<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head> <title>OPTLAB</title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <meta name="keywords" content="free, finite element, fem, interface, gmsh, getdp"> <meta name="viewport" content="width=device-width"> <meta name="apple-itunes-app" content="app-id=845930897"> <link href="http://onelab.info/onelab.css" rel="stylesheet" type="text/css"> <style type="text/css"><!-- div.small { font-size:80%; } ul.small { margin-top:1ex; margin-bottom:1ex; } --></style> </head> <body> <h1 class="short">OPTLAB</h1> <div id="banner"> <img src="pmsm_shapeTopo.png" alt=""> <img src="busbar.png" alt=""> <img src="mbb.png" alt=""> </div> <h1>Nonlinear Constrained Optimization Library</h1> <p> OPTLAB (OPTimization LABoratory) is a framework for formulating and solving large-scale, nonlinear constrained optimization problems in an efficient and portable manner. The default algorithm provided by OPTLAB is the method of moving asymptotes (MMA)<a href="#1"><sup>1</sup></a>, implemented for both shared and distributed (MPI) memory architectures using <a href="http://www.mcs.anl.gov/petsc">PETSc</a>. </p> <p> OPTLAB is Copyright (c) 2018, E. Kuci, C. Geuzaine and P. Duysinx, University of Liège. </p> <h2>Quick start</h2> <p> OPTLAB is distributed as part of the ONELAB bundle to solve large scale finite element shape or topology optimization problems<a href="#2"><sup>2</sup></a>. To test OPTLAB: </p> <ol> <li>Dowload the <a href="http://onelab.info">ONELAB software bundle</a> <li>Launch the app <img src="http://geuz.org/gmsh/gallery/icon.png" height=20px> <li>Open <code>tutorials/optlab/shape.py</code> <li>Press <code>Run</code> </ol> <p> This assumes that you have a working Python installation on your computer, including the <code>numpy</code> package. </p> <h2>OPTLAB Software Development Kit</h2> <p> A Software Development Kit (SDK) is also available for integrating OPTLAB with your own C, C++, Python or Julia code. </p> <p> Download the SDK for <a href="http://onelab.info/optlab/bin/optlab-1.0.0-Windows64.zip">Windows 64-bit</a>, <a href="http://onelab.info/optlab/bin/optlab-1.0.0-Windows32.zip">Windows 32-bit</a>, <a href="http://onelab.info/optlab/bin/optlab-1.0.0-Linux64.zip">Linux 64-bit</a>, <a href="http://onelab.info/optlab/bin/optlab-1.0.0-Linux32.zip">Linux 32-bit</a> or <a href="http://onelab.info/optlab/bin/optlab-1.0.0-MacOSX.zip">MacOS</a>. </p> <h2>References</h2> <div class="small"> <ol class="small"> <li><a name="1"></a> K. Svanberg. <em>The method of moving asymptotes - a new method for structural optimization</em>. International journal for numerical methods in engineering, 24 (2):359–373, 1987. <li><a name="2"></a>E. Kuci, F. Henrotte, P. Duysinx, and C. Geuzaine. <em>Design sensitivity analysis for shape optimization based on the Lie derivative</em>. Computer Methods in Applied Mechanics and Engineering 317 (2017), pp. 702 –722. </ol> </div> <h2>Sponsors</h2> <p> OPTLAB development was funded in part by the Walloon Region under <a href="https://recherche-technologie.wallonie.be/projets/index.html?IDD=22338">WBGreen grant No 1217703 (FEDO)</a> and the <a href="http://www.belspo.be">the Belgian Science Policy</a> under grant IAP P7/02. </p> <center style="margin-top:4ex;margin-bottom:4ex"> <a href="http://www.ulg.ac.be"><img src="http://onelab.info/logo_uliege.jpg" height="68px"></a> <a href="http://www.wallonie.be"><img src="http://onelab.info/logo_rw.jpg" height="68px"></a> <a href="http://www.belspo.be"><img src="http://onelab.info/logo_belspo.jpg" height="68px"></a> </center> </body> </html>