basis representation for cohomology spaces after a mesh has been generated. The computation domain is given in a list of physical group tags `domainTags'; if empty, the whole mesh is the domain. The computation subdomain for relative cohomology computation is given in a list of physical group tags `subdomainTags'; if empty, absolute cohomology is computed. The dimensions homology bases to be computed are given in the list `dim'; if empty, all bases are computed. Resulting basis representation cochains are stored as physical groups in the mesh. """ api_domainTags_, api_domainTags_n_ = _ivectorint(domainTags) api_subdomainTags_, api_subdomainTags_n_ = _ivectorint(subdomainTags) api_dims_, api_dims_n_ = _ivectorint(dims) ierr = c_int() lib.gmshModelMeshComputeCohomology( api_domainTags_, api_domainTags_n_, api_subdomainTags_, api_subdomainTags_n_, api_dims_, api_dims_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def computeCrossField(): """ gmsh.model.mesh.computeCrossField() Compute a cross field for the current mesh. The function creates 3 views: the H function, the Theta function and cross directions. Return the tags of the views. Return `viewTags'. """ api_viewTags_, api_viewTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelMeshComputeCrossField( byref(api_viewTags_), byref(api_viewTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_viewTags_, api_viewTags_n_.value) @staticmethod def triangulate(coord): """ gmsh.model.mesh.triangulate(coord) Triangulate the points given in the `coord' vector as pairs of u, v coordinates, and return the node tags (with numbering starting at 1) of the resulting triangles in `tri'. Return `tri'. """ api_coord_, api_coord_n_ = _ivectordouble(coord) api_tri_, api_tri_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshTriangulate( api_coord_, api_coord_n_, byref(api_tri_), byref(api_tri_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorsize(api_tri_, api_tri_n_.value) @staticmethod def tetrahedralize(coord): """ gmsh.model.mesh.tetrahedralize(coord) Tetrahedralize the points given in the `coord' vector as triplets of x, y, z coordinates, and return the node tags (with numbering starting at 1) of the resulting tetrahedra in `tetra'. Return `tetra'. """ api_coord_, api_coord_n_ = _ivectordouble(coord) api_tetra_, api_tetra_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelMeshTetrahedralize( api_coord_, api_coord_n_, byref(api_tetra_), byref(api_tetra_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorsize(api_tetra_, api_tetra_n_.value) class field: """ Mesh size field functions """ @staticmethod def add(fieldType, tag=-1): """ gmsh.model.mesh.field.add(fieldType, tag=-1) Add a new mesh size field of type `fieldType'. If `tag' is positive, assign the tag explicitly; otherwise a new tag is assigned automatically. Return the field tag. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelMeshFieldAdd( c_char_p(fieldType.encode()), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def remove(tag): """ gmsh.model.mesh.field.remove(tag) Remove the field with tag `tag'. """ ierr = c_int() lib.gmshModelMeshFieldRemove( c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setNumber(tag, option, value): """ gmsh.model.mesh.field.setNumber(tag, option, value) Set the numerical option `option' to value `value' for field `tag'. """ ierr = c_int() lib.gmshModelMeshFieldSetNumber( c_int(tag), c_char_p(option.encode()), c_double(value), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setString(tag, option, value): """ gmsh.model.mesh.field.setString(tag, option, value) Set the string option `option' to value `value' for field `tag'. """ ierr = c_int() lib.gmshModelMeshFieldSetString( c_int(tag), c_char_p(option.encode()), c_char_p(value.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setNumbers(tag, option, value): """ gmsh.model.mesh.field.setNumbers(tag, option, value) Set the numerical list option `option' to value `value' for field `tag'. """ api_value_, api_value_n_ = _ivectordouble(value) ierr = c_int() lib.gmshModelMeshFieldSetNumbers( c_int(tag), c_char_p(option.encode()), api_value_, api_value_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setAsBackgroundMesh(tag): """ gmsh.model.mesh.field.setAsBackgroundMesh(tag) Set the field `tag' as the background mesh size field. """ ierr = c_int() lib.gmshModelMeshFieldSetAsBackgroundMesh( c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setAsBoundaryLayer(tag): """ gmsh.model.mesh.field.setAsBoundaryLayer(tag) Set the field `tag' as a boundary layer size field. """ ierr = c_int() lib.gmshModelMeshFieldSetAsBoundaryLayer( c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class geo: """ Built-in CAD kernel functions """ @staticmethod def addPoint(x, y, z, meshSize=0., tag=-1): """ gmsh.model.geo.addPoint(x, y, z, meshSize=0., tag=-1) Add a geometrical point in the built-in CAD representation, at coordinates (`x', `y', `z'). If `meshSize' is > 0, add a meshing constraint at that point. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the point. (Note that the point will be added in the current model only after `synchronize' is called. This behavior holds for all the entities added in the geo module.) Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelGeoAddPoint( c_double(x), c_double(y), c_double(z), c_double(meshSize), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addLine(startTag, endTag, tag=-1): """ gmsh.model.geo.addLine(startTag, endTag, tag=-1) Add a straight line segment in the built-in CAD representation, between the two points with tags `startTag' and `endTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the line. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelGeoAddLine( c_int(startTag), c_int(endTag), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCircleArc(startTag, centerTag, endTag, tag=-1, nx=0., ny=0., nz=0.): """ gmsh.model.geo.addCircleArc(startTag, centerTag, endTag, tag=-1, nx=0., ny=0., nz=0.) Add a circle arc (strictly smaller than Pi) in the built-in CAD representation, between the two points with tags `startTag' and `endTag', and with center `centerTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If (`nx', `ny', `nz') != (0, 0, 0), explicitly set the plane of the circle arc. Return the tag of the circle arc. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelGeoAddCircleArc( c_int(startTag), c_int(centerTag), c_int(endTag), c_int(tag), c_double(nx), c_double(ny), c_double(nz), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addEllipseArc(startTag, centerTag, majorTag, endTag, tag=-1, nx=0., ny=0., nz=0.): """ gmsh.model.geo.addEllipseArc(startTag, centerTag, majorTag, endTag, tag=-1, nx=0., ny=0., nz=0.) Add an ellipse arc (strictly smaller than Pi) in the built-in CAD representation, between the two points `startTag' and `endTag', and with center `centerTag' and major axis point `majorTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If (`nx', `ny', `nz') != (0, 0, 0), explicitly set the plane of the circle arc. Return the tag of the ellipse arc. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelGeoAddEllipseArc( c_int(startTag), c_int(centerTag), c_int(majorTag), c_int(endTag), c_int(tag), c_double(nx), c_double(ny), c_double(nz), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addSpline(pointTags, tag=-1): """ gmsh.model.geo.addSpline(pointTags, tag=-1) Add a spline (Catmull-Rom) curve in the built-in CAD representation, going through the points `pointTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the spline curve. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddSpline( api_pointTags_, api_pointTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBSpline(pointTags, tag=-1): """ gmsh.model.geo.addBSpline(pointTags, tag=-1) Add a cubic b-spline curve in the built-in CAD representation, with `pointTags' control points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Creates a periodic curve if the first and last points are the same. Return the tag of the b-spline curve. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddBSpline( api_pointTags_, api_pointTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBezier(pointTags, tag=-1): """ gmsh.model.geo.addBezier(pointTags, tag=-1) Add a Bezier curve in the built-in CAD representation, with `pointTags' control points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the Bezier curve. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddBezier( api_pointTags_, api_pointTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addPolyline(pointTags, tag=-1): """ gmsh.model.geo.addPolyline(pointTags, tag=-1) Add a polyline curve in the built-in CAD representation, going through the points `pointTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the polyline curve. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddPolyline( api_pointTags_, api_pointTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCompoundSpline(curveTags, numIntervals=5, tag=-1): """ gmsh.model.geo.addCompoundSpline(curveTags, numIntervals=5, tag=-1) Add a spline (Catmull-Rom) curve in the built-in CAD representation, going through points sampling the curves in `curveTags'. The density of sampling points on each curve is governed by `numIntervals'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the spline. Return an integer value. """ api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddCompoundSpline( api_curveTags_, api_curveTags_n_, c_int(numIntervals), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCompoundBSpline(curveTags, numIntervals=20, tag=-1): """ gmsh.model.geo.addCompoundBSpline(curveTags, numIntervals=20, tag=-1) Add a b-spline curve in the built-in CAD representation, with control points sampling the curves in `curveTags'. The density of sampling points on each curve is governed by `numIntervals'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the b-spline. Return an integer value. """ api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddCompoundBSpline( api_curveTags_, api_curveTags_n_, c_int(numIntervals), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCurveLoop(curveTags, tag=-1, reorient=False): """ gmsh.model.geo.addCurveLoop(curveTags, tag=-1, reorient=False) Add a curve loop (a closed wire) in the built-in CAD representation, formed by the curves `curveTags'. `curveTags' should contain (signed) tags of model entities of dimension 1 forming a closed loop: a negative tag signifies that the underlying curve is considered with reversed orientation. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If `reorient' is set, automatically reorient the curves if necessary. Return the tag of the curve loop. Return an integer value. """ api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddCurveLoop( api_curveTags_, api_curveTags_n_, c_int(tag), c_int(bool(reorient)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addPlaneSurface(wireTags, tag=-1): """ gmsh.model.geo.addPlaneSurface(wireTags, tag=-1) Add a plane surface in the built-in CAD representation, defined by one or more curve loops `wireTags'. The first curve loop defines the exterior contour; additional curve loop define holes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface. Return an integer value. """ api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddPlaneSurface( api_wireTags_, api_wireTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addSurfaceFilling(wireTags, tag=-1, sphereCenterTag=-1): """ gmsh.model.geo.addSurfaceFilling(wireTags, tag=-1, sphereCenterTag=-1) Add a surface in the built-in CAD representation, filling the curve loops in `wireTags' using transfinite interpolation. Currently only a single curve loop is supported; this curve loop should be composed by 3 or 4 curves only. