diff --git a/photonics/index.html b/photonics/index.html
index 978201b8242c62d28b62ddc6c3186e6abbaf9c90..b7ea4b3d08b6f5230c08867d8ee32a97314c0950 100644
--- a/photonics/index.html
+++ b/photonics/index.html
@@ -22,44 +22,94 @@
 <h1 class="short">ONELAB Photonics</h1>
 
 <div id="banner">
-  <img src="Diffraction-gratings_screenshot1.png" alt="">
-  <img src="Bloch-modes-in-periodic-waveguides_screenshot1.png" alt="">
   <img src="Diffraction-gratings_screenshot2.png" alt="">
-  <img src="Bloch-modes-in-periodic-waveguides_screenshot2.png" alt="">
+  <img src="grating3D_skew.png" alt="">
+  <img src="grating3D_solar.png" alt="">
+  <img src="NonLinearEVP.png" alt="">
+  <img src="rhombus.png" alt="">
+  <img src="scattering_splitring.png" alt="">
 </div>
 
 <h1>Open Source Finite Element Software for Photonics Applications</h1>
 
 <p>
-  ONELAB Photonics<a href="#1"><sup>1</sup></a> combines the open source finite
+  ONELAB Photonics is a set of models combining the open source finite
   element solver <a href="http://getdp.info">GetDP</a> with the open source pre-
-  and post-processor Gmsh <a href="http://gmsh.info">Gmsh</a> to solve photonics
+  and post-processor <a href="http://gmsh.info">Gmsh</a> to solve photonics
   applications.
 </p>
-<p>
-  TODO This is a reference a href="#1"><sup>1</sup></a>.
+</p> 
+  These models can be used as-is for parametric studies or as template models since implementing
+  a new opto-geometric parameters using Gmsh and GetDP is rather simple. 
+</p>
+</p>
+  For instance, it is possible to compute direct problems such as the diffraction of a
+  plane wave by a grating<a href="#1"><sup>1-3</sup></a> (in 2D and 3D) or the scattering of an arbitrary wave 
+  by a scatterer (T-matrix<a href="#4"><sup>4</sup></a>, near and far field data...)
+</p>
+</p>
+  A collection of eigenvalue problems is also available, such as  
+  the Quasi-Normal Modes of open structures<a href="#5"><sup>5</sup></a>, 
+  the the Bloch band diagram of photonics crystals,
+  the leaky modes of a microstructured fiber<a href="#6"><sup>6</sup></a>, or
+  the modes resulting from non-linear eigenvalue problems arising when considering 
+  frequency-dispersive permittivities<a href="#7"><sup>7-8</sup></a>.
 </p>
 
 <h2>Quick start</h2>
-
 <ol>
   <li>Download the <a href="http://onelab.info#Download">precompiled ONELAB
   software bundle</a> for Windows, Linux or MacOS.
   <li>Launch the app <img src="http://geuz.org/gmsh/gallery/icon.png" height=20px>
-  <li>Open <code>models/BlochPeriodicWaveguides/rhombus.pro</code>,
-    <code>models/DiffractionGratings/grating2D.pro</code> or
-    <code>models/DiffractionGratings/grating3D.pro</code>
+  <li>Open <code>models/BlochPeriodicWaveguides/rhombus.pro</code> or
+    <code>models/DiffractionGratings/grating2D.pro</code>.
   <li>Press <code>Run</code>
 </ol>
 
 <h2>Template models</h2>
-
+<ul>
+  <li>2D and 3D grating models<a href="#1"><sup>1-3</sup></a> are available in <code>models/DiffractionGratings</code>. </li>
+  <li>A general 3D scattering model<a href="#4"><sup>4</sup></a> is available in <code>models/ElectromagneticScattering</code>. </li>
+  <li>A model for the computation of the Bloch dispersion relation in conical mounts<a href="#6"><sup>6</sup></a> 
+      is avalable in <code>models/BlochPeriodicWaveguides</code>. </li>
+  <li>A collection of non-Linear eigenvalue problems<a href="#7"><sup>7-8</sup></a> 
+      (quadratic, polynomial and rational) is avaiable in <code>models/NonLinearEVP</code>. </li>
+</ul>
 
 <h2>References</h2>
 
 <div class="small">
   <ol class="small">
-    <li><a name="1"></a>TODO...
+    <li><a name="1"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré.
+      <a href="https://doi.org/10.1364/JOSAA.27.000878">
+      All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack</a>.
+      JOSA A 27.4, 878-889, 2010.
+    <li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet.
+      <a href="https://arxiv.org/abs/1710.11451">
+      A ONELAB model for the parametric study of mono-dimensional diffraction gratings</a>.
+      arXiv:1710.11451.
+    <li><a name="3"></a>G. Demésy, S. John.
+      <a href=" https://doi.org/10.1063/1.4752775">
+      Solar energy trapping with modulated silicon nanowire photonic crystals</a>.
+      Journal of Applied Physics 112.7, 074326, 2012.
+    <li><a name="4"></a>G. Demésy,J.-C. Auger, B. Stout.
+      <a href="https://arxiv.org/abs/1807.02355">
+      Scattering matrix of arbitrarily shaped objects: combining finite elements and vector partial waves</a>.
+      JOSA A 35.8 1401-1409, 2018.
+    <li><a name="5"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine.
+      <a href="https://arxiv.org/abs/1807.02355">
+      Modal analysis of the ultrahigh finesse Haroche QED cavity</a>.
+      New Journal of Physics 20.4, 043058, 2018.
+    <li><a name="6"></a>F. Zolla, G. Renversez, A. Nicolet.
+      Foundations of photonic crystal fibres. World Scientific, 2005.
+    <li><a name="7"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. E. Roman.
+      <a href="https://arxiv.org/abs/1802.02363">
+      Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures</a>.
+      arXiv:1802.02363.
+    <li><a name="8"></a>F. Zolla, A. Nicolet, G. Demésy,
+      <a href="https://arxiv.org/abs/1807.02355">
+      Photonics in highly dispersive media: the exact modal expansion</a>.
+      Opt. Lett. 43, 5813, 2018.
   </ol>
 </div>
 
@@ -67,8 +117,8 @@
 
 <p>
   ONELAB Photonics was funded in part by the Walloon Region (WIST3 No 1017086
-  ONELAB) and the Belgian French Community (ARC WAVES 15/19-03), . <!-- TODO add
-  thanks! -->
+  ONELAB), the Belgian French Community (ARC WAVES 15/19-03) and the French Agence Nationale pour
+  la recherche (ANR-16-CE24-0013).
 </p>