GetDDM
Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic Wave Problems
GetDDM combines GetDP
and Gmsh to solve large scale finite element
problems using optimized Schwarz domain decomposition methods.
Quick start
- Download the precompiled ONELAB
software bundle for Windows, Linux or MacOS.
- Launch the app
- Open
models/GetDDM/main.pro
- Press
Run
Parallel computations
- Download the ONELAB
source code
- Compile
GetDP
and Gmsh
with MPI support
- Run the models on a computer cluster with MPI, e.g. for 100 CPUs
mpirun -np 100 gmsh models/GetDDM/waveguide3d.geo -
mpirun -np 100 getdp models/GetDDM/waveguide3d.pro -solve DDM
The actual commands will depend on your particular MPI setup. Sample
scripts for SLURM and PBS schedulers are also available.
(For parallel computations you will have to [recompile GetDP with MPI
support](https://gitlab.onelab.info/getdp/getdp/wikis/GetDP-compilation). Sample
[SLURM](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_slurm.sh)
and [PBS
scripts](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_pbs.sh)
are provided to to run on HPC clusters.)
for time-harmonic acoustic and electromagnetic wave problems. See Several
families of transmission conditions are implemented: zeroth- and second-order
optimized conditions [1-6], Padé-localized square-root conditions [7-8] and PML
conditions [9]. Several variants of the double-sweep preconditioner [9] are also
implemented.
For more information about these methods as well as the implementation, please
refer to [GetDDM: an Open Framework for Testing Optimized Schwarz Methods for
Time-Harmonic Wave
Problems](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf)
[10].
References
- B. Després, Méthodes de Décomposition de Domaine pour les Problèmes de
Propagation d'Ondes en Régime Harmonique. Le Théorème de Borg pour
l'Equation de Hill Vectorielle, PhD Thesis, Paris VI University, France,
1991.
- B. Després, P. Joly and J. Roberts, A domain decomposition method for
the harmonic Maxwell equations, Iterative methods in linear algebra
(Brussels, 1991), pp. 475-484, North-Holland, 1992.
- M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without
overlap for the Helmholtz equation}, SIAM Journal on Scientific Computing,
24(1), pp. 38-60, 2002.
- V. Dolean, M. Gander and L. Gerardo-Giorda, Optimized Schwarz methods
for Maxwell's equations, SIAM Journal on Scientific Computing, 31(3),
pp. 2193-2213, 2009.
- A. Bendali and Y. Boubendir, Non-Overlapping Domain Decomposition Method
for a Nodal Finite Element Method, Numerische Mathematik 103(4),
pp.515-537, (2006).
- V. Rawat and J.-F. Lee, Nonoverlapping Domain Decomposition with Second
Order Transmission Condition for the Time-Harmonic Maxwell's Equations,
SIAM Journal on Scientific Computing, 32(6), pp. 3584-3603, 2010.
- Y. Boubendir, X. Antoine and
C. Geuzaine. A
quasi-optimal non-overlapping domain decomposition algorithm for the
Helmholtz equation. Journal of Computational Physics 231 (2),
262-280, 2012.
- M. El Bouajaji, X. Antoine and
C. Geuzaine. Approximate
local magnetic-to-electric surface operators for time-harmonic Maxwell's
equations. Journal of Computational Physics 279 241-260, 2014.
- A. Vion and
C. Geuzaine.
Double sweep preconditioner for optimized Schwarz methods applied to the
Helmholtz problem. Journal of Computational Physics 266, 171-190,
2014.
- B. Thierry, A.Vion, S. Tournier, M. El Bouajaji, D. Colignon, N. Marsic,
X. Antoine,
C. Geuzaine. GetDDM:
an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
Wave Problems. Computer Physics Communications 203, 309-330, 2016.
Sponsors
GetDDM development was funded in part by the Belgian Science Policy (IAP P6/21
and P7/02), the Belgian French Community (ARC 09/14-02), the Walloon Region
(WIST3 No 1017086 ONELAB and ALIZEES), the Agence Nationale pour la Recherche
(ANR-09-BLAN-0057-01 MicroWave) and the EADS Foundation (grant 089-1009-1006
High-BRID).