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface. Return an integer value. """ api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddSurfaceFilling( api_wireTags_, api_wireTags_n_, c_int(tag), c_int(sphereCenterTag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addSurfaceLoop(surfaceTags, tag=-1): """ gmsh.model.geo.addSurfaceLoop(surfaceTags, tag=-1) Add a surface loop (a closed shell) formed by `surfaceTags' in the built-in CAD representation. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the shell. Return an integer value. """ api_surfaceTags_, api_surfaceTags_n_ = _ivectorint(surfaceTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddSurfaceLoop( api_surfaceTags_, api_surfaceTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addVolume(shellTags, tag=-1): """ gmsh.model.geo.addVolume(shellTags, tag=-1) Add a volume (a region) in the built-in CAD representation, defined by one or more shells `shellTags'. The first surface loop defines the exterior boundary; additional surface loop define holes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the volume. Return an integer value. """ api_shellTags_, api_shellTags_n_ = _ivectorint(shellTags) ierr = c_int() api_result_ = lib.gmshModelGeoAddVolume( api_shellTags_, api_shellTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def extrude(dimTags, dx, dy, dz, numElements=[], heights=[], recombine=False): """ gmsh.model.geo.extrude(dimTags, dx, dy, dz, numElements=[], heights=[], recombine=False) Extrude the entities `dimTags' in the built-in CAD representation, using a translation along (`dx', `dy', `dz'). Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1. If `dx' == `dy' == `dz' == 0, the entities are extruded along their normal. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_numElements_, api_numElements_n_ = _ivectorint(numElements) api_heights_, api_heights_n_ = _ivectordouble(heights) ierr = c_int() lib.gmshModelGeoExtrude( api_dimTags_, api_dimTags_n_, c_double(dx), c_double(dy), c_double(dz), byref(api_outDimTags_), byref(api_outDimTags_n_), api_numElements_, api_numElements_n_, api_heights_, api_heights_n_, c_int(bool(recombine)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def revolve(dimTags, x, y, z, ax, ay, az, angle, numElements=[], heights=[], recombine=False): """ gmsh.model.geo.revolve(dimTags, x, y, z, ax, ay, az, angle, numElements=[], heights=[], recombine=False) Extrude the entities `dimTags' in the built-in CAD representation, using a rotation of `angle' radians around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az'). The angle should be strictly smaller than Pi. Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_numElements_, api_numElements_n_ = _ivectorint(numElements) api_heights_, api_heights_n_ = _ivectordouble(heights) ierr = c_int() lib.gmshModelGeoRevolve( api_dimTags_, api_dimTags_n_, c_double(x), c_double(y), c_double(z), c_double(ax), c_double(ay), c_double(az), c_double(angle), byref(api_outDimTags_), byref(api_outDimTags_n_), api_numElements_, api_numElements_n_, api_heights_, api_heights_n_, c_int(bool(recombine)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def twist(dimTags, x, y, z, dx, dy, dz, ax, ay, az, angle, numElements=[], heights=[], recombine=False): """ gmsh.model.geo.twist(dimTags, x, y, z, dx, dy, dz, ax, ay, az, angle, numElements=[], heights=[], recombine=False) Extrude the entities `dimTags' in the built-in CAD representation, using a combined translation and rotation of `angle' radians, along (`dx', `dy', `dz') and around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az'). The angle should be strictly smaller than Pi. Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_numElements_, api_numElements_n_ = _ivectorint(numElements) api_heights_, api_heights_n_ = _ivectordouble(heights) ierr = c_int() lib.gmshModelGeoTwist( api_dimTags_, api_dimTags_n_, c_double(x), c_double(y), c_double(z), c_double(dx), c_double(dy), c_double(dz), c_double(ax), c_double(ay), c_double(az), c_double(angle), byref(api_outDimTags_), byref(api_outDimTags_n_), api_numElements_, api_numElements_n_, api_heights_, api_heights_n_, c_int(bool(recombine)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def translate(dimTags, dx, dy, dz): """ gmsh.model.geo.translate(dimTags, dx, dy, dz) Translate the entities `dimTags' in the built-in CAD representation along (`dx', `dy', `dz'). """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelGeoTranslate( api_dimTags_, api_dimTags_n_, c_double(dx), c_double(dy), c_double(dz), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def rotate(dimTags, x, y, z, ax, ay, az, angle): """ gmsh.model.geo.rotate(dimTags, x, y, z, ax, ay, az, angle) Rotate the entities `dimTags' in the built-in CAD representation by `angle' radians around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az'). """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelGeoRotate( api_dimTags_, api_dimTags_n_, c_double(x), c_double(y), c_double(z), c_double(ax), c_double(ay), c_double(az), c_double(angle), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def dilate(dimTags, x, y, z, a, b, c): """ gmsh.model.geo.dilate(dimTags, x, y, z, a, b, c) Scale the entities `dimTag' in the built-in CAD representation by factors `a', `b' and `c' along the three coordinate axes; use (`x', `y', `z') as the center of the homothetic transformation. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelGeoDilate( api_dimTags_, api_dimTags_n_, c_double(x), c_double(y), c_double(z), c_double(a), c_double(b), c_double(c), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def mirror(dimTags, a, b, c, d): """ gmsh.model.geo.mirror(dimTags, a, b, c, d) Mirror the entities `dimTag' in the built-in CAD representation, with respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelGeoMirror( api_dimTags_, api_dimTags_n_, c_double(a), c_double(b), c_double(c), c_double(d), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def symmetrize(dimTags, a, b, c, d): """ gmsh.model.geo.symmetrize(dimTags, a, b, c, d) Mirror the entities `dimTag' in the built-in CAD representation, with respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0. (This is a synonym for `mirror', which will be deprecated in a future release.) """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelGeoSymmetrize( api_dimTags_, api_dimTags_n_, c_double(a), c_double(b), c_double(c), c_double(d), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def copy(dimTags): """ gmsh.model.geo.copy(dimTags) Copy the entities `dimTags' in the built-in CAD representation; the new entities are returned in `outDimTags'. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGeoCopy( api_dimTags_, api_dimTags_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def remove(dimTags, recursive=False): """ gmsh.model.geo.remove(dimTags, recursive=False) Remove the entities `dimTags' in the built-in CAD representation. If `recursive' is true, remove all the entities on their boundaries, down to dimension 0. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelGeoRemove( api_dimTags_, api_dimTags_n_, c_int(bool(recursive)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def removeAllDuplicates(): """ gmsh.model.geo.removeAllDuplicates() Remove all duplicate entities in the built-in CAD representation (different entities at the same geometrical location). """ ierr = c_int() lib.gmshModelGeoRemoveAllDuplicates( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def splitCurve(tag, pointTags): """ gmsh.model.geo.splitCurve(tag, pointTags) Split the curve of tag `tag' in the built-in CAD representation, on the control points `pointTags'. Return the tags `curveTags' of the newly created curves. Return `curveTags'. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) api_curveTags_, api_curveTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelGeoSplitCurve( c_int(tag), api_pointTags_, api_pointTags_n_, byref(api_curveTags_), byref(api_curveTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_curveTags_, api_curveTags_n_.value) @staticmethod def getMaxTag(dim): """ gmsh.model.geo.getMaxTag(dim) Get the maximum tag of entities of dimension `dim' in the built-in CAD representation. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelGeoGetMaxTag( c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def setMaxTag(dim, maxTag): """ gmsh.model.geo.setMaxTag(dim, maxTag) Set the maximum tag `maxTag' for entities of dimension `dim' in the built- in CAD representation. """ ierr = c_int() lib.gmshModelGeoSetMaxTag( c_int(dim), c_int(maxTag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def addPhysicalGroup(dim, tags, tag=-1): """ gmsh.model.geo.addPhysicalGroup(dim, tags, tag=-1) Add a physical group of dimension `dim', grouping the entities with tags `tags' in the built-in CAD representation. Return the tag of the physical group, equal to `tag' if `tag' is positive, or a new tag if `tag' < 0. Return an integer value. """ api_tags_, api_tags_n_ = _ivectorint(tags) ierr = c_int() api_result_ = lib.gmshModelGeoAddPhysicalGroup( c_int(dim), api_tags_, api_tags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def removePhysicalGroups(dimTags=[]): """ gmsh.model.geo.removePhysicalGroups(dimTags=[]) Remove the physical groups `dimTags' from the built-in CAD representation. If `dimTags' is empty, remove all groups. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelGeoRemovePhysicalGroups( api_dimTags_, api_dimTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def synchronize(): """ gmsh.model.geo.synchronize() Synchronize the built-in CAD representation with the current Gmsh model. This can be called at any time, but since it involves a non trivial amount of processing, the number of synchronization points should normally be minimized. Without synchronization the entities in the built-in CAD representation are not available to any function outside of the built-in CAD kernel functions. """ ierr = c_int() lib.gmshModelGeoSynchronize( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class mesh: """ Built-in CAD kernel meshing constraints """ @staticmethod def setSize(dimTags, size): """ gmsh.model.geo.mesh.setSize(dimTags, size) Set a mesh size constraint on the entities `dimTags' in the built-in CAD kernel representation. Currently only entities of dimension 0 (points) are handled. