diff --git a/examples/helmholtz/waveguide/README.md b/examples/helmholtz/waveguide/README.md
index 26baef785e545cc42e4a27201964a468412feb28..9afb24afe3296fccf6ac5a92ccfb76e2e6d0af92 100644
--- a/examples/helmholtz/waveguide/README.md
+++ b/examples/helmholtz/waveguide/README.md
@@ -45,7 +45,7 @@ For the transmission condition, `Taylor2` and `Pade` are based on the approximat
 ```
 
 ## Reference
-> To be updated
+> P. Marchner, H. Bériot, S. Le Bras, X. Antoine and C. Geuzaine. A domain decomposition solver for large scale time-harmonic flow acoustics problems. (2023), Preprint [HAL-04254633](https://hal.science/hal-04254633).
 
 ## Results reproducibility
 The data from Figure 3.2, Section 3.3 can be reproduced thanks to the script `runTests.sh`.
diff --git a/examples/helmholtzflow/exhaust3D/README.md b/examples/helmholtzflow/exhaust3D/README.md
index d7c3e4fe40ceefeadea34468f00eec7ee23476a9..146425b86380abb3b91b6150c7c1cf35f28c694a 100644
--- a/examples/helmholtzflow/exhaust3D/README.md
+++ b/examples/helmholtzflow/exhaust3D/README.md
@@ -38,4 +38,4 @@ The parameter `-meshSizeFactor` can be used to adjust the global mesh refinement
 DDM transmission conditions are set up by default to be second order Taylor conditions with the rotation branch-cut set to $`\alpha=-\pi/2`$.
 
 ## References
-> To be updated
\ No newline at end of file
+> P. Marchner, H. Bériot, S. Le Bras, X. Antoine and C. Geuzaine. A domain decomposition solver for large scale time-harmonic flow acoustics problems. (2023), Preprint [HAL-04254633](https://hal.science/hal-04254633).
\ No newline at end of file
diff --git a/examples/helmholtzflow/freefield/README.md b/examples/helmholtzflow/freefield/README.md
index 238d536be8796b9880b7e0f5a54c6d52b5f07a3c..7557624b5c2fd6b4560164d60a746fc7b8b59f11 100644
--- a/examples/helmholtzflow/freefield/README.md
+++ b/examples/helmholtzflow/freefield/README.md
@@ -41,7 +41,7 @@ By default a circular domain with a Padé condition is used with 5 circle-concen
 
 
 ## Reference
-> To be updated
+> P. Marchner, H. Bériot, S. Le Bras, X. Antoine and C. Geuzaine. A domain decomposition solver for large scale time-harmonic flow acoustics problems. (2023), Preprint [HAL-04254633](https://hal.science/hal-04254633).
 
 ## Results reproducibility
 The results from Figure 3.3, Section 3.3 can be reproduced thanks to
diff --git a/examples/helmholtzflow/nacelle3D/README.md b/examples/helmholtzflow/nacelle3D/README.md
index d5153f19f239455b622aaed135c5b3b508988997..5826921ad67821421dd4c28ed261c455bcfee8e0 100644
--- a/examples/helmholtzflow/nacelle3D/README.md
+++ b/examples/helmholtzflow/nacelle3D/README.md
@@ -48,9 +48,9 @@ DDM transmission conditions are set up by default to be second order Taylor cond
 By default the `bpf_ratio` is 0.5 and the mode number `m` is 6.
 
 ## References
-> Marchner, Philippe. "Non-reflecting boundary conditions and domain decomposition methods for industrial flow acoustics." PhD thesis, Universités de Lorraine et Liège, 2022.  
+> P. Marchner, H. Bériot, S. Le Bras, X. Antoine and C. Geuzaine. A domain decomposition solver for large scale time-harmonic flow acoustics problems. (2023), Preprint [HAL-04254633](https://hal.science/hal-04254633).
 
-> To be updated
+> Marchner, Philippe. "Non-reflecting boundary conditions and domain decomposition methods for industrial flow acoustics." PhD thesis, Universités de Lorraine et Liège, 2022.  
 
 ## Results reproducibility
 The data from Figure 4.3 for the intake problem can be reproduced by running the domain decomposition problem with the corresponding number of subdomains.
diff --git a/examples/helmholtzflow/waveguide/README.md b/examples/helmholtzflow/waveguide/README.md
index 95919c5d5ebda11768765788ff1468ba090feecf..07cbabc051e88f0b1224d1943f5c09eea32b538f 100644
--- a/examples/helmholtzflow/waveguide/README.md
+++ b/examples/helmholtzflow/waveguide/README.md
@@ -38,7 +38,7 @@ with `[PARAM]`:
 By default 4 subdomains are used for the frequency $`k=30`$, with a mean flow at $`M_x=0.7`$. The finite element order is 4 and the mesh size is chosen in order to have 12 dofs per wavelength.
 
 ## Reference
-> To be updated
+> P. Marchner, H. Bériot, S. Le Bras, X. Antoine and C. Geuzaine. A domain decomposition solver for large scale time-harmonic flow acoustics problems. (2023), Preprint [HAL-04254633](https://hal.science/hal-04254633).
 
 ## Results reproducibility
 The results from Table 3.1, Section 3.3 can be reproduced thanks to the running commands