diff --git a/beyn.py b/beyn.py
index 1e97763659aea0cad803afa192cd59c4b4277032..45606f35a5ed79a2057655adf98841cd3944c1aa 100644
--- a/beyn.py
+++ b/beyn.py
@@ -2,22 +2,26 @@ import solver as Solver
 import numpy  as np
 import numpy.matlib
 
-def simple(operator, radius, origin,
-           nodes=100, maxIt=10, lStart=1, lStep=1, rankTol=1e-4):
+def simple(operator, origin, radius,
+           nodes=100, maxIt=10, lStart=1, lStep=1, rankTol=1e-4, verbose=True):
     """Solves an eigenvalue problem using Beyn's algorithm (simple version)
 
     Keyword arguments:
     operator -- the solver defining the operator to use
-    radius -- the radius of the circular contour used to search the eigenvalues
     origin -- the origin (in the complex plane) of the above circular contour
+    radius -- the radius of the circular contour used to search the eigenvalues
     nodes -- the number of nodes for the trapezoidal integration rule (optional)
     lStart -- the number of columns used for A0 when algorithm starts (optional)
     lStep -- the step used for increasing the number of columns of A0 (optional)
     rankTol -- the tolerance for the rank test
+    verbose -- should I be verbose? (optional)
 
     Returns the computed eigenvalues
     """
 
+    # Display the parameter used
+    if(verbose): display(nodes, maxIt, lStart, lStep, rankTol, origin, radius)
+
     # Initialise A0 search
     myPath = path(nodes, origin, radius)
     hasK   = False
@@ -27,8 +31,9 @@ def simple(operator, radius, origin,
     k      = -1
 
     # Search A0
+    if(verbose): print "Searching A0..."
     while(not hasK and it != maxIt):
-        print "Iteration: " + str(it+1)
+        if(verbose): print " # Iteration: " + str(it+1)
 
         vHat = randomMatrix(m ,l)                       # Take a random VHat
         A0   = integrate(operator, myPath, 0, vHat)     # Compute A0
@@ -49,7 +54,7 @@ def simple(operator, radius, origin,
     if(it == maxIt):
         raise RuntimeError(maxItErrorStr())
     else:
-        print "Constructing linear EVP..."
+        if(verbose): print "Constructing linear EVP..."
 
     # Compute V, S and Wh
     #  NB: For SVD(A) = V*S*Wh, numpy computes {v, s, w}, such that:
@@ -66,10 +71,11 @@ def simple(operator, radius, origin,
     B  = V0.H * A1 * W0 * S0Inv
 
     # Eigenvalues of B
-    print "Solving linear EVP..."
+    if(verbose): print "Solving linear EVP..."
     myLambda, QHat = numpy.linalg.eig(B)
 
     # Done
+    if(verbose): print "Done!"
     return myLambda
 
 
@@ -161,6 +167,25 @@ def randomMatrix(n, m):
     return np.matlib.rand(n, m) + np.matlib.rand(n, m) * 1j
 
 
+def display(nodes, maxIt, lStart, lStep, rankTol, origin, radius):
+    print "Beyn's contour integral method (simple)"
+    print "---------------------------------------"
+    print " # Nodes used for the trapezoidal rule:" + " " + str(nodes)
+    print " # Maximum number of iterations:       " + " " + str(maxIt)
+    print " # Initial size of col(A0):            " + " " + str(lStart)
+    print " # Step size for col(A0):              " + " " + str(lStep)
+    print " # Rank test tolerance:                ",
+    print format(rankTol, '.2e')
+    print "---------------------------------------"
+    print " # Cirular path origin:                ",
+    print "(" + format(np.real(origin).tolist(), '+.2e') + ")",
+    print "+",
+    print "(" + format(np.imag(origin).tolist(), '+.2e') + ")j"
+    print " # Cirular path radius:                ",
+    print format(radius, '+.2e')
+    print "---------------------------------------"
+
+
 def zeroRankErrorStr():
     """Returns a string explaining the probable reason of a zero rank"""
     return ("Found a rank of zero: " +
diff --git a/main.py b/main.py
index 96c9833866d53ece3b5f38383c522ebbc46b5d9b..cbb1e2551edcd4ada4fa645db5505ddf7cebfe62 100644
--- a/main.py
+++ b/main.py
@@ -11,8 +11,9 @@ resolution = "Maxwell"
 operator = Solver.GetDPWave(pro, mesh, resolution)
 
 # Compute
-v = Beyn.simple(operator, 1e8, complex(9e8, 0))
+v = Beyn.simple(operator, complex(9e8, 0), 1e8)
 
+print
 print "Eigenvalues:"
 print "----------- "
 for i in range(v.shape[0]):