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelGeoMeshSetSize( api_dimTags_, api_dimTags_n_, c_double(size), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setTransfiniteCurve(tag, nPoints, meshType="Progression", coef=1.): """ gmsh.model.geo.mesh.setTransfiniteCurve(tag, nPoints, meshType="Progression", coef=1.) Set a transfinite meshing constraint on the curve `tag' in the built-in CAD kernel representation, with `numNodes' nodes distributed according to `meshType' and `coef'. Currently supported types are "Progression" (geometrical progression with power `coef') and "Bump" (refinement toward both extremities of the curve). """ ierr = c_int() lib.gmshModelGeoMeshSetTransfiniteCurve( c_int(tag), c_int(nPoints), c_char_p(meshType.encode()), c_double(coef), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setTransfiniteSurface(tag, arrangement="Left", cornerTags=[]): """ gmsh.model.geo.mesh.setTransfiniteSurface(tag, arrangement="Left", cornerTags=[]) Set a transfinite meshing constraint on the surface `tag' in the built-in CAD kernel representation. `arrangement' describes the arrangement of the triangles when the surface is not flagged as recombined: currently supported values are "Left", "Right", "AlternateLeft" and "AlternateRight". `cornerTags' can be used to specify the (3 or 4) corners of the transfinite interpolation explicitly; specifying the corners explicitly is mandatory if the surface has more that 3 or 4 points on its boundary. """ api_cornerTags_, api_cornerTags_n_ = _ivectorint(cornerTags) ierr = c_int() lib.gmshModelGeoMeshSetTransfiniteSurface( c_int(tag), c_char_p(arrangement.encode()), api_cornerTags_, api_cornerTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setTransfiniteVolume(tag, cornerTags=[]): """ gmsh.model.geo.mesh.setTransfiniteVolume(tag, cornerTags=[]) Set a transfinite meshing constraint on the surface `tag' in the built-in CAD kernel representation. `cornerTags' can be used to specify the (6 or 8) corners of the transfinite interpolation explicitly. """ api_cornerTags_, api_cornerTags_n_ = _ivectorint(cornerTags) ierr = c_int() lib.gmshModelGeoMeshSetTransfiniteVolume( c_int(tag), api_cornerTags_, api_cornerTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setRecombine(dim, tag, angle=45.): """ gmsh.model.geo.mesh.setRecombine(dim, tag, angle=45.) Set a recombination meshing constraint on the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. Currently only entities of dimension 2 (to recombine triangles into quadrangles) are supported. """ ierr = c_int() lib.gmshModelGeoMeshSetRecombine( c_int(dim), c_int(tag), c_double(angle), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setSmoothing(dim, tag, val): """ gmsh.model.geo.mesh.setSmoothing(dim, tag, val) Set a smoothing meshing constraint on the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. `val' iterations of a Laplace smoother are applied. """ ierr = c_int() lib.gmshModelGeoMeshSetSmoothing( c_int(dim), c_int(tag), c_int(val), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setReverse(dim, tag, val=True): """ gmsh.model.geo.mesh.setReverse(dim, tag, val=True) Set a reverse meshing constraint on the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. If `val' is true, the mesh orientation will be reversed with respect to the natural mesh orientation (i.e. the orientation consistent with the orientation of the geometry). If `val' is false, the mesh is left as-is. """ ierr = c_int() lib.gmshModelGeoMeshSetReverse( c_int(dim), c_int(tag), c_int(bool(val)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setAlgorithm(dim, tag, val): """ gmsh.model.geo.mesh.setAlgorithm(dim, tag, val) Set the meshing algorithm on the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. Currently only supported for `dim' == 2. """ ierr = c_int() lib.gmshModelGeoMeshSetAlgorithm( c_int(dim), c_int(tag), c_int(val), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setSizeFromBoundary(dim, tag, val): """ gmsh.model.geo.mesh.setSizeFromBoundary(dim, tag, val) Force the mesh size to be extended from the boundary, or not, for the entity of dimension `dim' and tag `tag' in the built-in CAD kernel representation. Currently only supported for `dim' == 2. """ ierr = c_int() lib.gmshModelGeoMeshSetSizeFromBoundary( c_int(dim), c_int(tag), c_int(val), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class occ: """ OpenCASCADE CAD kernel functions """ @staticmethod def addPoint(x, y, z, meshSize=0., tag=-1): """ gmsh.model.occ.addPoint(x, y, z, meshSize=0., tag=-1) Add a geometrical point in the OpenCASCADE CAD representation, at coordinates (`x', `y', `z'). If `meshSize' is > 0, add a meshing constraint at that point. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the point. (Note that the point will be added in the current model only after `synchronize' is called. This behavior holds for all the entities added in the occ module.) Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddPoint( c_double(x), c_double(y), c_double(z), c_double(meshSize), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addLine(startTag, endTag, tag=-1): """ gmsh.model.occ.addLine(startTag, endTag, tag=-1) Add a straight line segment in the OpenCASCADE CAD representation, between the two points with tags `startTag' and `endTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the line. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddLine( c_int(startTag), c_int(endTag), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCircleArc(startTag, centerTag, endTag, tag=-1): """ gmsh.model.occ.addCircleArc(startTag, centerTag, endTag, tag=-1) Add a circle arc in the OpenCASCADE CAD representation, between the two points with tags `startTag' and `endTag', with center `centerTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the circle arc. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddCircleArc( c_int(startTag), c_int(centerTag), c_int(endTag), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCircle(x, y, z, r, tag=-1, angle1=0., angle2=2*pi): """ gmsh.model.occ.addCircle(x, y, z, r, tag=-1, angle1=0., angle2=2*pi) Add a circle of center (`x', `y', `z') and radius `r' in the OpenCASCADE CAD representation. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If `angle1' and `angle2' are specified, create a circle arc between the two angles. Return the tag of the circle. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddCircle( c_double(x), c_double(y), c_double(z), c_double(r), c_int(tag), c_double(angle1), c_double(angle2), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addEllipseArc(startTag, centerTag, majorTag, endTag, tag=-1): """ gmsh.model.occ.addEllipseArc(startTag, centerTag, majorTag, endTag, tag=-1) Add an ellipse arc in the OpenCASCADE CAD representation, between the two points `startTag' and `endTag', and with center `centerTag' and major axis point `majorTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the ellipse arc. Note that OpenCASCADE does not allow creating ellipse arcs with the major radius smaller than the minor radius. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddEllipseArc( c_int(startTag), c_int(centerTag), c_int(majorTag), c_int(endTag), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addEllipse(x, y, z, r1, r2, tag=-1, angle1=0., angle2=2*pi): """ gmsh.model.occ.addEllipse(x, y, z, r1, r2, tag=-1, angle1=0., angle2=2*pi) Add an ellipse of center (`x', `y', `z') and radii `r1' and `r2' along the x- and y-axes, respectively, in the OpenCASCADE CAD representation. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If `angle1' and `angle2' are specified, create an ellipse arc between the two angles. Return the tag of the ellipse. Note that OpenCASCADE does not allow creating ellipses with the major radius (along the x-axis) smaller than or equal to the minor radius (along the y-axis): rotate the shape or use `addCircle' in such cases. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddEllipse( c_double(x), c_double(y), c_double(z), c_double(r1), c_double(r2), c_int(tag), c_double(angle1), c_double(angle2), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addSpline(pointTags, tag=-1): """ gmsh.model.occ.addSpline(pointTags, tag=-1) Add a spline (C2 b-spline) curve in the OpenCASCADE CAD representation, going through the points `pointTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the spline curve. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) ierr = c_int() api_result_ = lib.gmshModelOccAddSpline( api_pointTags_, api_pointTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBSpline(pointTags, tag=-1, degree=3, weights=[], knots=[], multiplicities=[]): """ gmsh.model.occ.addBSpline(pointTags, tag=-1, degree=3, weights=[], knots=[], multiplicities=[]) Add a b-spline curve of degree `degree' in the OpenCASCADE CAD representation, with `pointTags' control points. If `weights', `knots' or `multiplicities' are not provided, default parameters are computed automatically. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the b-spline curve. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) api_weights_, api_weights_n_ = _ivectordouble(weights) api_knots_, api_knots_n_ = _ivectordouble(knots) api_multiplicities_, api_multiplicities_n_ = _ivectorint(multiplicities) ierr = c_int() api_result_ = lib.gmshModelOccAddBSpline( api_pointTags_, api_pointTags_n_, c_int(tag), c_int(degree), api_weights_, api_weights_n_, api_knots_, api_knots_n_, api_multiplicities_, api_multiplicities_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBezier(pointTags, tag=-1): """ gmsh.model.occ.addBezier(pointTags, tag=-1) Add a Bezier curve in the OpenCASCADE CAD representation, with `pointTags' control points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the Bezier curve. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) ierr = c_int() api_result_ = lib.gmshModelOccAddBezier( api_pointTags_, api_pointTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addWire(curveTags, tag=-1, checkClosed=False): """ gmsh.model.occ.addWire(curveTags, tag=-1, checkClosed=False) Add a wire (open or closed) in the OpenCASCADE CAD representation, formed by the curves `curveTags'. Note that an OpenCASCADE wire can be made of curves that share geometrically identical (but topologically different) points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the wire. Return an integer value. """ api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags) ierr = c_int() api_result_ = lib.gmshModelOccAddWire( api_curveTags_, api_curveTags_n_, c_int(tag), c_int(bool(checkClosed)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCurveLoop(curveTags, tag=-1): """ gmsh.model.occ.addCurveLoop(curveTags, tag=-1) Add a curve loop (a closed wire) in the OpenCASCADE CAD representation, formed by the curves `curveTags'. `curveTags' should contain tags of curves forming a closed loop. Note that an OpenCASCADE curve loop can be made of curves that share geometrically identical (but topologically different) points. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the curve loop. Return an integer value. """ api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags) ierr = c_int() api_result_ = lib.gmshModelOccAddCurveLoop( api_curveTags_, api_curveTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addRectangle(x, y, z, dx, dy, tag=-1, roundedRadius=0.): """ gmsh.model.occ.addRectangle(x, y, z, dx, dy, tag=-1, roundedRadius=0.) Add a rectangle in the OpenCASCADE CAD representation, with lower left corner at (`x', `y', `z') and upper right corner at (`x' + `dx', `y' + `dy', `z'). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Round the corners if `roundedRadius' is nonzero. Return the tag of the rectangle. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddRectangle( c_double(x), c_double(y), c_double(z), c_double(dx), c_double(dy), c_int(tag), c_double(roundedRadius), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addDisk(xc, yc, zc, rx, ry, tag=-1): """ gmsh.model.occ.addDisk(xc, yc, zc, rx, ry, tag=-1) Add a disk in the OpenCASCADE CAD representation, with center (`xc', `yc', `zc') and radius `rx' along the x-axis and `ry' along the y-axis. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the disk. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddDisk( c_double(xc), c_double(yc), c_double(zc), c_double(rx), c_double(ry), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addPlaneSurface(wireTags, tag=-1): """ gmsh.model.occ.addPlaneSurface(wireTags, tag=-1) Add a plane surface in the OpenCASCADE CAD representation, defined by one or more curve loops (or closed wires) `wireTags'. The first curve loop defines the exterior contour; additional curve loop define holes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface. Return an integer value. """ api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags) ierr = c_int() api_result_ = lib.gmshModelOccAddPlaneSurface( api_wireTags_, api_wireTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addSurfaceFilling(wireTag, tag=-1, pointTags=[]): """ gmsh.model.occ.addSurfaceFilling(wireTag, tag=-1, pointTags=[]) Add a surface in the OpenCASCADE CAD representation, filling the curve loop `wireTag'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface. If `pointTags' are provided, force the surface to pass through the given points. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) ierr = c_int() api_result_ = lib.gmshModelOccAddSurfaceFilling( c_int(wireTag), c_int(tag), api_pointTags_, api_pointTags_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBSplineFilling(wireTag, tag=-1, type=""): """ gmsh.model.occ.addBSplineFilling(wireTag, tag=-1, type="") Add a BSpline surface in the OpenCASCADE CAD representation, filling the curve loop `wireTag'. The curve loop should be made of 2, 3 or 4 BSpline curves. The optional `type' argument specifies the type of filling: "Stretch" creates the flattest patch, "Curved" (the default) creates the most rounded patch, and "Coons" creates a rounded patch with less depth than "Curved". If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddBSplineFilling( c_int(wireTag), c_int(tag), c_char_p(type.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBezierFilling(wireTag, tag=-1, type=""): """ gmsh.model.occ.addBezierFilling(wireTag, tag=-1, type="") Add a Bezier surface in the OpenCASCADE CAD representation, filling the curve loop `wireTag'. The curve loop should be made of 2, 3 or 4 Bezier curves. The optional `type' argument specifies the type of filling: "Stretch" creates the flattest patch, "Curved" (the default) creates the most rounded patch, and "Coons" creates a rounded patch with less depth than "Curved". If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddBezierFilling( c_int(wireTag), c_int(tag), c_char_p(type.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBSplineSurface(pointTags, numPointsU, tag=-1, degreeU=3, degreeV=3, weights=[], knotsU=[], knotsV=[], multiplicitiesU=[], multiplicitiesV=[], wireTags=[], wire3D=False): """ gmsh.model.occ.addBSplineSurface(pointTags, numPointsU, tag=-1, degreeU=3, degreeV=3, weights=[], knotsU=[], knotsV=[], multiplicitiesU=[], multiplicitiesV=[], wireTags=[], wire3D=False) Add a b-spline surface of degree `degreeU' x `degreeV' in the OpenCASCADE CAD representation, with `pointTags' control points given as a single vector [Pu1v1, ... Pu`numPointsU'v1, Pu1v2, ...]. If `weights', `knotsU', `knotsV', `multiplicitiesU' or `multiplicitiesV' are not provided, default parameters are computed automatically. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If `wireTags' is provided, trim the b-spline patch using the provided wires: the first wire defines the external contour, the others define holes. If `wire3D' is set, consider wire curves as 3D curves and project them on the b-spline surface; otherwise consider the wire curves as defined in the parametric space of the surface. Return the tag of the b-spline surface. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) api_weights_, api_weights_n_ = _ivectordouble(weights) api_knotsU_, api_knotsU_n_ = _ivectordouble(knotsU) api_knotsV_, api_knotsV_n_ = _ivectordouble(knotsV) api_multiplicitiesU_, api_multiplicitiesU_n_ = _ivectorint(multiplicitiesU) api_multiplicitiesV_, api_multiplicitiesV_n_ = _ivectorint(multiplicitiesV) api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags) ierr = c_int() api_result_ = lib.gmshModelOccAddBSplineSurface( api_pointTags_, api_pointTags_n_, c_int(numPointsU), c_int(tag), c_int(degreeU), c_int(degreeV), api_weights_, api_weights_n_, api_knotsU_, api_knotsU_n_, api_knotsV_, api_knotsV_n_, api_multiplicitiesU_, api_multiplicitiesU_n_, api_multiplicitiesV_, api_multiplicitiesV_n_, api_wireTags_, api_wireTags_n_, c_int(bool(wire3D)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBezierSurface(pointTags, numPointsU, tag=-1, wireTags=[], wire3D=False): """ gmsh.model.occ.addBezierSurface(pointTags, numPointsU, tag=-1, wireTags=[], wire3D=False) Add a Bezier surface in the OpenCASCADE CAD representation, with `pointTags' control points given as a single vector [Pu1v1, ... Pu`numPointsU'v1, Pu1v2, ...]. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. If `wireTags' is provided, trim the Bezier patch using the provided wires: the first wire defines the external contour, the others define holes. If `wire3D' is set, consider wire curves as 3D curves and project them on the Bezier surface; otherwise consider the wire curves as defined in the parametric space of the surface. Return the tag of the Bezier surface. Return an integer value. """ api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags) api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags) ierr = c_int() api_result_ = lib.gmshModelOccAddBezierSurface( api_pointTags_, api_pointTags_n_, c_int(numPointsU), c_int(tag), api_wireTags_, api_wireTags_n_, c_int(bool(wire3D)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addTrimmedSurface(surfaceTag, wireTags=[], wire3D=False, tag=-1): """ gmsh.model.occ.addTrimmedSurface(surfaceTag, wireTags=[], wire3D=False, tag=-1) Trim the surface `surfaceTag' with the wires `wireTags', replacing any existing trimming curves. The first wire defines the external contour, the others define holes. If `wire3D' is set, consider wire curves as 3D curves and project them on the surface; otherwise consider the wire curves as defined in the parametric space of the surface. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the trimmed surface. Return an integer value. """ api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags) ierr = c_int() api_result_ = lib.gmshModelOccAddTrimmedSurface( c_int(surfaceTag), api_wireTags_, api_wireTags_n_, c_int(bool(wire3D)), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addSurfaceLoop(surfaceTags, tag=-1, sewing=False): """ gmsh.model.occ.addSurfaceLoop(surfaceTags, tag=-1, sewing=False) Add a surface loop (a closed shell) in the OpenCASCADE CAD representation, formed by `surfaceTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface loop. Setting `sewing' allows to build a shell made of surfaces that share geometrically identical (but topologically different) curves. Return an integer value. """ api_surfaceTags_, api_surfaceTags_n_ = _ivectorint(surfaceTags) ierr = c_int() api_result_ = lib.gmshModelOccAddSurfaceLoop( api_surfaceTags_, api_surfaceTags_n_, c_int(tag), c_int(bool(sewing)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addVolume(shellTags, tag=-1): """ gmsh.model.occ.addVolume(shellTags, tag=-1) Add a volume (a region) in the OpenCASCADE CAD representation, defined by one or more surface loops `shellTags'. The first surface loop defines the exterior boundary; additional surface loop define holes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the volume. Return an integer value. """ api_shellTags_, api_shellTags_n_ = _ivectorint(shellTags) ierr = c_int() api_result_ = lib.gmshModelOccAddVolume( api_shellTags_, api_shellTags_n_, c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addSphere(xc, yc, zc, radius, tag=-1, angle1=-pi/2, angle2=pi/2, angle3=2*pi): """ gmsh.model.occ.addSphere(xc, yc, zc, radius, tag=-1, angle1=-pi/2, angle2=pi/2, angle3=2*pi) Add a sphere of center (`xc', `yc', `zc') and radius `r' in the OpenCASCADE CAD representation. The optional `angle1' and `angle2' arguments define the polar angle opening (from -Pi/2 to Pi/2). The optional `angle3' argument defines the azimuthal opening (from 0 to 2*Pi). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the sphere. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddSphere( c_double(xc), c_double(yc), c_double(zc), c_double(radius), c_int(tag), c_double(angle1), c_double(angle2), c_double(angle3), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addBox(x, y, z, dx, dy, dz, tag=-1): """ gmsh.model.occ.addBox(x, y, z, dx, dy, dz, tag=-1) Add a parallelepipedic box in the OpenCASCADE CAD representation, defined by a point (`x', `y', `z') and the extents along the x-, y- and z-axes. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the box. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddBox( c_double(x), c_double(y), c_double(z), c_double(dx), c_double(dy), c_double(dz), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCylinder(x, y, z, dx, dy, dz, r, tag=-1, angle=2*pi): """ gmsh.model.occ.addCylinder(x, y, z, dx, dy, dz, r, tag=-1, angle=2*pi) Add a cylinder in the OpenCASCADE CAD representation, defined by the center (`x', `y', `z') of its first circular face, the 3 components (`dx', `dy', `dz') of the vector defining its axis and its radius `r'. The optional `angle' argument defines the angular opening (from 0 to 2*Pi). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the cylinder. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddCylinder( c_double(x), c_double(y), c_double(z), c_double(dx), c_double(dy), c_double(dz), c_double(r), c_int(tag), c_double(angle), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addCone(x, y, z, dx, dy, dz, r1, r2, tag=-1, angle=2*pi): """ gmsh.model.occ.addCone(x, y, z, dx, dy, dz, r1, r2, tag=-1, angle=2*pi) Add a cone in the OpenCASCADE CAD representation, defined by the center (`x', `y', `z') of its first circular face, the 3 components of the vector (`dx', `dy', `dz') defining its axis and the two radii `r1' and `r2' of the faces (these radii can be zero). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. `angle' defines the optional angular opening (from 0 to 2*Pi). Return the tag of the cone. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddCone( c_double(x), c_double(y), c_double(z), c_double(dx), c_double(dy), c_double(dz), c_double(r1), c_double(r2), c_int(tag), c_double(angle), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addWedge(x, y, z, dx, dy, dz, tag=-1, ltx=0.): """ gmsh.model.occ.addWedge(x, y, z, dx, dy, dz, tag=-1, ltx=0.) Add a right angular wedge in the OpenCASCADE CAD representation, defined by the right-angle point (`x', `y', `z') and the 3 extends along the x-, y- and z-axes (`dx', `dy', `dz'). If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. The optional argument `ltx' defines the top extent along the x-axis. Return the tag of the wedge. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddWedge( c_double(x), c_double(y), c_double(z), c_double(dx), c_double(dy), c_double(dz), c_int(tag), c_double(ltx), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addTorus(x, y, z, r1, r2, tag=-1, angle=2*pi): """ gmsh.model.occ.addTorus(x, y, z, r1, r2, tag=-1, angle=2*pi) Add a torus in the OpenCASCADE CAD representation, defined by its center (`x', `y', `z') and its 2 radii `r' and `r2'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. The optional argument `angle' defines the angular opening (from 0 to 2*Pi). Return the tag of the wedge. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccAddTorus( c_double(x), c_double(y), c_double(z), c_double(r1), c_double(r2), c_int(tag), c_double(angle), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def addThruSections(wireTags, tag=-1, makeSolid=True, makeRuled=False, maxDegree=-1): """ gmsh.model.occ.addThruSections(wireTags, tag=-1, makeSolid=True, makeRuled=False, maxDegree=-1) Add a volume (if the optional argument `makeSolid' is set) or surfaces in the OpenCASCADE CAD representation, defined through the open or closed wires `wireTags'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. The new entities are returned in `outDimTags'. If the optional argument `makeRuled' is set, the surfaces created on the boundary are forced to be ruled surfaces. If `maxDegree' is positive, set the maximal degree of resulting surface. Return `outDimTags'. """ api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccAddThruSections( api_wireTags_, api_wireTags_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), c_int(tag), c_int(bool(makeSolid)), c_int(bool(makeRuled)), c_int(maxDegree), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def addThickSolid(volumeTag, excludeSurfaceTags, offset, tag=-1): """ gmsh.model.occ.addThickSolid(volumeTag, excludeSurfaceTags, offset, tag=-1) Add a hollowed volume in the OpenCASCADE CAD representation, built from an initial volume `volumeTag' and a set of faces from this volume `excludeSurfaceTags', which are to be removed. The remaining faces of the volume become the walls of the hollowed solid, with thickness `offset'. If `tag' is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return `outDimTags'. """ api_excludeSurfaceTags_, api_excludeSurfaceTags_n_ = _ivectorint(excludeSurfaceTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccAddThickSolid( c_int(volumeTag), api_excludeSurfaceTags_, api_excludeSurfaceTags_n_, c_double(offset), byref(api_outDimTags_), byref(api_outDimTags_n_), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def extrude(dimTags, dx, dy, dz, numElements=[], heights=[], recombine=False): """ gmsh.model.occ.extrude(dimTags, dx, dy, dz, numElements=[], heights=[], recombine=False) Extrude the entities `dimTags' in the OpenCASCADE CAD representation, using a translation along (`dx', `dy', `dz'). Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_numElements_, api_numElements_n_ = _ivectorint(numElements) api_heights_, api_heights_n_ = _ivectordouble(heights) ierr = c_int() lib.gmshModelOccExtrude( api_dimTags_, api_dimTags_n_, c_double(dx), c_double(dy), c_double(dz), byref(api_outDimTags_), byref(api_outDimTags_n_), api_numElements_, api_numElements_n_, api_heights_, api_heights_n_, c_int(bool(recombine)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def revolve(dimTags, x, y, z, ax, ay, az, angle, numElements=[], heights=[], recombine=False): """ gmsh.model.occ.revolve(dimTags, x, y, z, ax, ay, az, angle, numElements=[], heights=[], recombine=False) Extrude the entities `dimTags' in the OpenCASCADE CAD representation, using a rotation of `angle' radians around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az'). Return extruded entities in `outDimTags'. If `numElements' is not empty, also extrude the mesh: the entries in `numElements' give the number of elements in each layer. If `height' is not empty, it provides the (cumulative) height of the different layers, normalized to 1. When the mesh is extruded the angle should be strictly smaller than 2*Pi. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_numElements_, api_numElements_n_ = _ivectorint(numElements) api_heights_, api_heights_n_ = _ivectordouble(heights) ierr = c_int() lib.gmshModelOccRevolve( api_dimTags_, api_dimTags_n_, c_double(x), c_double(y), c_double(z), c_double(ax), c_double(ay), c_double(az), c_double(angle), byref(api_outDimTags_), byref(api_outDimTags_n_), api_numElements_, api_numElements_n_, api_heights_, api_heights_n_, c_int(bool(recombine)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def addPipe(dimTags, wireTag): """ gmsh.model.occ.addPipe(dimTags, wireTag) Add a pipe in the OpenCASCADE CAD representation, by extruding the entities `dimTags' along the wire `wireTag'. Return the pipe in `outDimTags'. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccAddPipe( api_dimTags_, api_dimTags_n_, c_int(wireTag), byref(api_outDimTags_), byref(api_outDimTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def fillet(volumeTags, curveTags, radii, removeVolume=True): """ gmsh.model.occ.fillet(volumeTags, curveTags, radii, removeVolume=True) Fillet the volumes `volumeTags' on the curves `curveTags' with radii `radii'. The `radii' vector can either contain a single radius, as many radii as `curveTags', or twice as many as `curveTags' (in which case different radii are provided for the begin and end points of the curves). Return the filleted entities in `outDimTags'. Remove the original volume if `removeVolume' is set. Return `outDimTags'. """ api_volumeTags_, api_volumeTags_n_ = _ivectorint(volumeTags) api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags) api_radii_, api_radii_n_ = _ivectordouble(radii) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccFillet( api_volumeTags_, api_volumeTags_n_, api_curveTags_, api_curveTags_n_, api_radii_, api_radii_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), c_int(bool(removeVolume)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def chamfer(volumeTags, curveTags, surfaceTags, distances, removeVolume=True): """ gmsh.model.occ.chamfer(volumeTags, curveTags, surfaceTags, distances, removeVolume=True) Chamfer the volumes `volumeTags' on the curves `curveTags' with distances `distances' measured on surfaces `surfaceTags'. The `distances' vector can either contain a single distance, as many distances as `curveTags' and `surfaceTags', or twice as many as `curveTags' and `surfaceTags' (in which case the first in each pair is measured on the corresponding surface in `surfaceTags', the other on the other adjacent surface). Return the chamfered entities in `outDimTags'. Remove the original volume if `removeVolume' is set. Return `outDimTags'. """ api_volumeTags_, api_volumeTags_n_ = _ivectorint(volumeTags) api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags) api_surfaceTags_, api_surfaceTags_n_ = _ivectorint(surfaceTags) api_distances_, api_distances_n_ = _ivectordouble(distances) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccChamfer( api_volumeTags_, api_volumeTags_n_, api_curveTags_, api_curveTags_n_, api_surfaceTags_, api_surfaceTags_n_, api_distances_, api_distances_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), c_int(bool(removeVolume)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def fuse(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True): """ gmsh.model.occ.fuse(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True) Compute the boolean union (the fusion) of the entities `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting entities in `outDimTags'. If `tag' is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if `removeObject' is set. Remove the tool if `removeTool' is set. Return `outDimTags', `outDimTagsMap'. """ api_objectDimTags_, api_objectDimTags_n_ = _ivectorpair(objectDimTags) api_toolDimTags_, api_toolDimTags_n_ = _ivectorpair(toolDimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_ = POINTER(POINTER(c_int))(), POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelOccFuse( api_objectDimTags_, api_objectDimTags_n_, api_toolDimTags_, api_toolDimTags_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), byref(api_outDimTagsMap_), byref(api_outDimTagsMap_n_), byref(api_outDimTagsMap_nn_), c_int(tag), c_int(bool(removeObject)), c_int(bool(removeTool)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorpair(api_outDimTags_, api_outDimTags_n_.value), _ovectorvectorpair(api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_)) @staticmethod def intersect(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True): """ gmsh.model.occ.intersect(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True) Compute the boolean intersection (the common parts) of the entities `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting entities in `outDimTags'. If `tag' is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if `removeObject' is set. Remove the tool if `removeTool' is set. Return `outDimTags', `outDimTagsMap'. """ api_objectDimTags_, api_objectDimTags_n_ = _ivectorpair(objectDimTags) api_toolDimTags_, api_toolDimTags_n_ = _ivectorpair(toolDimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_ = POINTER(POINTER(c_int))(), POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelOccIntersect( api_objectDimTags_, api_objectDimTags_n_, api_toolDimTags_, api_toolDimTags_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), byref(api_outDimTagsMap_), byref(api_outDimTagsMap_n_), byref(api_outDimTagsMap_nn_), c_int(tag), c_int(bool(removeObject)), c_int(bool(removeTool)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorpair(api_outDimTags_, api_outDimTags_n_.value), _ovectorvectorpair(api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_)) @staticmethod def cut(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True): """ gmsh.model.occ.cut(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True) Compute the boolean difference between the entities `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting entities in `outDimTags'. If `tag' is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if `removeObject' is set. Remove the tool if `removeTool' is set. Return `outDimTags', `outDimTagsMap'. """ api_objectDimTags_, api_objectDimTags_n_ = _ivectorpair(objectDimTags) api_toolDimTags_, api_toolDimTags_n_ = _ivectorpair(toolDimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_ = POINTER(POINTER(c_int))(), POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelOccCut( api_objectDimTags_, api_objectDimTags_n_, api_toolDimTags_, api_toolDimTags_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), byref(api_outDimTagsMap_), byref(api_outDimTagsMap_n_), byref(api_outDimTagsMap_nn_), c_int(tag), c_int(bool(removeObject)), c_int(bool(removeTool)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorpair(api_outDimTags_, api_outDimTags_n_.value), _ovectorvectorpair(api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_)) @staticmethod def fragment(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True): """ gmsh.model.occ.fragment(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True) Compute the boolean fragments (general fuse) of the entities `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting entities in `outDimTags'. If `tag' is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if `removeObject' is set. Remove the tool if `removeTool' is set. Return `outDimTags', `outDimTagsMap'. """ api_objectDimTags_, api_objectDimTags_n_ = _ivectorpair(objectDimTags) api_toolDimTags_, api_toolDimTags_n_ = _ivectorpair(toolDimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_ = POINTER(POINTER(c_int))(), POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshModelOccFragment( api_objectDimTags_, api_objectDimTags_n_, api_toolDimTags_, api_toolDimTags_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), byref(api_outDimTagsMap_), byref(api_outDimTagsMap_n_), byref(api_outDimTagsMap_nn_), c_int(tag), c_int(bool(removeObject)), c_int(bool(removeTool)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorpair(api_outDimTags_, api_outDimTags_n_.value), _ovectorvectorpair(api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_)) @staticmethod def translate(dimTags, dx, dy, dz): """ gmsh.model.occ.translate(dimTags, dx, dy, dz) Translate the entities `dimTags' in the OpenCASCADE CAD representation along (`dx', `dy', `dz'). """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelOccTranslate( api_dimTags_, api_dimTags_n_, c_double(dx), c_double(dy), c_double(dz), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def rotate(dimTags, x, y, z, ax, ay, az, angle): """ gmsh.model.occ.rotate(dimTags, x, y, z, ax, ay, az, angle) Rotate the entities `dimTags' in the OpenCASCADE CAD representation by `angle' radians around the axis of revolution defined by the point (`x', `y', `z') and the direction (`ax', `ay', `az'). """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelOccRotate( api_dimTags_, api_dimTags_n_, c_double(x), c_double(y), c_double(z), c_double(ax), c_double(ay), c_double(az), c_double(angle), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def dilate(dimTags, x, y, z, a, b, c): """ gmsh.model.occ.dilate(dimTags, x, y, z, a, b, c) Scale the entities `dimTags' in the OpenCASCADE CAD representation by factors `a', `b' and `c' along the three coordinate axes; use (`x', `y', `z') as the center of the homothetic transformation. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelOccDilate( api_dimTags_, api_dimTags_n_, c_double(x), c_double(y), c_double(z), c_double(a), c_double(b), c_double(c), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def mirror(dimTags, a, b, c, d): """ gmsh.model.occ.mirror(dimTags, a, b, c, d) Mirror the entities `dimTags' in the OpenCASCADE CAD representation, with respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelOccMirror( api_dimTags_, api_dimTags_n_, c_double(a), c_double(b), c_double(c), c_double(d), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def symmetrize(dimTags, a, b, c, d): """ gmsh.model.occ.symmetrize(dimTags, a, b, c, d) Mirror the entities `dimTags' in the OpenCASCADE CAD representation, with respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0. (This is a synonym for `mirror', which will be deprecated in a future release.) """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelOccSymmetrize( api_dimTags_, api_dimTags_n_, c_double(a), c_double(b), c_double(c), c_double(d), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def affineTransform(dimTags, a): """ gmsh.model.occ.affineTransform(dimTags, a) Apply a general affine transformation matrix `a' (16 entries of a 4x4 matrix, by row; only the 12 first can be provided for convenience) to the entities `dimTags' in the OpenCASCADE CAD representation. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_a_, api_a_n_ = _ivectordouble(a) ierr = c_int() lib.gmshModelOccAffineTransform( api_dimTags_, api_dimTags_n_, api_a_, api_a_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def copy(dimTags): """ gmsh.model.occ.copy(dimTags) Copy the entities `dimTags' in the OpenCASCADE CAD representation; the new entities are returned in `outDimTags'. Return `outDimTags'. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccCopy( api_dimTags_, api_dimTags_n_, byref(api_outDimTags_), byref(api_outDimTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def remove(dimTags, recursive=False): """ gmsh.model.occ.remove(dimTags, recursive=False) Remove the entities `dimTags' in the OpenCASCADE CAD representation. If `recursive' is true, remove all the entities on their boundaries, down to dimension 0. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelOccRemove( api_dimTags_, api_dimTags_n_, c_int(bool(recursive)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def removeAllDuplicates(): """ gmsh.model.occ.removeAllDuplicates() Remove all duplicate entities in the OpenCASCADE CAD representation (different entities at the same geometrical location) after intersecting (using boolean fragments) all highest dimensional entities. """ ierr = c_int() lib.gmshModelOccRemoveAllDuplicates( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def healShapes(dimTags=[], tolerance=1e-8, fixDegenerated=True, fixSmallEdges=True, fixSmallFaces=True, sewFaces=True, makeSolids=True): """ gmsh.model.occ.healShapes(dimTags=[], tolerance=1e-8, fixDegenerated=True, fixSmallEdges=True, fixSmallFaces=True, sewFaces=True, makeSolids=True) Apply various healing procedures to the entities `dimTags' (or to all the entities in the model if `dimTags' is empty) in the OpenCASCADE CAD representation. Return the healed entities in `outDimTags'. Available healing options are listed in the Gmsh reference manual. Return `outDimTags'. """ api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelOccHealShapes( byref(api_outDimTags_), byref(api_outDimTags_n_), api_dimTags_, api_dimTags_n_, c_double(tolerance), c_int(bool(fixDegenerated)), c_int(bool(fixSmallEdges)), c_int(bool(fixSmallFaces)), c_int(bool(sewFaces)), c_int(bool(makeSolids)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def importShapes(fileName, highestDimOnly=True, format=""): """ gmsh.model.occ.importShapes(fileName, highestDimOnly=True, format="") Import BREP, STEP or IGES shapes from the file `fileName' in the OpenCASCADE CAD representation. The imported entities are returned in `outDimTags'. If the optional argument `highestDimOnly' is set, only import the highest dimensional entities in the file. The optional argument `format' can be used to force the format of the file (currently "brep", "step" or "iges"). Return `outDimTags'. """ api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccImportShapes( c_char_p(fileName.encode()), byref(api_outDimTags_), byref(api_outDimTags_n_), c_int(bool(highestDimOnly)), c_char_p(format.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value) @staticmethod def getEntities(dim=-1): """ gmsh.model.occ.getEntities(dim=-1) Get all the OpenCASCADE entities. If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0). The entities are returned as a vector of (dim, tag) integer pairs. Return `dimTags'. """ api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccGetEntities( byref(api_dimTags_), byref(api_dimTags_n_), c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_dimTags_, api_dimTags_n_.value) @staticmethod def getEntitiesInBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax, dim=-1): """ gmsh.model.occ.getEntitiesInBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax, dim=-1) Get the OpenCASCADE entities in the bounding box defined by the two points (`xmin', `ymin', `zmin') and (`xmax', `ymax', `zmax'). If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0). Return `tags'. """ api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshModelOccGetEntitiesInBoundingBox( c_double(xmin), c_double(ymin), c_double(zmin), c_double(xmax), c_double(ymax), c_double(zmax), byref(api_tags_), byref(api_tags_n_), c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorpair(api_tags_, api_tags_n_.value) @staticmethod def getBoundingBox(dim, tag): """ gmsh.model.occ.getBoundingBox(dim, tag) Get the bounding box (`xmin', `ymin', `zmin'), (`xmax', `ymax', `zmax') of the OpenCASCADE entity of dimension `dim' and tag `tag'. Return `xmin', `ymin', `zmin', `xmax', `ymax', `zmax'. """ api_xmin_ = c_double() api_ymin_ = c_double() api_zmin_ = c_double() api_xmax_ = c_double() api_ymax_ = c_double() api_zmax_ = c_double() ierr = c_int() lib.gmshModelOccGetBoundingBox( c_int(dim), c_int(tag), byref(api_xmin_), byref(api_ymin_), byref(api_zmin_), byref(api_xmax_), byref(api_ymax_), byref(api_zmax_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_xmin_.value, api_ymin_.value, api_zmin_.value, api_xmax_.value, api_ymax_.value, api_zmax_.value) @staticmethod def getMass(dim, tag): """ gmsh.model.occ.getMass(dim, tag) Get the mass of the OpenCASCADE entity of dimension `dim' and tag `tag'. Return `mass'. """ api_mass_ = c_double() ierr = c_int() lib.gmshModelOccGetMass( c_int(dim), c_int(tag), byref(api_mass_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_mass_.value @staticmethod def getCenterOfMass(dim, tag): """ gmsh.model.occ.getCenterOfMass(dim, tag) Get the center of mass of the OpenCASCADE entity of dimension `dim' and tag `tag'. Return `x', `y', `z'. """ api_x_ = c_double() api_y_ = c_double() api_z_ = c_double() ierr = c_int() lib.gmshModelOccGetCenterOfMass( c_int(dim), c_int(tag), byref(api_x_), byref(api_y_), byref(api_z_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_x_.value, api_y_.value, api_z_.value) @staticmethod def getMatrixOfInertia(dim, tag): """ gmsh.model.occ.getMatrixOfInertia(dim, tag) Get the matrix of inertia (by row) of the OpenCASCADE entity of dimension `dim' and tag `tag'. Return `mat'. """ api_mat_, api_mat_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshModelOccGetMatrixOfInertia( c_int(dim), c_int(tag), byref(api_mat_), byref(api_mat_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_mat_, api_mat_n_.value) @staticmethod def getMaxTag(dim): """ gmsh.model.occ.getMaxTag(dim) Get the maximum tag of entities of dimension `dim' in the OpenCASCADE CAD representation. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshModelOccGetMaxTag( c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def setMaxTag(dim, maxTag): """ gmsh.model.occ.setMaxTag(dim, maxTag) Set the maximum tag `maxTag' for entities of dimension `dim' in the OpenCASCADE CAD representation. """ ierr = c_int() lib.gmshModelOccSetMaxTag( c_int(dim), c_int(maxTag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def synchronize(): """ gmsh.model.occ.synchronize() Synchronize the OpenCASCADE CAD representation with the current Gmsh model. This can be called at any time, but since it involves a non trivial amount of processing, the number of synchronization points should normally be minimized. Without synchronization the entities in the OpenCASCADE CAD representation are not available to any function outside of the OpenCASCADE CAD kernel functions. """ ierr = c_int() lib.gmshModelOccSynchronize( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class mesh: """ OpenCASCADE CAD kernel meshing constraints """ @staticmethod def setSize(dimTags, size): """ gmsh.model.occ.mesh.setSize(dimTags, size) Set a mesh size constraint on the entities `dimTags' in the OpenCASCADE CAD representation. Currently only entities of dimension 0 (points) are handled. """ api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags) ierr = c_int() lib.gmshModelOccMeshSetSize( api_dimTags_, api_dimTags_n_, c_double(size), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class view: """ Post-processing view functions """ @staticmethod def add(name, tag=-1): """ gmsh.view.add(name, tag=-1) Add a new post-processing view, with name `name'. If `tag' is positive use it (and remove the view with that tag if it already exists), otherwise associate a new tag. Return the view tag. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshViewAdd( c_char_p(name.encode()), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def remove(tag): """ gmsh.view.remove(tag) Remove the view with tag `tag'. """ ierr = c_int() lib.gmshViewRemove( c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getIndex(tag): """ gmsh.view.getIndex(tag) Get the index of the view with tag `tag' in the list of currently loaded views. This dynamic index (it can change when views are removed) is used to access view options. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshViewGetIndex( c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def getTags(): """ gmsh.view.getTags() Get the tags of all views. Return `tags'. """ api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() lib.gmshViewGetTags( byref(api_tags_), byref(api_tags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorint(api_tags_, api_tags_n_.value) @staticmethod def addModelData(tag, step, modelName, dataType, tags, data, time=0., numComponents=-1, partition=0): """ gmsh.view.addModelData(tag, step, modelName, dataType, tags, data, time=0., numComponents=-1, partition=0) Add model-based post-processing data to the view with tag `tag'. `modelName' identifies the model the data is attached to. `dataType' specifies the type of data, currently either "NodeData", "ElementData" or "ElementNodeData". `step' specifies the identifier (>= 0) of the data in a sequence. `tags' gives the tags of the nodes or elements in the mesh to which the data is associated. `data' is a vector of the same length as `tags': each entry is the vector of double precision numbers representing the data associated with the corresponding tag. The optional `time' argument associate a time value with the data. `numComponents' gives the number of data components (1 for scalar data, 3 for vector data, etc.) per entity; if negative, it is automatically inferred (when possible) from the input data. `partition' allows to specify data in several sub-sets. """ api_tags_, api_tags_n_ = _ivectorsize(tags) api_data_, api_data_n_, api_data_nn_ = _ivectorvectordouble(data) ierr = c_int() lib.gmshViewAddModelData( c_int(tag), c_int(step), c_char_p(modelName.encode()), c_char_p(dataType.encode()), api_tags_, api_tags_n_, api_data_, api_data_n_, api_data_nn_, c_double(time), c_int(numComponents), c_int(partition), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def addHomogeneousModelData(tag, step, modelName, dataType, tags, data, time=0., numComponents=-1, partition=0): """ gmsh.view.addHomogeneousModelData(tag, step, modelName, dataType, tags, data, time=0., numComponents=-1, partition=0) Add homogeneous model-based post-processing data to the view with tag `tag'. The arguments have the same meaning as in `addModelData', except that `data' is supposed to be homogeneous and is thus flattened in a single vector. For data types that can lead to different data sizes per tag (like "ElementNodeData"), the data should be padded. """ api_tags_, api_tags_n_ = _ivectorsize(tags) api_data_, api_data_n_ = _ivectordouble(data) ierr = c_int() lib.gmshViewAddHomogeneousModelData( c_int(tag), c_int(step), c_char_p(modelName.encode()), c_char_p(dataType.encode()), api_tags_, api_tags_n_, api_data_, api_data_n_, c_double(time), c_int(numComponents), c_int(partition), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getModelData(tag, step): """ gmsh.view.getModelData(tag, step) Get model-based post-processing data from the view with tag `tag' at step `step'. Return the `data' associated to the nodes or the elements with tags `tags', as well as the `dataType' and the number of components `numComponents'. Return `dataType', `tags', `data', `time', `numComponents'. """ api_dataType_ = c_char_p() api_tags_, api_tags_n_ = POINTER(c_size_t)(), c_size_t() api_data_, api_data_n_, api_data_nn_ = POINTER(POINTER(c_double))(), POINTER(c_size_t)(), c_size_t() api_time_ = c_double() api_numComponents_ = c_int() ierr = c_int() lib.gmshViewGetModelData( c_int(tag), c_int(step), byref(api_dataType_), byref(api_tags_), byref(api_tags_n_), byref(api_data_), byref(api_data_n_), byref(api_data_nn_), byref(api_time_), byref(api_numComponents_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ostring(api_dataType_), _ovectorsize(api_tags_, api_tags_n_.value), _ovectorvectordouble(api_data_, api_data_n_, api_data_nn_), api_time_.value, api_numComponents_.value) @staticmethod def getHomogeneousModelData(tag, step): """ gmsh.view.getHomogeneousModelData(tag, step) Get homogeneous model-based post-processing data from the view with tag `tag' at step `step'. The arguments have the same meaning as in `getModelData', except that `data' is returned flattened in a single vector, with the appropriate padding if necessary. Return `dataType', `tags', `data', `time', `numComponents'. """ api_dataType_ = c_char_p() api_tags_, api_tags_n_ = POINTER(c_size_t)(), c_size_t() api_data_, api_data_n_ = POINTER(c_double)(), c_size_t() api_time_ = c_double() api_numComponents_ = c_int() ierr = c_int() lib.gmshViewGetHomogeneousModelData( c_int(tag), c_int(step), byref(api_dataType_), byref(api_tags_), byref(api_tags_n_), byref(api_data_), byref(api_data_n_), byref(api_time_), byref(api_numComponents_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ostring(api_dataType_), _ovectorsize(api_tags_, api_tags_n_.value), _ovectordouble(api_data_, api_data_n_.value), api_time_.value, api_numComponents_.value) @staticmethod def addListData(tag, dataType, numEle, data): """ gmsh.view.addListData(tag, dataType, numEle, data) Add list-based post-processing data to the view with tag `tag'. List-based datasets are independent from any model and any mesh. `dataType' identifies the data by concatenating the field type ("S" for scalar, "V" for vector, "T" for tensor) and the element type ("P" for point, "L" for line, "T" for triangle, "S" for tetrahedron, "I" for prism, "H" for hexaHedron, "Y" for pyramid). For example `dataType' should be "ST" for a scalar field on triangles. `numEle' gives the number of elements in the data. `data' contains the data for the `numEle' elements, concatenated, with node coordinates followed by values per node, repeated for each step: [e1x1, ..., e1xn, e1y1, ..., e1yn, e1z1, ..., e1zn, e1v1..., e1vN, e2x1, ...]. """ api_data_, api_data_n_ = _ivectordouble(data) ierr = c_int() lib.gmshViewAddListData( c_int(tag), c_char_p(dataType.encode()), c_int(numEle), api_data_, api_data_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getListData(tag): """ gmsh.view.getListData(tag) Get list-based post-processing data from the view with tag `tag'. Return the types `dataTypes', the number of elements `numElements' for each data type and the `data' for each data type. Return `dataType', `numElements', `data'. """ api_dataType_, api_dataType_n_ = POINTER(POINTER(c_char))(), c_size_t() api_numElements_, api_numElements_n_ = POINTER(c_int)(), c_size_t() api_data_, api_data_n_, api_data_nn_ = POINTER(POINTER(c_double))(), POINTER(c_size_t)(), c_size_t() ierr = c_int() lib.gmshViewGetListData( c_int(tag), byref(api_dataType_), byref(api_dataType_n_), byref(api_numElements_), byref(api_numElements_n_), byref(api_data_), byref(api_data_n_), byref(api_data_nn_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectorstring(api_dataType_, api_dataType_n_.value), _ovectorint(api_numElements_, api_numElements_n_.value), _ovectorvectordouble(api_data_, api_data_n_, api_data_nn_)) @staticmethod def addListDataString(tag, coord, data, style=[]): """ gmsh.view.addListDataString(tag, coord, data, style=[]) Add a string to a list-based post-processing view with tag `tag'. If `coord' contains 3 coordinates the string is positioned in the 3D model space ("3D string"); if it contains 2 coordinates it is positioned in the 2D graphics viewport ("2D string"). `data' contains one or more (for multistep views) strings. `style' contains key-value pairs of styling parameters, concatenated. Available keys are "Font" (possible values: "Times-Roman", "Times-Bold", "Times-Italic", "Times-BoldItalic", "Helvetica", "Helvetica-Bold", "Helvetica-Oblique", "Helvetica- BoldOblique", "Courier", "Courier-Bold", "Courier-Oblique", "Courier- BoldOblique", "Symbol", "ZapfDingbats", "Screen"), "FontSize" and "Align" (possible values: "Left" or "BottomLeft", "Center" or "BottomCenter", "Right" or "BottomRight", "TopLeft", "TopCenter", "TopRight", "CenterLeft", "CenterCenter", "CenterRight"). """ api_coord_, api_coord_n_ = _ivectordouble(coord) api_data_, api_data_n_ = _ivectorstring(data) api_style_, api_style_n_ = _ivectorstring(style) ierr = c_int() lib.gmshViewAddListDataString( c_int(tag), api_coord_, api_coord_n_, api_data_, api_data_n_, api_style_, api_style_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getListDataStrings(tag, dim): """ gmsh.view.getListDataStrings(tag, dim) Get list-based post-processing data strings (2D strings if `dim' = 2, 3D strings if `dim' = 3) from the view with tag `tag'. Return the coordinates in `coord', the strings in `data' and the styles in `style'. Return `coord', `data', `style'. """ api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t() api_data_, api_data_n_ = POINTER(POINTER(c_char))(), c_size_t() api_style_, api_style_n_ = POINTER(POINTER(c_char))(), c_size_t() ierr = c_int() lib.gmshViewGetListDataStrings( c_int(tag), c_int(dim), byref(api_coord_), byref(api_coord_n_), byref(api_data_), byref(api_data_n_), byref(api_style_), byref(api_style_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( _ovectordouble(api_coord_, api_coord_n_.value), _ovectorstring(api_data_, api_data_n_.value), _ovectorstring(api_style_, api_style_n_.value)) @staticmethod def setInterpolationMatrices(tag, type, d, coef, exp, dGeo=0, coefGeo=[], expGeo=[]): """ gmsh.view.setInterpolationMatrices(tag, type, d, coef, exp, dGeo=0, coefGeo=[], expGeo=[]) Set interpolation matrices for the element family `type' ("Line", "Triangle", "Quadrangle", "Tetrahedron", "Hexahedron", "Prism", "Pyramid") in the view `tag'. The approximation of the values over an element is written as a linear combination of `d' basis functions f_i(u, v, w) = sum_(j = 0, ..., `d' - 1) `coef'[i][j] u^`exp'[j][0] v^`exp'[j][1] w^`exp'[j][2], i = 0, ..., `d'-1, with u, v, w the coordinates in the reference element. The `coef' matrix (of size `d' x `d') and the `exp' matrix (of size `d' x 3) are stored as vectors, by row. If `dGeo' is positive, use `coefGeo' and `expGeo' to define the interpolation of the x, y, z coordinates of the element in terms of the u, v, w coordinates, in exactly the same way. If `d' < 0, remove the interpolation matrices. """ api_coef_, api_coef_n_ = _ivectordouble(coef) api_exp_, api_exp_n_ = _ivectordouble(exp) api_coefGeo_, api_coefGeo_n_ = _ivectordouble(coefGeo) api_expGeo_, api_expGeo_n_ = _ivectordouble(expGeo) ierr = c_int() lib.gmshViewSetInterpolationMatrices( c_int(tag), c_char_p(type.encode()), c_int(d), api_coef_, api_coef_n_, api_exp_, api_exp_n_, c_int(dGeo), api_coefGeo_, api_coefGeo_n_, api_expGeo_, api_expGeo_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def addAlias(refTag, copyOptions=False, tag=-1): """ gmsh.view.addAlias(refTag, copyOptions=False, tag=-1) Add a post-processing view as an `alias' of the reference view with tag `refTag'. If `copyOptions' is set, copy the options of the reference view. If `tag' is positive use it (and remove the view with that tag if it already exists), otherwise associate a new tag. Return the view tag. Return an integer value. """ ierr = c_int() api_result_ = lib.gmshViewAddAlias( c_int(refTag), c_int(bool(copyOptions)), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def copyOptions(refTag, tag): """ gmsh.view.copyOptions(refTag, tag) Copy the options from the view with tag `refTag' to the view with tag `tag'. """ ierr = c_int() lib.gmshViewCopyOptions( c_int(refTag), c_int(tag), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def combine(what, how, remove=True, copyOptions=True): """ gmsh.view.combine(what, how, remove=True, copyOptions=True) Combine elements (if `what' == "elements") or steps (if `what' == "steps") of all views (`how' == "all"), all visible views (`how' == "visible") or all views having the same name (`how' == "name"). Remove original views if `remove' is set. """ ierr = c_int() lib.gmshViewCombine( c_char_p(what.encode()), c_char_p(how.encode()), c_int(bool(remove)), c_int(bool(copyOptions)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def probe(tag, x, y, z, step=-1, numComp=-1, gradient=False, tolerance=0., xElemCoord=[], yElemCoord=[], zElemCoord=[], dim=-1): """ gmsh.view.probe(tag, x, y, z, step=-1, numComp=-1, gradient=False, tolerance=0., xElemCoord=[], yElemCoord=[], zElemCoord=[], dim=-1) Probe the view `tag' for its `value' at point (`x', `y', `z'). Return only the value at step `step' is `step' is positive. Return only values with `numComp' if `numComp' is positive. Return the gradient of the `value' if `gradient' is set. Probes with a geometrical tolerance (in the reference unit cube) of `tolerance' if `tolerance' is not zero. Return the result from the element described by its coordinates if `xElementCoord', `yElementCoord' and `zElementCoord' are provided. If `dim' is >= 0, return only elements of the specified dimension. Return `value'. """ api_value_, api_value_n_ = POINTER(c_double)(), c_size_t() api_xElemCoord_, api_xElemCoord_n_ = _ivectordouble(xElemCoord) api_yElemCoord_, api_yElemCoord_n_ = _ivectordouble(yElemCoord) api_zElemCoord_, api_zElemCoord_n_ = _ivectordouble(zElemCoord) ierr = c_int() lib.gmshViewProbe( c_int(tag), c_double(x), c_double(y), c_double(z), byref(api_value_), byref(api_value_n_), c_int(step), c_int(numComp), c_int(bool(gradient)), c_double(tolerance), api_xElemCoord_, api_xElemCoord_n_, api_yElemCoord_, api_yElemCoord_n_, api_zElemCoord_, api_zElemCoord_n_, c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_value_, api_value_n_.value) @staticmethod def write(tag, fileName, append=False): """ gmsh.view.write(tag, fileName, append=False) Write the view to a file `fileName'. The export format is determined by the file extension. Append to the file if `append' is set. """ ierr = c_int() lib.gmshViewWrite( c_int(tag), c_char_p(fileName.encode()), c_int(bool(append)), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setVisibilityPerWindow(tag, value, windowIndex=0): """ gmsh.view.setVisibilityPerWindow(tag, value, windowIndex=0) Set the global visibility of the view `tag' per window to `value', where `windowIndex' identifies the window in the window list. """ ierr = c_int() lib.gmshViewSetVisibilityPerWindow( c_int(tag), c_int(value), c_int(windowIndex), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class plugin: """ Plugin functions """ @staticmethod def setNumber(name, option, value): """ gmsh.plugin.setNumber(name, option, value) Set the numerical option `option' to the value `value' for plugin `name'. """ ierr = c_int() lib.gmshPluginSetNumber( c_char_p(name.encode()), c_char_p(option.encode()), c_double(value), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setString(name, option, value): """ gmsh.plugin.setString(name, option, value) Set the string option `option' to the value `value' for plugin `name'. """ ierr = c_int() lib.gmshPluginSetString( c_char_p(name.encode()), c_char_p(option.encode()), c_char_p(value.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def run(name): """ gmsh.plugin.run(name) Run the plugin `name'. """ ierr = c_int() lib.gmshPluginRun( c_char_p(name.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class graphics: """ Graphics functions """ @staticmethod def draw(): """ gmsh.graphics.draw() Draw all the OpenGL scenes. """ ierr = c_int() lib.gmshGraphicsDraw( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class fltk: """ FLTK graphical user interface functions """ @staticmethod def initialize(): """ gmsh.fltk.initialize() Create the FLTK graphical user interface. Can only be called in the main thread. """ ierr = c_int() lib.gmshFltkInitialize( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def wait(time=-1.): """ gmsh.fltk.wait(time=-1.) Wait at most `time' seconds for user interface events and return. If `time' < 0, wait indefinitely. First automatically create the user interface if it has not yet been initialized. Can only be called in the main thread. """ ierr = c_int() lib.gmshFltkWait( c_double(time), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def update(): """ gmsh.fltk.update() Update the user interface (potentially creating new widgets and windows). First automatically create the user interface if it has not yet been initialized. Can only be called in the main thread: use `awake("update")' to trigger an update of the user interface from another thread. """ ierr = c_int() lib.gmshFltkUpdate( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def awake(action=""): """ gmsh.fltk.awake(action="") Awake the main user interface thread and process pending events, and optionally perform an action (currently the only `action' allowed is "update"). """ ierr = c_int() lib.gmshFltkAwake( c_char_p(action.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def lock(): """ gmsh.fltk.lock() Block the current thread until it can safely modify the user interface. """ ierr = c_int() lib.gmshFltkLock( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def unlock(): """ gmsh.fltk.unlock() Release the lock that was set using lock. """ ierr = c_int() lib.gmshFltkUnlock( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def run(): """ gmsh.fltk.run() Run the event loop of the graphical user interface, i.e. repeatedly call `wait()'. First automatically create the user interface if it has not yet been initialized. Can only be called in the main thread. """ ierr = c_int() lib.gmshFltkRun( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def isAvailable(): """ gmsh.fltk.isAvailable() Check if the user interface is available (e.g. to detect if it has been closed). Return an integer value. """ ierr = c_int() api_result_ = lib.gmshFltkIsAvailable( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def selectEntities(dim=-1): """ gmsh.fltk.selectEntities(dim=-1) Select entities in the user interface. If `dim' is >= 0, return only the entities of the specified dimension (e.g. points if `dim' == 0). Return an integer value, `dimTags'. """ api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() api_result_ = lib.gmshFltkSelectEntities( byref(api_dimTags_), byref(api_dimTags_n_), c_int(dim), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_result_, _ovectorpair(api_dimTags_, api_dimTags_n_.value)) @staticmethod def selectElements(): """ gmsh.fltk.selectElements() Select elements in the user interface. Return an integer value, `elementTags'. """ api_elementTags_, api_elementTags_n_ = POINTER(c_size_t)(), c_size_t() ierr = c_int() api_result_ = lib.gmshFltkSelectElements( byref(api_elementTags_), byref(api_elementTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_result_, _ovectorsize(api_elementTags_, api_elementTags_n_.value)) @staticmethod def selectViews(): """ gmsh.fltk.selectViews() Select views in the user interface. Return an integer value, `viewTags'. """ api_viewTags_, api_viewTags_n_ = POINTER(c_int)(), c_size_t() ierr = c_int() api_result_ = lib.gmshFltkSelectViews( byref(api_viewTags_), byref(api_viewTags_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return ( api_result_, _ovectorint(api_viewTags_, api_viewTags_n_.value)) @staticmethod def splitCurrentWindow(how="v", ratio=0.5): """ gmsh.fltk.splitCurrentWindow(how="v", ratio=0.5) Split the current window horizontally (if `how' = "h") or vertically (if `how' = "v"), using ratio `ratio'. If `how' = "u", restore a single window. """ ierr = c_int() lib.gmshFltkSplitCurrentWindow( c_char_p(how.encode()), c_double(ratio), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setCurrentWindow(windowIndex=0): """ gmsh.fltk.setCurrentWindow(windowIndex=0) Set the current window by speficying its index (starting at 0) in the list of all windows. When new windows are created by splits, new windows are appended at the end of the list. """ ierr = c_int() lib.gmshFltkSetCurrentWindow( c_int(windowIndex), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class onelab: """ ONELAB server functions """ @staticmethod def set(data, format="json"): """ gmsh.onelab.set(data, format="json") Set one or more parameters in the ONELAB database, encoded in `format'. """ ierr = c_int() lib.gmshOnelabSet( c_char_p(data.encode()), c_char_p(format.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def get(name="", format="json"): """ gmsh.onelab.get(name="", format="json") Get all the parameters (or a single one if `name' is specified) from the ONELAB database, encoded in `format'. Return `data'. """ api_data_ = c_char_p() ierr = c_int() lib.gmshOnelabGet( byref(api_data_), c_char_p(name.encode()), c_char_p(format.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ostring(api_data_) @staticmethod def setNumber(name, value): """ gmsh.onelab.setNumber(name, value) Set the value of the number parameter `name' in the ONELAB database. Create the parameter if it does not exist; update the value if the parameter exists. """ api_value_, api_value_n_ = _ivectordouble(value) ierr = c_int() lib.gmshOnelabSetNumber( c_char_p(name.encode()), api_value_, api_value_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def setString(name, value): """ gmsh.onelab.setString(name, value) Set the value of the string parameter `name' in the ONELAB database. Create the parameter if it does not exist; update the value if the parameter exists. """ api_value_, api_value_n_ = _ivectorstring(value) ierr = c_int() lib.gmshOnelabSetString( c_char_p(name.encode()), api_value_, api_value_n_, byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getNumber(name): """ gmsh.onelab.getNumber(name) Get the value of the number parameter `name' from the ONELAB database. Return an empty vector if the parameter does not exist. Return `value'. """ api_value_, api_value_n_ = POINTER(c_double)(), c_size_t() ierr = c_int() lib.gmshOnelabGetNumber( c_char_p(name.encode()), byref(api_value_), byref(api_value_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectordouble(api_value_, api_value_n_.value) @staticmethod def getString(name): """ gmsh.onelab.getString(name) Get the value of the string parameter `name' from the ONELAB database. Return an empty vector if the parameter does not exist. Return `value'. """ api_value_, api_value_n_ = POINTER(POINTER(c_char))(), c_size_t() ierr = c_int() lib.gmshOnelabGetString( c_char_p(name.encode()), byref(api_value_), byref(api_value_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorstring(api_value_, api_value_n_.value) @staticmethod def clear(name=""): """ gmsh.onelab.clear(name="") Clear the ONELAB database, or remove a single parameter if `name' is given. """ ierr = c_int() lib.gmshOnelabClear( c_char_p(name.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def run(name="", command=""): """ gmsh.onelab.run(name="", command="") Run a ONELAB client. If `name' is provided, create a new ONELAB client with name `name' and executes `command'. If not, try to run a client that might be linked to the processed input files. """ ierr = c_int() lib.gmshOnelabRun( c_char_p(name.encode()), c_char_p(command.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) class logger: """ Information logging functions """ @staticmethod def write(message, level="info"): """ gmsh.logger.write(message, level="info") Write a `message'. `level' can be "info", "warning" or "error". """ ierr = c_int() lib.gmshLoggerWrite( c_char_p(message.encode()), c_char_p(level.encode()), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def start(): """ gmsh.logger.start() Start logging messages. """ ierr = c_int() lib.gmshLoggerStart( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def get(): """ gmsh.logger.get() Get logged messages. Return `log'. """ api_log_, api_log_n_ = POINTER(POINTER(c_char))(), c_size_t() ierr = c_int() lib.gmshLoggerGet( byref(api_log_), byref(api_log_n_), byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return _ovectorstring(api_log_, api_log_n_.value) @staticmethod def stop(): """ gmsh.logger.stop() Stop logging messages. """ ierr = c_int() lib.gmshLoggerStop( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) @staticmethod def getWallTime(): """ gmsh.logger.getWallTime() Return wall clock time. Return a floating point value. """ ierr = c_int() lib.gmshLoggerGetWallTime.restype = c_double api_result_ = lib.gmshLoggerGetWallTime( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def getCpuTime(): """ gmsh.logger.getCpuTime() Return CPU time. Return a floating point value. """ ierr = c_int() lib.gmshLoggerGetCpuTime.restype = c_double api_result_ = lib.gmshLoggerGetCpuTime( byref(ierr)) if ierr.value != 0: raise Exception(logger.getLastError()) return api_result_ @staticmethod def getLastError(): """ gmsh.logger.getLastError() Return last error message, if any. Return `error'. """ api_error_ = c_char_p() ierr = c_int() lib.gmshLoggerGetLastError( byref(api_error_), byref(ierr)) if ierr.value != 0: raise Exception('Could not get last error') return _ostring(api_error_)